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Abstract

Motivated by the occurrence of dead fish and the increasing use of robots within aquacul-
ture, this Master’s thesis focused on developing and evaluating control solutions for an
underwater vehicle-manipulator system (UVMS) consisting of the BlueROV2 and Reach
Alpha 5, specifically targeting the task of grasping dead fish. This is a challenging and
delicate operation due to the hydrodynamic effects and the slippery and non-rigid nature
of the target.

The research addressed the entire process of grasping dead fish, including detection,
pose estimation, convergence, and grasping. A control methodology inspired by the task-
priority framework was developed, addressing challenges in task transition with a sigmoid
function. Additionally, adaptive tuning was incorporated into the kinematic control law to
address changes in the system’s situation, ensuring more responsive control in the different
parts of the task. A gradient-based optimization approach using the manipulability index
was implemented to prevent singularity during the operation.

A 3D visual simulation was developed using Simscape within the Simulink environment.
Instead of incorporating the complex dynamic equations of a UVMS, the simulation was
structured such that the autonomous underwater vehicle (AUV) was modeled using dy-
namic equations, with coupling forces from the manipulator introduced as disturbances.
The dynamics of the manipulator were constructed using Simscape, leveraging this tool to
model the robot arm within the physics engine accurately. The simulation results demon-
strated effective convergence, where the UVMS is avoiding undesired collision with the
dead fish and utilizing all available DOF to reach a stable grasping point, thus validating
the control methodology. The study also evaluated promising object detection methods
for detecting and estimating dead fish pose. Additionally, the study explored grasping
mechanisms to achieve a stable grasp of the dead fish.
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Sammendrag

Motivert av forekomsten av døde fisk og økende bruk av roboter innen akvakultur, fok-
userte denne masteroppgaven p̊a utvikling og evaluering av kontroll-løsninger for et under-
vannsfartøy-manipulator-system (UVMS) best̊aende av BlueROV2 og Reach Alpha 5, med
spesifikt m̊al om å gripe døde fisk. Dette er en utfordrende og delikat operasjon p̊a grunn
av hydrodynamiske effekter og fiskens glatte og bløte egenskaper.

Forskningen adresserte hele prosessen med å gripe døde fisk, inkludert deteksjon,
posisjons-estimering, konvergens og gripe-mekanismer. En kontroll-metodikk inspirert av
oppgave-prioriteringsrammeverket ble utviklet, og adresserte utfordringer med oppgave-
overgang ved hjelp av en sigmoidfunksjon. I tillegg ble adaptiv justering lagt til i den
kinematiske kontroll-loven for å takle endringer i systemets situasjon, og sikre mer re-
sponsiv kontroll i de ulike delene av oppgaven. For å forhindre singularitet under operas-
jonen, ble en gradientbasert optimeringsmetode med bruk av manipulerbarhetsindeksen
implementert.

En 3D visuell simulering ble utviklet ved bruk av Simscape innenfor Simulink-miljøet.
I stedet for å bruke de komplekse dynamiske ligningene til et UVMS, ble simuleringen
strukturert slik at det autonome undervannsfartøyet (AUV) ble modellert ved hjelp av
dynamiske ligninger, med koblingskrefter fra manipulatoren introdusert som forstyrrelser.
Dynamikken til manipulatoren ble konstruert ved hjelp av Simscape, og utnyttet dette
verktøyet for å nøyaktig modellere robot armen innenfor fysikk-motoren. Simuleringsres-
ultatene viste effektiv konvergens, der UVMS-en unng̊ar uønskede kollisjoner med den døde
fisken og utnytter alle tilgjengelige frihetsgrader for å n̊a et stabilt gripepunkt, og dermed
validerer kontroll-metodikken. Studien evaluerte ogs̊a lovende objekt-deteksjonsmetoder
for å oppdage og estimere døde fiskers posisjon. Studien utforsket ogs̊a gripe-mekanismer
som tar sikte p̊a å oppn̊a et stabilt grep p̊a død fisk.
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1 Introduction

This thesis will present a study and propose a solution to the task of grasping dead fish
below the sea surface using a robot arm mounted on an underwater drone. In the course of
developing this Master’s thesis, it is important to note that certain sections and concepts
presented herein have been previously explored in my pre-project [1]. The prior work has
provided a solid foundation for the research presented in this thesis. As such, there will
be a substantial overlap in content between the two projects in Section 1, 2, 3 and 4.
However, it is my intention to expand, refine, and build upon the ideas introduced in the
pre-project to offer a more comprehensive and in-depth exploration of the subject matter
in this current work.

1.1 Background

In the following sections, a brief background for the task is presented: first, the use of robot
manipulation in aquaculture, and second, the problem of dead fish. Thus, the necessary
knowledge is provided to justify the research on the specific topic.

1.1.1 Robot Manipulation in Aquaculture

Robotic systems have found valuable applications in the field of aquaculture, particularly
in net cleaning, inspection, and monitoring tasks [2], where different solutions exist today.
These innovative solutions not only streamline operations but also enhance safety by re-
ducing the risks associated with human divers performing similar tasks. Moreover, the
potential for autonomous manipulation in aquaculture presents significant opportunities
for cost reduction and improved efficiency. For instance, robots capable of fixing broken
nets can save both time and resources by minimizing the chances of fish escaping, limiting
the consequences of environmental damage, and reducing the loss of revenue for fisher-
ies. Integrating robotics in aquaculture promises to transform the industry by addressing
critical operational needs and promoting sustainability. However, it’s worth noting that
complex manipulation tasks in underwater environments require ongoing research and
development efforts to create robust and reliable robotic designs that can withstand the
challenges of aquatic conditions. Therefore, any research in this field will contribute to
the efficiency and environmental sustainability of the industry.

1.1.2 The Problem of Dead Fish

In the book Welfare Indicators for farmed Atlantic salmon: tools for assessing fish welfare
[3] the mortality of the habitats is addressed as;

Mortality has to be recorded on a daily basis. Efficient systems for the collection of dead
fish from each tank are a prerequisite for the monitoring of fish performance in aquaculture
systems. The increase in the size of tanks and a potential inability to visually observe the
bottom of the tanks can prove challenging for the accurate daily registration of dead fish.
If possible, the cause of mortality should be noted and dead fish are often preserved for
further analysis and inspected by fish health personnel.

This emphasizes the strict regulations on salmon farming regarding dead fish, highlighting
the critical need for the industry to implement solutions for managing this challenge.

1



Furthermore, Figure 1 illustrates the scale of fish mortality in 2021 within MOWI, the
biggest Norwegian salmon farmer. The data presented indicate that several locations
experienced mortality rates exceeding 30%, demonstrating the significant extent of the
problem [4].

Figure 1: Fish mortality at 7 breeding facilities of
the company MOWI [4].

Additionally, during the course of this project, there have been several incidents within
the Norwegian aquaculture industry regarding dead fish. For instance, an inspection con-
ducted by the Norwegian Food Authority at one of Lerøy’s breeding facilities revealed the
processing of dead salmon, a practice that does not comply with regulations. The stand-
ards dictate that only live and healthy fish should be prepared for consumer consumption
[5]. Another incident regarding the same company was the mass death of salmon across
multiple locations [6], shown in Figure 2.

Figure 2: Mass death at one of Lerøy’s facilities. Taken from NRK [6].

This accentuates the importance of fish welfare, which can be affected by the presence of
dead fish in the cages for an extended duration. Being a potential source of disease
and bacteria, the rapid removal of deceased fish is crucial for minimizing the risk of
pathogens spreading to healthy fish and water contamination to maintain a healthy aquatic
environment [7].

2



1.2 Problem Formulation

The problem that will be examined in this report is stated as:

Develop an effective robotic solution for grasping dead fish underwater using a multi-link
manipulator integrated with an underwater vehicle. Dead fish present a unique grasping
challenge due to their flexible and variable shapes in addition to their dynamic behavior
while floating. Conventional robotic grasping approaches designed for rigid objects might
not be suitable. Developing a methodology that accounts for the variability in fish shapes
and ensures a reliable grasp is paramount. Furthermore, underwater environments are
notorious for their reduced visibility caused by factors such as water turbidity and lighting
conditions. These limitations hinder real-time decision-making and precision manipula-
tion. Designing strategies that enhance the robot’s perception capabilities in such environ-
ments is crucial for successful fish grasping and manipulation.

Underwater manipulation introduces complex dynamics and interactions between the ro-
botic manipulator, the target object, and the aquatic environment. This complexity ne-
cessitates the consideration of numerous factors in the pursuit of an effective solution,
which gave rise to a state machine that was developed during the pre-project, illustrated
in Figure 3. The task of grasping dead fish encompasses various aspects, prompting the
development of a modular approach allowing independent design and development of each
step. Although the state machine itself is not directly implemented in the current Mas-
ter’s project, the insights gained from its development have influenced the final proposed
solution.

Figure 3: Proposed state machine for the problem.

3



Building upon these insights, a more concrete problem definition is presented by identi-
fying specific system goals and requirements essential for the development of an effective
solution. This refined problem formulation serves as the foundation for targeted research
and development efforts.

System Goals

1. Adaptability to Variability: The solution must accommodate the wide range of
shapes and sizes of dead fish and adapt its grasping mechanism to various cases of
the fish’s relative position and orientation to the system.

2. Dynamic Interaction Handling: Given the unpredictable dynamics of underwa-
ter environments, the robotic system must be capable of responding to and com-
pensating for the movements of floating fish and variable currents, ensuring precise
manipulation without introducing disturbances to the fish’s dynamics.

3. Secure and Non-Damaging Grasp: The system must achieve a secure grip on
the fish, significantly reducing the chance of slippage while simultaneously ensuring
that the grasping mechanism does not inflict damage.

4. Robustness and Stability: The control system must exhibit high levels of robust-
ness and stability, ensuring a consistent performance under varying conditions.

1.3 Reach Alpha 5 and BlueROV2

This thesis will look at the decoupled system containing the robotic manipulator Reach
Alpha 5 from Reach Robotics and the Autonomous Underwater Vehicle (AUV) BlueROV2
from Blue Robotics, see Figure 4. The Reach Alpha 5 is a fully electric robotic arm with
4-DOF capable of performing various tasks with a variety of different compatible end-
effectors. The BlueROV2 is an underwater vehicle equipped with six thrusters mounted
such that it results in a maneuverability of 5-DOF. Together, they create a low-cost under-
water vehicle manipulator system (UVMS) with good opportunities to carry out various
tasks.

(a) Example image of Reach Alpha 5 from
Reach Robotics [8].

(b) Example image of BlueROV2 from
Blue Robotics [9].

Figure 4: Example images of the hardware that will be examined in this project.
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1.4 Delimitations

This thesis focuses on developing a conceptual framework for grasping dead fish using
UVMS. However, it’s important to delineate the scope of this study by acknowledging cer-
tain areas that have not been explored in depth. Firstly, the intricacies of communication
with hardware and the direct control of the hardware components have been outside the
purview of this research. Such aspects are crucial for real-world applications but were not
explored in this project. Additionally, while the pose estimation of the AUV is acknow-
ledged as a fundamental component for precision manipulation, this thesis does not delve
into its development or implementation.

In the realm of fish detection and pose estimation, although preliminary research has
been conducted to understand the theoretical frameworks and existing methodologies, no
practical implementation or testing has been carried out within the context of this thesis.
The same holds true for the aspect of gripping. While the challenges of grasping slippery
and non-rigid bodies like dead fish have been researched, actual simulation or testing of
gripping mechanisms has not been part of this study. These delimitations highlight the
focused nature of the thesis on conceptual and theoretical development, leaving room for
future work to build upon these foundations with practical implementations and testing.

1.5 Contributions

This thesis proposes a comprehensive solution by integrating existing technologies and
methods, enhancing them to create a cohesive system specifically designed for the unique
requirements of underwater grasping tasks. Firstly, an adaptation of a sigmoid function
to create a seamless state machine. Marey and Chaumette [10] previously used the sig-
moid function, but not in the specific context of grasping dead fish. Additionally, an
adaptive tuning mechanism for the kinematic control law was developed, adjusting system
priorities based on current conditions, thereby enhancing responsiveness and robustness.
Furthermore, a gradient-based optimization algorithm, assisted by OpenAI’s ChatGPT,
was implemented to maintain the manipulability of the robotic arm during the grasping
process.

This thesis also introduces a detailed simulation of the UVMS, designed to accurately
represent the system dynamics for validating the control strategies. The simulation was
constructed using MATLAB Simulink and Simscape, which facilitated the creation of a
complex model of the vehicle-manipulator system. This tool has proven instrumental in
understanding and optimizing the system’s behavior under simulated operational condi-
tions.

1.6 UN Sustainable Development Goals

The application of the UVMS researched in this Master’s thesis is particularly relevant to
sustainable fish farming, an industry where managing mortality rates is crucial for both
economic and environmental sustainability. This technology directly supports the United
Nations Sustainable Development Goals (SDGs), specifically SDG 9: Industry, Innovation,
and Infrastructure and SDG 14: Life Below Water.

SDG 9 highlights the need for resilient infrastructure and innovation. The integration of
sophisticated robotics in fish farming represents a significant advancement in aquaculture
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technology, showcasing innovative approaches to problem-solving in industry practices.
This project fosters innovation and strengthens the infrastructure of fish farming opera-
tions, making them more efficient and sustainable.

SDG 14 emphasizes the conservation and sustainable use of oceans, seas, and marine
resources. By deploying the UVMS to efficiently remove deceased fish from aquaculture
environments, this project aids in maintaining healthier fish populations and improving
water quality, which is essential for the ecosystem’s sustainability. Prompt removal of
dead fish helps prevent disease spread and decay, which can severely impact marine life
and the surrounding environment.

Implementing this technology in aquaculture operations represents a meaningful step to-
ward enhancing sustainability in the industry. It aligns with global efforts to achieve a
more sustainable and responsible use of marine resources.

1.7 Report Structure

The remainder of this thesis is organized as follows: Firstly, it will present relevant theory.
Section 2 explores the intricacies of modeling and controlling a robot manipulator. Section
3 delves into the domain of robot vision, encompassing algorithms designed to detect and
estimate the pose of fish. Section 4 provides insight into modeling vehicle-manipulator
systems. Section 5 introduces different control strategies for a UVMS. Following this
theoretical groundwork, Section 6 presents the implementation of a created simulation
before the implemented control system is presented in Section 7. Section 8 presents the
results from the implemented simulation and control system. Subsequently, a detailed
discussion of the proposed solution is found in Section 9, supported by the simulation
results. Finally, a conclusion of the research is presented in Section 10, summarizing the
key findings and implications.
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2 Robot Manipulator

In this section, the theory providing the fundamental concepts of robot manipulator mod-
eling and control will be presented. A robot manipulator is a mechanical system designed
to perform precise and controlled movements, typically consisting of a series of linked seg-
ments or links connected by joints. Figure 5 shows the links (x-, y-, and z-axis frames) of
the Reach Alpha 5 manipulator. The figure is from Appendix A, Kinematic and Dynamic
Properties, which is provided by the manufacturer of the manipulator. It contains relevant
information that bridges theoretical concepts with the practical application and operation
of Reach Alpha 5.

Figure 5: Reach Alpha 5 with its links {i}. Red is
the x-axis, green is the y-axis, and blue is the z-axis.
Figure 1 in Appendix A.

The lecture notes Modelling in Robotics and Control Methods for Robotic Applications by
Freidovich [11] is the main source for the theory explained. This section builds upon the
groundwork laid in the pre-project [1].

2.1 Forward Kinematics

Forward kinematics is used to calculate the position and orientation, also known as pose, of
an end-effector based on the known joint angles and link lengths of a robot’s manipulator.
Determining the overall pose of the robot in a specific coordinate system helps in tasks
such as robot motion planning, control, and understanding the robot’s position in its
environment. This section will briefly explain the concept of these calculations found in
[11] by looking at kinematic chains and the Denavit-Hartenberg convention.

2.1.1 Kinematic Chains

A robot manipulator is composed of a set of rigid bodies connected together by joints.
These rigid bodies are often referred to as links, and they represent specific positions and
orientations within the world coordinate frame, as seen in Figure 5. As for the joints,
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there exist different types which create different types of motion. Most common are the
prismatic and revolute joints creating linear and angular motion, each providing a single
DOF. Additionally, there exist multi-DOF joints, such as spherical joints, which provide
a broader range of motion. This report will not delve into those, as the Reach Alpha 5
manipulator consists of only revolute joints. When combined, these links and joints form
a cohesive representation of the manipulator’s overall motion, commonly referred to as
a kinematic chain. Figure 6 illustrates the links and joints of the Reach Alpha 5 and
provides a visual aid for the following theory.

Figure 6: Reach Alpha 5 with its joints, qi, and links, {i}.

To ensure uniformity and facilitate easy referencing, a widely recognized convention is
employed for numbering the links and joints in robot manipulators. According to this
convention, joints are sequentially numbered, beginning with 1. Consequently, each joint
i serves as the connection point between link (i -1) and link i [11]. Hence, in a robot
manipulator with i joints, the total number of links will be i+1. The actuation of joint
i induces motion in link i. Additionally, these joints are typically represented by the
variables qi, denoting their respective joint angles or positions. For the two types of
single-degree-of-freedom joints, qi is defined as follows,

qi =

{
di, if joint i is prismatic
θi, if joint i is revolute

, (1)

where di denotes displacement along the axis of actuation by joint i, and θi denotes the
angle of rotation in joint i [12].

To further analyze how motion in each joint affects the manipulator’s kinematic chain,
each link is rigidly attached to a frame i that represents the pose of the rigid body. Any
point on link i will therefore remain constant in the ith frame. Therefore, motion in joint i
that changes the pose of link i will consequently change the pose of frame i. The relation
between the frames is described using a homogenous transformation matrix of the form
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H =

[
R o
0 1

]
, (2)

where R is a rotation matrix describing the orientation of the frame and o is a vector
describing the translation in Cartesian coordinates of the origin. Such that each frame
can be computed from the previous frame and the motion of the connected joint. This
transformation matrix is denoted Ai = Ai(qi) such that the transformation matrix from
link i to j can be computed as [11]

Hi
j =

{
Ai+1Ai+2 · · ·Aj−1Aj , if i < j
I, if i = j

. (3)

This transformation matrix enables the mapping of any point on the manipulator to the
world frame, thereby determining the pose of the end-effector based on the specified joint
values. Given the potential complexity of kinematic links in advanced manipulators, the
following section will detail a widely adopted convention for positioning these links. Ad-
opting this convention simplifies the computation of forward kinematics, lending structure
to the process and reducing complexity.

2.1.2 The Denavit-Hartenberg Convention

The transformation between two frames can be defined by 6 parameters, 3 for the relative
position of the origin and 3 for the relative orientation of the axes [11]. However, if
the links of the robot manipulator are structured more systematically, the number of
transformations may be reduced. The Denavit-Hartenberg (DH) convention is such a
method where the transformation Ai can be constructed with only 4 parameters,

Ai = Rot (z, θi) Trans (z, di) Trans (x, ai)Rot (x, αi)

=

[
Rz,θi 0
0 1

] [
0 oz,di
0 1

] [
0 ox,ai
0 1

] [
Rx,αi 0
0 1

]
.

(4)

Figure 7: Illustration of the 4 parameters of the DH convention.

This systematic approach starts by assigning coordinate frames to each link such that
the z-axis aligns with the rotation axis of any corresponding revolute joint and the x-axis
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aligns with the translation axis of any prismatic joint. Additionally, two restrictions must
be upheld for the reduction in parameters to be possible [12],

• The axis xi is perpendicular to zi−1

• The axis xi intersects the axis zi−1

This initial frame assigning ensures a consistent basis for subsequent transformations.
When executing the 4 parameters, it is important to recognize that with each step, the
reference frame is adjusted. This means that each transformation is applied relative to the
newly adjusted frame from the previous step. The parameter execution can be structured
as follows,

1. Translation along the z-axis.

2. Rotation around the z-axis that includes the potential joint’s angle (θi) and any
additional predefined rotation.

3. Translation along the x-axis that includes the potential prismatic joint translation
(αi) and any additional predefined translation.

4. Rotation around the x-axis.

These parameters can be structured in a table referred to as the DH-parameters. The
DH-parameters for the Reach Alpha 5 can be found in Table 1 in Appendix A, but from
Figure 5, the numbering is wrong. Therefore it is restructured in Table 1, where link 0 is
aligned with the world frame and the joint numbering, θi, starts from 1.

Table 1: Restructured DH-parameters for Reach Alpha 5. θa = tan−1(145.340 ).

Link d [mm] θ [rad] a [mm] α [rad]

1 46.2 θ1 + π 20 π
2

2 0 θ2 − θa 150.71 π
3 0 θ3 − θa 20 −π

2
4 -180 θ4 +

π
2 0 π

2
5 0 −π

2 0 0

Let’s look at the transformation from link 0 to link 1 using Figure 8 for visual aid. First,
the origin is translated with d1 = 46.2mm along the z-axis, before a rotation of π radians
around the z-axis, given that θ1 is 0. Furthermore, the origin is translated along the
new x-axis with a1 = 20mm and finally rotated π

2 radians around the x-axis to get the
frame of link 1. In Figure 8, θ2 = π

2 because with all joint angles equal 0, the robot arm
is in a configuration resulting in self-collision. But as an example, we get θ2 ≈ 15.4◦

corresponding with the translation direction of a2 relative to link 1.
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Figure 8: Visualization of the DH-parameterisation for Reach Al-
pha 5. θ1,3,4 = 0 and θ2 =

pi
2 .

2.2 Inverse Kinematics

While forward kinematics computes the pose of the different frames of the robot manipu-
lator with the given joint angle, inverse kinematics computes the joint angles to achieve the
desired pose of the end-effector. The objective is to find a set of joint angles (q1, q2, ..., qn)
that satisfy the equation [11]

H0
n(q1, · · · , qn) = A1(q1)A2(q2) · · ·An(qn) = H, (5)

where n is the number of joints. As the number of joints increases, the inverse kinematics
problem becomes more complex, potentially yielding multiple configurations that achieve
the same end-effector pose. This gives rise to the terms elbow down and elbow up illus-
trated in Figure 9 where both configurations will result in the same end-effector position.

(a) Elbow down. (b) Elbow up.

Figure 9: Illustrating how two configurations can lead to the same goal position.

Note that the orientation will not be equal in this case because the Reach Alpha 5 is
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constrained by the number of DOF. In contrast, other manipulators possessing addi-
tional DOFs can attain the same end-effector orientation and position through various
joint configurations. To address these challenges, the inverse kinematics problem is of-
ten decomposed into the inverse position problem and the inverse orientation problem.
Tackling these problems independently can sometimes simplify the overall solution pro-
cess, although success is not guaranteed. The division is also practical from a design
perspective, influencing the construction of robots to favor architectures that facilitate
such decomposition. Additionally, certain applications may only necessitate determining
the end-effector’s position, rendering the orientation aspect irrelevant [11][12].

For manipulators with few joints the inverse kinematic problem may be solved geomet-
rically instead of using equation (5) [12]. With Reach Alpha 5 as an example, Figures 3,
4, 5, and 6 in Appendix A illustrate how the inverse kinematic equations can be solved
geometrically, both for elbow down and up configuration.

2.3 Inverse Velocity Kinematics

While inverse kinematics finds a desired pose of the end-effector, inverse velocity kinemat-
ics finds a desired linear and angular velocity of the end-effector. The choice between these
two approaches hinges on the specific task requirements and the desired motion for the
manipulator. In the context of a robot arm connected to an AUV, they create a decoupled
system, where the use of velocity control becomes particularly advantageous. A more de-
tailed discussion on this topic will be presented in Section 5. This section will include the
calculation of the Jacobian matrix for the robot manipulator and desired joint velocities.

2.3.1 Manipulator Jacobian

The Jacobian matrix is a mathematical construct that encapsulates how the motion of an
end-effector is influenced by the velocities of its individual joints qn. It can be divided in
two parts Jv and Jω such that [11]

v0
n(t) = Jv(q(t)) · q̇(t) and ω0

n(t) = Jω(q(t)) · q̇(t). (6)

Combining them gives the manipulator Jacobian J(q(t)) = [Jv(q(t)) Jω(q(t))]
T which can

be used to calculate the linear and angular velocity of the end-effector

ξ(t) =

[
v0
n(t)

ω0
n(t)

]
= J(q(t))q̇(t). (7)

The size of the Jacobian for a manipulator arm with n number of joints is 6×n such that
each column represents the linear and angular velocity contribution from each joint. The
Reach Alpha 5 will, therefore, have a Jacobian matrix of size 6× 4 due to its 4 joints.

The Jacobian matrix can be computed using the DH-parameters. Let’s again divide the
Jacobian into its two parts, Jv and Jω. Firstly, the linear velocity of the end-effector in a
manipulator arm consisting of only revolute joints will be a result of the angular velocity
of the joint and its distance from the center of rotation. Thus, each column i can be found
as
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Jvi = z0i−1 × [o0n − o0i−1], (8)

where z0i−1 is the z-axis of frame i− 1 represented in world frame and o is the position of
the frame origin. Secondly, the angular velocity of the end-effector can be computed as
a sum of the rotations from each joint. Therefore Jω needs to include information about
the direction of the angular velocity giving,

Jωi = z0i−1. (9)

2.3.2 Joint Velocities

Desired joint velocities can simply be calculated by rearranging equation (7) with respect
to q̇(t) using the inverse of the Jacobian such that

q̇(t) = J(q(t))−1ξ(t). (10)

However, it is important to note that this approach is applicable only when the Jacobian
is square and invertible, making it unsuitable for situations when the robot finds itself in
a singular configuration. In such cases, there exist other alternative methods for assigning
joint velocities by using the pseudo inverse and weighting matrices, which will be further
discussed in Section 5.1.

2.4 Workspace and Manipulability

Both workspace and manipulability are important to evaluate to increase the robot’s ability
to perform a given task. The workspace of a robotic arm refers to the three-dimensional
region or space where the end-effector can reach and operate, while the robot arm avoids
self-collision. The workspace of Reach Alpha 5 can be found in Appendix A, but this will
change when mounted on the AUV due to the risk of colliding with its frame. Additionally,
manipulability can be analyzed, which is a measurement of how effectively a robotic arm
can move its end-effector in each DOF from its current position. It also indicates how
close the manipulator is to a singular configuration.

For the problem at hand, the possibility of positioning the AUV such that the fish is within
the workspace and the manipulability of the robot arm is optimized, will be beneficial when
performing the grasping of dead fish. Therefore methods of quantifying the manipulability
and how to evaluate the workspace will be presented.

2.4.1 Manipulability Index and Ellipsoids

Yoshikawa introduced the manipulability index, which is a scalar that describes the dis-
tance to singular configurations [13]. The manipulability measure is defined as

w =
√

det(JJT ) (11)

and provides an instant evaluation of the manipulability that the manipulator has at the
current configuration. In order to get more detailed information about manipulability,
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one can examine the manipulability ellipsoids, which is a representation of the possible
velocities of the end-effector in all directions at a current configuration. The ellipsoid is
found by looking at the eigenvalues λi and eigenvectors vi of the matrix

A = JJT (12)

such that the vectors spanning the ellipsoid in Figure 10 can be found as

a =
√
λ1v1 (13a)

b =
√
λ2v2 (13b)

c =
√
λ3v3 (13c)

Figure 10: Example of a manipulability ellipsoid
spanned from the vectors a, b and c created by the
eigenvalues and eigenvectors of A.

2.4.2 Joint Limits

Another aspect of workspace and manipulability is the joint limits of the robotic arm. This
is defined based on the specification of the actuators and by avoiding self-collision. The
reachable workspace of the Reach Alpha 5 is found in Appendix A, but when mounted
on the AUV it will create additional space where collision with the AUV might occur,
thus changing the workspace. This is an important note that needs to be considered when
creating simulations and testing with the actual system.

2.5 Manipulation

In the realm of robotics, the capability to manipulate objects effectively is as critical as
the robot’s ability to perceive and navigate its environment. Manipulation involves the
mechanical interaction between a robot and the objects it handles, primarily facilitated
through its end-effector. This section delves into the intricacies of robotic manipulation,
focusing specifically on the challenges and solutions related to grasping dead fish, which
is non-rigid and slippery. Such objects pose unique challenges due to their tendency to
deform or slip under grip pressure, necessitating advanced strategies for secure and stable
manipulation.
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2.5.1 Grasping

There are multiple solutions to grasping an object. This section will look into form closure
and force closure, which represent two ways to achieve a stable grasp. The book, Springer
Handbook of Robotics [14], is the main source for this theory.

Form Closure
Form closure is achieved when the contact points between the gripper and the object
mechanically constrain the object, preventing any movement in any direction. This prop-
erty does not depend on the force applied by the gripper but rather on the geometric
configuration of the contact points. It is particularly useful when the object’s surface
properties do not provide good friction or when the object must not be squeezed with
high forces, as in the case of delicate or brittle materials. Figure 11 shows three cases
where the left and middle cases are valid form closure and the right case is not. The
object is not mechanically constrained in the right case, as a slight rotation would allow
it to escape the grasp.

Figure 11: Examples of two dimensional grasp. Two
with form closure of different orders and one without
form closure [14].

With form closure, the presence of multiple viable and stable solutions may be possible.
The left case in Figure 11 would be valid even though the contact points were slightly
adjusted. Therefore it necessitates the utilization of optimization algorithms, determining
suitable contact points based on task constraints. Optimization can also be used to find
the minimum amount of contact points needed to achieve form closure. [14]

Force Closure
Force closure, in contrast, depends on the forces applied at the contact points to secure
the object. This method ensures that the object cannot escape the grip due to the applied
forces creating sufficient friction. Force closure is applicable in situations where form
closure is not possible due to the object’s shape or other constraints. It is essential in
handling objects that are slippery or those that have surfaces that do not easily conform
to the gripper’s geometry.

One common definition of force closure is to allow each contact force to lie in its friction
cone rather than along the contact normal, referred to as frictional form closure [14]. The
friction cone represents the range of potential tangential forces that can be applied at a
contact point without causing sliding or slipping. Figure 12 shows an example of a friction
cone. If the angle of the applied contact force, β, exceeds the threshold at which the
tangential component, µfz, surpasses the maximum frictional force, slippage will occur.
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Figure 12: Example of a friction cone [14].

Form closure offers significant advantages for grasping dead fish due to their non-rigid
and slippery nature, mitigating the risk of damage which is important for subsequent
analysis. However, limitations stemming from gripper design may impede achieving form
closure, particularly when insufficient contact points are available to adequately constrain
the fish’s shape. In such cases, force closure becomes essential, necessitating precise control
of gripping force to safeguard the integrity of the dead fish.

2.5.2 End-Effector

The Reach Alpha 5 can be equipped with multiple different grasping tools or end-effectors,
but the current configuration is a simple single-interlock jaws shown in Figure 13. The
gripper is actuated by a rod pushing and pulling the bolt connecting the two jaws. There
is no sensors that can measure force or slip, but the gripper has feedback of the gripper
opening and a camera monitoring the gripper. Understanding the capabilities and limit-
ations of the existing system is vital to make an assesment as to whether the end-effector
of the Reach Alpha 5 should be changed for the task of grasping dead fish. Therefore a
brief research of alternitive gripper designs have been conducted.

Figure 13: Standard jaws for Reach Alpha 5 [8].
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A variety of gripper designs are available for different manipulation tasks. Baohua Zhang
[15] provides a detailed summary of state-of-the-art grasping technologies and sensor-based
control methods that are particularly applicable to agriculture and food industries, where
objects often share similar characteristics with dead fish. For instance, Zhang discusses
various sensors integrated into grippers that enhance their flexibility and control, such as
tactile sensors. Tactile sensors can measure tactile-related properties like force and slip,
creating the possibility of monitoring and controlling the grasping process in more detail.
However, this type of technology is expensive and adds to the complexity. Therefore,
specific gripper technologies such as soft and flexible grippers present an intriguing altern-
ative for the task at hand. With a design that adapts to the shapes of the grasped object,
reducing damage while creating a secure grasp. Figure 14 shows some of the interesting
designs mentioned by Zhang [15].

Figure 14: Different gripper designs for agriculture [15].

The design of the end-effector is a crucial factor that affects the complexity of the task
at hand. There are many different designs and functionalities created for all sorts of
different manipulation problems, and a simple jaw gripper, which operates without any
form of direct feedback, is not the ideal choice for the specific task of grasping dead
fish. Nevertheless, it is important to explore the limits of what can be achieved with a
minimalist manipulator. This pursuit enables the development of resilient control systems
and contributes to the adaptability and versatility of robotic systems. With a single
robotic arm capable of multiple tasks, industries benefit from cost-efficiency, as they can
execute a range of autonomous operations using a single integrated system within their
facilities.
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3 Robot Vision

To successfully grasp a dead fish, it is essential first to detect it and estimate its pose
relative to the UVMS. The system currently utilizes monocular cameras, one mounted on
the AUV and another on the robot manipulator. Camera systems are critical for enhan-
cing situational awareness and providing insights during specific underwater operations.
While acoustic sonars are commonly used in underwater environments, as LiDAR does not
function underwater, this system does not include such sensors. Therefore, this section
will explore potential solutions for detecting dead fish and estimating its pose using cam-
era systems, delving into relevant theories and techniques on object detection and pose
estimation.

This section provides a brief overview of the topics and its intention is to create an intro-
duction to the challenges that may arise for future investigations. This builds upon the
groundwork laid in the pre-project [1].

3.1 Object Detection

Multiple algorithms for object detection exist, for example, Single Shot Detector (SSD),
Deformable Part Models (DPM), and Region-based Convolutional Neural Network (R-
CNN). In 2016 a new method based on neural networks was developed by Joseph Redmon
et al. [16] called You Only Look Once (YOLO). This method outperformed other ap-
proaches and has become a new standard in object detection. In 2018, they presented
an upgraded version, YOLOv3, with similar accuracy to SSD but three times faster [17].
YOLOv3 has already been used in underwater object detection, similar to this project of
grasping dead fish. Firstly, Haugaløkken et al. [18] used the BlueROV2 with the robotic
arm SeaArm to grasp a known object using YOLOv3 for object detection. Secondly, Ming
En Koh et al. [19] proposed a solution for fish pose estimate by using the bounding boxes
for both the body and head of the fish found with YOLOv3, which will be further discussed
in Section 3.2.

YOLO

YOLO performs object detection in real-time by analyzing entire images in one evaluation,
hence the name You Only Look Once. It applies a single convolutional neural network
(CNN) to the full image, which makes it exceptionally fast. Figure 15 illustrates the flow
of the algorithm. First, it divides the image into a grid. Each grid cell predicts a certain
number of bounding boxes, with a confidence score [20]

p1 = P (Object) · IoU (14)

where IoU is the intersect over union between the predicted box and the ground truth.
Thus it indicates both the confidence that the box contains an object and the precision of
the box’s placement. Furthermore, it creates class probability for each cell [20]

p2 = P (Class|Object) (15)
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which are conditional on that cell containing an object. This results in the class probability
map in Figure 15. Finally, the class-specific score for each bounding box is found as

p = p1 ∗ p2 = P (Object) · IoU ∗ P (Class|Object) (16)

Once this probability is determined, a threshold can be established to filter and retain
only the most probable results as output [16].

Figure 15: YOLO architectural flow to determine
bounding boxes for different objects [16].

Neural networks rely on training to detect various desired objects. There are multiple
datasets available for this purpose, and pre-trained models can be found as open-source
resources. However, it is not confirmed that there are models specifically trained for
detecting farmed salmon.

3.2 Estimate of Fish Pose

The fish pose consists of both position and orientation. Estimating the fish pose can
therefore be divided into two sub-problems: position and orientation.

Position Estimate

In terms of position estimation, it is reasonable to mention another common sensor for
UVMS, which is a stereo camera. Stereo cameras function based on the principle of
stereoscopic vision, which mimics the depth perception capabilities of human eyes. These
cameras use two lenses positioned at slightly different angles and positions such that
depth can be estimated. Figure 16 illustrates how two lenses can be used to get depth
information. Since the system at hand is only equipped with monocular vision there is
no direct information about depth, but it does include two cameras. Therefore, the same
method could be applied with the knowledge of the position of each camera.
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Figure 16: Illustration of how stereo cameras can be used to get depth information [21].

Regardless, methods utilizing monocular vision are useful in the pursuit of low-cost sys-
tems. Therefore, Haugaløkken et al. [18] experimented with monocular vision-based
gripping of objects. By comparing the known spatial features of the object with its image,
they were able to estimate its position in Cartesian space.
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Orientation Estimate

In Ming En Koh et al. [19] they used the bounding box of the fish in addition to the
bounding box of the head to estimate the orientation of the fish as seen in Fig. 17.

Figure 17: Estimating fish pose with bounding box of
head and body [19].

The relative position of the head to the fish body is then used to estimate the pose of the
fish using trigonometric identities [19]

pitch = arccos(
fishxavg − headxavg

fishxmax − fishxavg − (headxmax − headxavg)
) (17a)

yaw = arctan(
headyavg − fishyavg
headxavg − fishxavg

). (17b)
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4 Vehicle-Manipulator System Dynamics

Integrating an AUV with a robotic arm transforms it into a vehicle-manipulator system or,
more specifically, an Underwater Vehicle-Manipulator System (UVMS). This combination
results in a time-variant system due to changes in inertia, mass distribution, and buoy-
ancy caused by the movement of the robotic arm. Furthermore, this integration causes
interaction dynamics, where the movement of the robotic arm and the AUV can disrupt
each other’s performance. Additionally, hydrodynamic effects contribute further to the
system’s complexity, affecting its operational efficiency and control strategies. This sec-
tion will introduce the dynamic modeling of an AUV, building on the theory outlined by
Fossen [22]. It will then explore the modeling of a vehicle-manipulator system. Finally,
the section will detail the formulation of the manipulator Jacobian for the UVMS.

4.1 Dynamic Modelling

A simulation of the system will be developed, which requires dynamic modeling for ac-
curate representation. This section will cover the various components that could be in-
corporated into the dynamics to improve realism, emphasizing the mathematical aspects
pertinent to this domain. While simplifying the dynamics may be acceptable for manage-
ability, it is crucial to identify and consider all factors that could influence the system’s
behavior to design and validate the control system effectively.

4.1.1 AUV

Let’s first look at the dynamics of the AUV. From Fossen’s handbook [22], the equations
of motion can be expressed as,

η̇ = Jk(η)(νr + νc) (18a)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ , (18b)

where

M - is the system inertia matrix including added mass,
C(νr) - is the Coriolis–centripetal matrix also including added mass,
D(νr) - is the damping matrix,
g(η) - is the vector of gravitational/buoyancy forces and moments,
τ - represents the wind, wave, and propulsion forces,

η - is the position and orientation state vector
[
x, y, z, ϕ, θ, ψ

]T
.

νr - is the relative linear and angular velocity νr = ν − νc,

ν - is the linear and angular velocity state vector
[
u, v, w, p, q, r

]T
,

νc - is the linear and angular velocity of the current.

The following subsections will delve into the specifics of constructing these matrices, illu-
minating their physical significance and their roles in the AUV’s dynamic model.
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System Inertia Matrix, M

The system inertia matrix, denoted asM , encapsulates the mass and inertia characteristics
of the AUV, integrating both the rigid-body inertia and the hydrodynamic added mass
effects. The added mass effect is particularly significant, as it represents the inertia added
to the system due to the displacement of water when the AUV moves. This can be formally
expressed as follows,

M = MRB +MA. (19)

Here, MRB signifies the rigid-body inertia matrix, constructed based on the principles of
symmetry and physical considerations of mass distribution as outlined in Fossen’s hand-
book [22]

MRB =

[
mI3 −mS(rbbg)

mS(rbbg) Ibb

]
, (20)

where m is the mass, I is the identity matrix of size 3 × 3, rbbg is the vector representing

the position of the COM in the body frame, and Ibb denotes the body-frame inertia tensor,
capturing the AUV’s resistance to angular acceleration, detailed as

Ibb =



Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


 . (21)

The added mass matrix, MA, incorporates hydrodynamic effects due to the vehicle’s inter-
action with surrounding water and is initially expressed through detailed hydrodynamic
coefficients found through system identification, resulting in

MA = −




Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ



. (22)

For practical purposes, and in situations where hydrodynamic interactions are primarily
linear, a simplification can be made by using only the diagonal terms of the matrix such
that

MA = −diag(Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ). (23)

Coriolis-Centripetal Matrix, C(νr)

Following the definition of the system inertia matrix, the next step involves formulating
the Coriolis-centripetal matrix, C(νr). This matrix plays a crucial role in the dynamic
model by accounting for the effects arising from the AUV’s rotational and translational
motion. Specifically, it represents the coupling between different modes of motion, which
is essential for accurate modeling of the AUV’s behavior in a fluid environment.
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The matrix C(νr) is directly derived from the mass matrix M , reflecting how changes in
the vehicle’s velocity affect the distribution of forces and moments acting on the vehicle.
It is calculated using the following expression,

C(νr) =

[
O3 −S(M11v

b
nb +M12ω

b
nb)

−S(M11v
b
nb +M12ω

b
nb) −S(M21v

b
nb +M22ω

b
nb)

]
, (24)

where O3 represents a zero matrix of size 3 × 3, Mnn are submatrices from the system
inertia matrix, M , and vb

nb and ωb
nb is the linear and angular velocity vectors of the AUV

in body frame, respectively.

Damping Matrix, D(νr)

In underwater vehicle dynamics, the concept of damping is integral to capturing the res-
istance that the vehicle experiences as it moves through water. The damping forces and
moments acting on an underwater vehicle can be highly nonlinear and coupled, particularly
when operating at high speeds or in turbulent conditions. This nonlinearity is reflected in
the complexity and cross-coupling terms of the damping matrix [22].

However, the damping matrix can be considerably simplified under slow-motion condi-
tions or when the vehicle’s movements are not coupled. For these scenarios, the damping
forces can be approximated as being predominantly linear or quadratic with respect to
the vehicle’s velocities. This simplification leads to a damping matrix that can be struc-
tured in a diagonal form, significantly reducing computational complexity while providing
a reasonable approximation of the vehicle’s dynamics. Leading to

D(νr) = Dlinear +Dqudratic, (25)

where

Dlinear = −diag([Xu, Yv, Zw,Kp,Mq, Nr]) (26a)

Dquadratic = −diag([X|u|u|u|, Y|v|v|v|, Z|w|w|w|,K|p|p|p|,M|q|q|q|, N|r|r|r|]), (26b)

u, v, w, p, q, and r are the linear and angular velocities across the 6 DOF, respect-
ively. The coefficients Xu, Yv, Zw,Kp,Mq, Nr and X|u|u, Y|v|v, Z|w|w,K|p|p,M|q|q, N|r|r are
constant parameters determined through system identification processes. These constants
represent the linear and quadratic damping factors in each respective DOF, characterizing
the resistances the vehicle encounters as it moves through the water.

4.1.2 Vehicle-Manipulator

The equations previously discussed do not encompass the dynamics introduced by integ-
rating a robotic arm. Therefore, the equations of motion in (18) must be appropriately
modified to encapsulate the combined dynamics of the AUV and the manipulator. As
proposed by Chang et al. [23], the extended equations of motion can be expressed as
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η̇ee = Jk(R
I
B, qm)ζ (27a)

M(ηv, qm)ζ̇ +C(ηv, qm, ζ)ζ +D(ηv, qm, ζ)ζ +G(ηv, qm) = τe + τc, (27b)

where ζ denotes the comprehensive state vector that includes the states of both the AUV
and the manipulator arm. It is imperative to note that the system matrices are functions
of the joint angles qm of the robotic arm, indicating that the dynamic properties of the
system will vary with changes in the manipulator’s configuration.

Including the robotic arm introduces additional layers of complexity to the dynamic mod-
eling. These complexities arise from the arm’s movements and interactions with the en-
vironment, subsequently influencing the AUV’s behavior. This interaction demands an
examination of the forces and moments exerted at the connection point between the AUV
and the robotic arm. The vehicle-manipulator system’s dynamic equations are thus sig-
nificantly more intricate, as they encapsulate the coupled dynamics of the underwater
vehicle and the multi-linked manipulator.

Constructing these equations involves accounting for the kinematic and dynamic interplay
between the AUV and the manipulator arm. This includes considering the effect of the
manipulator’s configuration on the AUV’s inertia, buoyancy, and hydrodynamic charac-
teristics. Due to the mathematical complexity and the computational demands of deriving
and solving these comprehensive dynamic equations, this analysis poses significant chal-
lenges.

In light of these complexities, while a theoretical framework for these dynamics is critical
for understanding the vehicle-manipulator system, practical implementation, and simu-
lation have been approached differently. For this research, a physics engine, specifically
Simscape in MATLAB, is employed to simulate the vehicle-manipulator dynamics, with
the manipulator-induced forces and moments considered as disturbances to the AUV sys-
tem. This pragmatic approach allows for examining the system’s response to manipulator
movements without directly solving the complete set of dynamic equations. A more de-
tailed discussion on the choice of simulation tools and strategies will be presented in Section
6.

4.2 Vehicle-Manipulator Jacobian

Section 2.3.1 presented the construction of the manipulator Jacobian, which is defined with
respect to the manipulator’s base frame. However, this thesis addresses the dynamics of
a vehicle-manipulator system, necessitating the formulation of a manipulator Jacobian
matrix that represents the system in its entirety with respect to the world frame.

First, let’s examine the Jacobian of the AUV, encapsulating its contribution to end-effector
motion. The linear motion of the end-effector, relative to the world frame, mirrors the
linear movement of the AUV. Therefore, by examining the AUV’s frame with respect to the
world frame, the linear components of the Jacobian matrix are derived. The orientation
of the AUV in the world frame is represented as
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xauv = Rauv
world · x⃗ (28a)

yauv = Rauv
world · y⃗ (28b)

zauv = Rauv
world · z⃗, (28c)

where x⃗, y⃗, and z⃗ are the unit vectors [0, 1, 0]T , [0, 0, 1]T , and [1, 0, 0]T respectively. Then
the linear part of the Jacobian becomes

Jv,x = xauv (29a)

Jv,y = yauv (29b)

Jv,z = zauv. (29c)

The impact on the end-effector’s linear velocity because of the AUV’s angular velocity
arises from the spatial displacement of the end-effector from the AUV’s center of rotation,
giving the Jacobian components

Jv,roll = xauv × pauv
ee (30a)

Jv,pitch = yauv × pauv
ee (30b)

Jv,yaw = zauv × pauv
ee , (30c)

where pauv
ee denotes the position vector of the end-effector relative to the AUV’s center of

rotation.

Furthermore, the AUV’s angular velocities directly affect the end-effector’s orientation.
Depending on the orientation of the end-effector relative to the AUV frame, the angular
velocity contribution can be expressed as

Jω,roll = Rauv
ee · xauv (31a)

Jω,pitch = Rauv
ee · yauv (31b)

Jω,yaw = Rauv
ee · zauv. (31c)

Integrating these components yields the complete Jacobian for the AUV,

J(η(t)) =

[
[Jv,x,Jv,y,Jv,z] [Jv,roll,Jv,pitch,Jv,yaw]

03×3 [Jω,roll,Jω,pitch,Jω,yaw]

]
, (32)

which encapsulates both linear and angular contributions to the end-effector’s motion.

Finally, the manipulator Jacobian constructed in Section 2.3.1 needs to be rotated from
the base frame to the world frame to get a complete Jacobian of the system as

J(η, q) =
[
J(η(t)) J(q(t))

]
. (33)
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5 Control System for UVMS

A robotic system is defined as kinematically redundant if it possesses more DOFs than
what is strictly necessary to accomplish a given task [24]. This redundancy allows for mul-
tiple configurations to achieve the same end goal, introducing complexity and versatility
in control approaches. The integration of an AUV with five DOFs and a robot manip-
ulator with four DOFs exemplifies such redundancy, as a total of six DOFs is sufficient
for orienting the end effector in any desired position and orientation. However, the excess
DOFs facilitate a broader range of movement and potential operational strategies, while
demanding more from the control system in terms of sophistication and adaptability.

Control approaches for such systems are broadly categorized into kinematic control and
dynamic control, where kinematic control is used to generate desired trajectories and
dynamic control is used to make the system follow these trajectories. This section will
briefly explore the different control methods for UVMS within these two main categories
and additionally mention the possibility of separated control. It will assess their respective
advantages and challenges to argue for an appropriate control strategy for the task at
hand. The book Underwater Robots by Gianluca Antonelli [24] is the main source for this
argumentation and presented equations.

5.1 Kinematic Control

Kinematic control exposes the relationship between the velocities of a system’s compon-
ents and the motion of its end-effector. In manipulation tasks, the objective is typically
specified as a trajectory for the end-effector’s pose. However, control inputs are applied
through actuators that influence the system’s velocities. It is essential, then, to determine
the system velocities that will produce the intended motion of the end-effector. This sec-
tion introduces how a task is defined and its corresponding Jacobian. It also addresses one
of the key challenges in implementing inverse kinematics, the emergence of singularities
within the Jacobian matrix. To navigate this challenge, the use of a pseudo-inverse of
the Jacobian is explored. Lastly, the section introduces the task-priority framework, a
strategic approach to managing multiple tasks.

5.1.1 Defining Tasks

Antonelli provides a list of possible tasks for a UVMS [24]:

• End-effector position norm

• End-effector obstacle avoidance

• End-effector position

• End-effector orientation

• End-effector configuration

• End-effector field of view

• End-effector relative field of view

• Mechanical joint-limit

• Robot manipulability

• Robot nominal configuration

• Vehicle orientation

• Vehicle yaw

• Vehicle roll-pitch

• Vehicle-fixed sensor field of view

• Vehicle-fixed relative field of view

• Vehicle position norm

• Vehicle obstacle avoidance
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The potential tasks a system can execute are bounded only by the constraints of its
configuration and the creativity with which one approaches task design. Given a particular
system setup and an objective, the diversity of attainable tasks is limited solely by the
ingenuity applied in defining them. The task, χ, is defined as

σχ = σχ(η, q) (34)

where Jχ is the corresponding Jacobian relating its time derivative to the system velocity
[24]

σ̇χ = Jχ(η, q)ζ (35)

5.1.2 Psuedo-Inverse of the Jacobian

As mentioned, the inverse of the Jacobian may lead to difficulties in terms of singularities.
Therefore, there is the option of using the pseudo-inverse to calculate the desired joint
velocities from a desired end-effector velocity [24]

ζr = J†
χσ̇χ, (36)

where J†
χ is the Moore-Penrose psuedo-inverse calculated as,

J†
χ = JT

χ

(
JχJ

T
χ

)−1
. (37)

One can also calculate a weighted pseudo-inverse as

J†
χ,W = W−1JT

χ

(
JχW

−1JT
χ

)−1
, (38)

where W is a diagonal matrix with weights penalizing effort in the different joints.

5.1.3 Transpose of the Jacobian

A simple approach to get desired end-effector velocities based on system velocities is using
the transpose of the Jacobian in combination with a gain Kχ [24], resulting in

ζr = JTKχσ̃χ (39)

This method does not directly compute the end-effector velocities but serves as a propor-
tional control mechanism that uses the error, σ̃, to adjust the velocities.

5.1.4 Task-Priority

In the context of manipulation tasks, the ability to effectively manage multiple subtasks is
crucial, and this is where the concept of task priority becomes essential. Additionally, in
kinematically redundant systems, such as the UVMS addressed in this study, the capacity
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to execute several tasks concurrently exists. This is facilitated by utilizing the surplus
DOFs inherent in the system. Such redundancy enables the simultaneous fulfillment of
a primary task while also engaging in additional tasks, thereby optimizing the overall
functionality and efficiency of the UVMS.

Lets consider the two tasks σa and σb with its associated Jacobians Ja and Jb. Then, the
task-priority framework finds the reference velocities

ζr = J†
aσ̇a +NaJ

†
b σ̇b, (40)

where Na projects a generic joint velocity vector in the null space of the Jacobian matrix
Ja [24] expressed as

Na = In − J†
aJa. (41)

This corresponds to generating a motion that does not affect the task space σa. Extending
this method to accommodate multiple tasks is feasible, yet it requires careful consideration
to avoid conflicts between task priorities and dynamics. The following equation illustrates
how to expand this model to multiple tasks, as detailed by Antonelli [24],

ζr = J†
aσ̇a +NaJ

†
b σ̇b +NabJ

†
c σ̇c (42)

This formulation integrates several task spaces, where J†
a, J

†
b , and J†

c represent the pseu-
doinverses of the Jacobians for respective tasks, and Na, Nab are the null space projectors
that ensure each subsequent task does not interfere with the execution of the preceding
ones.

5.1.5 Actuator Singularity Avoidance

Singularity is a well-known issue in robotic manipulators, making it essential to explore
options for singularity avoidance. This section will examine singularity avoidance within a
task priority framework, which has been addressed in several studies. Specifically, the Mas-
ter’s theses by Stene [25] and Basso [26] employ this method, utilizing the manipulability
index introduced in Section 2.4.1 to define the task

σb := det(B(q)B(q)T ), (43)

and computing the task Jacobian as

Jb =
[
∂σb
∂q1

∂σb
∂q2

∂σb
∂q3

· · · ∂σb
∂qi

]
, (44)

where

∂σb
∂qi

= 2σbTr(
∂B

∂qi
B†). (45)
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This task is further applied as a set-based singularity avoidance task. As proposed by Moe
[27], ”several goals may be described as set-based tasks, which are tasks that aim for a
desired range of values rather than a precise singular value.” This approach is particularly
relevant to the singularity avoidance task from equation (43), where maintaining the ma-
nipulability index within a specified range is deemed appropriate. By defining a feasible
set

D = {σ ∈ R | σmin ≤ σ ≤ σmax} (46)

the singularity avoidance task should be active when σ /∈ D. Thus, when the manip-
ulability index is within the feasible set, D, it should not influence the system. Sverdrup-
Thygeson et al. [28] applied this method on an underwater swimming manipulator, demon-
strating its relevance to the current task at hand.

5.1.6 Secundary Task with Full Rank Main Task

The task-priority framework requires the Jacobian to lose rank for the projection into the
null space to enable switching between tasks. Marey and Chaumette [10] proposed an
alternative approach for transitioning to a secondary task when the Jacobian maintains
full rank in the primary task, utilizing a sigmoid function

Λ =
1

1 + exp(12∥σ̃∥−eo
e1−e0

+ 6)
, (47)

using the norm of the task error, ∥σ̃∥, such that when the task error is small, the function
converges to 0. e0 and e1 is used to tune the response of the function as shown in Figure
18.

Figure 18: Sigmoid function with e0 = 0.05 and different e1.

To effectively transition between tasks, the parameter Λ is strategically incorporated into
the control scheme from equation (40) and replaces the null space projection Na as follows,

ζr = ΛJ†
aσ̇a + (1− Λ)J†

b σ̇b. (48)
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5.2 Separated Control

Robust and established solutions exist for controlling an AUV and a robotic manipulator
independently. Therefore, one potential control strategy could involve treating the sys-
tems separately and adopting a well-established control approach for each. Typically, one
method involves maintaining the AUV’s position and orientation while the robotic arm
carries out manipulation tasks. Alternatively, it is conceivable to not actively control the
AUV during manipulation tasks, allowing it to serve as a floating base for the robotic
manipulator. Chang et al. [23] explored various scenarios, initially implementing separ-
ated control with only positional control on the AUV, followed by experiments with both
positional and attitude control. They concluded that maintaining the vehicle’s position
and orientation is not feasible due to the dynamic coupling between the manipulator and
the vehicle, which adversely affects the precision of the manipulator’s end effector and,
consequently, undermines the accuracy required for underwater operations.

Using the AUV as a floating base is contingent upon a significant inertia ratio between
the vehicle and the manipulator. Chang et al. [23] reported a case where the vehicle
weighed approximately 5500 kg and the arm 65 kg, resulting in a ratio of approximately
84.6. While seemingly large, the underwater environment can mitigate this advantage
due to the easier movement of submerged objects, meaning that coupling effects can still
significantly impact performance. In the context of the BlueROV2 and Reach Alpha
5 with their approximate weight of 12 kg and 1.2 kg, the inertia ratio is considerably
smaller, suggesting that a separated control approach may not be optimal for this specific
configuration.

5.3 Dynamic Control

Dynamic control strategies fundamentally rely on an accurate dynamic model of the sys-
tem, as they directly incorporate the system’s dynamic equations into the control law. As
elaborated in Section 4, the derivation of dynamic equations reveals that kinematically
redundant systems result in a complex equation set. Despite this complexity, the advent of
sophisticated computational resources and advanced system identification techniques has
made dynamic control increasingly feasible and potent. The control strategies discussed
are explored in Gianluca Antonelli’s book Underwater Robots [24], but revisited to provide
a succinct overview of different dynamic control approaches relevant to the task at hand.

Feedforward Decoupling Control

In the complex domain of UVMS, the interaction forces between the vehicle and manip-
ulator present significant control challenges. An innovative approach to mitigate these
challenges involves using Feedforward Decoupling Control. As proposed by McLain et al.
[29], this strategy entails estimating forces and moments generated by the manipulator’s
movements and compensating for these in the vehicle’s control.

The dynamic model for the vehicle part of the UVMS can be represented as

Mvν̇ +Cv(ν)ν +DRB(ν)ν + gRB(R
I
B) = τv − τm(RI

B, q, ζ, ζ̇) (49)

where τm signifies the forces and moments induced by the manipulator’s movements. By
accurately estimating τm, the control law can be refined to
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τv = τcontrol + τ̂m(RI
B, q, ζ, ζ̇) (50)

This method relies on the precision of the model used to predict hydrodynamic interaction
forces. When these forces are accurately predicted and fed into the vehicle controller, the
UVMS’s station-keeping performance is significantly improved, as evidenced by McLain
et al. [29].

Feedback Linearization

Using the non-linear dynamic model for a UVMS and linearizing around the working point
allows for a detailed control approach. As shown in the research by Tarn et al. [30], the
control law

τ = M(q)ζ̇a +C(q, ζ)ζ +D(q, ζ)ζ + g(q,RI
B) (51)

provides a means to manage the system’s complex interactions. The model, which accounts
for hydrodynamic forces, has been tested on a vehicle with two manipulators. The results
from these tests indicated that the control scheme effectively coordinates the vehicle and
manipulator movements, ensuring stable tracking and maneuvering.

Nonlinear Control for UVMSs with Composite Dynamics

The vehicle and manipulator parts of a UVMS have different bandwidth characteristics,
both in terms of dynamics and hardware. The dynamics differ because of the difference in
form and size, resulting in different inertia and hydrodynamics. Regarding hardware, the
actuators and sensors may differ in the response time and sampling frequency. Canudas
de Wit et al. [31] addresses the challenge of composite dynamics by proposing a tailored
non-linear control

τ ∗
v = (M̂∗

v + M̂qq)(ν̈d + kvv ˙̃ν + kvpν̃) + ∆τ ∗
v (52a)

τq = M̂q(q̈d + kvq ˙̃q + kpqq̃) (52b)

where the gains, kvv, kvp, kvq and kpq are chosen based on the systems bandwidth and ∆τ ∗
v

is an additional control action to compensate the decoupling forces which can be chosen
in different ways [24].

Sliding Mode Control

Sliding mode control (SMC) is a robust control technique that effectively handles model
uncertainties and external disturbances. This approach is particularly beneficial in envir-
onments with high variability and unpredictability, such as underwater dynamics. A key
component of SMC is the definition of a sliding surface, which the control system aims to
reach. This is mathematically represented by

s(x, t) = ˙̃x+Λx̃ = 0 (53)

where x̃ denotes the deviation from the desired trajectory, and Λ is a positive definite
matrix that defines the dynamics of the sliding surface. With the dynamic equation of a
UVMS

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q,RI
B) = Bu (54)
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where B is the input matrix, mapping control inputs u to forces and torques. The control
input u is derived as

u = B† [KDs+ ĝ(q,RI
B) +KSsign(s)

]
, (55)

where B† is the pseudoinverse of B, KD is a gain matrix, ĝ(q,RI
B) is the estimate of

gravitational and buoyant forces, and KS is a switching gain that enhances the system’s
robustness against disturbances and model uncertainties through the term sign(s), pro-
moting quick convergence to the sliding surface. This configuration allows the UVMS to
adapt quickly to changes in its environment, ensuring stability and accuracy of the con-
trol performance under varying underwater conditions. One notable drawback of SMC is
chattering in the control inputs due to the switching occurring in the term sign(s) [24].

Adaptive Control

Adaptive control is essential for ensuring the robust performance of dynamic systems such
as the UVMS under varying operational conditions. This control strategy dynamically
adjusts control gains in response to system parameter changes, helping maintain optimal
performance despite environmental disturbances and parameter uncertainties.

The adaptive control mechanism for the UVMS can be described by the following dynamic
equation:

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q,RI
B) = Φ(q,RB

I , ζ, ζ̇)θ = Bu. (56)

This equation models the forces and torques acting on the system, with Φ(q,RB
I , ζ, ζ̇)θ

representing the parametric uncertainties that the control system must adapt to. The
control law is formulated as

u = B†
[
KDs

′ +Φ(q,RB
I , ζ, ζr, ζ̇r)θ̂

]
, (57)

where u represents the control inputs adjusted by the pseudoinverse of the input matrixB,
KD is the gain matrix for the controller, and θ̂ is the estimate of the uncertain parameters
affecting the system dynamics. The parameters are updated in real time according to

˙̂
θ = K−1

θ ΦT (q,RB
I , ζ, ζr, ζ̇r)s. (58)

This equation continuously adjusts θ̂, ensuring the control system adapts to the real
environment by compensating for the identified discrepancies.
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6 Simulation Implementation

This section begins by highlighting the significance of simulation in designing control
systems for complex robotic systems. It then moves on to discuss the selection of the sim-
ulation tool used. Following this, the section details the implementation of the simulation,
which builds upon the dynamics outlined in Section 4. This theory is also used to defend
the design decisions.

6.1 Importance of Simulation

In the realm of robotics and control systems, simulation plays a pivotal role in the research
and development process. It provides a safe, cost-effective, and efficient means to test and
refine control approaches under a wide range of conditions. Particularly in the context of
this study, which focuses on underwater vehicle-manipulator systems, simulation becomes
important due to the complex nature of the underwater environment.

A well-crafted simulation offers several advantages. Firstly, it enables the iterative testing
of control strategies in a controlled environment, allowing for the systematic identification
and rectification of errors before real-world implementation. This aspect is crucial in
avoiding costly and potentially dangerous mistakes during physical deployment. Secondly,
visual simulation adds an invaluable dimension to the research. It facilitates a more
intuitive understanding of the system’s behavior and responses. Through visual feedback,
researchers can identify anomalies and inefficiencies that are difficult to detect through
traditional plots.

Another critical aspect of effective simulation is realism. The quality of a simulation
significantly affects how valid and applicable the research results are. In the context of
underwater systems, this involves incorporating environmental dynamics specific to un-
derwater settings, such as hydrodynamic forces. While certain simplifications can be made
when assuming slow movements, making the simulation more manageable, they must be
balanced carefully with the need for accuracy. A simulation that closely mirrors real-world
physics will provide more reliable data and insights, leading to better-informed decisions
and designs. However, achieving high levels of realism requires careful consideration of
the assumptions and approximations made during the simulation design process. While it
is not feasible to replicate every minute detail of the underwater environment, key factors
such as buoyancy, drag, and fluid-structure interactions should be integrated to ensure
that the simulation reflects the critical dynamics that occur in underwater environments.

In summary, the simulation component of this research is designed to provide a robust
platform for testing and validating the control approach for the vehicle-manipulator sys-
tem. By combining rigorous testing capabilities with high-fidelity environmental modeling,
the simulation aims to bridge the gap between theoretical research and practical applica-
tion, ensuring that the developed control strategies are effective and reliable in real-world
underwater conditions.

6.2 Simulation Tool

An integral aspect of this study was selecting an appropriate simulation tool that integrates
a physics engine capable of rendering the dynamics of the vehicle-manipulator system
more intuitively than the standard dynamic equations outlined in Section 4.1. Initially,
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the Robot Operating System (ROS) and Gazebo were considered due to their extensive
flexibility and efficient communication protocols, which facilitate seamless integration with
physical systems. These features are particularly beneficial for real-time applications and
advanced robotic simulations. However, despite their advantages, the steep learning curve
and time-intensive nature of mastering these tools posed significant challenges, especially
given the limited prior experience with them.

Therefore, the decision was made to utilize MATLAB and Simulink for this project. These
tools were chosen for several reasons: familiarity with the software, extensive support ma-
terials, and the availability of specific toolboxes tailored to robotic applications. Notably,
the Simscape toolbox within MATLAB provides a robust platform for simulating the
vehicle-manipulator system. It enables the modeling and simulation of physical systems
across multiple domains, such as mechanical, electrical, hydraulic, and thermal systems
within the Simulink environment. It allows users to represent physical components using a
physical network approach rather than traditional signal-based modeling, making it easier
to model real-world physical systems. Simscape provides a set of foundational libraries for
various physical domains, and users can extend these libraries with custom components.
The models in Simscape directly represent physical components, simplifying the process
of translating engineering concepts into a simulation model. Additionally, it provides a
visualization tool, Mechanics Explorer, for viewing and analyzing the simulation results
of the physical model. It provides a 3D environment where users can interactively ex-
plore the motion and behavior of the mechanical models during and after simulation runs.
Mechanics Explorer enables users to visualize the geometry, motion, and forces acting
on components within a mechanical system, making it easier to understand the system’s
dynamics and to identify potential issues or areas for optimization. Figure 19 shows the
visualization of the vehicle-manipulator system used in this thesis.

Figure 19: Mechanics Explorer visualization of BlueROV2 and Reach Alpha 5.

6.3 System Parameters

For enhanced realism, parameters from system identification should be employed in the
simulator. While parameters specifically for the BlueROV2 are not available, system
identification for the BlueROV1, a very similar vessel design, was performed by Sandøy
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in 2016 [32]. Furthermore, the BlueROV2 Heavy has been simulated by Chu-Jou Wu [33],
with certain parameters adjusted based on specifications provided by Blue Robotics, see
the datasheet in Appendix B. Table 2 summarizes all parameters used for the dynamics
of the AUV.

Table 2: Rigid body dynamics, added mass and damping parameters for the AUV.

Parameter Value Unit

Rigid body dynamics

m 11.5 kg
W 112.8 N
B 114.8 N
rb [0, 0, 0]T m
rg [0, 0, 0.02]T m
Ix 0.16 kgm2

Iy 0.16 kgm2

Iz 0.16 kgm2

Added mass

Xu̇ -5.5 kg
Yv̇ -12.7 kg
Zẇ -14.57 kg
Kṗ -0.12 kgm2/rad
Mq̇ -0.12 kgm2/rad
Nṙ -0.12 kgm2/rad

Parameter Value Unit

Linear damping

Xu -4.03 Ns/m
Yv -6.22 Ns/m
Zw -5.18 Ns/m
Kp -0.07 Ns/rad
Mq -0.07 Ns/rad
Nr -0.07 Ns/rad

Quadratic damping

Xu|u| -18.18 Ns2/m2

Yv|v| -21.66 Ns2/m2

Zw|w| -36.99 Ns2/m2

Kp|p| -1.55 Ns2/rad2

Mq|q| -1.55 Ns2/rad2

Nr|r| -1.55 Ns2/rad2

Reach Robotics provided dynamic parameters for Reach Alpha 5 through their scientific
paper Kinematic and Dynamic Properties, see Appendix A. However, the documentation
does not include dynamic properties for the actuators and joints. To minimize oscillations
during simulation, friction and damping were introduced into the joints. These modifica-
tions were selected to achieve a realistic response from the manipulator’s behavior.

6.4 Simulation Structure

This section will explain the design choices and structure of the created simulation.

6.4.1 AUV

The AUV was simulated by employing the dynamic equations (18) from Section 4.1,
utilizing parameters listed in Table 2. This was achieved by using a MATLAB function
block for the equations and integrating the rate of change output, resulting in the scheme
in Figure 20.
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Figure 20: Dynamics of the AUV in Simulink.

The states were connected to a Cartesian Joint and Gimbal Joint with no resistance or
dynamics, thus moving the reference frame of the AUV in 6 DOF. This ensures a smooth
transition of the AUV dynamics to the Simscape environment. The AUV frame was then
connected to a Weld Joint, which can be used to sense forces acting on the frame, making
it possible to extract the decoupling forces from the robot arm and feed it to the AUV
dynamics as a disturbance, see Figure 21.

Figure 21: Simulink model of the AUV.

The lowpass filtering removes undesired high frequencies from the disturbance, with a
cutoff frequency of 10 rad/s. Furthermore, Rigid Transform was used to place the visu-
alization of the AUV from the File Solid block and create the base frame for the robot
arm.

6.4.2 Robot Arm

Appendix C presents the structural overview of the robot arm model, showcasing where
Simscape particularly excels. The frame transformations between various links and joints
can be set up intuitively using Rigid Transformation, with the DH-parameters as a ref-
erence for the inputs. The different links of the Reach Alpha 5 are interconnected using
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Revolute Joint blocks, which are actuated by torque and provide feedback on position and
velocity. Spring stiffness and damping are provided as inputs to the Revolute Joint block,
but friction is constructed separately using the Rotational Friction block.

Figure 22 shows the content of the subsystem block link1 from the robot arm model. Each
link contains the same elements. The Inertia block includes the description of mass and
inertia, and the File Solid block includes the .STEP file with a visual description of the
body and buoyancy is an External Force and Torque block which can be configured to
consistently apply the force in the direction of the world z-axis.

Figure 22: Contents of the subsystem block link1 from Appendix C.
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7 Control Implementation

This section will present the control methodology for the UVMS with the task of grasping
dead fish. Figure 23 depicts the flow of the control architecture. A brief summary of
the control methodology follows: A proposed kinematic control strategy is implemented
to generate reference velocities, which are subsequently fed into a reference model. The
reference model is of second order and generates smooth desired velocities and acceleration
trajectories. The desired velocities are then compared with the system velocities to identify
the velocity error. This error is multiplied by the proportional gain, and its integral is
multiplied by the integral gain in the PID controller. The desired accelerations are fed
directly to the derivative gain. The PID controllers compute desired forces and moments,
which are fed to the system. Each step of the control design will be explained in more
detail in the following sections.

Figure 23: Control diagram of the proposed control approach.

7.1 Proposed Kinematic Control Law

The proposed kinematic control law is designed to enhance the operational efficiency of a
UVMS tasked with grasping dead fish, a problem characterized by the need for precision
and adaptability in a dynamic underwater environment. Inspired by the task priority
framework in Section 5.1, this law innovatively employs a weighted transpose of the Jac-
obian matrix to manage the system’s DOF effectively. The approach is divided into three
primary tasks:

1. Positioning AUV and keep fish in FOV:
The first task mandates the AUV to align itself to the y-axis of the fish to ensure a
direct convergence to the long side of the fish while maintaining the fish within FOV
to ensure continuous detection.

2. Converge the end-effector to the grasping point:
Following the AUV’s alignment, the goal is to converge the end-effector to the desig-
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nated grasping point with collective DOFs of the UVMS without colliding or inducing
disruptions to the floating fish.

3. Manipulability optimization:
Preserving manipulability in the robot manipulator is crucial, as it ensures the max-
imum range of motion is available at all times to perform the assigned tasks effect-
ively.

To adeptly manage these tasks, a dynamic prioritization strategy is implemented through
a gain, Λ, effectively modulating the control effort between AUV positioning and end-
effector convergence based on real-time assessments and operational needs. While task 3
is always providing control effort to maintain manipulability in the robot arm. The control
vectors for the AUV and the robotic arm are defined as

ζr =

[
νr
q̇r

]
= ΛJT

1 K1σ̃1 + (1− Λ)JT
2,WK2σ̃2 + ζr,3 (59)

Task 1 and 2 have their own error dynamics, σ̃1 and σ̃2, derived in Section 7.1.1 and
7.1.2. The error in Task 1 contains the position and yaw error of the AUV, while the error
dynamics in Task 2 contains the pose error of the end-effector. Therefore, the Jacobians
differ such that it corresponds to the different tasks. The Jacobian in task 1,

J1 =
[
Jauv 04×4

]
(60)

maps the system velocities to the motion of the AUV in x, y, z, and ψ, where the only
contribution is the actuation from the AUV represented in Jauv. Furthermore, J2 maps
the system velocities to the end-effector velocities in all DOFs. Additionally, JT

2,W is a
weighted transpose with the weighting matrix W to weight the different system’s DOF.
The weighting vector K1 and K2, weights the different errors. These weighting matrices
give the option to tune the system’s response. W and K2 are dynamically adjusted to
address additional subtasks and challenges, further elaborated in 7.1.3 and 7.1.4. Task 3
is derived in Section 7.1.5, using change in the manipulability index to determine velocity
references that optimize manipulability.

The implementation of task functions in MATLAB is presented in the following sections.
The implementation of the complete kinematic control is found in Appendix D.

7.1.1 Positioning AUV and keep fish in FOV

This section presents the error calculations and desired velocities for the AUV in task 1.
The primary objective is to determine the desired velocities in x,y,z, and yaw (ψ) such
that the drone is oriented perpendicular to the long side of the fish while maintaining the
fish within the FOV to ensure continuous detection. The positioning is performed with
linear velocities while keeping the fish within FOV with angular velocity in yaw.

To position the AUV such that it is aligned to the long side of the fish, it needs to converge
to the y-axis of the fish. Therefore, the closest distance to this axis is found using the
perpendicular distance

pe = vrel − (vrel · yfish)yfish (61)

where vrel signifies the relative position vector calculated as

vrel = pfish − pauv. (62)
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The perpendicular distance, pe, represents the distance and direction to the y-axis and
can, therefore, be used as the positional error in the error dynamics of task 1. Furthermore,
to keep the fish within the FOV, the AUV’s camera should face the fish. This is achieved
by calculating the desired yaw angle based on the relative position of the fish to the AUV
as

ψd,auv = atan2(yrel, xrel) (63)

where xrel and yrel is the x and y component of vrel. The error can then be calculated as

ψe,auv = ψd,auv − ψauv (64)

resulting in the error dynamics for task 1, σ̃1 = [pe, ψe,auv]
T .

The transitioning between task 1 and task 2 is done with the gain, Λ. This gain is
determined by the amplitude of the error in positioning and orientation by using the norm
of the error in the sigmoid function [10],

Λ = sigmoid(σ̃1, e0, λ) =
1

1 + exp(12∥σ̃1∥−eo
λ−e0

+ 6)
(65)

where e0 = 0.05 and λ is a coefficient that can be used to tune the response of the sigmoid
function explained in Section 5.1.6, which leads to a change in system response.

7.1.2 End-Effector Error Calculation

The end-effector position goal is obviously the grasping point, but the orientation is not
straightforward. The desired roll can be found by examining the pitch of the fish but
will depend on whether the system is converging on the left or right side of the fish. For
simplification, the simulation test only converges on the left side of the fish, resulting in

ϕd = −θfish (66)

The desired pitch angle is found by calculating the angle between the end-effector’s position
and that of the fish, yielding

θd =
−asin(zfish − zee)

∥pfish − pee∥
(67)

where zfish and zee are the z-coordinates of the fish and the end-effector, respectively, and
pfish and pee represent their position vectors. This methodology ensures the end-effector
remains oriented towards the fish. Such an orientation is crucial for keeping the fish within
the FOV of the camera mounted on the robot arm. Additionally, it minimizes the risk of
the end-effector colliding with the fish.

Finally, the desired yaw of the end-effector is found as

ϕd = ϕfish +
π

2
(68)

such that the angle of attack is 90 degrees on the fish’s long side. This also depends on
the side from which the system converges, but this solution does not address it.
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Finally, this results in the desired end-effector pose, σd =

[
pfish

[ϕd, θd, ψd]
T

]
, such that the

end-effector error can be calculated as

σ̃2 = σd − σ, (69)

where σ is the end-effector pose.

7.1.3 End-effector Orientation Prioritization, K

The vector K2 = [K1,K2, . . . ,K6]
T is used to weight the control of each DOF of the

end-effector. A higher value in the corresponding index of the vector will create harder
control on this specific DOF. A suitable general weighting, k1 = [k1,1, k1,2, . . . , k1,6]

T , is
selected to give reasonable response, but from testing it is found that more precise end-
effector orientation is beneficial when the system converges towards the fish, and as the
end-effector is closing in on the object, positioning becomes more important. Therefore,
an adaptive change in the weighting was developed such that

k2,[1:3] = 1− Λ1 (70a)

k2,[4:6] = 1 + Λ1 (70b)

where

Λ1 = sigmoid(σ̃2,[4:6], e0, λ1). (71)

If the error in orientation is large, control in orientation is prioritized while control in
position is deprioritized, using the gain Λ1 from the sigmoid function. λ1 is used to adjust
the response of the function.

Finally, the weights in vector K2 can be calculated as

Ki = k1,i · k2,i (72)

7.1.4 Joint Limits & AUV vs. arm, W

The weighting matrix W = diag([W1,W2, . . . ,W8]) is used to weight the usage of each
DOF within the system. For example, larger values in W1:4 will reduce the usage of the
AUV. A suitable general weighting, w1 = [w1,1, w1,2, . . . , w1,3]

T , is selected to provide a
reasonable response before different subtasks alter the weighting depending on the current
situation of the system.
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Joint Limits

A solution to create weighting based on joint limits is found in [24] where

∂H(q)

∂qi
=

1

λ3

(qi,max − qi,min)(2qi − qi,max − qi,min)

(qi,max − qi)2(qi − qi,min)2
(73)

provides an indication of each joint proximity to the limits. The coefficient λ3 decides the
sensitivity of the control system to joint limit proximity, effectively setting the strictness
of adherence to these constraints. Then, the following logic

w2,i+4 =

{
1 +

∥∥∥∂H(q)
∂qi

∥∥∥ , if ((∂H(q)
∂qi

and q̇i) > 0) or ((∂H(q)
∂qi

and q̇i) < 0)

1, otherwise
(74)

is used to create the weighting on the different joints of the robot manipulator, such that it
only penalizes movement towards the joint limit. Resulting inw2 = [1, 1, 1, 1, w2,5, w2,6, w2,7, w2,8]

T .
Implemented as follows:

1 function [w] = joint_limits(q, q_dot , lambda)

2 % INPUT

3 % q = joint angles

4 % q_dot = joint velocities

5 % lambda = tuning coefficient

6

7 q_max = [deg2rad (350);

8 deg2rad (200);

9 deg2rad (200);

10 deg2rad (330)];

11

12 w = ones (8,1);

13 for i = 1:4

14 H = ( 1/ lambda ) * ( ( q_max(i) * (2*q(i)-q_max(i)) ) ...

15 / ( (q_max(i)-q(i))^2 * (q(i))^2 ) );

16 if ((H > 0) && (q_dot(i) > 0)) || ((H < 0) && (q_dot(i) <

0))

17 w(i+4) = 1 + abs(H);

18 else

19 w(i+4) = 1 + abs (.2*H);

20 end

21 end

22 end

Listing 1: Joint Limits Function

AUV vs. arm

Since the manipulator has less inertia and faster dynamics, it is beneficial to prioritize
the usage of the manipulator when the end-effector is close to the object. Therefore, a
weighting based on this idea is created such that

w3,[1:4] = 1− 0.3Λ2 (75a)

w3,[5:8] = 1 + 0.3Λ2 (75b)

where
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Λ2 = sigmoid(σe,[1:3], e0, λ2) (76)

such that the usage of the AUV will be reduced when the end-effector is close to the fish,
and the usage of the arm will be increased. This also creates an adaptive solution such
that the AUV can move faster when the system is further away from the fish, reducing
the run time.

Finally, the weights of the system’s DOF, Wi, are calculated as

Wi = w1,i · w2,i · w3,i (77)

7.1.5 Manipulability Optimization

To implement the task priority framework, one approach considered was the set-based
manipulability tasks for kinematic singularity avoidance, as detailed in [28], see Section
5.1.5. Although this method was tested, it produced undesirable results, further discussed
in Section 8. Consequently, a different strategy was proposed. This alternative method
employs gradient-based optimization to assess how minor adjustments in each joint angle
influence the manipulability measure. This approach generates velocity references designed
to enhance the manipulability of the robot arm by using the manipulability index from
Section 2.4.1. The manipulability optimization is implemented as follows:

1 function [zeta_r , w] = manipulability_optimization(q)

2 % INPUT

3 % q = joint angles

4

5 J = compute_jacobian(q);

6 Jp = J(1:3, :);

7

8 W = Jp * Jp ';
9 w = sqrt(det(W));

10

11 gradient_w = zeros(size(q));

12 epsilon = 1e-6; % Perturbation for finite difference

13

14 % Compute gradient using finite differences

15 for i = 1: length(q)

16 q_perturbed = q;

17 q_perturbed(i) = q_perturbed(i) + epsilon;

18 J_perturbed = compute_jacobian(q_perturbed);

19 Jp_perturbed = J_perturbed (1:3, :);

20 W_perturbed = Jp_perturbed * Jp_perturbed ';
21 w_perturbed = sqrt(det(W_perturbed));

22

23 gradient_w(i) = (w_perturbed - w) / epsilon;

24 end

25

26 Lambda = sigmoid(w, 5.5e-3 , 6.5e-3);

27 K = 20;

28 q_dot_r = (1-Lambda)*K*gradient_w;

29 zeta_r = [zeros (4,1); q_dot_r ];

Listing 2: Manipulability optimization function.
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The sigmoid function is used to define a region of acceptable manipulability measure. The
gain K is used to tune the generated velocity references. This algorithm was made with
the help of the AI model ChatGPT.

7.2 Reference Model

A second-order reference model is used to obtain smooth reference signals for the desired
velocity [22]. This is done by using a second order LP-filter

xd(s)

xref (s)
=

ω2
i

s2 + 2ζiωis+ ω2
i

(78)

where ζi are the relative damping ratio and ωi are the natural frequency for the ith state.

The reference model is implemented as a first-order linear system

ẋd = Adxd +Bdr (79)

where

Ad =

[
0n×n In
−Ω2 −2∆Ω

]
, Bd =

[
0n×n

Ω2

]
(80)

and

Ω = diag(ω1, ω2, . . . , ωi) (81a)

∆ = diag(ζ1, ζ2, . . . , ζi) (81b)

With the reference signal, r, as the reference velocities computed from the kinematic
control. The resulting xd will include a filtered velocity and acceleration reference.

The implementation of the reference model is as follows:

1 function [xd_dot] = sec_ord_ref_mod(xd, r, Omega , Delta)

2 % INPUT

3 % xd = desired states

4 % r = reference states

5 % Omega = diagonal damping matrix

6 % Delta = diagonal natural freq matrix

7

8 n = size(r,1);

9

10 Ad = [zeros(n,n), eye(n);

11 -(Omega ^2), -2*Delta*Omega];

12 Bd = [zeros(n,n);

13 Omega ^2];

14

15 xd_dot = Ad*xd + Bd*r;

16 end

Listing 3: 2. order reference model Function
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and used in Simulink as shown in Figure 24.

Figure 24: Refrence Model implementation for the AUV in Simulink.

7.3 PID Control

PID control is employed to control the velocity of each individual DOF of the system. The
desired velocities from the reference model are compared with the system’s velocities to
find the velocity error used for the proportional and integral gain. Since robotic systems
typically contain lots of noise in the acceleration feedback, the desired acceleration gener-
ated in the reference model is used directly with the derivative gain in the controller. The
PID controller is implemented as a MATLAB function with an integral limit as follows:

1 function [u] = PID_controller(K, e, e_dot , int , int_limit)

2 % INPUT

3 % K = [Kp,Ki,Kd]

4 % e = error

5 % e_dot = derivative error

6 % int = integral of error

7 % int_limit = limit for the integral of error to prevent wind -up

8

9 Kp = K(1); Ki = K(2); Kd = K(3);

10

11 % Check and limit the integral part to prevent wind -up

12 if int > int_limit

13 int = int_limit;

14 elseif int < -int_limit

15 int = -int_limit;

16 end

17

18 % Calculate the control signal

19 u = Kp*e + Ki*int + Kd*e_dot;

20 end

Listing 4: PID Controller Function
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It was implemented in Simulink as shown in Figure 25.

Figure 25: PID controller implementation for the AUV in Simulink.
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8 Results

This section presents the simulation outcomes, specifically focusing on the tuning ap-
proach and the resultant data. The case that is examined initializes the AUV’s state
at η = [0, 0, 0, 0, 0, 0]T , and the fish’s state at ηfish = [1.3, 0.5, 0, 0, 20◦, 70◦]T . This cre-
ates a scenario designed to challenge all system DOFs and necessitate a comprehensive
coordination of the different tasks to grasp the fish successfully.

For this simulation, certain assumptions have been made to focus the scope of the study
and ensure the clarity of the results:

• Fish pose is known.

• UVMS states are known.

8.1 Dynamic Control Tuning

The controller includes multiple parts that need tuning. The tuning approach first ad-
dresses the inner control loops, such as the PID control and reference models, before tuning
the kinematic control.

8.1.1 Reference Model and PID controller Tuning

The reference model is present to generate a smooth trajectory for the desired velocities.
When selecting the parameters for the reference model, it is crucial to consider both the
desired system responsiveness and the practical response capabilities within the given
DOF. It is important to balance these parameters to ensure the system does not move too
quickly, which would increase hydrodynamic effects and influence on the floating fish, nor
too slowly, which would extend the time it takes to catch the fish.

The underwater drone is capable of a maximum speed of 1.5 m/s. However, this is unreas-
onably fast for the task at hand. Therefore, a maximum velocity of 0.2 m/s is proposed.
With no prior experience operating the drone, it is assumed that the BlueROV2 can
achieve this velocity within 5 seconds without generating excessive hydrodynamic effects
or disturbing the surrounding water. With a natural frequency and damping ratio equal
to 1, the fully damped reference model generated suitable characteristics for the desired
AUV velocities for the task.

The PID controller was tuned on a leap from 0 to 0.2, using the reference model to generate
velocity trajectory. The parameters are listed in Table 3, and the results are shown in
Figur 26.

Table 3: Reference model parameters and PID controller gains for the AUV.

Reference Model

DOF ω ζ

x, y, z 1 1
yaw 3 1

PID controller

DOF Kp Ki Kd integral limit

x, y, z 40 30 10 10
yaw 2.5 2 0.2 1
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(a) Linear velocity in x. (b) Linear velocity in y.

