Vis enkel innførsel

dc.contributor.authorMiddel, Heleen
dc.contributor.authorVerones, Francesca
dc.date.accessioned2017-08-24T11:59:45Z
dc.date.available2017-08-24T11:59:45Z
dc.date.created2017-06-29T12:08:10Z
dc.date.issued2017
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/11250/2451750
dc.description.abstractAbstract Oceans represent more than 95% of the world’s biosphere and are among the richest sources of biodiversity on Earth. However, human activities such as shipping and construction of marine infrastructure pose a threat to the quality of marine ecosystems. Due to the dependence of most marine animals on sound for their communication, foraging, protection, and ultimately their survival, the effects of noise pollution from human activities are of growing concern. Life cycle assessment (LCA) can play a role in the understanding of how potential environmental impacts are related to industrial processes. However, noise pollution impacts on marine ecosystems have not yet been taken into account. This paper presents a first approach for the integration of noise impacts on marine ecosystems into the LCA framework by developing characterization factors (CF) for the North Sea. Noise pollution triggers a large variety of impact pathways, but as a starting point and proof-of-concept we assessed impacts on the avoidance behaviour of cetaceans due to pile-driving during the construction of offshore windfarms in the North Sea. Our approach regards the impact of avoidance behaviour as a temporary loss of habitat, and assumes a temporary loss of all individuals within that habitat from the total regional population. This was verified with an existing model that assessed the population-level effect of noise pollution on harbour porpoises (Phocoena phocoena) in the North Sea. We expanded our CF to also include other cetacean species and tested it in a case study of the construction of an offshore windfarm (Prinses Amalia wind park). The total impact of noise pollution was in the same order of magnitude as impacts on other ecosystems from freshwater eutrophication, freshwater ecotoxicity, terrestrial acidification, and terrestrial ecotoxicity. Although there are still many improvements to be made to this approach, it provides a basis for the implementation of noise pollution impacts in an LCA framework, and has the potential to be expanded to other world regions and impact pathways.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMaking Marine Noise Pollution Impacts Heard: The Case of Cetaceans in the North Sea within Life Cycle Impact Assessmentnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume9nb_NO
dc.source.journalSustainabilitynb_NO
dc.source.issue7nb_NO
dc.identifier.doi10.3390/su9071138
dc.identifier.cristin1479823
dc.description.localcode© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal