Vis enkel innførsel

dc.contributor.authorWalker, Claudionb_NO
dc.date.accessioned2014-12-19T11:48:29Z
dc.date.available2014-12-19T11:48:29Z
dc.date.created2012-09-21nb_NO
dc.date.issued2012nb_NO
dc.identifier556090nb_NO
dc.identifier.isbn978-82-471-3617-1nb_NO
dc.identifier.isbn978-82-471-3619-5nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/234662
dc.description.abstractThis thesis focuses on numerical methods for two-phase ows, and especially ows with a moving contact line. Moving contact lines occur where the interface between two uids is in contact with a solid wall. At the location where both uids and the wall meet, the common continuum descriptions for uids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standart numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretised using an explicit nite di erence method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost uid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for di erent contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature. The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven ows. A relation between the contact angle and the contact line velocity is computed by a phase eld model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk ow. Therefore coarser meshes can be applied for the macro scale ow solver compared to global phase eld simulations, reducing the overall computational coasts. One of the major drawbacks of the level set method is that it does not conserve the mass of the uids. The application of the conservative level set method (CLSM) o ers a solution to this problem. Three of the attached articles address details concerning the implementation of the CLSM using a nite di erence method. A nite di erence discretisation of the CLSM based on stencils used in the Navier-Stokes solver is described and tested. Various methods to compute the curvature in the CLSM are assessed for the use in the ghost uid method. It is shown that the reinitialisation of the CLSM can lead to spurious deformations of the interface, a stabilised constrained reinitialisation is developed in an attempt to prevent the interface from deformingnb_NO
dc.languageengnb_NO
dc.publisherNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for energi- og prosessteknikknb_NO
dc.relation.ispartofseriesDoktoravhandlinger ved NTNU, 1503-8181; 2012:164nb_NO
dc.relation.haspartWalker, Claudio; Müller, Bernhard. A Conservative Level Set Method for Sharp Interface Multiphase Flow Simulation. Proceedings of ECCOMAS CFD 2010 Conference, 2010.nb_NO
dc.relation.haspartWalker, C.. Curvature computation for a sharp interface method using the conservative level set method.. Proceedings of NSCM-23: 203-206, 2010.nb_NO
dc.relation.haspartWalker, Claudio; Müller, Bernhard. Contact line treatment with the sharp interface method. MekIT'11 - Sixth National Conference on Computational Mechanics, Trondheim 23-24 May 2011: 451-462, 2011.nb_NO
dc.relation.haspartWalker, C.; Müller, B. Constrained reinitialisation of the conservative level set method. Proceedings of the 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, 2011.nb_NO
dc.relation.haspartKronbichler, M.; Walker, C.; Kreiss, G.. Microscale enhancement of macroscale modeling for capillary-driven contact line dynamics.. .nb_NO
dc.relation.haspartWalker, C.; Müller, B.. Contact line treatment with the sharp interface method.. .nb_NO
dc.titleNumerical Methods for Two-Phase Flow with Contact Linesnb_NO
dc.typeDoctoral thesisnb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for energi- og prosessteknikknb_NO
dc.description.degreePhD i energi- og prosessteknikknb_NO
dc.description.degreePhD in Energy and Process Engineeringen_GB


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel