
J. Math. Pures Appl. 188 (2024) 26–72
Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

journal homepage: www.elsevier.com/locate/matpur

Optimal stability results and nonlinear duality for L∞ entropy 

and L1 viscosity solutions

Nathaël Alibaud a,b,1, Jørgen Endal c,∗,2, Espen R. Jakobsen c,3

a SUPMICROTECH-ENSMM, 26 Chemin de l’Epitaphe, 25030 Besançon cedex, France
b Université de Franche-Comté, CNRS, LmB (UMR 6623), F-25000 Besançon, France
c Department of Mathematics, Norwegian University of Science and Technology (NTNU), N-7491 
Trondheim, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 April 2023
Available online 28 May 2024

MSC:
35L65
35K65
35B30
35B35
35D30
35D40

Keywords:
Nonlinear duality
Optimal weighted L1 contraction 
estimate
L∞ entropy solutions
L1 viscosity solutions
Anisotropic degenerate parabolic 
PDE
Hamilton-Jacobi-Bellman PDE

We give a new and rigorous duality relation between two central notions of weak 
solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of 
the nonlinear dual inequality:

ˆ
|Stu0 − Stv0|ϕ0 dx ≤

ˆ
|u0 − v0|Gtϕ0 dx, ∀ϕ0 ≥ 0, ∀u0, ∀v0, (�)

where St is the entropy solution semigroup of the anisotropic degenerate parabolic 
equation

∂tu + divF (u) = div(A(u)Du),

and where we look for the smallest semigroup Gt satisfying (�). This amounts to 
finding an optimal weighted L1 contraction estimate for St. Our main result is that 
Gt is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equation

∂tϕ = supξ{F ′(ξ) ·Dϕ + tr(A(ξ)D2ϕ)}.

Since weighted L1 contraction results are mainly used for possibly nonintegrable 
L∞ solutions u, the natural spaces behind this duality are L∞ for St and L1 for 
Gt. We therefore develop a corresponding L1 theory for viscosity solutions ϕ. But 
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L1 itself is too large for well-posedness, and we rigorously identify the weakest 
L1 type Banach setting where we can have it – a subspace of L1 called L∞

int. A 
consequence of our results is a new domain of dependence like estimate for second 
order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic 
target problem and extends in a natural way recent results for first order hyperbolic 
PDEs by [N. Pogodaev, J. Differ. Equ., 2018].
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

r é s u m é

Nous donnons une nouvelle relation de dualité entre deux notions de solutions 
faibles qui jouent un rôle central pour les EDPs non-linéaires. Il s’agit des solutions 
entropiques et des solutions de viscosité. Cette relation prend la forme de l’inégalité 
de dualité non-linéaire suivante :

ˆ
|Stu0 − Stv0|ϕ0 dx ≤

ˆ
|u0 − v0|Gtϕ0 dx, ∀ϕ0 ≥ 0, ∀u0,∀v0, (�)

où St est le semi-groupe associé à l’équation parabolique, dégénérée et anisotropique

∂tu + divF (u) = div(A(u)Du),

et où nous cherchons le plus petit semi-groupe Gt satisfaisant (�). Ceci revient 
à établir un principe de contraction L1 à poids optimal pour St. Notre résultat 
principal est que Gt est le semi-groupe associé à l’équation de Hamilton-Jacobi-
Bellman

∂tϕ = supξ{F ′(ξ) ·Dϕ + tr(A(ξ)D2ϕ)}.

Puisque de telles estimations à poids sont essentiellement utilisées pour les solutions 
u bornées et non-nécessairement intégrables, les espaces naturels dans (�) sont L∞

pour St et L1 pour Gt. Ceci nous amène à développer une théorie L1 pour les 
solutions de viscosité ϕ. Mais le problème dual est mal posé dans cet espace et 
nous identifions donc rigoureusement l’espace de Banach de type L1 le plus faible 
dans lequel ce problème est bien posé. Ceci nous conduit à un espace appelé L∞

int. 
Nos résultats généralisent en particulier les estimations récentes de [N. Pogodaev, 
J. Differ. Equ., 2018] sur les domaines de dépendance des équations hyperboliques 
du premier ordre. Notre estimation est formulée en termes de problèmes de cibles 
et conserve un sens pour les équations paraboliques, dégénérées et anisotropiques, 
du second-ordre, pour lesquelles ces problèmes deviennent stochastiques.
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

In this paper we study two central notions of weak solutions of nonlinear PDEs and their interplay – 
entropy solutions and viscosity solutions. Originally introduced for first order scalar conservation laws [39]
and Hamilton-Jacobi equations [25] respectively, both solution concepts have later been extended to second 
order PDEs [37,36,18,22]. Conservation laws are divergence form equations arising in continuum physics 
[27], while Hamilton-Jacobi equations are nondivergence form equations from e.g. differential geometry and 
optimal control theory [31,5,4]. The well-posedness of these equations is an important topic and requires 
the entropy and viscosity solution theories in general. The literature is by now very large and includes lots 
of applications. See [31,28,5,4,48,27,24] for the state-of-the-art.

Here we develop a new connection between these solution concepts. It is already well-known that viscos-
ity solutions are integrated entropy solutions in space dimension one [20,38,23]. Our connection is valid in 
any dimension and is expressed through weighted L1 contraction results for entropy solutions: The optimal 
weight is the viscosity solution of a well-determined dual equation. Since L∞ is a natural space for such 
weighted estimates, we need and do develop an L1 theory for viscosity solutions of the dual equation. Con-
sequences are a new domain of dependence like result for second order PDEs in terms of a stochastic target 
problem, a new rigorous form of duality between L∞ entropy and L1 viscosity solutions in terms of nonlinear 
semigroups, and a new characterization of viscosity supersolutions; see (8), (10) and (11) respectively.

The idea of using viscosity solutions to get estimates for entropy solutions was from [29]. The correspond-
ing results were rather accurate but not optimal yet. In this paper we prove optimal estimates for entropy 
solutions – and – that viscosity solutions are in fact needed to prove this optimality. This is exactly what 
leads to rigorous duality results. Also note that we consider nonlinear anisotropic diffusions as opposed to 
[29]. For an early discussion and open questions about “duality between nonlinear semigroups,” see [14, 
pp. 28–29]. We also mention the recent papers [19,45] which study transport equations with linear diffusion 
through viscosity solutions of their dual equations.

To be more precise, we consider the following two Cauchy problems: For the anisotropic degenerate 
parabolic convection-diffusion equation

∂tu + divF (u) = div (A(u)Du) x ∈ Rd, t > 0,

u(x, 0) = u0(x) x ∈ Rd,
(1)

and for the Hamilton-Jacobi-Bellman (HJB) equation

∂tϕ = supξ∈E
{
b(ξ) ·Dϕ + tr

(
a(ξ)D2ϕ

)}
x ∈ Rd, t > 0, (2a)

ϕ(x, 0) = ϕ0(x) x ∈ Rd, (2b)

where “D,” “D2” and “div” respectively denote the gradient, the Hessian and the divergence in x, and “tr” 
is the trace. We assume that

F ∈ W 1,∞(R,Rd) and A = σA (σA)T for σA ∈ L∞
loc(R,Rd×K), (H1)
loc
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as well as ⎧⎪⎪⎨
⎪⎪⎩
E is a nonempty set,
b : E → Rd a bounded function,
a = σa (σa)T for some bounded σa : E → Rd×K ,

(H2)

where K is the maximal rank of A(u) and a(ξ). The entropy solution theory for first order PDEs [39] was 
extended in [18,22] to show well-posedness of (1) in L1∩L∞ or L1. Well-posedness in L∞ is less standard for 
second order PDEs, but results exist in [21,3,29,42]; see [32] for anisotropic diffusions. Our main objective 
is to derive an optimal weighted L1 contraction result for L∞ entropy solutions of (1). This then will 
require the development of a corresponding L1 theory for a dual equation of the form (2), a nonstandard 
generalization of classical viscosity solution theory [25,37,36,24,31,5,4].

Contraction type estimates are quantitative continuous dependence results on the initial data. A simple 
example is the L1 contraction principle [39,18,22]:

‖(u− v)(t)‖L1 ≤ ‖u0 − v0‖L1 . (3)

For possibly nonintegrable L∞ solutions, we need weighted estimates. An important result is the finite speed 
of propagation property for first order PDEs [39]:

ˆ

|x−x0|<R

|u(x, t) − v(x, t)|dx ≤
ˆ

|x−x0|<R+Ct

|u0(x) − v0(x)|dx; (4)

see [43] for more precise estimates. For second order PDEs, a standard example is given in [13,21,49,32]:

ˆ
|u(x, t) − v(x, t)|e−

√
1+|x|2 dx ≤ eCt

ˆ
|u0(x) − v0(x)|e−

√
1+|x|2 dx. (5)

Note that (5) does not imply (3) and (4). A finer result that is closer to (4) is given in [29] but it still does 
not imply (3), see [29, Rem. 2.7(b)].

We continue with a formal presentation of our main results. We first give a very accurate weighted L1

contraction estimate for (1). We need to be precise about the dependence of the estimates in u0 and v0. Note 
that C in (4) and (5) actually depends on L∞ bounds on these initial data. These bounds will determine E
in the dual equation of the form (2). For m < M , our new estimate for (1) is

ˆ
|u(x, t) − v(x, t)|ϕ0(x) dx ≤

ˆ
|u0(x) − v0(x)|ϕ(x, t) dx, (6)

where ϕ0 ≥ 0 is arbitrary, the weight ϕ is the viscosity solution of (2) with

b = F ′, a = A, E = [m,M ] ∩
{
Lebesgue points of (F ′, A)

}
, (7)

and u0 and v0 are arbitrary with values in [m, M ]. For a precise statement, see Theorem 19. Note that 
we also use another equivalent formulation of (2) in terms of ess sup, see (21). The standard HJB form is, 
however, used especially for results specific to viscosity solutions.

Equation (2) is also related to stochastic control theory [31]. If we assume F ′ and A are continuous so 
E becomes compact, then the solution ϕ of (2) is the value function of a stochastic target problem and (6)
can be rewritten as
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ˆ

U

|u(x, t) − v(x, t)|dx ≤
ˆ

|u0(x) − v0(x)| sup
ξ·∈Ξ

P (Xx
t ∈ U) dx, (8)

where U ⊆ Rd is arbitrary, P is the probability, Ξ is the set of [m, M ]-valued processes, Bs a Brownian 
motion, and Xx

s an Ito process satisfying the stochastic differential equation (SDE)

dXx
s = F ′(ξs) ds +

√
2σA(ξs) dBs s > 0,

Xx
0 = x.

(9)

For the precise statement, see Corollary 22. The control ξs is determined to maximize the probability for 
the controlled process Xx

s starting from x at time 0 to reach U at time t, and Equation (2a) with data (7)
is the dynamic programming equation for this control problem. Interestingly (8) can be interpreted as a 
domain of dependence estimate for (1). Indeed if we consider the deterministic case A ≡ 0, then formally (9)
becomes the characteristic equation of (1), dXx

s

ds = F ′(u(Xx
s , s)), if we take ξs = u(Xx

s , s). In fact Estimate 
(8) reduces to the domain of dependence estimate of [43] for scalar conservation laws, see Corollary 21. This 
suggests that (8) is a natural extension of such estimates to the degenerate parabolic equation (1), where 
the second order term in (1) is taken into account via the Brownian part (the Ito integral) in (9).

Note that (6) and (8) imply (3), (4), (5), the related results in [29,43], and as we will see, they are optimal 
in a rigorous sense. To discuss the optimality of (6), we fix ϕ0 and try to identify the minimal ϕ satisfying 
(6) for any u0, v0. The key result (Theorem 23) is a characterization of viscosity supersolutions of (2) in 
terms of contraction estimates for (1):

A nonnegative function ϕ is a viscosity supersolution of (2a) with data (7) if and only if

ˆ
|u(x, t) − v(x, t)|ϕ(x, s) dx ≤

ˆ
|u0(x) − v0(x)|ϕ(x, t + s) dx, (10)

for all t, s ≥ 0 and u0, v0 with values in [m, M ] with associated entropy solutions u, v of (1).

Roughly speaking this result implies that if we restrict to weights satisfying a natural semigroup property, 
then the best weight in (6) is the viscosity solution of (2) since by comparison solutions are always smaller 
than supersolutions. This then leads to our most original result (Corollary 37):

If St and Gt are the solution semigroups of (1) and (2), with data (7), then Gt is the smallest semigroup 
satisfying

ˆ
|Stu0 − Stv0|ϕ0 dx ≤

ˆ
|u0 − v0|Gtϕ0 dx, (11)

for all u0, v0 with values in [m, M ] and nonnegative ϕ0.

We can interpret (11) as a nonlinear dual inequality and Gt as a dual semigroup of St, because Gt is entirely 
determined by (11) and knowledge of St. The duality in the other direction is open (Remark 39). Since St

is taken on L∞ from the beginning, it remains to properly define Gt on L1.
Classical viscosity solution theory starting from [25,37,36] and summarized in e.g. [24,31,5,4], typically 

considers bounded continuous Cb solutions. For solutions in L1 or Lp (in space) there are fewer results, see 
e.g. [16] for nondegenerate PDEs and [41,2,1,6,15,17,29] for various other PDEs. Here we show that (2) can 
be ill-posed in L1 in general. We then consider stronger norm topologies and identify the weakest one for 
which (2) is well-posed in general: It is generated by the norm
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ϕ0 �→
ˆ

sup
x+[−1,1]d

|ϕ0|dx

which is the norm of the space L∞
int as defined in [2,1]. Since L∞

int ⊂ L1 ∩ L∞, it follows that Cb ∩ L∞
int

is a natural L1 type Banach space for the dual equation (2) and its solution semigroup Gt in (11); see 
Theorem 33 and Corollary 36.

Our results on L1 viscosity solutions are of independent interest, see in particular Theorem 35. Let us 
comment them further. The estimates of [2] are not in L∞

int but in its predual L1
unif �⊂ L1, while [1] gives 

weighted L∞
int estimates for unbounded solutions with linear diffusions. In [29] there are L1 estimates for 

fully nonlinear degenerate PDEs with isotropic diffusions and exponentially decaying initial data. Equation 
(2) is fully nonlinear, degenerate, possibly anisotropic, and we consider general L∞

int data while identifying 
L∞

int as the most natural L1 viscosity solution setting.

The rest of this paper is organized as follows. We recall basic facts in Section 2, we state our main results 
in Section 3, and prove them in Section 4. For completeness, some results for minimal discontinuous viscosity 
solutions are proved in Appendix A, a complete proof of well-posedness for L∞ entropy solutions is given in 
Appendix B, and further comments on our duality results are postponed to Appendix C and Appendix D.

2. Preliminaries

This section recalls basic facts on Cb viscosity and L∞ entropy solutions; for proofs, see e.g. [24,31,5,4]
and [22,11,27] respectively. We also define the space L∞

int.

2.1. Notation

Throughout R+ := [0, ∞), balls and cubes of Rd with center x and radius r > 0 are Br(x) := {y :
|y − x| < r} and Qr(x) := x + (−r, r)d, the symbol “co” denotes the convex hull of sets, “(ess) Im” the 
(essential) image of (measurable) functions, “Sp” the spectrum of matrices, and 1U the indicator function 
of a set U .

We follow standard notation for function spaces, e.g. Cc denotes continuous functions with compact sup-
port, BLSC (resp. BUSC) bounded lower (resp. upper) semicontinuous functions, Lp stands for Lebesgue 
spaces, etc. For two normed spaces X ⊆ Y , we say that X is continuously embedded into Y if the canonical 
injection is continuous, and the completion of X is denoted by X

‖·‖X ⊆ Y .
Concerning operations on functions, “∗” is the convolution which is mostly taken in x ∈ Rd, and we use 

“∗x,t” if it is taken in (x, t) ∈ Rd+1, etc. To regularize functions of x, we use convolution with an approximate 
unit ρν of the form

ρν(x) := 1
νd

ρ
(x
ν

)
, (12)

where 0 ≤ ρ ∈ C∞
c (Rd) and 

´
ρ = 1, while for functions of t, we convolve with

θν(t) := 1
ν
θ

(
t

ν

)
, (13)

where 0 ≤ θ ∈ C∞
c ((−∞, 0)) and 

´
θ = 1. If needed, we extend functions of t ∈ R+ by zero to all t ∈ R to 

give a meaning to the convolution. For locally bounded everywhere defined ϕ0 : Rd → R or ϕ : Rd×R+ → R, 
we define the infconvolution [24,31,5,4] of e.g. ϕ0 for all x by

(ϕ0)ε(x) := inf
d

{
ϕ0(y) + |x− y|2

2

}
. (14)
y∈R 2ε
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Here the inf is pointwise and, to avoid confusion, we will use distinct notation for ess inf, etc. The upper ϕ∗

(lower ϕ∗) semicontinuous envelope of ϕ is defined as

ϕ∗(x, t) := lim sup
(y,s)→(x,t)

ϕ(y, s)
(
ϕ∗(x, t) := lim inf

(y,s)→(x,t)
ϕ(y, s)

)
.

For a family (ϕε = ϕε(x, t))ε>0, the upper and lower relaxed limits as ε → 0+ are, using standard notation 
[24,5,4],

lim sup*ϕε(x, t) := lim sup
(y,s)→(x,t)

ε→0+

ϕε(y, s) ∀(x, t) ∈ Rd ×R+, (15)

and lim inf*ϕε := − lim sup* (−ϕε). As is customary, we use the same notation lim sup* and lim inf* also 
when the limits are taken in another variable than ε → 0+, e.g. R → ∞. We write limε↓0 ↑ ϕε for the 
limit if ϕε(x, t) ↗ supε>0 ϕε(x, t) as ε ↘ 0. We use similar notation for ϕ0 = ϕ0(x) as e.g. (ϕ0)∗(x) :=
lim supy→x ϕ0(y), etc.

As concerning stochastic processes, we fix

{
a complete filtered probability space (Ω,F ,Ft,P ), and
a standard d-dimensional Brownian Bt on this filtration.

(16)

The associated expectation w.r.t. P is denoted by E. We will assume possibly without mentioning that all 
stochastic processes in this paper are defined on this filtered probability space, and that whenever we need 
a Brownian motion, then we take the above Brownian motion.

Less standard notation
Following [2,1],

L∞
int(Rd) :=

{
ϕ0 ∈ L1

loc(Rd) : ‖ϕ0‖L∞
int < ∞

}
, (17)

where ‖ϕ0‖L∞
int

:=
´

ess supQ1(x) |ϕ0| dx. For the pointwise sup, we use ‖ϕ0‖int :=
´

supQ1(x) |ϕ0| dx. Note 
that ‖ϕ0‖int = ‖ϕ0‖L∞

int if ϕ0 is continuous. For more details about L∞
int, see Section 2.4.

For any ϕ ∈ BLSC(R ×R+), we associate a particular envelope defined as

ϕ#(x, t) := lim inf
r→0+

y→x

1
meas(Br(y))

ˆ

Br(y)

ϕ(z, t) dz. (18)

This envelope will appear naturally in Theorem 23 and more properties will be given in Section 4.4.

2.2. Viscosity solutions of (2)

We begin by introducing the correct notion of solutions for HJB equations [24,31,5,4].

Definition 1 (Viscosity solutions). Assume (H2) and ϕ0 : Rd → R is bounded.

(a) A locally bounded function ϕ : Rd ×R+ → R is a viscosity subsolution (resp. supersolution) of (2) if
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(i) for every φ ∈ C∞(Rd ×R+) and local maximum (x, t) ∈ Rd × (0, ∞) of ϕ∗ − φ (resp. minimum of 
ϕ∗ − φ),

∂tφ(x, t) ≤ supE
{
b ·Dφ(x, t) + tr

(
aD2φ(x, t)

)}
(resp. ≥),

(ii) and for every x ∈ Rd,

ϕ∗(x, 0) ≤ (ϕ0)∗(x) (resp. ϕ∗(x, 0) ≥ (ϕ0)∗(x)).

(b) A function ϕ is a viscosity solution if it is both a sub and supersolution.

Remark 2. We say that ϕ is a viscosity subsolution (resp. supersolution) of (2a) if (ai) holds.

We recall the well-known comparison and the well-posedness for (2) [24,31].

Theorem 3 (Comparison principle). Assume (H2). If ϕ and ψ are bounded sub and supersolutions of (2a), 
and

ϕ∗(x, 0) ≤ ψ∗(x, 0) ∀x ∈ Rd,

then ϕ∗ ≤ ψ∗ on Rd ×R+.

Theorem 4 (Existence and uniqueness). Assume (H2) and ϕ0 ∈ Cb(Rd). Then there exists a unique viscosity 
solution ϕ ∈ Cb(Rd ×R+) of (2).

Remark 5. By the comparison principle, inf ϕ0 ≤ ϕ ≤ supϕ0 and we have the following contraction property: 
‖ϕ − ψ‖∞ ≤ ‖ϕ0 − ψ0‖∞ for every pair of solutions ϕ and ψ with initial data ϕ0 and ψ0.

We may take ϕ0 to be discontinuous as in (8). In that case, we lose uniqueness and we have to work with 
minimal and maximal solutions [26,10,33] (see also [4] for bilateral solutions). For our considerations, we 
only need minimal solutions.

Theorem 6 (Minimal solutions). Assume (H2) and ϕ0 : Rd → R bounded. Then there exists a minimal 
viscosity solution ϕ ∈ BLSC(Rd × R+) of (2), in the sense that ϕ ≤ ϕ for any bounded viscosity solution 
ϕ of (2). Moreover ϕ(x, t = 0) = (ϕ0)∗(x) for any x ∈ Rd.

Note that ϕ is unique by definition. Actually, it is more precisely the minimal supersolution.

Proposition 7. Assume (H2) and ϕ0 : Rd → R is bounded. Then any bounded supersolution ϕ of (2) is such 
that ϕ ≤ ϕ∗.

Remark 8. In particular, we have the following comparison principle: ϕ ≤ ψ for any bounded ϕ0 ≤ ψ0.

For completeness, the proofs of Theorem 6 and Proposition 7 are given in Appendix A.1 because [26,10,
33,4] consider slightly different problems. Let us continue with representation formulas for the solution ϕ
from control theory [31,4,34,35].

Proposition 9 (First order). Assume (H2), a ≡ 0, and ϕ0 : Rd → R bounded. Then the minimal viscosity 
solution of (2) is given by
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ϕ(x, t) = sup
x+tC

(ϕ0)∗ ∀(x, t) ∈ Rd ×R+,

where C = co {Im(b)}.

In the second order case, we need a probabilistic framework.

Proposition 10 (Second order). Assume (H2), (16), and

the set E is compact and the functions b(·) and σa(·) are continuous. (19)

Then the minimal viscosity solution of (2) is given by

ϕ(x, t) = sup
ξ·∈Ξ

E {(ϕ0)∗(Xx
t )} ,

where Ξ is the set of progressively measurable E-valued processes and Xx
s an Ito process satisfying the 

SDE

{
dXx

s = b(ξs) ds +
√

2σa(ξs) dBs, s > 0,
Xx

s=0 = x.

These results are standard for continuous viscosity solutions [31,4], see also [4,34,35] for maximal solutions. 
For minimal solutions, we did not find any reference so we provide the proofs in Appendix A.2.

2.3. Entropy solutions of (1)

Well-posedness of (1) in L∞ is essentially established in [32] for smooth fluxes, see [22,11] for previous 
results in L∞∩L1 or L1. Let us now recall these results in the form needed here and provide complementary 
proofs in Appendix B for completeness.

Definition 11 (Entropy-entropy flux triple). We say that (η, q, r) is an entropy-entropy flux triple if η ∈ C2(R)
is convex, q′ = η′F ′ and r′ = η′A.

Given β ∈ C(R), we also need the notation

ζik(u) :=
uˆ

0

σA

ik(ξ) dξ and ζβik(u) :=
uˆ

0

σA

ik(ξ)β(ξ) dξ.

Definition 12 (Entropy solutions). Assume (H1) and u0 ∈ L∞(Rd). A function u ∈ L∞(Rd × R+) ∩
C(R+; L1

loc(Rd)) is an entropy solution of (1) if

(a)
∑d

i=1 ∂xi
ζik(u) ∈ L2

loc(Rd ×R+) for any k = 1, . . . , K,

(b) for any k = 1, . . . , K and any β ∈ C(R)

d∑
∂xi

ζβik(u) = β(u)
d∑

∂xi
ζik(u) ∈ L2

loc(Rd ×R+),

i=1 i=1
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(c) and for all entropy-entropy flux triples (η, q, r) and 0 ≤ φ ∈ C∞
c (Rd ×R+),

¨

Rd×R+

⎛
⎝η(u)∂tφ +

d∑
i=1

qi(u)∂xi
φ +

d∑
i,j=1

rij(u)∂2
xixj

φ

⎞
⎠ dx dt

+
ˆ

Rd

η(u0(x))φ(x, 0) dx ≥
¨

Rd×R+

η′′(u)
K∑

k=1

(
d∑

i=1
∂xi

ζik(u)
)2

φ dx dt.

Theorem 13 (Existence and uniqueness). Assume (H1) and u0 ∈ L∞(Rd). Then there exists a unique entropy 
solution u ∈ L∞(Rd ×R+) ∩ C(R+; L1

loc(Rd)) of (1).

See [32, Theorem 1.1] or Appendix B for the proof.

Remark 14.

(a) In the L1 settings of [22,11], the following contraction principle holds: For solutions u and v of (1) with 
initial data u0 and v0,

‖u(·, t) − v(·, t)‖L1 ≤ ‖u0 − v0‖L1 ∀t ≥ 0.

(b) In the L∞ setting of [32], uniqueness is based on the weighted L1 contraction principle (5), see also 
Lemma 63 in Appendix B.

(c) In all cases, we have comparison and maximum principles as stated in Lemma 65 in Appendix B.

In L∞, uniqueness is based on a doubling of variables arguments developed in [39,18,11]. This argument 
leads to (20) below, and this inequality will be the starting point of our analysis.

Lemma 15 (Kato inequality). Assume (H1) and u, v are entropy solutions of (1) with initial data u0, v0 ∈
L∞(Rd). Then for all T ≥ 0 and nonnegative test functions φ ∈ C∞

c (Rd × [0, T ]),

ˆ

Rd

|u− v|(x, T )φ(x, T ) dx ≤
ˆ

Rd

|u0 − v0|(x)φ(x, 0) dx

+
¨

Rd×(0,T )

⎛
⎝|u− v|∂tφ +

d∑
i=1

qi(u, v)∂xi
φ +

d∑
i,j=1

rij(u, v)∂2
xixj

φ

⎞
⎠ dx dt, (20)

where

qi(u, v) = sign(u− v)
uˆ

v

F ′
i (ξ) dξ, rij(u, v) = sign(u− v)

uˆ

v

Aij(ξ) dξ.

See Appendix B for precise references to the computations in [11] on how to show this lemma in our 
setting.

2.4. The function space L∞
int

Let us now give some basic properties on the space which was defined in (17).
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Theorem 16. The space L∞
int(Rd) is a Banach space, and it is continuously embedded into L1 ∩ L∞(Rd).

See [2,1] for the proof and choice of the above notation. We also need the following result:

Lemma 17. For any r > 0 and ε ≥ 0, there is a constant Cr,ε ≥ 0 such that
ˆ

sup
Qr+ε(x)

|ϕ0|dx ≤ Cr,ε

ˆ
sup
Qr(x)

|ϕ0|dx ∀ϕ0 : Rd → R.

Remark 18. This result will be used with the pointwise sup for discontinuous ϕ0, typically lower or upper 
semicontinuous.

The proof can be found in [2,1], see e.g. [1, Lemma 2.5.1].

3. Main results

In this section we precisely state our results: the weighted L1 contraction estimate for (1) in Section 3.1, 
the optimality of the weight in Section 3.2, and the interpretation in terms of dual nonlinear semigroup in 
Section 3.3. Section 3.3 contains the L1 theory for (2), and the long proofs are postponed to Section 4.

3.1. Weighted L1 contraction for entropy solutions

The weight ϕ of our new estimate for (1) is the viscosity solution of (2) with data (7), a problem which 
we rewrite in the more convenient form4

∂tϕ = ess sup
m≤ξ≤M

{
F ′(ξ) ·Dϕ + tr

(
A(ξ)D2ϕ

)}
x ∈ Rd, t > 0, (21a)

ϕ(x, 0) = ϕ0(x) x ∈ Rd, (21b)

for given m < M and ϕ0.

Theorem 19 (Weighted L1 contraction). Assume (H1), m < M , u0 = u0(x) and v0 = v0(x) are measurable 
with values in [m, M ], and 0 ≤ ϕ0 ∈ BLSC(Rd). Then the corresponding entropy solutions u and v of (1)
and minimal viscosity solution ϕ of (21) satisfy

ˆ

Rd

|u− v|(x, t)ϕ0(x) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, t) dx ∀t ≥ 0. (22)

Remark 20.

(a) The right-hand side of (22) can be infinite. To get finite integrals, it suffices to take u0 − v0 ∈ L1. We 
shall see later that another sufficient condition is that ϕ0 ∈ L∞

int, since ϕ will then be L1 in space by 
Theorem 35.

(b) The same result holds when ϕ is replaced by any measurable supersolution of (21), since it is greater 
than ϕ.

4 Viscosity solutions are understood as in Definition 1 via Problem (2) with data (7). But we let the reader check that we can 
equivalently redefine this notion via (21). More precisely ϕ is a viscosity supersolution of (2) with data (7) if and only if for every 
φ ∈ C∞ and local max (x, t) of ϕ∗ − φ, ∂tφ(x, t) ≤ ess supm≤ξ≤M

{
F ′(ξ) · Dφ(x, t) + tr

(
A(ξ)D2φ(x, t)

)}
, etc.
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(c) We also point the interested reader to Lemma 54. There we prove that a consequence of the above result 
is that u0 − v0 ∈ L1 implies u − v ∈ C(R+; L1(Rd)).

From control theory there exist representation formulas for ϕ in the first and second order cases, see 
Propositions 9 and 10. Combining the above result with these representation formulas give us very precise 
domain of dependence results. In the first order case, we recover the precise results of [43], while in the 
second order case the result is new.

Corollary 21 (First order equations). Assume (H1) with A ≡ 0, m < M , u0 and v0 are measurable functions 
with values in [m, M ], and u and v are entropy solutions of (1) with initial data u0 and v0. Then

ˆ

B

|u− v|(x, t) dx ≤
ˆ

B−tC

|u0 − v0|(x) dx

for any Borel set B ⊆ Rd and t ≥ 0, where

C = co
{

ess Im
(
(F ′) [m,M ]

)}
.

Proof. Let U ⊇ B be an open set and take ϕ0 = 1U . By Proposition 9, the minimal solution of (21) is 
ϕ(x, t) = 1U−tC(x). Apply then Theorem 19 and take the infimum over all open U ⊇ B. �
Corollary 22 (Second order equations). Assume (H1), (16), F ′(·) and σA(·) continuous, m < M , u0 and v0
in L∞(Rd, [m, M ]), and u and v entropy solutions of (1) with u0 and v0 as initial data. Then for any open 
U ⊆ Rd and t ≥ 0,

ˆ

U

|u− v|(x, t) dx ≤
ˆ

Rd

|u0 − v0|(x) sup
ξ·∈Ξ

P (Xx
t ∈ U) dx,

where Ξ is the set of progressively measurable [m, M ]-valued processes and Xx
s is an Ito process satisfying 

the SDE (9).

Proof. Take ϕ0 = 1U and apply Proposition 10 to compute ϕ in Theorem 19. �
The proof of Theorem 19 is given in Section 4.3.

3.2. Optimality of the weight

Let us now discuss the optimality of the weight ϕ in a weighted L1 contraction estimate for (1) such 
as (22). The first step is a reformulation of the definition of viscosity supersolutions of (21a) in terms of 
weights in L1 contraction estimates for (1).

Theorem 23 (Weights and supersolutions). Assume (H1), m < M , and 0 ≤ ϕ ∈ BLSC(Rd×R+). Then the 
statements below are equivalent.

(I) For any measurable functions u0 and v0 with values in [m, M ] and entropy solutions u and v of (1)
with initial data u0 and v0,

ˆ
|u− v|(x, t)ϕ(x, s) dx ≤

ˆ
|u0 − v0|(x)ϕ(x, t + s) dx ∀t, s ≥ 0.
Rd Rd
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(II) The function ϕ# (cf. (18)) is a viscosity supersolution of (21a).

Remark 24.

(a) We will see in Lemma 56(ii) that ϕ#(·, t) = ϕ(·, t) a.e. in Rd, for any t. Hence ϕ# satisfies (I) if and 
only if ϕ does.

(b) For a fixed t, the classical precise representative [30,44] of ϕ(·, t), is defined over Lebesgue points (in 
space) as

ϕ̂(x, t) := lim
r→0+

1
meas(Br(x))

ˆ

Br(x)

ϕ(y, t) dy.

Assigning the value supϕ at all other points, and taking the lower semicontinuous envelope (in x), will 
exactly give ϕ#(·, t).

(c) Although ϕ ∈ BLSC makes sense everywhere, we need to consider another precise representative in x
for the viscosity inequalities to hold. This is because these inequalities are pointwise while (I) does not 
depend on the choice of such representatives. If e.g. modifying ϕ only at some (x0, t0) such that

ϕ(x0, t0) < lim inf
(x0,t0) 
=(x,t)→(x0,t0)

ϕ(x, t),

we would preserve (I) while losing the viscosity inequalities.5
(d) We do not need to change the precise representative in t, roughly speaking because we consider BLSC

weights satisfying (I) for all times.
(e) For simplicity, we restrict to BLSC weights since this regularity is shared by ϕ from Theorem 19 and 

most of the weights from the literature. But we have a similar result for merely measurable weights in 
(x, t); see Appendix C for completeness.

We will therefore roughly speaking deduce from the comparison principle that our weight is optimal in 
the class of weights

Wm,M,ϕ0 :=
{
0 ≤ ϕ ∈ BLSC(Rd ×R+) satisfying (I) and ϕ(t = 0) ≥ ϕ0

}
.

Corollary 25 (Optimality of the weight). Assume (H1), m < M , and 0 ≤ ϕ0 ∈ BLSC(Rd). Then the weight 
ϕ from Theorem 19 belongs to the class Wm,M,ϕ0 and satisfies

(ϕ)#(x, t) = inf {ϕ#(x, t) : ϕ ∈ Wm,M,ϕ0} ∀(x, t) ∈ Rd ×R+.

Remark 26.

(a) Property (I) is stronger than (22) since it holds for any s ≥ 0. This may be interpreted as a certain 
semigroup property.

(b) Property (I) is satisfied by most of the weights from the literature, as e.g. for

ϕ ≡ 1, ϕ(x, t) = 1|x−x0|<R+Ct and ϕ(x, t) = eCte−
√

1+|x|2 ,

in respectively (3), (4) and (5); see also the stability results from [39,13,21,49,22,29,32,43].

5 Indeed ϕ − φ would achieve a local min in (x0, t0), for all φ ∈ C∞.
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The proofs of Theorem 23 and Corollary 25 are given in Section 4.4.

3.3. L∞
int, semigroup formulation, and a new form of duality

We now interpret our results in terms of semigroups. This will reflect some form of duality for nonlinear 
semigroups, which will reduce to standard duality in the linear case. We first need to make the functional 
framework precise. Recall that L1 might seem natural for the dual semigroup which will correspond to the 
weights in (22), but it is too weak for HJB equations and we will precisely explain why L∞

int ⊂ L1 is a better 
and very natural setting. This preliminary study has also its own interest in viscosity solution theory, and 
is written for HJB equations in the usual form (2).

Preliminaries: Cb ∩ L∞
int as a natural L1 setting for (2)

We first explain why the pure L1 setting is too weak to develop a general well-posedness theory for (2). 
Consider a solution of the eikonal type equation6

∂tϕ =
d∑

i=1
|∂xi

ϕ|. (23)

Under which condition is it integrable?

Proposition 27 (Necessary and sufficient integrability condition). Let ϕ be the viscosity solution of (23) with 
initial data ϕ0 ∈ Cb(Rd). We then have

[
ϕ(·, t) ∈ L1(Rd) ∀t ≥ 0

]
⇐⇒

[
ϕ−

0 ∈ L1(Rd) and ϕ+
0 ∈ L∞

int(Rd)
]
.

Proof. Since ϕ(x, t) = supQt(x) ϕ0 by Proposition 9, we conclude by Lemma 17. �
We continue by showing that the L1 topology is too weak to get the continuous dependence on the initial 

data, even for solutions which remain integrable.

Proposition 28 (Failure of the L1 continuous dependence). For all n ≥ 1, let ϕn
0 (x) := (1 − n|x|)+, and ϕn

be the solution of (23) with initial data ϕn
0 . Then ϕn

0 ∈ Cb ∩ L∞
int(Rd) and

lim
n→∞

ϕn
0 = 0 in L1(Rd),

but

lim
n→∞

ϕn(·, t) = 1Qt
(·) �= 0 in L1(Rd), ∀t > 0.

Proof. Use again that ϕn(x, t) = supQt(x) ϕ
n
0 . �

Interestingly a similar analysis works also for purely diffusive HJB equations. Consider e.g. an equation 
in one space dimension7

∂tϕ =
(
∂2
xxϕ

)+
. (24)

To have L1 solutions, we need again that ϕ+
0 ∈ L∞

int.

6 Equation (23) is of the form (2) with E = Q1(0), b(ξ) = ξ, and a ≡ 0.
7 Equation (24) is of the form (2) with E = [0, 1], b ≡ 0, and a(ξ) = ξ.
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Proposition 29 (L∞
int and nonlinear diffusions). Let ϕ0 ∈ Cb(R) be nonnegative and ϕ be the viscosity solution 

of (24) with ϕ0 as initial data. Then,
[
ϕ(·, t) ∈ L1(R) ∀t ≥ 0

]
⇐⇒ ϕ0 ∈ L∞

int(R).

See Section 4.5 for the proof. We now use the lack of a fundamental solution of (24) to show that there 
is no continuous dependence on the initial data in L1.

Proposition 30 (Blow-up everywhere). For all n ≥ 1, let ϕn be the viscosity solution of (24) with an approx-
imate delta-function as initial data:

ϕn(x, t = 0) = nρ(nx), (25)

where 0 ≤ ρ ∈ Cc(R) is nontrivial. Then limn→∞ ϕn(x, t) = ∞, ∀x ∈ R, ∀t > 0.

See Section 4.5 for the proof.

Remark 31. A counterexample to the L1 continuous dependence for (24) is then given by the sequence of 
solutions

ψn(x, t) := ϕn(x, t)/
√
‖ϕn(·, t0)‖L1 for a fixed t0 > 0,

since ‖ψn(t = 0)‖L1 → 0 while ‖ψn(·, t)‖L1 ≥ ‖ψn(·, t0)‖L1 → ∞ for any t ≥ t0.

In view of the previous results, we now look for a Banach space X ⊂ L1 that is strong enough to get 
well-posedness for (2) in general. We are mainly interested in properly defining an associated semigroup; 
see e.g. [14,12] for a general presentation of nonlinear semigroups.

Definition 32. Let E be a normed space.

(a) A family of maps Gt : E → E parametrized by t ≥ 0 is a semigroup on E if
{
Gt=0 = id (the identity), and
Gt+s = GtGs (meaning the composition) for any t, s ≥ 0.

(b) It is a semigroup of continuous operators if in addition Gt : E → E is continuous for each t ≥ 0.
(c) And it is strongly continuous if for each ϕ0 ∈ E, t ≥ 0 �→ Gtϕ0 ∈ E is strongly continuous (i.e. 

continuous in norm).

Let ϕ be the unique viscosity solution of (2) and define

Gt : ϕ0 ∈ Cb(Rd) �→ ϕ(·, t) ∈ Cb(Rd). (26)

Then Gt is a semigroup of Lipschitz continuous (in Cb) operators by Remark 5. A natural construction is 
to define X as the completion of some E ⊆ Cb ∩ L1, such that X ⊆ L1 and Gt can be extended from E
onto X. More precisely we require that⎧⎪⎪⎨

⎪⎪⎩
E is a vector subspace of Cb ∩ L1(Rd),
E is a normed space,
E is continuously embedded into L1(Rd),

(27)
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and for any data (E , b, a) satisfying (H2), the semigroup (26) satisfies:

∀t ≥ 0,
{
Gt(E) ⊆ X := E

‖·‖E , Gt : E → X is continuous, and
Gt admits an extension onto X as a continuous operator.

(28)

Here E
‖·‖E ⊆ L1(Rd) is the completion, see Section 2.1.

The best E is given below.

Theorem 33 (A natural L1 setting for (2)). The space Cb∩L∞
int(Rd) is a Banach space satisfying the properties 

(27)–(28). Moreover, any other space E satisfying (27)–(28) is continuously embedded into Cb ∩ L∞
int(Rd).

Remark 34. Since the best E = X is a Banach space by Theorem 16, it is a posteriori not necessary to 
extend Gt outside Cb. The classical notion of viscosity solutions is then already satisfactory to study L1

solutions of fully nonlinear degenerate PDEs.

Theorem 33 relies on the following estimate:

Theorem 35 (General L∞
int stability). Assume (H2) and T ≥ 0. For any bounded subsolution ϕ and superso-

lution ψ of (2a),

ˆ
sup

Q1(x)×[0,T ]
(ϕ∗ − ψ∗)+ dx ≤ C

ˆ
sup
Q1(x)

(ϕ∗ − ψ∗)+ (·, 0) dx, (29)

for some constant C = C(d, ‖a‖∞, ‖b‖∞, T ) ≥ 0.

As a consequence we have the following result:

Corollary 36 (L∞
int well-posedness of (2)). Assume (H2) and Gt is the solution semigroup defined in (26). 

Then its restriction to Cb ∩ L∞
int(Rd) is a strongly continuous semigroup of Lipschitz continuous operators.

The proofs of Theorem 35 and Corollary 36 are given in Section 4.2, while Theorem 33 is proved in 
Section 4.5.

A certain duality between nonlinear semigroups
For each t ≥ 0, let

St : u0 ∈ L∞(Rd) �→ u(·, t) ∈ L∞(Rd)

where u is the entropy solution of (1), and let

Gt : ϕ0 ∈ Cb ∩ L∞
int(Rd) �→ ϕ(·, t) ∈ Cb ∩ L∞

int(Rd)

where ϕ is the viscosity solution of (21). Note that Gt = Gm,M
t depends on the parameters m and M

through Equation (21a).

Corollary 37 (A form of duality). Assume (H1), m < M , and consider the semigroups St and Gt defined 
as above. Then Gt is the smallest strongly continuous semigroup of continuous operators on Cb ∩ L∞

int(Rd)
satisfying
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ˆ

Rd

|Stu0 − Stv0|ϕ0 dx ≤
ˆ

Rd

|u0 − v0|Gtϕ0 dx, (30)

for every u0 and v0 in L∞(Rd, [m, M ]), 0 ≤ ϕ0 ∈ Cb ∩ L∞
int(Rd), and t ≥ 0.

The proof of Corollary 37 is given in Section 4.4.

Remark 38. Here “smallest” means that any other semigroup Ht satisfying the same properties is such that

Gtϕ0 ≤ Htϕ0 ∀ϕ0 ≥ 0,∀t ≥ 0.

Remark 39.

(a) Inequality (30) can be seen as a nonlinear dual inequality between St and Gt, and Gt as a dual semigroup 
of St whose restriction over the cone Cb ∩ L∞

int(Rd, R+) is entirely determined by St through (30).
(b) The question of duality in the other direction is open. Let us formulate it precisely. Consider St and 

the whole family {Gm,M
t : m < M} defined just before Corollary 37.

Open question. Is St the unique weakly-� continuous semigroup on L∞(Rd) such that for all m <
M , Gm,M

t is the smallest strongly continuous semigroup of continuous operators on Cb ∩ L∞
int(Rd)

satisfying
ˆ

Rd

|Stu0 − Stv0|ϕ0 dx ≤
ˆ

Rd

|u0 − v0|Gm,M

t ϕ0 dx, (31)

for all u0 and v0 in L∞(Rd, [m, M ]), 0 ≤ ϕ0 ∈ Cb ∩ L∞
int(Rd), and t ≥ 0?

A positive answer would mean that St is conversely entirely determined by the family {Gm,M
t : m < M}

through (31).
(c) Following part (a), we might be tempted to define a notion of dual for more general nonlinear semigroups. 

It is not our aim to explore such a direction, but note however that it would make sense only if
(i) we have a reciprocal duality as discussed in part (b), and
(ii) we can recover standard duality notions in the linear case.
We can say more about (ii), and in Appendix D we give a sample result for slightly more abstract 
semigroups, for which we would not a priori know the associated equations.

4. Proofs

This section is devoted to the proofs of the results of Section 3. We will prove them in a certain order to 
arrive at Corollaries 25 and 37, thus concluding by the optimality of the weight and the interpretation in 
terms of dual nonlinear semigroup. The proofs of Propositions 29 and 30 and Theorem 33 are independent 
of this development and given at the end of the section.

4.1. More on viscosity solutions of (2)

We need further classical results that can be found in [24,31,5,4].

Proposition 40 (Stability w.r.t. sup). Assume (H2) and F �= ∅ is a uniformly locally bounded family of 
viscosity subsolutions of (2a). Then, the function
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(x, t) �→ sup{ϕ(x, t) : ϕ ∈ F}

is a viscosity subsolution of (2a).

The next results concern relaxed limits; cf. (15).

Proposition 41 (Stability w.r.t. relaxed limits). Assume (H2) and let (ϕε)ε>0 be a family of uniformly lo-
cally bounded viscosity subsolutions (resp. supersolutions) of (2a). Then lim sup*ϕε (resp. lim inf*ϕε) is a 
subsolution of (2a) (resp. supersolution).

Remark 42. The notion of solution (or semisolution) is thus stable under local uniform convergence (equiv-
alent to lim sup*ϕε = lim inf*ϕε).

Proposition 43 (Limiting initial data). Assume (H2) and (ϕε)ε>0 is a uniformly locally bounded family of 
viscosity subsolutions (resp. supersolutions) of (2a). Then lim sup*ϕε (resp. lim inf*ϕε) satisfies

lim sup*ϕε(x, 0) = lim sup*
[
(ϕε)∗(·, 0)

]
(x) ∀x ∈ Rd

(resp. lim inf*ϕε(x, 0) = lim inf*
[
(ϕε)∗(·, 0)

]
(x)).

Remark 44. For subsolutions this means that

lim sup
Rd×R+�(y,s)→(x,0)

ε→0+

ϕε(y, s) = lim sup
Rd�y→x
ε→0+

(ϕε)∗(y, 0),

where (ϕε)∗ is the upper semicontinuous envelope computed in (x, t). The proof can be found in [9] and 
[5, Theorem 4.7]. The idea is to first consider ϕ := lim sup*ϕε, ϕ0(x) := lim sup*

[
(ϕε)∗(·, 0)

]
(x), and show 

that min{∂tϕ − H(Dϕ, D2ϕ), ϕ − ϕ0} ≤ 0 at t = 0 in the viscosity sense. Fix then some x and use the 
viscosity inequalities at a max (y, t) of the function ϕ(y, t) − |y− x|2/ε̃−Ct with C large enough such that 
t = 0. We get ϕ(x, 0) ≤ ϕ0(y) and conclude as ε̃ → 0+.

Here is the stability for minimal solutions, see Appendix A.1 for the proof.

Proposition 45 (Stability of minimal solutions). Assume (H2) and (ϕn
0 )n is a nondecreasing uniformly glob-

ally bounded sequence. If ϕ
n

is the minimal solution of (2) with ϕn
0 as initial data, then supn ϕn

is the 
minimal solution of (2) with initial data supn(ϕn

0 )∗.

Let us continue with regularization procedures. Usually we consider inf and supconvolutions, but for con-
vex Hamiltonians we can use the classical convolution for supersolutions, see [7,8] (the ideas were introduced 
in [40]).

Lemma 46. Assume (H2), ϕ ∈ BLSC(Rd×(0, ∞)) is a supersolution of (2a), and 0 ≤ f ∈ L1(Rd×(−∞, 0)). 
Then ϕ ∗x,t f is a supersolution of (2a).

Below is another version that will be needed.

Lemma 47. Assume (H2), ϕ ∈ Cb(Rd × (0, ∞)) is a supersolution of (2a), and 0 ≤ g ∈ L1(Rd). Then ϕ ∗x g
remains a supersolution.
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The latter lemma is not proven in [7,8], but can be obtained via a standard approximation procedure. 
Let us give it for completeness.

Proof of Lemma 47. By Lemma 46, ϕν := ϕ ∗x g ∗x ρν ∗t θν is a supersolution of (2a). It remains to pass 
to the limit as ν → 0+. We will show that the convergence is local uniform towards ϕ ∗x g, which will 
be sufficient by stability of the equation. We only need a local uniform convergence for t > 0 because the 
conclusion concerns the PDE only. With the assumed regularity on ϕ,

lim
ν→0+

ϕ ∗x ρν ∗t θν = ϕ locally uniformly,

and ‖ϕ ∗x ρν ∗t θν‖∞ ≤ ‖ϕ‖∞. Moreover, for any x ∈ Rd, t > 0 and R ≥ 0,

|ϕν − ϕ ∗x g|(x, t) ≤ |ϕ ∗x ρν ∗t θν − ϕ| ∗x g(x, t)

≤
(

sup
|y|≤R

|ϕ ∗x ρν ∗t θν − ϕ|(x− y, t)
) ˆ

|y|≤R

g(y) dy

+ 2‖ϕ‖∞
ˆ

|y|>R

g(y) dy.

This is enough to conclude since limR→∞
´
|y|>R

g(y) dy = 0. �
4.2. L∞

int well-posedness: proofs of Theorem 35 and Corollary 36

Let us now show that (2) is well-posed in L∞
int as stated in Corollary 36. We first need to prove Theorem 35

for which we will use the lemmas below.

Lemma 48. Assume (H2), and ϕ and ψ are sub and supersolutions of (2a). Then (ϕ∗ − ψ∗)+ remains a 
subsolution.

Sketch of proof. First note that ϕ − ψ is a subsolution since

∂t(ϕ− ψ) ≤ sup
ξ∈E

Hξ(ϕ) − sup
ξ∈E

Hξ(ψ) ≤ sup
ξ∈E

(Hξ(ϕ) −Hξ(ψ)) ,

for Hξ(ϕ) := b(ξ) ·Dϕ + tr
(
a(ξ)D2ϕ

)
. Since (ϕ∗ −ψ∗)+ = max{ϕ∗ −ψ∗, 0}, it is a subsolution by stability 

of viscosity subsolutions w.r.t. max, see Proposition 40. �
The rigorous justification of the above computations can be done by using a test function, Ishii lemma, 

and semijets [24, Theorem 8.3]. The details are standard and left to the reader. Here is a second lemma 
involving the profile

U : r ≥ 0 �→ c0

∞̂

r

e− s2
4 ds,

where c0 > 0 is chosen such that U(0) = 1.
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Lemma 49. Let Lb ≥ 0 and La > 0. For any (x, t) ∈ Rd ×R+, define

Ψ(x, t) :=

⎧⎨
⎩U

(
(|x| − 1 − Lbt)+ /

√
Lat

)
if t > 0,

1|x|<1 if t = 0.
(32)

Then in the viscosity sense,

∂tΨ ≥ Lb|DΨ| + La sup
λ∈Sp(D2Ψ)

λ+ in Rd × (0,∞)

(it is in fact an equality). Moreover Ψ ∈ Cb(Rd × (0, ∞)) ∩C(R+; L1(Rd)) where the latter time continuity 
holds up to t = 0.

Remark 50. Roughly speaking, we will use Ψ as a fundamental solution to construct L1 supersolutions of 
(2), but we cannot take it as a Dirac mass at t = 0 because of Proposition 30.

Proof. The desired PDE holds if |x| < 1 + Lbt since Ψ is constant in that region. It is also satisfied if 
|x| = 1 + Lbt because the subjets are empty. Now if |x| > 1 + Lbt, then

∂tΨ = −La
|x| − 1 − Lbt

2(Lat)
3
2

U ′ − Lb√
Lat

U ′, DΨ = x

|x|
U ′

√
Lat

,

and

∂2
xixj

Ψ =
(
δij
|x| −

xixj

|x|3
)

U ′
√
Lat

+ xixj

|x|2
U ′′

Lat
.

Since U ′ ≤ 0 and U ′′ ≥ 0, we have 
∑d

i,j=1 ∂
2
xixj

Ψhihj ≤ U ′′

Lat
for any h = (hi) with |h| = 1. Hence 

supλ∈Sp(D2Ψ) λ
+ ≤ U ′′

Lat
and

∂tΨ − Lb|DΨ| − La sup
λ∈Sp(D2Ψ)

λ+ ≥ −rU ′(r)/2 + U ′′(r)
t

with r = (|x| − 1 − Lbt)/
√
Lat. The right-hand side is zero by definition of U , and we obtain the desired 

equation for positive times. Now the detailed verification that Ψ ∈ Cb(Rd × (0, ∞)) ∩ C(R+; L1(Rd)) does 
not contain any particular difficulty and is left to the reader. The proof is complete. �
Proof of Theorem 35. Let Lb := ‖b‖∞ and La := ‖ tr(a)‖∞ and assume La > 0. We will use the following 
Ky Fan inequality [46]:

tr (XY ) ≤
d∑

i=1
λi(X)λi(Y ) ∀X,Y real d× d symmetric matrices, (33)

with the ordered eigenvalues λ1 ≤ · · · ≤ λd. It implies that any subsolution of (2a) is a subsolution of the 
equation

∂tϕ = Lb|Dϕ| + La sup
2

λ+. (34)

λ∈Sp(D ϕ)
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Consider now arbitrary bounded sub and supersolutions ϕ and ψ of (2a). By Lemma 48, (ϕ∗ − ψ∗)+ is a 
subsolution of (2a) thus of (34). To prove Estimate (29), we will construct an integrable supersolution of 
(34). We will take it of the form

ψ := Ψ ∗x sup
Q1(·)

φ0,

where φ0(x) := (ϕ∗ − ψ∗)+ (x, t = 0) and Ψ is defined in Lemma 49. Let us use Lemma 47 to show that ψ is a 
supersolution of (34). We need supQ1(·) φ0 to be integrable, and this can be assumed without loss of generality 
since (29) trivially holds if not. Now recalling that Ψ ∈ Cb(Rd×(0, ∞)) is a supersolution of (34), Lemma 47
applies and ψ remains a supersolution. Since moreover Ψ ∈ C(R+; L1(Rd)) and supQ1(·) φ0 ∈ L∞(Rd), this 
supersolution is continuous up to t = 0 and satisfies

ψ(x, 0) =
ˆ

1|y|<1 sup
Q1(x−y)

φ0︸︷︷︸
=(ϕ∗−ψ∗)+(t=0)

dy ≥ (ϕ∗ − ψ∗)+ (x, 0).

Hence (ϕ∗ − ψ∗)+ ≤ ψ everywhere by the comparison principle, and
ˆ

sup
Q1(x)×[0,T ]

(ϕ∗ − ψ∗)+ dx ≤
ˆ

sup
Q1(x)×[0,T ]

ψ dx

≤
ˆ

sup
t∈[0,T ]

Ψ(y, t) dy
ˆ

sup
Q2(x)

φ0 dx,

by the Fubini theorem, etc. The first integral satisfies
ˆ

sup
t∈[0,T ]

Ψ(y, t) dy ≤
ˆ

U
(
(|y| − 1 − LbT )+ /

√
LaT

)
dy < ∞,

by (32) and since U is nondecreasing and integrable. For the second integral, Lemma 17 implies that
ˆ

sup
Q2(x)

φ0 dx ≤ C

ˆ
sup
Q1(x)

(ϕ∗ − ψ∗)+ (·, 0) dx,

for a constant C which only depends on d. Combining the three inequalities above completes the proof 
of (29) when La = ‖ tr(a)‖∞ > 0. If La = 0, there is no diffusive part in (2a), and (29) follows from 
Proposition 9 and Lemma 17. �

We are ready to prove Corollary 36. We need the result below.

Lemma 51. Assume (H2) and ϕ and ψ are continuous viscosity solutions of (2a). Then |ϕ −ψ| is a subsolution 
of the same PDE.

Proof. Use that |ϕ − ψ| = max{(ϕ − ψ)+, (ψ − ϕ)+} and Lemma 48. �
Proof of Corollary 36. The fact that Gt maps Cb ∩ L∞

int(Rd) into itself follows from Theorem 35. Indeed, if 
ϕ0 ∈ Cb ∩ L∞

int(Rd), then the function (x, t) �→ |Gtϕ0(x)| is a bounded subsolution of (2a), by Lemma 51
with ψ ≡ 0. Estimate (29) then implies that for any t ≥ 0,

‖Gtϕ0‖int =
ˆ

sup |Gtϕ0|dx ≤ C

ˆ
sup |ϕ0|dx,
Q1(x) Q1(x)
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for some constant C = C(d, ‖a‖∞, ‖b‖∞, t). Let us now prove that

Gt : Cb ∩ L∞
int(Rd) → Cb ∩ L∞

int(Rd)

is Lipschitz continuous for any t ≥ 0. Let us apply again (29) to

(x, t) �→ |Gtϕ0(x) −Gtψ0(x)|,

which is a subsolution of (2a) by Lemma 51. As above we get that

‖Gtϕ0 −Gtψ0‖int ≤ C

ˆ
sup
Q1(x)

|ϕ0 − ψ0|dx,

and deduce the desired continuity because C does not depend on the initial data. Hence Gt is a semigroup 
of Lipschitz continuous operators on Cb ∩ L∞

int(Rd) and it remains to prove the time continuity. Fix t0 ≥ 0
and let us show that

ˆ
sup
Q1(x)

|Gtϕ0 −Gt0ϕ0|dx → 0 as t → t0.

The pointwise convergence follows from the continuity of (x, t) �→ Gtϕ0(x) (as continuous solution of (2)), 
and a dominating function is given by

x �→ sup
(y,s)∈Q1(x)×[0,t0+1]

2|Gsϕ0(y)|

which is integrable by Theorem 35. �
4.3. Weighted L1 contraction: proof of Theorem 19

We continue with the general weighted L1 contraction principle for (1).

Proof of Theorem 19. We have to show that
ˆ

Rd

|u− v|(x, T )ϕ0(x) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, T ) dx ∀T ≥ 0. (35)

Let us use the Kato inequality (20) with 0 ≤ φ ∈ C∞
c (Rd × [0, T ]). We then obtain, for a.e. x ∈ Rd and 

t ≥ 0, ⎧⎨
⎩

d∑
i=1

qi(u, v)∂xi
φ +

d∑
i,j=1

rij(u, v)∂2
xixj

φ

⎫⎬
⎭ (x, t)

= sign(u(x, t) − v(x, t))
u(x,t)ˆ

v(x,t)

{
F ′(ξ) ·Dφ(x, t) + tr

(
A(ξ)D2φ(x, t)

)}
dξ

≤ |u(x, t) − v(x, t)| ess sup
m≤ξ≤M

{
F ′(ξ) ·Dφ(x, t) + tr

(
A(ξ)D2φ(x, t)

)}
,

(36)

where we have taken the sup over [m, M ] because of the maximum principle Lemma 65. Injecting into (20), 
we get that
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ˆ

Rd

|u− v|(x, T )φ(x, T ) dx ≤
ˆ

Rd

|u0 − v0|(x)φ(x, 0) dx

+
¨

Rd×(0,T )

|u− v|
(
∂tφ + ess sup

m≤ξ≤M

{
F ′(ξ) ·Dφ + tr

(
A(ξ)D2φ

)})
dx dt. (37)

In the third integral, we recognize the backward in time version of (21a). The proof of (35) then consists in 
taking φ(x, t) = ϕ(x, T − t).

Simplified case: 0 ≤ ϕ0 ∈ Cc(Rd).
Now (21) has a unique viscosity solution ϕ which coincides with ϕ. It belongs to Cb(Rd×R+) ∩C(R+; L1(Rd))
by Corollary 36 and Theorem 16. Let us regularize it by convolution

ϕν := ϕ ∗x,t (ρνθν) ,

with the mollifiers (12) and (13). It follows that

ϕν ∈ C∞(Rd ×R+) ∩ C(R+;L1(Rd))

along with all its derivatives. This is enough to take φν(x, t) := ϕν(x, T − t) as a test function in (37) by 
approximation. Note that φν is a supersolution of the backward version of (21a) by Lemma 46, i.e.

∂tφν + ess sup
m≤ξ≤M

{
F ′(ξ) ·Dφν + tr

(
A(ξ)D2φν

)}
≤ 0 for any t < T .

Inequality (37) with the test function φν then implies that
ˆ

Rd

|u− v|(x, T )ϕν(x, 0) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕν(x, T ) dx,

for any T ≥ 0 and ν > 0. By the C(R+; L1(Rd)) regularity of ϕ, the convolution ϕν = ϕ ∗x,t (ρνθν) converges 
to ϕ in C([0, T ]; L1(Rd)) as ν → 0+. Passing to the limit as ν → 0+ then yields (35).

General case: 0 ≤ ϕ0 ∈ BLSC(Rd).
We would like to pointwise approximate ϕ0 by a monotone sequence ϕn

0 ↑ ϕ0 such that 0 ≤ ϕn
0 ∈ Cc(Rd). 

Take

ϕn
0 (x) := inf

y∈Rd

{
ϕ0(y)1|y|<n + n|x− y|2

}
≥ 0.

Then ϕn
0 is continuous as an infconvolution, see e.g. [24,31,5,4]. Also,

ϕn
0 (x) ≤ ϕ0(x)1|x|<n ∀x ∈ Rd,

which implies that ϕn
0 ∈ Cc(Rd). In the limit n → ∞, we have ϕn

0 ↑ (ϕ0)∗ = ϕ0. Let ϕn be the solution of 
(21) with initial data ϕn

0 , then by the previous step,
ˆ

Rd

|u− v|(x, T )ϕn
0 (x) dx ≤

ˆ

Rd

|u0 − v0|(x)ϕn(x, T ) dx,

for any T ≥ 0 and n. By the stability of minimal solutions (see Proposition 45), these solutions satisfy 
ϕn ↑ ϕ pointwise. So we conclude the proof of (35) by passing to the limit as n → ∞ using the monotone 
convergence theorem. �
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Remark 52. Going back to (20) and (36), we might think about the kinetic setting for (1) since

sign(u(x, t) − v(x, t))
u(x,t)ˆ

v(x,t)

{
∂tφ(x, t) + F ′(ξ) ·Dφ(x, t) + tr

(
A(ξ)D2φ(x, t)

)}
dξ

=
ˆ

R

|χ(ξ;u) − χ(ξ; v)|
{
∂tφ(x, t) + F ′(ξ) ·Dφ(x, t) + tr

(
A(ξ)D2φ(x, t)

)}
dξ,

with the usual kinetic function χ; cf. [22]. However, we did not explore this. For L1 kinetic solutions of (1), 
u and v would take values outside any bounded interval, so there would be further terms for large |ξ| and 
we do not have any idea of what might then be a reasonable version of (6).

4.4. Duality: proofs of Theorem 23 and Corollaries 25 and 37

Let us now establish the new characterization of viscosity supersolutions (Theorem 23). We need several 
technical lemmas.

Here is a first classical result on entropy solutions.

Lemma 53. Assume (H1) and u0 ∈ L∞(Rd). Then, the entropy solution of (1) is a distributional solution of 
(1),

¨

Rd×R+

⎛
⎝u∂tφ +

d∑
i=1

Fi(u)∂xi
φ +

d∑
i,j=1

Aij(u)∂2
xixj

φ

⎞
⎠ dx dt +

ˆ

Rd

u0(x)φ(x, 0) dx = 0 ∀φ ∈ C∞
c (Rd ×R+),

where Aij(u) =
´ u

0 Aij(ξ) dξ.

Proof. Take η(u) = ±u successively in the entropy inequalities, Definition 12(c). �
Here is another result on the continuity in time.

Lemma 54. Assume (H1), u0, v0 ∈ L∞(Rd) with u0 − v0 ∈ L1(Rd), u and v entropy solutions of (1) with 
initial data u0 and v0. Then u − v ∈ C(R+; L1(Rd)).

Proof of Lemma 54. By Theorem 19 with ϕ0 ≡ 1, we have

‖u(·, t) − v(·, t)‖L1 ≤ ‖u0 − v0‖L1 ∀t ≥ 0.

Since the left-hand side is finite, u −v ∈ L∞(R+; L1(Rd)). By the continuity in time with values in L1
loc(Rd)

of these functions, it remains to prove that

lim
R→∞

sup
t∈[0,T ]

ˆ

|x|≥R

|u(x, t) − v(x, t)|dx = 0 ∀T ≥ 0. (38)

To do so, we will use again Theorem 19.
Fix m < M such that u0 and v0 take their values in [m, M ], and consider

ϕR
0 (x) := ϕ0

( x )
, R > 0,
R
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where ϕ0 = ϕ0(x) is some kernel such that
⎧⎪⎪⎨
⎪⎪⎩

0 ≤ ϕ0 ∈ Cb(Rd),
ϕ0(x) = 0 for |x| ≤ 1/2,
and ϕ0(x) = 1 for |x| ≥ 1.

With that choice, ϕR
0 → 0 as R → ∞ locally uniformly in Rd. We then claim that the solutions ϕR of (21)

with initial data ϕR
0 converge locally uniformly in Rd×R+ to zero too. This is a consequence of the method 

of relaxed semilimits [9]. Let us give details for completeness. By the maximum principle,

‖ϕR‖∞ ≤ ‖ϕR
0 ‖∞ = ‖ϕ0‖∞ ∀R > 0.

We can then apply Propositions 41 and 43 to lim sup*ϕR as R → ∞ and get that it is a subsolution of 
(21a) satisfying

lim sup*ϕR(x, 0) = lim sup*ϕR
0 (x) = 0 ∀x ∈ Rd.

Let us recall that the above lim sup*ϕR
0 as R → ∞ is only taken in space; cf. (15) and Remark 44. Similarly 

lim inf*ϕR as R → ∞ is a supersolution of (2) with zero as initial data. The comparison principle then 
implies that

lim sup*ϕR ≤ lim inf*ϕR.

Hence ϕR converges locally uniformly in Rd × R+, as R → ∞, to the unique solution of (21) with zero 
initial data, that is zero itself.

Now we can show (38). By Theorem 19 with the previous m, M , and ϕR
0 ,

ˆ

|x|≥R

|u(x, t) − v(x, t)|dx ≤
ˆ

Rd

|u(x, t) − v(x, t)|ϕR
0 (x) dx

≤
ˆ

Rd

|u0(x) − v0(x)|ϕR(x, t) dx ≤
ˆ

Rd

|u0(x) − v0(x)| sup
s∈[0,T ]

ϕR(x, s) dx,

for any T ≥ t ≥ 0. The right-hand side vanishes as R → ∞ by the discussion above and the dominated 
convergence theorem. The proof of (38) is complete. �

Here is a regularization procedure for the weights.

Lemma 55. Assume (H1), m < M , ρν and θν are defined in (12) and (13), and 0 ≤ ϕ ∈ BLSC(Rd × R+)
satisfies (I) in Theorem 23. Then for any ν > 0, the convolution

ϕν := ϕ ∗x,t (ρνθν) ∈ C∞
b (Rd ×R+)

also satisfies (I) in Theorem 23.

Proof. By assumption,
ˆ

|u− v|(x, t)ϕ(x, s) dx ≤
ˆ

|u0 − v0|(x)ϕ(x, t + s) dx, (39)

Rd Rd
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for any t, s ≥ 0, u0 and v0 with values in [m, M ], and entropy solutions u and v of (1) with u0 and v0 as 
initial data. Our aim is to get the same result for ϕν. Let us use (39) not for u0 and v0, but their translations 
u0(· + y) and v0(· + y) for some fixed y ∈ Rd. Since the PDE part of (1) is invariant w.r.t. translation, the 
corresponding solutions are u(x + y, t) and v(x + y, t). Hence,

ˆ

Rd

|u− v|(x + y, t)ϕ(x, s) dx ≤
ˆ

Rd

|u0 − v0|(x + y)ϕ(x, t + s) dx

for any t, s ≥ 0. By changing the variable of integration, we obtain that
ˆ

Rd

|u− v|(x, t)ϕ(x− y, s) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x− y, t + s) dx.

Now we fix τ ≤ 0 and apply this formula, not for s but s − τ . We deduce that
ˆ

Rd

|u− v|(x, t)ϕ(x− y, s− τ) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x− y, t + s− τ) dx. (40)

Multiply then by ρν(y)θν(τ) and integrate over (y, τ) ∈ Rd ×R− to conclude. �
Later we will pass to the limit8

ϕ� := lim inf*ϕν as ν → 0+, (41)

and compare ϕ� with the function ϕ# defined in (18). To compare the two limits, we will assume in addition 
that

supp(ρν) ⊂ Bν(0) and supp(θν) ⊂ (−ν, 0). (42)

Here are fundamental properties of ϕ� and ϕ# that will be needed.

Lemma 56. Assume ϕ ∈ BLSC(Rd ×R+), ϕ� and ϕ# are as above, and (42) holds. Then:

(i) The limit ϕ� is the pointwise largest function in BLSC(Rd ×R+) that is less than or equal ϕ a.e. in 
Rd ×R+. Moreover ϕ� = ϕ a.e. in Rd ×R+.

(ii) For any t ≥ 0, ϕ#(·, t) is the pointwise largest function in BLSC(Rd) less than or equal ϕ(·, t) a.e. in 
Rd. Moreover ϕ#(·, t) = ϕ(·, t) a.e. in Rd.

Remark 57.

(a) Above “pointwise largest function” means, e.g. for the item (i), that if any other ψ ∈ BLSC(Rd ×R+)
is such that ψ ≤ ϕ a.e. in Rd ×R+, then necessarily

ψ(x, t) ≤ ϕ�(x, t) for all (x, t) ∈ Rd ×R+.

The second item has to be understood similarly.

8 This is the relaxed limit in (15) with the parameter ν instead of ε.
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(b) In the sequel, it is understood that “a.e.” holds in (x, t) in (i) and x in (ii), without possibly recalling it.

Proof. Let us prove (i). Note first that ϕ� is lower semicontinuous as a lower relaxed limit. To prove that 
ϕ� ≤ ϕ a.e., it suffices to do it for the Lebesgue points of ϕ. Such points (x, t) ∈ Rd × (0, ∞) satisfy

lim
ν→0+

1
νd+1

¨

Bν(x)×(t−ν,t+ν)

|ϕ(y, s) − ϕ(x, t)|dy ds = 0,

so by the assumptions on the mollifiers, see (12), (13) and (42), we find that

|ϕν(x, t) − ϕ(x, t)| ≤ 1
νd+1

¨

Bν(x)×(t,t+ν)

|ϕ(y, s) − ϕ(x, t)| ρ
(
x− y

ν

)
θ

(
t− s

ν

)
dy ds → 0 as ν → 0+.

It follows that

ϕ�(x, t) ≤ lim
ν→0+

ϕν(x, t) = ϕ(x, t),

at any Lebesgue point. Moreover, for any fixed (x, t), lower semicontinuity of ϕ implies that

ϕν(y, s) =
¨

Bν(y)×(s,s+ν)

ϕ(z, τ)︸ ︷︷ ︸
≥ϕ(x,t)+o(1)

ρ

(
y − z

ν

)
θ

(
s− τ

ν

)
dz dτ ≥ ϕ(x, t) + o(1)

as (y, s, ν) → (x, t, 0+), and we get that

ϕ�(x, t) = lim inf*ϕν(x, t) ≥ ϕ(x, t).

We conclude that ϕ� = ϕ a.e.
Now, to complete the proof of (i), it remains to prove that ϕ� ≥ ψ pointwise for any other ψ ∈ BLSC(Rd×

R+) such that ψ ≤ ϕ a.e. Given such a function, let

ψ� := lim inf*ψ ∗x,t (ρνθν).

As above, ψ ≤ ψ� pointwise; but also ψ� ≤ ϕ� pointwise since

ψ ∗x,t (ρνθν) ≤ ϕ ∗x,t (ρνθν).

This proves (i) and the arguments for (ii) are similar. �
Here is also a general inequality between ϕ� and ϕ# that will be needed.

Lemma 58. Under the hypotheses of the previous lemma, (ϕ#)∗ ≤ ϕ� pointwise in Rd ×R+.

Proof. Let us first prove that ϕ# is measurable in (x, t). We have

ϕ#(x, t) = sup
n≥1

=:ϕn(x,t)︷ ︸︸ ︷
inf
m≥n

inf
1
m≤r≤ 1

n

|y|≤ 1
n

1
meas(Br(y))

ˆ

Br(y)

ϕ(x + z, t) dz

︸ ︷︷ ︸
,

=:ϕn,m(x,t)



N. Alibaud et al. / J. Math. Pures Appl. 188 (2024) 26–72 53
where n and m are integers. For each 1
m ≤ r ≤ 1

n and |y| ≤ 1
n , the function

(x, t) �→ 1
meas(Br(y))

ˆ

Br(y)

ϕ(x + z, t) dz

is lower semicontinuous by Fatou’s lemma and ϕ ∈ BLSC (assumption in the previous lemma). The infimum 
ϕn,m remains lower semicontinuous, because r and y live in compact sets. Hence, ϕn = infm≥n ϕn,m is 
measurable in (x, t) and so is ϕ# = supn≥1 ϕn.

We can now prove the lemma. For any t ≥ 0, the measurable functions ϕ, ϕ# satisfy ϕ#(·, t) = ϕ(·, t)
a.e., hence we may use the Fubini theorem to conclude that

¨

Rd×R+

1{ϕ#=ϕ} dx dt =
ˆ

R+

⎛
⎝ ˆ

Rd

1{ϕ#(x,t)=ϕ(x,t)} dx

⎞
⎠dt = 0.

This proves that ϕ# = ϕ a.e. in (x, t), so that (ϕ#)∗ ≤ ϕ a.e. in (x, t). Hence (ϕ#)∗ ≤ ϕ� pointwise by 
Lemma 56(i). �

Here are further properties that we will need.

Lemma 59. Let ϕ, ψ ∈ BLSC(Rd ×R+) and ϕ#, ψ# as in (18). Then

(i) ϕ ≤ (ϕ#)∗ pointwise, and
(ii) if ϕ ≤ ψ# pointwise, then ϕ# ≤ ψ# pointwise.

Proof. We can show that ϕ ≤ ϕ# from the definition of ϕ# and the lower semicontinuity of ϕ, exactly as 
we showed that ϕ ≤ ϕ� in the proof of Lemma 56. In particular, ϕ ≤ (ϕ#)∗ which is part (i). For part (ii), 
use Lemma 56(ii). It says that ψ#(·, t) = ψ(·, t) a.e. in x, for each fixed t ≥ 0. Hence, ϕ(·, t) ≤ ψ(·, t) a.e. 
and the desired inequality follows again from the definitions of ϕ# and ψ#. �

We are now in position to prove Theorem 23.

Proof of Theorem 23. Let us proceed in several steps.

1) (II) =⇒ (I).
By (II), (ϕ#)∗ is a BLSC supersolution of (21a). In particular, for any fixed s ≥ 0, the function

(x, t) �→ (ϕ#)∗(x, t + s)

is also a supersolution of (21a). By Remark 20(b), we can apply Theorem 19 to this supersolution with the 
BLSC initial weight (ϕ#)∗(·, s). The result is that

ˆ

Rd

|u− v|(x, t)(ϕ#)∗(x, s) dx ≤
ˆ

Rd

|u0 − v0|(x)(ϕ#)∗(x, t + s) dx,

for any u0 = u0(x) and v0 = v0(x) with values in [m, M ], u and v entropy solutions of (1) with u0 and v0
as initial data, and t, s ≥ 0. This is exactly (I) but with (ϕ#)∗ instead of ϕ. To replace (ϕ#)∗ by ϕ, we use 
Lemma 59(i) for the left-hand side. For the right-hand side, we use that (ϕ#)∗ ≤ ϕ# pointwise and the fact 
that ϕ#(x, t + s) = ϕ(x, t + s) for a.e. x, see Lemma 56(ii). This implies (I) with ϕ, as desired.
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2) (I) =⇒ (II) for smooth weights ϕ.
Let us prove the reverse implication when 0 ≤ ϕ ∈ C∞

b (Rd ×R+). We will appropriately choose u0 and v0
later. For the moment, we assume that

m ≤ v0 ≤ u0 ≤ M and u0 − v0 ∈ L1(Rd).

By Lemmas 65 and 54, 0 ≤ u − v ∈ C(R+; L1(Rd)), and then we can use (I) to get
ˆ

Rd

(u− v)(x, T )ϕ(x, s) dx ≤
ˆ

Rd

(u0 − v0)(x)ϕ(x, T + s) dx, (43)

for any T, s ≥ 0. Let us fix s > 0 and determine what PDE ϕ satisfies. This will be done by injecting the 
weak formulation of (1) into (43) and then pass to the limit as T → 0+. By Lemma 53,

ˆ

Rd

(u− v)(x, T )φ(x, T ) dx =
¨

Rd×(0,T )

(
(u− v)∂tφ +

d∑
i=1

(Fi(u) − Fi(v))∂xi
φ

+
d∑

i,j=1
(Aij(u) −Aij(v))∂2

xixj
φ

⎞
⎠ dx dt

+
ˆ

Rd

(u0 − v0)(x)φ(x, 0) dx,

for any φ ∈ C∞
c (Rd × [0, T ]) and A′

ij = Aij . Note that we have rewritten the equation given by Lemma 53
with integrals in t < T and an additional final term at t = T . This follows from standard arguments 
using the L1

loc continuity in time of u and v. Since ϕ ∈ C∞
b , u − v ∈ Ct(L1

x) and u, v ∈ L∞, a standard 
approximation argument shows that we can take φ to be

φ(x, t) = ϕ(x, t + s− T ),

and get that

ˆ

Rd

(u− v)(x, T )ϕ(x, s) dx =
¨

Rd×(0,T )

(
(u− v)∂tϕ(t + s− T )

+
d∑

i=1
(Fi(u) − Fi(v))∂xi

ϕ(t + s− T )

+
d∑

i,j=1
(Aij(u) −Aij(v))∂2

xixj
ϕ(t + s− T )

⎞
⎠ dx dt

+
ˆ

Rd

(u0 − v0)(x)ϕ(x, s− T ) dx.

(44)

Here we assume that s > 0 and T is so small that s − T > 0. Inserting (44) into (43), we get
ˆ
d

(u0 − v0)(x)ϕ(x, s + T ) dx−
ˆ
d

(u0 − v0)(x)ϕ(x, s− T ) dx ≥
¨

d

(
. . .

)
dx dt.
R R R ×(0,T )
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We now would like to divide by 2T and pass to the limit as T → 0+. All the computations are justified, 
again because ϕ ∈ C∞

b , the solutions u and v are bounded, and u − v ∈ Ct(L1
x). We get that

ˆ

Rd

(u0(x) − v0(x))∂sϕ(x, s) dx

≥ 1
2

ˆ

Rd

(
(u0 − v0)∂sϕ(s) +

d∑
i=1

(Fi(u0) − Fi(v0))∂xi
ϕ(s)

+
d∑

i,j=1
(Aij(u0) −Aij(v0))∂2

xixj
ϕ(s)

⎞
⎠ dx.

Subtracting the term 
´

(u0 − v0)∂sϕ(s) dx/2 of the right-hand side implies that
ˆ

Rd

(u0(x) − v0(x))∂sϕ(x, s) dx

≥
ˆ

Rd

⎛
⎝ d∑

i=1
(Fi(u0) − Fi(v0))∂xi

ϕ(s) +
d∑

i,j=1
(Aij(u0) −Aij(v0))∂2

xixj
ϕ(s)

⎞
⎠ dx

=
ˆ

Rd

u0(x)ˆ

v0(x)

{
F ′(ξ) ·Dϕ(x, s) + tr

(
Aij(ξ)D2ϕ(x, s)

)}
dξ dx,

(45)

for any s > 0 and 0 ≤ u0 − v0 ∈ L1(Rd) such that both u0 and v0 take their values in the interval [m, M ]. 
It remains to choose u0 − v0 as an approximate unit, up to some multiplicative constant.

Let us introduce new parameters: x0 ∈ Rd, ε > 0 and m ≤ a < b ≤ M . We would like to choose

u0 − v0 = (b− a)1x0+(−ε,ε)d , (46)

with the constraint that both u0 and v0 only take the two values a and b. Writing x = (xi), take e.g.

u0(x) :=
{
a if x1 > (x0)1 + ε,

b if not,

and

v0(x) :=
{
a if x1 > (x0)1 + ε or x ∈ x0 + (−ε, ε)d,
b if not.

Then m ≤ v0 ≤ u0 ≤ M and u0 − v0 ∈ L1(Rd) as required. Inserting our choice into (45) and dividing by 
(b − a)εd, we deduce that

1
εd

ˆ

x0+(−ε,ε)d

∂sϕ(x, s) dx

≥ 1
εd

ˆ
d

1
b− a

bˆ

a

{
F ′(ξ) ·Dϕ(x, s) + tr

(
Aij(ξ)D2ϕ(x, s)

)}
dξ dx.
x0+(−ε,ε)
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Let now ξ ∈ (m, M) be any Lebesgue point of any arbitrarily chosen a.e. representative of (F ′, A). Take 
first the limit as a, b → ξ such that ξ is the center of each [a, b] in order to use the Lebesgue point property; 
take next the limit as ε → 0+. This gives us that

∂sϕ(x0, s) ≥ F ′(ξ) ·Dϕ(x0, s) + tr
(
Aij(ξ)D2ϕ(x0, s)

)
,

for any x0 ∈ Rd, s > 0, and Lebesgue point ξ. That is ϕ is a supersolution of (21). This completes the proof 
of the remaining implication in the case where ϕ is C∞

b (and then ϕ# = ϕ).

3) (I) =⇒ (II) for nonnegative BLSC weights ϕ.
In this case we use the regularization procedure of Lemma 55. By this lemma

ϕν = ϕ ∗x,t (ρνθν)

satisfies (I) since ϕ does by assumption. By the previous step we deduce that ϕν is a supersolution of (21a). 
Hence

ϕ� = lim inf*ϕν

is also a supersolution by stability (cf. Proposition 41). But to prove (II), we need to show that ϕ# is a 
supersolution. We will do this by showing that ϕ� = (ϕ#)∗ pointwise (at least for positive times). To prove 
that ϕ� ≤ (ϕ#)∗, we need to use (I). By (I),

ˆ

Rd

|u− v|(x, t)ϕ(x, s) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, t + s) dx,

for any u0 and v0 in L∞(Rd, [m, M ]) and corresponding solutions u and v of (1) and t, s ≥ 0. By Lemma 56(i), 
we also have that ϕ� = ϕ a.e. In particular, there is a null set N ⊂ R+ such that ϕ(·, s) = ϕ�(·, s) a.e., for 
any s /∈ N .9 Fixing T > 0, there thus exists a sequence sn → T− such that sn /∈ N , for any n. Choosing 
moreover tn := T − sn, we deduce that

ˆ

Rd

|u− v|(x, tn)ϕ�(x, sn) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, T ) dx.

Let us pass to the limit as n → ∞ in the left-hand side. To do so, we use Fatou’s lemma, which is possible 
because of the lower semicontinuity of ϕ� and the continuity of entropy solutions with values in L1

loc(Rd)
which implies that

|u− v|(x, tn) → |u0 − v0|(x) for a.e. x

(along a subsequence). In the limit, it then follows that
ˆ

Rd

|u0 − v0|(x)ϕ�(x, T ) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, T ) dx

for any u0 and v0 in L∞(Rd, [m, M ]) and T > 0. To continue, we argue as in the previous step where we 
chose 0 ≤ u0 − v0 ∈ L1(Rd) to be an approximate unit up to a multiplicative constant, cf. (46). The same 
arguments imply that for any T > 0,

9 To find N use that 
˜

Rd×R+ 1{ϕ�=ϕ} dx ds = 0 =
´
R+ meas{ϕ(·, s) = ϕ�(·, s)} ds by Fubini.
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ϕ�(·, T ) ≤ ϕ(·, T ) a.e.

By Lemma 56(ii), we conclude that ϕ� ≤ ϕ# pointwise (for positive times). Hence, ϕ� ≤ (ϕ#)∗ and then 
ϕ� = (ϕ#)∗ pointwise (for positive times) by Lemma 58. This implies that (ϕ#)∗ = ϕ� is a supersolution of 
(21a). The proof of Theorem 23 is complete. �

We have now established all preliminary results and are ready to prove our duality results (Corollaries 25
and 37).

Proof of Corollary 25. We already know that ϕ ∈ Wm,M,ϕ0 by Theorem 19. Let us prove the formula with 
the inf. Take ϕ ∈ Wm,M,ϕ0 , which means that ϕ ∈ BLSC and satisfies Theorem 23(I) with ϕ(t = 0) ≥ ϕ0. 
By this theorem, ϕ satisfies (II) as well, that is ϕ# is a supersolution of (21a). Recall that ϕ ≤ (ϕ#)∗
pointwise by Lemma 59(i). In particular

(ϕ#)∗(t = 0) ≥ ϕ(t = 0) ≥ ϕ0.

Thus ϕ# is a supersolution of the Cauchy problem (21), and ϕ ≤ ϕ# by Proposition 7. Then Lemma 59(ii)
implies that (ϕ)# ≤ ϕ# pointwise, and we conclude that

(ϕ)#(x, t) = inf {ϕ#(x, t) : ϕ ∈ Wm,M,ϕ0} ∀(x, t) ∈ Rd ×R+

(with an equality because ϕ ∈ Wm,M,ϕ0). The proof is complete. �
Proof of Corollary 37. Fix m < M . By what precedes, the solution semigroup Gt of (21) is a strongly 
continuous semigroup of continuous operators on Cb ∩ L∞

int(Rd) and satisfies (30). Let now Ht be another 
arbitrary such semigroup satisfying (30), i.e. such that

ˆ

Rd

|Stu0 − Stv0|ϕ0 dx ≤
ˆ

Rd

|u0 − v0|Htϕ0 dx,

for any u0 and v0 in L∞(Rd, [m, M ]), 0 ≤ ϕ0 ∈ Cb ∩ L∞
int(Rd), and t ≥ 0. We have to prove that for any 

such ϕ0 and t,

Gtϕ0 ≤ Htϕ0.

First the minimal solution of (21) is the unique continuous solution, that is

ϕ(x, t) = Gtϕ0(x) ∀(x, t) ∈ Rd ×R+.

Moreover, the above assumption on Ht implies that

Htϕ0(x) ∈ Wm,M,ϕ0 .

By Corollary 25 we deduce that for any x ∈ Rd and t ≥ 0,

(Gtϕ0)# (x) ≤ (Htϕ0)# (x),

where we recall that
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(Gtϕ0)# (x) = lim inf
r→0+

y→x

1
meas(Br(y))

ˆ

Br(y)

Gtϕ0(z) dz

(and similarly for H). Since both Gtϕ0(x) and Htϕ0(x) are continuous in x, we have (Gtϕ0)# = Gtϕ0 and 
(Htϕ0)# = Htϕ0 pointwise and the proof is complete. �
4.5. L∞

int versus L1: proofs of Propositions 29, 30, and Theorem 33

Recall that these results justify the use of L∞
int for (2), instead of L1. We need a result on the profile 

U(r) = c0
´∞
r

e− s2
4 ds with c0 such that U(0) = 1.

Lemma 60. For any (x, t) ∈ R ×R+, let

ψ(x, t) :=
{
U

(
|x|/

√
t
)

if t > 0,
1{0}(x) if t = 0.

Then ψ ∈ BUSC(R ×R+) and is a subsolution of (24).

Proof. Let us prove that ψ is a subsolution of (24). In the domain {x �= 0, t > 0}, we find as in the proof of 
Lemma 49 that

∂tψ = ∂2
xxψ = (∂2

xxψ)+

in the classical sense. If now x = 0, we have

∂tψ(0, ·) = 0 ≤ (∂2
xxψ(0, ·))+

since ψ(0, ·) is constant in time. Let us now show that ψ is BUSC. It is clearly continuous for positive t
and it only remains to prove that

1x=0 ≥ lim sup
R×R+�(y,t)→(x,0)

U
(
|y|/

√
t
)
,

for any x ∈ R. If x = 0, the result follows since U(r) ≤ U(0) = 1 for any r ≥ 0. If x �= 0, then we use that

|y|/
√
t → ∞ as (y, t) → (x, 0+)

together with the fact that limr→∞ U(r) = 0. The proof of Lemma 60 is now complete. �
Proof of Proposition 29. Theorem 35 implies the if-part. Let us prove the only-if-part. It is based on the 
following pointwise lower bound:

ϕ(x, t) ≥ U
(
1/

√
t
)

sup
x+[−1,1]

ϕ0 ∀x ∈ R,∀t > 0, (47)

where U is the profile from the previous lemma, 0 ≤ ϕ0 ∈ Cb(R) and ϕ is the solution of (24) with ϕ0 as 
initial data. Let us prove (47). Fix x and t. The sup on the right-hand side is attained at some x0 ∈ x +[−1, 1]. 
By the previous lemma,

(y, s) �→ ϕ0(x0)U
(
|y − x0|/

√
s
)
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is a BUSC subsolution of (24). At s = 0, it equals the function

y �→ ϕ0(x0)1{x0}(y)

which is less or equal to ϕ0 = ϕ0(y). By the comparison principle (Theorem 3),

ϕ(y, s) ≥ ϕ0(x0)U
(
|y − x0|/

√
s
)

∀y ∈ R,∀s > 0.

Taking (y, s) = (x, t), we then get that

ϕ(x, t) ≥ ϕ0(x0)︸ ︷︷ ︸
= supx+[−1,1] ϕ0

U
(
|x− x0|/

√
t
)

︸ ︷︷ ︸
≥U(1/

√
t)

.

This completes the proof of (47). From that bound the only-if-part of Proposition 29 is obvious since 
U(1/

√
t) is positive for t > 0. �

Proof of Proposition 30. Let x0 ∈ R and c > 0 be such that

ρ ≥ c1{x0},

where ρ is defined in (25), and define

ψn(x, t) := ncψ
(
nx− x0, n

2t
)
,

where ψ is given by Lemma 60. It is easy to see that ψn remains a subsolution of (24). Moreover, it is 
BUSC with

ϕn(x, 0) ≥ ψn(x, 0) ∀x ∈ R,

by (25). Hence ϕn ≥ ψn by the comparison principle and it suffices to show that

lim
n→∞

ψn(x, t) = ∞ ∀x ∈ R,∀t > 0.

But this is quite easy because

ψn(x, t) = ncU
(∣∣∣x− x0

n

∣∣∣ /√t
)
,

for any x ∈ R and t > 0, and both the constant c and the profile U(·) are positive. The proof of Proposition 30
is complete. �

To show Theorem 33, we need the following lemma whose proof is elementary and left to the reader.

Lemma 61. For any ϕ0 : Rd → Rd, sup |ϕ0| ≤ | supϕ0| + | inf ϕ0|.

Proof of Theorem 33. The fact that E = Cb ∩ L∞
int(Rd) satisfies (27)–(28) follows from Theorem 16 and 

Corollary 36. Let now E be another normed space satisfying such properties and let us prove that it is 
continuously embedded into Cb ∩ L∞

int(Rd). Recall that (28) is required to hold for any data b = b(ξ) and 
a = a(ξ) satisfying (H2). Choose e.g. the eikonal equation



60 N. Alibaud et al. / J. Math. Pures Appl. 188 (2024) 26–72
∂tϕ =
d∑

i=1
|∂xi

ϕ|

and denote by Ge
t its semigroup. By the representation Proposition 9,

Ge
tϕ0(x) = sup

x+t[−1,1]d
ϕ0.

Since Ge
t=1 maps E ⊆ Cb ∩ L1(Rd) into X = E

‖·‖E ⊆ L1(Rd) by assumption, the function

x �→ sup
x+[−1,1]d

ϕ0

belongs to L1(Rd) for any ϕ0 ∈ E. Using that E is a vector space, −ϕ0 ∈ E, and the function

x �→ inf
x+[−1,1]d

ϕ0

also belongs to L1(Rd). By Lemma 61, we conclude that E ⊆ Cb ∩ L∞
int(Rd). Finally we use that Ge

t=1 :
E → X is continuous at ϕ0 ≡ 0 to obtain that for any ‖ϕn

0‖E → 0, as n → ∞, we have Ge
t=1ϕ

n
0 → 0 in X. 

Combining this with the continuity of the inclusion X ⊆ L1(Rd), we obtain that

∥∥∥∥∥ sup
x+[−1,1]d

ϕn
0

∥∥∥∥∥
L1

x

→ 0.

Using once again that E is a normed space, the same holds with −ϕ0, that is
∥∥∥∥ inf
x+[−1,1]d

ϕn
0

∥∥∥∥
L1

x

→ 0.

By Lemma 61, we conclude that ‖ϕn
0‖int → 0 which completes the proof. �
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Appendix A. Complementary proofs for viscosity solutions

A.1. Minimal viscosity solutions

Here are the proofs of Theorem 6 and Propositions 7 and 45; the ideas are inspired by [26,10,33] and the 
details are given for completeness.

Proof of Theorem 6. Consider the infconvolution (ϕ0)ε as in (14), which is at least Cb with inf ϕ0 ≤ (ϕ0)ε ≤
(ϕ0)∗ ≤ supϕ0, and

lim ↑ (ϕ0)ε = sup(ϕ0)ε = (ϕ0)∗,

ε↓0 ε>0
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see e.g. [24,31,5,4]. Let ϕε be the viscosity solution of (2a) with initial data (ϕ0)ε, whose well-posedness is 
ensured by Theorem 4. By the maximum principle, see Remark 5, we have the bounds

inf ϕ0 ≤ ϕε ≤ supϕ0.

We can then define the real-valued and bounded function

ϕ := sup
ε>0

ϕε.

We will see that this is our desired minimal solution.
The key step is to prove that

ϕ = sup
ε>0

ϕε = lim inf*ϕε (A.1)

where the relaxed limit is taken as ε → 0+. This follows by elementary arguments (see e.g. [5,4]) since 
ϕε is at least lower semicontinuous and nondecreases as ε ↓ 0, which follows by comparison since (ϕ0)ε
nondecreases as ε ↓ 0. Let us give details for the reader’s convenience. For any fixed (x, t),

lim inf*ϕε(x, t) ≤ lim
ε→0+

ϕε(x, t) = ϕ(x, t).

Moreover, for any sequence (xn, tn, εn) → (x, t, 0+) such that εn ≤ εm for any n ≥ m, we have ϕεn(xn, tn) ≥
ϕεm(xn, tn). Fixing m and taking the limit in n,

lim inf
n→∞

ϕεn(xn, tn) ≥ lim inf
n→∞

ϕεm(xn, tn) ≥ ϕεm(x, t)

by lower semicontinuity of ϕεm . Taking the limit in m,

lim inf
n→∞

ϕεn(xn, tn) ≥ lim
m→∞

ϕεm(x, t) = ϕ(x, t).

This proves (A.1).
By stability by sup (Proposition 40), ϕ is a subsolution of (2a), and by stability by relaxed limit (Propo-

sition 41), ϕ is a supersolution of (2a). To pass to the limit in the initial data, use Proposition 43 to infer 
that

(ϕ)∗(x, t = 0) ≤ lim sup*ϕε(x, 0) = lim sup* [ϕε(·, 0)] (x) ≤ (ϕ0)∗(x)

(the first relaxed limit as ε → 0+ is in (x, t) and the second in x). This gives the inequality of subsolution 
as in Definition 1(aii). For the other inequality, use that ϕ is lower semicontinuous, as a sup of continuous 
functions, with

ϕ(x, t = 0) = sup
ε>0

ϕε(x, 0) = (ϕ0)∗(x).

This proves that ϕ is a solution of (2). It only remains to prove that it is minimal. Let ϕ be another bounded 
discontinuous solution. Noting that

(ϕ0)ε ≤ (ϕ0)∗ ≤ ϕ∗(t = 0),

we use once more the comparison principle to deduce that ϕε ≤ ϕ, for any ε > 0, so ϕ ≤ ϕ as ε → 0+. �
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Proof of Proposition 7. We argue as in the end of the proof of Theorem 6: Assume ϕ is a bounded super-
solution of (2), then (ϕ0)ε ≤ (ϕ0)∗ ≤ ϕ∗(t = 0) and, by comparison, ϕε ≤ ϕ, etc. �
Proof of Proposition 45. Let ϕ denote the minimal solution of (2) with initial data ϕ0 := supn(ϕn

0 )∗. We 
have to prove that ϕ = supn ϕn

, where ϕ
n

is the minimal solution of (2) with initial data ϕn
0 . By Propo-

sition 7, we have ϕ
n
≤ ϕ for any integer n. We thus already know that ϕ ≥ supn ϕn

and it only remains 
to prove the other inequality. To do so, it suffices to show that supn ϕn

is a supersolution of (2) (with 
initial data ϕ0). Indeed, by Proposition 7, we then get ϕ ≤ supn ϕn

. It is at this stage that we need to use 
monotonicity. Recall that n �→ ϕn

0 (x) is nondecreasing for any x. By the comparison principle, cf. Remark 8, 
the same monotonicity holds for the minimal solutions which means that n �→ ϕ

n
(x, t) is nondecreasing for 

any fixed x and t. Since ϕ
n

is lower semicontinuous, we can argue as for (A.1) and get that

sup
n

ϕ
n

= lim inf*ϕn
,

where the above relaxed limit is taken as n → ∞. By stability, see Propositions 41 and 43, we deduce that 
lim inf*ϕn

is a supersolution of (2a) with initial data

lim inf*ϕn
(t = 0) = lim inf*(ϕ

n
0 )∗.

But this initial data is precisely

lim inf*(ϕ
n
0 )∗ = sup

n
(ϕn

0 )∗ = ϕ0,

again by similar arguments than for (A.1). This completes the proof. �
A.2. Representation formulas

Let us prove Propositions 9 and 10. These results are classical in control theory, but usually written for 
continuous or maximal solutions, see [31,4,34,35]. Here we give the proofs for minimal solutions.

Proof of Proposition 9. By the assumption that a ≡ 0, (2a) is now

∂tϕ = sup
ξ∈E

{b(ξ) ·Dϕ} = sup
q∈C

{q ·Dϕ},

where C = co {Im(b)} is compact. By control theory [5,4] the viscosity solutions of (2) are given by

ϕ(x, t) = sup
x+tC

ϕ0

if ϕ0 is bounded and uniformly continuous. In the general case, consider the infconvolution (14). Recall that 
(ϕ0)ε is at least bounded and uniformly continuous, and (ϕ0)ε ↑ (ϕ0)∗ pointwise as ε ↓ 0. It follows that 
the solution of (2a) with (ϕ0)ε as initial data is

ϕε(x, t) = sup
x+tC

(ϕ0)ε.

By Proposition 45, the minimal solution of (2) is thus

ϕ(x, t) = supϕε(x, t) = sup sup (ϕ0)ε = sup sup (ϕ0)ε = sup (ϕ0)∗.

ε>0 ε>0 x+tC x+tC ε>0 x+tC
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Rigorously speaking, Proposition 45 implies that this is the minimal solution with initial data (ϕ0)∗, but it 
coincides with the minimal solution associated to ϕ0 by Proposition 7. �
Proof of Proposition 10. Equation (2a) is given by

∂tϕ = sup
ξ∈E

{
b(ξ) ·Dϕ + tr

(
σa(ξ)(σa)T(ξ)D2ϕ

)}
,

where E is compact and the coefficients b and σa are continuous by (19). By stochastic control theory [31], 
the viscosity solution of (2) is given by

ϕ(x, t) = sup
ξ·∈Ξ

E {ϕ0(Xx
t )}

if ϕ0 is bounded and uniformly continuous, where Ξ and Xx
s are defined in Proposition 10. Let us now 

repeat the argument of the proof of Proposition 9 considering the infconvolution (ϕ0)ε and the corresponding 
solution of (2a)

ϕε(x, t) = sup
ξ·∈Ξ

E {(ϕ0)ε(Xx
t )} .

We find that the minimal solution of (2) is

ϕ(x, t) = sup
ε>0

ϕε(x, t) = sup
ξ·∈Ξ

sup
ε>0

E {(ϕ0)ε(Xx
t )} .

Since (ϕ0)ε ↑ (ϕ0)∗ as ε ↓ 0, we conclude the proof using the monotone convergence theorem:

sup
ε>0

E {(ϕ0)ε(Xx
t )}

= lim
ε↓0

↑E {(ϕ0)ε(Xx
t )} = E

{
lim
ε↓0

↑(ϕ0)ε(Xx
t )
}

= E {(ϕ0)∗(Xx
t )} . �

Appendix B. Complementary proofs for entropy solutions

For completeness, we recall the proof of Theorem 13 which is Theorem 1.1 in [32] under (H1). We will 
take the opportunity to give details, but we will not perform the doubling of variables to show Lemma 15
for which we will refer to [11].

Recall that [22,11] proved the well-posedness of L1 kinetic or renormalized solutions which are equivalent 
to entropy solutions in L1 ∩ L∞. The definition of entropy solutions in L1 ∩ L∞ uses the energy estimate 
(2.8) of [22],

¨

Rd×R+

K∑
k=1

(
d∑

i=1
∂xi

ζik(u)
)2

dx dt ≤ 1
2‖u0‖L2 < ∞ if u0 ∈ L1 ∩ L∞,

where ζik(u) =
´ u

0 σA

ik(ξ) dξ. As a consequence “L2” was used e.g. in [11, Definition 2.2] instead of “L2
loc” in 

Definition 12. But we have the following result:

Lemma 62 (Local energy estimate). Assume (H1), u0 ∈ L∞(Rd), 0 ≤ φ ∈ C∞
c (Rd), and T ≥ 0. If u is an 

entropy solution of (1) in the sense of Definition 12 and

‖u0‖L∞ + ‖u‖L∞ + ‖φ‖W 2,1 ≤ M,
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then there is a constant C only depending on T , M , F and A such that

¨

Rd×(0,T )

K∑
k=1

(
d∑

i=1
∂xi

ζik(u(x, t))
)2

φ(x) dx dt ≤ C.

Proof. We use Definition 12(c) with the entropy η(u) = |u|2 and the corresponding fluxes

q(u) = 2
uˆ

0

ξF ′(ξ) dξ and r(u) = 2
uˆ

0

ξA(ξ) dξ.

We also take a test function φ(x)1[0,T ](t) where 0 ≤ φ ∈ C∞
c (Rd). It is not smooth in time but a standard 

approximation argument shows that it can be used in Definition 12(c) if we add also a final value term at 
t = T . Here we need the L1

loc continuity in time of entropy solutions. The result is

≥0︷ ︸︸ ︷ˆ

Rd

u2(x, T )φ(x) dx+2
¨

Rd×(0,T )

K∑
k=1

(
d∑

i=1
∂xi

ζik(u)
)2

φ dx dt

≤
ˆ

Rd

u2
0(x)φ(x) dx +

¨

Rd×(0,T )

⎛
⎝ d∑

i=1
qi(u)∂xi

φ +
d∑

i,j=1
rij(u)∂2

xixj
φ

⎞
⎠ dx dt.

By assumption ‖u0‖L∞ + ‖u‖L∞ + ‖φ‖W 2,1 ≤ M , so it follows that

{
‖q(u)‖L∞(Rd×R+,Rd) ≤ 2M2 ess sup−M≤ξ≤M |F ′(ξ)|, and
‖r(u)‖L∞(Rd×R+,Rd×d) ≤ 2M2 ess sup−M≤ξ≤M |A(ξ)|.

With all these estimates, the conclusion readily follows. �
Let us now give precise references on how to show the Kato inequality.

Sketch of the proof of Lemma 15. Copy the proof of Theorem 3.1 of [11] with l = ∞ and zero renormaliza-
tion measures μu

l ≡ 0 ≡ μv
l . With the aid of the previous local energy estimate, check that every computation 

holds until (3.19) – even if u and v satisfy (a)–(b) of Definition 12 with L2
loc and not L2 as in [11]. This gives 

(20) with φ ∈ C∞
c (Rd × (0, ∞)). Use an approximation argument for φ(x, t)1[0,T ](t) and the continuity in 

time with values in L1
loc to get initial and final terms. �

To show the uniqueness of entropy solutions, it suffices to find a good φ in (20), e.g. an exponential as in 
[21,32]. This gives the result below.

Lemma 63. Assume (H1) and u, v are L∞ entropy solutions of (1) with initial data u0, v0 ∈ L∞(Rd). Then 
for any t ≥ 0 and m < M such that u and v take their values in [m, M ],

ˆ

Rd

|u− v|(x, t)e−|x| dx ≤ e(LF +LA)t
ˆ

Rd

|u0 − v0|(x)e−|x| dx,

where LF = ess sup[m,M ] |F ′| and LA = ess sup[m,M ] tr(A).
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Remark 64. By the maximum principle, the result remains true for any [m, M ] containing the values u0 and 
v0. But at this stage of this appendix, this principle is only known in L1 ∩L∞ (or L1) by [22,11] and it will 
follow later in L∞.

Sketch of the proof. The proof is inspired by [21,32]. Consider

φε(x, t) := e(LF +LA)(T−t)−
√
ε2+|x|2 ,

for some arbitrary ε > 0, and check that

|u− v|∂tφε +
d∑

i=1
qi(u, v)∂xi

φε +
d∑

i,j=1
rij(u, v)∂2

xixj
φε ≤ |u− v|

{
∂tφε + LF |Dφε| + LA sup

λ∈Sp(D2φε)
λ+

}
≤ 0

by the Ky Fan inequality (33). Then by the Kato inequality (20) with φε,

ˆ

Rd

|u− v|(x, T )e−
√

ε2+|x|2 dx ≤ e(LF +LA)T
ˆ

Rd

|u0 − v0|(x)e−
√

ε2+|x|2 dx

and the result follows in the limit ε → 0+. �
Proof of Theorem 13. By Lemma 63, it remains to show the existence. The proof is inspired by [22,11]. 
Given u0 ∈ L∞(Rd), take (un

0 )n in L1 ∩ L∞(Rd) such that

− ess supu−
0 ≤ un

0 ≤ ess supu+
0 and un

0 → u0 in L1
loc(Rd). (B.1)

Let un be the entropy solution of (1) with initial data un
0 . By the maximum principle (in L1 ∩ L∞), we 

know that

− ess supu−
0 ≤ un ≤ ess supu+

0 . (B.2)

Moreover, by Lemma 63, we have for any R ≥ 0, T ≥ 0, and integers n, m,

‖um − un‖C([0,T ];L1({|x|<R}))

= sup
t∈[0,T ]

ˆ

|x|<R

|um(x, t) − un(x, t)|dx

≤ eR sup
t∈[0,T ]

ˆ

Rd

|um(x, t) − un(x, t)|e−|x| dx

≤ eRe(LF +LA)T
ˆ

Rd

|um
0 (x) − un

0 (x)|e−|x| dx,

where the latter integral tends to zero as n, m → ∞ by (B.1). Hence there exists some u ∈ L∞(Rd ×R+) ∩
C(R+; L1

loc(Rd)) such that

lim
n→∞

un = u in C([0, T ];L1
loc(Rd)), ∀T ≥ 0. (B.3)

It remains to show that u is an entropy solution with initial data u0.
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We have to derive the L2
loc energy estimate of Definition 12(a), and check that it is enough to pass to the 

limit in the equation as in [22,11]. By Lemma 62 and the L∞ bounds in (B.2), the sequence

{
d∑

i=1
∂xi

ζik(un)
}

⊂ L2(Rd ×R+)

is uniformly bounded in L2(K), for any k = 1, . . . , K, and compact K ⊂ Rd×R+. It then weakly converges in 
L2(K) to 

∑d
i=1 ∂xi

ζik(u). We can identify the limit because 
∑d

i=1 ∂xi
ζik(un) also converges to 

∑d
i=1 ∂xi

ζik(u)
in the distribution sense. Indeed

ζik(·) =
·ˆ

0

σA

ik(ξ) dξ

is locally Lipschitz continuous since σA

ik(·) is locally bounded, and (B.2) and (B.3) imply that ζik(un) →
ζik(u) in C([0, T ]; L1

loc(Rd)) for all T ≥ 0. And as claimed previously, all corresponding derivatives necessarily 
converge in the distribution sense. The proof of part (a) in Definition 12 is complete. Moreover we have 
found that

d∑
i=1

∂xi
ζik(un) ⇀

d∑
i=1

∂xi
ζik(u) in L2(K),

for any k = 1, . . . , K and compact K ⊂ Rd ×R+.
To show the chain rule in part (b) of Definition 12, we start from the chain rule for un,

d∑
i=1

∂xi
ζβik(un) = β(un)

d∑
i=1

∂xi
ζik(un) ∈ L2(Rd ×R+), (B.4)

valid for any β ∈ C(R), k = 1, . . . , K, and integer n. Recall also that

ζβik(un) =
unˆ

0

σA

ik(ξ)β(ξ) dξ.

By the previous convergence results and bounds, the right-hand side of (B.4) converges weakly in L2(K) to 
β(u) 

∑d
i=1 ∂xi

ζik(u). We can argue as before to show that the left-hand side converges weakly in L2(K) to ∑d
i=1 ∂xi

ζβik(u). We thus get part (b) of Definition 12 in the limit. Moreover,

d∑
i=1

∂xi
ζβik(un) ⇀

d∑
i=1

∂xi
ζβik(u) in L2(K), (B.5)

for any β ∈ C(R), k = 1, . . . , K, and compact K ⊂ Rd ×R+.
Now, it remains to prove part (c) of Definition 12. The only difference with [22,11] is that the previous 

convergences hold locally in L2 and not globally. But since we use test functions, the reasoning is the same. 
Let us recall it for completeness. We focus on the quadratic term. Take β =

√
η′′ and apply the chain rule 

Definition 12(b),
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¨

Rd×R+

η′′(un)
K∑

k=1

(
d∑

i=1
∂xi

ζik(un)
)2

φ dx dt

=
¨

Rd×R+

η′′(un)
K∑

k=1

(
d∑

i=1
∂xi

ζik(un)
)⎛

⎝ d∑
j=1

∂xj
ζjk(un)

⎞
⎠φ dx dt

=
¨

Rd×R+

K∑
k=1

(
d∑

i=1
∂xi

ζ
√
η′′

ik (un)
)⎛

⎝ d∑
j=1

∂xj
ζ
√
η′′

jk (un)

⎞
⎠φ dx dt

=
¨

Rd×R+

K∑
k=1

(
d∑

i=1
∂xi

ζ
√
η′′

ik (un)
√

φ

)2

dx dt

=
K∑

k=1

∥∥∥∥∥
d∑

i=1
∂xi

ζ
√
η′′

ik (un)
√

φ

∥∥∥∥∥
2

L2(Rd×R+)

.

But, by (B.5), we have for any k = 1, . . . , K,

d∑
i=1

∂xi
ζ
√
η′′

ik (un)
√

φ ⇀

d∑
i=1

∂xi
ζ
√
η′′

ik (u)
√

φ in L2(Rd ×R+).

It follows that ∥∥∥∥∥
d∑

i=1
∂xi

ζ
√
η′′

ik (u)
√

φ

∥∥∥∥∥
L2(Rd×R+)

≤ lim inf
n→∞

∥∥∥∥∥
d∑

i=1
∂xi

ζ
√
η′′

ik (un)
√

φ

∥∥∥∥∥
L2(Rd×R+)

,

that is

lim inf
n→∞

¨

Rd×R+

η′′(un)
K∑

k=1

(
d∑

i=1
∂xi

ζik(un)
)2

φ dx dt

≥
K∑

k=1

∥∥∥∥∥
d∑

i=1
∂xi

ζ
√
η′′

ik (u)
√

φ

∥∥∥∥∥
2

L2(Rd×R+)

=
¨

Rd×R+

η′′(u)
K∑

k=1

(
d∑

i=1
∂xi

ζik(u)
)2

φ dx dt,

where similar chain rule computations have been used for u. This is enough to pass to the limit in the 
entropy inequalities of Definition 12(b) and the proof is complete. �

As a byproduct of the previous proof, we get the lemma below.

Lemma 65. Assume (H1), u0 ∈ L∞(Rd), and u is the entropy solution of (1). Then ess inf u0 ≤ u ≤
ess supu0. Moreover, if v is the entropy solution with initial data v0, then u0 ≥ v0 implies u ≥ v.

Proof. For the comparison principle, define un
0 (x) := u0(x)1|x|<n and vn0 similarly. As previously, the 

associated entropy solutions un and vn respectively converge towards u and v in C([0, T ]; L1
loc(Rd)), T ≥ 0, 

and thus a.e. up to taking a (common) subsequence. If u0 ≥ v0, then un
0 ≥ vn0 for all n, so un ≥ vn by the 
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comparison principle in L1 ∩L∞, and u ≥ v at the limit. For the maximum principle, apply the comparison 
principle to v0 := ess inf u0 and ess supu0 successively. �
Appendix C. Measurable weights and viscosity supersolutions

Let us provide for completeness a version of Theorem 23 for measurable and essentially bounded weights 
ϕ : Rd ×R+ → R. The result will involve a version of ϕ# from (18) in both space and time. It is defined as

ϕ##(x, t) := lim inf
r→0+

y→x
R+�s→t

1
rmeas(Br(y))

¨

Br(y)×(s,s+r)

ϕ(z, τ) dz dτ. (C.1)

Notably ϕ## ∈ BLSC with ϕ## ≤ ϕ a.e., but we may not have ϕ## = ϕ a.e. when ϕ /∈ BLSC; cf. 
Remark 67.

Theorem 66 (Measurable weights and supersolutions). Assume (H1), m < M , and ϕ : Rd × R+ → R is 
measurable, nonnegative, essentially bounded, and such that

ˆ

Rd

|u− v|(x, t)ϕ(x, s) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, t + s) dx a.e. t, s ≥ 0, (C.2)

for any u0 and v0 in L∞(Rd, [m, M ]) with respective associated entropy solutions u and v of (1). Then ϕ##
in (C.1) is a viscosity supersolution of (21a).

Remark 67. The reciprocal assertion may fail. A one dimensional example is ϕ(x, t) = 1E(x) with a fat 
Cantor set E (a closed nowhere dense set of positive measure). Indeed ϕ## ≡ 010 is always a solution of 
(21a), but choosing (1) as the heat equation ∂tu = ∂2

xxu, u0 = 1R\E , and v0 ≡ 0, we cannot have (C.2)
because the right-hand side is zero and the left-hand side is positive.

Remark 68 (The optimal measurable weight is ϕ). Given in addition 0 ≤ ϕ0 ∈ BLSC(Rd) such that

ϕ0(x) ≤ ϕ##(x, t = 0) for all x ∈ Rd, (C.3)

we have
ˆ

Rd

|u− v|(x, t)ϕ0(x) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x, t) dx a.e. t ≥ 0.

This is (22) with the merely measurable weight ϕ. Notably the minimal viscosity solution ϕ of (21) remains 
optimal within this class of weights satisfying (C.2) and (C.3), because ϕ ≤ ϕ## ≤ ϕ where the last 
inequality holds a.e.

Remark 69.

(a) Going back to ϕ ∈ BLSC satisfying Theorem 23(I), and applying Theorems 23 and 66, we get two 
viscosity supersolutions ϕ# and ϕ## of (21a). This is however coherent because they actually represent 
the same supersolution. Indeed ϕ## is nothing else than ϕ� in (41), and we have seen during the proof 
of (I) =⇒ (II) that (ϕ#)∗ = ϕ� = ϕ## pointwise.

10 Use that ϕ## is LSC, nonnegative, and equals zero in the dense open set (R \ E) × R+.
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(b) For general ϕ ∈ BLSC, (ϕ#)∗ ≤ ϕ## pointwise by Lemma 58 but the reverse inequality may fail. An 
example is ϕ(x, t) = 1t
=t0 with some fixed t0, which gives (ϕ#)∗ = ϕ and ϕ## ≡ 1.

We actually already proved the above theorem since ϕ## = ϕ� from (41). But let us give details for the 
reader’s convenience.

Proof of Theorem 66. By “a.e.” in (C.2), we assume having a null set N ⊂ R+ such that (C.2) holds for all 
t, s ≥ 0 such that s /∈ N and t + s /∈ N . Fix r > 0 and define

ϕr(x, t) := 1
rmeas(Br(x))

¨

Br(x)×(t,t+r)

ϕ(y, s) dy ds.

As for (40), it is easy to deduce from (C.2) that
ˆ

Rd

|u− v|(x, t)ϕ(x− y, s− τ) dx ≤
ˆ

Rd

|u0 − v0|(x)ϕ(x− y, t + s− τ) dx,

for all y ∈ Rd, t ≥ 0, and s − τ ≥ 0, such that s − τ /∈ N and t + s − τ /∈ N . Fix t, s ≥ 0, multiply by 
1

r meas(Br(x)) and integrate over (y, τ) ∈ Br(0) ×(−r, 0), which we can do excepted for τ ∈ (s −N) ∪(t +s −N). 
But the latter set is a null set, and this shows that ϕr satisfies (C.2) for all t, s ≥ 0. Since moreover ϕr is 
continuous in (x, t), it is a viscosity supersolution of (21a) by Theorem 23 and so is ϕ## = lim inf*ϕr as 
r → 0+. �
Appendix D. Nonlinear to linear semigroups

In this section we give a sample result on how we from nonlinear duality can recover standard duality 
notions in the linear case. It contains the discussion and results mentioned in Remark 39(c) and the notation 
and setting is taken from Section 3.3. First note that X = Cb ∩ L∞

int was a natural space for the weight 
semigroup Gt, but other X could be more appropriate if we consider other semigroups than St. Here are 
some reasonable assumptions which we will need:

X �= ∅ is a Banach space continuously embedded and dense in L1, (D.1)

such that

∀ϕ0 ∈ L1,∀ψ0 ∈ X, |ϕ0| ≤ |ψ0| ⇒
[
ϕ0 ∈ X and ‖ϕ0‖X ≤ ‖ψ0‖X

]
, (D.2)

(i.e. X is a Banach lattice) and for any mollifier ρν (cf. (12)) and ϕ0 ∈ X,

X � ρν ∗ ϕ0 → ϕ0 strongly in X with ‖ρν ∗ ϕ0‖X ≤ ‖ρν‖X‖ϕ0‖L1 . (D.3)

Note that hereafter L1 = L1(Rd) etc.

Proposition 70 (Relation with standard duality). Take a weakly-� continuous semigroup Tt of weakly-� con-
tinuous linear operators on L∞ = (L1) such that each Tt is positive and commutes with translations.11 Let 
(Tt) be its predual semigroup on L1 defined by

11 That is Tϕ0 ≥ 0 if ϕ0 ≥ 0, and T (ϕ0(· + h)) = (Tϕ0)(· + h) for all ϕ0 ∈ L∞ and h ∈ Rd.
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ˆ

Rd

ϕ0Ttu0 dx =
ˆ

Rd

u0(Tt)ϕ0 dx, ∀u0 ∈ L∞,∀ϕ0 ∈ L1,∀t ≥ 0. (D.4)

Assume also that there exist X satisfying (D.1)–(D.2)–(D.3), a strongly continuous semigroup Ht of contin-
uous operators on X+ := {ϕ0 ∈ X : ϕ0 ≥ 0} satisfying

ˆ

Rd

|Ttu0 − Ttv0|ϕ0 dx ≤
ˆ

Rd

|u0 − v0|Htϕ0 dx, ∀u0, v0 ∈ L∞,∀ϕ0 ∈ X+,∀t ≥ 0, (D.5)

and that Ht is the minimal such semigroup. Then (Tt) is necessarily the unique extension of Ht from X+

onto L1 as a semigroup of bounded linear operators.

Remark 71. For a general duality theory for linear semigroups, see [47]. Let us recall that (D.4) defines a 
strongly continuous semigroup (Tt) of bounded linear operators on L1.12 The semigroup Ht would be the 
new predual defined as in Remark 39(a), which would thus coincide with (Tt) in the linear case.

Proof. Take u0 ≥ 0, v0 ≡ 0 and ϕ0 ≥ 0 in (D.5), to get
ˆ

Rd

u0(Tt)ϕ0 dx =
ˆ

Rd

ϕ0Ttu0 dx ≤
ˆ

Rd

u0Htϕ0 dx.

This shows that

(Tt) ≤ Ht on X+. (D.6)

To continue, we claim that (Tt) is a strongly continuous semigroup of continuous operators on X+ satisfying 
(D.5). Let us verify this claim. Let us prove that (Tt) satisfies (D.5), as Ht does. Since Tt ≥ 0 and is linear,

|Ttu0 − Ttv0| = |Tt(u0 − v0)+ − Tt(u0 − v0)−| ≤ Tt(u0 − v0)+ + Tt(u0 − v0)−

for any u0 and v0 in L∞. Hence

ˆ

Rd

|Ttu0 − Ttv0|ϕ0 dx ≤
ˆ

Rd

(
Tt(u0 − v0)+ + Tt(u0 − v0)−

)
ϕ0 dx

=
ˆ

Rd

(
(u0 − v0)+ + (u0 − v0)−

)
(Tt)ϕ0 dx =

ˆ

Rd

|u0 − v0|(Tt)ϕ0 dx,

for any ϕ0 ∈ X+. To show next that (Tt) is bounded for ‖ · ‖X , we use that (Tt) ≥ 0, the previous bound 
(D.6), the assumption (D.2), and the continuity of Ht for this norm. For the time continuity of (Tt), we 
regularize any ϕ0 ∈ X by convolution thanks to (D.3). Take ϕν

0 := ρν ∗ ϕ0 → ϕ0 in X as ν → 0+, and note 
that

‖ϕ0 − (Tt)ϕ0‖X ≤ ‖ϕ0 − ϕν
0‖X + ‖ϕν

0 − (Tt)ϕν
0‖X + ‖(Tt)(ϕν

0 − ϕ0)‖X︸ ︷︷ ︸
≤
∑

± ‖Ht(ϕν
0−ϕ0)±‖X by (D.6)

. (D.7)

12 Indeed, given ϕ0 ∈ L1, u0 ∈ L∞ �→
´
ϕ0Ttu0 is weakly- continuous thus corresponding to a unique element (Tt)�ϕ0 ∈ L1 ⊂

(L∞)�. This operator (Tt)� is bounded in L1 since Tt is weakly- continuous in L∞, thus bounded. The semigroup (Tt)� is weakly 
continuous thus strongly continuous.
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Note also that (Tt)(ϕ0 ∗ ρν) = ρν ∗ (Tt)ϕ0 since (Tt) : L1 → L1 is linear, bounded, and commutes with 
translations. Hence

‖ϕν
0 − (Tt)ϕν

0‖X = ‖ρν ∗ (ϕ0 − (Tt)ϕ0)‖X ≤ ‖ρν‖X‖ϕ0 − (Tt)ϕ0‖L1

by (D.3), and letting t → 0+ before ν → 0+ in (D.7) implies that

lim
t→0+

‖ϕ0 − (Tt)ϕ0‖X = 0

by the (time) strong continuity of (Tt) on L1. This proves our claim, and we infer that (Tt) = Ht on X+. 
The result follows by density. �
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