Vis enkel innførsel

dc.contributor.authorAuestad, Øyvind F.
dc.date.accessioned2015-12-03T12:58:06Z
dc.date.available2015-12-03T12:58:06Z
dc.date.issued2015
dc.identifier.isbn978-82-326-0993-2
dc.identifier.issn1503-8181
dc.identifier.urihttp://hdl.handle.net/11250/2366747
dc.description.abstractThe main contribution of this thesis is to introduce a control system that enables access to offshore wind turbines for operation and maintenance (O&M) in higher sea states than what is possible today, while maintaining an acceptable level of risk. The system is implemented on-board on a Surface Effect Ship (SES) which introduces a new craft-concept to the turbine transfer vessels. Catamarans and Small-water-area twin hulls (SWATHs) are currently dominating the market. The control system is denoted the Boarding Control System (BCS) which is a control algorithm that utilizes certain sensors and hardware to control air- ow actuators on a SES. The controlled actuators regulates the air cushion pressure to counteract, and compensate against, the vessel motions set up by sea wave propagations. Hence, we perform motion damping in the vertical plane which ultimately improves the accessibility to wind turbines. The work presented in this thesis influenced the decision to build two vessels of the Wave Craft class, build no. 21 and 22 by Umoe Mandal. The prototype, Umoe Ventus, is currently operating at Borkum Riffgrund 1, a wind-farm in the German sector of the North Sea. The SES-dynamics related to the BCS is mathematically modelled and a controller is designed. Stability investigations are performed and system performance are given through simulation, model- and full-scale experimental testing. The performance of the BCS proves that accessibility to offshore-structures is possible in higher seas compared to the case where the system is inactive. Today it is possible to access turbines in up to 1:5 - 1:75m signifcant wave height (Hs). The SES with the BCS is tested in up to 2m Hs with no sign of reduced safety for offshore personnel while boarding a turbine. The model-test results indicates that access is possible in up to 2:5m Hs and at least 3:2m in long-crested seas (Section 2.5).nb_NO
dc.language.isoengnb_NO
dc.publisherNTNUnb_NO
dc.relation.ispartofseriesDoctoral thesis at NTNU;2015:168
dc.relation.haspartPaper 1: Ø. F. Auestad, J. T. Gravdahl, A. J. Sørensen, and T. H. Espeland. Simulator and control system design for a free floating surface effect ship at zero vessel speed. In Proceedings of the 8th IFAC Symposium on Intelligent Autonomous Vehicle 2013 <a href="http://dx.doi.org/10.3182/20130626-3-AU-2035.00064" target="_blank"> http://dx.doi.org/10.3182/20130626-3-AU-2035.00064</a> The article is reprinted with kind permission from Elsevier, sciencedirect.com
dc.relation.haspartPaper 2: Ø. F. Auestad, J. T. Gravdahl, and T. I. Fossen. Heave motion estimation on a craft using a strapdown inertial measurement unit. In proceedings of the 9th IFAC Conference on Control Applications in Marine System <a href="http://dx.doi.org/10.3182/20130918-4-JP-3022.00033" target="_blank"> http://dx.doi.org/10.3182/20130918-4-JP-3022.00033</a> The article is reprinted with kind permission from Elsevier, sciencedirect.com
dc.relation.haspartPaper 3: Ø. F. Auestad, J. T. Gravdahl, A. J. Sørensen, and T. H. Espeland. Motion compensation system for a free floating surface effect ship. In proceedings of the 19th World Congress of the International Federation of Automatic Control 2014, IFAC The article is reprinted with kind permission from Elsevier, sciencedirect.com
dc.relation.haspartPaper 4: Auestad, Øyvind Fidje; Gravdahl, Jan Tommy; Perez, Tristan; Sørensen, Asgeir Johan; Espeland, Trygve H.. Boarding control system for improved accessibility to offshore wind turbines: Full-scale testing. © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ the final version is published in Control Engineering Practice 2015 ;Volum 45. s. 207-218 <a href="http://dx.doi.org/10.1016/j.conengprac.2015.09.016" target="_blank"> http://dx.doi.org/10.1016/j.conengprac.2015.09.016</a>
dc.titleThe Boarding Control System: Modelling and Control of a Surface Effect Ship for improved accessibility to Offshore Wind Turbinesnb_NO
dc.typeDoctoral thesisnb_NO
dc.subject.nsiVDP::Technology: 500::Information and communication technology: 550::Technical cybernetics: 553nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel