Vis enkel innførsel

dc.contributor.authorBettum, Ingrid Johanne
dc.contributor.authorGorad, Saurabh Sayajirao
dc.contributor.authorBarkovskaya, Anna
dc.contributor.authorPettersen, Solveig
dc.contributor.authorMoestue, Siver Andreas
dc.contributor.authorVasiliauskaite, Kotryna
dc.contributor.authorTenstad, Ellen
dc.contributor.authorØyjord, Tove Ragnhild
dc.contributor.authorRisa, Øystein
dc.contributor.authorNygaard, Vigdis
dc.contributor.authorMælandsmo, Gunhild
dc.contributor.authorPrasmickaite, Lina
dc.date.accessioned2017-06-02T08:58:04Z
dc.date.available2017-06-02T08:58:04Z
dc.date.created2015-06-17T10:00:00Z
dc.date.issued2015
dc.identifier.citationCancer Letters. 2015, 366 (1), 71-83.nb_NO
dc.identifier.issn0304-3835
dc.identifier.urihttp://hdl.handle.net/11250/2444216
dc.description.abstractInvasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titleMetabolic reprogramming supports the invasive phenotype in malignant melanomanb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber71-83nb_NO
dc.source.volume366nb_NO
dc.source.journalCancer Lettersnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1016/j.canlet.2015.06.006
dc.identifier.cristin1248696
dc.relation.projectNorges forskningsråd: 239940nb_NO
dc.description.localcodeThis is the authors' manuscript to the article (preprint).nb_NO
cristin.unitcode194,65,25,0
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel