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A B S T R A C T

The paper presents a full-field crystal-plasticity computational investigation of 10με small-strain-offset yield
surfaces with pointed vertexes that are seen in the elastoplastic transition of pre-strained polycrystal metals. It is
concluded that the shape of these yield surfaces obtained with a full-field spectral solver compares reasonably
well with calculated ones by a simple aggregate Taylor model. The influence of material strength, work hard-
ening, and texture are discussed. An assessment is made of the origin of anelasticity and Bauschinger effects at
small strains, considering two mechanisms. Firstly, there is a built-in composite effect in crystal elastoplastic
simulations due to the mixture of elastically and plastically loaded grains. Secondly, kinematic hardening of
reverse slip systems will contribute to the Bauschinger effect. Based on analyses of the computed selected cases
and comparison to previously published measurements, it is concluded that both mechanisms are important.

1. Introduction

During the elastoplastic transition, a fraction of the grains deforms
plastically while the rest are elastically loaded. In the classical
continuum-plasticity modelling, with a flow rule, the elastoplastic
transition is modelled to occur where all grains have started to deform
plastically. Pragmatically, when measuring the yield stress, e.g., from a
tensile test, the yield stress is taken as the stress at a certain plastic strain
during monotonic loading in that stress direction. However, in some
grains, plasticity starts at significantly lower stress, and an increasing
fraction of the grains gradually reaches the limit for the onset of dislo-
cation glide, i.e., plastic flow. Hence, the yield locus depends on the
magnitude of the probing strain.

The literature on calculations of texture effects on the conventional
yield surface obtained with a probing strain of ≈ 0.2% by full-field
crystal plasticity modelling, is extensive, see e.g., (Aria et al., 2023;
Han et al., 2020; Liu and Pang, 2021; Zhang et al., 2019). However,
spatially resolved calculations of the instant yield surface after a pre-
strain, using a small probing strain of ≈ 10− 3%, has not been reported
earlier. Experimental works on measuring the yield loci after
pre-deformation, in the early part of the elastoplastic transition, started
in the 1950s. Motivated by the interest in the initial stress and
work-hardening anisotropy and for the Bauschinger effect, Naghdi and
Rowley (1954) performed experiments on thin-walled, tubular

specimens, measuring the yield locus at very small plastic strains. Based
on their experimental results, they found that this yield locus was
convex but with initial stress and work-hardening anisotropy. Further-
more, their measurements strongly suggested the existence of a pointed
vertex in the loading direction. This pointed vertex only appeared when
probing yielding at very small strains. The tip of the pointed vertex
would point approximately onto the conventional yield surface, typi-
cally measured at 0.2% plastic strain. Many similar experiments were
performed in the following years, with torsion, tension, compression,
and the inner pressure of thin-walled tubes, e.g. (Phillips and Lee, 1979)
on pure commercial aluminum. With sufficiently small probing strains,
all investigations reported a pronounced Bauschinger effect, but it was
unclear if a pointed vertex evolved during pre-deformation. Hecker
(1976) reviewed 54 experimental works in 1976 and concluded that
only five reported sharp corners, sixteen reported rounded corners,
while the majority did not report vertexes at all. Hecker suggested that a
sharp vertex could be erased during the unloading required to measure
the vertex. Later, the existence of a sharply pointed vertex was verified
by Kuwabara et al. (2000), avoiding the unloading by performing an
abrupt strain-path change, as suggested by Kuroda and Tvergaard
(1999), see also Kuroda (2022). Whether it is a sharp or a blunt vertex
may be difficult to conclude from the experimental resolution, but at
least a “nose” on the yield surface is seen when being measured with
small probing strains.

* Corresponding author.
E-mail address: knut.marthinsen@ntnu.no (K. Marthinsen).

Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

https://doi.org/10.1016/j.euromechsol.2024.105417
Received 17 February 2024; Received in revised form 13 June 2024; Accepted 10 August 2024

European Journal of Mechanics / A Solids 108 (2024) 105417 

Available online 13 August 2024 
0997-7538/© 2024 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:knut.marthinsen@ntnu.no
www.sciencedirect.com/science/journal/09977538
https://www.elsevier.com/locate/ejmsol
https://doi.org/10.1016/j.euromechsol.2024.105417
https://doi.org/10.1016/j.euromechsol.2024.105417
https://doi.org/10.1016/j.euromechsol.2024.105417
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2024.105417&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The existence of a pointed vertex is not part of the classical incre-
mental continuum plasticity theory, where the strain-rate tensor can be
derived from a stress potential (Hill, 1950). From the crystal-plasticity
theory, but disregarding the elasticity, the analyses by Bishop and Hill
(1951) and Koiter (1953) concluded that the result of the crystal plas-
ticity occurring in each grain could be described by an effective yield
surface of the polycrystal and associated flow, similar as in the
continuum-plasticity theories. The analysis of the homogenization of the
plastic Taylor model provided a direct interpretation of the Tresca yield
surface, which can be derived in the limit of infinitely many slip systems
(Koiter, 1953). Even though the rate-independent crystal-plasticity
theory with the Schmid assumption results in faceted yield surfaces with
many vertexes for each crystal (56 for fcc), the averaging of all crystals
in a representative volume element (RVE) could not explain the pointed
vertex observed experimentally in the loading direction.

A physical mechanism for the pointed vertex was provided by Hill
(1967) and is based on the behavior of the mixture of elastically and
plastically loaded grains existing during the elastoplastic loading of
polycrystalline aggregates. A mathematical description of this mecha-
nism requires elasticity to be included in the crystal plasticity theory.
Calculations of pointed vertexes were then made by Hutchinson (1970)
including elasticity, using the Taylor-Lin model (Lin, 1957) and a
self-consistent homogenization scheme (Hill, 1965) as a simplified
model for the elastoplastic crystal plasticity behavior. This provided a
qualitative prediction of the phenomenon.

Based on analyzing double slip, Pan and Rice (1983) suggested a
qualitative explanation why a viscoplastic model for the resolved shear
stress will make the pointed vertex blunted, rather than sharp. To the
authors’ knowledge, a quantitative investigation of this difference and
the limit of a vanishing strain rate sensitivity have not yet been
published.

Interestingly, the presence of pointed vertexes can also be described
by path-independent deformation theories (Batdorf, 1949) based on
Hencky’s theory (Hencky, 1924), where the stress depends on the total
plastic strain. These theories were originally developed for dealing with
nonlinear, small plastic strains occurring in the elastoplastic transition.
Due to the theoretical shortcomings of the deformation theory, as
pointed out by Hill (1950), i.e., not being able to deal with that the
plastic deformation in most cases is path independent, these theories are
not frequently used, and their validity is otherwise, in the plastic regime,
limited to cases of proportional or simple loading.

The main issue with the classical incremental flow theory is that
without the pointed vertex, the predictions may not correctly capture all
cases of plastic buckling and plastic flow instabilities like shear-band
formation or local necking (Kuroda, 2022; Yoshida and Kuroda,
2012). For example, a realistic prediction of sheet necking in biaxial
tension depends sensitively to the magnitude of the introduction of an
initial finite (geometrical) imperfection. The reason why the
crystal-plasticity models can give a better description is the pointed
vertex, which allows a rapid change of the direction of the plastic
strain-rate tensor, which shortens the strain path towards the instability
mode. The classical incremental plasticity flow theory with the common
assumption of associated flow, on the other hand, requires the
strain-rate tensor to remain normal to the outer, enveloping conven-
tional yield surface during the sliding along the yield surface towards the
new loading mode of the instability. This requires a finite significant
amount of perturbation for local strain-path change toward the insta-
bility to be realized. A motivation for the current investigation of the
prediction of pointed vertices by crystal plasticity models is the recent
progress (Yoshida, 2017; Yoshida and Tsuchimoto, 2018; Zhang and
Han, 2023; Zhang et al., 2022) in modifying the classical incremental
flow theory, where the influence of the pointed vertex is modelled by
phenomenological non-associated flow rules that are inspired by and
calibrated to crystal plasticity simulations.

In crystal plasticity modelling, the sharply pointed vertex is a
consequence of sharp corners of the single crystal yield surface when it,

in the rate-independent case, obeys the Schmid condition with a critical
resolved shear stress for each slip system. However, a strain rate-
dependent model will predict an increasingly rounded pointed vertex
with increased strain-rate sensitivity. With a rounded corner of
increasing sharpness, the required amount of perturbation decreases,
and with a sharp vertex, the instabilities become infinitesimal (Yoshida
and Kuroda, 2012). The main problem with using the flow theory and
adding some imperfections is the sensitivity to the magnitude of the
small imperfections required to predict the instabilities.

Modified versions of the path-independent deformation theories can
predict biaxial necking, plastic buckling, shear-band formation, and
related instabilities without finite disturbances by applying the so-called
corner theories (Christoffersen and Hutchinson, 1979; Gotoh, 1985;
Storen and Rice, 1975). However, the justification and applicability of
these models are questionable for more general strain paths (Kuroda,
2022). The instabilities can, however, also be predicted by modifications
of the flow theory, where the associated flow condition, i.e., the
requirement that the plastic strain increment is always normal to the
yield surface, is relaxed (Kuroda and Tvergaard, 2001a, 2001b; Simo,
1987; Yoshida, 2017). These approaches are promising, but further
testing and development of the modelling of the plastic strain increment
are still required. Complementary to challenging experimental testing of
complex strain paths, virtual tests by crystal-plasticity simulations pro-
vide valuable data, insight, and understanding of the behaviour to be
modelled, provided the crystal plasticity models grasp the essence of the
mechanisms involved.

An important aspect of the subsequent yield surfaces measured at
small-probing strains is the strong Bauschinger effect they reveal,
compressing the yield surface in the reverse direction of the loading.
Using an aggregate crystal-plasticity model, which included elasticity,
Hutchinson (1970) showed clearly that the Bauschinger effect could be
qualitatively captured as a composite effect of the coexisting elastically
and plastically loaded grains. Toth et al. (2000) argue that the
Taylor-Lin model (Lin, 1957) can qualitatively capture the Bauschinger
effect. A few works report quantitative agreement between crystal
plasticity simulations and experiments based on this mechanism only
(Iftikhar and Khan, 2021; Iftikhar et al., 2021, 2022), while other works
report the need for additional explicit models for backstress at the
slip-system level (Hu et al., 2015; Lu et al., 2020).

The Bauschinger effect is important in spring-back after forming. In
continuum models, it can be captured by either kinematic hardening,
see, e.g., the review by Chaboche (2008), or yield-surface distortions
see, e.g. (Barlat et al., 2011, 2020; Holmedal, 2019; Reyne and Barlat,
2022), combined with models for an appropriate, very fast evolution of
corresponding internal variables, e.g., the backstress tensor. However,
the Bauschinger effect may also lead to anelasticity, which makes pre-
dicting springback during forming operations challenging (Wagoner
et al., 2013). Anelasticity is mechanically reversible and thermody-
namically irreversible and is, therefore, different from both elasticity
and plasticity (Li and Wagoner, 2021). The anelasticity phenomenon
cannot be adequately predicted without a backstress for the critical
resolved shear stress of each slip system, distinguishing forward and
backward slip directions (Bong et al., 2017; Kassner et al., 2013).

The origin of the backstress at the slip-system level is that plastic
strain occurring by dislocation glide is, to some extent, reversible. At the
very small strain scale, probably indistinguishable from the crystal
elasticity, it contributes to the reverse of the bow out of dislocations
between obstacles (Friedel, 1953; Mott, 1952). More distinguishable
from the elastic strain scale is the influence of partly reversible dislo-
cation mechanisms like Orowan looping or prismatic loops from in-
teractions with particles, and reversing dislocation sources when the
load is reversed (Van Dokkum et al., 2021). In theory, the emitted loops
from a Frank-Read source would, without other interactions, shrink
back to the source and a similar number of opposite loops will be
generated. The stress contribution from dislocations that pile up towards
grain boundaries or other obstacles vanishes when the load is reversed,
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and the build-up of opposite pileups requires a certain small straining in
the reverse loading mode before contributing to the yield stress. In
high-resolution crystal plasticity simulations, this phenomenon can in
principle be captured based on strain gradient plasticity (Erdle and
Boehlke, 2023; Wulfinghoff et al., 2015). Without the added complexity
of the gradient plasticity, such mechanisms justify models with kine-
matic hardening of the slip systems, where the critical resolved shear
stress gains extra strength during loading as compared to that of its
reverse slip system, as suggested by Peeters et al. (2001) for polarization
of cell wall dislocation structures in IF-steels, and in more phenome-
nological models (Holmedal et al., 2008; Kitayama et al., 2013; Rauch
et al., 2007; Sharma et al., 2022; Zecevic and Knezevic, 2015). Both the
kinematic hardening of the slip systems and the composite of elastically
and plastically loaded grains provide qualitative mechanisms and ex-
planations for the anelastic behavior. A key question is whether both are
equally important.

Amongst the more recent investigations, the group of Khan (Iftikhar
et al., 2021; Khan et al., 2009, 2010a, 2010b) has conducted experi-
mental studies on the evolution of the subsequent yield surfaces and
elastic constants on low (AA6061-T6511) and high (AA1100)
work-hardening alloys and on an annealed AA6061 alloy. They used a
10με strain offset definition to identify yielding after unloading and
reloading for several levels of pre-deformations.

Along with the experimental studies of the yield surfaces at small
plastic strains, crystal plasticity models have been employed to study the
subsequent yielding of polycrystalline materials. These models can be
distinguished into two groups. Works without a backstress term for the
critical resolved shear stress have so far been analysed by Taylor type
aggregate models, either as stand-alone for single strain paths (Hutch-
inson, 1970; Iftikhar et al., 2021; Lin and Ito, 1965; Radi and
Abdul-Latif, 2012; Schurig et al., 2007) or coupled with finite element
formulations (Iftikhar et al., 2021, 2022). Considering a backstress term
for the critical resolved shear stress, Hu et al. (2015) calculated
yield-surface sections by simulating shear and normal stresses of a
quasi-three-dimensional ring section using rate-independent CPFEM. In
a recent investigation, Lu et al. (2020) made a coarse-meshed CPFEM
model of a torsion-tension test of an entire thin-walled tube using 36000
elements representing one grain each for a random texture. They found
that the results were similar to when using a representative volume
element (RVE) with 125 grains meshed by 27000 elements, applying
periodic boundary conditions. A backstress for each slip system was
required for calibration of the considered commercial pure poly-
crystalline aluminium alloy.

The present study uses the full-field, crystal-plasticity software
DAMASK (Roters et al., 2019) to calculate yield-surface sections at small
probing strains. The DAMASK spectral solver allows a high spatial res-
olution with shorter computational time compared to CPFEM but re-
quires periodic boundary conditions. Hence, the yield-surface sections
need to be calculated based on crystal-plasticity simulations of an RVE.
In addition, a simpler rate-dependent Taylor-Lin type aggregate model
(Lin, 1957) is used to see how the results compare to the simulations by a
mean-field solver. The contribution to the Bauschinger effect by
including a model for the backstress of the slip systems is investigated
and discussed. As mentioned above, models for latent softening of
reverse slip systems are known from the literature. Here one such model
(part of the DAMASK implementation) is applied at very small strains to
model the elastoplastic transition. Simple prestrains in proportional load
and a prestrain by a series of two subsequent strain paths are considered.
The influence on the corresponding yield surface of the material
strength, the work hardening, and the initial texture is analysed.

2. Virtual experiments

The spectral full-field solver of the DAMASK software (Roters et al.,
2019) is used to model the constitutive behaviour of polycrystals. A
representative volume containing 376 grains is synthesized for

calculating selected yield-surface sections. Models are tested with and
without the Bauschinger effect on the slip system level. For comparison,
selected cases are also calculated by a rate-dependent Taylor-Lin
aggregate model. The latter model applies the same constitutive equa-
tions as in DAMASK but is formulated as a co-rotational hypo-elastic
crystal-plasticity model. Hence, the stiffness tensor relates the Cauchy
stress rate and the elastic part of the velocity gradient tensor, whereas, in
DAMASK, it relates the second Piola-Kirchhoff stress tensor and the
Green-strain tensor in the intermediate configuration. Since elastic
strains are small in metals, the difference is negligible; therefore, the
same stiffness tensor is applied for both models in the current work.

2.1. Crystal plasticity constitutive model

A brief description of the governing equations is provided, while it is
referred to Roters et al. (2019) for more detailed information. The total
deformation gradient can be decomposed into elastic and plastic parts
multiplicatively as

F= Fe⋅Fp (1)

where Fe represents rigid body rotation and elastic distortion of the
crystal lattice and Fp covers the plastic shear deformations due to slip on
specific crystalline planes in corresponding Burgers vector directions.
The second Piola-Kirchhoff stress, S, in the intermediate configuration is
related linearly to the Green strain, Ee =

(
FTe ⋅Fe − I

)
/2 as

S=C : Ee (2)

where C is the fourth-order elastic stiffness tensor and I is the second-
order identity tensor. The plastic velocity gradient Lp is given by the
slip activity as

Lp = Ḟp⋅F− 1
p =

∑N

α=1
γ̇αbα

⊗ nα (3)

where N is the number of slip systems, counting both negative and
positive slip directions. γ̇α displays the shear rate on slip system α indi-
cated by the two-unit vectors nα (slip plane normal) and bα (slip direc-
tion). The rate-dependent plastic flow evolution on a slip system is
modelled similarly to Wollmershauser et al. (2012) but here in a
rate-dependent formulation that is implemented in the DAMASK
software.

γ̇α = γ̇0〈
τα − gα

bs
gfor

〉
1/m

(4)

here 〈x〉 = max(x,0) denotes the Macauley brackets, and τα = S : (bα
⊗

nα) is the resolved shear stress, where α is numbering the 24 fcc slip
systems {111}〈110〉, counting both backward and forward slip di-
rections. Furthermore, gα

bs is the backstress, γ̇0 denotes a reference shear-
strain rate and m is the strain-rate sensitivity. The ‘forest’ slip resistance
gfor and the backstress gα

bs evolve asymptotically towards g1,for and g1,bs,
respectively. The following relationships can formulate a behaviour
similar to the one described by Wollmershauser et al. (2012):

gfor= g1,for

(

1 − exp

(

−
θ0,forΓ
g1,for

))

+ g0,for (5)

ġα
bs = θ0,bs exp

(

−
γαθ0,bs
g1,bs

)

(γ̇α − γ̇α’
), gα

bs(t = 0) = 0 (6)

Slip system αʹ is the reverse slip system of α. θ0,for and θ0,bs denote the
reference self-hardening coefficients and Γ =

∑

α
γα and γα =

∫
γ̇αdt. The

initial ‘forest’ slip resistance is g0,for. Cases without backstress are
covered by the same formulation by setting θ0,bs = 0 (and any non-zero
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g1,bs). The Taylor model implementation only has this simplified version
implemented.

2.2. Material hardening parameters and model set-up

Four cases without backstress are studied: weak without hardening,
weak with hardening, strong without hardening, and strong with
hardening. Their corresponding hardening parameters are listed in
Table 1. Furthermore, one case with backstress is included with hard-
ening parameters listed in Table 2. To investigate the effect of texture,
four distinct axi-symmetric textures and a random texture were
employed. The selected axisymmetric fibre textures, <100>, <111>
and <100> + <111>, are typical for thin-walled tubes that are used for
torsion-tension-compression tests to probe yield-surface sections. Their
inverse pole figures are shown in Fig. 1. The DREAM3D microstructural
software analysis package (Groeber and Jackson, 2014) was used to
generate the RVE with 376 grains (Fig. 2). Due to the local formulation
of the classical crystal plasticity theory, the size of the RVE is arbitrary, i.
e., the same result will be obtained by increasing the side length of the
RVE by any factor and keeping the same average strain rate. The
equivalent sphere diameter of the grains in the RVE in Fig. 2, setting the
volume equal to 1 mm3, obeys an approximately normal distribution
that then would have a mean diameter equal to 168.7μm and a standard
deviation of 24.7μm. Periodic boundary conditions were applied.

2.3. Yield-surface section calculations

The virtual test sequence consists of first a prestrain imposed by a
prescribed stress path to the desired strain level. At the end of the pre-
strain, the total strain is kept constant, allowing a stress relaxation for 1
h. After that, a reverse stress path with unloading through the elastic
region is performed until reaching a point on the opposite side of the
yield surface with 10με plastic strain offset from the elastic curve. Next,
the sequence simulation is rerun, but the unloading step is stopped in the
middle between the relaxed stress point and the reverse yielding point.
This point is inside the elastic region and is taken as the centre, from
which various loading directions can then be probed. During an exper-
imental determination of the yield surface, all points on the yield surface
would be probed in a series, returning to the elastic region between each
new yield point obtained in various stress directions. This methodology
results in some accumulation of small plastic strains during the probing
of the yield points, and only a few points can be measured. In the sim-
ulations, this source of error is avoided by repeating an independent
sequence for each point, i.e., for each probed loading direction, the
sequence of loading steps towards the yield surface centre during the
pre-deformation. For all calculated yield-surface sections, 360 evenly
distributed strain paths were probed this way.

To characterize the yield behaviour, the linear elastic trend and the
deviation from elasticity are calculated similarly as in experiments. They
are approximately equal to a deviation from a linear relation between
the Von Mises effective stress and strain relation. The DAMASK code
uses the first Piola-Kirchhoff stress, P, in the prescribed mixed boundary
condition. Hence, piecewise proportional strain paths in the σ11 − σ12
section of the yield surface is considered by imposing the following

mixed boundary condition for the probing load from the yield-surface
section centre:

Ḟ =

⎡

⎣
ė γ̇ ∗

0 ∗ ∗

0 0 ∗

⎤

⎦, P =

⎡

⎣
∗ ∗ 0
∗ 0 0
∗ ∗ 0

⎤

⎦ (7)

here the ʹ́∗ʹ́ means unknown, ė is the nominal normal strain rate and γ̇ is
the engineering shear strain rate. The deformation gradient tensor at the
start of the probing, i.e., at the yield-surface centre, equals Fc. To mea-
sure the probing strain, a new deformation gradient F̃ is introduced,
which is re-initialized to the identity tensor at the time when reaching

the yield-surface centre, i.e., it obeys ˙̃F = L⋅F̃, which is the same equa-
tion as F, but with another initial condition (i.e., F̃ = F⋅F− 1c ). Using the
condition (Eq. (7)), all Cauchy stress components, except σ11 and σ12
remain approximately equal to zero during the small probing stresses
considered. An equivalent von Mises stress can be calculated from σ11
and σ12 as σvM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ211 + 3σ212
√

, and the von Mises strain is estimated as

εvM =
1̅
̅̅
3

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(F̃11 − 1)2 + (F̃22 − 1)2 + (F̃33 − 1)2

)
+ F̃

√ 2

12
. (8)

Due to the elasticity relation, assuming a linear relation between the
2nd Piola-Kirchhoff stress and the Green strain, a quadratic fitting is
made to capture the elastic part of the vonMises stress-strain curve, from
which an offset of 10με is taken as the yield point.

Since the quadratic term is unsuitable for describing the elastic trend
beyond relatively small extrapolations, a linear curve is applied when
considering larger offsets. This does not cause much error since when the
offset is larger, the deviation from linearity between the Cauchy stress
and the von Mises strain becomes very small compared to the offset
itself.

3. Results

The models were used to calculate the σ11 -
̅̅̅
3

√
σ12 section of the yield

surface, a section that combinations of torsion, tension, and compression
of thin-walled tubes can measure. Examples of typical texture compo-
nents for axisymmetric tubes are calculated. Materials with different
combinations of with or without work hardening and high or low
strength are also included in the investigation. The pointed vertex ap-
pears only after a pre-deformation, but only a small plastic strain is
required to establish the vertex. The influence of pre-deformations in
different directions, different amounts of prestrain, and a pre-
deformation with an abrupt strain-path change during the prestrain
are investigated by relevant example cases. Some cases are calculated
both with the DAMASK full-field approach and compared to the Taylor-
Lin mean field model solutions.

3.1. Influence of strength and work hardening

Yield-surface sections for a Von Mises prestrain of 2%, in tensile
(Fig. 3a) or shear (Fig. 3b) mode, are plotted. The four cases without a
backstress in Table 1 are compared for the case of a random texture. It is

Table 1
Material properties used in the crystal plasticity modelling for cases without
back stress (θ0,bs = 0, and an arbitrary g1,bs). For all cases, the non-zero elasticity
parameters are C11 = 104.55 GPa, C12 = 52.25 GPa and C44 = 26.15 GPa, the
strain rate sensitivity is m = 0.01 and γ̇0 = 0.01 s− 1.

Case θ0,for (MPa) g0,for (MPa) g1,for (MPa)

Weak, without hardening 0 10 –
Weak, with hardening 440 10 12
Strong, without hardening 0 100 –
Strong, with hardening 440 100 120

Table 2
Material properties used in the crystal plasticity modelling of the case by Iftikhar
et al. (2021). For all cases, the elasticity parameters are C11 = 104.55 GPa,
C12 = 52.25 GPa and C44 = 26.15 GPa, the strain rate sensitivity is m = 0.01
and γ̇0 = 0.001 s− 1.

Case θ0,for
(MPa)

g0,for
(MPa)

g1,for
(MPa)

θ0,bs
(GPa)

g1,bs
(MPa)

Without
backstress

500 26 96.5 0 –

With backstress 550 9 16 250 18
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seen that regardless of the types of strength and work hardening, a
moderate Bauschinger effect is observed, where the yield-surface sec-
tions enclose the origin for all the cases in Fig. 3. Due to the elastoplastic
composite effect, strongly distorted and anisotropic yield-surface sec-
tions are seen with 10με strain deviation from elasticity. Interestingly,
the pointed vertex in the loading direction is significantly rounded, for
both preloading directions in Fig. 3. The yield surfaces are normalized
by the stress at the tip of the rounded pointed vertex in the loading di-
rection. The work hardening does not make much of a difference for the
case with a prestress by shear. However, the stronger material has a
smaller yield surface with a stronger Bauschinger effect.

3.2. Yield-surface sections at different prestrains and probing strains

Fig. 4 shows yield-surface sections for a random texture after a 2%
von Mises prestrain. To obtain a stress direction for which σ11 =

̅̅̅
3

√
σ12,

a ratio γ̇/ė = 2.075 was applied during the prestrain at a von Mises
strainrate of 10− 5s− 1.

The yield-surface sections in Fig. 4 are all normalized by the σ11 yield
stress of the outer yield surface (10000 με). Four different offsets from
the elastic strain (10, 100, 1000, and 10000 με) are included. With a
small offset, the distortions of the yield loci are stronger, while at higher
offsets, the distortions vanish. The pointed vertex is rounded, but the tip
almost touches the outer locus (10000 με) for all offsets.

The result of different pre-straining on the yield loci is plotted in
Fig. 5 for the strong material without hardening (Table 1). It is inter-
esting to note that when the yield surface is normalized by the σ11 stress

Fig. 1. Inverse pole figures showing the tensile axis for the three different axisymmetric fibre textures.

Fig. 2. The RVE consisting of 376 randomly oriented grains with a spatial
resolution of 128 × 128 × 128. A colour scale for the first Euler angle is used to
distinguish the grains. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Yield-surface sections for a random texture comparing the four cases
without backstress in Table 1 (a): after 2% of engineering tensile prestrain in
the tensile direction, (b): after 2% of engineering shear-prestrain.
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for 10με strain offset from elastic linearity at the tip of the rounded
pointed vertex, there is no significant difference between the shape of
the yield surface between 2%, 10%, and 40% tensile prestrain.

3.3. Influence of a strain-path change during the pre-deformation

In Fig. 6, yield-surface sections obtained after a two-step pre-defor-
mation are plotted for the strong material without hardening. Firstly, a
prestress in the shear direction is performed, then unloaded to an elastic
point in the centre of the yield surface. The next part of the pre-

deformation is in the tensile direction, which then is unloaded to an
elastic point in the centre of the yield locus, from which the probing in
360 stress directions is made to plot the instant 10μ yield-surface sec-
tion. Additionally, the 10με yield-surface section after the first pre-
deformation step (shear direction) and the initial 10με and 2000με
yield-surface section without any pre-deformation are also shown in the
figure.

3.4. Influence of the texture

The same yield-surface sections as in Fig. 3a, for the strong and weak
cases without work hardening and with random texture, were calculated
both by the spectral crystal-plasticity solver and by the statistical Taylor-
Lin model implementation. The results are plotted in Fig. 7. Note that
the stress of 10με offset from elastic linearity normalises the stress in the
σ11 direction as calculated by the spectral solver (DAMASK). Without
this normalization, the Taylor factor would be larger by the Taylor
model than by the full-field spectral model (Zhang et al., 2019). How-
ever, when it comes to the shape of the yield surface, it can be noted that
the full-field spectral method and the much simpler aggregate type of the
Taylor model predict very similar subsequent yield-surface sections after
2% tensile prestrain.

To analyse the effect of texture on the evolution of yield surfaces
after 2% tensile prestrain, the yield surfaces of four different textures are
compared in Fig. 8. To produce the textures, the DREAM3D software was
used. Three representative textures were synthesized as seen in Fig. 8. A
<100> fibre with a maximum intensity of 22, a <111> fibre with a
maximum intensity of 18, a combination of <100> and <111> fibre
with maximum intensities of 11.2 and 9, respectively, were tested. A
close agreement is found between the full-field (DAMASK) and the
mean-field (Taylor-Lin) results for all considered textures (see Fig. 8).

The yield-surface section of the <100> fibre texture has little
distortion, a wide body, and almost no Bauschinger effect. Also, the
<111> texture has a weak Bauschinger effect but with a narrower
rounded, pointed vertex. The random texture has the strongest Bau-
schinger effect and relatively the smallest and most distorted yield

Fig. 4. Yield loci after applying a 2% of prestrain along σ11 =
̅̅̅
3

√
σ12 stress

direction for four different offsets from elasticity. For random texture and
strong material without hardening.

Fig. 5. Yield-surface sections for 2%, 10%, and 40% tensile prestrains. For the
comparison, each yield surface is normalized by the σ11 stress for 10με offset
from elastic linearity. A random texture and a case with strong material without
hardening are considered here.

Fig. 6. Yield-surface sections for the “strong, with work hardening” case
(Table 1) and a random texture with the offset strain from elasticity and the
prestress directions indicated by the respective legends. The amounts of pre-
strains were 2% shear strain (thick dashed line) and 4% for the two-step: 2%
shear strain, then 2% tensile strain (thick solid line). The initial yield stress
(
Rp0.2

)
(i.e., with offset = 2000με) is chosen for the normalization.
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surface, while the mix of<100> and<111> is closer to the random than
to <100> or <111>.

3.5. Influence of strain rate sensitivity

To investigate the influence of the strain rate sensitivity, m, three
distinct yield surfaces for three strain rate sensitivities of m = 10− 2,

10− 3, and 10− 6 are plotted in Fig. 9. It can be seen that there is a
noticeable difference between yield surface withm = 10− 2 and the other
two, where the smallest m gives a slightly sharper but still blunted
pointed vertex. For m smaller than 10− 2 the curve remains approxi-
mately unchanged.

3.6. Influence of including a backstress for each slip system and
comparing with experiments

To investigate the role of the backstress of the slip systems, the
hardening parameters were chosen so that the stress-strain curves for a
tensile test were similar as for the AA6061 aluminium alloy, with a
weak, nearly random texture, reported in Iftikhar et al. (2021). The
backstress is calibrated to occur within a very small strain increment.
Hence, it will affect the stress-strain curve only during the early elas-
toplastic transition. The stress-strain curves for the models with and
without backstress were calibrated (Table 2) to match the measured one
by Iftikhar et al. (2021). The stress-strain curve of the tensile test, and
also a compression-tension curve with a prestrain of 2%, can be seen in
Fig. 10a.

For the case of the tensile prestrain of 2%, the subsequent 10με yield
surfaces for the cases with and without the backstress are compared with
experimental and CPFEM results by Iftikhar et al. (2021) are plotted in
Fig. 10b. In addition, the experimental results for a peak aged similar
alloy by Khan et al. (2009) are included in Fig. 10b. The latter has a
much stronger Bauschinger effect. The spectral solver of the DAMASK
software is used for these simulations. For the case with a non-zero
backstress, Fig. 10a reveals a more pronounced Bauschinger effect
with a significantly longer-lasting transient in the reverse direction
before reaching the similar level as in the forward direction. Similar to
what can be observed experimentally, this will result in an anelastic
hysteresis by unloading-reloading after some amount of stretching in a
tensile test.

It can be seen from Fig. 10b that the backstress of the slip systems
strengthens the Bauschinger effect significantly and gives results that are
closer to the experiments than without the backstress. Note that this is in
contradiction to the CPFEM results reported by Iftikhar et al. (2021),
reporting a very strong Bauschinger effect without any reverse hard-
ening in the model. Furthermore, the backstress of the slip systems

Fig. 7. A comparison of the spectral full-field and the Taylor-Lin aggregate
model for calculations of the yield-surface section after 2% of tensile prestrain,
for the cases of strong and weak materials without work hardening (see Table 1)
for a random texture.

Fig. 8. Yield surfaces of four different textures, calculated by two distinct
crystal-plasticity solvers: the spectral method (full-field, light blue lines) and
the Taylor model (mean-field, dark blue lines). A tensile prestrain of 2% is
applied. For the “strong without hardening” material. Each yield surface is
normalized by the σ11 stress of 10με offset from elastic linearity. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 9. Yield surface for three different strain rate sensitivities m for the strong
material without work hardening.
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results in a slightly narrower yield surface encompassed by the yield
surface without the backstress.

4. Discussion

During a small increment of deformation, the 10με yield surface
develops a pointed vertex in the loading direction and a flattened shape
in the reverse direction. This pointed vertex is directional, pointing
approximately towards the current stress direction. The yield surface has
a short-term memory of the most recent strain path but changes rapidly,
where the vertex tries to catch up with the current loading path. Hence,
the instant shape of the 10με yield surface is found to be more complex
during strain-path changes.

It is noted, that as compared to the rate-independent calculations of,
e.g. Hutchinson (1970), the instant 10με yield surface is more blunted
with the strain ate sensitive viscoplastic calculations made here, even
when applying a very small strain rate sensitivity of m = 10− 6. In
experimental works, a certain time is required to glue the strain gages
onto the specimen after the pre-deformation. During this period, 1 h in
the present simulations, plastic relaxation occurs, which modifies the
yield surface. The viscoplastic model applied in the DAMASK software
does not account for any athermal contributions to the critical resolved
shear stress. However, in more realistic physical-based models, one will
expect an athermal, strain-rate independent part of the yield stress, e.g.,
from athermal strength contributions from particles. The athermal stress
from the precipitates is obviously large for the case for the age hardened
alloy investigated by Khan et al. (2009), for which the viscoplastic
model would overestimate the plastic relaxation after the prestraining.
This may contribute to an explanation why the measured 10με yield
surface by Khan et al. (2009) is relatively smaller than for the annealed
conditions reported by Iftikhar et al. (2021) and smaller than the yield
surfaces calculated in the current work.

Note that unless an evolution equation for the backstress of each slip
system is part of the model, the yield surface of one single grain cannot
reveal neither any Bauschinger effect nor a flattening of the reverse part
of the yield surface. When a backstress of the slip systems is not included
in the model, flattening and a pointed vertex can only occur in poly-
crystals, where the composite effect from a mix of elastically and plas-
tically stressed grains is causing it. It follows that the shape of the yield
surface of a material with a sharp texture will be less sensitive to the
probing strain, whereas a yield surface with a random texture will
change significantly with decreased probing strain. This is evident from
the comparison in Fig. 10b of the calculations of the strong <100> fibre
texture versus the random texture.

In this work, as opposed to the results reported by Iftikhar et al.
(2021), only a limited Bauschinger effect in the 10με yield surfaces is
predicted without a backstress model. The simulations performed here
(e.g., Fig. 3) show that neither the high strength nor the low work
hardening of the age-hardening alloy can be responsible for the signif-
icant amount of Bauschinger effect that was measured by Iftikhar et al.
(2021) and by Khan et al. (2009). However, these strong Bauschinger
behaviours can be obtained by applying a backstress on the critical
resolved shear stress. Note that this is a backstress that evolves and
saturates during a very short strain increment and that the backstress
therefore is fully developed before reaching the conventional yield limit
(Rp0.2). It is reasonable to assume that a backstress of the critical
resolved shear stress needs also to be considered and that this backstress
might depend on the microstructure.

A backstress of each slip system can be required in models even for
pure metals (Lopes et al., 2003; Peeters et al., 2001), for which micro-
structure characterization have revealed correlations between the Bau-
schinger effect and the building of a dislocation substructure during
preloading. The dislocation structures are partly destroyed during the
following strain reversal, before a similar type of structure is rebuilt
during the new strain path. Note however, that for this type of

Fig. 10. (a): Comparison of experimental (Iftikhar et al., 2021)
tension-compression curves and curves simulated by DAMASK for a random
texture, using models with and without backstress of the critical resolved shear
stress. Work hardening parameters for the simulated cases are found in Table 2
(b): Yield surface section, normalized by the tensile stress, σY , for each
considered yield surface with 10 με offset after 2% tensile prestrain. Simulated
cases are: random texture with and without backstress, <100> fibre texture
without backstress. Experiments and CPFEM results for a weak texture by
Iftikhar et al. (2021) and for a peak aged condition of a similar alloy by Khan
et al. (2009).
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mechanisms, the strain scale required for the transient of the backstress
subsequent to the strain path change lasts significantly longer than the
elastoplastic transition. In the presence of particles, a strong Bau-
schinger effect may be found even in single crystals, see e.g. Gould et al.
(1974). Hence, for a variety of mechanisms and strain scales, a model for
the backstress of the critical resolved shear stress is important to
correctly predict phenomena like spring back and anelasticity in alloys.
The detailed physical mechanism for the backstress of the slip system
will vary from alloy to alloy. Both dislocation structures, interaction
with non-shearable particles and composite effects may contribute. All
these mechanisms can be modelled by phenomenological models for the
backstress of the slip systems, like with Eqns. (4-7).

With or without a backstress for the slip systems as part of the model,
a single crystal or a very sharp texture will, due to the lack of a mix of
elastic and plastic loaded grains, not develop a well-defined pointed
vertex during the pre-deformation. For the case with the strong <100>
fibre texture, the region of the yield surface close to the loading direction
remains almost similar to the yield surface obtained with larger probing
strains. This dependency on the texture sharpness is interesting in terms
of formability, as it suggests that when a sheet with a strong texture is
stretched in biaxial tension, it might require a larger perturbation, e.g.,
thickness variation, for instability to occur at a given strain. Of course,
keeping in mind that the texture itself will strongly influence the me-
chanical anisotropy and hence the formability. The pointed vertex be-
comes blunter with a strong texture, while a sharper pointed vertex
would provide a simpler way to change the strain path locally, after
which the unstable plane-strain deformation mode could evolve. Hence
the sharpness of the texture is important when modelling instability
phenomena like the formation of shear bands, plastic buckling, or flow
instabilities in the biaxial region of the formability diagram. In these
cases, the crystal plasticity models will provide results that the current
continuum-plasticity flow theory cannot capture.

Latent hardening of other slip systems than the reverse ones might
also influence the 10μ offset yield surface. New slip systems must be
activated when changing the strain path into strain directions that are
nearly orthogonal to the first strain path. As suggested by Holmedal et al.
(2008), the systematic latent hardening of passive slip systems will
expand the crystal yield surface in regions orthogonal to the loading
direction. This will also make the pointed vertex more rounded, inde-
pendently of the texture. This topic goes beyond the scope of the current
investigation but is interesting for future studies. The only latent hard-
ening considered in this work, except the isotropic kind from all the slip
systems, is the kinematic hardening of slip systems, i.e., a softening of
the reverse slip systems.

As Li and Wagoner (2021) pointed out, the anelasticity, which plays
an important role in spring-back predictions, can be explained by the
kinematic hardening of the slip systems. The calculations here suggest
that this mechanism is also required to explain the strong flattening of
the part of the yield surface in the reverse of the preloading stress di-
rection when the yield surface is probed at small offset strains. This may
involve a back stress that develops and saturates during the elastoplastic
transition. Experimentally, e.g. (Hecker, 1976; Iftikhar et al., 2021;
Khan et al., 2009, 2010a, 2010b; Kuroda, 2022; Kuwabara et al., 2000;
Naghdi and Rowley, 1954; Phillips and Lee, 1979; Phillips and Moon,
1977; Phillips and Ricciuti, 1976), this effect is reported to be very
strong, where the measured yield-surface sections in most cases do not
even include the origin. Iftikhar et al. (2021) reported a strong Bau-
schinger effect by their crystal-plasticity calculations without kinematic
hardening of the slip systems. However, the simulation results reported
in other investigations (Hutchinson, 1970; Lin and Ito, 1965; Radi and
Abdul-Latif, 2012; Schurig et al., 2007) are consistent with what is re-
ported here, i.e., that without (rapid) kinematic hardening of the slip
systems, the estimated Bauschinger effect is significantly smaller than
what is measured.

Khan and co-workers investigated the effect of work hardening on
the yield surfaces at small probing strains (Khan et al., 2009, 2010a,

2010b). However, the annealed commercial pure alloy with strong work
hardening is much weaker than the compared age-hardened AlMgSi
alloy. The simulation results reported here suggest that the difference in
strength rather than the difference in work hardening makes the shape
of the yield-surface sections different. With increased strength, the 10μ
yield surface becomes relatively narrower (Fig. 3). The reason for this
difference is that the elastic strain range is increased, and the balance
between contributions from elastically and plastically loaded grains is
altered. As discussed above, the difference between these alloys in terms
of the Bauschinger effect cannot be captured without kinematic hard-
ening of the slip systems.

Interestingly, the shape of the 10με yield-surface sections calculated
with the viscoplastic Taylor-Lin mean-field model is very similar to the
sections calculated by the full-field crystal plasticity model (DAMASK),
indicating that the Taylor homogenization is applicable at small plastic
strains in the elastoplastic transition. Note, however, that the Taylor
factors are different (Mánik et al., 2015), hence the size of the yield
surfaces are different. Still, including a backstress for each slip system
seems more important for the results than running the far more expen-
sive full-field simulations. The current approach is too computational
demanding for a direct application in forming simulations. As compared
to a continuum plasticity model, also the Taylor-Lin model is compu-
tationally demanding, but it can in some cases be directly applied to
forming simulations, e.g., in Marcinak-Kuczynski analysis of biaxial flow
instabilities or as part of a finite element code.

5. Conclusions

Yield surfaces have been calculated by a full-field crystal plasticity
model, using a probing strain of 10με von Mises offset strain. The dif-
ferences between using a mean-field viscoplastic Taylor-Lin model and a
full-field spectral solver in predicting the shape of these yield surfaces at
small probing strains within the elastoplastic transition are relatively
small. They both reveal a flattening of the reverse part and a pointed
vertex in the loading direction. The pointed vertex is, however, signifi-
cantly rounded (after stress relaxation). It is found that the blunt tip of
the pointed vertex does not vanish with decreasing strain rate sensitiv-
ities. The work hardening does not affect the shape of these yield sur-
faces significantly, while a stronger material shows a relatively smaller
yield surface (normalized by the tip of the rounded, pointed vertex) and
a slightly stronger Bauschinger effect.

The main conclusion from this work is that a kinematic hardening of
the critical resolved shear stress, occurring during a very short strain
scale, is required to qualitatively reproduce the strong Bauschinger ef-
fect as earlier reported for measured yield-surface sections. It can be
concluded that for a realistic description of spring back and anelasticity
caused by the elastoplastic transition, the kinematic hardening of the
slip systems is important to include in crystal plasticity simulations.

Another significant conclusion is that the sharpness of the texture
plays an important role, where a more random texture gives a sharper
pointed vertex. This makes a weakly-textured alloy more prone to flow
instabilities like biaxial necking, shear-band formation, and plastic
buckling. The crystal-plasticity simulations provide a description of the
elastoplastic transition and the instant yield surface that are important
for accurately describing flow instabilities, spring-back, and anelas-
ticity. The current continuum-plasticity flow theory needs to be further
developed to capture this.
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