Vis enkel innførsel

dc.contributor.authorJiang, Bo
dc.contributor.authorGrande, Tor
dc.contributor.authorSelbach, Sverre Magnus
dc.date.accessioned2017-09-01T11:45:34Z
dc.date.available2017-09-01T11:45:34Z
dc.date.created2017-08-29T18:21:32Z
dc.date.issued2017
dc.identifier.citationChemistry of Materials. 2017, 29 (10), 4244-4252.nb_NO
dc.identifier.issn0897-4756
dc.identifier.urihttp://hdl.handle.net/11250/2452774
dc.description.abstractWe investigate A-site cation ordering in the ferroelectric perovskite Bi0.5K0.5TiO3 (BKT) by density functional theory (DFT) calculations and synchrotron X-ray total scattering. Using BKT as a prototypical lead-free ferroelectric perovskite with mixed A-site cations, we use a combination of theory and experiments to assess the energetics and resulting physical properties of cation ordering. Ten different Bi/K configurations in a 2 × 2 × 2 supercell were assessed by real space pair distribution functions (PDFs) and DFT calculations. None of these configurations were identified as particularly favorable from experiment or theory. Ferroelectric polarization calculated by the Berry phase method for all ten configurations yields values of 50–105 μC/cm2. This is significantly larger than previously reported experimental results in the range of 22–49 μC/cm2, indicating that BKT does not possess long-range A-site cation order. Reverse Monte Carlo (RMC) modeling of the total scattering data with a 12 × 12 × 12 supercell also supports substantial A-site disorder in BKT. A 4 × 4 × 4 supercell with local cation displacements in a pseudodisordered A-site sublattice reproduces the experimentally observed polarization, implying that in a real material there are multiple local polar regions which partly cancel each other. The combination of RMC modeling of PDFs with DFT calculations should be highly applicable to other crystalline materials with sublattice disorder.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.titleLocal Structure of Disordered Bi0.5K0.5TiO3 Investigated by Pair Distribution Function Analysis and First-Principles Calculationsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber4244-4252nb_NO
dc.source.volume29nb_NO
dc.source.journalChemistry of Materialsnb_NO
dc.source.issue10nb_NO
dc.identifier.doi10.1021/acs.chemmater.7b00276
dc.identifier.cristin1489660
dc.relation.projectNotur/NorStore: NN9264Knb_NO
dc.relation.projectNorges forskningsråd: 228571nb_NO
dc.description.localcodeThis is the authors' accepted and refereed manuscript to the article. Locked until 24 April 2018 due to copyright restrictionsnb_NO
cristin.unitcode194,66,35,0
cristin.unitcode194,66,1,0
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameNT fakultetsadministrasjon
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel