• AMIDST: A Java toolbox for scalable probabilistic machine learning 

      Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L. (Journal article; Peer reviewed, 2018)
      The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic ...
    • MAP inference in dynamic hybrid Bayesian networks 

      Ramos-López, Dario; Masegosa, Andres; Martinez, Ana M.; Salmeron, Antonio; Nielsen, Thomas D.; Langseth, Helge; Madsen, Anders L. (Journal article; Peer reviewed, 2017)
      In this paper, we study the maximum a posteriori (MAP) problem in dynamic hybrid Bayesian networks. We are interested in finding the sequence of values of a class variable that maximizes the posterior probability given ...
    • Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks 

      Ramos-López, Dario; Masegosa, Andres; Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L. (Journal article; Peer reviewed, 2018)
      In this paper we propose a scalable importance sampling algorithm for computing Gaussian mixture posteriors in conditional linear Gaussian Bayesian networks. Our contribution is based on using a stochastic gradient ascent ...
    • Scaling up Bayesian variational inference using distributed computing clusters 

      Masegosa, Andres; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario (Journal article; Peer reviewed, 2017)
      In this paper we present an approach for scaling up Bayesian learning using variational methods by exploiting distributed computing clusters managed by modern big data processing tools like Apache Spark or Apache Flink, ...