Vis enkel innførsel

dc.contributor.authorO'Born, Reyn Joseph
dc.contributor.authorBrattebø, Helge
dc.contributor.authorIversen, Ole Magnus Kålås
dc.contributor.authorMiliutenko, Sofiia
dc.contributor.authorPotting, Jose
dc.date.accessioned2017-04-18T11:39:56Z
dc.date.available2017-04-18T11:39:56Z
dc.date.created2016-05-31T10:23:48Z
dc.date.issued2016
dc.identifier.citationEuropean Journal of Transport and Infrastructure Research. 2016, 16 (3), 445-466.nb_NO
dc.identifier.issn1567-7141
dc.identifier.urihttp://hdl.handle.net/11250/2437595
dc.description.abstractThe road sector consumes large amounts of materials and energy and produces large quantities of greenhouse gas emissions, which canbe reduced with correct information in the early planning stages of road project.An important aspect in the early planning stagesis the choice between alternative road corridors that will determine the routedistance and the subsequent need for different road infrastructure elements, such as bridges and tunnels. Together, these factors may heavily influence the life cycle environmental impacts of the road project. This paper presents a case study for two prospective road corridor alternatives for the Oslo fjord crossing in Norwayand utilizesin a streamlined model based on life cycle assessmentprinciples to quantify cumulative energy demand and greenhouse gas emissionsfor each route. This techniquecan be used to determine potential environmental impacts of road projectsby overcomingseveral challengesin the early planningstages, such as the limited availability of detailed life cycle inventory data on the consumption of material and energy inputs, large uncertainty in the design and demand for road infrastructure elements, as well as in future traffic and future vehicle technologies. The results show the importance of assessing different life cycle activities, input materials, fuels and the critical components of such a system. For the Oslo fjord case, traffic during operation contributes about 94 % and 89 % of the annual CED and about 98 % and 92 % of the annual GHG emissions, for a tunnel and a bridge fjord crossing alternative respectively.nb_NO
dc.language.isoengnb_NO
dc.publisherDelft University of Technologynb_NO
dc.relation.urihttp://tlo.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Onderzoek/EJTIR/Back_issues/16.3/2016_03_01.pdf
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleQuantifying energy demand and greenhouse gas emissions of road infrastructure projects: An LCA case study of the Oslo fjord crossing in Norway.nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.pagenumber445-466nb_NO
dc.source.volume16nb_NO
dc.source.journalEuropean Journal of Transport and Infrastructure Researchnb_NO
dc.source.issue3nb_NO
dc.identifier.cristin1358618
dc.description.localcodeThis paper is licensed under Creative Commons Attribution-NonCommercial License 3.0 . Copyright and publishing rights for individual articles belong to the author/s.nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal