Blar i NTNU Open på forfatter "Lindqvist, Peter"
-
The gradient flow of infinity-harmonic potentials
Lindqvist, Peter; Lindgren, Erik Kristian (Peer reviewed; Journal article, 2021)We study the streamlines of ∞-harmonic functions in planar convex rings. We include convex polygons. The points where streamlines can meet are characterized: they lie on certain curves. The gradient has constant norm along ... -
Infinity-harmonic potentials and their streamlines
Lindgren, Erik; Lindqvist, Peter (Journal article; Peer reviewed, 2019)We consider certain solutions of the Infinity-Laplace Equation in planar convex rings. Their ascending streamlines are unique while the descending ones may bifurcate. We prove that bifurcation occurs in the generic situation ... -
The infinity-Laplacian in smooth convex domains and in a square
Brustad, Karl Kristian; Lindgren, Erik Kristian; Lindqvist, Peter (Peer reviewed; Journal article, 2023)We extend some theorems for the infinity-ground state and for the infinity-potential, known for convex polygons, to other domains in the plane, by applying Alexandroff's method to the curved boundary. A recent explicit ... -
Numerical Approximation of Temperature Distribution in Deep Water Wells
Mohn, Rikke (Master thesis, 2019)Dagens metoder for Early Kick Detection ved boring av dype vannbrønner er basert på flyt målere eller aktiv volumkontroll. Det vil si at man måler netto gevinst eller netto tap av sirkulasjon på et gitt tidspunkt. Man vil ... -
On Degenerate Parabolic Problems with Local and Nonlocal Diffusion
Endal, Jørgen (Doctoral theses at NTNU;2017:229, Doctoral thesis, 2017) -
On infinity-ground states in the plane
Lindqvist, Peter; Lindgren, Erik (Peer reviewed; Journal article, 2023) -
On the uniqueness of eigenfunctions for the vectorial p-Laplacian
Hynd, Ryan; Kawohl, Bernd; Lindqvist, Peter (Peer reviewed; Journal article, 2023)We study a nonlinear eigenvalue problem for vector-valued eigenfunctions and give a succinct uniqueness proof for minimizers of the associated Rayleigh quotient. -
Quantitative Unique Continuation and Eigenvalue Bounds for the Laplacian
Berge, Stine Marie (Doctoral theses at NTNU;2021:285, Doctoral thesis, 2021)I denne avhandlingen skal vi studere flere aspekter ved laplaceoperatoren, spesielt med hensyn på egenverdier og egenfunksjoner. En stor del av avhandlingen er dedikert til kvantitativ unik utvidelse ulikheter for harmoniske ... -
Regularity for an anisotropic equation in the plane
Lindqvist, Peter; Ricciotti, Diego (Journal article, 2018)We present a simple proof of the C1 regularity of p-anisotropic functions in the plane for 2≤p <∞. We achieve a logarithmic modulus of continuity for the derivatives.The monotonicity (in the sense of Lebesgue) of the ... -
Regularity of solutions of the parabolic normalized p-Laplace equation
Høeg, Fredrik Arbo; Lindqvist, Peter (Journal article; Peer reviewed, 2018)The parabolic normalized p-Laplace equation is studied. We prove that a viscosity solution has a time derivative in the sense of Sobolev belonging locally to L2. -
Regularity of the p-Poissson Equation in the Plane
Lindqvist, Peter; Lindgren, Erik Kristian (Journal article; Peer reviewed, 2017)We study the regularity of the p-Poisson equation Δpu=h,h∈Lq, Δpu=h,h∈Lq, in the plane. In the case p > 2 and 2 < q < ∞, we obtain the sharp Hölder exponent for the gradient. In the other cases, we come arbitrarily close ... -
A Regularized System for the Nonlinear Variational Wave Equation
Reigstad, Audun (Doctoral theses at NTNU;2021:21, Doctoral thesis, 2021) -
The Dominative p-Laplacian and Sublinear Elliptic Operators
Brustad, Karl Kristian (Doctoral theses at NTNU;2018:128, Doctoral thesis, 2018)Utgangspunktet for avhandlingen er den såkaltep-Laplace-ligningen. Den er en andregrands partiell differensialligning (PDE), oger en ikke-lineær generalisering av den mer berømte Laplace-ligningen. I 2003 ble det oppdaget ... -
Three equations with the p-Laplace operator
Ubostad, Nikolai (Doctoral theses at NTNU;2018:364, Doctoral thesis, 2018) -
Viscosity solutions of p-Laplace type equations
Høeg, Fredrik Arbo (Doctoral theses at NTNU;2020:263, Doctoral thesis, 2020)