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Sammendrag

Beskyttelsen av kritisk infrastruktur er svært viktig for å kunne forsørge privatpersoner og bedrifter
med essensielle ressurser. Dette kan være utfordrende grunnet det sensitive og komplekse ICS-
miljøet, samt motiverte og kapable aktører med sofistikerte verktøy og ressurser, skreddersydd for
systemene. Maskinlæring er bevist å kunne være en effektiv metode for å detektere og hindre
forsøk p̊a cyberangrep. Grunnet en mangel p̊a datasett som reflekterer kritisk infrastruktur, vil
det kunne være vanskelig å lage modeller relatert til miljøets adferd. Det er derfor gitt forslag
til en metodikk som omhandler simulering av miljøet for å kunne blir brukt til utviklingen av
en maskinlæringsmodell, for klassifisering av adferd. Metoden tar utgangspunkt i å etterlikne
adferden av en elektrisk transformatorstasjon ved å definere scenarioer som reflekterer normal og
unormal operasjon. En Long Short-Term Memory modell er trent p̊a datasettet og evaluert etter
hvilke scenarioer den klarer å identifisere. Basert p̊a prestering og hvilke egenskaper modellen
viser, var modellen forbedret gjennom iterasjoner for til slutt å kunne prestere etter behovet.
Ved bruk av et simulert datasett var det observert at den resulterende modellen ble transparent
gjennom forst̊aelsen av dataen den var lært p̊a. Dette ga innsyn i hvilke mangler modellen hadde
og veiledet videreutviklingen. En utfordring ved simulering er å realistisk kunne reflektere adferden
av Industrial Control System. Miljøet som ellers inneholder komplekse forbindelser og relasjoner,
er ved simulering redusert til den definerte adferden hvilket ikke i like stor grad spiller p̊a styrkene
til maskinlæring. Fremtidig arbeid relateres til videreutvikling av metoder for å forbedre Intrusion
Detection System (IDS) i kritisk infrastruktur. For simulering å kunne reflektere presis adferd av
kritisk infrastruktur trengs spesifiserte verktøy til de relevante omgivelsene.
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Abstract

The protection of Critical Infrastructure (CI) is significantly important to secure and maintain
availability of resources essential for private persons and organisations, nationally. This is chal-
lenging due to the scale and complexity of its environment and motivated and capable malicious
actors in possession of sophisticated tools and resources, capable of disrupting the services. Ma-
chine Learning (ML) has proven to be a capable technology in intrusion detection and prevention
for mitigating and stopping attempts of cyberattacks. There is however a lack of relevant dataset
for CI, which makes the development of efficient ML models harder. It is for this thesis therefore
proposed a methodology to simulate a dataset mimicking the behaviour of CI, for use in devel-
opment of a ML classification model. The methodology is explored by a use case of developing
a dataset depicting normal and abnormal behaviour of an electrical substation. The dataset is
simulated by defined scenarios which describes the behaviour of features. A Long Short-Term
Memory (LSTM) model is trained on the dataset and evaluated in regards to what scenarios it
is capable of identifying. Based on the capabilities and traits of the model it is improved to best
depict the simulated environment. Simulation was found to give insight into the inner workings of
the developed ML model, providing transparency of its capabilities and weaknesses. This enabled
efficient iteration of the LSTM model, enhancing its capabilities and necessary traits to be able to
detect the more challenging attack scenarios. Simulating the environment of CI for the purpose of
training a ML model, was however observed to be insufficient in representing an Industrial Control
System (ICS) environment. Data which otherwise depicts a complex, interconnected network of
dependable components are by simulation reduced to highly defined behaviour which does not play
into the strengths of deep learning. Future work describes further developing methodologies which
support the development of Intrusion Detection System (IDS) in CI. For simulation, this requires
tools which can accurately depict the complexity of its environment.
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1 Introduction

This chapter describes the background, reason and motivation for writing this thesis. First, the
introduction gives a brief description of what topics are covered throughout the paper. Thereby
the motivation for why the thesis was created is justified, before the problem which is attempted
solved is described. Afterwards the research questions are presented together with a description
of the planned contribution. Later the structure of the thesis is described before relevant previous
work is presented in the literature review. The introduction summarizes key points which are
presented in the background, where the sources of the stated insight is also cited.

1.1 Covered topics

The Industrial Control System (ICS) describes environments which communicate between physical
and digital processes. Data transferred communicate the state of actuators and sensors, determ-
ining automated processes. ICS’s are found implemented in factories, energy providers, power
plants, water treatment plants and are essential for production, maintenance, and distribution.
Disruptions in the ICS could have serious implications, impacting both physical components and
safety of those dependent on the service. This is especially true for Critical Infrastructure (CI),
where distribution and availability of the service is crucial. Both the environment of ICS and CI
have been covered in relation to what makes them different from normal networks. The compon-
ents of the ICS and their functions are described to give a background in what types of data they
might generate and what requirements of the environment must be taken into consideration for the
development of an Intrusion Detection System (IDS). This knowledge has been used to establish
sources for features used in developing a dataset.

In an attempt of securing the environment of CI, it is proposed a methodology for creating a
Machine Learning (ML) model for use in IDS. The thesis describes the importance and challenge
in utilizing a dataset which accurately portrays the target environment. Shortcomings in “state of
the art” datasets are motivation for simulating a dataset rather than make use of existing datasets.

Recent developments and innovations of the area of ICS introduced by Industry 4.0 has benefited
the operation and management of the environment. However, due to shortcomings in securing
protocols and components used in ICS, the implementation of Industry 4.0 introduces more attack-
vectors towards the environment.

IDS’s are heavily used to detect malicious behaviour within a network, and are important tools for
maintaining a secure state. IDS can provide early warnings of breaches and help limit damages.
ML has proven to be useful methodology in detecting malicious behaviour as large amounts of data
from different sources are utilized in developing an understanding of the context. Different types
of ML-techniques and architectures are introduced to give a foundation of knowledge to find what
models should be used for the defined scenario. The thesis will focus on Artificial Neural Network
(ANN), more specifically of the Long Short-Term Memory (LSTM) type, while also make use of
other ML-techniques for comparison and validation.

1.2 Motivation

The importance of maintaining the availability of CI makes it a target for both politically and eco-
nomically motivated actors. Losses in CI could have severe economical and political consequences,
also leading to loss of life. Securing assets from hackers is demanding given their level of experience
and access to resources. There is need for reliable ways of detecting malicious activity, even more
so in the environment of CI where operational systems are being transitioned into the 4th indus-
trial revolution. The transition has opened the environment for more types of attacks towards
devices with limited implementation of security [1]–[6]. Industry 4.0, although being beneficial
to the management and operation, possesses weaknesses which now are exposed over internet [3].
This could be misused to control and mismanage operations. Components of industry 4.0 make
managing and maintaining a secure state harder as there is a conflict of interest between the new
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generation of components and the criticality of the environment. Management over 5G, WiFi and
other IP-based protocols has opened the environment of CI to the rest of the world. This has
opened up a larger number of attack vectors hwic impacts critical components in gaining entrance
to the environment.
To be able to detect intrusion attempts in a big data environment, where a wide variety of diverse
attacks could be performed, data from multiple sources are found to be beneficial in designing a
robust threat-defensive infrastructure [7]. Research performed in this paper is provided to help
further detection methodology by presenting an additional source of data and its quality in detect-
ing intrusions.
An important aspect of achieving reliable detection is to create and test the IDS towards a dataset
that reflects the environment accurately. There is a need for data that accurately characterizes the
CI environment to train and develop IDS for both network and hosts [1]. Most IDS’s are based
on legacy datasets which do not reflect current network behaviour, making them inapplicable to
the system. Therefore in this thesis, a simulated dataset is developed to portray the environment
of CI in the form of an electrical substation to find out to what degree the environment can be
mimicked. In addition to the dataset, ML models are developed and trained on the dataset in an
attempt to classify malicious and benign behaviour of the environment.

1.3 Problem description

The security of Critical Infrastructure (CI) is essential to maintain the safety of a nation. Chal-
lenges given the environment do however make this difficult. Newly implemented devices and
technology of the 4th industrial revolution have expanded the attack surface of the CI-sector. This
has introduced more attack methodologies that must be measured and prevented. The environ-
ment is also a target of sophisticated attackers with resources, knowledge, tools and motivation to
perform attacks which are hard to defend against. Machine learning approaches in detecting ma-
licious behaviour has proven to be a beneficial method of recognizing attacks. Very few machine
learning methodologies presented does however represent an actual CI environment. Given the
severity in identifying weaknesses in CI environment, there are few datasets that provide necessary
insight to its behaviour. As the CI environment functions quite differently from other types of
networks, models built on irrelevant datasets are therefore found to be inapplicable.

For this thesis a classification model using Long Short-Term Memory (LSTM) architecture built
on a simulated dataset is made. The thesis presents a use case simulating the measurements of an
electrical substation. The results could help indicate the efficiency of such an IDS methodology
for a scenario where features relevant to detecting malicious behaviour is found.

1.4 Research questions

Derived from the discussed issues, the following research questions has been defined for the purpose
of being answered and explored upon in this thesis:

1. To what degree does a simulated dataset help indicate the efficiency of ML based IDS in CI?

2. To what degree does use of simulation in developing a dataset benefit the development of
IDS in CI?

3. Does a ML model built on a simulated dataset fulfill the requirements of, and benefit detection
in the environment of CI?

1.5 Planned contribution

For this thesis a methodology of using a simulated dataset for the development of a LSTM clas-
sification model for use in IDS has been explored. A LSTM model for classification is built on
the behaviour of features under the influence of attack scenarios of varying severity. Evaluation

2



of the capabilities of the classification model could help identify which scenarios of behaviour are
hard to detect, indicating what traits the developed model possesses. The scenarios presented
are developed to be comparable to measurements made from an ICS environment. The validity
of the methodology, in using a simulated dataset to depict the efficiency of a ML model, is also
discussed in how it benefits the development of an IDS of CI. The use case will help understand
the potential and limitations of the methodology in how it could improve protection of critical
and complex systems where acquisition and availability of environmental datasets are difficult to
gather or obtain.

1.6 Structure

Chapter 2 gives background information and context to the thesis, establishing the knowledge basis
of critical infrastructure, machine learning and intrusion detection systems. Chapter 3 describes
the process to be used for achieving the described research questions. Here the scope, limitations
and scenario are established. Chapter 4 presents the results of the developed dataset and trained
model. Chapter 5 discusses the results of the thesis and applies it to the real world to extracts
acquired knowledge by interpretation. Chapter 6 describes the concluded knowledge provided by
the thesis and gives a verdict of the proposed methodology.

1.7 Literature review

There is a lot of previous research in the areas of machine learning, critical infrastructure and
intrusion detection systems. To gain insight into the state of the art, this section covers some of
what has previously been done, related to the topic of this thesis. Parts of this section is reused
from the previous subject, IMT4205, where preparations of the master’s thesis begun as part of a
project [8]. Since then the material written is still relevant to the thesis and additional papers has
been included.

Fountas Panagiotis et al. [9] Explores common intrusion detection methods and what types of
attack that are commonly performed towards industries of Critical Infrastructure (CI). Due to the
need for expansion and increased efficiency within the industry, there is shown to be a decrease
in time and production cost of systems that are implemented. This has however opened up for
possible vulnerabilities and attacks towards the critical system, giving the attackers a potential
gateway to achieve privileges that should not have been permitted. The paper explores the impact
of different types of Denial of Service (DoS) attacks towards a test environment, and explores how
accurate different machine learning methods were able to detect malicious behaviour based on the
KDD CUP 1999 dataset. Methodologies that learns from the systems behaviour on multiple levels
was shown to be the most effective in detecting malicious behaviour.

M. R. Gauthama Raman et al. [2] discuss the role of Industrial Control System (ICS) and Super-
visory Control and Data Acquisition (SCADA) which exist within the CI environment. The paper
describes how the Industrial Control System (ICS) and the underlying Supervisory Control and
Data Acquisition (SCADA) system can be monitored for abnormal behaviour using a Probabilistic
Neural Network (PNN). ICS-systems are often found in the industrial sector and critical infrastruc-
ture. Therefore a compromised ICS has the potential of dealing large amount of damage leading
to the risk of physical damage and loss of human lives [10]. Requirements for the detection system
are presented for the detection system to be applicable to the Cyber Physical System (CPS). As
the CPS is dynamic, operates in real time and generate data at a high frequency, the anomaly
detection system is required to be “fast, reliable, scalable, and sensitive to noisy data...” The PNN
was trained on data from real operation, being the Secure Water Treatment (SWaT) located at
the Singapore University of Technology and Design (SUTD). Data from the fully functional water
treatment plant was collected over eleven days, where the first seven days were under normal op-
eration and the last four days was under the influence of attacks. During the attack, ten different
types of attacks were launched by injecting sensory values. The attacks represented previously
determined possible attack-points of SWaT being related to flaws in both operation and system.
The trained PNN thereby had its smoothening parameter adjusted to a point of liking where the
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accuracy was at its optimal. The performance of the IDS managed to detect most attacks well,
being somewhat challenged by attacks were multiple sensors were targeted.

Andrea Pinto et al. [1] performed a survey on IDS’s based on machine learning techniques related
to CI. Papers from the last five years was reviewed on how methodology, dataset and results of
the created model. The paper is critical to how some of the reviewed research methods does not
apply to real world CI as the datasets it is trained on does not represent real-world environments
of CI. As discussed, KDD-99 is a widely popular dataset for use in IDS’s, however its been more
than a decade since its release and therefore does not portray today’s cybersecurity area. Though
results of a model might seem promising, it might not be the case in the real world, as tests
are conducted in much different environment than how a CI network operates. What makes CI
especially challenging and different from other environments is a combination of, 1) how it is
composed of physical components, 2) utilization real-time transfers of data, 3) the geographical
distribution of the environments components, 4) the type of attacker that target CI and the
underlying motivation.

The importance of securing CI has also become more immediate due to the industry’s transfer over
to the fourth industrial revolution [1]. Sensors and components with the purpose of monitoring
and controlling the infrastructure are now accessible over the internet. Industrial Internet of
Things (IIoT) and 5G communications are being applied in the industry. This makes operation
easier, however opens the platform up to a wide spectre of attacks increasing the likelihood of
vulnerabilities [11].

In the process of evaluating and comparing use cases and results of IDS based on machine learning
[1], it was found to be challenging determining how certain results of implementations differed
from each other. Papers utilized a wide variety of different metrics to evaluate the performance
of its system. Combined with different types of detection techniques and use of different datasets,
comparing the systems become a difficult task as there is no standard for how to determine the
best performance amongst different systems. The most used performance measurements of IDS
based on ML are; accuracy, precision, recall and F1-score. To better get an understanding of of the
ML algorithm; MCC, confusion matrices, specificity, sensitivity and the kappa coefficient are used.
To determine Anomaly-based IDS specifically, the “detection rate” and “false alarm rate” are also
relevant to the performance of the algorithm. Another factor that will help in determining if a
system is capable of detecting intrusions within Critical Infrastructure is the “detection latency”.
How long it takes for operators to get insight to an attack is essential to the outcome of said attack.
The operator should be notified as soon as possible of a potential attack, as time is critical to be
able to resolve the issue. The longer an attacker is present on a system, the more potential damage
has been caused.

Mohammadreza Begli et al. [12] proposed an architecture that secures the remote healthcare system
using an IDS built on the Support Vector Machine (SVM) machine learning algorithm. Due to
the differences of requirements and capable processing available it was opted to use a multiagent
system. Agents were categorized between found roles within the healthcare system; patient agent,
nurse agent, physician agent, ambient agent and databse agent. These agents were again distributed
amongst the layered architecture of intrusion detection. This was done as it would encompass how
sensors of each of the agents have different likelihood of being targeted by an attack. At the lowest
layer, anomaly detection was used to monitor the patient agent and the ambient agent. Given
the energy-restrictions of the devices used by the agents and low likelihood of the devices being
attacked alone, anomaly detection was chosen as a suitable detection system. Anomaly-based
Intrusion Detection System (AIDS) has a low power consumption and computational cost making
it fitting for the devices used by the ambient and patient agent. The second layer contains the
nurse agent and physician agent. Both agents are less constrained by the access to power and
can utilize more computation for its detection method. SIDS was therefore chosen. The top layer
containing the database agent utilized a hybrid intrusion detection system to gain the benefits of
the high detection rate from AIDS and high accuracy of the SIDS.

R. Vinayakumar et al. [13], develop an IDS built using Deep Neural Network (DNN) as a learning
model. The system is able to perform in real-time while being a hybrid between a network and
host-based approach to detection. The Host-based Intrusion Detection System (HIDS) functions by
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monitoring for activity on the host. Most commonly this is implemented by monitoring application
files, system calls and operating system. These audit-trails can help identifying and distinguish
between known and unknown application as their attributes will generate unique identifiers. The
advantage of using HIDS is that monitored data is not obfuscated by encryption as with network
traffic, this means that HIDS is able to provide details of the categorised attack. However, to be
able to determine the origin of the traffic, a lot of data is needed from different sources within
the host. Network-based Intrusion Detection System (NIDS) are prone to a high rate of false
positives and false negatives, meaning that it will either fail to detect real attacks or classify
normal behaviour wrongly. A proper threshold that determines when an attack is to be classified
as such is challenging to set. Both the behaviour of legitimate traffic and how attacks functions
are evolving and changing. A self-learning system is therefore implemented into the system as
a measurement for the system to be able to change and adapt to the behaviour by continuously
learning. The system is thereby introduced to present day attacks and usage.

The authors of [13] also states the importance of feature selection of any model for intrusion
detection. The process helps in identifying what features are relevant to achieving a good result.
Removing features due to irrelevance or redundancy help reducing the dimensionality that is to
be processed while preserving the features that achieves accurate classification. This reduces the
amount of data that must be processed, especially as the amount of processing needed escalates
exponentially, described as the “curse of dimensionality”. In addition to reducing the training and
testing time, feature selection can also improve detection rate as features that might not relate to
its classification is removed.

Given the shortcomings and issues of KDDCup98 and KDDCup99, the HIDS was built using
ADFA for both Linux (ADFA-LD) and Windows (ADFA-WD). These datasets were created by
collecting sequences of system calls and Dynamic Link Library (DLL), of a local system that
was open to and under the influence of various attacks. The performance of a DNN is highly
dependent on the optimization of its parameters [13]. This was achieved by testing a smaller
architecture of the DNN where adjustments to; the number of hidden units, the learning rate, and
the activation function was made to find the optimal results. This way changes to the architecture
could be made more frequent, while allowing for more frequent iterations and adjustments to find
the optimal parameters.

Huan Yang et al. [14] proposes a deep-learning approach to network intrusion detection that in-
corporates detection of attacks that are aimed towards Supervisory Control and Data Acquisition
(SCADA) systems. SCADA systems are widely different from normal networks in how the network
operates. SCADA make use of different kinds of protocols which regular IDS created for corpor-
ate/campus network would not recognize. Attacks explicitly aimed towards the SCADA system
would therefore not be recognized as such. The proposed IDS is therefore built using a dataset
that incorporate both “conventional attacks” and “specialized attacks”. The network traffic is
monitored by collecting the network packets generated by all SCADA hosts using port mirroring,
as this does not interrupt normal operation. As a part of the classification system, one of the
classes which the traffic can be appointed to, was the class of “unknown”. Once a large amount
(here set to 100) of traffic instances is set to “unknown”, k-means clustering will be performed to
distinguish between instances. An operator will then have the option to analyse the clusters and
provide them with labels. Once labeled the neural network can be re-trained on the new data.
This way the model has the capability to adjust to trends and new types of attacks. Evaluation of
the IDS was performed in two sessions. Firstly the IDS was only evaluated using familiar traffic
behaviour and attacks. The model achieved a 99.38% accuracy. In the second experiment, the
model was tested on unknown attacks. After the process of being re-trained on the new types of
attacks the model achieved an accuracy of 99.84%. These results are sufficiently high for use in
real-world systems and suited for SCADA systems.

Ángel L. P. Gómez et al. [15] considers the insufficiency in available datasets that enables anomaly
detection techniques in ICS. It is here proposed a methodology for how to reliably generate an
anomaly detection dataset that can be used for the purpose of deep learning. The methodology
consists of four steps; Attack selection, determines what attacks should be launched towards the
testbed and included in the dataset. The second step, attacks deployment, describes the process
of how and towards what nodes the attacks should be deployed. The third step, traffic capture,
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describes how data of the deployed attacks should be captured, including both noraml and malicious
behaviour. The last step of the process of creating the dataset is features computation. For this
step, features are extracted from the captured traffic so that it can take the form of a complete
dataset.

Laghrissi F. et al. [16] proposes a deep learning Long Short-Term Memory (LSTM) model for use
in IDS. Two comparable models are created with the use of different feature selection techniques.
”Principal component analysis” was shown to perform better than ”Mutual information” when
benchmarked on the KDD99 dataset. LSTM was used in a binary and multiclass classification
model. Both models were composed of three LSTM-layers which each had a Dropout-layer of fre-
quency 0.1. ”Sigmoid” was used as the activation function together with ”Binary crossentropy” as
the loss function in the binary model. For the multiclass model, ”Softmax” was used as the activa-
tion function with ”Sparse categorical crossentropy” as the loss function. The model used ”Adam”
as the optimizer and was trained on 50 epochs. The proposed model was able to outperform the
other compared methods while maintaining a low amount of features.
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2 Background

This chapter goes through some necessary background to get some context to the domin of Critical
Infrastructure (CI), machine learning and intrusion detection. Section 2.1 describes what CI is
and what makes Industrial Control System (ICS) different from other types of environments.
The challenges and requirements of CI is also described to understand what malicious actors
and attack vectors the area must be protected against. Section 2.2 gives an introduction to the
basics of Machine Learning (ML) and neural networks which is used in this thesis. Explainable
artificial intelligence (XAI) is also described for the purpose of attempting to understand and
gather knowledge from ML. Section 2.3 gives an introduction to how Intrusion Detection System
(IDS) work to mitigate and prevent cyber incidents.

2.1 Critical infrastructure

Critical Infrastructure are systems and assets that are essential for a society to function [1]. En-
ergy [17], water-treatment [2] and healthcare [12] systems are amongst crucial components that
if disrupted would have profound consequences. Such events could affect national security and
impact human needs, safety and livelihood, potentially leading a nation to a state of political and
economical crisis. As the presence of CI is a requirement for other systems and services, losses
in CI will impact a wide variety of necessary applications, acting as a domino-effect. Losses in
areas such as network-communication and energy generation or delivery would restrain access to
network and power. Destruction within one CI-sector also has the capability to affect other areas
of CI and therefore has the potential to impact a nation to a greater extent [9].

The consequences of failures and the importance of uptime in CI, is well known to malicious
actors. Attempts and successes in infiltrating the environment could give motivated attackers the
capability to manipulate and sabotage systems that control and manages the infrastructure [18].
In the setting of a power-grid, this could mean manipulating critical power functions and possibly
shutting down the grid causing blackouts and loss in function of appliances with no backup power.

In section 2.1.1 the environment of Industrial Control System (ICS) will be introduced as it is
often found in operational systems, such as in CI. Thereafter innovations and challenges of the
environment is presented in section 2.1.3 and 2.1.4 respectively. Section 2.1.5 describes and discuss
malicious actors capabilities and motivation in relation to CI. Further the ICS’s role in IoT botnet’s
and attack methodologies in CI is described in section 2.1.6 and 2.1.7.

2.1.1 Critical infrastructure environment

The environment of CI differs from regular network traffic of other areas. Given the operational
needs and the components that is placed in the environment, traffic behaves differently. The
environment can be described with the Industrial Control System (ICS) architecture. “Industrial
Control System (ICS)’s are composed of the interconnection of different computers, electrical and
mechanical devices used to manage physical processes” [19]. They are often very complex systems
that contain sensors, actuators that are controlled and monitored. ICS’s manages normal network
traffic as well as physical and low-level processes. The ICS Purdue model architecture is depicted
in figure 1. The architecture can be separated into three zones; Enterprise, Control and Safety
Zone each separated into level of operation.

1. Enterprise Zone
The enterprise zone contains IT devices found in most commercial organization. The zone
can be segmented into level 4 and 5. Level 5 is the enterprise network, which is usually
connected to the internet for usage by the office staff [20]. Level 4 describes Business logistic
systems which are IT devices that supports the operation on the enterprise network, such as
printers and mail exchange servers.

2. Control Zone
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The control zone is separated from the enterprise zone with a Demilitarized Zone (DMZ)
that secures traffic between the IT operations found in the upper zone and OT operations of
the devices in the control zone. The zone contains four levels of devices.
Level 0 includes devices directly connected to the physical processes, such as sensors and
actuators. A sensor could for instance be used to measure temperatures while an actuator
could be responsible for opening or closing a vent.
Level 1 describes intelligent devices that control the devices in level 0, based on their function.
Such devices are Programmable Logic Controller (PLC) which can execute orders to actuators
based on input from sensors and controllers. Intelligent Electronic Device (IED)’s, function
similarly to PLC’s in being capable of performing operations, but to a greater extent. They
are capable of more complex tasks such as detecting faults, local and remote control. The
devices are often created to be able to sustain harsh conditions and maintain operation for
more than 10-15 years [19]. In CI and ICS environments it is important that the devices are
capable of real-time operation with low levels of jitter and delay [1].
Level 2 devices of the control zone are control systems that are made to manage automated
processes and operate the devices of level 1. The Human Machine Interface (HMI) is one
such component that is used to manage values, alarms and observe trends [19]. Supervisory
Control and Data Acquisition (SCADA) devices are also found here and is used to collect
data from different fields, so that it can be centralized and analysed.
Level 3 are devices which is connected to the enterprise zone through DMZ. The Engineering
workstation is a platform which hosts software for controlling and managing controllers found
on level 2.

3. Safety Zone
The safety zone is a designated zone for devices and systems that ensures the ICS operates
in a secure state. Through monitoring, the Safety Instrumentation Systems (SIS) can flag
unsafe operating states, restore the system back to a safe state or shut off areas of operation
for analysis and prevent damages [20].

2.1.2 Critical infrastructure requirements

For operation of CI to be stable, communication between the components must have low levels of
jitter and delay. Due to the devices and how they must operate to support the environment, traffic
that is generated is significantly different from other types of network traffic. Emphasis is put
on the availability of data transmitted and access to devices as control over the physical system
is essential to prevent damages of components and maintain production [1]. Protocols in which
supports fault tolerance and reliability is therefore prioritized. This however comes at a cost of
the security implemented into the devices and protocols that are used [19]. Security features such
as authentication and encryption has not been prioritized as they are mainly created to operate in
closed environments [3]. Though implementing security is not mutually exclusive to the availability
of the traffic it could impact the system by introducing some delay.

As CI-environments develop and produce essential resources, continuous production is a require-
ment of the systems. This could make management tasks and service of the system hard as it
can not be interrupted for long periods of time [1]. The CI-environment is composed of a wide
variety of components specifically built for the type of service to be fulfilled. Traffic and data
flowing through the network is therefore heavily dependent on those systems. Traffic of different
CI-sectors also differs from each other as there are a wide variety of protocols used to handle ICS’s.

2.1.3 Industry 4.0

The fourth industrial revolution also called “industry 4.0”, describes the innovations which has
been taken place in the area of manufacturing. The evolution of technical capabilities over the
past decade has enhanced the whole value chain of the life cycle of manufactured products [21].
The industry 4.0 environment are composed of interconnected computers which communicate and
interact with each other without human intervention. The use of AI, smart sensors, cloud and big
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Figure 1: ICS Purdue model architecture [19].

data analytics has enabled automation and increased efficiency of production. The components
of the interconnected production environment are not operating independently from each other.
Based the context which one component receive from another, it can make decisions and coordinate
with other parts of the operation. Automation and smart manufacturing allows for optimization
of the production line, making improvements to waste reduction. The integration of a dynamic
cyber-physical control system allows for improvements to the reliability and the flexibility of the
operational environment. Virtualization of the operational environment through the use of digital
twin, processes can be simulated. This can enhance the agility and adaptability of the environment
further enabling discovery for areas of improvement. Optimizations to manufacturing is important
to improve on the sustainability in production. Reducing waste and increasing resource efficiency
means a smaller economical and environmental footprint. Though manufacturing is the most
notable area where Industry 4.0 has taken place, there is a wide area of different applications. As
mentioned industry 4.0 follows the products created throughout the whole life cycle. Industry 4.0
is also prevalent in purchase and supply management, design, evaluation, distribution, prototyping,
quality control and more [22].

A large component of industry 4.0 is the incorporation of “Internet of Things (IoT)” devices. IoT
devices allows for human-to-thing(s) or thing(s)-to-thing(s) communication to provide a service
[23]. What makes IoT devices particularly different from other types of computers is that they are
often heavily resource restricted. To allow for low cost and small form factors the devices have
limited computational power and battery. This affects the devices ability to perform security-
related tasks. As the devices are low-powered, computationally and resource constrained, it is
limited how effective authentication and encryption can be implemented [24].

9



2.1.4 Critical infrastructure challenges

The CI environment can grow to be highly complex, built from a large amount of nodes that com-
municate and cooperate. Managing and controlling the operation is costly, which is why technology
from the 4th industrial revolution has been incorporated into production [1]. This has supported
the production, making it more cost effective, efficient, sustainable and automated [4]. However,
incorporation of such technology has expanded the attack-surface, opening the environment up for
more types of attack vectors, exploits and vulnerabilities [9] of greater complexity and diversity
[1]. Previously, components has been protected as they have operated on proprietary hardware
on isolated networks with no connection to the internet [5]. As remote access and monitoring has
been implemented with the ICS environment, potential doors has been opened to give access and
control to malicious actors. An environment of interconnected IIoT devices coming from different
manufacturers with varying implementations of authentication, security, technologies, protocols
and exposed ports makes managing security significantly harder.

Protocols developed for ICS devices can be grouped into two categories based on who it is that
develop the system [3]. The protocol is either developed by industry standard organizations, where
vendors of different organizations can implement the protocol to work with other vendors. The
second type are protocols developed by the devices manufacturer. This type of protocol is designed
for their own hardware and the previously discussed industrial needs of ICS. The lack of built-in
security features makes the device not fit for availability from the internet. Despite this, a large
amount of ICS devices are found exposed on the internet [3]. With few to none security features,
attackers can remotely access the devices to control hardware, monitor the behaviour and perform
Man-in-the-Middle (MITM) attacks.

2.1.5 Malicious actors

Given the differences between most networks and the infrastructure found in CI, attacks aimed
towards the ICS require a tailored approach. This was especially true when the industrial com-
ponents was isolated. However system dependencies between OT and IT has proven to be one
possible attack method for adversaries, which even novel actors without deep knowledge of ICS
systems could perform [25]. Malicious actors which targets CI could therefore come from any level
of skill and resources. Most notably are the adversaries with the most available resources available
to them.

Advanced Persistent Threat (APT) -actors have a large amount of resources, experience and know-
ledge giving them the capabilities to perform highly sophisticated attacks. APT’s are hacking
groups that are financially supported by their government or companies [26]. Attacks conducted
by APT’s can be characterized by their methodology. The attacks can be conducted over a long
time, APT’s ensure stealthiness by conducting the operation methodically. The motivation of the
attack is often highly specific, based on a clear goal. Burita and Le [26] divides APT’s into four
types;

1. Nation-state actors
The nation-state actors are politically motivated hackers funded by their government and
can be used for military purposes. This entails activities such as disrupting strategical points
of interest, critical infrastructure being one potential target.

2. Organized crime actors
Differently from nation-state actors, actors of organized crime are more often financially mo-
tivated. Financial gain could be achieved by targeting commercial businesses with ransom-
ware, blackmailing or trading industry secrets.

3. Espionage actors
Espionage actors are interested in obtaining confidential information. This could be for both
financial and political interest. Attacks with the purpose of espionage are especially stealthy
to maintain a position where information of high confidence could be picked up.
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4. Cyber terrorists
Cyber terrorists, similarly to terrorists are actors seeking to cause harm and destruction, now
within the digital realm. Cyberattacks conducted for the purpose of terrorism are conducted
to affect and influence the public. The motivation for such an attack could be political,
ideological or religious.

As APT’s have access to large amount of resources it is likely that they have the capabilities to
develop or access to zero-day attacks. A zero-days attack is a cyberattack which utilizes a vulner-
ability or exploit which has not been publicly disclosed [27]. The “zero”, references the amount of
time the method of attack has been known for; in other words, its completely new. Because the
vulnerability or exploit is not known, zero-days are particularly hard to defend against and give the
adversaries an advantage in successfully conducting the attack. Access to zero-days, large amount
of resources and heightened motivation enables the APT to develop tailored attacks specific to an
organization. Given such a scenario it is not likely that such an attack would be identified, nor
prevented.

2.1.6 IoT botnet

Botnets have shown to be one of the most prominent threats to system and IoT security with the
capacity to cause large amounts of damage through Distributed Denial of Service (DDoS) attacks,
theft and spam [28]. A botnet is a large collection of infected devices which are taken control of
by one Command and Control (C&C) server. All the infected devices (bots), are thereby under
control of the server, awaiting orders. The collection of bots can thereby be used to send massive
amounts of packages towards a point of interest, overflowing it with bogus traffic. Genuine traffic
is therefore discarded as the service does not have the capabilities of handling all of the requests.
As the traffic comes from many different sources, blocking said traffic becomes hard as it could be
composed of thousands of different IP addresses of multiple ranges. The consequential downtime
of the services could have significant impact, dependent on the service which it provides.

The Mirai botnet is one of the largest botnets and has been the cause for large scale DDoS attacks,
which hindered access to significant portions of the internet [29]. The Mirai botnet expands on to
vulnerable devices which are constantly being scanned for. Particular services and ports known to
host vulnerable services are targeted and attempted exploited and brute forced. Many impacted
devices are IoT devices, due to their limited computational power and weak implementation of
security [30]. Security in IoT devices has not been of priority as they are made to be cheap,
lightweight and easy to manage and use. Variants of the Mirai botnet has over time expanded
its pool of services and ports which are targeted. From mostly exploiting Telnet, the actors has
also included exploitation’s of SSH, HTTP and other TCP-based ports to their toolbelt. Malicious
actors are financially motivated to expand the capabilities of its botnet to provide the infrastructure
as a service on a marketplace. Here non-sophisticated actors are given the capability to conduct
large-scale DDoS attacks by renting availability to the infrastructure as a service [31].

Environments composed of large amounts of IoT devices could be especially subject to automated
attacks coming from botnets. The actor has an incentive gaining control over the environment as it
would make a large addition to the botnet, expanding the potential size of attacks to be conducted.
Devices of the IoT environment is also harder to manage given the scale and complexity. A large
collection of different types of devices, technology, manufacturers and protocols, increases the risk
of having a vulnerable component [32]. Such a vulnerable device could function as a point of entry
to the infrastructure. Having the environment as part of a botnet means that it could be partaking
in DDoS campaigns, without the knowledge of the owner or administrator. Disruptions could also
be made towards the host environment of the IoT devices, given the control which the botmaster
has over operational pieces. The botmaster could also be given access to confidential information
wich is transmitted over the network.
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2.1.7 Cyberattacks in critical infrastructure

APT activity has been identified in attacks tailored to ICS system and components. Stuxnet was a
worm which targeted SCADA systems. The malware was highly sophisticated, utilizing four zero-
day vulnerabilities to achieve its goal [33]. Assessments of experts conclude that the developers
of Stuxnet had extensive insight into the programs, computers and systems of the Iranian nuclear
plant and uranium enrichment site. This made testing and development of the malware possible,
ensuring its impact on the production.
The Industroyer2 was a malware targeting the Ukrainian power grid. It is a variant of a previously
used malware which targeted ICS systems. The most recent variant specifically targeted the real-
time communication protocol used to monitoring and control [34]. As a consequence of the attack
damages has been done to physical infrastructure, impacting the power distribution and causing
blackouts.
The given attacks are examples of highly sophisticated and tailored attacks targeting the ICS
causing significant consequences. What makes these attacks different from attacks targeting com-
mercial networks is that they are made to handle complex, interconnected components and OT
devices. This could for instance be exploiting protocols with no implemented security to spoof or
manipulate packages [35].
Attacks targeting ICS can be separated into two different categories based on their attack vector;
Network-based attacks and physical-based attacks [19].

1. Network-based attacks
Network-based attacks targets packets, protocols and policies that are in transit between the
components of a network. From the network an attacker will often attempt to know what
devices are currently located on the network.
Reconnaissance is performed to map out the layout of the network, this can be done both
passively and actively [36]. Passive reconnaissance is performed by laying still on the network,
capturing packets that are passing by. Any communication that is not encrypted, an attacker
could potentially read to gain insight to what components of the network are reachable. Active
reconnaissance is used by an attacker to gather more precise information. Over the network
the attacker can send out multiple packets over a range of IP-addresses on multiple ports
and see what services are responding.
Man-in-the-Middle (MITM) attacks enables an attacker to sit in between two parties and
read or modify what they are sending to each other. This could be achieved by the attacker
by spoofing his own address, portraying himself as the receiver to the responder. With
the knowledge of what packets are being sent, the attacker could be capable of performing
replay attacks. Re-sending previously sent packets known to be valid, with adjustment to
the sequence number could cause interruptions in the operation. Spoofing also enables an
attacker to perform packet injection. If the attacker portrays as a controlling station, packets
could be sent to actuators, causing them to perform unwanted tasks and cause malfunction
in the operation [37]. As ICS protocols have limited security implementations, the protocol
might be used to perform Denial of Service (DoS) attacks. This could typically be if protocols
can be used to create an increasing amount of packages filling the network, hindering ordinary
packets in reaching their destination. DoS can also be achieved by spoofing, by constantly
misguiding traffic so that the target is never reached [37].

2. Physical-based attacks
Physical-based attacks are targeting internal cyber-physical systems. The physical com-
ponents targeted are field devices such as sensors and actuators that could be located on
geographically remote sites. Attacks targeting the physical systems are achievable only after
a foothold on the network, usually accomplished performing a network-based attack [19].
A stealth attack is performed by making small alterations to values which the field devices
report. As the small changes are challenging to detect the inaccuracy could persist over
an extended period of time, which in return can deteriorate and damage the components.
Similarly Direct damage attacks aims to bring production to an unsafe state by manipulating
values which determines the state of an operation [38]. This could for instance be adjusting
the measured temperature to something lower, forcing production to operate under temper-
atures it is not fit for.
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2.2 Machine learning

Machine Learning (ML) is a branch of artificial intelligence where gathering and collection of know-
ledge is simulated by use of algorithms [39]. ML has become a primary methodology for handling
large amounts of data through extracting knowledge by statistical measures and computational
power. With the help of ML logic can be gathered from large amounts of data that would oth-
erwise be incomprehensible to humans. Through the usage of algorithms that handle the data,
it is able to learn from experience without human intervention. The growth of the field comes
from newly developed technology providing greater computational capabilities with the capacity
to perform demanding tasks more efficiently. ML creates results in forms of rules, functions, re-
lations distributions and more to represent knowledge as a model that can be used to support
underlying processes [40]. This can be used in a wide variety of tasks to help in decision making
and prediction. ML has emerged as a useful tool in areas of medicine, finance and retail, with the
potential to revolutionize the industries [41]. As the need to handle an exponentially increasing
amount of data, ML will continue to be an essential tool in performing research, increase efficiency,
quality and the capabilities of information handling and knowledge gathering.

2.2.1 Machine learning approaches

Machine learning can be approached utilizing one of three methodologies.

1. Supervised learning refers to a ML-model where data utilized for learning is labeled. This
means that the training is based on the previous knowledge of what type of data is inserted
into the model [39]. Using only the featured values of a datapoint, the ML-model will learn
by attempting to predict the label of the datapoint, adjusting its weights based on the result.
A trained model can then be used to classify unseen data based on the trained rules that has
been generated.

2. Unsupervised learning is used to generate logical connections between datapoints that are
not labeled. Based on given input, characteristics of the data are found from the attributes.
Unsupervised learning can be described as self-organizing or adaptive learning algorithm as
there are no exterior factor that administrate the correctness of what is being learned [42].
This is mainly used for clustering and associations algorithms where observations can be
separated and grouped accordingly to their measured features.

A hybrid of supervised learning and unsupervised learning can also be used to achieve a
greater performance. This combines the experience gathered from supervised data to predict
the outcome of unknown data [43].

3. Reinforcement learning is based on giving feedback to the algorithm based on actions
that are made. Through trial and error the machine can find optimal actions for given
scenarios. Based on previous knowledge of when it was rewarded for its action and when
it was punished, the model make decisions to optimize its score. Instead of providing the
algorithm with information of what class of given datapoints belong to, the algorithm is
rewarded accordingly to right decisions made [42]. It will thereby know when it is on the
right track, and can explore further alternatives in which will be reinforced or discarded.

2.2.2 Machine learning classification algorithms

An introduction to some frequently used, traditional classification algorithms is given as they will
be used for comparison to the proposed AI model. Comparing the results it can be observed how
the methods distinguish themselves from each other to find advantages and disadvantages.

• k-Nearest Neighbors (KNN)
KNN is used for classification in supervised learning. It is one of the most simplest algorithms
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for classification. The class of an observation is determined by the majority class of the k -
numbers of the observations which are the closest distance to the sample. The distance is
determined by the euclidean distance of all the features

• Decision trees
A decision trees make prediction of what class a sample belongs to based on feature values
which distinguish the classes from each other. Based on the value of a feature, a path is
chosen along another branch of the tree. The branch might lead to another feature or a
predicted class. Classification by the use of a decision tree can be expanded upon by the use
of random forest. Instead of using a single decision tree, the random forest relies on various
decision trees [44]. Each tree makes a prediction of a sample following the decision nodes of
the tree, until the leaf nodes are reached. From there the majority class which was predicted
is determined as the final prediction.

• Support Vector Machine (SVM)
SVM is used for both classification and regression in supervised learning. The idea of the
SVM is that it attempts to find a hyperplane of a higher dimensional space, where datapoints
of different classes are optimally separated [45]. The orientation of the hyperplane is found
by the use of two support vectors, positioned parallel on each side of the hyperplane. The
distance between the hyperplane and the support vector (using hard margin) is the same
as the hyperplanes distance to the closest datapoint. The optimal hyperplane has therefore
been found where the distance between the two support vectors are the furthest from each
other. The farther apart the support vectors are from each other, the better the model’s
ability to generalize the data.

2.2.3 Artificial neural network and Deep learning

An Artificial Neural Network (ANN) is an approach to machine learning which is based on the
functionalities of the biological neural network [46]. A neuron of the network takes an input
data where it is processed before outputting an additional value. Initially features of the model
are used as an input to the neuron and multiplied with an adjusted weight. The weight signals
the importance and influence of that particular feature and how much it should influence the
decision-making. Each weighted feature is thereafter summed with an additional bias for the
model to explore other areas of optimization. The sum is passed through an activation function
that defines the property of the neuron. The function determines the format and value of the
output, based on the summed and weighted input. One such instance of a neuron is also referred
to as a perceptron. The Artificial Neural Network takes shape when multiple perceptrons are
combined and interconnected in multiple layers. The first layer of a neural network is referred to
as the input layer while the last layer of the network is the output layer. Any layers in between
the input and output layer is referred to as a hidden layer. An ANN composed of more than one
hidden layer is known as a Deep Neural Network (DNN). An ANN is trained through iterations
of making predictions, determining accuracy and adjusting the weights of the features to optimize
the performance of the network. Weights of the perception input are adjusted based on the results
of predictions made, which is referred to as back propagation [47]. For each iteration the error rate
is measured and used to determine the direction weights should be adjusted. Once the error rate
achieves an acceptable performance, the training is complete.

An ANN’s features and capabilities is heavily dependent on the network topology. Most commonly
found network topologies are Feed-forward Neural Network (FNN) and Recurrent Neural Network
(RNN).

Feed-forward Neural Network (FNN)
In a FNN the hidden and output layers take the ouputs of the previous layers as an input. The
information obtained in the input layer only flows forward to the next layers. The information is
thereby not used to influence the previous or current neuron.

Recurrent Neural Network (RNN)
In a RNN outputs of a perceptron can be directed towards previous, current and the next layer
of the network. This gives the network the benefit of simulating a current state of the network,
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where its behaviour can change over time [46]. By including the previous outputs of perceptrons
into the current prediction, the network posses a “memory” of previous inputs. This enables the
network to process sequential inputs to make predictions. RNN can therefore process data that is
dependent on the results of the previous sample for its analysis [48].

(a) A model of a Feed-forward Neural Network (FNN)
with three layers.

(b) A model of a Recurrent Neural Network (RNN)
with three layers.

Figure 2: Examples of Feed-forward Neural Network (FNN) and Recurrent Neural Network (RNN)

RNN has since its origin been heavily used for a wide variety of applications using sequential data
[49]. The results of RNN in domains such as language models and speech-to-text has shown to be
especially positive. One limitation of the RNN is the concept of vanishing gradient and exploding
gradient. In use of a simple activation function, for each layer the loss function is introduced to, the
gradient is exponentially reduced or increased, approaching zero or infinite [50]. Long Short-Term
Memory (LSTM) was created to address the problems. While training, it is determined whether
information in the network is useful. The information which is maintained is compared to incoming
data. The model is capable of deciding what information should be overlooked and what should be
remembered [51]. In comparison to a simple RNN architecture, LSTM can remember and utilize
data for longer periods. Instead of having a single tanh for each layer, an LSTM is composed of
three different “gates” [16].

1. The forget gate
Both the new input data and the previously kept data is taken as input which is used to
decides what information to delete using a sigmoid function.

2. The Input/Update gate This partition decides what new information should be stored.
The state of the cell is updated by combining; a sigmoid layer which decides what values
should be updater, and a tanh activation function which provides candidates to be added.

3. The Output Gate
The state of the cell as well as the new input is provided to the output gate which decides
what is going to be the output. The cell state is passed through the tanh layer to gain values
between -1 and 1. The new input is passed through the sigmoid function which decides which
of the resulting tanh values is output.

Figure 3 displays the LSTM module and its gates as a whole.

2.2.4 Stateful and stateless Recurrent Neural Networks

RNN’s and in extension LSTM’s, are especially capable of processing sequential data due to its
ability to retain the information of previously processed samples and use it for its decision making of
the current sample. This has been used for processing data which involves sequential dependencies,
for example speech recognition or weather forecasting. In the process of training a model it is most
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Figure 3: Module of repeating LSTM architecture [52].

commonly trained on batches separately, where each input sequence is processed independently
[53]. This is the stateless approach to training a RNN. In different to a stateless RNN, the stateful
RNN preserves its cell state through batches instead of discarding it [54]. As the state is not reset
for each batch, the previously processed samples are capable of determining the current sample.
This is useful for when dealing with sequential data which retain long-term dependencies.

2.2.5 Feature selection

To be able to extract knowledge from the data which is collected using a ML model, the data which
is fed to the model should be optimized for its purpose. [13] discusses the importance of feature
selection in identifying various types of attacks. Feature selection is used to remove features which
are irrelevant or redundant to the identification of attacks. This can help improve the accuracy of
the model and computational cost of training. Data which does not give any indication of incoming
attacks should be removed as the inclusion of such features could confuse or give false indications to
the model under training. Inclusion of features which gives no indications also increases training
and testing time, as a whole other dimension of data must be processed. This also goes for
redundant data. Even though the feature could indicate an attack, if it is redundant to another
datapoint which portrays the same indications it does not provide any new information to the
model. The feature should be removed as the training time of the model increases exponentially,
hence the curse of dimensionality.

An increase in dimensions has the disadvantage of making the data more sparse. This makes
classification tasks much harder as data is distributed amongst more ’axis’ [55]. The sparsity
hinders the model in finding strong statistical relations in the data. Too many features also makes
trained models highly specific to that particular dataset, thereby being overfitted. Rather than
providing a general model to the desired problem description, the model portrays the specific
datapoints. It is in [56] argued that feature selection can both increase system performance and
the classification accuracy of IDS’s. A large number of dimensions could especially impact the
performance of ML algorithms in real-time environments [16]. Feature selection is performed by
measuring the relevance of a feature and maximizing the classification accuracy based on a feature
subset [57].

2.2.6 Machine learning datasets depicting critical infrastructure

For a ML model to make accurate predictions of an outcome, the basis of the model must be based
on the real environment it is attempting to predict. In the case of using ML to detect malicious
behaviour, the model should have been built on data that reflect the behaviour accurately, both
under normal and abnormal circumstances. As the behaviour of a network changes amongst
different industries, configurations, protocols and usages, a model which is built on traffic from one
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environment, is not necessarily applicable to another environment.

As discussed previously the behaviour of CI stands out from other types of traffic. Therefore, any
attempt to use ML for intrusion detection should be based on this particular infrastructure [14].
Unfortunately, there is a lack of available datasets which portrays CI [1], [4], [19], [48]. Presented
models are found largely to be based on outdated datasets. Most used dataset for IDS testing is
KDD-99 which originated in 1990. Results of the evaluation made does therefore not portray how
the detection system would perform in real world environment. CI in particular behaves differently,
this also goes for the attacks which are aimed towards CI. CI involves different types of attacks as
the system is built on other types and highly specific components. Attacks relevant to the system
should therefore also be introduced to the ML model.

The lack of datasets which portray the behaviour of CI also comes from the reluctance of organiza-
tions to share the data. The data which must be provided to create a dataset, could entail sensitive
information about the system. From this, vulnerabilities in the environment could be discovered
by malicious actors, giving them material to develop a means of entry. Though the process of
developing highly targeted attacks based on these types of leaks is very complex, as discussed in
section 2.1.5, the actors which has the capabilities to do so are also motivated to target CI. In
developing a dataset reflecting the behaviour of a CI environment, introducing the environment to
malicious activity would also not be possible for collection of relevant data, as this might lead to
actual harm such as damaging or destroying components.

2.2.7 Explainable artificial intelligence (XAI)

In working with Machine Learning and especially Deep Neural Network, it can be unclear exactly
how developed models function. ML models through training are capable of finding complex
relations and logic. Though such a model is able to accurately classify and make predictions,
the inner functions of such a model is opaque to those who use it. DNN’s are essentially a black
box. Explainable artificial intelligence (XAI) encompass techniques which aim to make AI more
comprehensible for users to understand how results of the model came to be [58].

In working with ML models, it is important to know how it functions even though it performs well.
It is in [59] provided an example of how an image classification model misinterpreted the difference
between a wolf and a husky. What was found with XAI, was that the model saw that pictures
of wolves was more likely to be taken in environments with snow. Instead of classifying based on
the look of the animal, the model found that taking the environment into consideration was an
efficient determinant. Though accurate, the classification model was right for the wrong reason.
Similar scenarios are possible when working with intrusion detection. XAI can help identify biases
and improve the overall performance [60]. An understanding of the ML model, can also provide
knowledge in how detection is made. Through analysis of the model it can be determined what
exact features are important for the decision making and figuring out what particular scenarios
indicate attacks.

DNN’s are found to be of benefit for higher accuracy in many areas of ML, however has come
at the cost of transparency [61]. Simpler ML techniques in comparison, are easier to understand
and analyse, providing a clearer answer to how results were achieved. In attempting to provide
transparency to the opaque models there are XAI techniques which could be implemented at
different stages of the model development [58].

1. Pre-modeling
Pre-modeling are statistical measurements which is done to the dataset of the model, to
provide knowledge of how that data is distributed. This method might help identifying
biases in the dataset such as imbalances and missing data.

2. Interpretable model
An interpretable model is a ML model which is created for the purpose of having it provide
explanations to its decision making. Such a model must therefore be considered when design-
ing the model.
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3. Post-modeling
Post-modeling are techniques attempting to provide an explanation of a black-box model.
This can be done through visualization, where areas of importance to the decision making
are highlighted by the model.

2.3 Intrusion Detection System (IDS)

Networks are handling an increasingly amount of data and devices. Yet, to achieve a secure state
of the network malicious packages must be detected and prevented. An Intrusion Detection System
(IDS) aims to find the suspicious behaviour and issue an alert such that the event can be handled
as soon as possible. The automation helps administrators manage the amount of traffic, however,
it is not a given that the IDS will be able to find every malicious package. Intrusion detection is a
constant development following the behaviour, tools, techniques and vulnerabilities attackers use
to infiltrate a system.

IDS’s can be separated into categories based on the method of intrusion detection; Signature-
based Intrusion Detection System (SIDS), Anomaly-based Intrusion Detection System (AIDS)
and Stateful Protocol Analysis (SPA) as well as two categories based on the localization of the
detection mechanism; Network-based Intrusion Detection System (NIDS) and Host-based Intrusion
Detection System (HIDS).

2.3.1 Signature-based Intrusion Detection System (SIDS)

Signature-based Intrusion Detection System (SIDS) use its knowledge of existing methodologies
and patterns in detecting potential attempts of intrusion. A collection of signatures from previous
attacks, as well as packets indicating suspicious behaviour, is compared to incoming traffic. A
match between the packet and an entry from the list issues an alert of the packet [62]. Though
this method of detecting attempts of intrusion is highly accurate and efficient, it does not have
the capabilities of detecting new types or modified attacks as these are not a part of the database.
This database must continuously be maintained and updated with new forms and variations of
existing attacks, as they are disclosed. SIDS is also known as misuse detection as it defines general
actions which are prohibited by the policy.

2.3.2 Anomaly-based Intrusion Detection System (AIDS)

Anomaly-based Intrusion Detection System (AIDS) determine its decision by comparing the cur-
rent behaviour to a set basis that describes the normal behaviour. The normal behaviour of the
system is referred to as a profile, which describes the expected behaviour [63]. If the current traffic
is different from the profile by a set threshold an alert is made. Profiles can be made specific to
different environments and areas of an infrastructure, making it highly detailed to how different
networks and applications operate. AIDS has the advantage of potentially detecting unknown
forms of attacks, as such an attack would deviate from expected behaviour. The drawback is that
AIDS does not achieve the same rate of accuracy as SIDS. It can in AIDS be hard to define the
threshold which determines normal behaviour. Either the threshold is too vague, increasing the
risk of not detecting misuse. Otherwise it might be too strict, issuing too many alerts for irrelevant
variations.

2.3.3 Stateful Protocol Analysis (SPA)

Stateful Protocol Analysis (SPA) also referred to as specification-based detection, functions by
tracing the protocol states [64]. The detection method differs from AIDS, by having vendor-
developed profiles which are specific to protocols, rather than profiles specific to network or host.
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2.3.4 Network-based Intrusion Detection System (NIDS)

The location where the IDS is placed can determine what types of attacks it will be able to detect,
how early the attack is detected and what data can be gathered about the attack. Network-based
Intrusion Detection System (NIDS) is deployed on the network, which aims to protect all of the
devices located on the network [63]. NIDS inspect packages that are transferred between hosts and
evaluate their contents for suspicious material. In a signature-based approach, the contents can
be compared to known signatures, IP-addresses, protocols and more. In anomaly-based detection
the traffic-flow, could for instance determine if the network operates as usual by analysing what
IP-addresses are communicating with each other.

2.3.5 Host-based Intrusion Detection System (HIDS)

Host-based Intrusion Detection System (HIDS) aims to protect the particular machine in which it
is deployed on. Since adversaries possess tools which are able to gather system specific information
of hosts, vulnerabilities found can be used to gain unauthorized access [13]. HIDS monitor traffic
and activity on the host itself by analysing application files, system calls and the operating system.
In comparison to NIDS, HIDS can provide detailed information about the suspicious activity it
detects, as host contain detailed logs of host activity. Not only do you see the consequence of an
activity as in the network packet, but you can see the particular activity that was performed. The
downside to having the IDS located on the host is that it uses the computational resources of the
host, ultimately degrading its performance [63].

2.3.6 Machine learning in Intrusion Detection System

Machine learning as described in section 2.2, covers what ML approaches can be used in IDS. Use
of ML and deep learning is seen as a potential possibility of achieving greater performance in ids
by using big data [65]. There are proposed many ML and Deep Learning (DL) algorithms for use
in IDS. The different approaches has weaknesses and strengths and must be fit for the environment
and the issue which it attempts solve. The use of ML does however have some particular challenges
when it comes to the use case of IDS [43]. Any common network has large varieties in packets given
any behaviour. The variety and diversity in traffic makes it significantly harder for a ML model
to detect what particular features of the network makes behaviour abnormal. Similarly, behaviour
which is considered normal might change for each established session. The usage of each session
might differ depending on the purpose of the established session.

Use of ML still holds a high rate of errors. A high rate of false positives in an IDS results in a large
amount of noise for any operational center which has to analyse any issued alerts. This results in
the usage of a large amount of resources used on benign alerts which might even make finding the
real events hard to find. Tuning the ids to not issuing as many alerts might on the other hand
increase the amount of false negatives which is significantly more severe in that there are not given
alerts on real attacks.
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3 The proposed deep learning IDS mechanism

This chapter describes the course of action that is planned to be able to answer the research
questions presented in 1.4. Section 3.1 and 3.2 defines the scope and limitations of the thesis,
narrowing the field to a viable scale, specifying the area of research. Section 3.3 presents an
overview over the methodology, showcasing the planned course of action. Section 3.4 describes the
development of the dataset that is to be used for training of the machine learning decision-making
model. Creation of the machine learning model is described in section 3.5. Section 3.6 describes
how the final deep learning model is evaluated for the purpose of comparing the performance to
other IDS. Lastly, section 3.7 described how the validity of the thesis is maintained to ensure that
knowledge derived is applicable to the area of research.

3.1 Scope

Research questions are attempted answered through the use case of developing a dataset which
simulates the behaviour of an electrical substation. Simulation is often found in mimicking the
behaviour of a network by the use of tools such as virtual machines, packet tracer. The approach
proposed for this thesis presents a simulation method where the environment is defined by script
given calculated features which operate differently dependent on the current scenario it is exposed
to. The simulated dataset, developed for use in training a ML model, contains scenarios of both
normal operation and malicious behaviour. The scenario of normal operation is defined by having
an average expected value for each of the features with some noise which introduces some variation.
Attack scenarios are similarly defined by having the values of the features adjusted to a varying
degree. The features presented in the dataset are reflecting operational measurements of the
environment. Attack scenarios presented are relevant to the environment of CI. Each scenario
is created to affect the measurements in different ways and to different degrees. Though it is
attempted to create the scenarios as accurately to the real environment as possible by basing the
scenarios on previous work and impact analysis, the scenarios will to a greater extent be based
on assumptions in how the environment might react. Measurements will be attempted to be
adjusted to a representative degree, however it is not a goal of this thesis to develop a dataset
which represents the behaviour of a particular substation or develop a model which can be used in
one. The simulated dataset will be used to train and evaluate a Long Short-Term Memory (LSTM)
classification model. The developed model will be evaluated on how capable it is in detecting the
different scenarios in an attempt to understand the traits and limitations of the trained model. The
contribution from this thesis is an evaluation of the described methodology of using simulation for
the development of a dataset. The thesis wish to explore the benefits and weaknesses of simulation
of CI. It is attempted to understand how use of a simulated dataset can help improve and iterate on
ML models. The goal is to contribute in identifying methods of improving detection and prevention
of malicious behaviour in the challenging sector of CI.

3.2 Limitations

Due to the sensitivity in data located in Critical Infrastructure, it proved to be difficult to gain
access to and utilize this type of data for the purpose of the thesis. In the case that it would be used,
it would have been difficult to publish the resulting model and dataset as there is a thorough process
of validation to ensure that no data containing sensitive information is leaked. Maintenance of the
data is necessary to prevent bad actors from gaining insight into how the environment operates, as
this could lead to them potentially finding weaknesses or vulnerabilities. This means that, in using
the data based on CI, utilization of collected data would be strict, limiting what it could be used
for and what results could be shared. As a consequence, the results and proposed methodology
would have been as difficult to verify and validate, essentially making resulting contribution of no
value to future research. Measurements presented in this thesis is for this reason not derived from
the actual environment of CI. The simulated dataset which is developed from this thesis, rather
than reflecting accurate measurements from an operational setting, simulates a scenario where it
is assumed that included features can indicate malicious behaviour. Both behaviour and reaction
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to attack scenarios are assumed and does not reflect real-world measurements of real electrical sub
stations. The use case attempts to depict a general process in use of simulation in depicting an
environment with known features. Due to limited knowledge in the field of electric power, features
and measurements presented are not made to portray accurate measurements or behaviour.

The thesis originally planned to correlate usage the simulated dataset with a testbed for a greater
understanding of how the two methods compare. This ultimately did not turn out to be possible
and has been described as a suggestion in future work of section 6.3. Use case is therefore depicting
an electrical substation using data from previous work and impact analysis. This method does
however not depict the accuracy of the environment to a satisfactory degree as there were no one
source which had data on the features under the influence of the different types of attacks. This is
why the use case makes the assumption that the feature behaviour is known and capable predictors.

Attack scenarios attempted simulated are limited to attacks which affects the operation and thereby
measurements of the substation environment, as only these types of attacks are relevant in using the
described features in section 3.4.1. Similarly to how measurements are assumed for the operation
of the environment, the environments behaviour for the duration of an attack scenario is also
assumed. How the features are impacted by an attack is defined in section 3.4.2. Each of the
attack scenarios are developed to showcase different behavioural changes, in an attempt to gain
knowledge of what type of behaviour is not recognised by the ML model.

3.3 Process overview

The goal of this thesis is to create and evaluate a model of a simulated environment which could
portray features extracted form CI. The first step of the process is to develop the simulated dataset
and define its features. The dataset will also include different scenarios of attacks for the deep
ML model to learn from. The second step is to develop and define the architecture of the deep
ML model. Parameters of the model is found through iterative testing and tuning, to optimise the
result of the model for it to perform to expectations. In the third step of the process the final model
will be evaluated and tested. The results is set to be analysed to observe what particular scenarios
were found to be hard to distinguish between and detect. Results will be compared to traditional
shallow ML techniques to evaluate what benefit a deep model would have in classification. Lastly
an overall analysis of the methodology will be performed to evaluate whether simulating a dataset
can reflect the environment of CI. Figure 4 pictures each step of the process for this thesis.

3.4 Dataset development

The first step of the methodology is to develop the dataset which portrays the use case of the electric
substation under the influence of cyber attacks. This is done through simulation by calculating
values for each feature based on the defined scenarios in script. Though this does not create a
dataset which represents the real world values of a substation, the process describes a methodology
for simulating the behaviour of an environment where the assumed relevant features and their values
are gathered. The purpose of the dataset is to train a ML model on it, evaluating the capabilities
of the model by how well each scenario defined are classified correctly. In that the behaviour of
the simulated dataset is known, limitations and weaknesses of the model can be identified, defined
and adjusted.

3.4.1 Features

For each scenario, being normal behaviour and each type of attack, each feature is defined by an
average value as well as a variation. Measurements are made by using the average and variation
to generate a value where the variation defines the maximum and minimum distance from the
average. Each measurement made has a random adjustment made to its average value within the
distance of variation at random.
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Figure 4: Modeled process overview for the thesis.

For ease in managing and deriving knowledge from each scenario in an attempt to answer the
stated research questions 1.4, it is chosen to use only three features in identifying an attack. As
mentioned in 2.2.7, it could be hard deriving knowledge from deep learning, due to them operating
in a high dimentionality. A fewer number of features, and predefined description of how each
scenario affect the features will help understand what it is the ANN sees. This has the benefit of
making the final ML model more transparent in understanding how it functions and what patterns
it detects. This is necessary to understand how well the proposed ML model is suited for the given
scenario and the environment of CI.

The features chosen are given the name and attempted mimicking measurements found in elec-
trical substations. Gathered from [66]–[68] it is observed that frequency, current and voltage are
measurements which are impacted by cyber attacks. For the sake of building a scenario, these are
the features which are mimicked for the simulated dataset. In a real environment these features
would maintain a relationship as they impact each other. However for this scenario the features
are not implemented as such and are simulated independently from each other. Table 1 defines
the average and variation for each feature in normal operational conditions.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

Normal (0) 50.0 0.02 400.0 2.0 150.0 1.0

Table 1: Normal behaviour of simulated features defined by the average and variation.

3.4.2 Attack scenarios

Each attack scenario is created to have a different distribution of the values witch is presented in
table 1, to simulate the changed state of the environment. The variants are a mixture of increased
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and decreased average and variation value, to different degrees. Each scenario is attempted to
reflect the intrusiveness of actual attacks relevant to the field of CI. However, as mentioned in
section 3.2 it is assumed how particular attacks affects operational measurements. Attack scenarios
are therefore also limited to attacks which are presumed to have an impact on the operation as
this is when they can be measured for given the methodology of this thesis. Therefore, scenarios
created mostly reflect the last stages of the cyber kill chain, where the actor is taking action to
achieve his objective.

The dataset and attack scenarios presented in it, should be created such that it answer the ques-
tion of what the capabilities of the ML model is. Scenarios presented should in varying degree
be intrusive and stealthy to determine what the final model can distinguish between. What is
important is that the different scenarios reflect different ways attacks could impact the features to
potentially further evaluate what variations are stealthy enough to bypass the detection system.
Each scenario is named by their level of impact. This level does not describe, the overall con-
sequences that particular attack has over the environment, rather to what degree they affect the
measured features.

Scenario 1: High impact denial of service
For this scenario, an attacker has an established foothold in the control zone of the ICS environment.
The attacker use his privileges to manipulate the packet flow of orders which disrupt normal
operation. The high impact is seen by larger variance in the frequency and adjustments to both
the current and voltage, average and variance. Table 2 presents the values for simulating the
features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

High impact DoS (1) 50.0 0.05 200.0 50.0 100.0 10.0

Table 2: Simulated behaviour under the influence of a DoS attack.

Scenario 2: High impact process manipulation
This scenario describes an attack where the actor, having control over the ICS environment, use
packet manipulation to disrupt certain areas of the operation. The attack impacts the current to a
high degree, lowering the average output and increasing the variance. Table 3 presents the values
for simulating the features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

High impact process manipulation (2) 50.0 0.02 100 10.0 150.0 1.0

Table 3: Simulated behaviour under the influence of a process manipulation attack.

Scenario 3: Medium impact process manipulation
An attacker has infiltrated the ICS environment and is maintaining presence as a MITM. From
this position the actor is able to disrupt processes related to operation. Operational measurements
are impacted by a higher average frequency and voltage. Table 4 presents the values for simulating
the features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

Medium impact process manipulation (3) 50.02 0.01 100 10.0 180.0 1.0

Table 4: Simulated behaviour under the influence of a process manipulation attack of medium
impact.

Scenario 4: Medium impact replay attack
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From a position within the ICS environment, an attacker is repeating previously sent packages
which disrupt some physical processes. This causes instability in the operation, leading in this
case an increase in current and voltage with higher variance. Table 5 presents the values for
simulating the features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

Medium impact replay attack (4) 50.0 0.02 500 20.0 200.0 5.0

Table 5: Simulated behaviour under the influence of a replay attack.

Scenario 5: Low impact stealth attack
This scenario describes an attacker with a presence in the ICS environment. In an attempt to
stay hidden the measurements made are manipulated to show operation as normal. The resulting
measurements are therefore very similar to normal, other than that the variance is lower. Table 6
presents the values for simulating the features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

Low impact stealth attack (5) 50.0 0.01 400 1.0 150.0 0.8

Table 6: Simulated behaviour under the influence of a stealth attack.

Scenario 6: Low impact direct damage attack
The direct damage attack similarly to the stealth attack is attempted conducted in secrecy, by
only impacting operation by small margins. In difference to the stealth attack the environment is
attempted to be put in a state, which over time would tear and degrade its components. Operation
is measured as mostly normal, other than slight increases in variation. Table 7 presents the values
for simulating the features.

Scenario (label) Frequency Current Voltage

Avg Var Avg Var Avg Var

Low impact direct damage attack (6) 50.0 0.03 400 3.0 150.0 1.5

Table 7: Simulated behaviour under the influence of a stealthy direct damage attack.

The full dataset is built by simulating multiple iterations of the defined scenarios in randomized
order to not introduce a bias in that the model recognizes the order of operation rather than
classify based on the given features. The dataset is simulated in two different instances, one for
use in training of the model and the other for use in testing the trained model. To simulate a
consistent state of the environment for periods of time, each iteration of a scenario has a defined
number of measurements before the state changes. The final model was thereby composed of the
seven different scenarios where each measurement was simulated a thousands times per scenario
and each scenario was iterated another thousands times for the training set. The test set was made
smaller in that two hundred iterations of each scenario was simulated, where each scenario also
had a thousands measurements. In training of the model, 20 percent of the training set is used as
a validation set.

To further emphasize and help the model learn that any other attack could potentially come after
any given state and prevent the dataset from randomly cluster similar scenarios, randomization was
performed by grouping the defined scenarios before randomizing their order to be picked. When
every scenario had been picked a new order of the scenarios are created and simulated.
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3.5 Machine Learning model development

The second step of the methodology is developing the model to be used for classification of the
created dataset. The trained model is evaluated by the degree of which it is capable of distinguish-
ing the labels of the dataset. Some of the scenarios are created such that they will be difficult to
differentiate, in that the values of the behaviours are overlapping. A goal of the model is therefore
to be able to use previously read samples to gain context in determining the current prediction.

3.5.1 Model requirements

In the case of a real cyberattack, it is important that the event is alerted as soon as possible.
This will help in responding to the attack and limit potential damage an adversary could do to
the systems. This is especially true for CI, where an impact could have major consequences to
those in need of the resources provided. Detection methodology used for intrusion detection should
therefore be in real time and be able to identify an attempt of attack early. The ICS environments
are prone to high degree of noise which could impact the performance of the IDS, making it harder
to identify malicious behaviour. Resilience should therefore be taken into consideration in the
development of such a system.

3.5.2 Model architecture

The ML model to be developed for this thesis is a Recurrent Neural Network (RNN) with Long
Short-Term Memory (LSTM). This has been chosen due to its functionality in taking previous
data into consideration when deciding the current state of the environment. The hypothesis is
that the model will be able to detect even the stealthy attacks. Using the context of previous data
it could potentially observe the trend of values being normal, yet collectively different from the
normal behaviour. For developing the model, the Keras library from TensorFlow is used in python
together with the sklearn library for data handling.

Parameters of the ML model will be tuned through iterations of training, initially using the ac-
curacy of the model in deciding what values are optimal to the performance of the model. The
initial model architecture is derived from the work of [16], where an LSTM model is developed for
the purpose of network intrusion detection. Both a binary- and multi-classification model will be
trained on the simulated dataset to see how well it performs in general detection as well as what
particular activities are found to be challenging.

For the binary classification architecture, the model will make use of Sigmoid as the activation
function, binary crossentropy as the Loss function and the adam optimization algorithm. The
multiclass classification model will use softmax for its activation function, categorical crossentropy
for its loss function and adam as the optimization function.

The proposed model is composed of three LSTM layers, each followed by a dropout layer to coun-
teract overfitting. The last layer is densely connected and outputs the predicted class. Two modes
are created, one which outputs a binary classification, where sigmoid is used as the activation.
The other model is multiclass classification and predicts the particular attack using softmax as the
activation function.

Figure 5 displays the architecture of the multiclass classification model and its trained parameters.
Figure 6 displays the architecture and parameters of the binary classification model. The config-
uration of the model is further discussed in section 4.4, where the initial model is evaluated and
analysed to improve its future iterations. At this stage the optimal number for batch size, dropout
frequency and units per layer, is described.

25



Figure 5: LSTM multiclass classification architecture.

Figure 6: LSTM binary classification architecture.
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3.5.3 Pre-processing

Pre-processing is the process of preparing the collected raw data for usage in training the model.
Data which is collected from the environment has to be adjusted and cleaned so that it can be
inserted into the model as well as give beneficial input to the training.

Since each of the features operate on a different magnitude of scale, larger numbers introduced to
the model during training might have larger impact on the set weight than the other values. The
features should therefore be normalized to ensure that all features are considered equally during
training. Values are normalized by rescaling the values to fit between 0 and 1.

The labels of the dataset is defined by a number ranging from 0 to 6 for multiclass classification
and 0 to 1 in binary classification. For the multiclass classification to interpret the label correctly
is should be converted from an integer to a categorical label by the standards which is required by
Keras. Using LabelEncoder each label is converted to a binary class matrix.

For most trained classification models, the dataset which is presented during training is shuffled
to a random sequence before it is used as to not introduce bias in how it is ordered. However,
the goal of the model which is developed for this thesis is to recognize the current class, by what
previous behaviour looked like. Therefore the order of sequence which values occur is relevant to
the classification. The dataset is therefore not shuffled before training, but is rather randomised
by their order of scenarios as described in section 3.4.2.

3.6 Evaluation

The evaluation of the ML model will dictate how well an IDS built on it would detect suspicious
behaviour. The metrics are essential in deciding if the model is of benefit to security monitoring. A
model that alerts too often would issue too many alerts, generating too much noise to find the real
threats. A model issuing too few alerts, risks not detecting actual attempts of intrusion. Evaluation
of the ML model is performed by statistical measurements of predictions made by the model on
labeled data it has not yet been exposed to. The results of the evaluation will ultimately help
dictate whether the dataset features or model architecture are capable or optimal for classifying
malicious behaviour. Evaluation makes comparison between different IDS possible. It can thereby
be determining what models, methodologies, datasets and features are optimal to use in different
circumstances and environments.

In an attempt of understanding how the resulting ML model functions, its temporal decision
making will be analysed as part of the evaluation. Given that LSTM is used, the order of events
could impact how the model behave. It can be beneficial to see if there are particular arrangements
of scenarios proven to be beneficial or disruptive to the performance. This will be analysed by
graphing and comparing the predicted and true labels, attempting to observe any patterns. Graphs
are created so that they portray different scales such that; one particular scenario can be analysed,
a segment of the test-set portraying multiple subsequent scenarios can be analysed and a graph
portraying a larger overview over the test-set.

3.6.1 Measurements

The final iteration of the developed decision making model for identifying malicious activity, will
be evaluated using state of the art statistical measurements. The ML models are evaluated on
a dataset which it has not previously seen in the training data, but consists of the same defined
scenarios of normal behaviour and attacks. As is mentioned in [1] methodologies and measurements
used for evaluation varies widely between the different research projects. This has made comparison
between the IDS’s difficult as there are different collections of metrics used. There is no defined
standard for what metrics should be used, however some metrics are more wide spread. These
metrics are chosen as they are frequently used in other research evaluating the performance of
IDS, making comparisons to the developed model possible. Predictions made by the ML model is
measured by the following metrics.
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Predicted as normal activity Predicted as malicious activity
Actual normal activity True Negative (TN) False Positive (FP)

Actual malicious activity False Negative (FN) True Positive (TP)

Table 8: Confusion matrix.

Confusion matrix
Firstly the predicted classifications determined by the model is logged to a confusion matrix.
The confusion matrix holds information on how the predictions are distributed amongst the four
resulting terms [4]:

1. True Positive (TP): The prediction made is that the features inherits malicious activity
and the features are labeled as such.

2. True Negative (TN): The prediction made is that the features does not entail malicious
activity, and the features are labeled as normal activity.

3. False Positive (FP): The prediction made is that the features inherits malicious activity,
however the data is labeled as normal activity.

4. False Negative (FN): The prediction made is that the features does not entail malicious
activity, however the data is labeled as malicious.

Accuracy
The overall accuracy of the decision making model is found by adding up the correctly predicted
instances (being TN and TP), and dividing it on the total number of samples.

Accuracy =
TP + TN

nr.ofsamples
(1)

Precision
The precision gives an indication how often, when a sample is predicted as malicious activity, it is
actually malicious. This can be especially beneficial in intrusion detection to determine the rate
of false positives. A low level of precision could waste a lot of resources on misleading alerts.

Precision =
TP

TP + FP
(2)

Recall
The recall, also called the True Positive Rate (TPR), looks at the ratio in which the model is able
to predict malicious behaviour when being attacked. Thereby, dividing the correctly predicted
attacks (TP) on all attacks.

Recall =
TP

TP + FN
(3)

F1 score
The F1 score, also known as f-measure, combines the recall and precision to one formula accounting
for unbalanced samples.

F1score = 2 · recall · precision
recall + precision

(4)
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3.7 Validity

The validation of the project determine how well the results of the thesis reflect, and can be applied
to the real world. Limitations of the thesis means that aspects of the project does not entirely
portray the targeted environment or goal. This is taken into consideration when determining the
results of the final product and conclusion of the thesis. Decisions and alternatives that has been
made to account for the limitations are discussed and reflected upon. The methodology of the
thesis is argued in how well it reflects its targeted environment and how well a result of the thesis
applies to real world environment.

Though the thesis attempt to reflect how CI is impacted by the use of a simulated dataset, a
limitation of the thesis is that an environment which portrays ICS was not available for testing.
The thesis therefore assumes a definable and known environment for the purpose of simulating
that environment. The environment itself and the attack behaviours simulated does not attempt
to portray the real-world behaviour, but use the use case to explore how this could enhance the
development and evaluation of a ML model for the defined environment. Validity of the thesis is
maintained by first gaining a familiarity of the area of machine learning and critical infrastructure.
For the development of the model, evaluation of the model is performed by the use of state of the
art measurements which can be used for comparison to previously developed models, as to build on
previous knowledge rather than starting from scratch. The lack of experience in developing a deep
learning model is also recognized, which is why it was chosen to base the model on a previously
developed LSTM model. Evaluation of the model is also somewhat restricted in regards to how
results can be compared to previous work due to the lack of previously developed models built
on datasets portraying CI, and due to the methodology of how the dataset was developed for this
thesis. The results are therefore not compared to any particular works of previously developed
IDS models, but the thesis considers the level of performance which should be expected by the
standards of previously developed models. Literature review is also used to gain insight to CI,
to best relate the context of simulation and deep learning to the area. Limitations of the thesis
are clearly stated, which help declare what boundaries the thesis is confined to. Areas possessed
of limitations and therefore uncertainties are for that reason described as future work. It should
be recognized that this thesis is just a small step in the continuous process of research concerning
IDS. Validity of the thesis is maintained by clearly stating these boundaries and limitations which
this thesis has been impacted by, leaving uncertainties to future work. For future validation and
enabling repeatability of the experiments performed in the thesis, the code created for the purpose
of this thesis is included in the appendix.
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4 Experimental results

This chapter presents the results of the performed tasks which were described in section 3. Firstly
section 4.1, present the simulated dataset. Section 4.2 presents the results of the trained binary and
multiclass Long Short-Term Memory (LSTM) classification models. Section 4.3 presents the results
of evaluation performed on the comparing ML techniques. Finally, the results of the evaluation will
in section 4.4 be analysed and used to understand the current models weaknesses and attempt to
use this for the purpose of improving it. The results of the improved models will also be presented.

4.1 Resulting simulated dataset

The defined scenarios from section 3.4.2 was implemented into a script which resulted in two
datasets. The dataset for binary classification has an even distribution of malicious behaviour,
defined in table 2, 3, 4, 5, 6, 7, and normal behaviour as defined in table 1. The multiclass
classification dataset had an even distribution over all the defined scenarios. Each dataset is also
split into a training set and a test set. The dataset for training the binary and multiclass model as
7 008 000 and 12 013 000 samples respectively. The reason for the datasets being as large as they
are is to accommodate for the models which are able to use the context of previous samples or
scenarios in predicting the current sample. Therefore every order possible of scenarios was wanted
in the dataset as to not introduce bias in that the dataset indicating that certain scenarios only
appeared after another. Though this include redundant samples it is also something which can be
adjusted for in the pre-processing of the dataset for future models. The test sets of the binary and
multiclass datasets are composed of 2 403 400 and 1 402 400 samples respectively.

4.2 LSTM model performance

The final trained ML models are evaluated using a separate subset of the dataset to evaluate the
model on data which has not been used during training. The test set does include the same charac-
teristics as the training set, but is separate to evaluate whether the model has found distinguishable
features or simply memorised the occurrence of labels from the training set.

Following are the resulting metrics of evaluation for the multiclass and binary classification models.

4.2.1 Multiclass classification

Figure 7a displays the improvements of the predicted accuracy and real accuracy for the duration
of its training. Figure 7b, displays how the predicted and real loss value decreases for each epoch,
indicating the progression in learning for each step.

The trained multiclass classification model performed well in identifying the scenarios of attack 1-4.
Following the values provided in the confusion matrix in figure 8, normal behaviour was confused
with attack scenario 5. Attack scenario 6 was similarly confused with both normal behaviour and
behaviour of the attack scenario 5. Regarding attack scenario 5, though most instances of the
attack scenario was identified, it resulted in a lot of false positives. This indicates a poorly placed
threshold, separating normal behaviour from attack scenario 5.

Though each label is represented equally in the mode, normal behaviour is put up against two
scenarios which highly mimic its own behaviour. This leads the model to think that there is a
higher likelihood the behaviour of being a type of attack, rather than of benign origin. Distribution
of labels could have been improved introducing more values of the normal behaviour.

Table 9 contains the results of the ’classification report’, displaying the precision, recall and f1-score
for each class, as well as the overall accuracy, macro and weighted average. The high false positive
rate of attack scenario 5 is indicated in the low precision value. Similarly, attack scenario 6 has
a lower recall value due to the higher false negative. Normal behaviour was the overall hardest
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(a) Predicted and real accuracy over epochs in train-
ing of the LSTM multiclass classification model.

(b) Predicted and real loss over epochs in training of
the LSTM multiclass classification model.

Figure 7: Predicted and real of loss and accuracy during training the LSTM multiclass classification
model.

Precision Recall f1-score Support
Class 0 0.65 0.53 0.58 201 401
Class 1 1.00 1.00 1.00 200 000
Class 2 1.00 1.00 1.00 200 000
Class 3 1.00 1.00 1.00 200 000
Class 4 1.00 1.00 1.00 200 000
Class 5 0.61 0.96 0.75 200 000
Class 6 0.92 0.57 0.70 201 000
Accuracy 0.86 1 402 401
Macro avg 0.88 0.87 0.86 1 402 401

Weighted avg 0.88 0.86 0.86 1 402 401

Table 9: Classification report of LSTM multiclass classification model predictions.

class to identify, indicated by the precision, recall and f1-score. The overall accuracy of the LSTM
multiclass classification model turned out to be 86%.

In attempting to observe a pattern of behaviour in how the multiclass classification model operate,
the graphs portrayed in figure 9 pictures the predicted and true label made from the first samples
of the test set. It was however not found any correlation or patterns of occurrences in falsely
classified samples as there would have been if the model took the previously processed samples
into its consideration.

4.2.2 Binary classification

Figure 10a and figure 10b presents the progression in accuracy and loss for each epoch in training
of the binary LSTM classification model. Compared to the multiclass classification model, the plot
reaches a higher accuracy much quicker, before the plots plateaus before reaching the performance
of the multiclass model. Compared to the multiclass model, the confusion matrix of the binary
model displayed in figure 11, show there were no false positives. The binary model does not entail
the same problem of having a grate portion of false positives in labeling normal behaviour. This
indicates a distribution of labels which benefit the prediction of normal behaviour.

However some of the malicious activity was classified as normal. Looking into the false negatives,
the classes which were wrongly classified was mostly the attack scenarios 5 and 6, as seen in table
10. The binary model was not able to identify any of the attacks from scenario 5, and missed most
attacks from scenario 6.
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Figure 8: Confusion matrix LSTM multiclass classification.

Label 0 1 2 3 4 5 6
Falsely classified 0 0 0 0 0 200 000 141213

Table 10: Wrongly classified labels of the binary LSTM classification model.

Table 11 shows the resulting classification report from the models predictions of the test dataset.
A lower precision in the benign class and a lower recall of the malicious class is the result of the
false negatives.

4.3 Comparable ML approaches

As a point of reference, two other ML approaches were chosen to give a comparison to the per-
formance of the LSTM model. The KNN and SVM algorithm was trained and tested on the same
dataset. Due to conflicts in handling the size of the original dataset using sklearn’s library for
SVM and KNN, the models was trained on the 90 000 first samples of the training set, and tested
on the 28 000 first samples of the test set.

4.3.1 k-Nearest Neighbors

Figure 12 displays the confusion matrix over the predictions made by the KNN multiclass classific-
ation model. The model, similarly to the LSTM found well defined thresholds for attack scenarios

Precision Recall f1-score Support
Benign 0.78 1.00 0.88 1 203 401

Malicious 1.00 0.72 0.83 1 200 000
Accuracy 0.86 1 402 401
Macro avg 0.89 0.86 0.86 1 402 401

Weighted avg 0.89 0.86 0.86 1 402 401

Table 11: Classification report of binary LSTM model predictions.
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(a) True and predicted labels of the first 56 scenarios.
(b) True and predicted labels of the first 20 scenarios,
each containing 1000 samples.

(c) True and predicted labels of the first 7 scenarios.
(d) True and predicted labels of the very first scen-
ario, being of attack scenario 6.

Figure 9: Timelines over predictions made in testing of the multiclass classification model. Graphs
are shown from different perspectives number of samples. Inconsistency in displayed number of
samples is due to reducing the number of output samples for clarity of graph.

one through four. Also, similarly to the LSTM, normal behaviour contra attack scenario five and
six, was difficult to distinguish. This was to be expected due to the latter attack scenarios mostly
operating in the same range as benign behaviour.

The performance of the KNN algorithm is shown by its accuracy, precision, recall and f1-score in
table 12. Looking at both normal behaviour and attack scenario 5 and 6, the algorithm does not
reach the performance of the LSTM multiclass classification model. The KNN algorithm is also
impacted by scenario 5 and 6 operating in the same range as normal behaviour and as the two
scenarios are more heavily represented in the area, the performance in identifying normal behaviour
is suboptimal.

4.3.2 Support Vector Machine

Figure 13 displays the resulting confusion matrix created from the predictions made by the SVM
model on the test set. The SVM, similarly to the KNN and LSTM model has difficulty in distin-
guishing normal behaviour from attack scenario 5 and 6. Compared to KNN, the SVM algorithm
is even more influenced by the class distribution. The trained hyperplane is as expected, not able
to find an optimal orientation which separates the labels as they operate within the same area.
The overall performance as shown in table 13, shows that the SVM algorithm performs worse than
both the KNN and LSTM model for this particular environment.
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(a) Predicted and real accuracy over epochs in train-
ing (b) Predicted and real loss over epochs in training

Figure 10: Development in accuracy and loss during training of binary LSTM classification model

Precision Recall f1-score Support
Class 0 0.53 0.55 0.54 4028
Class 1 1.00 1.00 1.00 4000
Class 2 1.00 1.00 1.00 4000
Class 3 1.00 1.00 1.00 4000
Class 4 1.00 1.00 1.00 3972
Class 5 0.62 0.76 0.68 4000
Class 6 0.81 0.59 0.68 4000
Accuracy 0.84 28 000
Macro avg 0.85 0.84 0.84 28 000

Weighted avg 0.85 0.84 0.84 28 000

Table 12: Classification report of KNN multiclass classification

4.4 Improved stateful LSTM classification model

It was from the results of the initial LSTM classification model determined that the model did
not possess the trait of being able to take the context into consideration for when determining the
class of a current sample. From this it was recognized that the model would probably benefit from
being stateful, rather than stateless. This was used as a base to make adjustments to the model
in an attempt to enhance its performance. An additional input layer was included in the model to
accommodate for static batch sizes which is needed.

Multiple iterations of the models were trained and tested to find the optimal topology for the
model. Statefulness was implemented and tested on a combination of every layer, where it was
found that it would be the most efficient on the last layer. Number of units per layer, the batch size
and the dropout frequency was also adjusted iteratively to find the optimal configuration. Table 14
depicts different configurations of the statful LSTM classification models and how they performed
in comparison to each other. Tests were performed on the multiclass classification model, before
also being applied to the binary classification model. The configuration that was ultimately chosen
was a batch-size of 128, with the first LSTM layer containing 64 units, being stateless and having
a dropout of 0.02. The second LSTM layer contains 32 units, is also stateless and has a dropout
of 0.02. The last LSTM layer has 16 units, is statefull and has a dropout of 0.02. The number of
samples are shown as different in the results of the stateful LSTM model due to that the batch-size
must be a factor of the number of samples.
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Figure 11: Confusion matrix LSTM binary classification

Figure 12: Confusion matrix KNN multiclass classification
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Figure 13: Confusion matrix SVM multiclass classification

Precision Recall f1-score Support
Class 0 0.54 0.48 0.51 4028
Class 1 1.00 1.00 1.00 4000
Class 2 1.00 1.00 1.00 4000
Class 3 1.00 1.00 1.00 4000
Class 4 1.00 1.00 1.00 3972
Class 5 0.54 0.92 0.68 4000
Class 6 0.87 0.36 0.51 4000
Accuracy 0.82 28 000
Macro avg 0.85 0.82 0.81 28 000

Weighted avg 0.85 0.82 0.81 28 000

Table 13: Classification report of SVM multiclass classification

Batches LSTM 0 LSTM 1 LSTM 2 Accuracy

Units Stateful Dropout Units Stateful Dropout Units Stateful Dropout

256 32 False 0.01 16 True 0.01 8 True 0.01 0.88
128 64 False 0.01 32 False 0 16 True 0 0.92
64 128 False 0.01 64 False 0 32 True 0 0.67
128 32 False 0.1 64 False 0 32 True 0 0.88
128 32 False 0.1 64 False 0.01 64 True 0 0.91
128 64 True 0.01 32 True 0 16 True 0 0.72
128 64 False 0.01 128 False 0 128 True 0.01 0.91
128 64 False 0.01 64 False 0 16 True 0 0.92
128 64 False 0.02 32 False 0.02 16 True 0.02 0.92

Table 14: Different configurations of the proposed stateful LSTM classification model and the
performed accuracy.
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(a) Predicted and real accuracy over epochs in train-
ing of the stateful LSTM multiclass classification
model

(b) Predicted and real loss over epochs in training of
the stateful LSTM multiclass classification model

Figure 14: Predicted and real, loss and accuracy during training of the stateful LSTM multiclass
classification model

Precision Recall f1-score Support
Class 0 0.75 0.79 0.77 201 401
Class 1 1.00 1.00 1.00 200 000
Class 2 1.00 1.00 1.00 200 000
Class 3 1.00 1.00 1.00 199 967
Class 4 1.00 1.00 1.00 200 000
Class 5 0.80 0.94 0.86 200 000
Class 6 0.92 0.70 0.79 201 000
Accuracy 0.92 1 402 368
Macro avg 0.92 0.92 0.92 1 402 368

Weighted avg 0.92 0.92 0.92 1 402 368

Table 15: Classification report of stateful LSTM multiclass classification.

4.4.1 Stateful LSTM multiclass classification model

Figure 15, portrays the confusion matrix over the improved stateful LSTM multiclass classification
model. The stateful classification model, similarly to the stateless model, also posses some of the
same issues. There is a significant portion of the predicted samples which results in both false
negative and false positive, though not to the same extent as the stateless model. Table 15 states
the precision, recall and f1-score for each of the different classes, as well as the overall accuracy. The
lowest f1-score is of the class portraying normal behaviour, indicating that the model still prioritize
predicting either class five or six in cases where the overlapping feature values causes uncertainty.
The resulting accuracy of the model is 92%, compared to the stateless model which was 86%. In
observing the wrongfully predicted classes it is seen that, the further a scenario is played out, the
more accurately the model is capable of predicting the correct class. Figure ??, depicts a timeline
over the first predicted and actual classes. From these graphs the frequency of wrongly classified
samples can be observed. As seen in figure 16a, the frequency of wrongfully classified classes is
reduced over the period of scenario six and zero. The first half of the first scenario, being scenario
six, has a total of 213 wrong classifications. The second half of the same scenario have a total of
81 wrong predictions, which indicates that the model has taken the previously processed samples
to enhance its context awareness for its future predictions.
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Figure 15: Confusion matrix stateful LSTM multiclass classification

Label 0 1 2 3 4 5 6
Falsely classified 77 923 0 0 0 0 72 771 61 927

Table 16: Wrongly classified labels of the stateful binary LSTM classification model.

4.4.2 Stateful LSTM binary classification model

Looking at the results from testing the stateful LSTM binary classification model it is observed
that it also benefited significantly from implementing statefulness. The model was capable of
achieving a 91% accuracy when making predictions towards the testset as seen in table 17. The
confusion matrix shown in figure 18, display the distribution of falsely and correctly classified
samples. In different to the stateless model, this model does have more false negatives. However
it is now capable of identifying the behaviour of attack scenario five, which it found none of in the
stateless model, and scenario six to a greater extent. The weakness of the model still comes from
its capability in distinguishing class zero, five and six, which can be seen in table 16 which displays
what classes the wrongfully classified samples come from.

Precision Recall f1-score Support
Benign 0.89 0.94 0.91 1 203 401

Malicious 1.00 0.72 0.83 1 199 927
Accuracy 0.91 2 403 328
Macro avg 0.91 0.91 0.91 2 403 328

Weighted avg 0.91 0.91 0.91 2 403 328

Table 17: Classification report of binary LSTM model predictions.
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(a) Timeline over predictions made in testing of the
stateful LSTM multiclass classification model of the
first seven scenarios.

(b) Timeline over predictions made in testing of the
stateful LSTM multiclass classification model of the
first 24 scenarios

Figure 16: Timelines over predictions made of the stateful LSTM multiclass classification model.

(a) Predicted and real accuracy over epochs in train-
ing of the stateful LSTM binary classification model

(b) Predicted and real loss over epochs in training of
the stateful LSTM binary classification model

Figure 17: Predicted and real, loss and accuracy during training of the stateful LSTM binary
classification model

5 Discussion

For the discussion, the performance of the developed LSTM model will be discussed in regards to
strengths and weaknesses and how such a model theoretically would or wouldn’t function in an
operational environment of critical infrastructure. Afterwards the methodology of using simulated
dataset in development of a ML model will be discussed in regards to what challenges, weaknesses
and strengths such an approach has on the environment of critical infrastructure.

5.1 Capabilities of the trained Machine Learning model

5.1.1 Overall performance of classification models

Results provided in chapter 4 were quite accurate to the expectations of the models. The features
of attack scenario one through four was clearly distinguished from both normal behaviour and the
behaviour of each other. Scenario five and six, was in contrast to the aforementioned scenarios
much harder to distinguish. This was expected as they by design would operate stealthily and be
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Figure 18: Confusion matrix stateful LSTM binary classification.

harder to classify. All of the classification models had difficulty in separating label zero, five and
six due to the values of the features overlapping.

The initial stateless LSTM multiclass classification model presented in section 4.2.1, though able to
identify most instances of attack scenario five, it came at the cost of a high amount of false positives.
It is likely that attack scenario five was more frequently predicted than normal behaviour as the
behaviour of the attack scenario operates within the majority of the area of normal behaviour. As
attack scenario states in table 6, the variance of frequency and current is lowered to half of normal
behaviour, while the variance of voltage is lowered by 0.2. Attack scenario five therefore overlaps
with most of the area of normal behaviour, leading to the model mostly predicting that scenario.
Introducing the training data to a greater share of normal behaviour could have improved the false
positive rate, while most likely lowering the accuracy in predicting scenario five. The benefit of
introducing a greater share of normal traffic is that it simulates a real environment more accurately.
Attack scenario six was similarly to attack scenario five, overlapped by both attack scenario five
and normal behaviour. This is thought to be the reason for the high amount of false negatives.

The stateless binary classification model presented in section 4.2.2, though not as impacted by
false negatives, resulted in an overall lower accuracy compared to the stateless LSTM multiclass
classification model. The dataset used for training was in comparison to the multiclass model,
built on a dataset with equally many samples of benign and malicious labels rather than equally
sized attack scenarios. Looking into the labels of the falsely labeled predictions stated in table
10, most of the attacks of scenario six was not detected, while none attacks of scenario five was
detected. This shows the contrary point to the problem which the same scenarios had in the
multiclass model. In comparison to scenario five and six, normal behaviour was over represented,
further overshadowing the scenarios, leading to the model rather predict it as normal behaviour.

The traditional ML techniques, SVM and KNN, performed overall worse than the LSTM model.
This was as expected, as it was known that these methodologies would have difficulty in distin-
guishing between scenario zero, five and six.

The improved stateful LSTM multiclass classification model, presented in section 4.4, performed
much better than the initial model, mostly due to the introduction of statefulness. This gave the
model context of previously processed samples in determining the current class. When determining
the class of the overlapping behaviour of attack scenario five, six and normal behaviour, the model
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now has the capability of taking the variability of the measured values into consideration. From
the results of the stateful model compared to the stateless, it is observed that the model is capable
of using the given context to better classify the scenarios. The stateless model compared to the
traditional ML techniques performed quite similarly, indicating that the stateless model does not
in fact have the trait of context which the stateful model has.

Likewise to its multiclass counterpart, the stateful LSTM binary classification model also performed
better than the stateless model. In different to the stateless model, it was capable of detecting
scenarios of attack scenario five, and classified samples with an overall higher accuracy. The
new iteration of the model did however introduce a higher number of false positives, most likely
due to the new models capability of now considering attack scenario five as a likely class. The
false positives, most likely derives from previously processed attack scenarios of class five and six,
which lead the model to believe that the next benign scenario was part of the attack. Both the
stateful LSTM models, after being improved upon from the initial analysis performed to much
more satisfactory degree.

5.1.2 Capabilities of the LSTM architecture

The hypothesis of using the LSTM architecture for the DNN model, was that it would be able
to distinguish between normal behaviour and attack scenario five and six. This was thought as
previously read features are passed onwards as input to the next prediction. The hope was that
the model would be able to distinguish the labels based on the changes of variety in the previous
measurements. It was therefore never expected that every scenario would be identified correctly,
but that it would be identified with more precision as more samples of the attack was measured.
Looking at the performance of the stateless model, the number of attacks predicted wrong for
the duration of a scenario did not decrease over the period. Further looking at the behavioural
patterns of the multiclass model displayed in figure 9, there does not seem to be any clear patterns
or dependencies in the decision making. The predictions made are mostly influenced by the values
of current features, in contrast to how those features relate to the previous measurements.

When pivoting the model over to being stateful, it was observed that the number of wrongly
predicted classes was higher in the first half of a scenario than in the second half. This indicates
that as the model becomes familiar with the context of the scenario, it is much more capable of
identifying those particular attacks. This trait of the LSTM model could be especially useful in
an ICS environment to detect stealthy attacks. As the attacks attempt to stay hidden by making
as little noise as possible, the stateful LSTM could detect the attacks from small deviations which
occurs over a period of time.

Comparing the LSTM to the traditional techniques, both the stateful and stateless LSTM models
perform better. The stateless LSTM is comparable to both the KNN and SVM model in how well
it performed. This reinforces the idea that the stateless model did not in fact have the awareness
of the current context for when predicting a class. The stateful LSTM is distinguished from other
techniques in that it has a greater accuracy in predicting the overlapping areas of the scenarios.
This stands in contrast to SVM and KNN where a measurement in the overlapping area, would
result in a mostly random prediction. The mostly random decision making is indicated by the near
0.50 f1-score of class 0 in both the SVM and KNN models.

Further iterations, adjustments and tuning of the LSTM model could have resulted in a more
accurate model. It is theorized, that adjustments to the dropout-layers would better help the
model in better learn and maintain knowledge of previous experience. In doing so, it should be
ensured that the resulting model is not overfit. The weakness of the multiclass classification model
is the number of false positives it produces. False negatives, following the use case of this thesis
can be accepted to a greater degree as long as the attack scenario is recognized at some point in
the duration of the attack. The classification model, though now potentially being able to detect
stealthy attacks, something that should be measured in an operational setting is the detection
latency. In a real environment the number of false positives that are produced by the multiclass
model would not be feasible to analyse. Another potential weakness of the developed classification
models is the fact that the models are trained on scenarios with a fixed length. Each scenario is
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defined to be 1000 samples long in the simulated dataset. This might have introduce some bias
into the model in that the model takes the length of the scenario into consideration, which is
not ideal for a detection system which should rather use the values of the features. For future
iterations of the simulated dataset, scenarios could be simulated with a randomized length for a
defined interval.

5.2 Simulating dataset for intrusion detection

5.2.1 Simulating dataset for Critical Infrastructure

For this thesis, a methodology of using a simulated dataset to determine the capabilities of a ML
model in detecting malicious behaviour was explored as an alternative to handling sensitive data.
The methodology was tested in a use case, in an attempt to create a dataset which portrays relev-
ant features of an electrical substation. The use case portrays a scenario where features used are
assumed relevant and attack scenarios has a known and definable behaviour. The methodology
proved to be a simple way of testing simple scenarios. Scenarios and environments can be defined
and implemented quickly, depending on the scope and necessary complexity. By simulating the
environment it is clearly defined what the trained model should be capable of identifying. Weak-
nesses of the model can therefore quickly be identified and understood by looking into what aspects
of the given scenario was not taken into consideration by the classification model. Simulating the
environment also has the advantage of being adaptable and scalable to changes which is wanted
for the environment. Further scenarios, features and changes to existing scenarios and features
can easily be made and adjusted. This is useful for testing the limits of the detection model and
evaluating whether the model is capable of identifying new forms of attacks. In finding out that a
current model does not recognize the new attack, it can simply be trained and evaluated on that
particular scenario.

The challenge of entirely simulating a dataset is to build it accurately to the existing environment.
A deep understanding of the environment and the relation between its features is needed for the
results to be applicable. Large and complex environments are hardly possible to simulate manually.
This goes for the environment of critical infrastructure, which is built on interconnected components
that influence, control and communicate with each other. Defining such an environment, where
features of a large number of components are interdependent, does neither optimize the efficiency
nor result in an accurate resemblance. The dataset simulated as part of the thesis is deemed not
to reflect the operations of the real-world environment as it was based on too few resources. There
is still a lack of data portraying the behaviour of CI, even so its behaviour under different types of
attacks.

Rather than attempting to simulate whole operations, a more feasible approach would be to simu-
late smaller instances of the environment or highly specific scenarios with a limited scope. Use of
simulation can be incorporated together with real world data to train and test detection systems.
Such an approach is especially needed in CI as there are few attack scenarios which can be per-
formed towards the environment to generate data to be used in training and testing. Simulation
can be incorporated to define behaviours of attacks which existing datasets does not portray, or
extract data from unsafe conditions of the environment which otherwise would not possible to
gather without risk.

5.2.2 Simulation in deep learning

As a result of the thesis, it has been recognized that creating a simulated dataset to develop and
train a ML model, especially of deep architecture, does not play into the strengths of the neural
network. Models such as the LSTM developed for this thesis, are especially efficient when working
with a large amount of data. Deep models are capable of identify abstract and complex relations
between features. In using a simulated dataset for a neural network to learn from, the complex
relations are reduced to defined behaviour. In contrast, a trained model derived from the behaviour
of real world data would be able to use the unidentified relations of the features to recognize and
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generalize a model which recognize the behaviour. When simulating features of a dataset the same
abstract relations between the features are lost.

Deep learning also has the capability of extracting knowledge from data which has not been pro-
cessed by feature engineering. Given the deep architecture, the model is capable of learning the
complex structures of the raw data. The simulated dataset as applied in this thesis, assumes feature
engineering has provided relevant features. The developed dataset therefore has a lower number
of features. Compared to gathering real world data, features which are extracted, could be many,
redundant and irrelevant. To best explore the capabilities of any given ML model, it would be a
benefit to observe how it handles the magnitude of data which are found in the real environment.
Generating a simulated dataset with similar number of features would take a lot of effort. In use of
the simulated dataset to train a deep learning model, it leaves some of the potential on the table.
As for the LSTM model which was developed for this thesis, the model is only trained on three
features which means that there are still areas of unexplored potential of the model.

Analysis of the initial models, lead to clear answers to why the model did not perform optimally.
This gave clear answers to what particular scenarios it is capable of finding and finds challenging
to classify. The fact that the dataset is well defined, helps indicate why the model is not capable
of performing the tasks it was created to do. Limitations which were found, were related to
statefulness, model architecture and dataset structure. Knowing this, it becomes significantly
easier to iterate and improve upon the shortcomings. Simulation has proven to be a useful tool
in the development process, rather than an alternative to gather real world data from operational
environment or testbeds. Simulation is an already frequently used technique in pre-processing of
datasets, mostly to fill inn missing data. Expanding upon the idea, simulation could help build
upon existing datasets to train and evaluate shortcomings of current classification models. With
knowledge of the relations of the simulated features, it can be known whether or not the trained
model recognizes that relation. The results of otherwise opaque models can be analysed and
understood in regards to how they behave. From this both the dataset and the ML model can be
adjusted and improved to better accommodate the requirements needed of the environment.
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6 Conclusion

For the conclusion of this thesis the main findings and contribution of this thesis are presented.
First, the research questions which was established in section 1.4 are answered. Later, the answers
are expanded upon when discussing the contribution of the thesis. Thereafter, future work is
presented, suggesting areas of research which could further explore usage of simulation in IDS for
CI.

6.1 Research questions findings

The conclusion of the thesis will first be derived from the research questions which was established
in the methodology.

1. To what degree does a simulated dataset help indicate the efficiency of ML based
IDS in CI?

It was from the performed experiments noted that an understanding in how the training
data was derived gave a fundamental basis for understanding the trained model. Usage
of a simulated dataset built on definable behaviour, gave clear guidelines for how the ML
model was expected to behave. With knowledge of how the model should behave, weaknesses
and missing traits of the model is easily identifiable. Understanding the dataset improved
upon the transparency of the model. The developed LSTM model which was developed
was shown to be transparent in regards to what scenarios it found difficult to classify, and
what conditions would result in it being capable. The transparency of ML models through
explainability benefits use of ML-based IDS in CI by understanding the limitations of the
detection mechanism.

The difficulty in simulating a dataset to portray CI is the complexity of ICS environments. It
is not feasible for simulation alone to portray the complex behaviour and relations between
components. The performance of a ML model which is tested on a fully simulated dataset,
does therefore not fully reflect how it would operate in a real environment.

2. To what degree does use of simulation in developing a dataset benefit the devel-
opment of IDS in CI?

For the same reasons simulation can help indicating the performance of a ML model though
transparency, transparency also enables development through understanding the behaviour of
the model. Understanding why weaknesses of the model occur can help implement functions
to improve the model. The initial LSTM model which was developed for the thesis, was found
not to possess the necessary trait to classify the most challenging scenarios. The knowledge
of how the scenarios was structured, indicated clearly what specific trait was needed to
improve the model. This resulted in a new iteration of a better performing model, capable
of classifying the previously challenging scenarios.

Use of simulation in developing a dataset for CI also has the benefit of not being intrusive.
Collection of data from CI, can be challenging as it is required to maintain operation. Sim-
ulation can be used as an alternative to generate data depicting scenarios which the dataset
should include, without disruption. Simulation can help developing by both testing a current
model on defined scenarios to see how it perform, or include such scenarios in a new model
for a new iteration of a model to be capable of identifying it.

In simulating the environment, it is however harder to gather the same number and the
same complexity of features, than it is from a real environment. This is a disadvantage as a
ML model, would make good use of the additional data for determining suspicious activity.
Working with defined features reduces the potential complexity a ML model would be able
to use for detection. What has made deep learning and AI-based classification models so
useful in the area of IDS, is its ability to generalize complex relations and handle a large
amount of features. It is therefore recognized that use of simulation does not play into all of
the strengths of ML.
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3. Does a ML model built on a simulated dataset fulfill the requirements of, and
benefit detection in the environment of CI?

Given the lack of relevant datasets which portrays the behaviour of ICS in CI, simulation
is an optional method for acquiring relevant data. In comparison to using legacy datasets,
simulation could be developed such that it better reflect relevant attack vectors and expected
behaviour. However a challenge of simulating the environment is still the size and complexity.
The transparency which the simulated dataset brought to the ML model, was shown to be of
benefit to the CI which was simulated. Greater accuracy was achieved in understanding how
to improve upon the developed model. The developed stateful LSTM classification model
proposed, show potential use in ICS environment, due to its capability in detecting attacks
which only affect measured features by small margins. The model is capable of using previous
context in determining the current state of the system, enabling it in detecting abnormalities
which can be measured for over periods of time. This could be useful for detecting stealthy
attacks which in CI, could cause costly damages.

6.2 Contribution

Due to the complexity which an ICS might possess, it is deemed unfeasible and therefore not
beneficial to manually simulate its behaviour. The interconnected components lead to an envir-
onment which is hard to represent by defined scenarios. However, simulation could be a useful
tool in learning how an otherwise opaque model behaves and enhancing its capabilities. Usage of
simulation in combination with relevant dataset to generate otherwise unseen behaviour, can be
both used to evaluate and train the model on that type of behaviour. Given the challenges and
regulations needed to collect and use data from CI, simulation could be a useful method to fulfill
and expand upon a dataset with scenarios otherwise not possible to extract from the operational
environment or testbed. In the case of gathering data of a testbed, simulation could be used to
better adjust the dataset to the actual operational environment by including additional features of
components or protocols. When developing a model for generalizing the behaviour of ICS, noise
and missing data should also be introduced, as simulation in contrast to real operation does not
possess the same types of imperfections as might be seen in operation.

Another reason for why it would be beneficial to include usage of real-world data, is that a simulated
dataset does not play into the strength of deep learning. DNN’s are great at using large amount
of features and data to find complex relations amongst features. When creating a dataset which
is built on simulated features, the complex relations are reduced to defined values. Some of the
benefits in using DNN are thereby lost until a certain level of complexity, as found in real-world
operation, is introduced to the dataset. This can be accomplished by using datasets derived
from real operation, or finding alternative methods of simulation which accurately mimics an
environments behaviour.

From the established use case for the thesis, the resulting ML model became more transparent in
how it operated when built on a dataset which was defined. This makes the results of evaluation
more efficient in that observing what simulated rules was not recognized, clearly indicate what
aspects of the model should be further developed upon. The LSTM model which was developed,
was initially not capable of identifying the most challenging scenarios. It was from the analysis
deducted that the model did not possess the trait of identifying the variety of previous samples in
identifying the current class. This knowledge was used to improve the training model to be capable
of distinguishing the classes more precisely. The new iteration of the model was implemented as
stateful, which made it aware of previously measured values of previous batches, in determining
the current behaviour. The outcome of developing the model on a simulated dataset, built on
defined scenarios, gave a clear understanding of what traits the model was missing and how to
further develop and improve the model. This gives a major advantage compared to working with
traditional datasets, where the capabilities and traits of an opaque model might not necessarily be
extracted from testing.

In CI, use of ML should be used in such a way that the workings of how a model operates, can
be explained. Especially in the case of deep learning, the higher complexity and dimensionality
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makes it hard to understand how the model functions. In classification, this means that why a
particular sample was classified the way it was, is not clear to an observer. The model might
therefore be making predictions based on a false understanding of the environment, without any
way for an observer to see where it went wrong. Though the methodology of a defined simulation
has benefited the explainability, further work is required to enhance the explainability of models
created on operational datasets, and ensure the security of CI.

6.3 Future work

In the area of CI, there is still a lack of relevant datasets which portray the behaviour of ICS. This
has made it challenging relating research of proposed ML models as many of them are trained and
evaluated on mostly irrelevant and outdated datasets. Further work is required to generate and find
solutions to best support development of detection methodologies in the CI environment. These
methodologies and proposed models should also support a high level of explainability to ensure
that results of the evaluated performance are applicable to the real environment. The transparency
of models are especially important for CI to better understand how the model operates and thereby
understand its weaknesses.

Use of simulation is a tool which has the potential of benefiting the development of ML models.
It is therefore needed a greater background of simulation methodologies which are compared to
real operation. It is required a greater understanding of what information is lost when simulating
an environment instead of gathering real-world measurements. Further development of tools and
programs to virtually simulate these complex environments is also needed to accurately mimic the
real systems found in ICS.
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A Appendix

A.1 Acronyms and abbreviations

Acronyms

AI Artificial Intelligence. 8, 13, 17, 44

AIDS Anomaly-based Intrusion Detection System. v, 4, 18

ANN Artificial Neural Network. 1, 14, 22

APT Advanced Persistent Threat. 10–12

C&C Command and Control. 11

CI Critical Infrastructure. ii, vi, 1–4, 7, 8, 10, 17, 20–23, 25, 29, 42, 44–46

CPS Cyber Physical System. 3

DDoS Distributed Denial of Service. 11

DL Deep Learning. 19

DLL Dynamic Link Library. 5

DMZ Demilitarized Zone. 8

DNN Deep Neural Network. 4, 5, 14, 17, 41, 45

DoS Denial of Service. viii, 3, 12, 23

FN False Negative. 28

FNN Feed-forward Neural Network. vii, 14, 15

FP False Positive. 28

HIDS Host-based Intrusion Detection System. vi, 4, 5, 18, 19

HMI Human Machine Interface. 8

ICS Industrial Control System. i, ii, vii, 1, 3, 5, 7–10, 12, 23–25, 29, 41, 44–46

IDS Intrusion Detection System. i, ii, v, vi, 1–7, 16–20, 25, 27, 29, 44

IED Intelligent Electronic Device. 8

IIoT Industrial Internet of Things. 4, 10

IoT Internet of Things. v, 9, 11

IT Information Technology. 7, 10

KNN k-Nearest Neighbors. vi–viii, 13, 32–35, 40, 41, 66

LSTM Long Short-Term Memory. i, ii, vi–viii, 1, 2, 6, 15, 16, 20, 25, 27, 29–45, 57, 59

MITM Man-in-the-Middle. 10, 12, 23

ML Machine Learning. ii, vi, 1–4, 7, 13, 16, 17, 19–23, 25, 27, 29, 30, 32, 39–46
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NIDS Network-based Intrusion Detection System. v, 5, 18, 19

OT Operational Technology. 10, 12

PLC Programmable Logic Controller. 8

PNN Probabilistic Neural Network. 3

RNN Recurrent Neural Network. v, vii, 14–16, 25

SCADA Supervisory Control and Data Acquisition. 3, 5, 8, 12

SIDS Signature-based Intrusion Detection System. v, 4, 18

SIS Safety Instrumentation Systems. 8

SPA Stateful Protocol Analysis. v, 18

SVM Support Vector Machine. vi–viii, 4, 14, 32, 33, 36, 40, 41, 65

TN True Negative. 28

TP True Positive. 28

TPR True Positive Rate. 28

XAI Explainable artificial intelligence. v, 7, 17
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A.2 Code

A.2.1 Simulating muliclass dataset

1 import numpy as np

2 import pandas as pd

3 import random

4

5 def getMeasure(prev , avg , var):

6 if prev < (avg + var) and prev > (avg - var):

7 if random.randrange (0,10) > 9:

8 return avg

9 else:

10 return round(avg + random.uniform(-var , var), 3)

11 else:

12 return avg

13

14 def getSamples(samples , man_freq_Avg , man_freq_var , man_volt_Avg , man_volt_var ,

man_curr_Avg , man_curr_var , is_attack , label):

15 freq_Avg = 50.0

16 freq_var = 0.02

17

18 volt_Avg = 400.0

19 volt_var = 2.0

20

21 curr_Avg = 150.0

22 curr_var = 1.0

23

24 malarr = [[ getMeasure (50.0 , freq_Avg , freq_var), getMeasure (400, volt_Avg ,

volt_var), getMeasure (150, curr_Avg , curr_var) ,0 ,0]]

25 for i in range(samples):

26 newArr = [[ getMeasure(malarr[i][0], man_freq_Avg , man_freq_var), getMeasure(

malarr[i][1], man_volt_Avg , man_volt_var), getMeasure(malarr[i][2],

man_curr_Avg , man_curr_var), is_attack , label]]

27 malarr = np.append(malarr , newArr , axis =0)

28 return malarr

29

30 nr_attacks = 6

31

32 meas_val = [[50.0 , 0.02, 400.0 , 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

33 [50, 0.05, 200, 50, 100, 10, 1, 1], #high impact DoS

34 [50, 0.02, 100, 10, 150, 1, 1, 2], #High impact process manipulation

35 [50.02 , 0.01, 100, 10, 180, 1, 1, 3], #Medium impact process

manipulation

36 [50.0, 0.02, 500, 20, 200, 5, 1, 4], #Medium impact replay attack

37 [50.0, 0.01, 400, 1, 150, 0.8, 1, 5], #Low impact stealth attack

38 [50.0, 0.03, 400, 3, 150, 1.5, 1, 6]] #Low impact direct damage attack

39

40

41 samples_per_scenario = 1000

42 train_nr_iterations = 1000

43 test_nr_iterations = 200

44

45

46 '''train '''
47 train = getSamples(samples_per_scenario , meas_val [0][0] , meas_val [0][1] , meas_val

[0][2] , meas_val [0][3] , meas_val [0][4] , meas_val [0][5] , meas_val [0][6] ,

meas_val [0][7])

48 for i in range(train_nr_iterations):

49 np.random.shuffle(meas_val)

50 for j in range(nr_attacks + 1):

51 train = np.append(train , getSamples(samples_per_scenario , meas_val[j][0],

meas_val[j][1], meas_val[j][2], meas_val[j][3], meas_val[j][4], meas_val[j][5],

meas_val[j][6], meas_val[j][7]), axis =0)

52

53 '''test '''
54 test = getSamples(samples_per_scenario , meas_val [0][0] , meas_val [0][1] , meas_val

[0][2] , meas_val [0][3] , meas_val [0][4] , meas_val [0][5] , meas_val [0][6] ,

meas_val [0][7])

55 for i in range(test_nr_iterations):

56 np.random.shuffle(meas_val)

57 for j in range(nr_attacks + 1):
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58 test = np.append(test , getSamples(samples_per_scenario , meas_val[j][0],

meas_val[j][1], meas_val[j][2], meas_val[j][3], meas_val[j][4], meas_val[j][5],

meas_val[j][6], meas_val[j][7]), axis =0)

59

60 trainSet = pd.DataFrame(data=train[0:, 0:], columns =['frequency ', 'volt', 'current '
,'is_attack ', 'label '])

61 testSet = pd.DataFrame(data=test[0:, 0:], columns =['frequency ', 'volt', 'current ',
'is_attack ', 'label '])

62

63 trainSet.to_csv('train_simulated.csv')
64 testSet.to_csv('test_simulated.csv')
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A.2.2 Simulating binary dataset

1 import numpy as np

2 import pandas as pd

3 import random

4

5 def getMeasure(prev , avg , var):

6 if prev < (avg + var) and prev > (avg - var):

7 if random.randrange (0,10) > 9:

8 return avg

9 else:

10 return round(avg + random.uniform(-var , var), 3)

11 else:

12 return avg

13

14 def getSamples(samples , man_freq_Avg , man_freq_var , man_volt_Avg , man_volt_var ,

man_curr_Avg , man_curr_var , is_attack , label):

15 freq_Avg = 50.0

16 freq_var = 0.02

17

18 volt_Avg = 400.0

19 volt_var = 2.0

20

21 curr_Avg = 150.0

22 curr_var = 1.0

23

24 malarr = [[ getMeasure (50.0 , freq_Avg , freq_var), getMeasure (400, volt_Avg ,

volt_var), getMeasure (150, curr_Avg , curr_var) ,0 ,0]]

25 for i in range(samples):

26 newArr = [[ getMeasure(malarr[i][0], man_freq_Avg , man_freq_var), getMeasure(

malarr[i][1], man_volt_Avg , man_volt_var), getMeasure(malarr[i][2],

man_curr_Avg , man_curr_var), is_attack , label]]

27 malarr = np.append(malarr , newArr , axis =0)

28 return malarr

29

30 nr_attacks = 6

31

32 meas_val = [[50.0 , 0.02, 400.0 , 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

33 [50.0, 0.02, 400.0, 2.0, 150.0 , 1.0, 0, 0,], #normal behaviour

34 [50.0, 0.02, 400.0, 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

35 [50.0, 0.02, 400.0, 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

36 [50.0, 0.02, 400.0, 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

37 [50.0, 0.02, 400.0, 2.0, 150.0, 1.0, 0, 0,], #normal behaviour

38 [50, 0.05, 200, 50, 100, 10, 1, 1], #high impact DoS

39 [50, 0.02, 100, 10, 150, 1, 1, 2], #High impact process manipulation

40 [50.02 , 0.01, 100, 10, 180, 1, 1, 3], #Medium impact process

manipulation

41 [50.0, 0.02, 500, 20, 200, 5, 1, 4], #Medium impact replay attack

42 [50.0, 0.01, 400, 1, 150, 0.8, 1, 5], #Low impact stealth attack

43 [50.0, 0.03, 400, 3, 150, 1.5, 1, 6]] #Low impact direct damage attack

44

45

46 samples_per_scenario = 1000

47 train_nr_iterations = 1000

48 test_nr_iterations = 200

49

50 print(range(len(meas_val)))

51

52 '''train '''
53 train = getSamples(samples_per_scenario , meas_val [0][0] , meas_val [0][1] , meas_val

[0][2] , meas_val [0][3] , meas_val [0][4] , meas_val [0][5] , meas_val [0][6] ,

meas_val [0][7])

54 for i in range(train_nr_iterations):

55 np.random.shuffle(meas_val)

56 for j in range(len(meas_val)):

57 train = np.append(train , getSamples(samples_per_scenario , meas_val[j][0],

meas_val[j][1], meas_val[j][2], meas_val[j][3], meas_val[j][4], meas_val[j][5],

meas_val[j][6], meas_val[j][7]), axis =0)

58

59 '''test '''
60 test = getSamples(samples_per_scenario , meas_val [0][0] , meas_val [0][1] , meas_val

[0][2] , meas_val [0][3] , meas_val [0][4] , meas_val [0][5] , meas_val [0][6] ,

meas_val [0][7])
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61 for i in range(test_nr_iterations):

62 np.random.shuffle(meas_val)

63 for j in range(len(meas_val)):

64 test = np.append(test , getSamples(samples_per_scenario , meas_val[j][0],

meas_val[j][1], meas_val[j][2], meas_val[j][3], meas_val[j][4], meas_val[j][5],

meas_val[j][6], meas_val[j][7]), axis =0)

65

66 trainSet = pd.DataFrame(data=train[0:, 0:], columns =['frequency ', 'volt', 'current '
,'is_attack ', 'label '])

67 testSet = pd.DataFrame(data=test[0:, 0:], columns =['frequency ', 'volt', 'current ',
'is_attack ', 'label '])

68

69 trainSet.to_csv('train_simulated_binary.csv')
70 testSet.to_csv('test_simulated_binary.csv')
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A.2.3 Train Multiclass LSTM model

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from keras.models import Sequential

5 from keras.layers import Dense , LSTM

6 import tensorflow as tf

7 import pandas as pd

8 from sklearn import preprocessing

9 from sklearn.preprocessing import LabelEncoder

10 from keras.utils import to_categorical

11 from tensorflow.keras.models import Sequential

12 from tensorflow.keras.layers import Dense , Dropout , InputLayer

13

14 n_features = 3

15

16 def get_Model(data , batch_size):

17 timesteps = data.shape [1]

18 features = data.shape [2]

19

20 model = Sequential ()

21 model.add(InputLayer(batch_input_shape =( batch_size , timesteps , features)))

22 model.add(LSTM(64, return_sequences=True , stateful=False))

23 model.add(Dropout (0.02))

24 model.add(LSTM(32, return_sequences=True , stateful=False))

25 model.add(Dropout (0.02))

26 model.add(LSTM(16, return_sequences=False , stateful=True))

27 model.add(Dropout (0.02))

28 model.add(Dense(7, activation='softmax '))
29 return model

30

31 def generate_seq(data):

32 seqs =[]

33 for i in range(0, len(data) - seq_length + 1, seq_overlap):

34 seqs.append(data.iloc[i:i+seq_length , :])

35 return seqs

36

37 def pad_sequences(seqs):

38 padded_seqs = []

39 for seq in seqs:

40 if len(seq) < seq_length:

41 padded_seq = np.concatenate ((seq , np.zeros((seq_length -len(seq), len(df

.columns)))), axis =0)

42 else:

43 padded_seq = seq

44 padded_seqs.append(padded_seq)

45 return np.array(padded_seqs)

46

47

48 df_train = pd.read_csv("train_simulated.csv", index_col =0)

49 df_test = pd.read_csv("test_simulated.csv", index_col =0)

50 print(df_train.head())

51

52 X_train = df_train [['frequency ', 'volt', 'current ']]
53 Y_train = df_train['label ']
54

55 X_test = df_test [['frequency ', 'volt', 'current ']]
56 Y_test = df_test['label ']
57

58 min_max_scaler = preprocessing.MinMaxScaler ()

59 X_train = pd.DataFrame(min_max_scaler.fit_transform(X_train.values), columns=

X_train.columns)

60 X_test = pd.DataFrame(min_max_scaler.fit_transform(X_test.values), columns=X_test.

columns)

61

62 X_train = X_train.to_numpy ()

63 X_test = X_test.to_numpy ()

64

65 X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape [1])

66 X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape [1])

67

68 print(np.unique(Y_train , axis =0))
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69

70 encoder = LabelEncoder ()

71 Y_train_fit = encoder.fit_transform(Y_train)

72 Y_test_fit = encoder.fit_transform(Y_train)

73 encoder.fit(Y_train_fit)

74 encoder.fit(Y_test_fit)

75 Y_train_enc = encoder.transform(Y_train)

76 Y_test_enc = encoder.transform(Y_test)

77 Y_train = to_categorical(Y_train_enc , num_classes =7)

78 Y_test = to_categorical(Y_test_enc , num_classes =7)

79

80 print(X_train.shape , Y_train.shape)

81

82 batch_size = 128

83 epochs = 25

84

85 model = get_Model(X_train , batch_size)

86 model.compile(loss='categorical_crossentropy ', optimizer='adam', metrics =['accuracy
'])

87

88 num_samples = len(X_train)

89 print(num_samples)

90 if num_samples % batch_size != 0:

91 num_samples = (num_samples // batch_size) * batch_size

92 X_train = X_train [: num_samples]

93 Y_train = Y_train [: num_samples]

94

95 history = model.fit(X_train , Y_train , batch_size=batch_size , epochs=epochs , shuffle

=False , validation_split =0.2)

96 print(model.summary ())

97

98 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

99 from sklearn.metrics import confusion_matrix

100 from sklearn.metrics import multilabel_confusion_matrix

101

102 num_samples = len(X_test)

103 print(num_samples)

104 if num_samples % batch_size != 0:

105 num_samples = (num_samples // batch_size) * batch_size

106 X_test = X_test [: num_samples]

107 Y_test = Y_test [: num_samples]

108

109 results = model.evaluate(X_test , Y_test , batch_size=batch_size)

110 print(results)

111 print("Accuracy: %.2f%%" % (results [1]*100))

112

113 model.save('LSTM_model.keras ')
114

115 plt.figure (1)

116 plt.plot(history.history['loss'])
117 plt.plot(history.history['val_loss '])
118 plt.title('Predicted and real loss value ')
119 plt.xlabel('Epoch ')
120 plt.ylabel('Loss persentage ')
121 plt.legend (['Predict_loss ','Real_loss '])
122 plt.show()

123 plt.savefig("loss_plt.png")

124

125 plt.figure (2)

126 plt.plot(history.history['accuracy '])
127 plt.plot(history.history['val_accuracy '])
128 plt.title('prediction and real accuracy ')
129 plt.xlabel('Epoch ')
130 plt.ylabel('Accuracy persentage ')
131 plt.legend (['Predicted_Accuracy ', 'Real_Accuracy '])
132 plt.show()

133 plt.savefig("Acc_plt.png")
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A.2.4 Train Binary LSTM model

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from keras.models import Sequential

4 from keras.layers import Dense , LSTM

5 import tensorflow as tf

6 import pandas as pd

7 from sklearn import preprocessing

8 from sklearn.preprocessing import LabelEncoder

9 from keras.utils import to_categorical

10 from tensorflow.keras.models import Sequential

11 from tensorflow.keras.layers import Dense , Dropout , InputLayer

12

13 def get_Model(data , batch_size):

14 timesteps = data.shape [1]

15 features = data.shape [2]

16

17 model = Sequential ()

18 model.add(InputLayer(batch_input_shape =( batch_size , timesteps , features)))

19 model.add(LSTM(64, return_sequences=True , stateful=False))

20 model.add(Dropout (0.02))

21 model.add(LSTM(32, return_sequences=True , stateful=False))

22 model.add(Dropout (0.02))

23 model.add(LSTM(16, return_sequences=False , stateful=True))

24 model.add(Dropout (0.02))

25 model.add(Dense(2, activation='sigmoid '))
26 return model

27

28 df_train = pd.read_csv("train_simulated_binary.csv", index_col =0)

29 df_test = pd.read_csv("test_simulated_binary.csv", index_col =0)

30 print(df_train.head())

31

32 X_train = df_train [['frequency ', 'volt', 'current ']]
33 Y_train = df_train['is_attack ']
34

35 X_test = df_test [['frequency ', 'volt', 'current ']]
36 Y_test = df_test['is_attack ']
37

38 min_max_scaler = preprocessing.MinMaxScaler ()

39 X_train = pd.DataFrame(min_max_scaler.fit_transform(X_train.values), columns=

X_train.columns)

40 X_test = pd.DataFrame(min_max_scaler.fit_transform(X_test.values), columns=X_test.

columns)

41

42 X_train = X_train.to_numpy ()

43 X_test = X_test.to_numpy ()

44

45 X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape [1])

46 X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape [1])

47

48 print(np.unique(Y_train , axis =0))

49

50 encoder = LabelEncoder ()

51 Y_train_fit = encoder.fit_transform(Y_train)

52 Y_test_fit = encoder.fit_transform(Y_train)

53 encoder.fit(Y_train_fit)

54 encoder.fit(Y_test_fit)

55 Y_train_enc = encoder.transform(Y_train)

56 Y_test_enc = encoder.transform(Y_test)

57 Y_train = to_categorical(Y_train_enc , num_classes =2)

58 Y_test = to_categorical(Y_test_enc , num_classes =2)

59

60 print(X_train.shape , Y_train.shape)

61

62 batch_size = 128

63 epochs = 25

64

65 model = get_Model(X_train , batch_size)

66 model.compile(loss='binary_crossentropy ', optimizer='adam', metrics =['accuracy '])
67

68

69 #validation split 0.2
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70 X_val = X_train[round(len(X_train)*0.8):]

71 Y_val = Y_train[round(len(X_train)*0.8):]

72 X_train = X_train [:round(len(X_train)*0.8)]

73 Y_train = Y_train [:len(X_train)]

74

75 num_samples = len(X_train)

76 if num_samples % batch_size != 0:

77 num_samples = (num_samples // batch_size) * batch_size

78 X_train = X_train [: num_samples]

79 Y_train = Y_train [: num_samples]

80 print(len(X_train))

81

82 num_samples = len(X_val)

83 if num_samples % batch_size != 0:

84 num_samples = (num_samples // batch_size) * batch_size

85 X_val = X_val [: num_samples]

86 Y_val = Y_val [: num_samples]

87 print("X:", len(X_val), "- Y:", len(Y_val))

88

89 history = model.fit(X_train , Y_train , batch_size=batch_size , epochs=epochs , shuffle

=False , validation_data =(X_val , Y_val))

90 print(model.summary ())

91

92 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

93 from sklearn.metrics import confusion_matrix

94 from sklearn.metrics import multilabel_confusion_matrix

95

96 num_samples = len(X_test)

97 print(num_samples)

98 if num_samples % batch_size != 0:

99 num_samples = (num_samples // batch_size) * batch_size

100 X_test = X_test [: num_samples]

101 Y_test = Y_test [: num_samples]

102

103 results = model.evaluate(X_test , Y_test , batch_size=batch_size)

104 print(results)

105 print("Accuracy: %.2f%%" % (results [1]*100))

106

107 model.save('LSTM_binary.keras')
108

109 plt.figure (1)

110 plt.plot(history.history['loss'])
111 plt.plot(history.history['val_loss '])
112 plt.title('Predicted loss and real value loss LSTM binary classification ')
113 plt.xlabel('Epoch ')
114 plt.ylabel('Loss persentage ')
115 plt.legend (['Predict_loss ','Real_loss '])
116 plt.show()

117 plt.savefig("loss_plt_binary.png")

118

119 plt.figure (2)

120 plt.plot(history.history['accuracy '])
121 plt.plot(history.history['val_accuracy '])
122 plt.title('prediction and real accuracy LSTM binary classification ')
123 plt.xlabel('Epoch ')
124 plt.ylabel('Accuracy persentage ')
125 plt.legend (['Predicted_Accuracy ', 'Real_Accuracy '])
126 plt.show()

127 plt.savefig("Acc_plt_binary.png")
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A.2.5 Evaluate multiclass model

1

2 import sys

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from keras.models import Sequential

6 from keras.layers import Dense , LSTM

7 import tensorflow as tf

8 import pandas as pd

9 from sklearn import preprocessing

10 from sklearn.preprocessing import LabelEncoder

11 from keras.utils import to_categorical

12 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

13 from sklearn.metrics import confusion_matrix

14 from sklearn.metrics import multilabel_confusion_matrix

15 from sklearn.metrics import roc_curve , auc

16

17

18 trained_model = sys.argv [1]

19 print("model: ", trained_model)

20 test_csv = sys.argv [2]

21 print("test -set: ", test_csv)

22

23 model = tf.keras.models.load_model(trained_model)

24 df_test = pd.read_csv(test_csv , index_col =0)

25 print(model.summary ())

26

27 X_test = df_test [['frequency ', 'volt', 'current ']]
28 Y_test = df_test['label ']
29

30 min_max_scaler = preprocessing.MinMaxScaler ()

31 X_test = pd.DataFrame(min_max_scaler.fit_transform(X_test.values), columns=X_test.

columns)

32

33 X_test = X_test.to_numpy ()

34

35 X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape [1])

36

37 encoder = LabelEncoder ()

38 Y_test_fit = encoder.fit_transform(Y_test)

39 encoder.fit(Y_test_fit)

40 Y_test_enc = encoder.transform(Y_test)

41 Y_test = to_categorical(Y_test_enc , num_classes =7)

42

43 batch_size = 128

44 num_samples = len(X_test)

45 if num_samples % batch_size != 0:

46 num_samples = (num_samples // batch_size) * batch_size

47 X_test = X_test [: num_samples]

48 Y_test = Y_test [: num_samples]

49

50

51 y_pred = model.predict(X_test , batch_size=batch_size)

52 print("ypred: ", y_pred.argmax(axis =1))

53 print("yActual: ", Y_test.argmax(axis =1))

54 #y_pred = np.argmax(y_pred , axis =1)

55 #print(" y_pred: ", y_pred)

56 conf_mat = confusion_matrix(Y_test.argmax(axis =1), y_pred.argmax(axis =1))

57 print(conf_mat)

58 #tn , fp , fn, tp = conf_mat.ravel()

59

60 import matplotlib.pyplot as plt

61 import seaborn as sns

62

63 plt.figure(1, figsize =(8, 6))

64 sns.heatmap(conf_mat , annot=True , cmap='Blues ', fmt='g', xticklabels =['0', '1', '2'
, '3', '4', '5', '6'], yticklabels =['0', '1', '2', '3', '4', '5', '6'])

65 plt.xlabel('Predicted labels ')
66 plt.ylabel('True labels ')
67 plt.title('Confusion Matrix ')
68 plt.show()
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69 plt.savefig("cm_plot.png")

70

71 from sklearn.metrics import classification_report

72 from sklearn.metrics import precision_recall_fscore_support

73

74 target_names =['class 0', 'class 1', 'class 2', 'class 3', 'class 4', 'class 5', '
class 6']

75 print(classification_report(Y_test.argmax(axis =1), y_pred.argmax(axis =1),

target_names=target_names))

76 #specificity = recall_score(Y_test.argmax(axis =1), y_pred.argmax(axis =1), pos_label

=0, average='weighted ')
77

78 labels =['0','1','2','3','4','5','6']
79 res =[]

80 for l in labels:

81 prec ,recall ,_,_ = precision_recall_fscore_support(np.array(Y_test.argmax(axis =1))

==l, np.array(y_pred.argmax(axis =1))==l, pos_label=True ,average=None)

82 res.append ([l, recall [0]])

83

84 pd.DataFrame(res , columns =['class ','specificity '])
85 print(res)

86

87 plt.figure (2)

88 plt.plot(y_pred [0:28000:10]. argmax(axis =1))

89 plt.plot(Y_test [0:28000:10]. argmax(axis =1))

90 plt.title('Predictions made over time')
91 plt.xlabel('samples ')
92 plt.ylabel('labels ')
93 plt.legend (['Predicted label ', 'True label'])
94 plt.show()

95 plt.savefig("predTime.png")

96

97 yPred = y_pred.argmax(axis =1)

98 yTrue = Y_test.argmax(axis =1)

99

100 j = 0

101 wrng_1 = 0

102 for i in yPred [0:500]:

103 if i != yTrue[j]:

104 wrng_1 += 1

105 j += 1

106 wrng_2 = 0

107 for i in yPred [500:1000]:

108 if i != yTrue[j]:

109 wrng_2 += 1

110 j += 1

111

112 print("1/2: ", wrng_1 , "- 2/2: ", wrng_2)

62



A.2.6 Evaluate binary model

1

2 import sys

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from keras.models import Sequential

6 from keras.layers import Dense , LSTM

7 import tensorflow as tf

8 import pandas as pd

9 from sklearn import preprocessing

10 from sklearn.preprocessing import LabelEncoder

11 from keras.utils import to_categorical

12 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

13 from sklearn.metrics import confusion_matrix

14 from sklearn.metrics import multilabel_confusion_matrix

15 from sklearn.metrics import roc_curve , auc

16

17

18 trained_model = sys.argv [1]

19 print("model: ", trained_model)

20 test_csv = sys.argv [2]

21 print("test -set: ", test_csv)

22

23 model = tf.keras.models.load_model(trained_model)

24 df_test = pd.read_csv(test_csv , index_col =0)

25 print(model.summary ())

26

27 X_test = df_test [['frequency ', 'volt', 'current ']]
28 Y_test = df_test['is_attack ']
29 print(df_test['label '][0])
30

31 min_max_scaler = preprocessing.MinMaxScaler ()

32 X_test = pd.DataFrame(min_max_scaler.fit_transform(X_test.values), columns=X_test.

columns)

33

34 X_test = X_test.to_numpy ()

35

36 X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape [1])

37

38 encoder = LabelEncoder ()

39 Y_test_fit = encoder.fit_transform(Y_test)

40 encoder.fit(Y_test_fit)

41 Y_test_enc = encoder.transform(Y_test)

42 Y_test = to_categorical(Y_test_enc , num_classes =2)

43

44 batch_size = 128

45 num_samples = len(X_test)

46 if num_samples % batch_size != 0:

47 num_samples = (num_samples // batch_size) * batch_size

48 X_test = X_test [: num_samples]

49 Y_test = Y_test [: num_samples]

50

51 y_pred = model.predict(X_test , batch_size=batch_size)

52 print("ypred: ", y_pred.argmax(axis =1))

53 print("yActual: ", Y_test.argmax(axis =1))

54 conf_mat = confusion_matrix(Y_test.argmax(axis =1), y_pred.argmax(axis =1))

55 print(conf_mat)

56

57 import matplotlib.pyplot as plt

58 import seaborn as sns

59

60 fn_labels = [0, 0, 0, 0, 0, 0, 0]

61 j = 0

62 yPred = y_pred.argmax(axis =1)

63 yTest = Y_test.argmax(axis =1)

64

65 for i in yPred:

66 if i != yTest[j]:

67 fn_labels[int(df_test['label '][j])] += 1

68 j += 1

69
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70 print(fn_labels)

71 plt.figure(1, figsize =(8, 6))

72 sns.heatmap(conf_mat , annot=True , cmap='Blues ', fmt='g', xticklabels =['0', '1'],
yticklabels =['0', '1'])

73 plt.xlabel('Predicted label ')
74 plt.ylabel('True label')
75 plt.title('Confusion Matrix ')
76 plt.show()

77 plt.savefig("cm_plot_bin.png")

78

79 from sklearn.metrics import classification_report

80 from sklearn.metrics import precision_recall_fscore_support

81

82 target_names =['benign ', 'malicious ']
83 print(classification_report(Y_test.argmax(axis =1), y_pred.argmax(axis =1),

target_names=target_names))

84 #specificity = recall_score(Y_test.argmax(axis =1), y_pred.argmax(axis =1), pos_label

=0, average='weighted ')
85

86 labels =['0','1']
87 res =[]

88 for l in labels:

89 prec ,recall ,_,_ = precision_recall_fscore_support(np.array(Y_test.argmax(axis =1))

==l, np.array(y_pred.argmax(axis =1))==l, pos_label=True ,average=None)

90 res.append ([l, recall [0]])

91

92 pd.DataFrame(res , columns =['class ','specificity '])
93 print(res)

94

95 plt.figure (2)

96 plt.plot(y_pred [0:56000:10]. argmax(axis =1))

97 plt.plot(Y_test [0:56000:10]. argmax(axis =1))

98 plt.title('Predictions made over time')
99 plt.xlabel('samples ')

100 plt.ylabel('labels ')
101 plt.legend (['Predicted label ', 'True label'])
102 plt.show()

103 plt.savefig("predTime_bin.png")
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A.2.7 Train and evaluate SVM model

1 import sys

2 from sklearn import svm

3 import matplotlib.pyplot as plt

4 from sklearn.preprocessing import scale

5 import pandas as pd

6 import numpy as np

7 from sklearn import preprocessing

8 from joblib import dump , load

9 from sklearn.preprocessing import LabelEncoder

10 from keras.utils import to_categorical

11 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

12 import matplotlib.pyplot as plt

13 import seaborn as sns

14 from sklearn.metrics import confusion_matrix

15

16

17 svm_file = sys.argv [1]

18

19 if svm_file == "":

20 df_train = pd.read_csv("train_simulated.csv", index_col=0, nrows =90000)

21 print(df_train.head())

22

23 X_train = df_train [['frequency ', 'volt', 'current ']]
24 Y_train = df_train['label ']
25

26 print("scaled")

27 X_train = scale(X_train)

28

29 clf = svm.SVC(random_state =42)

30 clf.fit(X_train , Y_train)

31 dump(clf , 'svm.model')
32

33 else:

34 clf = load('svm.model')
35

36

37 df_test = pd.read_csv("test_simulated.csv", index_col=0, nrows =28000)

38 X_test = df_test [['frequency ', 'volt', 'current ']]
39 Y_test = df_test['label ']
40 X_test = scale(X_test)

41

42 print(X_test.shape)

43 print(X_test)

44 pred = clf.predict(X_test)

45 Y_test = Y_test.to_numpy ()

46

47 conf_mat = confusion_matrix(Y_test , pred)

48 print(conf_mat)

49

50 plt.figure(figsize =(8, 6))

51 sns.heatmap(conf_mat , annot=True , cmap='Blues ', fmt='g', xticklabels =['0', '1', '2'
, '3', '4', '5', '6'], yticklabels =['0', '1', '2', '3', '4', '5', '6'])

52 plt.xlabel('Predicted labels ')
53 plt.ylabel('True labels ')
54 plt.title('Confusion Matrix SVM')
55 plt.show()

56 plt.savefig("cm_svm.png")

57

58 from sklearn.metrics import classification_report

59

60 target_names =['class 0', 'class 1', 'class 2', 'class 3', 'class 4', 'class 5', '
class 6']

61 print(classification_report(Y_test , pred , target_names=target_names))
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A.2.8 Train and evaluate KNN model

1 import sys

2 from sklearn import svm

3 import matplotlib.pyplot as plt

4 from sklearn.preprocessing import scale

5 import pandas as pd

6 import numpy as np

7 from sklearn import preprocessing

8 from joblib import dump , load

9 from sklearn.preprocessing import LabelEncoder

10 from keras.utils import to_categorical

11 from sklearn.metrics import (precision_score , recall_score , f1_score ,

accuracy_score , mean_squared_error , mean_absolute_error)

12 from sklearn.preprocessing import Normalizer

13 from sklearn.neighbors import KNeighborsClassifier

14 import matplotlib.pyplot as plt

15 import seaborn as sns

16 from sklearn.metrics import confusion_matrix

17

18

19 knn_file = sys.argv [1]

20

21 if knn_file == "":

22 df_train = pd.read_csv("train_simulated.csv", index_col=0, nrows =90000)

23 print(df_train.head())

24

25 X_train = df_train [['frequency ', 'volt', 'current ']]
26 Y_train = df_train['label ']
27

28 transformer = Normalizer ().fit(X_train)

29 X_train = transformer.transform(X_train)

30

31 print(Y_train.to_numpy ())

32 knn = KNeighborsClassifier(n_neighbors =5)

33 knn.fit(X_train , Y_train.to_numpy ())

34 dump(knn , 'knn.model')
35 else:

36 knn = load("knn.model")

37

38 df_test = pd.read_csv("test_simulated.csv", index_col=0, nrows =28000)

39 X_test = df_test [['frequency ', 'volt', 'current ']]
40 Y_test = df_test['label ']
41

42 transformer = Normalizer ().fit(X_test)

43 X_test = transformer.transform(X_test)

44

45 pred = knn.predict(X_test)

46 print(pred)

47

48 conf_mat = confusion_matrix(Y_test , pred)

49 print(conf_mat)

50

51 plt.figure(figsize =(8, 6))

52 sns.heatmap(conf_mat , annot=True , cmap='Blues ', fmt='g', xticklabels =['0', '1', '2'
, '3', '4', '5', '6'], yticklabels =['0', '1', '2', '3', '4', '5', '6'])

53 plt.xlabel('Predicted labels ')
54 plt.ylabel('True labels ')
55 plt.title('Confusion Matrix KNN')
56 plt.show()

57 plt.savefig("cm_knn.png")

58

59 from sklearn.metrics import classification_report

60 from sklearn.metrics import precision_recall_fscore_support

61

62 target_names =['class 0', 'class 1', 'class 2', 'class 3', 'class 4', 'class 5', '
class 6']

63 print(classification_report(Y_test , pred , target_names=target_names))
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