
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Trym Skogseth

Deep learning solution for automatic
audio copy move forgery detection

Mel spectrogram-based CNN

Master’s thesis in Information Security
Supervisor: Kyle Andrew Porter
June 2024

Trym Skogseth

Deep learning solution for automatic
audio copy move forgery detection

Mel spectrogram-based CNN

Master’s thesis in Information Security
Supervisor: Kyle Andrew Porter
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

The authenticity of audio recordings is becoming more important in forensic in-
vestigations as digital media becomes increasingly prevalent. This masters thesis
explores the development of automated solutions for Audio Authenticity Analysis
(AAA), focusing on identifying and distinguishing between original audio files
and audio copy-move forgeries. The study applies a Convolutional Neural Net-
work (CNN) to the field of audio forensics. By converting audio signals into visual
representations, such as Mel spectrograms, and providing them as input to the
CNN model, the system can be trained to effectively recognise patterns indicative
of manipulations such as copy-move forgeries.

A novel dataset was created for this study, derived from the NB Tale speech
database, consisting of both copy-move forgeries and original files. This was used
to train and test the performance of the model. The results demonstrate that the
CNN model, enhanced with dynamic data augmentation and regularisation tech-
niques, can effectively detect forgeries in short audio clips. However, challenges
remain in detecting forgeries in longer audio files where copied and pasted seg-
ments are temporally distant.

This research contributes to the evolving field of digital forensics by, develop-
ing a system for copy-move forgery detection and providing a Norwegian copy-
move forgery dataset. The findings lay the groundwork for future advancements
in the automatic analysis of audio authenticity, highlighting the need for further
research to improve the model’s robustness and applicability in real-world forensic
scenarios.

iii

Sammendrag

Autentisiteten til lydopptak er viktig i kriminaltekniske undersøkelser ettersom
digitale medier blir stadig mer utbredt. Denne masteroppgaven utforsker utvik-
lingen av automatiserte løsninger for Audio Authenticity Analysis (AAA), med
fokus på å identifisere copy-move forfalskninger (CMF) i lydfiler. Oppgaven bruker
en maskinlæringsteknikk, spesifikt et Convolutional Neural Network (CNN). Ved
å konvertere lydfiler til Mel-spektrogrammer, og bruke de som input til CNN-
modellen, kan systemet lære seg å gjenkjenne mønstre som indikerer manipu-
lasjoner som CMF.

Et nytt datasett ble laget for denne oppgaven, basert på lydfiler fra NB-tale
datasettet. Datasettet består av forfalskninger og originalfiler. Dette datasettet ble
brukt til å trene og teste modellen. Resultatene viser at CNN-modellen effekt-
ivt kan oppdage forfalskninger i korte lydklipp. Betydlige utfordringer gjenstår
fortsatt knyttet til å oppdage forfalskninger i lengre lydfiler der de kopierte og
limte segmentene potensielt ligger langt fra hverandre i lydfilen.

Masteroppgaven bidrar til utviklingen innen digital etterforskning ved å utvikle
et system for å oppdage CMF og et Norsk CMF-datasett. Funnene legger grunnla-
get for fremtidige fremskritt innen automatisk analyse av lydautentisitet, og frem-
hever behovet for ytterligere forskning for å forbedre modellens robusthet og an-
vendelse i kriminalteknisk praksis.

iv

Contents

Abstract . iii
Sammendrag . iv
Contents . v
Figures . vii
Tables . viii
Acronyms . ix
1 Introduction . 1

1.1 Topic . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Justification, motivation and benefits 3
1.5 Research questions . 4
1.6 Contributions . 4

2 Background . 5
2.1 Audio signal processing . 5
2.2 Audio forgeries and Audio Authenticity Analysis (AAA) 8

2.2.1 Best Practice Manual for Digital Audio Authenticity Analysis 10
2.3 Deep learning-based audio forensics 11

2.3.1 Convolutional neural network (CNN) 11
2.3.2 Overfitting and underfitting . 17

3 Related work . 19
3.1 Automatic audio authenticity analysis 19

3.1.1 Traditional automated methods 19
3.1.2 Machine learning methods . 21

3.2 Database generation . 22
4 Method . 25

4.1 Literature review . 25
4.2 Dataset . 26

4.2.1 Source datasets . 26
4.2.2 Dataset generation . 27

4.3 Experimental setup . 29
4.3.1 Pre-processing and loading data 29

4.4 Convolutional Neural Network model 30
4.5 Tests with post-processed samples . 33

v

Contents vi

4.6 Method for detecting copy-move forgeries in long audio files using
CNN . 34

5 Results . 35
5.1 Static dataset . 35
5.2 VAD-based dataset . 36

5.2.1 Training and validation results 36
5.2.2 Test results . 38

5.3 Long audio files . 40
6 Discussion . 43

6.1 Research questions . 43
6.2 Generating datasets . 44
6.3 Training and testing the CNN model 47
6.4 Testing on post-processed samples . 48
6.5 Application to real-world forensic settings 48
6.6 Model interpretability . 50
6.7 Limitations and future work . 51

7 Conclusion . 53
Bibliography . 54

Figures

2.1 Time domain representation (waveform) of the example file 6
2.2 Frequency domain representation (spectrum) of the example file . . 7
2.3 Mel spectrogram of the example file. 7
2.4 Copy-move forgery example. Reprinted with permission from Au-

dio Forgery Detection Techniques: Present and Past Review, by Bevi-
namarad et. al [3] ©2020 IEEE. 9

2.5 Splicing forgery example. Reprinted with permission from Audio
Forgery Detection Techniques: Present and Past Review, by Bevin-
amarad et. al [3] ©2020 IEEE. 9

2.6 Example CNN architecture with two convolution layers, pooling
layers and a fully connected (fc) layer. n represents the total num-
ber of classes. 13

3.1 Mel spectrogram of (a) an original audio file and (b) its related
copy-move forgery. Reprinted with permission from Mel spectrogram-
based audio forgery detection using CNN by Ustubioglu, Ustubioglu,
and Ulutas [5] ©2022 Springer . 21

4.1 CNN architecture . 31

5.1 Training loss vs validation loss and training vs. validation accuracy
of CNN1 on the static dataset. 36

5.2 Training vs validation loss and training vs validation accuracy dur-
ing training CNN1 without data augmentation. 37

5.3 Training vs validation loss and training vs validation accuracy dur-
ing training of CNN1 with data augmentation. 38

5.4 Confusion matrix from testing the trained CNN1 on the test split. . 39
5.5 Confusion matrix of testing the trained CNN1 on the dataset of long

audio files. 41

6.1 Example of Grad-CAM for a copy-move forgery from the test data-
set which the model correctly classified as forged. 51

vii

Tables

2.1 Categorisation and description of methods described in Best Prac-
tice Manual for Digital Audio Authenticity Analysis by Bartle, et.al.
(2022), reprinted from the project planning report by Skogseth
(2023) . 12

3.1 Table of reviewed methods. P = precision, A = accuracy, AUC =
Area Under Curve. The results are averaged where multiple tests
were done . 20

3.2 An overview of copy-move forgery datasets and the methods used
to generate them in the related work. The "+" represents that two
different datasets was used as the source of audio files 23

5.1 Classification report generated by testing the trained CNN1 on the
datset of long audio files. 35

5.2 Training and validation results of the two CNN models on the VAD-
based dataset. T = training, V = Validation, Aug. indicates if the
training data was augmented during training. 38

5.3 Classification Report generated by testing the trained CNN1 on the
test split. 39

5.4 Results from testing the trained CNN1 with additional post-processing. 40
5.5 Classification report generated by testing the trained CNN1 on the

datset of long audio files. 41

viii

Acronyms

AAA Audio Authenticity Analysis. iv, 1–4, 8, 11, 19, 50

AEM Absolute Error Map. 19

ANN Artificial Neural Network. 1, 11, 22

CMF copy-move forgery. iv, 3, 8, 44, 47, 50, 51

CMFD copy-move forgery detection. 3, 44, 50, 51

CNN Convolutional Neural Network. iv, 1, 4, 5, 11, 15–17, 21, 22, 26, 44, 45,
47, 49–51, 53

DFT Discrete Fourier Transform. 6

ENF Electric Network Frequency. 8, 10, 19

LBP Local Binary Point. 20

LPC Linear Prediction Coefficient. 22

MFCC Mel Frequency Cepstral Coefficient. 22

ML Machine Learning. 1, 11, 17, 26, 50

SNR Signal-to-Noise Ratio. 10, 33, 34, 40

STFT Short Time Fourier Transform. 6, 7

VAD Voice-Activity Detection. 20, 22, 27, 36, 43–47

ix

Chapter 1

Introduction

1.1 Topic

Smartphones and social media are providing people both the ability and incentive
to record and share multimedia with one another. The barrier to entry for media
editing has also been lowered, allowing anyone with a smartphone to easily alter
media files without professional training. Any edits made to a file compromises its
authenticity and integrity. Editing media files can serve multiple purposes, such
as editing an audio file of a conversation to change the conveyed message. Edited
audio files can also threaten biometric data like voices, which are used to access
numerous digital applications [1]. Edited audio files with intent to obfuscate or
alter the data within an audio file are referred to as audio forgeries.

As media files are a big part of our daily lives, many criminal investigations
have audio or video files associated with them. If the media files should be used
as evidence in court, there can be no question to their authenticity and integ-
rity [2], i.e. forensic analysts need methods to distinguish between original files
and forgeries. This is the basis of the field of Audio Authenticity Analysis (AAA).
Traditionally, audio analysis relies heavily on manual inspection and signal pro-
cessing techniques [2]. The growth in volume of media files potentially relevant
to investigations creates a need for tools to streamline this process and make it
more effective and efficient. The significance of automatic AAA is further rein-
forced by the recent rise in prevalence of deepfake audio. However, this project
primarily targets detecting more basic audio manipulations, including edits like
cuts, splices, and copy-move forgeries. Despite being less sophisticated, these tech-
niques pose significant challenges in digital forensics due to their widespread use
and effectivity.

The evolution of Machine Learning (ML) and emergence of advanced Arti-
ficial Neural Networks (ANNs) such as Convolutional Neural Networks (CNNs)
are revolutionising this field. By transforming audio files into a visual domain via
spectrograms, we can leverage the pattern recognition abilities of CNNs. Auto-
matic AAA is improving to the point where it might be able to reduce the time
required for analysis, while still achieving a high enough accuracy to be used in

1

Chapter 1: Introduction 2

real-life cases. This could greatly benefit forensic analysts looking to save time on
the AAA process.

1.2 Keywords

CCS concepts:

• Security and privacy
• Applied computing →Computer forensics →Investigation techniques
• Applied computing →Computer forensics →Evidence collection, storage and

analysis
• Computing methodologies →Machine learning →Machine learning approaches

→Neural networks

Other keywords:

• Audio authenticity analysis
• Audio forensics
• Audio forgery
• Copy-move forgery
• Deep learning
• Digital forensics

1.3 Problem description

Audio forensics is divided into active and passive forensics, with active forensics
using techniques like watermarks and signatures to ensure authenticity, while
passive forensics relies on the properties of the audio itself without additional
information [3]. For example, in active forensics, a audio recording can be made
with a recorder that generates an unique hash as the recording stops. Passive
forensics, lacking embedded information, presents greater challenges for detec-
tion. Unless a file is created with specialised equipment, it is currently impossible
to prove its originality. In such cases, attempts to find indications of forgery are
done manually by forensic audio analysts, searching the files for various artefacts.
This is both time-consuming and tedious labour; a five-minute audio file might
take up to six hours to thoroughly examine 1. These indications might be audio
artefacts such as: absence of the sound of a button press or screen touch to start
or stop the recording; sudden changes or stops in background noise; contextual
clues such as illogical or unfinished sentences; similar or identical patterns in the
spectrogram, which will never occur naturally [4].

Past research on deep learning methods for detecting copy-move forgeries is
based on training on short audio files where one segment has been copied and
pasted at a different location in the audio file. A significant gap in the literature
is the exclusion of testing the deep learning methods on held out validation/test

1This is an experience given anecdotally from a representative of Oslo Police District.

Chapter 1: Introduction 3

data; only one study from this year addresses the validation accuracy of their
system [1]. There are also no mentions of how to apply the methods to longer
audio files in the related work. In a realistic forensic scenario, recordings being
analysed can span multiple minutes.

Furthermore, there is a lack of available datasets to compare different methods
for detecting copy-move forgeries. One dataset is available in Arabic [5], but no
others have been found. In this project, a novel dataset containing original and
copy-move forgeries of Norwegian speech is generated to address this issue.

1.4 Justification, motivation and benefits

Voice data is increasingly used in various industries, including health, but modific-
ations to audio in contexts such as terrorism and criminal cases necessitate robust
authentication processes [1]. Audio files can be of importance to an investigation,
but without a reliable method to verify the integrity of these files automatically,
forensic audio analysts spend significant time assessing the authenticity of audio
files. Audio editing software and techniques are widely available and accessible,
enabling anyone to make simple edits to audio, such as copying and moving a
segment of the audio, or splicing in a segment from another audio file, to alter
the meaning of the recording [5]. This creates a need for a system to detect audio
copy-move forgery (CMF), a type of forgery where segments of audio are moved
within the same file, compromising the recording’s integrity and authenticity.

Adversaries who create audio CMFs may use various post-processing opera-
tions to hide the forgery and make it harder to detect by, e.g., comparing segments
of the waveform of the audio to find similar patterns [3]. These post-processing
techniques include noise addition, filtering, compression, frequency scaling, pitch
shifting, and re-sampling. Operations such as these can alter the audio signal in
ways that obscure the forgery artefacts, posing additional challenges for forensic
analysts. The adversaries could also apply various effects only to the copied seg-
ment, altering it in some way. Another potential benefit of applying deep-learning
methods to AAA is that a trained model may be able to recognise similar patterns
even in cases where either the entire file or just the pasted segment has been
altered.

The primary stakeholder for this thesis is OPD. Their current methods for AAA
are reportedly slow and tedious, and automating parts of the process would in-
crease efficiency of the daily operations of the police. This could allow them to
shift their resources to other tasks, which potentially would reduce the time they
use on investigating a case. The National Criminal Investigation Service (KRIPOS)
and other departments/districts of the Norwegian police are also stakeholders for
the project, by extension. The broader field of research on copy-move forgery de-
tection (CMFD) may also benefit from the findings of the thesis.

Chapter 1: Introduction 4

1.5 Research questions

(RQ1) To what extent can Mel spectrogram-based CNN models be applied to copy-
move forgery detection in realistic forensic scenarios?

(RQ2) What are the limitations of Mel spectrogram-based CNN models for copy-
move forgery detection in forensic scenarios?"

1.6 Contributions

This thesis aims to contribute to the fields of digital forensics and AAA by ad-
dressing the gaps identified in the previous sections. It presents the creation and
release of a labelled dataset of original and forged Norwegian speech files, which is
used for training and testing deep-learning methods for copy-move forgery detec-
tion. Additionally, it details the methodology for utilising a CNN model trained on
Mel spectrograms and explores its potential application in realistic forensic scen-
arios. The results and subsequent analysis from training and extensive testing are
presented to assess the model’s performance in controlled testing environments
as a baseline, as well as in more realistic scenarios. Furthermore, the thesis in-
cludes a thorough literature review of the current state of automatic AAA and the
manual methods currently used by forensic analysts.

Chapter 2

Background

In this chapter, the concepts and technologies of relevance to the research on au-
dio forgery detection are presented and explained. This includes a comprehensive
overview of audio signal processing techniques, the nature and detection of au-
dio forgeries, and the application of deep learning methods in audio forensics.
The aim is to provide a thorough understanding of the technical and theoretical
background necessary for the development and evaluation of the Convolutional
Neural Network (CNN) model applied in the thesis.

As part of the project planning report preceeding the master’s thesis work [4],
the state of the art and related work has been identified and studied. Some of the
material from section 2 in the project planning report is therefore similar to some
of the content in chapters 2 and 3.

2.1 Audio signal processing

In audio signal processing, it is common practice to transform audio data into a
more interpretable form. Audio is inherently a time-based one-dimensional vector,
but it can be visualised as an image that captures nuances of sound similar to how
humans experience it. Visual representations like spectrograms allow machine
learning models to leverage image classification techniques to analyse audio data.
In this section, this process is described, and visualisations of the transformations
are provided using the file p1_g01_f1_4_x-a0001.wav from NB Tale Part 1 [6].

Sound is digitised by sampling sound waves at fixed intervals; the sampling
rate defines the number of samples captured per second [7]. In the physical world,
sound is created by variations in air pressure within human-audible frequencies.
Loudness, which we perceive, corresponds to the sound’s amplitude, measured in
decibels (dB). In digital audio, each sample captures a moment’s amplitude, with
bit depth defining its precision. Higher bit depth ensures a closer match to the
original sound, enhancing the fidelity of digital audio representation. Digital au-
dio amplitude is also measured in decibels (dB), mirroring the logarithmic nature
of human hearing. This accounts for human’s increased sensitivity to changes in
quiet sounds over loud ones. For real-world sounds, 0 dB is the threshold of human

5

Chapter 2: Background 6

hearing, with louder sounds registering higher dB values. Conversely, in digital au-
dio, 0 dB signifies the peak loudness, with lower amplitudes expressed as negative
values. A decrease of -6 dB approximately halves the amplitude, and sounds below
-60 dB are usually imperceptible without significant volume increase [7].

Digital audio can be visualised as a waveform. The waveform visualisation rep-
resents sound by plotting amplitude changes over time, providing insight into the
audio features such as event timing, signal loudness, and any audio irregularities
or noise [7].

Figure 2.1: Time domain representation (waveform) of the example file

Plotting the frequency spectrum, which is another method to visualise audio
data, involves using the Discrete Fourier Transform (DFT) to visualise the signal’s
frequencies and its intensities. This frequency domain representation provides the
same information as the waveform (time domain representation), but focuses on
the strength of various frequencies at a specific moment, contrasting the wave-
form’s emphasis on amplitude changes over time [7].

To track changing frequencies in audio one can use the Short Time Fourier
Transform (STFT) to create a spectrogram. This technique involves taking mul-
tiple DFTs over consecutive, short time frames and layering these spectra. A spec-
trogram visualises the frequency, time, and amplitude of an audio signal on a
single graph, useful for, e.g., distinguishing vowel sounds in speech by their char-
acteristic frequencies [7].

Mel spectrograms are graphical representations of sound that mimic how the
human ear perceives different frequencies, using the Mel scale for this purpose [7].
The Mel scale, introduced by Stevens, Volkmann and Newman [8], is a perceptual
scale of pitches judged by listeners to be equal in distance from one another. It
mimics the human ear’s response to different frequencies, which is more sensitive
to variations in lower frequencies than to those in higher frequencies. This scale
is logarithmic in nature, especially beyond 500 Hz, closely resembling the human
ear’s perception. It is widely used in audio processing, to ensure that processed

Chapter 2: Background 7

Figure 2.2: Frequency domain representation (spectrum) of the example file

audio aligns more closely with how humans actually hear sounds.

Figure 2.3: Mel spectrogram of the example file.

In a Mel spectrogram, the strength of sound at various frequencies is mapped
over time, creating a visual, two-dimensional image of the sound. This method
applies a Mel filterbank to frequency spectra derived from short audio segments
via the STFT, effectively transforming linear frequency measurements to the Mel
scale. This adjustment highlights the importance of lower frequencies and di-
minishes the relative significance of higher frequencies, which means that the
Mel spectrogram outperforms standard spectrograms for tasks requiring nuanced
sound analysis. As it captures features which aligns with human auditory per-
ception, it is a great tool for diverse audio processing applications, e.g., speech
recognition [7].

Chapter 2: Background 8

2.2 Audio forgeries and Audio Authenticity Analysis (AAA)

A file cannot be edited without generating some kind of traces. The examination of
these traces, also referred to as artefacts, is essential to ensuring the authenticity
of audio files. Disparities in background noise, speech flow, and sudden changes in
acoustic properties are examples of common audio artefacts. Analysing an audio
file for these artefacts to determine whether it is original or forged is known as
Audio Authenticity Analysis (AAA) [3]. Audio forgeries can be classified according
to which aspect of the file that has been modified: container-based forgeries, in
which the file’s metadata has been altered; and content-based forgeries, which
involve edits to the actual audio content [3]. Within the category of content-based-
forgeries, this project will primarily focus on copy-move forgery (CMF). Splicing
and deletion forgeries are also presented, to give a more comprehensive view of
the field.

Copy-move Forgeries which involve copying and pasting a segment of audio into
another location of the same recording, as illustrated in Figure 2.4.

Splicing Forgeries in which two or more audio files are combined to create a
single audio file, as illustrated in Figure 2.5.

Deletion Forgeries in which a segment of the audio has been removed.

These kinds of forgeries are the most common and, despite their simplicity, are
very effective in changing the content or background of an audio file.To keep the
project’s scope within manageable bounds, other kinds of forgeries — deep fakes
in particular — are excluded.

Adversaries who engage in audio forgery may also use various post-processing
operations to obscure the traces of their tampering and make the forgeries more
difficult to detect. These operations are designed to reduce the susceptibility of the
tampered audio to detection techniques by altering the audio signal in different
ways. Common post-processing techniques used in audio forgery include noise
addition, filtering, compression, frequency scaling, pitch shifting, and resampling
[3].

Along with manual inspection of audio files and searching for artefacts, Elec-
tric Network Frequency (ENF) signals can be analysed to detect audio forgeries by
leveraging the unique signatures inherent in power grids [9] [10]. Smartphones
and other recording devices are typically susceptible to picking up these ENF sig-
nals through their microphones when they record in environments where elec-
trical devices are operating. This incidental capture of ENF signals in smartphone
recordings embeds a time and location-specific marker into the audio. This fre-
quency is typically stable (e.g. 50 Hz in many countries, 60 Hz in others) but can
exhibit minor fluctuations due to various factors such as demand and supply im-
balances. The presence of consistent ENF signals can validate the authenticity of
the recording’s timestamp and location, as the fluctuations in ENF at any given
time are unique to specific geographical regions and time periods. The method

Chapter 2: Background 9

Figure 2.4: Copy-move forgery example. Reprinted with permission from Audio
Forgery Detection Techniques: Present and Past Review, by Bevinamarad et. al [3]
©2020 IEEE.

Figure 2.5: Splicing forgery example. Reprinted with permission from Audio For-
gery Detection Techniques: Present and Past Review, by Bevinamarad et. al [3]
©2020 IEEE.

Chapter 2: Background 10

relies on extracting the ENF signal from audio files. The utility of ENF analysis in
audio forensics stems from its ability to detect editing, splicing, and other modi-
fications that may be imperceptible to the human ear. By analysing the continu-
ity and consistency of ENF signals in audio files, forensic analysts can determine
whether the recording has been tampered with. For example, sudden changes or
discontinuities in ENF patterns may indicate splicing of segments from different
recordings [9] [10]. Device trace analysis is another method in detecting audio
splicing [11]. Splicing forgeries are, as mentioned, audio files where two or more
recordings are combined to make a new audio file. These unique features can
therefore be used for identifying changes in recording devices, which may be an
indicator of splicing.

2.2.1 Best Practice Manual for Digital Audio Authenticity Analysis

A framework for evaluating the authenticity and integrity of digital audio re-
cordings can be found in the European Network of Forensic Science Institutes’
"Best Practice Manual for Digital Audio Authenticity Analysis" [2]. This subsec-
tion provides an overview of the framework, which was initially cited by the Oslo
Police District. An overview of the techniques covered in the document is given in
Table 2.1.

An initial examination of the contextual information in the audio recording is
the first step in the process. This involves familiarising oneself with the recording
environment, the hardware and software used, and any pre-processing, such as
filters or speech enhancements, that was applied to the audio signal. The first
stage is essential because it establishes the framework for the subsequent analysis
and aids in the formulation of theories regarding the authenticity of the recording
[2].

A thorough evaluation of the quantity and quality of the recording is com-
pleted after the contextual analysis. This stage is crucial for figuring out which
forensic techniques is best suited, particularly in situations with difficult circum-
stances like low Signal-to-Noise Ratios (SNRs). The results of this evaluation are
a list of suitable methods for additional investigation. Reference recordings are
made whenever feasible, with equipment that is comparable to the ones used
for the original recording. When recordings are made on removable media or
when the original equipment is not available, this comparative analysis is espe-
cially helpful. Reference recordings offer a standard by which the recording in
question can be assessed [2].

The retrieval, documentation, and analysis of all traces found within the au-
dio recording are essential steps of the forensic process. This holistic method is
crucial for confirming or disproving theories regarding the veracity of the record-
ing. It entails closely examining the recording at different intervals to spot any
irregularities or indications of manipulation [2].

Findings are presented in a way that ensures precision and clarity, particularly
in legal contexts. A few strategies to make sure of this are outlined in the docu-

Chapter 2: Background 11

ment, for instance, audio evidence needs to contain all pertinent evaluation and
interpretation results, the style of presentation is customised to fit the demands of
the legal process, written reports go through peer review, and the equipment used
to playback audio in courtrooms needs to be able to do so in a clear and accurate
way [2].

2.3 Deep learning-based audio forensics

In this section, the technical components of the automated deep learning-based
AAA solution are presented and explained in detail.

2.3.1 Convolutional neural network (CNN)

Artificial Neural Networks (ANNs) are a subset of Machine Learning (ML) al-
gorithms designed to mimic the learning process of the human brain. These sys-
tems are constructed as networks of neurons that communicate to collectively
learn from the data they are trained on. During the learning phase, an ANN pro-
cesses an input via an input layer, which then forwards the input to various hidden
layers. Each hidden layer makes decisions about how to process the input based on
information received from the preceding layer, optimising decisions that enhance
the overall output. The learning can be either supervised, where the algorithm
is trained with labelled datasets knowing the expected output for each sample,
or unsupervised, where the algorithm attempts to identify patterns in unlabelled
data. The choice between these methods depends on the available data and the
specific objectives of the project, with supervised learning typically preferred for
predictive modelling and unsupervised learning suited for data exploration. ANNs
with several hidden layers are referred to as deep [12].

Convolutional Neural Networks (CNNs) are specifically designed for handling
structured grid data, such as images. The architecture of CNNs includes layers
organised in three dimensions: width, height, and depth. Unlike standard ANNs,
the neurons in an ANN connect only to a small region of the preceding layer, op-
timising for spatial hierarchies in data processing. CNNs are particularly suited
for this task because they can automatically learn hierarchical feature representa-
tions from raw data, making them effective for complex pattern recognition tasks.
Figure 2.6 visualises how data is passed through the network from the input layer
to the output layer via several key types of layers [12]:

1. Convolutional Layers: These layers apply a selection of learnable filters to
the input. Each filter captures certain features by sliding across the input
data and computing the dot product of the filter and local regions of the
input, generating a feature map. This operation captures the local depend-
encies in the input data. The output of this computation passes through an
activation function like the Rectified Linear Unit (ReLU) to introduce non-
linearity.

Chapter 2: Background 12

Category Method Description
Continuity of
time-variant
traces

Auditory ana-
lysis

Focus on listening for inconsistencies in
the signal, like unnatural fade-ins/outs
or abrupt changes in sounds. Waveform
and spectrogram analysis supplement
findings.

ENF analysis Captures Electric Network Frequency
signals in recordings, used to detect dele-
tions or additions of content by analysing
frequency and phase trajectories.

Invariability of
time-invariant
traces

Auditory and
visual analysis

Looks for unnatural changes in rever-
beration, background sounds, encod-
ing artefacts, and sound levels. Spec-
tral characteristics and waveform ana-
lysis detect abrupt changes, such as in
frequency or noise levels.

DC-offset ana-
lysis

Examines variations in DC-offset to de-
tect editing, like additions or deletions in
the audio file.

Frequency re-
sponse analysis

Identifies additions of content recorded
on a different device or comparisons with
test recordings.

Invariability of
periodic traces

Auditory and
visual analysis

Focuses on sudden changes in traces
from transmission devices or background
sounds, like periodic dropouts or rate
changes of a wall clock in the back-
ground.

Codec frame
analysis

Examines periodic traces from lossy en-
coding embedded in a file, using inverse
decoding paradigm for analysis.

Detection of
traces of post-
processing

File structure
and metadata
analysis

Involves visualising file structure and
searching metadata for signs of post-
processing, like information from editing
software.

Double encod-
ing traces

Detects when a lossy-encoded file is de-
coded and then re-encoded, identifying
double encoding artefacts.

Replicated time
intervals

Identifies replicated portions in the audio
using auditory and visual analysis, and
signal subtraction techniques.

Comparison of
recording
traces with
contextual
information

Environment
analysis

Compares acoustical properties of the re-
cording to the known environment, but
current methods are considered unreli-
able.

Microphone
analysis

Examines microphone frequency re-
sponse in recordings to identify the
likely used microphone or device.

Encoding ana-
lysis

Checks for unexpected traces of lossy en-
coding in WAV files or verifies bitrate in
compressed files.

Table 2.1: Categorisation and description of methods described in Best Practice
Manual for Digital Audio Authenticity Analysis by Bartle, et.al. (2022), reprinted
from the project planning report by Skogseth (2023)

Chapter 2: Background 13

Figure 2.6: Example CNN architecture with two convolution layers, pooling lay-
ers and a fully connected (fc) layer. n represents the total number of classes.

2. Pooling Layers: Also known as subsampling or downsampling, this layer
decreases the dimensionality of each feature map yet maintains the most
relevant information. Pooling aids in identifying features despite changes
in scale and orientation and also minimises the computational cost for the
upcoming layers.

3. Fully Connected Layers: Neurons in a fully connected layer are connec-
ted to all activations in the preceding layer. These layers aggregate all the
information learned by the previous layers across the image to recognise
the broader patterns effectively. The final fully connected layer integrates
the features to classify images into various categories based on the training
dataset.

Rectified Linear Unit and He initialisation

The Rectified Linear Unit (ReLU) is a widely used activation function in deep learn-
ing due to its simplicity and effectiveness. However, proper initialisation of net-
work weights is crucial for stable gradients and efficient training. He et al. [13]
proposed a robust initialisation method specifically designed for ReLU and its vari-
ants, which has become a standard practice in training deep neural networks.

The ReLU activation function is defined as:

f (x) =max(0, x)

While simple, ReLU has the advantageous property of not saturating in the positive
domain, which helps in mitigating the vanishing gradient problem common in
deep networks. However, inappropriate initialisation of weights can still lead to
issues such as dead neurons or slow convergence.

He initialisation addresses this by scaling the variance of the initial weights
based on the number of input units. Specifically, the weights are initialised from
a zero-mean Gaussian distribution with variance:

Var(w) =
2

nin

where nin is the number of input neurons to a given layer. This initialisation
method ensures that the variance of the activations remains approximately con-
stant across layers, preventing the gradients from exploding or vanishing.

Chapter 2: Background 14

The following equations illustrate the He initialisation:

wi, j ∼N
�

0,

√

√ 2
nin

�

(2.1)

This initialisation technique is derived from considerations of both forward
and backward propagation. For forward propagation, it ensures that the variance
of the output remains stable:

Var(y) =
2

nin
Var(x) (2.2)

For backward propagation, it prevents the gradient’s variance from diminish-
ing:

Var(∆x) =
2

nout
Var(∆y) (2.3)

In practice, He initialisation has been shown to significantly improve the con-
vergence speed and performance of deep networks, particularly those employ-
ing ReLU or its variants. The results in He et al.’s study demonstrate that net-
works initialised with this method outperform those using traditional initialisation
schemes, leading to state-of-the-art performance on various benchmarks [13].

This initialisation strategy has thus become an integral part of training modern
deep neural networks, ensuring that even very deep architectures can be trained
efficiently from scratch.

Batch Normalisation

Batch Normalisation (BN) is a technique introduced by Ioffe and Szegedy [14]
to reduce internal covariate shift, which refers to the change in the distribution
of layer inputs during training. This shift can slow down training because each
layer must continuously adapt to the new distribution of inputs. BN addresses
this by normalising the inputs of each layer so that they have a mean of zero
and a variance of one. This normalisation is done on each mini-batch rather than
the entire dataset, which ensures that the normalisation process is efficient and
suitable for stochastic gradient descent. This technique allows for higher learning
rates, reduces the need for careful initialisation, and acts as a regulariser, often
reducing the need for dropout. BN ensures that the input to each layer maintains
a stable distribution, which significantly accelerates the training of deep networks
by allowing for faster convergence and more robust learning.

The following equations are involved in the BN algorithm and are from the
article by Ioffe and Szegedy [14]. Equation (2.4) computes the mean of the mini-
batch, and Equation (2.5) computes the variance. The normalisation step in Equa-
tion (2.6) ensures that the inputs to each layer have a mean of zero and a variance
of one. Finally, the scale and shift step in Equation (2.7) adjusts the normalised

Chapter 2: Background 15

inputs using learnable parameters γ and β , preserving the network’s capacity to
represent the data accurately.

µB =
1
m

m
∑

i=1

x i (2.4)

σ2
B =

1
m

m
∑

i=1

(x i −µB)
2 (2.5)

x̂ i =
x i −µB
q

σ2
B + ε

(2.6)

yi = γ x̂ i + β (2.7)

Cross-entropy loss

When training a CNN, the data is passed through the model to produce predic-
tions. The model’s predictions are then compared to the actual labels using a loss
function to measure the error. The cross-entropy loss function is commonly used
in classification tasks to measure the performance of a model where the output is
represented as a probability between 0 and 1 [15].

The following functions and the related equations are from the |pytorch| doc-
umentation [16]. The model outputs raw, unnormalised scores known as logits,
which are then converted into probabilities using the softmax function. The soft-
max function (2.8) calculates the probability distribution over C classes, where Pi
is the probability of class i given the logit zi . The cross-entropy loss for a single
data point (2.9) measures the difference between the true label distribution yi
and the predicted probability distribution Pi . To provide a single scalar loss value
for optimisation, the loss is often averaged over a batch of data points (2.10).
This batch loss considers the true label y(n)i and the predicted probability P(n)i for
class i of data point n in a batch of size N . These equations collectively help in
evaluating how well the predicted probability distribution matches the true dis-
tribution of the labels, making the cross-entropy loss an effective tool for training
classification models.

Pi =
ezi

∑C
j=1 ez j

(2.8)

Loss= −
C
∑

i=1

yi log(Pi) (2.9)

Lossbatch = −
1
N

N
∑

n=1

C
∑

i=1

y(n)i log(P(n)i) (2.10)

Chapter 2: Background 16

Adam optimiser

The Adam optimiser, defined by Kingma and Ba [17], is known for its adaptive
learning rates, which are computed for individual parameters based on estimates
of first and second moments of the gradients. The first moment estimate captures
the average of the gradients, while the second moment estimate captures the un-
centered variance, or the squared gradients. Adam includes bias-correction steps
to counteract the bias introduced in these moment estimates, which are initialised
at zero. This ensures that the estimates are more accurate, especially in the initial
stages of training. Overall, Adam is computationally cheap, has low memory re-
quirements, and is a good fit for problems with a lot of data and parameters. Its
ability to adapt learning rates and handle noisy and sparse gradients makes it a
robust and versatile choice for optimisation in machine learning tasks.

The order of computation for Adam and their related equations are from the
article by Kingma and Ba [17]. Before beginning, the first moment vector m0, the
second moment vector v0, and the time step t are initialised at 0. First (2.11),
compute the gradient gt of the objective function with respect to the parameters
at time step t. Then (2.12), using the exponential decay rate β1, it updates the
first moment estimate before (2.13) computing the second raw moment estim-
ate using the exponential decay rate β2. The next step (2.14) is to compute the
bias-corrected first moment estimate, and then (2.15) compute the bias-corrected
second raw moment estimate. Finally, the parameters are updated using the bias-
corrected moment estimates and a learning rate α 2.16. Here, ε is a small constant
to prevent division by zero.

gt =∇θ ft(θt−1) (2.11)

mt = β1mt−1 + (1− β1)gt (2.12)

vt = β2vt−1 + (1− β2)g
2
t (2.13)

m̂t =
mt

1− β t
1

(2.14)

v̂t =
vt

1− β t
2

(2.15)

θt = θt−1 −α
m̂t
p

v̂t + ε
(2.16)

Applciation in audio classification

Although traditionally used for image data, CNNs can also be effectively applied
to audio classification tasks. By transforming audio signals into Mel spectrograms,
which represent how humans perceive sound, audio data can be structured into

Chapter 2: Background 17

a format analogous to image data. Mel spectrograms display the spectrum of fre-
quencies of audio signals over time, presenting an opportunity for CNNs to process
and analyse audio similarly to how they process images [5] [18].

By training a CNN on a large dataset of labelled Mel spectrograms, the net-
work learns to recognise and differentiate between categories based on unique
pattern variations within the spectrograms. This technique can be used as a tool
for automated audio analysis for classifying diverse types of audio information -
for example, forged and original audio files [5] [18].

Machine learning metrics

The performance evaluation of machine learning models is commonly done by
calculating precision, recall, and the F1 score [19].

• Precision indicates the accuracy of the model in predicting true positives.
This score is computed by dividing the number of true positives by the sum
of true positives and false positives. A high precision score signifies that the
model’s predictions are highly relevant.
• Recall measures the model’s sensitivity, showing how effectively it identifies

true positives out of all actual positive cases.
• The F1 score, which is the harmonic mean of precision and recall, provides a

balanced measure of the model’s performance, especially useful when deal-
ing with imbalanced datasets.

In the article by Powers [19], they argue that there are some key limitations
to these metrics. Precision, recall, and F1 score focus solely on the positive cases
and predictions. They do not account for the model’s performance on negative
examples, which can lead to an incomplete assessment of the model’s overall ef-
fectiveness. So although a model might have high precision and recall, it could
still be performing poorly on negative cases, which leads to a biased understand-
ing of the model’s performance. Precision, recall, and F1 score are also sensitive
to the underlying class distribution and the model’s bias towards certain predic-
tions. This sensitivity can cause misleading evaluations, especially in datasets with
imbalanced class distributions.

Despite their inherent biases identified by Powers [19], precision, recall, and
F1 score remain the standard for evaluating binary classification problems due to
their straightforward interpretation and ease of calculation.

2.3.2 Overfitting and underfitting

The concepts of overfitting and underfitting are important in understanding ML
performance and generalisation. Overfitting occurs when a model learns not only
the patterns in the training data but also noise and outliers. This results in a model
that performs well on training data but fails to generalise to unseen test data. An
overfitted model essentially memorises the training data instead of learning their
discernible features [20]. Underfitting happens when a model is too simple to

Chapter 2: Background 18

capture the patterns in the data. This results in poor performance on both the
training data as well as new data [20].

An overfitted model might recognise specific noise patterns in the training
data, mistaking them for meaningful features, while an underfitted model might
fail to capture essential patterns altogether.

Chapter 3

Related work

In this chapter, the state-of-the-art methods for Audio Authenticity Analysis (AAA)
and dataset generation techniques are presented. The goal of the chapter is to
provide a comprehensive overview of the current methodologies and technologies
used in the field of audio forgery detection. The effectiveness of these methods is
presented based on precision, accuracy, and other relevant metrics, as reported in
the literature. This chapter also explores various strategies for creating datasets
of copy-move forgeries.

3.1 Automatic audio authenticity analysis

3.1.1 Traditional automated methods

There is potential for automated techniques for AAA to be sigificantly more ef-
ficient than current approaches. The state-of-the-art methods from the literature
are covered in this subsection. Table 3.1 provides an overview of the related work,
the forgery type they focus on, the methods they used, as well as the performance
they were able to achieve.

In order to identify audio forgeries, Hua et al. [9] present a novel method of
matching the Absolute Error Map (AEM) of the ENF to the ENF database. Then,
this method is applied to two algorithms that not only identify deletion and spli-
cing forgeries but also validate the audio file timestamps. Another approach re-
lated to ENF is presented by Hsu et al. [10]. Their approach involves creating a
Chinese ENF database with diverse ENF signals extracted from audio recordings.
The methodology is comprised of three main steps: extracting the ENF signal from
audio files, refining the signal through wavelet decomposition, and analysing it
using an autoregressive model. The latter quantifies the influence of previous val-
ues in a time series on its current value, helping to predict future points based
on its own past observations. The autoregressive coefficients are then utilised to
train three types of machine learning models—Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Deep Neural Networks (DNN)—to distinguish
between authentic and tampered audio files. The experimental evaluation, con-

19

Chapter 3: Related work 20

Ref. Year Forgery-type Method Result (%)
[9] 2016 Insertion, spli-

cing, deletion
Absolute-Error-Map of ENF signals -

[21] 2017 Copy-move Voice activity detection and Local
Binary Point

A = 96.59

[22] 2019 Copy-move Dynamic time warping P = 95.05
[23] 2021 Synthetic

speech
Light CNN and transformer A = 98.83

[18] 2023 Copy-move Mel spectrogram feature matching A = 83.17
[10] 2023 Copy-move,

deletion
ENF analysis, K-NN, SVM, DNN A = 92.16

[11] 2023 Splicing CNN based on acquisition device
traces

A = 95

[5] 2023 Copy-move Mel spectrogram-based CNN A = 95.8
[24] 2023 Copy-move Super-resolution spectrogram and

keypoint-based clustering
P = 99

[25] 2023 Synthetic
speech

Spectrogram, multi-task neural net-
work

AUC = 0.90

[1] 2024 Copy-move MFCC, ∆MFCC and LPC A = 76.48

Table 3.1: Table of reviewed methods. P = precision, A = accuracy, AUC = Area
Under Curve. The results are averaged where multiple tests were done

ducted on a specially recorded Chinese speech database within an anechoic cham-
ber, demonstrates the effectiveness of this method in identifying audio tampering,
with accuracy rates ranging from 91% to 93%.

Imran et al. [21] identify matches indicating copy-move forgery using Local
Binary Point (LBP) histograms after using Voice-Activity Detection (VAD) to identify
the words and their corresponding boundaries.

Yan, Juang and Huang [22] detect copy-move forgeries by leveraging pitch
and formant features within voiced speech segments. The method involves seg-
menting the speech into voiced and unvoiced parts, extracting the pitch and the
first two formant sequences from the voiced segments, and then using dynamic
time warping (DTW) to measure the similarities between these features. By setting
a threshold for the DTW values, they can identify and locate copied segments that
have been moved to different positions within the same recording. This approach
is shown to be highly effective even in the presence of common post-processing
operations such as noise addition, filtering, and compression, achieving high ac-
curacy in various test scenarios. The extensive experiments validate the robustness
of the method, making it a valuable tool for practical forensic applications.

Chapter 3: Related work 21

3.1.2 Machine learning methods

The field of automatic audio forgery detection has seen massive transformation
thanks to the application of machine learning, especially deep learning. The ef-
fectiveness of merging CNNs and vision transformers to improve detection capab-
ilities is shown by Liu et al. [23]. This integration increases the accuracy of forgery
detection and enables better handling of complex audio data.

Ustubiologu, Tahaoglu and Ulutas [18] introduce a novel feature matching
approach using Mel spectrograms to detect and locate audio copy-move forgery.
This method uses keypoints extracted from the Mel spectrogram representation of
the audio, beginning with converting the input audio into a Mel spectrogram im-
age and using Scale-Invariant Feature Transform (SIFT) keypoints for matching.
These keypoints are matched to detect similar regions, and the matched keypo-
ints are used to identify potential forgery regions. The proposed method includes
a post-processing step that eliminates false positives and accurately marks forged
areas in the spectrogram image. The forged segments in the audio file are identi-
fied using the positions of the forged regions in the spectrogram image.

A splicing detection technique based on the analysis of acquisition device
traces is presented by Leonzio [11]. In order to apply this technique, a CNN is
used to extract features, a K-means clustering algorithm is used to find traces
from various models, and a custom distance measure is used to locate the forgery.

Figure 3.1: Mel spectrogram of (a) an original audio file and (b) its related
copy-move forgery. Reprinted with permission from Mel spectrogram-based au-
dio forgery detection using CNN by Ustubioglu, Ustubioglu, and Ulutas [5]©2022
Springer

Mel spectrograms are used as features in a CNN in an approach proposed by
Ustubioglu, Ustubioglu and Ulutas [5]. Mel spectrograms are used to train the
CNN, which subsequently classifies Mel spectrograms as either original or forged.
Their proposed method achieves the best performance in a comparative analysis
included in the paper.

Ustubioglu et al. [24] provide an example of how machine learning can be
used to locate and identify audio forgeries using keypoint-based clustering and
high-resolution spectrogram images. The study highlights how machine learning
can be used to detect complex and subtle artefacts in audio files that would be

Chapter 3: Related work 22

difficult to detect using more conventional techniques.
Akdeniz and Becerikli [1] introduce a novel method for detecting audio copy-

move forgery using an ANN, leveraging Mel Frequency Cepstral Coefficient (MFCC),
∆ MFCC, and Linear Prediction Coefficient (LPC) as features from the audio
signal. The results demonstrate the method’s effectiveness in identifying forger-
ies, with significant improvements in detection accuracy compared to traditional
methods. This approach offers a new direction in the field of digital audio forensics
by employing advanced feature extraction techniques and machine learning al-
gorithms. Although the precision achieved is less than from other methods in the
related work, they argue that this method could potentially be more robust to
changes in a number of variables, such as the environment of the recording, noise
level, and the speaker.

The classification model developed in this thesis is a Mel spectrogram-based
CNN inspired by the method of Ustubioglu, Ustubioglu and Ulutas [5] and based
on the guide by Doshi [26]. The CNN architecture consists of five convolutional
blocks, each incorporating convolutional layers, ReLU activations, and batch nor-
malisation. An adaptive average pooling layer follows these blocks, which pre-
pares the features for the linear classification layer.

In addition, this thesis explores a method to classify longer audio files with
the CNN. The model processes these files by segmenting their spectrograms into
smaller, overlapping chunks. The final classification for the entire audio file is
determined through a majority voting scheme over the smoothed segment pre-
dictions.

3.2 Database generation

Imran et al. [21] created a database for detecting fraudulent media files using
recordings from various environments and types of microphones. The database
includes recordings from a soundproof room, an office, and a cafeteria, each with
different levels of background noise. The forged audio database was generated us-
ing a VAD module to accurately detect the boundaries of spoken words in the au-
dio, simulating realistic forgeries. The locations for copy and move actions within
the recordings were determined using Gingerbreadman chaos theory, so that the
forgery could be at any point within the recording. Another point of doing this
according to chaos theory, as opposed to doing it with a random number gener-
ator, is its deterministic nature. This makes it possible to replicate the database
generation process if the initial parameters are known. The database consists of a
total of 1350 forged audio recordings. These recordings were generated from 270
original audio recordings in Arabic, taken from 90 speakers from various countries
and regions, in three different environments.

Ustubioglu, Ustubioglu and Ulutas [5] used audio samples from the Arabic
Speech Corpus and TIMIT speech database to create forged audio files by seg-
menting the speech into voiced and unvoiced parts, then copying and pasting
random segments. The resulting duration of each repeated segment formed is ap-

Chapter 3: Related work 23

Paper Number of
samples

Forgery Database generation method

[21] 1350 forgeries Copy-move VAD and Gingerbreadman chaos
theory

[27][5] 368 + 1329
forgeries

Copy-move Pitch based separation of seg-
ment, then replacing one voiced
section with another

[24] 2208 + 160
forgeries

Copy-move Randomly generated by separat-
ing voiced and unvoiced parts of
the audio based on VAD, then re-
placing one voiced section with
another

[1] 2189 forgeries Copy-move Automatically generated by
copying the third second of the
audio and inserting it after the
first second

Table 3.2: An overview of copy-move forgery datasets and the methods used to
generate them in the related work. The "+" represents that two different datasets
was used as the source of audio files

proximately between 0.2 and 0.6 seconds. A total of 368 forged audio files were
created from the TIMIT database, and 1329 forged audio files were generated
from the Arabic Speech Corpus, amounting to a total of 1697 samples. This is the
only dataset which is publicly available through a link to a Google drive folder in
the paper.

Ustubioglu et al. [24] used a similar approach: the database consists of au-
dio files created using the TIMIT speech database and the Arabic Speech Corpus.
In the TIMIT-based dataset, each audio file is divided into segments, and random
segments are copied and pasted in different places within the same audio file, with
each forged segment ranging from 0.2 to 0.6 seconds. For the Arabic Speech Cor-
pus dataset, 30 audio files underwent similar forgery and various post-processing
attacks, such as adding white Gaussian noise, median filtering, and MP3 compres-
sion at different bitrates. The database, therefore, contains audio samples with
plain copy-move forgeries and those subjected to several types of post-processing
attacks, leading to a comprehensive set for testing forgery detection methods. The
paper describes a dataset of 2208 forged audio files created from TIMIT, plus an-
other set of 180 from the Arabic Speech Corpus, along with various versions of
these files that were subjected to post-processing attacks to evaluate the robust-
ness of their detection method.

Akdeniz and Becerikli [1] utilised a total of 4378 audio files, split evenly
between original recordings and forgeries. The forged samples were generated
by copying the segment from the third second of the audio and pasting it after the
first second within the same recording.

Chapter 3: Related work 24

For the purposes of this thesis, a novel dataset is generated using the NB Tale
dataset from the National Library of Norway. NB tale encompasses manuscript
read and spontaneous speech recordings. The forgeries are generated by extract-
ing voiced segments using the YAAPT algorithm and randomly selecting a voiced
segment to copy and paste at another random location in the audio file. The data-
set includes 5361 original and 5361 forged samples of short audio recordings,
along with 365 original and 365 forged samples of long audio recordings.

Chapter 4

Method

This chapter outlines the methodologies employed in this research to detect audio
forgeries. It provides detailed descriptions of the literature review, as well as the
processes involved in dataset creation, model development, training, and evalu-
ation.

4.1 Literature review

A literature review focusing on audio forensics and audio authenticity analysis was
conducted to obtain an overview of the field, including fundamental concepts and
state-of-the-art techniques. Emphasising articles published in academic journals
and books, the review aimed to identify the latest trends and methodologies in
audio forgery detection. This initial review was conducted as part of the project
planning report [4], and parts of the method are therefore also described there.

Google Scholar was the primary search engine used for sourcing relevant pro-
jects and theories due to its extensive database and ease of use. Keywords such
as "audio forensics", "audio authenticity analysis", "audio forgery detection" and
"machine learning" were used to find relevant literature. Google Scholar makes it
easy to find relevant material from a range of different journals, conferences, and
books.

The papers included provide a comprehensive view of the state-of-the art au-
dio authenticity analysis techniques. The emphasis was placed on recent publica-
tions to understand current trends, but older works were also included to ensure
a well-rounded perspective. The source of the literature spanned a variety of data-
bases.

This is partly a development project of exploratory nature. The relevant liter-
ature offers too few details to properly replicate the steps to build the methods
used in the project. Because of this, more searches for specific technologies, meth-
ods and subjects was done iteratively to find articles, guides and other webpages
which explain the components needed for creating both the dataset and CNN
model.

25

Chapter 4: Method 26

The literature review highlights the current state-of-the-art in audio forensics
and authenticity analysis, emphasising the importance of robust detection tech-
niques in identifying forgeries. Key findings from the review include various meth-
odologies for creating and detecting audio forgeries, particularly copy-move for-
geries, and the application of machine learning models in this domain. These in-
sights form the foundation for the methods developed in this thesis, guiding the
creation of a novel Norwegian dataset and the design of a CNN model to effect-
ively detect audio forgeries. This chapter will build upon these findings to detail
the specific techniques and processes employed in this research.

4.2 Dataset

To assess a model’s ability to detect copy-move forgeries, it needs to be trained,
evaluated and tested on a dataset of audio files where one section has been re-
placed by another. The only publicly available dataset that fit this description was
one based on the Arabic Speech Corpus, found through the paper by Ustubioglu,
Ustubioglu and Guzin Ulutas [5]. Manually creating the realistic forged audio
files is a non-trivial and resource-heavy task; it would take a long time to create
enough samples to effectively train a ML-model. The way this is solved in the re-
lated literature is through different ways of generating the forged audio files with
an algorithm. This section presents the steps that were made to create the novel
Norwegian dataset of copy-move forged and original audio files. The final dataset
is available in Kaggle [28].

4.2.1 Source datasets

Modules 1 and 2 of the NB Tale dataset [6], a publicly available database for auto-
matic speech recognition (ASR) by the National Library of Norway, were used to
create the datasets for training, validation, and testing. Module 1 consists of 4,800
audio files with durations ranging from 4-14 seconds, recorded by 240 speakers
reading 2,163 unique texts. Module 2 consists of 2,800 audio files with durations
ranging from 4-24 seconds, recorded by 140 speakers reading 1,263 unique texts.
Module 3, used for creating the test dataset with longer files, consists of spontan-
eous speech recordings from 380 speakers, with audio files up to several minutes
long. There are two available versions of the three modules, which differs in the
recording equipment used. For this project we chose the version recorded with
a Sennheiser HS 2-5-1 headset microphone at a sampling rate of 48kHz, and a
bitrate of 256kbps. The audio files were recorded at three different locations:

• Sound studio at NTNU.
• The Arctic University of Norway (UiT).
• University of Agder (UiA).

https://www.kaggle.com/ds/5167635

Chapter 4: Method 27

4.2.2 Dataset generation

The audio files from the source dataset were processed to create two distinct cat-
egories: copy-move forgeries and original audio files.

• Copy-Move Forgery A segment of the audio is duplicated and inserted back
into the audio at another location. This simulates a scenario where a part of
the audio file is copied and pasted elsewhere in the same file to, e.g., alter
the meaning of a sentence.
• Original The original audio files are saved along with the forgeries as they

are.

Two methods were explored for generating the forged audio files: a VAD-based
method and a static copying method. The VAD-based method, which uses the
YAAPT algorithm to extract voiced segments and create forgeries, was ultimately
selected for the final dataset.

VAD-based copy-move

This section outlines the process used to generate a dataset of forged audio files
using the YAAPT (Yet Another Algorithm for Pitch Tracking) algorithm, proposed
by Kasi and Zahorian [29]. The audio files are first processed to extract voiced
segments using the YAAPT algorithm. The voiced segments are then used to create
forgeries by copying and inserting them into different locations within the same
audio file. The following is a high-level overview of how the algorithm works [1]
[5] [5] [30]:

The audio signal undergoes pre-processing to enhance the pitch information.
This includes generating multiple versions of the signal using nonlinear processing
techniques.

YAAPT predicts an approximate pitch track by analysing the spectral harmonic
content of the signal. This involves calculating the Spectral Harmonic Correlation
(SHC), which measures the harmonic structure of the spectrum.

Pitch candidates are generated from both the original and non-linearly pro-
cessed signals using the Normalized Cross-Correlation Function (NCCF). This func-
tion measures the similarity of the signal with itself at various lag values to estim-
ate the pitch period. The algorithm differentiates between voiced and unvoiced
frames using the Normalized Low Frequency Energy Ratio (NLFER). This helps in
identifying frames where pitch is present.

The final pitch track is determined using dynamic programming, to integrate
information from both spectral and time-domain analysis.

The process of creating a forgery starts by loading a file and resampling it to
a sampling rate of 16kHz. Then, the YAAPT pitch tracking algorithm is applied
to the resampled audio, to extract the pitch. These pitch values are then used to
identify voiced segments. The voiced segments are identified as regions where the
pitch values are greater than zero. Voiced segments are only extracted if they are
of a minimum of 0.4 seconds. If no voiced segments over the minimum length

Chapter 4: Method 28

is found the file is not included in the dataset, which results in 5361 audio files
included from modules 1 and 2 and 365 samples included from module 3.

The voiced segments are used as the basis for selecting a segment to copy
in the files. The forgeries are generated by copying a segment of voiced audio
and inserting it into another location within the same audio file. The voiced V
segments are labelled as V1 . . . Vi where i represents the total number of voiced
segments in the audio file. A unique random number a is chosen within the range
[1, 2 . . . i]. The rule for selecting this number can be mathematically summarised
as follows:

Let a ∈ {1, 2, . . . , i}.

The voiced segment Va is then copied and pasted to a new random location L
within the audio file, ensuring that the new location does not overlap with the
original segment. The new location L is determined by:

Let L ∈ {0,1, . . . , T − (enda − star ta)} such that L /∈ [star ta, enda]

where T is the total length of the audio file, and star ta and enda are the start
and end points of the segment Va. This approach retains the original length of the
audio file ensuring that there are no common features for forged vs original files,
other than the forgery itself.

Static copy-move

To create the static training dataset, the audio files from NB tale module 1 were
first filtered on duration. This was done by loading the source dataset using the
librosa library, which provides functions for loading and analysing audio data.
The duration of each file was checked using librosa.get_duration(). Files inside
the 7 to 9 second range was saved for further processing. The filtering resulted
in a total of 2913 files being included. To create the test dataset, the audio files
from NB tale module 2 were also first filtered on duration, in the same manner as
the training dataset. The filtering resulted in a total of 1193 files being included.
During this step, all audio files were downsampled to a sampling rate of 16kHz to
reduce the files to a more manageable size to reduce computational complexity
during processing.

The static copy-move forgery method, based on the method used by Akdeniz
and Becerikli [1], involves copying a specific segment of the audio file and insert-
ing it at a predefined location. This method was used for initial testing, while the
final dataset employs the VAD-based method for creating forgeries.

The method was adjusted for the characteristics of the filtered datasets. For
example, one adjustment that was made was that it was not fitting to paste the
section after the first second as many of the files in the dataset have 1-2 seconds
of leading silence. This would result in that the original and forged files could
be classified based on the length of the leading silence, instead of the identical
patterns.

Chapter 4: Method 29

For each audio file in the training dataset, the sixth second was copied and
inserted after the second second. Let:

• x[n] be the original audio file, where n is the sample index.
• fs be the sampling rate (in samples per second).

For an audio file with a sampling rate of fs, the relevant segments are defined as:

• segment1= x[0 : 2 fs] (samples from 0 to 2 fs − 1)
• segment2= x[5 fs : 6 fs] (samples from 5 fs to 6 fs − 1)
• remaining = x[2 fs : 5 fs] ∪ x[6 fs :] (samples from 2 fs to 5 fs − 1 and from

6 fs to the end)

The forged audio file y[n] is created by concatenating these segments:

y = [segment1, segment2, remaining]

where:

segment1= x[0 : 2 fs]

segment2= x[5 fs : 6 fs]

remaining= x[2 fs : 5 fs]∪ x[6 fs :]

4.3 Experimental setup

The experiments were conducted on a Windows 11 computer equipped with an In-
tel Core i7-10700 CPU, featuring a base clock speed of 2.90 GHz and a maximum
boost speed of 4.80 GHz. The system has 32 GB of DDR4 RAM and an NVIDIA
GeForce RTX 2070 Super GPU with 8 GB of dedicated VRAM. The development of
data processing scripts and model programming were done in Visual Studio Code
using Python 3.12.0. The following packages were used: os, librosa, pathlib, pan-
das, torch, torchaudio, torchvision, torchviz, matplotlib, shutil, numpy, soundfile,
and collections.

4.3.1 Pre-processing and loading data

The data pre-processing steps were adapted from methods detailed in Doshi’s
guide [26]. For pre-processing the python library "torchaudio" was used in a three
step process. These steps are represented as methods within the AudioUtil class
in the script.

1. Loading Audio Files: The open method loads an audio file and returns the
audio signal (sig) and its sample rate (sr). torchaudio.load directly fetches
these two components, which are used for further processing. The sample
rate indicates how many samples of the audio are taken per second.

2. Creating Mel Spectrogram: The spectro_gram method converts the au-
dio signal into a Mel Spectrogram. This transformation is performed by ap-
plying a Mel scale filter to a Short Time Fourier Transform (STFT) of the

Chapter 4: Method 30

signal, configured by parameters such as the number of Mel frequency bins
(n_mels), the window size (n_fft), and the hop length (hop_len). The vari-
ables used to create the spectrograms were n_mels = 128, n_fft = 2048,
and hop_len = 512. The output is then converted from amplitude to decibels,
which normalises the loudness and improves the visibility of various fea-
tures in the spectrogram, making it more suitable for analysis and model
training.

The Mel spectrograms are randomly divided into three subsets, also referred
to as datasplits: 70% for training, 20% for validation, and 10% for testing. These
subsets are then exported as ".pt" files for use during the training and validation
processes. The training data is used to train the model, while the held-out val-
idation data provides an indication of the model’s performance on unseen data
during the training phase. However, because the validation data is utilised during
training, there is a potential for bias towards these samples. To mitigate this, a
separate test split is reserved to objectively assess the model’s performance after
training, ensuring that the evaluation reflects the model’s ability to generalise to
completely new and unseen data.

4.4 Convolutional Neural Network model

This subsection details the CNN model architecture as well as its related training
and evaluation process.The model architecture was inspired by Doshi’s guide [26]
and adapted for this study.

Model architecture

The CNN audio classification model is defined as a subclass of nn.Module within
the PyTorch library. The model consists of five sequential convolutional blocks
followed by a linear classification layer, optimised for an audio signal processing
task.

The primary feature extraction in the model is accomplished through five con-
volutional blocks, each comprising a convolutional layer, a ReLU activation func-
tion, and a batch normalisation. He initialisation in each convolutional block is
used with a non-linearity coefficient of 0.1 to ensure effective weight initialisa-
tion of ReLU activations. Each block also uses batch normalisation and a dropout
rate of 0.3 to prevent overfitting.

• Block 1: 8 filters, size = 5x5, stride = 2x2, padding = 2x2.
• Block 2: 16 filters, size = 3x3, stride = 2x2, padding = 1x1.
• Block 3: 32 filters, size = 3x3, stride = 2x2, padding = 1x1.
• Block 4: 64 filters, size = 3x3, stride = 2x2, padding = 1x1.
• Block 5: 128 filters, size = 3x3, stride = 2x2, padding = 1x1.

The output of the final convolutional block is passed through an adaptive av-
erage pooling layer (nn.AdaptiveAvgPool2d) that transforms the output of the

Chapter 4: Method 31

convolutional blocks to a fixed size (1x1), ensuring a consistent input size for the
subsequent linear layer regardless of the input dimensions.

The pooled output is then flattened and passed to the fully connected linear
layer (nn.Linear) which maps the extracted features to the final classification out-
puts. The linear layer consists of 128 input features, corresponding to the number
of output channels from the last convolutional block, and 2 output features, which
represent the class identifiers 0 and 1.

Figure 4.1: CNN architecture

Training and evaluation

The process of training the CNN models involved several steps. The datasets were
divided into training, validation, and test sets. The training set was used to train

Chapter 4: Method 32

the model, while the validation set provided feedback on the model’s performance
during training. This feedback was used for tuning hyperparameters and prevent-
ing overfitting. The test set was reserved for final evaluation to assess the model’s
generalisation ability.

The models were trained using the Adam optimizer with a cross-entropy loss
function. Various parameters were adjusted, including the learning rate, batch
size, and the introduction of dropout and weight decay, to optimise performance.
Training was conducted over multiple epochs, utilising checkpoints to save the
best model state as it improves based on the validation loss. The choices made in
regards to the parameters of the model during training were informed by prelim-
inary experiments and literature reviews, aiming to achieve a balance between
training efficiency and model robustness. The steps in the training loop are:

• Normalisation and optimisation At the start of each epoch, the input data
is normalised based on the global mean and standard deviation of the train-
ing data. This step ensures that the input features have similar scales and
contribute equally to the learning process. The model then performs a for-
ward pass, a backward pass for error backpropagation, and an optimisation
step where the model parameters are updated using the Adam optimiser.
• Loss computation and backpropagation During the training phase, the

loss for each batch is determined using the cross-entropy loss function,
which assesses the difference between the predicted probability and the
true class label. This loss is used to guide the learning process through back-
propagation.
• Learning rate adjustment After each batch, the learning rate scheduler

updates the learning rate, facilitating the model’s adaptation to the dataset’s
features more effectively, as training progresses.

Parallel to the training process, the model is periodically evaluated on the
validation data after each training epoch:

• Validation Phase: In the validation phase, the model is set to evaluation
mode, which disables certain operations that behave differently during train-
ing versus testing. The validation input data is also normalised by using the
same mean and standard deviation from the training data. The model pro-
cesses the entire validation dataset without computing gradients (to save
memory and computation time), calculates the loss using cross-entropy loss,
and determines the accuracy.
• Monitoring Validation Loss: The validation loss is used to evaluate the

model’s performance on unseen data. This gives an indication of how well
the model is likely to perform on general data outside of the training set.
• Early Stopping Implementation: If the validation loss does not improve

(decrease) for 10 consecutive epochs, there is an option for the training
process to be stopped early. This mechanism prevents overfitting by stop-
ping the training when the model no longer shows improvement on the
validation data.

Chapter 4: Method 33

• Saving checkpoints: During the training, if a new minimum validation loss
is observed, the model’s state is saved as a set of weights. This ensures that
even if the model’s performance degrades in subsequent epochs due to over-
fitting or other issues, the best-performing state of the model is saved and
can be used for future predictions.

Training was done with and without data augmentation of the training data.
With data augmentation, multiple transformed versions of the spectrograms are
created on-the-fly. This means that each time a spectrogram is fetched during
training, a different version might be generated depending on the random trans-
formations applied. This helps increase the variability of the training data without
actually increasing the size of the dataset stored on disk. The augmentations which
were applied were the same as utilised in the paper by Ustubioglu, Ustubioglu and
Ulutas [5], adapted to the RandomAffine function from the torchvision.v2 library
with the following parameters:

• degrees = 0: No rotation of the spectrogram
• translate = (0.1, 0.1): Translates the image by up to 10% of the width and

height, effectively shifting the height and or width of the image.
• shear = 0.3: applies shear transformation with a shear range of 0.3. Shear-

ing involves shifting parts of the spectrogram along one axis.
• fill = 0: specifies the fill values as 0 for areas outside of the boundaries of

the input after the translate and/or shear transform is applied.
• interpolation = InterpolationMode.NEAREST: Uses nearest-neighbor inter-

polation to match the fill mode used in [5].

4.5 Tests with post-processed samples

To assess the robustness of the model under various adversarial conditions, mul-
tiple test datasets were created with different levels of noise and compression
applied to the audio files. The augmentations applied include the addition of
SNR adjusted noise and audio compression at different bitrates. By comparing the
model’s performance on these processed test datasets to its performance on unpro-
cessed test datasets, we can evaluate how well the model generalises to real-world
scenarios where audio quality may be compromised, degraded or manipulated in
some form. The augmentations applied include the addition of Signal-to-Noise
Ratio (SNR) adjusted noise and audio compression at different bitrates.

Signal-to-Noise Ratio (SNR) Noise

To simulate environmental noise and signal degradation, SNR adjusted noise was
added to the audio files at 20 dB and 30 dB. This was done to assess the model’s
performance when audio files are subjected to varying levels of noise in post-
processing.

Chapter 4: Method 34

SNR is a measure of the level of the desired signal relative to the level of back-
ground noise. The ratio is expressed in decibels (dB), and a higher SNR indicates
a cleaner signal with less noise, while a lower SNR indicates a noisier signal. Spe-
cifically, a SNR of 20 dB means that the signal level is 20 dB higher than the noise
level, and a SNR of 30 dB means that the signal level is 30 dB higher than the noise
level. Thus, a lower SNR value (e.g., 20 dB) corresponds to a higher amount of
noise in the audio file, making it more challenging to discern the original signal
from the noise [31].

The noise was added using the torchaudio.functional.add_noise function
from the torchaudio library. The function modifies the audio file by incorporating
noise at a specified SNR level [32].

Audio Compression

Audio compression is a common post-processing technique used to reduce the size
of audio files. The effects of lossy compression on the classification model were
explored by compressing audio files to 32 kbps and 64 kbps. Compression at lower
bitrates typically results in a loss of audio quality, which can serve as a method for
adversaries to mask forgery artefacts.

The compression was done using AudioSegment from the pydub library [33],
which reduce the file size while attempting to maintain as much quality as pos-
sible. In this context, lower bitrates represent a higher degree of compression,
potentially affecting the integrity of the audio file and its detectable features.

4.6 Method for detecting copy-move forgeries in long au-
dio files using CNN

Given that the forged and original Mel spectrograms of the audio files in NB Tale
Part 3 are significantly longer than the samples used for training, validation, and
testing, they were segmented into smaller chunks which were more comparable in
length to the other data. The segmentation was performed based on a fixed dur-
ation of 9 seconds, corresponding to a specific number of time frames in the Mel
spectrogram, determined by the sampling rate and hop length. The segmentation
process split each long spectrogram into overlapping chunks, with an overlap of
50% to capture sufficient temporal context in each chunk. If the spectrogram was
shorter than the chunk length, it was kept as a single segment.

For each spectrogram, each chunk was normalised using the mean and stand-
ard deviation derived from the training data and processed individually by the
CNN to extract predictions. The probability of each chunk being forged was eval-
uated against a predefined threshold, and the predictions were smoothed using a
windowed approach. The final classification for the full audio file was determined
by the majority voting of the smoothed segment predictions.

Chapter 5

Results

This chapter presents the results from training and testing the Convolutional Neural
Network (CNN) model. This section focuses on the presentation of the results
without analysis, which will be provided in Chapter 6, along with the discussion
of the results.

5.1 Static dataset

This section presents the initial training and testing results on the static copy-move
dataset. This experiment validated the CNN model’s ability to learn features and
generalise to data it was not trained on. The results showed high accuracy for
the training, validation, and test datasets, with respective values of 0.985, 0.937,
and 0.890. Training was done using a learning rate of 0.001 with a target of 100
epochs, stopping early after 36 epochs due to the early stopping criterion being
met at epoch 26. The model’s weights at epoch 26 were saved as a checkpoint.
Figure 5.1 shows the plot of training vs. validation loss over the epochs, and the
plot of training vs. validation accuracy over the epochs.

The best model state was saved as a checkpoint during training. This check-
point of weights was then loaded into the model which did a classification of a
new, unseen test dataset. The result produced from the test is a classification re-
port, which is detailed in table 5.1.

Precision Recall F1-Score Support

Original 0.88 0.89 0.89 1194
Forged 0.89 0.88 0.88 1194

Accuracy 0.89 2388
Macro avg 0.89 0.89 0.89 2388
Weighted avg 0.89 0.89 0.89 2388

Table 5.1: Classification report generated by testing the trained CNN1 on the
datset of long audio files.

35

Chapter 5: Results 36

Figure 5.1: Training loss vs validation loss and training vs. validation accuracy
of CNN1 on the static dataset.

5.2 VAD-based dataset

This section presents the results of training and testing on the final VAD-based
dataset. It includes subsections that detail the results on the extended dataset
with augmented test files, as well as the test results on the dataset with longer
audio files.

5.2.1 Training and validation results

For testing on the VAD-based dataset, two models were used: the CNN described
in the method chapter (CNN1), as well as a CNN-model (CNN2) based on the one
proposed by Ustubioglu, Ustubioglu and Ulutas [27] [18]. The results from this
testing determined which model was used for the extended testing.

During training, accuracy and loss on the training and validation splits were
logged. Table 5.2 shows these values at the epoch where the validation loss stopped
improving. Both models were trained with and without data augmentation, where
random augmentations were applied to the Mel spectrograms of the training files
to increase the model’s robustness and its ability to generalise to unseen samples.

Chapter 5: Results 37

CNN1 was first trained without data augmentation, using a learning rate of
0.001 and a batch size of 64 over 75 epochs. The best model state was achieved at
epoch 19, with a training loss of 0.6068, training accuracy of 0.6564, validation
loss of 0.6444, and validation accuracy of 0.6117. Without data augmentation, the
training took approximately 3 seconds. Figure 5.2 visualises the loss and accuracy
curves over the epochs. The plot shows that the validation loss starts to rapidly
increase around epoch 20 as the training loss decreases, indicating overfitting.

Figure 5.2: Training vs validation loss and training vs validation accuracy during
training CNN1 without data augmentation.

CNN1 was also trained with data augmentation, using a learning rate of 0.002
and a batch size of 64 for 400 epochs. The best model state was achieved at epoch
371, with a training loss of 0.5000, training accuracy of 0.7402, validation loss
of 0.5304, and validation accuracy of 0.7189. With data augmentation, the train-
ing took approximately 14 seconds per epoch. Figure 5.3 visualises the loss and
accuracy curves over the epochs, showing how the model reaches convergence,
indicated by stability in the metrics, around epoch 380.

CNN2 reached its best validation accuracy of 68.8% and validation loss of
0.5784 after 18 epochs without data augmentation.

Chapter 5: Results 38

Figure 5.3: Training vs validation loss and training vs validation accuracy during
training of CNN1 with data augmentation.

Model Epochs T loss T acc V loss V acc Aug

CNN1 19 0.6068 0.6564 0.6444 0.6117 No
CNN1 371 0.5000 0.7402 0.5304 0.7189 Yes
CNN2 18 0.5573 0.7030 0.5784 0.6880 No
CNN2 185 0.6161 0.6415 0.5890 0.6800 Yes

Table 5.2: Training and validation results of the two CNN models on the VAD-
based dataset. T = training, V = Validation, Aug. indicates if the training data
was augmented during training.

5.2.2 Test results

The baseline classification performance of the final trained CNN1 model was eval-
uated on the test split of the dataset, using precision, recall, F1-score, and sup-
port metrics for both the original and forged classes. The results are summarised
in Table 5.3. The model achieved a precision of 0.74 for the original class and
0.70 for the forged class. The recall values were 0.71 and 0.73 for the original
and forged classes, respectively. This indicates that the model correctly identified
71% of the original samples and 73% of the forged samples. The F1-scores, which

Chapter 5: Results 39

Precision Recall F1-Score Support

Original 0.74 0.71 0.72 556
Forged 0.70 0.73 0.71 516

Accuracy 0.72 1072
Macro avg 0.72 0.72 0.72 1072
Weighted avg 0.72 0.72 0.72 1072

Table 5.3: Classification Report generated by testing the trained CNN1 on the
test split.

balance precision and recall, were 0.72 and 0.71 respectively for the original and
forged samples.

Overall, the model achieved an accuracy of 0.72 across 1072 samples. The
macro average and weighted average metrics also reflected a balanced perform-
ance, each scoring 0.72 for precision, recall, and F1-score.

These results indicate that the model performed similarly on both classes, with
a slight variation in recall between the original and forged categories. The bal-
anced f1-scores suggest a consistent performance in handling both classes of data.

The model’s performance on the test data is further illustrated by the confusion
matrix shown in Figure 5.4. The confusion matrix provides a detailed breakdown
of the model’s classification results, indicating the number of correct and incorrect
predictions for each class.

Figure 5.4: Confusion matrix from testing the trained CNN1 on the test split.

The confusion matrix shows that out of 534 original samples, 370 were cor-

Chapter 5: Results 40

rectly classified. Similarly, out of 538 forged samples, 386 were correctly classified.
These results reflect the model’s performance in distinguishing between ori-

ginal and forged samples, showing a relatively balanced distribution of correct
and incorrect classifications for both classes. The confusion matrix highlights the
areas where the model performed well and where there is room for improvement,
particularly in reducing the number of false positives for the forged class.

Post-processed test samples

The classification performance of the model was evaluated on test samples with
different post-processing operations applied to the samples, to simulate scenarios
where an adversary might process forged audio files to conceal the forgery. Table
5.4 presents the results of these tests, including accuracy, precision, recall, and
F1-score for various augmentation methods.

Augmentation Accuracy Precision Recall F1

20 dB SNR noise 0.5606 0.6658 0.5606 0.4936
30 dB SNR noise 0.7024 0.7029 0.7024 0.7025
32 kbps bitrate 0.7164 0.7172 0.7164 0.7165
64 kbps bitrate 0.7164 0.7172 0.7164 0.7165

Table 5.4: Results from testing the trained CNN1 with additional post-processing.

• With 20 dB SNR noise the model achieved an accuracy of 0.5606, precision
of 0.6658, recall of 0.5606, and an F1-score of 0.4936.
• With 30 dB SNR noise the model achieved an accuracy of 0.7024, precision

of 0.7029, recall of 0.7024, and an F1-score of 0.7025.
• Compression to 32 kbps bitrate resulted in an accuracy of 0.7164, precision

of 0.7172, recall of 0.7164, and an F1-score of 0.7165.
• Compression to 64 kbps bitrate yielded an accuracy of 0.7164, precision of

0.7172, recall of 0.7164, and an F1-score of 0.7165

These results indicate how different types of noise and compression affect the
model’s ability to classify forged and original audio files. The model’s perform-
ance is generally robust, but notably worse with the 20 dB SNR noise addition,
indicating a weakness to high levels of noise.

5.3 Long audio files

The performance of CNN1 was further evaluated on longer audio files to under-
stand its ability to classify original and forged audio under extended durations.
The results are summarised in the confusion matrix shown in Figure 5.5 and the
classification report in Table 5.5.

The confusion matrix in Figure 5.5 illustrate the following results:

Chapter 5: Results 41

Precision Recall F1-Score Support

Original 0.52 0.38 0.44 365
Forged 0.51 0.65 0.57 365

Accuracy 0.52 730
Macro avg 0.52 0.52 0.51 730
Weighted avg 0.52 0.52 0.51 730

Table 5.5: Classification report generated by testing the trained CNN1 on the
datset of long audio files.

Figure 5.5: Confusion matrix of testing the trained CNN1 on the dataset of long
audio files.

• Original class: Out of 365 original audio samples, 140 were correctly clas-
sified while 225 were misclassified as forged.
• Forged class: Out of 365 forged audio samples, 237 were correctly classi-

fied, while 128 were misclassified as original.

Table 5.5 provides detailed metrics for the classification performance. The pre-
cision for the original class was 0.52, indicating that 52% of the samples identified
as original were correctly classified. The precision for the forged class was 0.51,
meaning that 51% of the samples identified as forged were correctly classified.
The recall of the original class was 0.38, for the forged class the recall was 0.65.
The F1-score was 0.44 for the original class and 0.57 for the forged class. The
overall accuracy of the model on the longer audio files was 0.52, meaning that
52% of the total samples were correctly classified. The macro average precision,
recall, and F1-scores were 0.52, 0.52, and 0.51, respectively, while the weighted
average metrics were 0.52 for precision and recall, and 0.51 for F1-score.

These results show that the model do not generalise to the longer samples.
The precision and recall values suggest that while the model is relatively better
at identifying forged audio, it struggles more with correctly classifying original

Chapter 5: Results 42

audio files. This may suggest that the model is biased towards classifying samples
as forged.

Chapter 6

Discussion

In this chapter, the various aspects of the thesis project are discussed in detail with
the goal of addressing the identified research questions. This includes an exam-
ination of the processes involved, the choices made, the challenges encountered,
and the lessons learned throughout the project. Each section addresses specific
components of the research, providing insight into the advantages and limitations
of the methodologies employed. The discussion also explores potential improve-
ments and the broader implications of the research, discussing how improved
audio forgery detection can benefit forensic investigations and judicial processes.
Based on the findings in the results and discussion, the research questions are
answered as follows.

6.1 Research questions

(RQ1) To what extent can Mel spectrogram-based CNN models be applied to
copy-move forgery detection in realistic forensic scenarios?

Mel spectrogram-based CNN models can be applied to copy-move forgery detec-
tion in realistic forensic scenarios, although their effectiveness varies with the
conditions of the audio samples. The results from CNN1, trained with data aug-
mentation on the VAD-based dataset, demonstrate that this model can perform
well in more realistic forensic scenarios than what is demonstrated in the related
work. This dataset has significant variance, particularly in terms of audio length,
making it more representative of real-world scenarios than datasets used in the
literature. The model achieved high accuracy on held-out test datas, indicating its
ability to generalise well to unseen samples

Extended tests show that the model is robust to common post-processing oper-
ations, namely noise addition and compression, which are techniques that might
be used to obscure a forgery. The model maintained a high accuracy when subjec-
ted to these conditions, with the exception of very high noise levels, under which
accuracy dropped significantly. This indicates that the model can detect forgeries
even when there have been attempts to hide them through these specific audio

43

Chapter 6: Discussion 44

manipulations. Mel spectrogram-based CNN models are thus promising for the
application of forensic tools, particularly in detecting manipulated audio where
the forgeries are not immediately obvious by ear.

RQ2 What are the limitations of Mel spectrogram-based CNN models for
copy-move forgery detection in forensic scenarios?"

While the Mel spectrogram-based CNN-model show potential in detecting CMF,
it also has several limitations that impact its effectiveness in forensic scenarios.
A significant limitation is its inability to generalise to longer audio files. The test
results on the dataset created from NB-tale part 3, despite being tailored to favour
the model’s performance, showed poor classification performance on forgeries in
lengthy audio files. Another limitation is the model’s susceptibility to high levels of
noise. While the model performs well under typical conditions, with compression,
and with low levels of noise, its accuracy significantly decreases when faced with
higher levels of noise. This can be a considerable drawback in forensic scenarios,
in which audio quality can vary widely.

Currently Mel spectrogram-based CNN models lack the capability to localise
forgeries within an audio file. They can potentially identify whether a file is forged
but cannot pinpoint the exact segments that have been manipulated. Although not
a deal breaker, this limitation negatively impacts their utility in forensics scenarios.

6.2 Generating datasets

Despite automatic audio CMFD being an active field of research, there is a lack
of publicly available datasets of audio copy-move forgeries. In the specific case of
the Oslo Police Department, the audio files they process are often in Norwegian,
and there are no Norwegian CMF datasets available. The NB Tale dataset was
chosen as the source for generating the dataset for three main reasons: (1) The
language of the recordings is Norwegian, spanning a large number of dialects and
ethnolects; (2) Module 1 and 2 contain short recordings (3 to 24 seconds), making
them suitable for creating forgeries similar to previous studies; and (3) Module
3 consists of longer audio files, facilitating forgeries that simulate more realistic
scenarios for evaluating the model’s performance on extended recordings.

To facilitate the testing and evaluation of the CMFD-method, two approaches
from the literature for generating the forgeries were explored: static copy-move
and VAD-based copy-move.

The static copy-move dataset was created by copying a static one second seg-
ment of the audio from a specific location in the file and pasting it at another
specific location. An advantage of this method is that it was much easier to effect-
ively replicate than the VAD-based methods described in the literature. While the
studies using VAD describes how the datasets were generated, it is hard to have a
general approach work for detecting segments of speech in short audio files across

Chapter 6: Discussion 45

different dataset sources. The static method does not require any parameter tun-
ing other than choosing an appropriate place to copy the audio from, depending
on the length of the audio file.

However, as the static copy-move forgery creates a file by copying and insert-
ing the forged audio at the other location, one concern with using this method for
dataset creation is that the trained model gets biased towards classifying longer
spectrograms as forged and shorter spectrograms as original. Another issue is
the static nature of the location of the forgeries, being restricted to two specific
seconds in the audio file. This introduces bias in the model’s learning process, as it
may overfit to the specific temporal patterns of forgery rather than generalising to
different potential locations and variations of forgeries. Consequently, the model
might fail to detect forgeries that deviate from these predefined patterns, reducing
its effectiveness in real-world scenarios where the location and nature of forgeries
can vary widely.

To address these limitations, a more dynamic dataset was created that includes
forgeries at random positions and varying lengths within the audio files. Addition-
ally, employing data augmentation techniques during training to create a diverse
set of forgeries can help the model learn more generalised features that are not
dependent on specific forgery patterns.

The VAD-based copy-move dataset was created using YAAPT, identifying the
voiced segments of the file, choosing one of them at random with a minimum
length of 0.4 seconds and pasting it at another random location in the file. Ini-
tially, SileroVAD was used as the VAD-method, but it struggled to single out words
and short sounds as individual segments of speech, and would often lead to very
large parts of the audio being used as the basis for the forgery, which made the
classification overly simple. The YAAPT-algorithm was to a greater extent able to
identify short voiced segments in the audio files consistently. By creating the data-
set with this method, we are able to simulate more realistic forgeries by ensuring
that:

• The copied segments are of variable length.
• The copied segment can be anywhere in the recording.
• The location of the pasted segment can be anywhere in the file.
• The forged and original version of the same file retains the same length.
• The forged files have no common features which differentiate them from

the original files, other than the forgery itself.

Because of the variance in the dataset, it becomes substantially more difficult
to train the CNN to learn features which are applicable to the entire dataset. This
is evident when comparing the results of training the models on this dataset to
those from the static dataset. Initially, when switching over to training on the VAD-
based dataset, several adjustments had to be made to the data pre-processing,
CNN architecture, and training strategy.

In pre-processing, the data augmentation strategy had to be changed. Pre-
viously, each spectrogram was pre-made with a randomly generated frequency

Chapter 6: Discussion 46

mask, which covered up a part of the image along the x-axis, simulating miss-
ing information for a small range of frequencies. However, this technique led to
the model overfitting to the training data quickly. One theory for this overfitting
is that the static nature of the augmentation did not effectively extend the data-
set. Although the frequency masks were applied at a random amplitude for each
spectrogram, the pre-loaded masks did not provide enough variability.

The way this was solved was to apply another form of image augmentations
on the fly, using the "RandomAffine" transformation from the torchvision library.
This method randomly generates a new version of each training sample for each
epoch, making it harder for the model to memorise the training data, forcing it to
learn the general features despite these augmentations. One trade-off for doing
data augmentation on the fly is the increase in computational complexity during
training and epochs needed for the model to converge. The average time used per
epoch for training CNN1 without data augmentation was 3 seconds, while it took
14 seconds per epoch with the data augmentation. The epochs needed with and
without data augmentation for the model to reach its lowest validation accuracy
was 19 and 371, respectively.

In addition, dropout was introduced into the CNN architecture. Dropout is a
regularisation technique that helps prevent overfitting by randomly "dropping out"
a fraction of the neurons during training. This forces the model to learn redund-
ant representations and makes it more robust. With the increased complexity and
variability of the VAD-based dataset, adding dropout layers helped to further re-
duce overfitting. Specifically, dropout was applied after each convolutional block
with a dropout rate of 0.5, ensuring that the model did not rely too heavily on any
single neuron and instead learned more generalised features across the dataset.

Furthermore, weight decay, also known as L2-regularisation, was added to the
optimiser during training to penalise large weights and further reduce the risk of
overfitting. This regularisation technique adds a term to the loss function propor-
tional to the squared value of the weights, encouraging the model to maintain
smaller and more generalised weights. By integrating these three changes to the
pre-processing, model architecture and training, the model’s ability to generalise
from the training data to unseen samples significantly improved.

To summarise, the static method was straightforward and easy to implement
but introduced biases due to its predictable forgery patterns. In contrast, the VAD-
based method created more realistic forgeries but was more complex to imple-
ment. The dynamic nature of the VAD-based forgeries made it harder for the
model to overfit, improving its ability to generalise. One of the key challenges
encountered was ensuring the dynamic nature of the VAD-based forgeries did not
introduce unintended biases. This was addressed by varying the lengths and in-
sertion points of the copied segments. Another learning was the importance of
dynamic data augmentation, which facilitated convergence during training, al-
though at a slower pace. Future iterations of the dataset creation process could
involve incorporating additional sources of audio to reduce dataset-specific bi-
ases. Moreover, manually creating forgeries with even more varied patterns could

Chapter 6: Discussion 47

further enhance the dataset’s realism. Utilising more sophisticated data augment-
ation techniques could also improve the robustness of the training process. The
creation of a Norwegian CMF dataset enhances the capability of forensic audio
analysis in Norway. It provides a resource for training models to detect forger-
ies in Norwegian audio files, which can improve the accuracy and reliability of
forensic investigations.

6.3 Training and testing the CNN model

The initial training and testing of the CNN-model (CNN1) on the static dataset
achieved good results on the training and validation data in terms of accuracy
and loss, as well as good results on the held-out test set using a different source
dataset. These results are the ones that align most with the results in previous
research. It validates that CNN1 is able to learn features from data. Because of the
inherent biases and limitations associated with the static dataset discussed in the
previous section, it was only used as a theoretical baseline for the CNN classifier
performance, proving that the model is able to learn features from spectrograms.

The results from training and doing continuous validation with the VAD-based
dataset highlight the importance of augmenting the training data for this task to
reduce overfitting and improve the model’s ability to generalise to unseen data.
Without it, the validation loss stops decreasing and starts to increase at a relatively
early epoch while the training loss keeps improving, signifying overfitting to the
training data. The data augmentation steps makes the training data much harder
to "memorise" for the model by introducing some random variance to the samples
per epoch. One negative consequence to this technique is that the learning of
the model takes a lot more time, but in return we get a model that is signific-
antly better able to generalise its learned features, which is demonstrated in the
increased performance on the validation split. Selecting parameters and model ar-
chitecture involved careful consideration of trade-offs between training efficiency
and model robustness. For instance, increasing dropout rates and weight decay
improved generalisability but also extended training times.

As mentioned earlier, the VAD-dataset was created with a goal of ensuring that
the only discernible difference between the forged and original version of an audio
file is the forgery. Together with a lot more variance in terms of audio length of the
source data and location of the forgeries, this better simulates real-life cases and
results in a hard classification task for the CNN. The classification difficulty of the
dataset is further validated by attempting to train the other CNN-model (CNN2).
CNN2 showed significantly worse results on this dataset when compared to the
reported accuracy of 99% from the article [5].

Training and validating the CNN models revealed notable differences between
CNN1 and CNN2. CNN1 showed a relatively strong performance, which could
be attributed to its deep architecture with more filters than CNN2. CNN2, while
simpler and less resource-intensive, struggled to achieve the same accuracy on
the VAD-based dataset, indicating its limitations in handling more complex and

Chapter 6: Discussion 48

variable data.
A broader range of data augmentation techniques could potentially be applied

during training. But given the resource heavy nature of doing data augmentations
on the fly, it was not deemed feasible for this work. Additionally, experimenting
with alternatives such as transformers or hybrid models combining CNNs and Re-
current Neural Networks (RNNs) could offer improved performance on extended-
length audio data. A trained model that is able to efficiently generalise to longer
audio files could potentially improve forensic audio analysis by providing a tool
currently not available for detecting audio forgeries.

6.4 Testing on post-processed samples

Forensic analysts encounter audio files with a high variance in their condition.
Skilled adversaries looking to compromise the integrity of audio files with copy-
move forgery will likely make an attempt to hide the forgery so that it is not so
easy to detect by ear.

One way of doing this may be to add noise or compressing the audio to reduce
the quality of the audio. To test the model’s robustness under these conditions tests
were conducted on four different datasets with varying grades of compression or
noise addition. The results indicate that the model’s accuracy decreases as the
quality of audio is compromised, highlighting the importance of training with
diverse augmentations to enhance robustness.

The classification performance of the model was evaluated on test samples
which had been compressed, and noise added to them to simulate scenarios where
an adversary might process forged audio files to hide the forgery. The results
of these tests indicate how different types of noise and compression affect the
model’s ability to classify the audio files.

The results indicated that the model’s accuracy decreases as the quality of
audio is compromised, highlighting the importance of training with diverse aug-
mentations to enhance robustness. The model performed notably worse with the
20 dB SNR noise addition, indicating a weakness to high levels of noise.

These findings underscore the need for further research and development to
improve the model’s resilience to adversarial tactics, ensuring robust perform-
ance across a variety of challenging audio conditions. Future work could involve
training with a wider range of augmentations and testing under more varied post-
processing conditions.

6.5 Application to real-world forensic settings

As no literature describes how automatic copy-move forgery methods would be
implemented in practice with longer audio files, this area required significant trial
and error.

Chapter 6: Discussion 49

The general idea was to divide the audio file into smaller chunks comparable
in length to the training dataset, classify each chunk, and aggregate the results.
However, this approach presented concerns, such as the model’s inability to recog-
nise forgeries when the copied and pasted segments are far apart in time. Since
the training dataset consists of files where both the copied and the pasted seg-
ment is present within a short time frame, limited by the section of speech in the
recording, one concern is that if the copied and pasted segment in the long audio
file are far apart in time, the model will not be able to recognise the forged sec-
tion as it is trained to look for identical or similar segments of speech rather than
indications of forgery.

One method which was tested to combat this was to generate a dataset of for-
geries for training where a segment is copied, deleted then pasted elsewhere in the
file. This method was scrapped quickly as testing with extensive parameter tuning
proved that under no circumstances did the CNN-model successfully generalise to
the validation data-split. The problem is likely that since the forged segment ori-
ginates from the same audio file, there are no discernible features of the forged
segment which the model is able to learn - making it a splicing forgery without
the indications of forgery typically associated with splicing like difference in back-
ground noise or changes in the quality or characteristics of the audio in the spliced
segment. One idea to solve this could be to slightly alter some properties of the
pasted segment like its pitch or volume in an attempt to make the forgeries stand
out more from the rest of the file, but then again this would simulate detection of
splicing forgeries, which ultimately is not the goal of the model.

Since this did not work, the forgeries used for testing on long audio files were
made in a way that ensures that both the copied and pasted segments are within
a limited range based on the chunk size. This looks to make sure that the two
identical segments are "seen" by the model simultaneously when using overlap-
ping segments. This condition for the forgeries is advantageous in favour of the
model’s chance of success and is not a good way to represent realistic forgeries.
This was however done initially as a test to see if classifying chunks and aggrega-
tion the results would work at all. Despite this advantageous condition, the results
indicated that even with this artificial setup, the model struggled to accurately de-
tect forgeries in longer audio files.

The results, as shown in Table 5.5 and Figure 5.5, reveal a significant number
of false positives, where original files were incorrectly classified as forged. Spe-
cifically, the model exhibited a precision of 0.52 and a recall of 0.38 for original
files, indicating a substantial rate of misclassification. This suggests that the model
is overly sensitive to patterns that it interprets as indicative of forgery, even in au-
thentic audio files. The high false positive rate can undermine the reliability of the
model in forensic applications, where accurate identification of authentic files is
just as crucial as detecting forgeries. This issue highlights several challenges and
areas for future improvement. Developing methods that allow the model to con-
sider broader context within the audio files could improve its ability to accurately
classify long audio recordings. Techniques such as attention mechanisms or hy-

Chapter 6: Discussion 50

brid models that combine CNNs with Recurrent Neural Networks (RNNs) might
help maintain contextual awareness over an extended duration. Attention mech-
anisms can potentially enhance the model’s ability to focus on relevant parts of
the audio when making predictions, effectively enabling the model to "pay atten-
tion" to important features that are dispersed throughout a long audio file. While
CNNs are effective at extracting spatial features from Mel spectrograms, RNNs are
adept at handling sequential data and capturing temporal dependencies. A hybrid
model could first use the CNN to extract features from the spectrogram, and then
use RNNs to analyse the sequence of these features, potentially improving the
model’s ability to detect forgeries over extended timeframes.

The poor results of classifying the longer audio files signify that training a
CNN-model for classification of CMF on short audio files is not a sufficient meth-
odology for training the model for real-life scenarios. This study identifies this as
the primary challenges and limitation in the field of automatic CMFD and high-
lights how hard it is for a CNN-based model to successfully detect forgeries where
the original audio content is reused to create forgeries over extended durations.

The field of automatic AAA in general, and automatic CMF-detection specific-
ally, would greatly benefit from having a publicly available dataset of realistic
copy-move forgeries with the type of variance forensic analysts encounter in their
work. There are several problems with the current methods for generating copy-
move forgeries which do not translate to realistic cases. The most obvious factor
being the length of the files. In the samples used to train theCMFD it is relatively
easy to detect the forgeries by ear when the copied and pasted segment are so
close together. This questions the usefulness of an automaticCMFD system if it is
not able to transfer the features it learns from these short samples to longer au-
dio files. So while the existing methods are proofs of concept, the question still
remains if applying them in the daily operations of forensic analysts is feasible.
The lack of any datasets with realistic CMF samples makes it difficult to assess
how any other automatic ML-based methods would perform when applied in real-
world settings from the literature alone. It is therefore hard to say how useful any
of them are in reality.

6.6 Model interpretability

Classification of an audio file is useful in forensic contexts to get an indication
whether a file has been forged. However, adding a method for model interpretab-
ility could provide more detailed insights into why the model classified the in-
put as forged. One potential solution is the implementation of Gradient-weighted
Class Activation Mapping (Grad-CAM) [34]. It creates a heat map which signifies
which parts of the input were most influential on the classification decision, and
thus signifying where the classified forgeries are in the file. This can be implemen-
ted after classification by providing the predicted label as target label to increase
the interpretability of the classification. This has just been explored through some
initial tests, but it could be an area to look into for developing a fully operational

Chapter 6: Discussion 51

Figure 6.1: Example of Grad-CAM for a copy-move forgery from the test dataset
which the model correctly classified as forged.

automatic CMFD-solution with a CNN as the backbone, if the other issues are re-
solved. Table 6.1 visualises a Mel spectrogram as well as its associated Grad-CAM
plot, where the more intense colours signify which parts of the spectrogram was
most influential on the decision.

6.7 Limitations and future work

Despite some promising results, several limitations and concerns were identified
in this thesis work. The reliance on a single source datasbase (NB Tale) may in-
troduce biases related to recording conditions and speaker demographics. Addi-
tionally, the lack of publicly available CMF datasets limits the comparison of the
findings to other methods from previous work. The CNN model demonstrated
good performance on short audio files, but it struggled with longer recordings, in-
dicating the need for more advanced techniques to handle diverse and extended
audio inputs.

A significant challenge of copy-move forgery detection using current Mel-
spectrogram based CNNs is their dependence on "seeing" both the copied and the
pasted segments simultaneously. This limitation arises because these models are
typically trained on relatively short audio clips where the copied and pasted seg-
ments are in close proximity, allowing the CNN to detect the repetitive patterns
within a single spectrogram. However, in real-world scenarios, especially with
longer audio files, the copied and pasted segments may be separated by significant
time intervals. As a result, the model’s inability to process long sequences in their
entirety means it often fails to identify forgeries when the copied segment and its
duplicate are far apart. This gap in detection capability highlights the need for ad-
vanced techniques that can maintain context over longer durations or alternative
methods that can bridge the temporal distance between forgeries within long au-

Chapter 6: Discussion 52

dio files. Without addressing this limitation, the effectiveness of Mel-spectrogram
based CNNs in practical forensic applications remains compromised, necessitat-
ing further research and development to enhance their robustness in diverse and
realistic scenarios.

Future work should focus on creating a comprehensive dataset with realistic
forgeries, diverse recording conditions, and longer audio files to better simulate
forensic scenarios. Furthermore, researching new methods and algorithms that
can effectively handle long audio files should be the primary focus of the field
moving forward. Also, implementing interpretability methods like Grad-CAM to
provide forensic analysts with insight into the model’s decision making process,
should be part of a fully operational automatic audio authenticity analysis solu-
tion.

Also, doing extended tests on different post-processing operations like apply-
ing median filtering, pitch shifting, or frequency scaling to the test samples, in
addition to noise and compression, should be considered to further evaluate resi-
lience to different types of audio manipulations.

The development of robust forgery detection methods has significant implic-
ations. By enhancing the ability to detect manipulated audio recordings, these
methods can improve the integrity of audio evidence in legal and forensic con-
texts. This, in turn, can contribute to more accurate and fair juridical outcomes.
Additionally, the technology can be applied in media and journalism to verify the
authenticity of audio content, thereby combating misinformation.

Even if this necessitates manually creating the dataset, future work could be-
nefit from incorporating a wider range of audio sources and even more realistic
forging techniques to create a more comprehensive dataset. Even though it would
be an extensive and time-consuming process, the field would profit immensely
from it. To this end, research in the field going forward should concentrate on
developing techniques that can successfully classify and handle full-length audio
files. The existing methods are designed to work well on short audio files; while
this shows that the approaches can be applied in theory, it does not guarantee that
the results will hold up in practical situations.

Chapter 7

Conclusion

In this thesis, methods for detecting copy-move forgeries in audio files using a
Convolutional Neural Network (CNN) model based on Mel-spectrograms has been
developed and evaluated. The project created a novel dataset of Norwegian au-
dio files with both static and VAD-based forgeries, providing a valuable resource
for training and testing audio forgery detection models. Through extensive ex-
perimentation, it was demonstrated that CNN models could effectively learn to
identify forgery patterns in short audio clips. The introduction of dynamic data
augmentation and regularisation techniques such as dropout and weight decay
significantly improved the model’s generalisation capabilities, addressing overfit-
ting issues encountered during training.

Despite these promising results, the project identified critical limitations, par-
ticularly the model’s deficiencies to detect forgeries in longer audio files where
copied and pasted segments are far apart. This highlighted the need for future
research in developing techniques that can handle extended audio sequences and
maintain context over longer durations. The model’s performance on test samples
with various post-processing operations applied underscored its robustness against
common audio manipulations. However, the notable decline in accuracy with high
noise levels (20 dB SNR) highlighted a vulnerability that needs to be addressed
for reliable forensic applications. Additionally, the project explored initial steps to-
wards model interpretability with Grad-CAM, which showed promise in providing
forensic analysts with insights into the model’s decision-making process.

Looking forward, future work should focus on creating more comprehensive
datasets with realistic forgeries and diverse recording conditions to better sim-
ulate forensic scenarios. Further research is also needed to develop frameworks
for handling long audio files and enhancing the robustness of forgery detection
methods. By addressing these challenges, the field of automatic audio authenti-
city analysis can significantly improve, providing more reliable tools for forensic
investigations.

53

Bibliography

[1] F. Akdeniz and Y. Becerikli, ‘Detecting audio copy-move forgery with an ar-
tificial neural network,’ Signal, Image and Video Processing, pp. 1–17, 2024.

[2] A. Bartle, D. Boss, A. G. Boyarov, L. Cuccovillo, C. Grigoras, M. Michałek
and D. Nyberg, ‘Best practice manual for digital audio authenticity ana-
lysis,’ 2022.

[3] P. R. Bevinamarad and M. Shirldonkar, ‘Audio forgery detection techniques:
Present and past review,’ in 2020 4th International Conference on Trends in
Electronics and Informatics (ICOEI)(48184), IEEE, 2020, pp. 613–618.

[4] T. Skogseth, ‘Detection of edited media files based on sound,’ Department
of Information Security, Communication NTNU – Norwegian University of
Science and Technology, Project report in IMT4205, Dec. 2023.

[5] A. Ustubioglu, B. Ustubioglu and G. Ulutas, ‘Mel spectrogram-based audio
forgery detection using cnn,’ Signal, Image and Video Processing, vol. 17,
no. 5, pp. 2211–2219, 2023.

[6] N. L. of Norway, Nb tale - speech database for norwegian - språkbanken,
Dec. 2015. [Online]. Available: https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-31/.

[7] H. Face, Introduction to audio data - hugging face audio course. [Online].
Available: https://huggingface.co/learn/audio-course/chapter1/
audio_data.

[8] S. S. Stevens, J. Volkmann and E. B. Newman, ‘A scale for the measurement
of the psychological magnitude pitch,’ The journal of the acoustical society
of america, vol. 8, no. 3, pp. 185–190, 1937.

[9] G. Hua, Y. Zhang, J. Goh and V. L. Thing, ‘Audio authentication by explor-
ing the absolute-error-map of enf signals,’ IEEE Transactions on Information
Forensics and Security, vol. 11, no. 5, pp. 1003–1016, 2016.

[10] H.-P. Hsu, Z.-R. Jiang, L.-Y. Li, T.-C. Tsai, C.-H. Hung, S.-C. Chang, S.-S.
Wang and S.-H. Fang, ‘Detection of audio tampering based on electric net-
work frequency signal,’ Sensors, vol. 23, no. 16, p. 7029, 2023.

[11] D. U. Leonzio, L. Cuccovillo, P. Bestagini, M. Marcon, P. Aichroth and S.
Tubaro, ‘Audio splicing detection and localization based on acquisition device
traces,’ IEEE Transactions on Information Forensics and Security, 2023.

54

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/
https://huggingface.co/learn/audio-course/chapter1/audio_data
https://huggingface.co/learn/audio-course/chapter1/audio_data

Bibliography 55

[12] K. O’Shea and R. Nash, ‘An introduction to convolutional neural networks,’
arXiv preprint arXiv:1511.08458, 2015.

[13] K. He, X. Zhang, S. Ren and J. Sun, ‘Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,’ in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[14] S. Ioffe and C. Szegedy, ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’ in International conference on
machine learning, pmlr, 2015, pp. 448–456.

[15] Y. Ho and S. Wookey, ‘The real-world-weight cross-entropy loss function:
Modeling the costs of mislabeling,’ IEEE access, vol. 8, pp. 4806–4813,
2019.

[16] P. Contributors, Crossentropyloss. [Online]. Available: https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.

[17] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization,’ arXiv
preprint arXiv:1412.6980, 2014.

[18] B. Ustubioglu, G. Tahaoglu and G. Ulutas, ‘Detection of audio copy-move-
forgery with novel feature matching on mel spectrogram,’ Expert Systems
with Applications, vol. 213, p. 118 963, 2023.

[19] D. M. Powers, ‘Evaluation: From precision, recall and f-measure to roc, in-
formedness, markedness and correlation,’ arXiv preprint arXiv:2010.16061,
2020.

[20] A. C. Müller and S. Guido, Introduction to machine learning with Python: a
guide for data scientists. " O’Reilly Media, Inc.", 2016.

[21] M. Imran, Z. Ali, S. T. Bakhsh and S. Akram, ‘Blind detection of copy-move
forgery in digital audio forensics,’ IEEE Access, vol. 5, pp. 12 843–12 855,
2017.

[22] Q. Yan, R. Yang and J. Huang, ‘Robust copy–move detection of speech re-
cording using similarities of pitch and formant,’ IEEE Transactions on In-
formation Forensics and Security, vol. 14, no. 9, pp. 2331–2341, 2019.

[23] C. Liu, J. Li, J. Duan, H. Shen and H. Huang, ‘Lightcvt: Audio forgery de-
tection via fusion of light cnn and transformer,’ in Proceedings of the 2021
10th International Conference on Computing and Pattern Recognition, 2021,
pp. 99–105.

[24] B. Ustubioglu, G. Tahaoglu, G. Ulutas, A. Ustubioglu and M. Kilic, ‘Audio
forgery detection and localization with super-resolution spectrogram and
keypoint-based clustering approach,’ The Journal of Supercomputing, pp. 1–
33, 2023.

[25] L. Cuccovillo, M. Gerhardt and P. Aichroth, ‘Audio spectrogram transformer
for synthetic speech detection via speech formant analysis,’ in 2023 IEEE
International Workshop on Information Forensics and Security (WIFS), IEEE,
2023, pp. 1–6.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Bibliography 56

[26] K. Doshi, ‘Audio deep learning made simple: Sound classification, step-by-
step,’ Jan. 2022. [Online]. Available: https://towardsdatascience.com/
audio-deep-learning-made-simple-sound-classification-step-by-
step-cebc936bbe5.

[27] A. Ustubioglu, B. Ustubioglu and G. Ulutuas, ‘Mel spectrogram-based au-
dio forgery detection using cnn,’ in Signal Image Video Process, Research
Square, vol. 1, 2022. DOI: 10.21203/rs.3.rs-1828771/v1.

[28] T. Skogseth, Norwegian audio copy move forgery datset, 2024. DOI: 10 .
34740/KAGGLE/DS/5167635. [Online]. Available: https://www.kaggle.
com/ds/5167635.

[29] K. Kasi and S. A. Zahorian, ‘Yet another algorithm for pitch tracking,’ in
2002 ieee international conference on acoustics, speech, and signal processing,
IEEE, vol. 1, 2002, pp. I–361.

[30] Q. Yan, R. Yang and J. Huang, ‘Copy-move detection of audio recording
with pitch similarity,’ in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 1782–1786.

[31] dpwe, Icsi speech faq - how is the snr of a speech example defined? Accessed:
2024-06-01, 2000. [Online]. Available: https://www1.icsi.berkeley.
edu/Speech/faq/speechSNR.html.

[32] P. Contributors, Torchaudio.functional. [Online]. Available: https://pytorch.
org/audio/main/generated/torchaudio.functional.add_noise.html.

[33] Jiaaro, Github - jiaaro/pydub: Manipulate audio with a simple and easy high
level interface. [Online]. Available: https://github.com/jiaaro/pydub/.

[34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra,
‘Grad-cam: Visual explanations from deep networks via gradient-based loc-
alization,’ in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 618–626.

https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5
https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5
https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-step-by-step-cebc936bbe5
https://doi.org/10.21203/rs.3.rs-1828771/v1
https://doi.org/10.34740/KAGGLE/DS/5167635
https://doi.org/10.34740/KAGGLE/DS/5167635
https://www.kaggle.com/ds/5167635
https://www.kaggle.com/ds/5167635
https://www1.icsi.berkeley.edu/Speech/faq/speechSNR.html
https://www1.icsi.berkeley.edu/Speech/faq/speechSNR.html
https://pytorch.org/audio/main/generated/torchaudio.functional.add_noise.html
https://pytorch.org/audio/main/generated/torchaudio.functional.add_noise.html
https://github.com/jiaaro/pydub/

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	1 Introduction
	1.1 Topic
	1.2 Keywords
	1.3 Problem description
	1.4 Justification, motivation and benefits
	1.5 Research questions
	1.6 Contributions

	2 Background
	2.1 Audio signal processing
	2.2 Audio forgeries and Audio Authenticity Analysis (AAA)
	2.2.1 Best Practice Manual for Digital Audio Authenticity Analysis

	2.3 Deep learning-based audio forensics
	2.3.1 Convolutional neural network (CNN)
	2.3.2 Overfitting and underfitting

	3 Related work
	3.1 Automatic audio authenticity analysis
	3.1.1 Traditional automated methods
	3.1.2 Machine learning methods

	3.2 Database generation

	4 Method
	4.1 Literature review
	4.2 Dataset
	4.2.1 Source datasets
	4.2.2 Dataset generation

	4.3 Experimental setup
	4.3.1 Pre-processing and loading data

	4.4 Convolutional Neural Network model
	4.5 Tests with post-processed samples
	4.6 Method for detecting copy-move forgeries in long audio files using CNN

	5 Results
	5.1 Static dataset
	5.2 VAD-based dataset
	5.2.1 Training and validation results
	5.2.2 Test results

	5.3 Long audio files

	6 Discussion
	6.1 Research questions
	6.2 Generating datasets
	6.3 Training and testing the CNN model
	6.4 Testing on post-processed samples
	6.5 Application to real-world forensic settings
	6.6 Model interpretability
	6.7 Limitations and future work

	7 Conclusion
	Bibliography