(c) Linear velocity in z. (d) Angular velocity in yaw.

Figure 26: Linear and angular velocity control response of the AUV in x, y, z, and yaw.

The linear states in Figures 26a, 26b, and 26c show promising results, demonstrating a
stable and smooth motion of the AUV without overshooting, which could otherwise lead
to undesired collisions with the object during convergence. Figure 26d exhibits some slow
oscillations due to the decoupling in the AUV’s dynamics. Since the AUV is not expected
to rotate continuously at a constant speed, these results validate the control system’s
effectiveness.

For the robot arm mounted on the AUV, the reference model and PID control were
explicitly tuned to leverage the arm’s quicker response capabilities, taking advantage of
its lower inertia compared to the AUV. This tuning strategy ensures that the reference
model accurately reflects the robot arm’s responsive behavior. Unlike the AUV, which
exhibits slower dynamics and takes longer to reach operational speeds, the arm can react
more swiftly, allowing for rapid adjustments.

This responsiveness is beneficial for grasping dead fish, where precise and timely move-
ments are necessary. By optimizing the arm’s control to enable faster responses, the
system can effectively leverage the arm’s lower inertia to compensate for minor errors
quickly. Since underwater conditions constantly introduce slight positional inaccuracies to
the floating UVMS, this capability is essential for significantly increasing the operation’s
success.
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The parameters used are listed in Table 4, and the response is shown in Figure 27.

Table 4: Reference model parameters and PID controller gains for the robot arm.

Reference Model

DOF ω ζ

q1:4 7 1

PID controller

DOF Kp Ki Kd integral limit

q1 2 5 0.1 10
q2 5 20 0.1 10
q3 5 10 0.1 10
q4 6 9 0.2 10

(a) q1 (b) q2

(c) q3 (d) q4

Figure 27: Angular velocity control response for the four joints of the robot arm.

The figure showcases how the robot arm can respond quicker than the AUV without in-
troducing overshoot. However, a small undesirable result is observed in Figure 27b, where
the state slowly drifts from the desired velocity. This occurs because the joint initially
lifts the arm against gravity and then moves past the point where gravity contributes
to increasing the velocity. This highlights a potential limitation of PID control on the
robot arm. However, during operation, the system is not designed to maintain a constant
velocity.
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8.2 Kinematic Control Tuning

The kinematic control includes three main tasks and additional subtasks with the pos-
sibility of tuning the response of each task. Table 5 lists the different tuning coefficients,
including a brief description.

Table 5: Kinematic control coefficients.

Coefficient Value Description

λ 0.5 choose between orientating and converging AUV

λ1 1 prioritizing orientation of end-effector

λ2 2 joint limits

λ3 0.5 prioritizing AUV control or robot arm during convergence

8.2.1 Task 1

The response in task 1 is tuned with the vector K1 where the first three values gain the
positioning errors and the fourth gains the yaw error. By neglecting the other tasks and
generating velocity references only from task 1,

ζr = JT
1 K1σ̃1, (82)

the response could be tuned. Figure 28 shows how the system performed where the blue
arrow represents the AUV and its orientation in the xy-plane. The figure shows how the
system is able to align itself to the y-axis of the fish while maintaining it within the FOV.
Thus preparing it for the next task, converging the end-effector to the gripping point.

Figure 28: AUV positioning and orienting

8.2.2 Transition between Task 1 and Task 2

The system should be properly aligned to the long side of the fish before transitioning to
task 2, which is to converge the end-effector to the grasping point. Figure 29 shows the
motion of the AUV with two different values for λ. The coefficient is changing the sigmoid
function, and in Figure 29a, with λ = 2, the system starts transitioning when the error
norm is below 2. Compared with the results in Figure 29b where λ = 0.5, the system
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creates a more optimized position and orientation before fully transitioning to task 2 and
yielding a more robust and desirable result with the smaller λ.

(a) λ = 2 (b) λ = 0.5

Figure 29: AUV positioning and orienting with different transitioning coefficient λ.

8.2.3 Task 2

Task 2, converge the end-effector to the grasping point, includes multiple sub-tasks with
individual tuning. This section will systematically explain the reasoning and tuning choices
for each sub-task.

Orientation vs. position

In order to reduce the risk of undesired collision with the fish, it is crucial to have a
suitable orientation relative to the fish before converging the end-effector to the grasping
point. Figure 30 showcases when the robot arm does not have a suitable orientation before
converging, increasing the risk of colliding the jaw with the fish.

Figure 30: Example of a case where pitch is unsuitable
before convergence. The red circle represents the fish.

Therefore, a prioritization between orientation and position was implemented. This was
also conducted using the sigmoid function where λ1 is used to tune the response. Figure
31 shows two cases with different λ1, where the blue arrow represents the end-effector.
Arguably, the response in Figure 31c and 31d yields the most suitable results, reducing
the risk of collision and increasing the chance of a successful grasp. However, Figure
31a shows a suitable result for keeping the fish within FOV of the camera mounted on
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the robot arm. Nevertheless, Figure 31b shows that the pitch becomes undesirable for
convergence, thus outweighing the choice of a smaller λ1. This result does, however,
suggest an additional task of maintaining the fish within the FOV of the camera mounted
on the robot arm could be implemented.

(a) Yaw with λ1 = 3. (b) Pitch with λ1 = 3.

(c) Yaw with λ1 = 1. (d) Pitch with λ1 = 1.

Figure 31: End-effector yaw and pitch with different λ1.

Joint Limits

Including a task that restricts actuation near joint limits serves primarily as a safety feature
rather than a core aspect of the control design. Nevertheless, it effectively prevented the
arm from reaching a singular position during operation, with the absence of singularity
avoidance or manipulability optimization. While integrating the additional tasks, the
influence of the joint limits task became less noticeable.

Tuning the joint limits task involved deciding the level of restriction near the joint limits,
which directly affected the arm’s responsiveness. Stricter tuning could lead to reduced
responsiveness, presenting a trade-off between safety and performance. This consideration
is essential for optimizing system behavior, ensuring that the arm remains both safe and
effective.
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8.2.4 Task 3

In the simulation scenario, the system must align itself before proceeding with the task.
While the system is aligning, the robotic arm simultaneously attempts to converge on the
fish. Due to the time it takes for the system to align properly, the arm starts to extend fully
while still in the alignment process. This premature extension can lead the arm toward
a fully stretched position, significantly reducing its manipulability. The joint limit task
employed handles this issue to some extent. Still, as the manipulability index continued to
decline, it became apparent that a more effective solution was required to prevent the arm
from reaching these near-singular configurations and maintain its operational effectiveness
throughout the task.

The singularity avoidance task, introduced earlier in Section 5.1.5, was tested in the sim-
ulation, resulting in undesirable results. Figure 32 compares the manipulability index
with and without the set-based approach. The absence of a set-based approach, depicted
in Figure 32a, reveals that the robotic arm trends toward a manipulability maximum.
Projection to the null space continually deprioritizes the task of converging toward the
gripping point, leading to unsuccessful convergence.

Figure 32b illustrates results using the set-based approach. An if-statement ensures that
the singularity avoidance task remains inactive as long as the manipulability index stays
above 5.5 × 103. This approach also led to suboptimal results, as the system frequently
toggles the singularity avoidance task on and off, inducing oscillations within the system.
Despite these challenges, the system ultimately converges to the gripping point.

(a) Without set-based. (b) With set-based.

Figure 32: Singularity avoidance with and without set-based approach.

The proposed gradient-based optimization approach yielded more favorable results. Figure
33 presents two plots: Figure 33a displays outcomes without the presence of manipulability
optimization or singularity avoidance, illustrating the manipulability index converging to
zero, indicating that the robot arm is approaching a singular configuration. However, it
did not reach zero due to the intervention of the joint limit task. Conversely, Figure 33b
demonstrates the effectiveness of the proposed manipulability optimization, maintaining
a suitable manipulability index while minimally impacting the convergence process.
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(a) Without manipulability optimization. (b) With manipulability optimization.

Figure 33: Manipulability index with and without manipulability optimization.

8.3 System Performance

Figure 34 presents the task error σ̃2 for Task 2, which involves the end-effector converging
to the grasping point. The simulation allows a stabilization period of 10 seconds before
initiating control efforts. This figure illustrates the end-effector’s successful convergence
to the designated grasping point. It also highlights the prioritization of orientation control
within the system’s approach. This is evident as the attitude errors approach zero earlier
in the sequence, indicating that orientation adjustments are prioritized over positional
corrections. The error in the x dimension is the last to be corrected, underscoring the
system’s strategy to stabilize the end-effector’s orientation before fine-tuning its position.

Figure 34: End-effector pose error.
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9 Discussion

This section discusses the comprehensive results and insights gained from the research
conducted on grasping dead fish underwater using a robot manipulator mounted on an
underwater drone. This study primarily focused on control solutions, supplemented by
an exploration of grasping theories and robot vision. Although grasping and robot vision
were not the primary focus of this research, they provide an overview of the task and lay
the groundwork for future investigations. A significant portion of the research involved
creating and refining a simulation in MATLAB, which provided valuable lessons in hand-
ling CAD files and simulation settings. Additionally, the thesis explores various control
strategies for UVMS and redundant systems, employing a novel approach inspired by, but
not fully aligned with traditional task priority frameworks.

This section will first explore the benefits of the simulation created during the research and
discuss how it informed various design choices. While simulations cannot replicate real-
life conditions perfectly, they are crucial for validating task execution. The discussion will
then link the pre-project phase and the development of the state machine to its impact on
the research trajectory. Following this, the section will address the challenges encountered
in implementing the control strategies, informed by the theoretical framework provided.
Additionally, the outcomes of the simulation and the contributions of this research will be
examined. Finally, it will discuss a theoretical analysis of grasping a slippery and non-rigid
object, such as a dead fish, and the perceptual aspects of the task.

9.1 Simulation

The development of the simulator has been an educational experience, necessitating the
exploration of new fields within CAD software and Simscape to build the model. The Sim-
scape toolbox proved to be a good choice due to its extensive capabilities. It was highly
intuitive and is recommended for others simulating multi-linked manipulators. Although
time-consuming, establishing a robust platform for development has been crucial. Primar-
ily, visual simulation motivates the development process. It breathes life into the research
and adds an element of excitement. However, the benefits extend beyond entertainment;
simulation offers intuitive insights into the system’s behavior and movements, simplifying
the troubleshooting process.

Several specific instances where the simulation has been instrumental in the development
process can be highlighted. Firstly, it has enhanced the understanding of the workspace
and maneuverability of the robot arm. During the construction of the robot arm and the
positioning of joints and actuators, it became apparent that an elbow-down configuration
provides better maneuverability than an elbow-up. Additionally, the simulation has iden-
tified the most practical placement for the arm on the AUV, considering space limitations
due to the AUV and robot arm design. Moreover, the visual aid has been instrumental
in detecting unrealistic motions during controller design, highlighting instances where the
system is over-actuated or performing motions that may not be feasible in real-world
scenarios.

One objective was to create a simulator that was as realistic as the task required, which was
largely achieved. However, several areas could be improved with more time. Firstly, the
drone lacks thruster dynamics. The thrust force reference is currently processed through
a low-pass filter to simulate thrust inertia. This treatment is identical across all axes,
which is unrealistic considering the drone’s thruster configuration, which would produce
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different possible forces in different axes. Additionally, the model does not account for
hydrodynamic forces from added mass in the robot manipulator. As the task is performed
at very low velocities, hydrodynamic effects can be neglected, but their inclusion could
have enhanced the realism of the simulation. The reason for its absence is that a method to
implement added mass within the Simscape toolbox was not identified. Lastly, significant
noise factors have not been introduced. Thus, the simulation serves more as a validation
of the methodology. In real-world applications, there will always be some uncertainty in
the estimations regarding position and orientation and external noise affecting the system,
introducing new challenges to the control design.

9.2 The System as a State Machine

In the pre-project [1], a state machine was developed to systematically structure the task
of grasping dead fish, as illustrated in Figure 35. This model facilitated a structured
approach to identify and address challenges at each phase of the task, providing a crucial
foundation for the development process. Table 6 summarizes each state’s primary functions
and considerations, offering a concise overview of the system’s operational logic from the
pre-project.

Figure 35: Proposed state machine for the problem.
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Table 6: A brief summary of the different states in the state machine.

Index State Description

1 Search Search pattern and detection of dead fish

2
Converge to Orienta-
tion Adjustment Circle

A circle with a suitable distance from the
object to reduce influence

3
Orientation Adjust-
ment

Following the circle until the robot arm is
orientated to the longside of the object

4
Converge to Gripping
Distance

Converge to a position that ensures max-
imum maneuverability for the robot arm

5
Arm Converge to Grip-
ping Point

Robot arm aligning the end-effector with
gripping point

6 Gripping Actuation of the end-effector

A
Search based on previ-
ous detection

A more efficient search pattern when ob-
ject detection is lost

B
Converge to gripping
distance and orientation

A efficient relapse to position the vehicle
correctly after a gripping failure

Subsequent analysis of each state revealed specific operational challenges and informed
the design of a more nuanced control strategy. The original state machine, while effective
for basic task structuring, evolved into a more fluid control model inspired by the task
priority framework. This adaptation allowed asmoother transition between task phases
and better alignment with real-time operational demands.

Key features developed from this reasoning include ensuring proper system alignment
with the fish to enhance the success of converging and grasping maneuvers, originating
from state 2 and 3. It was identified that approaching the fish at an angle significantly
complicates the task. Proper orientation adjustment in the AUV and the robot arm also
contributed to reduced risk of undesired collision with the fish during convergence. Fur-
thermore, the robot arm’s maneuverability was initially maximized by positioning the
drone with state 4. This relies on a separate control approach using the AUV as a sta-
tionary base for the robot arm. Separated control depends on a large inertia ratio as
mentioned in section 5.2. Therefore, utilizing a seamless kinematic control design using
all available system DOFs of the redundant UVMS was more beneficial while continuously
maintaining manipulability in the robot arm. Additionally, the control strategy accounts
for the inertia differences between the arm and the underwater drone. By designing the
control system such that the robot arm compensates for minor positional adjustments, it
utilizes the lower inertia of the robot arm for faster error compensation.

Although this thesis does not propose a complete solution for grasping dead fish, such as
the state machine, it is essential to address the task comprehensively to gain a thorough
understanding. As engineers, it is imprudent to focus solely on one specific aspect of the
task. Integrating all components successfully requires an overview, which the development
process of the state machine has provided. It has led to an evolved approach, where the
control system not only adheres to the structural benefits of a state machine but also
incorporates the flexibility and responsiveness necessary for complex underwater tasks.
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9.3 Challenges with Control Implementations

One of the primary challenges encountered in this project involved the use of the pseudo-
inverse of the manipulator Jacobian to solve inverse kinematics. Although generally ef-
fective, the approach faced issues during simulations. Specifically, an unexpected behavior
was observed where the velocity reference for the AUV’s z-axis moved in the opposite dir-
ection of the actual error in the end-effector’s z-position. At time 50s, the task error
σ̃2(3) = −0.0195, while the desired z-axis velocity ζr,2(3) was calculated to be 0.0195,
indicating a contradiction in motion direction as shown in the following calculation,

J†
2 σ̃2 =



0.9286 −0.2003 0.0985 −0.0003 0.0194 −0.0392
0.2607 0.9435 −0.0210 0.0003 −0.0020 −0.3396
0.0202 0.0033 0.8280 −0.0000 0.2061 −0.0000
−0.1221 0.1725 −0.0147 −0.0017 −0.0017 −0.0002
−0.1220 0.1723 −0.0147 −0.0017 −0.0017 −1.0002
0.4147 −0.1599 −1.1944 −0.0001 0.1910 −0.0000
0.4114 −0.1552 −1.1948 −0.0002 −0.8091 −0.0000
0.0048 −0.0068 0.0006 −0.9999 0.0001 0.0000




0.0378
−0.0279
−0.0195
−0.0128
0.1696
0.0104

 =



0.0417
−0.0200
0.0195
−0.0094
−0.0198
0.0758
−0.0940
0.0132


.

Figure 36 showcases this issue, where Figure 36a shows how the AUV velocity in the z-axis
is positive while the error is negative. Figure 36b shows the simulation results using the
transpose of the Jacobian, yielding more suitable results. While the pseudo-inverse of the
Jacobian is typically employed for its robustness against singularities, this study found
that the transpose of the Jacobian was sufficiently adequate for the required tasks.

(a) Pseudo-inverse of Jacobian. (b) Transpose of Jacobian.

Figure 36: Showcasing issues with pseudo-inverse of Jacobian.

The next challenge encountered involved the task-priority framework, specifically the com-
ponent that projects onto the nullspace of the task Jacobian to allocate available DOF to
subsequent tasks. This approach proved unsuitable for the designed tasks due to the Jac-
obian’s persistent full-rank condition. Consequently, a sigmoid function was introduced
to address this issue. This function allowed for effective transitioning between tasks by
modulating the influence of different degrees of freedom based on the error norm, which
proved beneficial for tasks such as Task 1 and Task 2 in this project, functioning akin to
a seamless state machine.

Further attempts were made to utilize the task-priority framework when exploring the
preservation of maneuverability in the robot arm. Specifically through a set-based method
that initially seemed promising for this purpose, as similar methods have been employed
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in previous studies focusing on singularity avoidance and manipulability preservation.
However, the set-based task-priority approach operates by toggling the task on and off
depending on whether the value falls within the predefined acceptable set, which led to
oscillations due to frequent switching of the task status. This toggling also occurs in
[28], but it does not seem to affect the system in the same manner. It indicates that the
implementation used in this project may be incorrect. Although there exist methods that
can dampen these oscillations, different approaches to manipulability preservation were
explored. Consequently, a gradient-based optimization method was proposed, yielding
suitable results. This method, developed with the assistance of OpenAI’s ChatGPT,
represents a novel approach not found in previous research literature. As engineers, it
is advantageous to leverage all available tools to benefit the project. Incorporating an
AI-driven algorithm like ChatGPT is part of the innovative approach, demonstrating
how cutting-edge technology can be integrated into engineering solutions to enhance their
effectiveness and adaptability.

9.4 Simulation Results

The simulation demonstrated the system’s capability to effectively converge to the desig-
nated grasping point. It managed to do so without causing the jaws to collide with the
object or overshoot the position, which would also result in undesired collisions. The sys-
tem stabilized at the grasping point, utilizing all available degrees of freedom efficiently.
The AUV and robotic arm collaborated effectively to achieve the objective. Although
the simulation did not incorporate any form of noise or external disturbances, the results
were positive, showing that the method could sensibly orient the system before proceeding
with the convergence to the grasping point. This indicates that while the current control
strategy is effective under ideal conditions, further testing under more realistic conditions
incorporating disturbances is necessary to fully validate the robustness and practicality of
the control system in real-world applications.

9.5 Dynamic Control

The control system implemented in the simulation utilized PID control for each DOF in
the UVMS, achieving adequate results within the simulated environment. However, the
occurrence of external noise and other factors in real-world applications may necessitate
more robust and sophisticated control designs. Section 5.3 discusses several dynamic con-
trol methods that warrant further analysis and testing to determine the most appropriate
approach for the specific task. Based on the research, sliding mode control has been fre-
quently used in controlling UVMS due to its ability to counteract changes in parameters
or environmental conditions adaptively.

9.6 Solution for Grasping Dead Fish

This section will discuss the challenges associated with detecting and estimating the pose
of dead fish and the approaches to grasping them. This discussion is primarily theoretical,
as no direct simulations or experimental tests have been conducted.

Underwater environments are notorious for their poor lighting conditions and limited vis-
ibility, presenting challenges for camera-based vision systems. These adverse conditions
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often reduce the amount of detail captured in images, impacting the effectiveness of detec-
tion and pose estimation methods for robotic applications. Despite these challenges, the
techniques discussed in Section 3 demonstrate promising potential for enhancing object re-
cognition and spatial orientation in such environments. As the section outlines, advanced
algorithms like YOLOv3 for object detection have already shown significant promise in
similar underwater tasks. This method, which efficiently handles complex image analysis
even under constrained conditions, could enhance the operational capabilities of a UVMS.
However, the actual performance of these techniques must be tested under specific con-
ditions when grasping dead fish to validate their practical applicability and reliability.
This includes ensuring that the algorithms can handle low-light conditions and are robust
against the variances in water clarity and color distortion commonly experienced underwa-
ter. Furthermore, the current system’s reliance on monocular cameras may overcomplicate
the task when equipping stereovision could be a cost-effective alternative. Nonetheless, de-
veloping methods to simulate depth perception using the two existing monocular cameras
is feasible and warrants further testing for validation.

Grasping dead fish presents a significant challenge due to their non-rigid bodies and slip-
pery surfaces. Additionally, the need to minimize damage during grasping further com-
plicates the task. Using a form closure approach could minimize the impact on the fish,
as it does not require force to maintain a stable grasp. However, the effectiveness of this
approach is limited by the capabilities of the end-effector. The single-interlock jaw gripper
currently used creates too few contact points for the complex geometrical shape of a fish.
Nonetheless, as illustrated in Figure 37, point G2 at the fish’s tail fin provides a geometric
pit that might allow for effective form closure with the current jaw gripper. Alternatively,
a force closure approach could be implemented, which depends on the angle of the contact
point satisfying the friction cone to ensure a stable grip. Point G1 in Figure 37 might
offer a suitable grasping point for force closure, as the jaw would contact a flat surface of
the fish. This method would require a force feedback system to monitor the applied force,
ensuring sufficient friction to reduce the likelihood of slippage while avoiding excessive
pressure that could damage the fish. Although the current gripper lacks force sensors, it
includes a sensor that measures its opening. Therefore, the applied force can be estimated
by analyzing the electrical current supplied to the actuator and observing changes in the
gripper’s opening.

Figure 37: Example image of salmon and its optimal grasping points [34].
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10 Conclusion

The simulation results demonstrate effective convergence, where the system is avoiding
collisions and utilizing all available DOF to reach a stable grasping point. The simulation
validates the control methodology, but further testing is needed for validation for real-
world applications. The research also identifies YOLOv3 as a promising method for real-
time object detection, and by using bounding boxes of the fish body and its head, the
orientation can be estimated. Additionally, stereo-vision techniques can be applied to
estimate position. Although promising, the methods need to be validated and tested before
any conclusion of their functionality in the task of grasping dead fish can be made. In
exploring grasping mechanisms, the study evaluated both form closure and force closure
approaches. Form closure was found limited by the current end-effector design, which
does not adequately conform to the complex shapes of fish due to its few contact points.
Conversely, force closure showed potential, especially when enhanced by feedback systems
that monitor and adjust gripping force to prevent slippage without damaging the fish.
Grasping dead fish with a single-interlock jaw gripper may overly complicate the task.
Therefore, changing to a different end-effector could significantly increase the success rate.

Pursuing an approach that leverages a low-cost platform is highly beneficial for the
industry. By utilizing a versatile UVMS capable of performing various tasks at minimal
expense, the technology becomes more feasible for investment and can more readily con-
tribute to environmental improvements within the sector. The methods presented in this
thesis propose such an approach with promising results. Nonetheless, real-world testing is
essential to conclusively determine the system’s functionality in the task of grasping dead
fish.

Recommendation for Future Work

Robot Vision
The theory presented on robot vision introduces compelling methods for a low-cost UVMS
that warrant further investigation. The use of monocular cameras on both the AUV and
the robot arm to simulate stereo vision, coupled with the application of YOLOv3 for object
detection and pose estimation targeting the fish’s body and head, presents an intriguing
approach. However, this strategy requires thorough investigation to validate its feasibility
and effectiveness. Ideally, a pre-trained model specifically for farmed salmon should be
utilized; if such a model is unavailable, developing this capability will also be necessary.
Further research should focus on refining these technologies to enhance their accuracy and
reliability in real-world underwater conditions.

Different end-effector on Reach Alpha 5
The simple interface of the Reach Alpha 5’s end-effector presents opportunities to adapt
or change it to a tool more suitable for the specific task of grasping dead fish. Switching to
an end-effector that reduces the risk of slippage could significantly enhance the occurrence
of a successful grasp and also reduce the risk of damaging the fish. For example, the
soft grippers presented offer an intriguing starting point for further development and
exploration.

Dynamic Control
Future research should explore alternative dynamic control strategies for the UVMS, es-
pecially in tasks like grasping dead fish, where this study primarily employed PID control.
Investigating diverse control methods could significantly improve precision, stability, and
efficiency, effectively tackling the unique challenges of underwater environments.

62



References

[1] Lasse Moen Guttormsen. ‘Underwater Autonomous Grasping of Dead Fish’. Course:
TTK4551 - Engineering Cybernetics. Specialization Project. Norwegian University
of Science and Technology, Dec. 2023.

[2] Monica Dick. Robotic Solutions for Aquaculture. Aquaculture North America. 6th Jan.
2021. url: https://www.aquaculturenorthamerica.com/robotic-solutions-for-aquaculture/
(visited on 16/09/2023).

[3] Christopher Noble, Kristine Gismervik, Martin Haugmo Iversen, Jelena Kolarevic,
Jonatan Nilsson, Lars Helge Stien and James F. Turnbull. Welfare Indicators for
farmed Atlantic salmon : tools for assessing fish welfare. Nofima, 2018.

[4] Bjørn Olav Nordahl. Hver tredje Mowi-laks døde i merdene. NRK. 30th June 2023.
url: https : //www.nrk .no/dokumentar/hoy - laksedodelighet - hos - verdens - storste -
oppdretter-1.16463576 (visited on 17/11/2023).

[5] Ole Reinert Omvik. Mattilsynet mener syk og selvdød laks var p̊a vei til forbrukerne.
NRK. 11th Oct. 2023. url: https://www.nrk.no/norge/mattilsynet-mener-syk-og-
selvdod-laks-skulle-selges-som-fersk-matfisk-1.16588744 (visited on 17/11/2023).

[6] Line Tomter. Forsker om lekkede bilder av massedød: – Oi, dette var mye fisk. NRK.
1st Nov. 2023. url: https://www.nrk.no/norge/plutselig-dode-titusenvis-av- laks---
laksegigant-ventet-en-uke-med-a-varsle-1.16601145 (visited on 17/11/2023).

[7] Michael Cantillon and Mads Ulrich Mjanger. ‘Preliminary Design and Modeling
of a System for Collecting Dead Fish in Offshore Aquaculture’. Bachelor thesis.
Norwegian University of Science and Technology, May 2023.

[8] Reach Alpha: Smaller Platform ROV Manipulator. Reach Robotics. url: https://
reachrobotics.com/products/manipulators/reach-alpha/ (visited on 16/09/2023).

[9] BlueROV2. Blue Robotics. url: https://bluerobotics.com/store/rov/bluerov2/ (vis-
ited on 16/09/2023).

[10] Mohammed Marey and François Chaumette. ‘A new large projection operator for the
redundancy framework’. In: International Conference on Robotics and Automation.
IEEE, May 2010, pp. 3727–3732.

[11] Leonid B. Freidovich. Modelling in Robotics and Control Methods for Robotic Ap-
plications. Ume̊a University, Feb. 2021.

[12] Henrik Baldishol. ‘Practical application of potential fields path planning on robot
manipulator’. Master thesis. Norwegian University of Science and Technology, June
2022.

[13] Nikolaus Vahrenkamp and Tamim Asfour. ‘Representing the robot’s workspace through
constrained manipulability analysis’. In:Autonomous Robots 38.1 (Jan. 2015), pp. 17–
30.

[14] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. 2nd ed. Cham:
Springer International Publishing, 2016.

[15] Baohua Zhang, Yuanxin Xie, Jun Zhou, Kai Wang and Zhen Zhang. ‘State-of-the-
art robotic grippers, grasping and control strategies, as well as their applications
in agricultural robots: A review’. In: Computers and Electronics in Agriculture 177
(Oct. 2020), p. 105694.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi. ‘You Only Look
Once: Unified, Real-Time Object Detection’. In: Cornell University Library, arXiv.org
(May 2016).

63

https://www.aquaculturenorthamerica.com/robotic-solutions-for-aquaculture/
https://www.nrk.no/dokumentar/hoy-laksedodelighet-hos-verdens-storste-oppdretter-1.16463576
https://www.nrk.no/dokumentar/hoy-laksedodelighet-hos-verdens-storste-oppdretter-1.16463576
https://www.nrk.no/norge/mattilsynet-mener-syk-og-selvdod-laks-skulle-selges-som-fersk-matfisk-1.16588744
https://www.nrk.no/norge/mattilsynet-mener-syk-og-selvdod-laks-skulle-selges-som-fersk-matfisk-1.16588744
https://www.nrk.no/norge/plutselig-dode-titusenvis-av-laks---laksegigant-ventet-en-uke-med-a-varsle-1.16601145
https://www.nrk.no/norge/plutselig-dode-titusenvis-av-laks---laksegigant-ventet-en-uke-med-a-varsle-1.16601145
https://reachrobotics.com/products/manipulators/reach-alpha/
https://reachrobotics.com/products/manipulators/reach-alpha/
https://bluerobotics.com/store/rov/bluerov2/


[17] Joseph Redmon and Ali Farhadi. ‘YOLOv3: An Incremental Improvement’. In: Cor-
nell University Library, arXiv.org (Apr. 2018).

[18] Bent Oddvar Arnesen Haugaløkken, Martin Breivik Skaldebø and Ingrid Schjølberg.
‘Monocular vision-based gripping of objects’. In: Robotics and autonomous systems
131 (June 2020), p. 103589.

[19] Ming En Koh, Mark Wong Kei Fong and Eddie Yin Kwee Ng. ‘Aqua3DNet: Real-
time 3D pose estimation of livestock in aquaculture by monocular machine vision’.
In: Aquacultural engineering 103 (Sept. 2023).

[20] Simen Viken Grini. ‘Object Detection in Maritime Environments’. Master thesis.
Norwegian University of Science and Technology, Jan. 2019.

[21] M. Asada, T. Tanaka and K. Hosoda. ‘Visual tracking of unknown moving object
by adaptive binocular visual servoing’. In: International Conference on Multisensor
Fusion and Integration for Intelligent Systems. IEEE, Aug. 1999, pp. 249–254.

[22] Thor I. Fossen. Handbook of marine craft hydrodynamics and motion control. 2nd ed.
Hoboken, NJ: Wiley, 2021.

[23] Zongyu Chang, Yang Zhang, Zhongqiang Zheng, Lin Zhao and Kunfan Shen. ‘Dy-
namics Simulation of Grasping Process of Underwater Vehicle-Manipulator System’.
In: Journal of marine science and engineering 9.10 (Oct. 2021), p. 1131.

[24] Gianluca Antonelli. Underwater Robots. 4th ed. Cham: Springer International Pub-
lishing, 2018.

[25] Arnt Erik Stene. ‘Robust Control for Articulated Intervention AUVs in the Opera-
tional Space’. Master thesis. Norwegian University of Science and Technology, June
2019.

[26] Erlend Andreas Basso. ‘Dynamic Task Priority Control of Articulated Intervention
AUVs using Control Lyapunov and Control Barrier Function based Quadratic Pro-
grams’. Master thesis. Norwegian University of Science and Technology, July 2019.

[27] Signe Moe. ‘Guidance and Control of Robot Manipulators and Autonomous Marine
Robots’. Doctoral thesis. Norwegian University of Science and Technology, Nov.
2016.

[28] J. Sverdrup-Thygeson, S. Moe, K. Y. Pettersen and J. T. Gravdahl. ‘Kinematic
singularity avoidance for robot manipulators using set-based manipulability tasks’.
In: Conference on Control Technology and Applications. IEEE, Aug. 2017, pp. 142–
149.

[29] Timothy W. McLain, Stephen M. Rock and Michael J. Lee. ‘Experiments in the
coordinated control of an underwater arm/vehicle system’. In: Autonomous robots
3.2 (Jan. 1996), pp. 213–232.

[30] T.J. Tarn and S.P. Yang. ‘Modeling and control for underwater robotic manipu-
lators - an example’. In: Proceedings of International Conference on Robotics and
Automation. Vol. 3. IEEE, Apr. 1997, pp. 2166–2171.

[31] C. Canudas de Wit, E. Olguin Diaz and M. Perrier. ‘Robust nonlinear control of an
underwater vehicle/manipulator system with composite dynamics’. In: International
Conference on Robotics and Automation. Vol. 1. ISSN: 1050-4729. IEEE, May 1998,
pp. 452–457.

[32] Stian Skaalvik Sandøy. ‘System Identification and State Estimation for ROV uDrone’.
Master thesis. Norwegian University of Science and Technology, June 2016.

64



[33] Chu-Jou Wu and B Eng. ‘6-DoF Modelling and Control of a Remotely Operated
Vehicle’. Master thesis. Flinders University, July 2018.

[34] Hvor mye omega-3 er det i oppdrettslaks? 4th Oct. 2021. url: https://laksefakta.no/
sunnhet-og-helse/hvor-mye-omega-3-er-det-i-oppdrettslaks/ (visited on 20/10/2023).

65

https://laksefakta.no/sunnhet-og-helse/hvor-mye-omega-3-er-det-i-oppdrettslaks/
https://laksefakta.no/sunnhet-og-helse/hvor-mye-omega-3-er-det-i-oppdrettslaks/


Appendices

Table of Contents

A Reach Alpha 5 - Kinematics A-1

B BlueROV2 - Datasheet B-8

C Simulink Model of the Robot Arm D-10

D MATLAB Code of Kinematic Control D-11

66



Reach System 1 Kinematic and Dynamic

Properties

Blueprint Lab

Last Update: September 2019

1 Kinematic Properties

Link d (mm) θ a (mm) α
0 46.2 θ0 + π 20 π/2
1 0 θ1 − θa 150.71 π
2 0 θ2 − θa 20 −π/2
3 -180 θ3 + π/2 0 π/2
4 0 −π/2 0 0

Table 1: Standard DH Parameters for R5M with θa = tan−1
(
145.3
40

)

Figure 1: R5M joint frames (x,y,z)

1
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Figure 2: Reachable workspace without self collision showing inner and outer
limits

1.1 Workspace

The outer reachable limits form a torus

(
√
x2 + y2 − a0)2 + (z − d0)2 ≤ (a1 +

√
d23 + a22)2 (1)

The inner reachable limit is the torus

(
√
x2 + y2 − a0)2 + (z − d0)2 ≥ ((39.94 + a2)2 + (145.3 + d3)2) (2)

The inner reachable limit with the arm in the downward position is the torus

(
√
x2 + y2 − a0)2 + (z − d0 + 145.3)2 ≥ (−d3)2 (3)

These are shown in Figure 2.

1.2 Inverse Kinematics

From Figure 3 we can solve for the underarm solution

θ0 = tan21(
y

x
) + π (4)

R =
√
x2 + y2 (5)

From Figure 4 we can solve for

l1 = a1 (6)

2
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Figure 3: Calculation of θ0

Figure 4: Calculation of θ1 and θ2

l2 =
√
a22 + d23 (7)

l3 =
√

(R− a0)2 + (z − d0)2 (8)

θ2 = cos−1(
l21 + l22 − l23

2l1l2
) − sin−1(

2a2
l1

) − sin−1(
a2
l2

); (9)

θ1 =
π

2
+ tan2−1(

z − d0
R− a0

) − cos−1(
l21 + l23 − l22

2l1l3
) − sin−1(

2a2
l1

) (10)

Now we can also solve for the overarm solution from Figure 5

θ0 = tan21(
y

x
) (11)

Finally from Figure 6

l3 =
√

(R+ a0)2 + (z − d0)2 (12)

θ2 = cos−1(
l21 + l22 − l23

2l1l2
) − sin−1(

2a2
l1

) − sin−1(
a2
l2

); (13)

θ1 =
3π

2
− tan2−1(

z − d0
R+ a0

) − cos−1(
l21 + l23 − l22

2l1l3
) − sin−1(

2a2
l1

) (14)

3
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Figure 5: Calculation of θ1 and θ2

Figure 6: Calculation of θ0

2 Inertial Properties

Link Mass (kg) COM (mm) I (kg.mm2)

0 0.341
(
−75 −6 −3

)



99 139 115
139 2920 3
115 3 2934




1 0.194
(

5 −1 16
)




189 5 54
5 213 3
54 3 67




2 0.429
(

73 0 0
)




87 −76 −10
−76 3190 0
−10 0 3213




3 0.115
(

17 −26 −2
)




120 −61 −1
−61 62 0
−1 0 156




4 0.333
(

0 3 −98
)




3709 2 −4
2 3734 0
−4 0 79




Table 2: Inertial properties for R5M

4
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Figure 7: Inertial frames for each link (x,y,z)

3 Hydrodynamic Properties

3.1 Added Mass

We use standard equations for added mass assuming cylindrical sections with
spherical ends.

Link (Xu̇, Yv̇, Zẇ)(kg) (Kṗ,Mq̇, Nṙ)(kg.mm2)

0
(

0.017ρ 0.189ρ 0.189ρ
) (

0 1414ρ 1414ρ
)

1
(

0.032ρ 0.032ρ 0.017ρ
) (

7ρ 7ρ 0
)

2
(

0.017ρ 0.201ρ 0.201ρ
) (

0 1716ρ 1716ρ
)

3
(

0.032ρ 0.017ρ 0.032ρ
) (

7ρ 0 7ρ
)

4
(

0.226ρ 0.226ρ 0.017ρ
) (

2443ρ 2443ρ 0
)

Table 3: Added mass terms where ρ ∼ 1 is the density in kg/L

3.2 Viscous Damping

We consider only quadratic drag assuming Reynolds numbers above the Stokes
flow approximation at any significant velocity. We also consider only transla-

5
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tional drag. We approximate the Reynolds number as

Re =
ρuL

µ
∼ 103 ∗ 0.1 ∗ 0.1

10−3
∼ 10−4 (15)

where ρ is the fluid density, u is the relative velocity, L is the characteristic
length and µ is the dynamic viscosity, which gives a drag coefficient of cd ∼ 0.5.
We now calculate the quadratic drag using

Fd =
1

2
ρu2cdA (16)

where A is the cross sectional area.
The centre of drag is assumed to coincide with the centre of buoyancy

Link (Xu|u|, Yv|v|, Zw|w|) (N/
√
ms−1)

0
(

0.3ρ 1.5ρ 1.5ρ
)

1
(

0.26ρ 0.26ρ 0.3ρ
)

2
(

0.3ρ 1.6ρ 1.6ρ
)

3
(

0.26ρ 0.3ρ 0.26ρ
)

4
(

1.8ρ 1.8ρ 0.3ρ
)

Table 4: Drag terms where ρ ∼ 1 is the density in kg/L

3.3 Buoyancy

Link Volume (L) COB (mm)

0 0.202
(
−75 −6 −3

)

1 0.018
(
−1 −3 32

)

2 0.203
(

73 0 −2
)

3 0.025
(

3 1 −17
)

4 0.155
(

0 3 −98
)

Table 5: Buoyancy terms with Centre of Buoyancy (COB)

6
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4 Actuator Properties

torque = 90.6 ∗ (current± 43.0) (17)

-600 -400 -200 0 200 400 600

current (mA)

-6

-4

-2

0

2

4

6

to
rq

u
e
 (

N
m

)

Figure 8: Plot of torque vs current for high torque joint
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Ocean research, exploration, and adventure are all made easily 
accessible by our flagship product, the BlueROV2. It provides the 
capabilities of a high-end commercial mini-ROV at the price of the 
most basic commercial ROVs, making the BlueROV2 the world’s 
most affordable inspection and research-class subsea vehicle.

The smooth, stable, and highly maneuverable ROV is comprised 
of six thrusters, a rugged frame, and quick-swappable batteries. 
Powerful but dimmable lights provide excellent illumination for 
the live HD video feed.

Like all Blue Robotics products, we created the BlueROV2 with 
high-quality parts, meticulous design, and rugged reliability with 
proven success in the field.

Equipped with six powerful T200 thrusters and Basic ESCs, the 
BlueROV2 has the best thrust-to-weight ratio in its class to perform 
demanding tasks. It is ideal for operations in shallow to moderate 

waters, with a standard 100m depth rating and up to 300m tether 
lengths available. 

The BlueROV2 uses the open-source ArduSub software and the 
Navigator autopilot to provide autonomous capabilities rarely 
seen in mini-ROVs and hackability paralleled by none. Blue 
Robotics actively develops and updates its software to enhance 
the BlueROV2’s functionality.

Your vehicle will arrive almost-ready-to-dive, with pre-built sub-
assemblies and instructional materials to make the experience 
as straightforward and enjoyable as possible. Additional items 
including the topside computer, gamepad controller and batteries 
are not included.

At Blue Robotics, we are committed to creating quality products 
that are accessible to any explorer. 

 Blue Robotics 

BlueROV2
The World’s Most Affordable  
High-Performance ROV

Pr
od

uc
t F

ea
tu

re
s

•	 Live 1080p HD Video (200 ms latency)

•	 Highly Maneuverable Vectored Thruster Configuration

•	 Stable and Optimized for Inspection and Research-Class Missions

•	 Easy to Use, Cross-Platform User Interface

•	 Highly Expandable with Six Free Cable Penetrators

•	 6 T200 Thrusters and Basic ESCs

•	 Standard 100m Depth Rating and Up to 300m Tether Available

•	 Battery Powered with Quick-Swappable Batteries for Long Missions

Dare to Explore

Datasheet

B BlueROV2 - Datasheet
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 Blue Robotics 

BlueROV2

Datasheet

Technical Specifications

Physical 

Length 457 mm 18 in

Width 338 mm 13.3 in

Height 254 mm 10 in

Weight in Air (with Ballast and Battery) 11-12 kg 24-27 lb

Weight in Air (without Ballast or Battery)  9-10 kg 20-22 lb

Payload Capacity (configuation 
dependent)

1.2 kg (4 x Lumens) to 1.4 kg (No 
Lumens)

2.6 to 3.1 lbs

Watertight Enclosure Inner Diameter 102 mm 4 in

Watertight Enclosure Inner Length 298 mm 11.75 in

Cable Penetrator Holes 18 x 10 mm 1 x 0.4 in

Buoyancy Foam R-3318 Urethane Foam rated to 
244 m 

Performance 

Maximum Rated Depth (Acrylic) 100 m 330 ft

Maximum Rated Depth (Aluminum) 300 m 990 ft

Maximum Forward Speed 1.5 m/s 3 knots

Thrusters Blue Robotics T200 with WLP  

ESC Blue Robotics Basic 30A ESC  

Thruster Configuration 6 thrusters  

  - 4 Vectored  

  - 2 Vertical  

Forward Bollard Thrust (45°) 9 kgf 19.8 lbf

Vertical Bollard Thrust 7 kgf 15.4 lbf

Lateral Bollard Thrust (45°) 9 kgf 19.8 lbf

Tether 

Diameter 7.6 mm 0.30 in

Length 25-300 m 80-980 ft

Working Strength 45 kgf 100 lbf

Breaking Strength 160 kgf 350 lbf

Strength Member Kevlar with waterblock  

Buoyancy in Freshwater Neutral  

Buoyancy in Saltwater Slightly Positive  

Conductors 4 twisted pairs, 26 AWG 

Construction HDPE frame, aluminum flanges/end cap, & acrylic 
or aluminum tubes 

Main Tube (Electronics Enclosure) Blue Robotics 4 in series w/ aluminum end caps 

Battery Tube Blue Robotics 3 in series w/ aluminum end caps 

Buoyancy Foam R-3318 Urethane Foam rated to 244 m 

Ballast Weight 9 x 200 g stainless steel weights 

Battery Connector XT90

Lights  
Brightness 2 or 4 x 1500 lumens each with dimming control

Light Beam Angle 135 degrees, with adjustable tilt

Camera  

Resolution 1080p

Camera Field of View 110 degrees horizontally

Tilt Range +/- 90 degree camera tilt (180 total range)

Tilt Servo Hitec HS-5055MG

Sensors

•	 3-DOF Gyroscope

•	 3-DOF Accelerometer

•	 3-DOF Magnetometer

•	 Internal barometer

•	 Blue Robotics Bar 30 Pressure/Depth & Temperature Sensor (external)

•	 Current and Voltage Sensing

•	 Leak Detection

Battery (can be changed in about 30 seconds)

Battery Life (Normal Use) 2 hours w/ 18Ah battery

Battery Life (Light Use) 6 hours w/ 18Ah battery

2740 California St.  // Torrance, CA 90503 // info@bluerobotics.com bluerobotics.com 

Revision 03/22
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C Simulink Model of the Robot Arm
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D MATLAB Code of Kinematic Control

1

2 function [data , jaw_d , q_dot_r , nu_r] = ...

3 kinematic_control(x_arm , x_auv , fish_pose , t)

4 %% Coefficients

5 lambda = 0.5; % transition between task 1 and task 2

6 lambda1 = 1; % orientation vs position

7 lambda2 = 2; % joint limits

8 lambda3 = 0.5; % auv vs arm

9

10 %% Parameters

11 % Fish State

12 p_fish = fish_pose (1:3);

13 Theta_fish = fish_pose (4:6);

14 roll_fish = Theta_fish (1);

15 pitch_fish = Theta_fish (2);

16 yaw_fish = Theta_fish (3);

17 % AUV States

18 p_auv = x_auv (1:3);

19 yaw_auv = x_auv (6);

20 % other

21 robot_arm_placement = robot_arm_placement_func ();

22

23 %% Rotation Matrices

24 % Robot arm placement

25 R_base_to_auv = rot_mat(robot_arm_placement (4) ,0,0);

26 T_base_to_auv = robot_arm_placement (1:3);

27 H_base_to_auv = [R_base_to_auv , T_base_to_auv;

28 zeros (1,3), 1];

29 % Transform from auv frame to world frame

30 R_auv_to_NED = rot_mat(x_auv (4),x_auv (5),x_auv (6));

31 T_auv_to_NED = [x_auv (1); x_auv (2); x_auv (3)];

32 H_auv_to_NED = [R_auv_to_NED , T_auv_to_NED;

33 zeros (1,3), 1];

34

35 H_base_to_NED = H_auv_to_NED * H_base_to_auv;

36 R_base_to_NED = H_base_to_NED (1:3 ,1:3);

37

38 R_fish_to_NED = rot_mat(roll_fish , pitch_fish , yaw_fish);

39 T_fish_to_NED = p_fish;

40 H_fish_to_NED = [R_fish_to_NED , T_fish_to_NED;

41 zeros (1,3), 1];

42

43 %% End -Effector pose in world frame

44 [p_ee_base , R_ee_to_base] = forward_kinematics(x_arm (1:4));

45 p_ee = H_base_to_NED * [p_ee_base (1:3) ;1]; p_ee = p_ee (1:3);

46 R_ee_to_NED = R_base_to_NED * R_ee_to_base;

47 ZYX_ee = rotm2eul(R_ee_to_NED);

48 ZYX_ee (3) = mod( ZYX_ee (3) + pi/2, 2 * pi/2 ) - pi/2;

49 eul_ee = [ZYX_ee (3);ZYX_ee (2);ZYX_ee (1)];

50 sigma = [p_ee; eul_ee ];

51

52 %% Compute Jacobian

53 p_ee_auv = H_base_to_auv *[ p_ee_base ;1]; p_ee_auv = p_ee_auv (1:3);

54 J_arm_base = compute_jacobian(x_arm (1:4));

55 J = compute_system_jacobian(J_arm_base , R_auv_to_NED , ...
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56 R_base_to_NED , p_ee_auv);

57

58 %% Control Law

59 %%%%%%%%%% TASK 1: positioning auv and keep fish in FOV %%%%%%%%%%

60 J1 = [eye (3), zeros (3,1), zeros (3,4);

61 zeros (1,3), 1, zeros (1,4)];

62 J1_T = J1 ';
63

64 vec_auv_to_fish = p_fish - p_auv;

65 y_axis_fish = R_fish_to_NED (:,2);

66 pos_e = vec_auv_to_fish - dot(vec_auv_to_fish , y_axis_fish) *

y_axis_fish;

67

68 yaw_FOV_d = atan2(vec_auv_to_fish (2), vec_auv_to_fish (1));

69 yaw_FOV_e = yaw_FOV_d - yaw_auv;

70

71 sigma1_tilde = [pos_e; yaw_FOV_e ];

72 K_1 = [0.1* ones (3,1); 1];

73 e0 = 0.05;

74 Lambda = sigmoid(sigma1_tilde , e0 , lambda);

75

76 zeta1_r = J1_T*(K_1.* sigma1_tilde);

77

78 %%%%%%%%%% TASK 2: convergence %%%%%%%%%%

79 pos_d = p_fish;

80 roll_d = -pitch_fish; % roll_d = mod( roll_d + pi/2, 2 * pi/2 ) -

pi/2;

81 pitch_d = -asin(( p_fish (3)-p_ee (3)) / norm(p_fish - p_ee));

82 yaw_d = yaw_fish + pi/2; yaw_d = mod( yaw_d + pi/2, 2 * pi/2 ) -

pi/2;

83 sigma_d = [pos_d;roll_d;pitch_d;yaw_d];

84

85 sigma2_tilde = sigma_d - sigma;

86 % pitch error becomes very larg when position error is small

87 Lambda_pitch = sigmoid(sigma2_tilde , 0.05, 0.2);

88 sigma2_tilde (5) = Lambda_pitch*sigma2_tilde (5);

89 if norm(sigma2_tilde (1:3)) < 0.01

90 sigma2_tilde (5) = 0;

91 end

92

93 k1 = [2, 2, 2, 1, 1, 1]; % general weighting

94 k2 = orientation_vs_position(sigma2_tilde , lambda1);

95

96 K1 = k1(1)*k2(1);

97 K2 = k1(2)*k2(2);

98 K3 = k1(3)*k2(3);

99 K4 = k1(4)*k2(4);

100 K5 = k1(5)*k2(5);

101 K6 = k1(6)*k2(6);

102

103 K_2 = [K1;K2;K3;K4;K5;K6];

104

105 w1 = [15,15,15,15,1,1,1,1]; % general weighting

106 w2 = joint_limits(x_arm (1:4), x_arm (5:8), lambda2);

107 w3 = auv_vs_arm(norm(sigma2_tilde (1:3)), lambda3);

108

109 W1 = w1(1)*w2(1)*w3(1);

110 W2 = w1(2)*w2(2)*w3(2);
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111 W3 = w1(3)*w2(3)*w3(3);

112 W4 = w1(4)*w2(4)*w3(4);

113 W5 = w1(5)*w2(5)*w3(5);

114 W6 = w1(6)*w2(6)*w3(6);

115 W7 = w1(7)*w2(7)*w3(7);

116 W8 = w1(8)*w2(8)*w3(8);

117

118 W_2 = diag([W1 ,W2 ,W3 ,W4 ,W5 ,W6 ,W7 ,W8]);

119

120 J2_T = W_2\J';
121

122 zeta2_r = J2_T*(K_2.* sigma2_tilde);

123

124 %%%%%%%%%% TASK 3: manipulability %%%%%%%%%%

125 [zeta3_r , w] = manipulability_optimization(x_arm (1:4));

126

127 %%%%%%%%%% Control Law %%%%%%%%%%

128 nu_r = Lambda*zeta1_r (1:4) + (1-Lambda)*zeta2_r (1:4);

129 q_dot_r = zeta1_r (5:8) + zeta2_r (5:8) + zeta3_r (5:8);

130 jaw_d = deg2rad (30);

131

132 %% Velocity Limit

133 for i = 1:4

134 if abs(q_dot_r(i)) > 0.1

135 q_dot_r(i) = sign(q_dot_r(i))*0.1;

136 end

137 if abs(nu_r(i)) > 0.2

138 nu_r(i) = sign(nu_r(i))*0.2;

139 end

140 end

141

142 %% Initial States

143 if t < 10

144 nu_r = zeros (4,1);

145 q_dot_r = zeros (4,1);

146 end

147

148 %% Data for plotting

149 data = [sigma; sigma_d; sigma2_tilde; w; t];

Listing 5: Kinematic Control
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