• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Well-Posedness of a Fractional Mean Field Game System with Non-Local Coupling

Ersland, Olav
Master thesis
Thumbnail
View/Open
17868_FULLTEXT.pdf (713.9Kb)
17868_COVER.pdf (1.556Mb)
URI
http://hdl.handle.net/11250/2455599
Date
2017
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1769]
Abstract
We prove existence and uniqueness of classical solutions for a fractional Mean Field

Game system with non-local coupling, where the fractional exponent is greater than

1/2.

To our knowledge this is not proven before in the literature, and is therefore a new

result. In addition, we show regularity in time and space for the fractional Hamilton-

Jacobi equation, and use this result to show regularity for the fractional Fokker-Planck

equation.
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit