Vis enkel innførsel

dc.contributor.authorSandanger, M.I.
dc.contributor.authorTyssøy, Hilde Nesse
dc.contributor.authorHibbins, Robert Edward
dc.contributor.authorZawedde, A.E.
dc.contributor.authorStadsnes, Johan
dc.contributor.authorEspy, Patrick Joseph
dc.contributor.authorØdegaard, L-K
dc.date.accessioned2017-01-12T15:26:49Z
dc.date.available2017-01-12T15:26:49Z
dc.date.created2016-11-08T14:54:40Z
dc.date.issued2016
dc.identifier.citationJournal of Geophysical Research: Space Physics. 2016, 121(6), 5914–5929nb_NO
dc.identifier.issn2169-9380
dc.identifier.urihttp://hdl.handle.net/11250/2427169
dc.description.abstractIn 2008 a sequence of geomagnetic storms occurred triggered by high-speed solar wind streams from coronal holes. Improved estimates of precipitating fluxes of energetic electrons are derived from measurements on board the NOAA/POES 18 satellite using a new analysis technique. These fluxes are used to quantify the direct impact of energetic electron precipitation (EEP) during solar minimum on middle atmospheric hydroxyl (OH) measured from the Aura satellite. During winter, localized longitudinal density enhancements in the OH are observed over northern Russia and North America at corrected geomagnetic latitudes poleward of 55°. Although the northern Russia OH enhancement is closely associated with increased EEP at these longitudes, the strength and location of the North America enhancement appear to be unrelated to EEP. This OH density enhancement is likely due to vertical motion induced by atmospheric wave dynamics that transports air rich in atomic oxygen and atomic hydrogen downward into the middle atmosphere, where it plays a role in the formation of OH. In the Southern Hemisphere, localized enhancements of the OH density over West Antarctica can be explained by a combination of enhanced EEP due to the local minimum in Earth’s magnetic field strength and atmospheric dynamics. Our findings suggest that even during solar minimum, there is substantial EEP-driven OH production. However, to quantify this effect, a detailed knowledge of where and when the precipitation occurs is required in the context of the background atmospheric dynamics.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Geophysical Unionnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleThe impact of energetic electron precipitation on mesospheric hydroxyl during a year of solar minimumnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.pagenumber5914–5929nb_NO
dc.source.volume121nb_NO
dc.source.journalJournal of Geophysical Research: Space Physicsnb_NO
dc.source.issue6nb_NO
dc.identifier.doi10.1002/2016JA022371
dc.identifier.cristin1398492
dc.relation.projectNorges forskningsråd: 223252/F50nb_NO
dc.description.localcode©2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal