Vis enkel innførsel

dc.contributor.authorMarthinsen, Astrid
dc.contributor.authorFaber, Carina
dc.contributor.authorAschauer, Ulrich
dc.contributor.authorSpaldin, Nicola A.
dc.contributor.authorSelbach, Sverre Magnus
dc.date.accessioned2017-09-05T07:42:14Z
dc.date.available2017-09-05T07:42:14Z
dc.date.created2017-01-04T16:29:38Z
dc.date.issued2016
dc.identifier.citationMRS Communications. 2016, 6 (3), 182-191.nb_NO
dc.identifier.issn2159-6859
dc.identifier.urihttp://hdl.handle.net/11250/2453128
dc.description.abstractWe use first-principles calculations based on density functional theory to investigate the interplay between oxygen vacancies, A-site cation size/tolerance factor, epitaxial strain, ferroelectricity, and magnetism in the perovskite manganite series, AMnO3 (A = Ca2+, Sr2+, Ba2+). We find that, as expected, increasing the volume through either chemical pressure or tensile strain generally lowers the formation energy of neutral oxygen vacancies consistent with their established tendency to expand the lattice. Increased volume also favors polar distortions, both because competing rotations of the oxygen octahedra are suppressed and because Coulomb repulsion associated with cation off-centering is reduced. Interestingly, the presence of ferroelectric polarization favors ferromagnetic (FM) over antiferromagnetic (AFM) ordering due to suppressed AFM superexchange as the polar distortion bends the Mn–O–Mn bond angles away from the optimal 180°. Intriguingly, we find that polar distortions compete with the formation of oxygen vacancies, which have a higher formation energy in the polar phases; conversely the presence of oxygen vacancies suppresses the onset of polarization. In contrast, oxygen vacancy formation energies are lower for FM than AFM orderings of the same structure type. Our findings suggest a rich and complex phase diagram, in which defect chemistry, polarization, structure, and magnetism can be modified using chemical potential, stress or pressure, and electric or magnetic fields.nb_NO
dc.language.isoengnb_NO
dc.publisherCambridge University Pressnb_NO
dc.titleCoupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in AMnO3 perovskitesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber182-191nb_NO
dc.source.volume6nb_NO
dc.source.journalMRS Communicationsnb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.1557/mrc.2016.30
dc.identifier.cristin1421073
dc.relation.projectNotur/NorStore: NN9264Knb_NO
dc.description.localcodeThis is the authors' manuscript to the article (preprint).nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel