• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local Structure of Disordered Bi0.5K0.5TiO3 Investigated by Pair Distribution Function Analysis and First-Principles Calculations

Jiang, Bo; Grande, Tor; Selbach, Sverre Magnus
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
cm-2017-002762_final.pdf (6.727Mb)
URI
http://hdl.handle.net/11250/2452774
Date
2017
Metadata
Show full item record
Collections
  • Institutt for materialteknologi [1570]
  • Publikasjoner fra CRIStin - NTNU [19824]
Original version
Chemistry of Materials. 2017, 29 (10), 4244-4252.   10.1021/acs.chemmater.7b00276
Abstract
We investigate A-site cation ordering in the ferroelectric perovskite Bi0.5K0.5TiO3 (BKT) by density functional theory (DFT) calculations and synchrotron X-ray total scattering. Using BKT as a prototypical lead-free ferroelectric perovskite with mixed A-site cations, we use a combination of theory and experiments to assess the energetics and resulting physical properties of cation ordering. Ten different Bi/K configurations in a 2 × 2 × 2 supercell were assessed by real space pair distribution functions (PDFs) and DFT calculations. None of these configurations were identified as particularly favorable from experiment or theory. Ferroelectric polarization calculated by the Berry phase method for all ten configurations yields values of 50–105 μC/cm2. This is significantly larger than previously reported experimental results in the range of 22–49 μC/cm2, indicating that BKT does not possess long-range A-site cation order. Reverse Monte Carlo (RMC) modeling of the total scattering data with a 12 × 12 × 12 supercell also supports substantial A-site disorder in BKT. A 4 × 4 × 4 supercell with local cation displacements in a pseudodisordered A-site sublattice reproduces the experimentally observed polarization, implying that in a real material there are multiple local polar regions which partly cancel each other. The combination of RMC modeling of PDFs with DFT calculations should be highly applicable to other crystalline materials with sublattice disorder.
Publisher
American Chemical Society
Journal
Chemistry of Materials

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit