Vis enkel innførsel

dc.contributor.authorBraun, Efrem
dc.contributor.authorChen, Joseph J.
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorLin, Li-Chiang
dc.contributor.authorReimer, Jeffrey A.
dc.contributor.authorSmit, Berend
dc.date.accessioned2017-10-04T10:40:00Z
dc.date.available2017-10-04T10:40:00Z
dc.date.created2015-12-09T00:06:25Z
dc.date.issued2015
dc.identifier.citationAngewandte Chemie International Edition. 2015, 54 (48), 14349-14352.nb_NO
dc.identifier.issn1433-7851
dc.identifier.urihttp://hdl.handle.net/11250/2458310
dc.description.abstractMolecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. As applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.nb_NO
dc.language.isoengnb_NO
dc.publisherWileynb_NO
dc.titleNanoporous materials can tune the critical point of a pure substancenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber14349-14352nb_NO
dc.source.volume54nb_NO
dc.source.journalAngewandte Chemie International Editionnb_NO
dc.source.issue48nb_NO
dc.identifier.doi10.1002/anie.201506865
dc.identifier.cristin1298547
dc.relation.projectNorges forskningsråd: 230534nb_NO
dc.description.localcodeThis is the peer reviewed version of the following article: Nanoporous materials can tune the critical point of a pure substance, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/anie.201506865/epdf. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
cristin.unitcode194,66,25,0
cristin.unitnameInstitutt for kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel