Vis enkel innførsel

dc.contributor.authorVlaisavljevich, Bess
dc.contributor.authorOdoh, Samuel O.
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorDzubak, Allison L.
dc.contributor.authorLee, Kyuho
dc.contributor.authorPlanas, Nora
dc.contributor.authorNeaton, Jeffrey B.
dc.contributor.authorGagliardi, Laura
dc.contributor.authorSmit, Berend
dc.date.accessioned2017-10-04T11:06:05Z
dc.date.available2017-10-04T11:06:05Z
dc.date.created2015-08-12T10:20:25Z
dc.date.issued2015
dc.identifier.citationChemical Science. 2015, 6 (9), 5177-5185.nb_NO
dc.identifier.issn2041-6520
dc.identifier.urihttp://hdl.handle.net/11250/2458333
dc.description.abstractUsing a combination of density functional theory and lattice models, we study the effect of CO2 adsorption in an amine functionalized metal organic framework. These materials exhibit a step in the adsorption isotherm indicative of a phase change. The pressure at which this step occurs is not only temperature dependent but is also metal center dependent. Likewise, the heats of adsorption vary depending on the metal center. Herein we demonstrate via quantum chemical calculations that the amines should not be considered firmly anchored to the framework and we explore the mechanism for CO2 adsorption. An ammonium carbamate species is formed via the insertion of CO2 into the M-Namine bonds. Furthermore, we translate the quantum chemical results into isotherms using a coarse grained Monte Carlo simulation technique and show that this adsorption mechanism can explain the characteristic step observed in the experimental isotherm while a previously proposed mechanism cannot. Furthermore, metal analogues have been explored and the CO2 binding energies show a strong metal dependence corresponding to the M-Namine bond strength. We show that this difference can be exploited to tune the pressure at which the step in the isotherm occurs. Additionally, the mmen-Ni2(dobpdc) framework shows Langmuir like behavior, and our simulations show how this can be explained by competitive adsorption between the new model and a previously proposed model.nb_NO
dc.language.isoengnb_NO
dc.publisherRoyal Society of Chemistrynb_NO
dc.titleCO2 induced phase transitions in diamine-appended metal-organic frameworksnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber5177-5185nb_NO
dc.source.volume6nb_NO
dc.source.journalChemical Sciencenb_NO
dc.source.issue9nb_NO
dc.identifier.doi10.1039/c5sc01828e
dc.identifier.cristin1257548
dc.relation.projectNorges forskningsråd: 230534nb_NO
dc.description.localcode© The Royal Society of Chemistry 2015. This is the authors’ accepted and refereed manuscript to the article.nb_NO
cristin.unitcode194,66,25,0
cristin.unitnameInstitutt for kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel