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Preface

This document presents the work of a Master�s thesis on computer vision for salmon re-identification.

It is part of the MTTK — Cybernetics and Robotics study program at the Department of Engi-

neering Cybernetics at the Norwegian University of Science and Technology (NTNU). The work

was carried out during the spring semester of 2024 in collaboration with Sintef Ocean. Supervi-

sion was performed by Annette Stahl, Rudolf Mester, and Espen Berntzen Høgstedt from NTNU

and Christian Schellewald from Sintef Ocean. The thesis is written for people with an engineer-

ing background interested in aquaculture and computer vision.

Trondheim, 2024-06-10

Magnus Wiik
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Abstract

Technological advancements in the aquaculture industry have accelerated, and it is now possi-

ble to use technology to analyze salmon’s welfare. A wealth of information can be extracted from

image and video data through machine learning methods that utilize deep learning principles.

To automate the welfare estimation of individual salmon in the aquaculture industry, it is nec-

essary to identify each salmon. In this Master�s thesis, a salmon re-identification pipeline is de-

veloped. The pipeline is used to analyze the body parts of the salmon to find which are the most

informative. The Deep learning models within the re-identification pipeline are trained using

three datasets that are constructed during the project. Video recordings of salmon are provided

by Sintef Ocean. The re-identification pipeline contains modules for salmon detection, body

part detection, and individual re-identification. By evaluating the pipeline, the re-identification

accuracy using images of each body part is as follows: Thorax (87.7%), dorsal fin (86.3%), eye

(50.0%), pectoral fin (43.1%), and caudal fin (49.3%).
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Sammendrag

Den teknologiske utviklingen i oppdrettsnæringen har skutt fart, og det er nå mulig å bruke

teknologi for å analysere velferden til laks. Man kan hente ut mye informasjon gjennom bilde

og video data gjennom maskinlæringsmetoder som utnytter dyplæringsprinsippet. For å kunne

automatisere velferdsestimeringen av laks i oppdrettsnæringen, må man kunne identifisere lak-

sen for å gi hvert enkelt individ et veldferdsestimat. I denne masteroppgaven er det laget en

programvare som bruker dyp læring for å identifiserer laks basert på bilder av kroppsdeler. Pro-

gramvaren er brukt til å finne ut hvilke kroppsdeler som er mest informative og best egnet til

re-identifisering. Arbeidet er gjort med videoer av laks i tanker, som er levert av Sintef Ocean.

For å trene modellene som inngår i programvaren, er tre datasett laget. I programvaren inngår

modeller for deteksjon av laks, deteksjons av kroppsdeler og individuell re-identifisering. Eval-

ueringen av programvaren viser at re-identifiseringsnøyaktigheten for bilder av hver kroppsdel

er som følger: Bryst (87.7%), ryggfinne (86.3%), øyne (50.0%), brystfinne (43.1%), og halefinne

(49.3%).



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature review 5

2.1 Salmon welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Salmon welfare needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Individual welfare assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Salmon re-identification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Thorax melanin spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Operculum melanin spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical background for computer vision and AI 10

3.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Intersection over union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Integrated gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



CONTENTS 1

4 Salmon dataset construction 16

4.1 Salmon datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Dataset augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Dataset Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Salmon re-identification approach 23

5.1 Re-identification pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Module 1: Salmon detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.3 Salmon detection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Module 2: Body part detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.3 Body part detection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Module 3: Salmon re-identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.1 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.3 Explainable AI on model predictions . . . . . . . . . . . . . . . . . . . . . . . 40

6 Results from salmon re-identification pipeline and discussion 42

6.1 Pipeline evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 46

A Acronyms 48

B Training data and results from pipeline evaluation 49

B.1 Training datasets for re-identification models . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Confusion matrices from pipeline evaluation . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 58



Chapter 1

Introduction

1.1 Background

The seafood industry is important in global food security, amongst other things, due to its high

feed conversion ratio [1]. Farmed Atlantic salmon is among the most sustainable meat products

in the world as it grows efficiently, and there is high demand for by-products of salmon produc-

tion [2]. But the industry has its problems. As most of the salmon are produced in open sea sys-

tems, they are prone to parasites such as salmon lice [3]. These parasites are lethal for salmon,

and treatments to counteract infestations are also causing harm to the salmon themselves [4].

Gill disease is an emerging problem for farmed salmon during its sea phase, [5]. Many of the

problems can become easier to manage by shifting the industry towards precision fish farming,

which aims to improve the fish farmer�s ability to monitor, control, and document biological

processes in the fish farm, [6]. By monitoring individual fish, one can assess the welfare status

of the population from the ground up, which can lead to more precise welfare estimates. In-

dividual re-identification opens the possibility of following individual salmon and logging their

welfare status over time. One can then assess the severity of diseases and take action if needed.

The result can be better welfare for the salmon and increased income for fish farmers, as mortal-

ity rates within the farm can decrease. A non-invasive option to monitor fish is by using cameras

to record videos and deep learning techniques to extract welfare information. Camera technol-

ogy using Deep learning has been successfully implemented in tasks, such as identifying loser

fish [7], fish feeding systems [8], fish counting and biomass estimation [9]. For these algorithms

to accurately estimate welfare, growth, and biomass, one needs to identify the salmon individu-

als. We know that the melanin spot pattern on the salmon body is a way of identifying a salmon

[10]. However, no one has yet analyzed and compared the re-identification capabilities of sev-

eral body parts of the salmon. In this thesis, we build a deep learning pipeline to assess the

re-identification capabilities of salmon body parts and compare their informativeness.

2
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1.2 Objectives

The main objectives of this Master’s thesis are to:

1. Develop a pipeline using deep learning and computer vision methods for assessing the

re-identification capabilities of salmon body parts.

2. Find which salmon body parts are best for re-identification using the developed re-identification

pipeline.

1.3 Approach

The thesis consists of two parts. First, a structured literature review is conducted. The field of

salmon biometrics and salmon re-identification algorithms is summarized. Following this, we

will apply the methods from the salmon re-identification literature to analyze the salmon body

parts and find out how suitable each body part is for salmon re-identification.

1.4 Contributions

In this project, three datasets are constructed. The datasets are made for salmon detection, body

part and point detection, and salmon body part re-identification. A re-identification pipeline

containing three Deep learning methods is developed. The pipeline and the datasets are used

to find the most capable body parts on the salmon for re-identification.

1.5 Limitations

This study analyzes the thorax, dorsal fin, eye, pectoral fin, and caudal fin. Technologies from

the Deep learning library PyTorch are used to develop the re-identification pipeline. This study

does not analyze the stability of each body part over a time period.

1.6 Sustainability

The United Nations (UN) has created a list of sustainable development goals that define the

collaborative work the nations in the UN have agreed upon. The work in this thesis falls un-

der goals 12 and 14. Goal number 12 is called Responsible consumption and production, and

goal number 14 is Life below water. The UN Sustainability Goal 12 states we should ensure re-

sponsible consumption and production. The UN Sustainability Goal 14 states that we should

conserve and use the oceans, seas, and marine resources for sustainable development. Salmon
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re-identification covers both goals as it leads to more responsible production of farmed salmon.

It improves the salmon’s life by facilitating the evaluation of individual welfare. Re-identification

of farmed salmon ensures that the farmer gains insight into each individual and can assess their

welfare and growth. As one can re-identify salmon individuals, tracking how each salmon’s

health is developing is possible. This technology’s possible future outcomes include the as-

sessment of wounds, scale loss, behavior, and eating patterns. This positively contributes to the

responsible production of Atlantic salmon, as the welfare of the animals is more prioritized, [11].

1.7 Outline

• Chapter 1: Introduction to the Master�s thesis.

• Chapter 2: Literature review. Discussion about salmon welfare and the state of the art

within salmon re-identification technologies.

• Chapter 3: Theoretical background for computer vision and AI. Presents ResNet, Faster

R-CNN, and Integrated gradients.

• Chapter 4: Salmon dataset construction process. Presents the salmon datasets, augmen-

tation techniques, and challenges.

• Chapter 5: Salmon re-identification approach. Presents the salmon re-identification pipeline.

Furthermore, it discusses each module in detail and the training and evaluation process.

• Chapter 6: Results from the salmon re-identification pipeline and discussion. Presents the

results from evaluating the re-identification pipeline and discusses its results in a bigger

context.

• Chapter 7: Conclusion and recommendations for future work.

• Bibliography

• Appendix A: Acronyms.

• Appendix B: Confusion matrices from pipeline evaluation and training data for the re-

identification module.



Chapter 2

Literature review

This chapter covers the literature review abbout salmon welfare and salmon re-identification

technologies. First, the definition for salmon welfare is presented. It then presents salmon

needs for good welfare and indicators for assessing welfare. Finally, it presents visual salmon

re-identification methods in the literature.

2.1 Salmon welfare

Animal welfare is a term that describes how an animal perceives its quality of life, [12]. The ani-

mal welfare definition is quite vague and is not a tangible state that can be measured. However,

welfare indicators can be measured and give insights about the welfare state of animals, but not

reveal it entirely. Before presenting a salmon welfare framework, we present the salmon welfare

needs.

2.1.1 Salmon welfare needs

In the general case, salmon welfare needs are about providing the necessities for its immediate

survival, which in the literature is termed ultimate needs, and needs to sustain in the future,

proximate needs, [13]. An animal’s ultimate needs encapsulate Nutrition, Respiration, Ther-

moregulation, Maintaining osmotic balance and body integrity, [14]. When a need is not met,

the emotional reward system causes the individual to experience emotions that guide the ani-

mal to meet its needs, [15]. When the animal cannot meet its needs, the experienced welfare of

the individual is reduced [16]. Several of these needs can be monitored using visual techniques

such as computer vision. But to measure the welfare of salmon, we need protocols that tell us

what information to focus on.

5
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2.1.2 Individual welfare assessment

There exist several frameworks for evaluating the welfare of salmon, but in the following, we

use the framework made by [14]. To estimate the welfare of salmon individuals, there are two

frameworks for measuring the needs of the salmon. The focus here will be on animal-based

operational indicators, as this is the framework to measure an individual’s welfare in a fish farm,

[12]. This framework is important, as it gives fish farmers an indication of whether they should

act to improve the welfare status of the salmon individuals during production.

Animal-based Operational Welfare Indicators

• Eye roll (VER)

• Sea lice

• Condition factor

• Hepato-somatic index

• Cardio-somatic index

• Handling trauma

• Rigor mortis time

• Emaciation state

• Sexual maturity state

• Vertebral deformation

• Fin damage and fin status

• Scale loss and skin cond.

• Snout jaw wound

• Eye haemor. and status

• Opercula deformation

Figure 2.1: This list is adapted from [14], and shows animal-based welfare indicators that may
be estimated on a fish farm without the presence of a fish health expert.

In figure 2.1, there is a list of animal-based operational welfare indicators that can be esti-

mated without fish health expertise. One example of using computer vision in fish farms is by

estimating the number of sea lice in a fish farm. This would yield great value for fish farmers

as this is one of the main problems for open aquaculture systems today. Assigning a sea lice

number to every individual in the farm would be even better as you get more precise estimates

for the welfare scoring of the population. Assigning a welfare score to each individual in the fish

farm can be done for other welfare indicators, such as fin damage or scale loss. To achieve this,

there is a need to develop fast and robust re-identification systems that enable salmon welfare

estimation for each individual. In the future, each salmon in the fish farm can have its own

health diary, which is a big step towards optimizing the fish welfare. There are multiple ways to

identify a salmon individual, and how it is possible to do so is presented next.
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2.2 Salmon re-identification methods

Using visual traits on salmon individuals to identify individuals is good for welfare as these

methods are non-invasive. Here, we discuss several traits that are used for salmon re-identification

today. First, we address melanin spots on the thorax (chest) and operculum (head), before we

move on to iris.

2.2.1 Thorax melanin spots

Salmon individuals have been re-identified using images of their thorax (chest). In Espen Høg-

stedt�s Master thesis, he identified 7 salmon based on thorax images of both sides on each indi-

vidual. He developed a re-identification algorithm using a Keypoint R-CNN to detect the front

half of the fish together with a set of points. He used the set of points to change the perspective

of the detected salmon, and focus on the center of the body, called thorax. These images were

fed into various Deep learning image classification models such as AlexNet, EfficientNet, and

ResNet. The highest accuracy was obtained using ResNet101 to classify the salmon individuals,

where he obtained a Rank-1 accuracy of 99.51% on unseen data, [17].

In [18], they identified salmon using the dot pattern on the salmon�s thorax. They showed

that it is possible to identify a salmon using a dot localization algorithm to determine the exact

position of every dot on the body. This approach yielded a 100% accuracy for images taken out

of the water and a lower accuracy for in-water images. They also performed identification us-

ing a Histogram of Gradients (HOG) to analyze both the dots and the rest of the salmon�s skin.

The approach yielded, in general, a lower accuracy both for in-water and out-of-water images.

This suggests that a method using the dot position only is a more robust approach to identify

salmon. One reason for this may be that using the gradients of the salmon skin is prone to

lighting changes between the images, which can result in a slightly different embedding across

examples. In real aquaculture conditions, there is additional debris, algae, and feces in the wa-

ter, which can cause an additional drop in accuracy for the HOG approach, further suggesting

that a dot localization approach may be more robust in real-world conditions, [18].

2.2.2 Operculum melanin spots

Stien showed that salmon can be identified using only the melanin spots on the operculum

(head). They used a group of three fish biologists that classified images of 246 salmon. There

was one set of images when the salmon were 12 months old and one set of images when they

were 22 months old. The task was to match the individuals between the two image sets. They

found that it was enough for salmon with 4 or more spots at 12 months to identify the individual

later with certainty. However, only 32% of the salmon had 4 spots this early. This suggests that if
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a third set of images was taken when all the salmon had 4 or more spots, then the identification

could be certain for all. A point-pattern-matching algorithm was tested on the image set, us-

ing the position of the melanin spots in relation to each other as an identification method. The

algorithm was tested by computing the distance between one image to other images in a set

and achieved a Rank-1 accuracy of 85%. The match was the image pair with the least distance

compared to other image pairs. This suggests that if images of salmon are taken in a controlled

environment, it is possible to automatically identify individual salmon using the distances be-

tween the spots. Taking the uniqueness of each melanin spot by taking the shape and location

of the salmon body into consideration should make the algorithm more robust against misclas-

sification, [10].

Mathisen developed a dataset containing images of salmon heads in an aquaculture envi-

ronment and tested it on an image classification model called FishNet, which is adapted from

FaceNet [19]. They trained the FishNet model by using a training loss function called Triplet

loss, which minimizes the distance between images of the same individual and maximizes the

distance between images of different individuals, [20]. A Deep learning model such as the one

used here will find the optimal relation between the input image and the output identity with

regard to a loss function. It should focus on discriminating parts of the fish head, such as the

melanin spots, the iris, or a combination of several things on the head. However, one loses con-

trol over what the model will focus on to make its predictions. Therefore, a way to monitor that

the Deep learning model is using biometric features is to use an Explainable AI technique that

can describe the image regions that the model uses to make its predictions, such as Integrated

Gradients [21]. The authors also inform that the images have been taken over a short period

of time, which means that the images for each individual look very similar. Using many similar

images to train a neural network will increase the chance of overfitting the model and ultimately

lead to worse performance in a different environment or video. To counteract this effect, one

can obtain more data, annotate images using different environmental conditions, or use aug-

mentation techniques.

2.2.3 Iris

Foldvik found that using the iris of a salmon is viable for identification during the middle part

of the life stage. Images were taken of 1286 individuals over a time period of 533 days. In total,

6 images were taken per individual, with more frequent image capturing in the early life stage.

This was due to the considerable changes to the body during this life stage of the salmon. Iden-

tification of the iris was performed using the out-of-the-box software VeriEye 2.10 Standard SDK

by Neurotechnology. For salmon in the middle life stage, the identification accuracy was 100%

using iris. This suggests that the salmon iris�s uniqueness is comparable to the human iris. No

matches were made using the images from the earliest life stage of the salmon to any other life
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stage. This shows that the big changes to the salmon body in its early life caused the stability of

the iris not to be as good as that of humans, [22].

Schraml used Deep learning techniques to identify individual salmon using iris images. They

investigated if a Deep learning approach would improve the long-term identification stability of

the iris, as opposed to a texture feature-based approach, which shows weak stability in the long

term. The texture feature-based approach explicitly utilizes texture information of the iris band

(frequency information) and compares this information to textures from another iris to find its

match, [23]. This technology is used in these studies [24] and [22], where it has shown strong

short-term identification but weak long-term stability. The Deep learning approach showed

even weaker long-term stability using iris images for individual identification. However, the

dataset contains a small number of images, 4 images per fish taken two months apart. This sug-

gests that there is more to gain from using Deep learning if the dataset is increased in size by

sampling the fish iris more frequently.



Chapter 3

Theoretical background for computer vision

and AI

This chapter covers the necessary theory to understand the basics of how the Computer vision

and AI models in the re-identification pipeline work. We start by briefly explaining what a neural

network is before we present the image classification model, ResNet. Then, the detection model

Faster R-CNN is presented, and finally, the theory behind the explainable AI method, Integrated

gradients, is explained.

3.1 Neural networks

Neural networks are a central part of the salmon re-identification pipeline, and we, therefore,

start with Aggarwal’s explanation of the term.

"Artificial neural networks are popular machine learning techniques that simulate the mech-

anism of learning in biological organisms. The human nervous system contains cells, which are

referred to as neurons. The neurons are connected to one another with the use of axons and

dendrites, and the connecting regions between axons and dendrites are referred to as synapses.

[...] The strengths of synaptic connections often change in response to external stimuli. This

change is how learning takes place in living organisms."[25]

For salmon re-identification using computer vision, convolutional neural networks are a

natural choice. A convolutional neural network takes images as input and performs convolu-

tion operations using learned weights to extract information from the image. This keeps the

structural information intact, which is essential for tasks like detection, pose estimation, and

segmentation. The filters are learned through training the network on a training set, where you

show the network examples and the correct prediction.

10
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3.2 ResNet

ResNet is a convolutional neural network that can learn complex features from images and is,

therefore, part of the re-identification pipeline. We come back to this in section 5.4. Now, the

model architecture will be presented.

The residual network (ResNet) is a deep convolutional neural network (DCNN) used mainly

for computer vision tasks. Deep learning has been successful due to stacking layers of neurons

on top of each other to create network structures that are able to generate complex nonlinear re-

lationships between input and output layers. However, when a network reaches a certain depth,

the solvers are unable to find good or better solutions than similar networks with shorter depths.

In [26], they call this the degradation problem, and it is addressed by reformulating the network

structure to learn residual (error) functions. The residual functions are generated for a number

of stacked layers at a time, where the input is subtracted from the output of the stacked layers.

Performing this reformulation of the network yields easier optimization for a deeper neural net-

work and higher performance than other networks of similar depth, [26]. This neural network is

chosen as the large depth of the network enables it to learn highly complex features, which can

prove to be useful for reidentifying individuals.

Feature Extraction is a key part of Deep learning re-identification systems. It is the process

of finding and extracting important information from input data. A deep learning network (e.g.

ResNet) performs feature extraction by performing convolution operations on the input image

at multiple stages through the network. By performing these convolution operations in a se-

quence, it extracts features of increasing complexity. For example, when an image of a salmon

goes into a ResNet model, it is convolved with a kernel to extract simple structures in the image,

like edges. In the next layers, information like corners, which can resemble the tips of fins on

the salmon body, is extracted from the image. As we go deeper, patterns like the scales on the

salmon are extracted. Next, parts like the eyes, snout, or fins are extracted from the image. In

the final layers, objects like the salmon are extracted. As the data goes deeper into the network,

more complex features are extracted, which are based on the simpler features from earlier in the

network. In the final layers, there are fully connected layers that compress the features into vec-

tor numbers that contain the extracted information. Extracting information from data such as

images is one of the big strengths of a deep learning model compared to more traditional meth-

ods. Choosing the right information to take into consideration when reidentifying a salmon is

very important. However, it is crucial to input quality data into the deep learning model so it

learns the right distinguishing features between salmon individuals.
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Multi-class cross-entropy Loss

The multi-class cross-entropy loss is a function for evaluating the loss of prediction from a neu-

ral network in a multi-classification task. A multi-classification task is where a neural network

predicts a class in a set of possible classes. The loss from the multi-class cross-entropy is used to

update the neural network�s belief about the relationship between input data and output class.

l (x, y) = L = (l1, ..., lN )T , ln =°
CX

c=1
wyn log

exp xn,ynPC
c=1 exp xn,c

yn,c (3.1)

Equation 3.1 is from [27]. In our case x is the input image, and y is the true class. C is the number

of classes to choose from. N is a value that represents the number of images in an update step

for the neural network. We come back to the application equation 3.1 in section 5.4.1.

3.3 Intersection over union

Intersection over union (IoU) is an important metric within Computer vision. The metric is

shown in equation 3.2. The IoU of two bounding boxes A and B is the correctly predicted overlap

between the boxes divided by the area spanned by both boxes.

I oU = A\B
A[B

= tr ue posi t i ves
f al se neg ati ves + tr ue posi t i ves + tr ue neg ati ves

(3.2)

3.4 Faster R-CNN

Faster R-CNN is an object detection model, [28]. Faster R-CNN takes images as input and local-

izes and classifies objects within the image using a Deep learning network, commonly referred

to as the backbone when part of the larger model. In their paper, the backbone is called a Region

Proposal Network (RPN), since it proposes regions of interest that are fine-tuned and classified

in two fully connected layers. The two fully connected layers are called the bounding box regres-

sor and bounding box classifier. A bounding box is a box that represents the region of interest

within an image. The bounding box regressor refines the bounding box proposals from the RPN.

The bounding box classifier predicts the class indicator of the region of interest. A class indica-

tor is a label that describes the contents of a region of interest. Earlier, State-of-the-art detection

models used Selective search for region proposal generation, but this was their main bottleneck

regarding time efficiency, [29]. Faster R-CNN introduced the sharing of Deep learning network

layers between RPN and the fully connected layers, which increased time efficiency. The region

proposals from the RPN are generated much more rapidly and have reduced the inference time

from seconds to fractions of a second.
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To train the RPN, a label is assigned to every region proposal, which is either negative or

positive. The conditions for label assignment are as follows:

• The region proposal(s) with the highest IoU overlap with the true bounding box is assigned

a positive label.

• A region proposal with a higher IoU than 0.7 with any true bounding box is assigned a

positive label.

• A region proposal is assigned a negative label if the IoU is below 0.3 with any true bounding

box.

• Region proposals that are neither qualified for a negative or positive label are considered

neutral and do not contribute to training.

The labeled predictions are fed into a loss function, which determines how to update the

model with respect to regression and classification. The loss function for the RPN is as follows:

L({pi }, {ti }) = 1
Ncl s

X

i
Lcl s(pi , p§

i )+∏ 1
Nr eg

X

i
p§

i Lr eg (ti , t§i ) (3.3)

Equation 3.3 represents the loss evaluated on the predictions from the bounding box regres-

sor {pi } and bounding box classifier {ti }. Each term in the loss function is a sum of loss functions

for each prediction from the regressor and classifier. N represents the number of predictions.

pi is the probability that region proposal i is an object, in our case, a salmon or a specific body

part. ti is a vector representing the coordinates for bounding box i. ∏ is a weighting parameter

that changes the importance of each task, bounding box regression, or classification. The loss

functions for the regressor and classifier are as follows:

Lr eg (ti , t§i ) =

8
<
:

0.5(ti ° t§i )2, if |ti ° t§i | < 1

|ti ° t§i |°0.5, otherwise
(3.4)

Equation 3.4 represents the loss function for the bounding box regressor, commonly known as

the smooth L1 loss function. If the difference between the predicted bounding box and the true

bounding box is less than 1, the loss is determined by evaluating a second-degree polynomial.

If the difference between prediction and truth is greater than 1, the loss is determined by evalu-

ating an absolute error.

Lcl s(pi , p§
i ) =° 1

Ncl s

X

i
p§

i log(pi )+ (1°p§
i ) log(1°pi ) (3.5)

Equation 3.5 represents the loss function for the bounding box classifier, commonly known as

Log loss. If the true class indicator is 1, the loss is determined by taking the logarithm of the
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predicted class indicator. If the true class indicator is 0, the loss is determined by taking the

logarithm of 1 minus the predicted class indicator. In the case of salmon detection, 1 is equal to

the salmon, and 0 is equal to the background.

For more information about Faster R-CNN, see the paper by [28]. The application of Faster

R-CNN is presented in chapter 5.

3.5 Integrated gradients

Integrated gradients is an Explainable Artificial Intelligence (XAI) method in the class of feature

attribution. It generates a visualization of the importance of each pixel in an input image to a

Deep learning network. In the following, we present why it is useful to apply Integrated gradients

and the theory behind the method, [21].

The motivation behind using Integrated gradients is to find the importance of each pixel

in an image with respect to the prediction made by a Deep learning network. For salmon re-

identification, it is interesting to apply Integrated gradients to model predictions, as they show

how the biometric information is used to arrive at a certain prediction. Consider the case where

the Integrated gradients method shows that the Deep learning network applies importance to

the background in an image, during re-identification using the dorsal fin on the salmon. In this

case, one knows the prediction is made by focusing on irrelevant information. Therefore, one

can discard this prediction and initiate actions to guide the Deep learning network towards fo-

cusing on the biometric information instead. Examples of actions may be to add more images

of salmon in different environments or from multiple angles. The Deep learning network can

then find that the dorsal fin is the common factor between images in the dataset, as the back-

ground of the images has variation. XAI methods are valuable as they generate insight into how

a Deep learning network generates predictions, which leads to increased trust in predictions. In

the following, the background theory for the method is presented.

Consider a function F that represents a Deep learning network, F : Rn ! [0,1]. Let an input

image be x 2 Rn . A baseline (reference) image is defined as xt’ 2 Rn . The baseline image is a black

image. To calculate the importance of pixels in the input image, we consider a straight path from

the input image to the baseline image. The integrated gradients are obtained by summing the

gradients from points on the path between the images. One can compute the importance of any

pixel in the input image as follows:

Integ r atedGr ad si (x) = (xi °x
0
i )

Z1

Æ=0

@F (x
0 +Æ(x °x

0
))

@xi
@Æ (3.6)

Equation 3.6 represents the accumulated gradients along one path i. The path is the range

of values the pixel has from zero to the value in the input image, where Æ = 0 represents a
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zero-valued pixel and Æ= 1 represents the pixel with its value in the input image. At each step,

(x
0+Æ(x°x

0
)), on the path i, the image is fed into the Deep learning model, and the gradients of

the output are accumulated, @F (x
0+Æ(x°x

0
))

@xi
. The gradients of each step are integrated with a step

of @Æ, an infinitely small step. Each pixel�s Integrated gradients are scaled to reflect the actual

importance of the pixel, and this is done by multiplying the integral by the difference between

the baseline and the input image, (xi °x
0
i ). In practice, the integral from Equation 3.6 is approx-

imated by summing the gradients in steps along the path from the input image to the baseline

image as follows:

Integ r atedGr ad sappr ox
i (x) = (xi °x

0
i )

1
m

mX

k=1

@F (x
0 + k

m (x °x
0
))

@xi
(3.7)

Equation 3.6 presents the Integrated gradients approximation for any pixel in the input im-

age of a Deep learning network. The approximation of the Integrated gradients is done by sum-

ming the gradients between the baseline image and the input image in m steps.

The Integrated gradients for each pixel in the input image are summed to create a mask

that visualizes the pixel’s importance. For more information about Integrated gradients, see the

paper by [21]. We come back to the application of the method in section 5.4.3.



Chapter 4

Salmon dataset construction

This chapter presents the salmon dataset creation process. It describes the annotation for the

three datasets and shows examples of annotated images. Then, the dataset augmentation pipeline

is presented before discussing the challenges encountered along the way.

4.1 Salmon datasets

Figure 4.1: Overview of the datasets developed during the project. The Salmon detection dataset
is used to train the model in Module 1 of the pipeline. The body part and points dataset are used
to train the model in Module 2. The Re-identification dataset is used for the final classification
task in Module 3.

The data material used in this project includes videos from experiments performed within a

16
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project named "IDE 4" at Sintef Ocean. In this experiment (see also [30]), they investigated how

water flow and oxygenation influenced the water quality and the stress levels of salmon. They

recorded videos of salmon in tanks both under stress and in normal conditions. This project

used the recordings under normal conditions, where oxygenation and water flow were present,

as the salmon swam more in front of the camera. The salmon also swam with less effort un-

der normal conditions so that the fins of the fish were more visible in the recordings. The cir-

cumstances described above made it easier to annotate and construct datasets with satisfactory

quality. In total, three datasets were constructed. Each dataset is made for training and evalu-

ating parts of a salmon re-identification pipeline. Figure 4.1 shows the overview of the datasets:

Salmon detection, Body part and point, and re-identification. The datasets are described in

more detail in the following sections.

Dataset 1: Salmon

The salmon detection dataset contains images of one or more fully visible salmon, along with

bounding boxes and class indicators describing a salmon�s position and size. The class indi-

cator describes what is inside the bounding box. Figure 4.2 shows examples of four annotated

salmon individuals.

Dataset 2: Body part and point

Table 4.1: Annotated salmon body parts and points. The points are not used for training the
modules in the pipeline but can be used in further work on re-identification by implementing,
e.g., perspective transformation, which is discussed more in-depth in section 7

Point Body part

Snout top Eye

Snout bottom Pectoral fin

Iris Thorax

Pectoral fin root Dorsal fin

Dorsal fin root front Caudal fin

Dorsal fin root back

Caudal fin top

Caudal fin bottom

The body part and point dataset contains images of at most one whole salmon individual.

Annotations for the images include bounding boxes, points, and class indicators. The bounding
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Figure 4.2: Example images from dataset 1. The class indicator for each bounding box is dis-
played with the format "Fish, Individual".

boxes describe the position and size of salmon body parts. The points describe the position of

anatomical marks on the salmon. Body parts and points of interest are listed in table 4.1. It

includes body parts that have been analyzed in the literature prior to this project, e.g., eye and

thorax. However, some parts have not been analyzed in the literature, such as the pectoral fin,

dorsal fin, and caudal fin. The background for investigating fins for re-identification is that the

video recordings have shown that individuals often have unique traits in their fins due to size

variations, deformation, or wounds. Figure 4.3 shows examples of annotations from the body-

part and point dataset. During the project, the annotated points were experimented with to

change the perspective of salmon using a perspective transformation, but it was aborted due to

tuning problems and time limitations in the project plan.
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Figure 4.3: Salmon body parts and points dataset example with annotations from the recorded
footage from [30]. Here are five salmon individuals displayed with bounding boxes in blue and
points in yellow. As seen here, the dataset contains images with various distances and perspec-
tives to the camera.

Dataset 3: Re-identification

The re-identification dataset contains images of salmon body parts and class indicators spec-

ifying what individual a body part belongs to. Figure 4.4 shows examples of body part images

belonging to the individuals Casper, Novak, and Holger. The figure shows that image shapes for

a body part can vary greatly due to changes in the perspective and distance from the camera.

This is shown by comparing the thorax images of Casper and Holger. When the images are fed to

the re-identification models, they are converted to a standard shape, which the models expect,

and this is discussed further in section 4.2.

4.2 Dataset augmentation

Data augmentation is a methodology that changes the appearance of data, in this case, images,

in the dataset to increase variation and make it more difficult for the Deep learning model to

overfit on unimportant information in the data. Variation within a dataset is important, as the

model becomes more robust to small changes in unseen data. A data augmentation pipeline is

developed to increase variation in the re-identification dataset, so that when the model sees im-
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Figure 4.4: Re-identification dataset example annotations. Here, the body parts of three indi-
viduals are shown with their corresponding names. Image shapes of body part images can vary
greatly, as seen when comparing Casper/Novak and Holger.

ages from a new video in the same tank, it is able to still achieve satisfying accuracy. In figure 4.5,

the data augmentation pipeline is shown. To demonstrate the functionality of the data augmen-

tation pipeline, a dorsal fin image is shown before and after data augmentation. The augmented

image is exposed to a Color Jitter module and a Random Resized Crop module. The Color jitter

module changes the saturation, hue, brightness, and contrast of the input image. This helps the

model to become more robust against environmental changes due to illumination or particles

in the scene. The Random resized crop module chooses a random position in the image and

crops 224x224 pixels, which it outputs. This is because Deep learning models expect images of

a certain size. In this case, the re-identification models expect the images to be 224x224 pixels,

as the architecture is built around this specific image size. Feeding images of other sizes to the

re-identification models would yield non-optimal results. The random cropping adds a layer

of complication, which increases the models� robustness against fluctuations in bounding box

prediction.
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Figure 4.5: The functionality of the dataset augmentation pipeline is presented with an example
of a dorsal fin image. An image is put into a Color Jitter module. In the Color Jitter module,
the image brightness, hue, saturation, and contrast are altered. The image is further input to
the Random Resized Crop module, which crops the image using a random position with a size
of 224x224 pixels. The output image is ready to be used in model training for Module 3 of the
re-identification pipeline.

4.3 Dataset Challenges

Using video recordings from a dynamic environment introduces multiple challenges. As the

fish are crowded in the tank, it makes it difficult to collect data. It is important to be able to

see the body parts clearly as only then can you properly determine which individual it belongs

to. The conditions inside the tank are made to mimic the environment in a commercial fish

farm. Therefore, the fish density inside the tank is 54 kgm°3, [30]. The density makes it difficult

for the camera to view the full body of fish individuals over a periods of time. It was decided

that images of fish are captured and analyzed individually. By first, detecting a single salmon,

then detecting its body parts, and finally analyzing them for re-identification. While working

with the datasets, it has been experienced that it is difficult to capture quality images for all

individuals in the tank. The constant change in position for each fish makes it difficult to choose

which frames to annotate. We chose only to annotate images where the whole fish and its body

parts are totally visible and discard any images where at least one body part is occluded. This

was decided as occlusion from body parts of other fish introduces additional complications.

Because the images are labeled as one individual, an image containing multiple individuals can

lead to undesirable learning of the Deep learning network. Such a scenario may be when an

image contains dorsal fins of Casper and Novak, and the image is labeled Casper. From this

image a Deep learning network might learn that the dorsal fins for Casper and Novak belong

to Casper. To avoid these complications, the occluded images were discarded. This introduces

both positive and negative effects. On the positive side, the quality of the images in the dataset

remains high, as the dataset exclusively contains body part images with one correct label. On

the negative side, the number of images in the video recordings that hold this quality is few. This

means that a smaller dataset size must be accepted as image quality is prioritized.

To efficiently annotate images from the video recordings, AI annotation software was devel-
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oped. The objective was to create large datasets semi-automatically, where the detection model

does the groundwork by predicting the location of salmon in the entire video recordings. Then,

one can manually look through the model predictions and choose to adjust or discard them.

However, the AI annotation software was not trained well enough for the semi-automatic an-

notation process to be efficient. The model’s accuracy was too poor, which led to much time

being invested in cleaning false or imprecise predictions. The semi-automatic annotation pro-

cess was aborted due to time constraints in the project, and the focus was on creating quality

annotations by hand. The manual annotations were performed using the annotation software

LabelMe, [31]. The video recordings were filtered so that every 5th frame was removed from

the recordings. This created more variation in the datasets as images of fish with translational

displacement were annotated. It also sped up the manual annotation process as the number of

images was reduced. In retrospect, we think it should be easier to semi-automatically annotate

salmon body parts as these images have stable quality, as the groundwork is done in dataset 1.

To get satisfactory variation in the datasets is challenging, as the salmon individuals usually

prefer to swim in the same location within the tank over long periods of time. In the datasets,

many individuals are captured with variations in location and perspective, but this is not the

case for all. So if a new video with entirely new perspectives of the salmon individuals were to

be analyzed, the re-identification pipeline might have a difficult time predicting their identi-

ties with high accuracies as the models understand the individuals based on information about

their appearance, but also the context, e.g., the location, perspective, illumination, background,

water clarity and so on. However, as the camera placement for each video recording is slightly

different, this adds some variation to the data.



Chapter 5

Salmon re-identification approach

This chapter covers the salmon re-identification pipeline. First, an overview of the pipeline is

introduced, and thereafter, a description of the model training and evaluation for each module

of the pipeline. In each module section, preliminary results are presented and discussed. For

the re-identification module, common false predictions for each body part model is presented,

as well as a discussion surrounding the possible implications. Finally, the XAI method, Inte-

grated gradients, is used to explain how the thorax re-identification models evaluate images of

the thorax for two salmon individuals.

5.1 Re-identification pipeline

In this section, an overview of the pipeline is presented. A visualization of the salmon re-identification

pipeline is shown in figure 5.1. The input to the model is images from the datasets presented in

the previous chapter. The images are processed through five steps. Three of them are Deep

learning models, which we call the three modules of the pipeline. First, the images are pro-

cessed in Module 1, where salmon are detected. The detection module localizes the salmon.

Further, the salmon are cropped out of the image and fed into Module 2, the body part detec-

tion module. The body part detection module localizes body parts. Each body part is cropped

and fed into one of five salmon re-identification models that are part of Module 3, the salmon

re-identification module. Each module in the pipeline is trained separately using their respec-

tive dataset. The training process was carried out on the high-performance computing platform

IDUN at NTNU. In addition, an XAI method is used to investigate what information in the body

part images the re-identification models focus on. In the following, a detailed explanation of

each module is presented.

23
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Figure 5.1: The overview of the re-identification pipeline is presented. An image is fed to a
salmon detection module, which localizes salmon. The salmon detection module is a Faster R-
CNN model with a ResNet50 backbone network. The localized salmon is cropped from the orig-
inal image and fed to a body part detection module. The body part detection module uses the
same detection model as Module 1. It localizes the body parts of a salmon, and they are cropped
out into smaller images. Each body part image is converted to a standard size of 224x244 and
fed into the salmon re-identification module, which contains five body part models that per-
form re-identification. There is one body part model for each body part of interest: Thorax,
dorsal fin, eye, pectoral fin, and caudal fin. Each model is a ResNet101 convolutional neural
network trained to re-identify an individual based on images of one body part.

5.2 Module 1: Salmon detection

Module 1 of the pipeline is salmon detection. This is the process of locating the position of a

salmon within an image and drawing a box around its body. One of the objectives of the thesis

is to assess the re-identification capabilities of salmon body parts. It is, therefore, important

to provide accurate regions of interest to the salmon re-identification module. This is because

the accuracy of the salmon re-identification module might get worse if the images only show

fractions of body parts. The Deep learning detection model Faster R-CNN is chosen due to its

two-stage detection architecture, which increases the accuracy of the predictions but sacrifices

some time efficiency, as opposed to one-stage detection models [28]. Pytorch delivers Faster R-

CNN with several backbones, but ResNet50 is chosen because it has the most learnable param-

eters, which has shown the best results for benchmarking tests on ImageNet1k [32]. ResNet50

is a 50-layered version of the image classification model discussed in the previous section. The

ResNet-50 is chosen as a backbone for the Faster R-CNN as PyTorch delivers pre-trained weights

for it. To add more robustness to the Faster R-CNN model, a version of the detection model with

Feature-Pyramid network (FPN) was chosen [33]. This is relevant because we are dealing with

data from a complex environment where salmon swim at multiple distances from the camera.

By using the FPN, one can obtain good predictions even though there are salmon close and far

away from the camera. The model is pre-trained on ImageNet1k. This dataset contains around

3.2 million images, which gives a general foundation for object detection [34]. The salmon de-
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tection model is trained on dataset 1 from section 4.1 to specialize the model towards detecting

salmon in an aquaculture environment.

5.2.1 Model training

Table 5.1: Optimal model configuration found during training the salmon detector.

Configuration Value Description

Backbone ResNet50 Feature extraction backbone network
Pre-trained True Model is pre-trained on ImageNet1k
Batch size 5 Number of images per optimization cycle
Optimizer SGD Optimization algorithm
Learning rate 0.001 Initial learning rate for training
Momentum 0.9 Momentum for SGD
Weight decay 0.0005 L2 regularization penalty
Learning rate scheduler Step LR Gamma = 0.2 and Step size = 20 epochs
Epochs 25 Total number of training set iterations

The salmon detection model is trained using dataset 1, which contains 1181 images from

multiple video recordings. The dataset is divided into training, validation, and test datasets for

the model training and performance evaluation. 80% of the dataset is assigned to training and

validation. Between training and validation, there is an 80-20 data split. The majority of the data

goes into the training set as it is used to teach the salmon detection task to the Deep learning

model. The validation set provides unseen data to evaluate the model during training, to find

the best learner.

A data loader is implemented to determine how data is put into the model. For every opti-

mization cycle, the data loader samples data randomly into batches. The data batches are used

to estimate the direction of the optimal model update. This model optimization approach is

called mini-batch stochastic gradient descent and is an efficient approach for model optimiza-

tion since random sampling using a small set of data points often leads to a good approximation

of the gradient [35]. After experimenting with different hyperparameter settings, we found a set-

ting that provided good results on the validation set. These parameters are presented in table

5.1. The parameters were found by were found by changing parameters through trial and error.

Early stopping is a regularization method that stops training the Deep learning model before

it overfits to the training data. The model was trained for 100 epochs on the training data but

performed at its best after training for 25 epochs.
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Table 5.2: Test set results for salmon detection.

Metric Value

mAP@50:95 0.9387
mAP@0.50 0.9965
mAP@0.75 0.9965
mAP (large objects) 0.9387
mAP (medium objects) -1.0
mAP (small objects) -1.0

5.2.2 Model evaluation

The salmon detection model is evaluated on a test set of 236 images, which is 20% of dataset

1. Figure 5.2 shows the test set results from the model evaluation. The model mean-average

precision (mAP) on predictions within the IoU range 50:95 is 93.87% on the test set. This is a

high performance and an improvement from the specialization project, where we achieved a

mAP of 88.6% for front-half salmon detection, [36]. This improvement is most likely because

the detection set has doubled in size, from 619 images in the specialization project to 1181 in

this project. Dataset 1 also contains more individuals and multiple video recordings, which

increases the dataset variation and leads to a more robust model. The model performs better

when the IoU is lower, as a IoU threshold is less strict. This indicates that the class indicator

prediction is performing well even if the predicted bounding box only has a 50% overlap with the

actual salmon annotation. Further, the mAP for large objects is equal to the overall mAP which

shows that dataset 1 only contains images that are regarded as large, which is 962 pixels and

above. This suggests that the salmon detection model may perform worse on salmon further

away from the camera.

5.2.3 Salmon detection examples

Figure 5.2 shows examples of erroneous predictions from the salmon detector. The detection

model has correctly predicted the annotated bounding box, where the red and green boxes over-

lap, for all images in the figure with high confidence scores. However, the first three images show

that additional fish are detected with low confidence. It is a question of definition whether these

predictions are correct, but in this project, we only consider fish that are not occluded. As the

fish from figure 5.2 are occluded and the confidence for the predictions is low, the predictions

can be filtered out using a confidence threshold. However, in the last image, an occluded fish is

predicted with a higher confidence than the correct prediction. A confidence threshold cannot

filter out this prediction. The model may have more confidently predicted the occluded fish as

its body stands more out from the tank’s background.
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Figure 5.2: Examples of most common erroneous/imprecise predictions from the salmon de-
tector. The green boxes are the annotated bounding boxes. The red boxes are predicted by the
model. The predicted class indicator and confidence score are written in white.



CHAPTER 5. SALMON RE-IDENTIFICATION APPROACH 28

5.3 Module 2: Body part detection

The second Module of the pipeline detects salmon body parts. For reasons described in the

previous section, body parts are detected using a faster R-CNN model. Like in Module 1, the

body part detection model has been pre-trained on Imagenet1k to make a foundation for ob-

ject detection. The following provides a more detailed description of the model training and

evaluation.

5.3.1 Model training

Table 5.3: Optimal model configuration found during training the body part detector.

Configuration Value Description

Backbone ResNet-50 Feature extraction backbone network
Pre-trained True Model is pre-trained on ImageNet1k
Batch size 10 Number of images per optimization cycle
Optimizer SGD Optimization algorithm
Learning rate 0.001 Initial learning rate for training
Momentum 0.9 Momentum for SGD
Weight decay 0.0005 L2 regularization penalty
Learning rate scheduler Step LR Step size = 20. Gamma = 0.5
Epochs 58 Total number of training set iterations

The body part detector is trained on dataset 2, which contains 481 images. The same per-

centage division from section 5.2 is used for splitting the dataset into training-, validation- and

test sets for the body part detector. The model parameters from Module 1 were used as a start-

ing point for training the body part detector. Figure 5.3 shows the model�s configuration after

training and validation. The batch size parameter is turned up as dataset 2 contains smaller im-

ages. The GPU can, therefore, handle more images in memory simultaneously. After 58 epochs,

the model reached its best performance on the validation set, and the training was therefore cut

off.

5.3.2 Model evaluation

The body part detector is evaluated on a test set containing 97 images. Table 5.4 shows the re-

sults from the model evaluation on the test set. It achieves an mAP@50:95 of 87%. This is lower

in comparison with Module 1 of the pipeline, but still a high performance. The lower perfor-

mance may be explained by the size differences between datasets 1 and 2. Fewer images in the

training set lead to worse model training and, therefore, a lower mAP. The lower dataset size for
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Table 5.4: Test set results for body part detection.

Metric Value

mAP@50:95 0.8697
mAP@0.50 0.9958
mAP@0.75 0.9689
mAP (large objects) 0.8829
mAP (medium objects) 0.8394
mAP (small objects) 0.7763

the evaluation set leads to a more uncertain estimated mAP, which can impact the mAP estimate

in any direction. The detector achieves a high mAP for large body parts, and it decreases with

size. mAP for small objects reflects the performance of eye detection since this is the only body

part that covers less than 322 pixels for many of the examples. The body part detector is worse

at predicting the presence and location of the salmon eyes. The eyes are harder to predict in

general as they are small and cover fewer pixels and, therefore, express less information than

bigger body parts.

5.3.3 Body part detection examples

Figure 5.3 shows the most common erroneous predictions from the body part detector. The

top image shows correct predictions for all body parts except the pectoral fin. Also, the eye is

predicted twice in this image, where one prediction is from another individual. The prediction

on the other individual has a very high confidence, but in this case, it can be filtered out by

selecting the prediction with the highest confidence value for each body part. In the bottom

image, the body part predictions have a high IoU except for the dorsal fin. It has predicted the

dorsal fin to be larger than it is, likely due to the foam on the water surface behind the fin. This

may indicate that the body part detector has not been trained well enough on images of fish

near the water’s surface.

5.4 Module 3: Salmon re-identification

The last Module of the pipeline is re-identification. Each body part of the salmon is put into

an image classification model. The image classification model links a body part to its individ-

ual. ResNet101 is chosen as it is a very deep network, which results in the capacity to extract

many highly complex features. A deep instead of a wide network leads to a higher model ca-

pacity with fewer trainable parameters due to shortcut connections. Shortcut connections lead

to easier training of deep neural networks and higher accuracy than networks with the same
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Figure 5.3: Examples of most common erroneous/imprecise predictions from body part detec-
tor. The green boxes are the annotated bounding boxes. The red boxes are predicted by the
model. The predicted class indicator and confidence score are written in white.
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depth, [26]. The model is trained on dataset 3, which contains 330 images per body part and,

in total, 1650 images. The model is trained with a cross-entropy loss function 3.1, as this is a

multi-classification problem.

5.4.1 Model training

Figure 5.4: The figure shows the training process for each body part re-identification model
using Rank-1 accuracy as the performance metric. Each body part model is assigned a unique
color for the training- and validation curves.

There are in total five re-identification models. Every body part from the salmon has its re-

identification model. The training and validation set for each of the models contains 125 images.

To avoid class imbalances between individuals, the number of training images per individual is

set to the individual with the lowest occurrences in the dataset. Figure 5.4 shows the accuracy

for each re-identification model during training. The solid lines show the training accuracy,

and each model is assigned a color. The validation accuracy is shown by the dotted lines. For

the thorax re-identification model, the training and validation accuracy are very close over the

training period, which indicates that the sets are similar. The re-identification models for thorax,
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eye, and dorsal fin converge quickly to top accuracy on the training set when comparing them

to the models for pectoral fin and tail fin. This indicates that their training sets are easier to learn

from or that these body parts are more informative. However, to get a more realistic view of how

the models perform, we need to review the test results.

The model for tail fin performs worse on the training and validation sets than the model for

dorsal fin. This is interesting because these body parts are quite similar. Despite this, it seems

like there is more biometric information in the dorsal fin than in the tail fin. By comparing

the dorsal fin training dataset B.2 to the tail fin training dataset B.5, it is clear that the dorsal

fins have more prominent scars and deformations than the tail fins. The scars make it easier to

distinguish between individuals using the dorsal fin. Because of this, it might be more suitable

for re-identification than the tail fin.

The model for the pectoral fin performs better on the training data than the model for the

tail fin. This is surprising, as it is quite thin and small. Therefore, distinctiveness from, e.g., scars

is not as prominent. Appendix B.3 shows that there are slight differences between individuals in

fin shape. However, the fin angle is stable and unique for each individual. Jannik has its pectoral

fin in a more downward position than others. Carlos has a more upward fin than others. Roger is

varying the fin position between down and up. Looking into the tail fin training dataset B.5, you

can not see the same variation in angle between the individuals, and this may be why images of

the pectoral fin are better at distinguishing individuals from each other than images of the tail

fin.

5.4.2 Model evaluation

The body part models are evaluated on test sets for each body part. The test set evaluation

results for the thorax- and dorsal fin model show the corresponding accuracies: 89% and 87.7%.

The eye-, pectoral fin-, and caudal fin models perform worse. Their respective accuracies are

54.8%, 52.1%, and 49.3%. These results indicate that thorax and dorsal fin are best suited for use

in a re-identification system.

Thorax

Figure 5.5 shows the results of using the thorax for salmon re-identification. The diagonal of the

matrix contains high values in almost every cell, which is good since this is where the predic-

tions and actual values overlap, giving a correct prediction from the model. It has low values

for the off-diagonal cells, which is a good result as they represent false predictions. For the tho-

rax model, the most common error is predicting the individual Daniil when shown images of

Alexander. Casper is being confused with Stefanos as well. This can be seen in figure 5.5 by

locating the off-diagonal cell, which coincides with the individuals of interest. Overall, the re-
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identification accuracy using the thorax is 89%, which is a fairly good result. Figure 5.6 presents

images of the most common errors for the thorax model. Image 1 shows an example where the

model predicted Daniil when shown an image of Alexander. Image 2 shows an image of Daniil

correctly predicted by the model. Comparing these images, one can see that the colors of their

bodies are similar. Furthermore, there are white colored debris in both images. The melanin

spot pattern, however, is not very similar, and the angles of the bodies are not the same. This

can indicate that the prediction is based on the color of their bodies and the debris in the im-

ages rather than the biometric information from the melanin spot pattern. Image 3 shows an

example where the model predicted Casper when shown an image of Stefanos. Image 4 shows

an image of Casper correctly predicted by the model. When comparing the two images, one

can see that the melanin spot pattern is different. However, they both have small dark scales in

the top portion of the body and have their melanin spot pattern mostly beneath these scales.

Their melanin spot pattern combines big and small spots, making the patterns seem equal at

first glance. This can indicate that the model has based its predictions on the combinations of

small dots on the top body and larger melanin spots below.

Figure 5.5: Module 3: Salmon re-identification test set results for thorax model. A confusion
matrix is shown with a color bar indicating the numeric value for each cell in the matrix.
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Figure 5.6: Common erroneous predictions from thorax model. Images from left to right: 1, 2, 3,
4

Dorsal fin

Figure 5.7 shows the test results of the re-identification model for the dorsal fin. The most com-

mon errors are predicting the individual Holger when shown images of Daniil. Another common

is predicting error Stefanos when shown images of Holger. The model achieves an accuracy of

44% on images of Daniil, which is the lowest of all individuals from the evaluation. The model

predicts the individual Holger in most cases where the actual individual is Daniil. It achieves an

accuracy of 60% on images of Holger, which is the second lowest. The model predicts Holger in

most cases where the actual individual is Stefanos. Figure 5.8 shows images of common errors

from the dorsal fin model. Image 1 shows an example where the model predicted Holger when

shown an image of Daniil. Image 2 shows an image of Holger correctly predicted by the model.

By comparing the image, one can see that the image of Daniil is quite blurry, which reduces the

texture information on the fin. However, it is possible to view the silhouette of the fin, which

looks similar to Holger’s in image 2. This indicates that the model focuses on the silhouette of

the fins when making this prediction. Image 3 shows an example where the model predicted

Stefanos when shown an image of Holger. Image 4 shows an image of Stefanos correctly pre-

dicted by the model. By comparing the images, one can see that the silhouettes of the fins are

very similar. The color patterns on the fins are also similar, as the top half of the fin is black, and

the bottom half is green/brown. There is also a white tint on the narrowest part of the fin, which

increases the similarity between Stefanos and Holger. However, the image of Holger is blurry,

and more emphasis is likely given to the traits like the silhouette and color pattern.

Eye

Figure 5.9 shows the test results of the re-identification model for the eye. This confusion matrix

is more chaotic than the two previous body part models as there are more off-diagonal non-zero

cells. The most common error is predicting the individual Novak shows images of Alexander.
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Figure 5.7: Module 3: Salmon re-identification test set results for dorsal fin model. A confusion
matrix is shown with a color bar indicating the numeric value for each cell in the matrix.

Figure 5.8: Common erroneous predictions from dorsal fin model. Images from left to right: 1,
2, 3, 4

The model achieves an accuracy of 20% on images of Alexander, which is the lowest in the con-

fusion matrix. The model predicts Novak in most cases where the actual individual is Alexander.

It achieves an accuracy of 22% on images of Novak, which is the second lowest accuracy. The

model achieves 100% on images of Casper and Holger. Figure 5.10 shows images of common

errors for the eye model. Image 1 shows an example where the model predicted Novak when

shown an image of Alexander. Image 2 shows an image of Novak correctly predicted by the
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model. By comparing the images, one can see that Alexander�s eye is clearly visible as opposed

to Novak�s. The size of the eyes is similar, but the iris from Alexander is a bit bigger and more

defined than Novaks�s. The iris of Alexander has a white tint on the top half, but it seems that

debris covers large parts of the left of Novak�s eye. This indicates that the model has focused

on the shape of the eye, and its position in the image to make this prediction. These factors are

influenced by the annotation process, as the bounding box is not equally tight on all eye images.

Image 3 shows an example where the model predicted Holger when shown an image of Novak.

Image 4 shows an image of Holger correctly predicted by the model. By comparing the images,

one can see that the iris is ambiguously defined for both individuals, likely due to environmen-

tal factors. However, the image of Holger is darker than Novak�s. This indicates that the model

focuses on the iris to make the prediction.

Figure 5.9: Module 3: Salmon re-identification test set results for the eye model. A confusion
matrix is shown with a color bar indicating the numeric value for each cell in the matrix.

Pectoral fin

Figure 5.11 shows the test results of the re-identification model for the pectoral fin. The most

common error is prediciting the individual Daniil when shown images of Holger. Another com-

mon error is predicting the individual Stefanos when shown images of Casper. The model
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Figure 5.10: Common erroneous predictions from eye model. Images from left to right: 1, 2, 3, 4

achieves an accuracy of 20% on images of Roger and Jannik, which is the lowest in this con-

fusion matrix. It also achieves an accuracy of 100% on images of Daniil. Figure 5.12 shows

images of the most common error for the pectoral fin model. Image 1 shows an example where

the model predicted Daniil when shown an image of Holger. Image 2 shows an image of Daniil

correctly predicted by the model. By comparing the images, one can see that the fins have the

same angle from the body. The images are blurry, so no textural information can be used here.

This indicates that the model focuses on the fin angle in this prediction. Image 3 shows an ex-

ample where the model predicted Stefanos when shown an image of Casper. Image 4 shows an

image of Stefanos correctly predicted by the model. By comparing these images, one can see

that they have the same angle from their bodies; both are facing upwards. However, as the im-

age of Casper�s fin is clearer, it is shown that his fin is wider and darker than Stefanos� fin. This

indicates that the model focuses on the width and color of the fin and its angle to the body in

this prediction.

Caudal fin

Figure 5.13 shows the test results for the re-identification model of the caudal fin. The model

achieves an accuracy of 11% on images of Daniil, which is the lowest for any individual regard-

less of body part. It also achieves an accuracy of 22% on images of Novak, which is the second

lowest accuracy for the dorsal fin model. It achieves an accuracy of 100% on images of Casper.

The most common error is predicting the individual Jannik when shown images of Roger. An-

other common error is predicting the individual Roger when shown images of Daniil. Figure

5.14 shows images of the most common errors. Image 1 shows an example where the model

predicted Jannik when shown an image of Roger. Image 2 shows an image of Jannik correctly

predicted by the model. By comparing the images, one can see that both have black regions on

the edge of the fin. Jannik has a rough edge, while Roger has a smooth edge. It seems like with

more optimization, the model can be able to distinguish between Jannik and Roger correctly, as

the roughness of the fin may be good enough biometric information. However, other than the
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Figure 5.11: Module 3: Salmon re-identification test set results for pectoral fin model. A confu-
sion matrix is shown with a color bar indicating the numeric value for each cell in the matrix.

Figure 5.12: Common erroneous predictions from pectoral fin model. Images from left to right:
1, 2, 3, 4

roughness of the fin, the fins are highly similar, making it difficult to distinguish these individu-

als by using the caudal fin. Image 3 shows an example where the model predicted Roger when

shown an image of Daniil. Image 4 shows an image of Holger correctly predicted by the model.

By comparing these images, one can see a difference between the edges of the fins. Daniil�s

fin is rougher and has a deep cut, which seems to hold enough information for re-identification

purposes. Roger�s fin seems darker than Daniil�s, but this may be because of the illumination

difference between the images. Roger also has a more pointy fin than Daniil. Here, one can
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also imagine that the model can do better with more optimization. Model optimization was not

prioritized in this work because of time limitations and there were other more pressing tasks for

accomplishing the objectives for the thesis.

Figure 5.13: Module 3: Salmon re-identification test set results for caudal fin model. A confusion
matrix is shown with a color bar indicating the numeric value for each cell in the matrix.

Figure 5.14: Common erroneous predictions from caudal fin model. Images from left to right: 1,
2, 3, 4
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5.4.3 Explainable AI on model predictions

Integrated gradients is used during the project to see how the model performs on a detailed

level, [21]. This is an XAI method that shows how the model arrived at a prediction. It high-

lights the most important pixels in the input image. This is useful as it becomes evident if the

model uses informative parts of the image, such as the fish, or if it uses unimportant parts of

the image, such as the background. By seeing this, you can take a more informed action to im-

prove the model performance, such as adding specific images to the dataset or adjusting data

augmentation techniques or parameters. We have used this method and decided to add images

to the dataset from different perspectives and locations in the tank, improving model perfor-

mance. Below, interesting cases for the thorax are shown with the Integrated Gradient masks

overlapped.

Figure 5.15 shows eight images of the same salmon individual, Novak. The images are taken

from the test set, and one can see that they show different perspectives. Comparing the images,

one can see that the model finds the same spot on the melanin pattern in all of the images except

for the last one. In the images where it locates this spot, the model confidence is above 80%.

However, when it does not manage to find this spot, the confidence drops to around 70%. This

tells us that one spot is important for identifying Novak. However, as the confidence is still high

when it does not find this spot, it seems like other parts of the pattern are also important. When

the angle is different, other parts of the melanin pattern are more focused on. This may indicate

that the model has a feature hierarchy, where a combination of several features describes an

individual, and some are more important than others.

Figure 5.16 shows images of Alexander overlapped with the Integrated Gradients mask. The

top row shows correct predictions, and the bottom row shows false predictions. Across most

images, one can see that the model has overfitted to the pectoral fin in the bottom right corner

of the images. The pectoral fin is absent in the last two images, resulting in a confidence of

0.5% and 0%. In all the correctly predicted images in the top row, the model clearly highlights

the pectoral fin. This shows that the model mostly focuses on parts of the fish that do not have

much biometric value, the base of the pectoral fin. It also considers the melanin pattern, but

it seems like the fin is the distinguishing factor from other individuals. The model would likely

have performed better if the base of the pectoral fin had been cropped out of the images, as it

could have focused more on the melanin pattern.
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Figure 5.15: An interesting example of the use of the Integrated Gradients method to show which
parts of the image are important for the prediction of the model. The input image is shown with
overlaps of the Integrated gradients masks, which highlight the important pixels of the image.

Figure 5.16: An interesting example of the use of the Integrated Gradients method to show which
parts of the image are important for the prediction of the model. The input image is shown with
overlaps of the Integrated gradients masks, which highlight the important pixels of the image.



Chapter 6

Results from salmon re-identification

pipeline and discussion

This chapter presents the evaluation results for the salmon re-identification pipeline and dis-

cusses the results of the re-identification of salmon using body parts in a bigger context.

6.1 Pipeline evaluation

To test the body-part re-identification pipeline and compare its results to the evaluation of Mod-

ule 3 in section 5.4.2, assumptions about the incoming data and predictions are made. The

pipeline is tested with the same test set as in Module 3.

Assumptions

1. The predicted salmon with the highest confidence belongs to the annotated individual.

2. For each body part, the prediction with the highest confidence belongs to the annotated
individual.

3. Calculating the accuracy of input-output in Module 3 is equal to calculating the accuracy
of the input-output in the pipeline.

Assumption 1 is made because it eases the implementation of the pipeline. Datasets 1, 2,

and 3 do not include annotations for all individuals in the video recordings, and it is necessary

to make some assumptions to evaluate the pipeline. It is assumed that the detection model in

Module 1 always predicts the individual annotated for each image. For some images, there is

more than one individual that is annotated, but this is only for a small set of images, and the

error from this is, therefore, small compared to the dataset size. A false prediction in Module

1 can carry errors through the rest of the pipeline. Considering the performance of Module 1,

42
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which is mAP@50:95 = 93.87% on the test set, assumption 1 does not always hold, but it is a

good assumption for most images. Assumption 2 is made because it eases the implementation

of the pipeline. Dataset 2 contains images of, at most, a single whole salmon. However, this

does not guarantee that parts of other salmon are not present within these images. Considering

the performance of Module 2, which is mAP@50:95 = 86.97% on the test set, assumption 2 does

not always hold, but it is a good assumption for most images. A false prediction in Module 2 can

lead to imprecise accuracy calculation in Module 3. There are also cases where Module 2 fails to

predict a body part. Consequently, the test set becomes smaller as Module 3 gets less input data,

and the resulting accuracy estimate becomes more uncertain as it is based on fewer examples.

Assumption 3 is made because it simplifies the calculation of accuracy for the pipeline. It is

assumed that the accuracy of Module 3 with input from Modules 1 and 2 is equal to the total

accuracy of the pipeline. This implicitly assumes that Modules 1 and 2 perfectly predict the

presence of an individual. In general, this is not a good assumption. However, with our dataset,

the assumption is good as the fish and its body parts are visible in each image. By accepting

these assumptions, we are estimating the accuracy of Module 3 with bounding box fluctuations

given by Modules 1 and 2. Keeping the assumptions in mind, the accuracy estimate is calculated

based on the input and output of Module 3. This way, we can compare the accuracy estimate in

section 5.4.2, and see how fluctuations in bounding box predictions from Modules 1 and 2 affect

the re-identification accuracy in Module 3.

Figure 6.1 shows the test set accuracies achieved by the body part re-identification pipeline.

The pipeline achieves both high accuracies for images of the thorax and dorsal fin with 87.7%

and 86.3%, respectively. The accuracy of Module 3 on the thorax and dorsal fin from section

5.4.2 is 89% and 87.7%, respectively. Comparing the results from figure 6.1 to results from the

evaluation of Module 3 in figures 5.5 and 5.7, the re-identification accuracies on images of the

thorax and dorsal fin have dropped by 1.3% and 1.4%, respectively. The re-identification accu-

racies on images of the Eye, pectoral fin, and caudal fin perform worse than for images of the

thorax and dorsal fin. Re-identification on images of the eye, pectoral fin, and caudal fin per-

forms with an accuracy of 50%, 43.1%, and 49.3%, respectively. The accuracy of Module 3 on

the eye, pectoral fin, and dorsal fin from section 5.4.2 is 54.8%, 52.1%, and 49.3%, respectively.

Comparing the results from images of the eye, pectoral fin, and the caudal fin from figure 6.1 to

the evaluation of Module 3 in figures 5.9, 5.11, and 5.13, the accuracies have dropped 4.8%, 9%,

and 0% respectively. The re-identification accuracy for images of the pectoral fin has dropped

below the caudal fin, making it the worst-performing body part for re-identification. For im-

ages of the eye and pectoral fin, the re-identification accuracy has dropped considerably. This

indicates that images of these body parts are inaccurately located in Module 2. On the other

side, using images of the caudal fin, the re-identification accuracy has not dropped at all. This

indicates that the caudal fin is precisely located in Module 2.



CHAPTER 6. RESULTS FROM SALMON RE-IDENTIFICATION PIPELINE AND DISCUSSION 44

Figure 6.1: Test set results for salmon re-identification pipeline. This shows the accuracy of the
salmon re-identification model using images of multiple body parts.

6.2 Discussion

The results presented in the previous section show that using images of the thorax and dorsal

fin achieved the highest re-identification accuracy on the test dataset constructed in this the-

sis. As the thorax contains a melanin spot pattern, which is unique for every salmon, this body

part is expected to be highly informative. Therefore, it is no surprise that using the thorax for

re-identification yields the most accurate results. However, to our knowledge, no publications

exist using images of the dorsal fin for re-identification. The dorsal fin does not exhibit any

unique color pattern like the thorax. However, it is prone to damage and deformation, as seen

in the video recordings. The dorsal fin, therefore, has a unique look for the individuals in this

experiment. However, scars usually regenerate over time. Therefore, models using images of

the dorsal fin or any other fin may need to update their database continuously to maintain re-

identification accuracies over time.

The re-identification models using the eye, pectoral fin, and caudal fin show weak perfor-

mance compared to the models that utilize images of the thorax and dorsal fin. Some publica-

tions use images of the iris for re-identification, as seen in section 2.2. They achieve higher accu-

racy in their work than what we observe with our data. One has to keep in mind that their data is
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very different from ours. The data used here may not be appropriate for eye/iris re-identification

as the salmon swim in an occluded environment, and the distances from the camera reach far.

From figure 5.10, one can see that the depicted salmon body part images have a varying degree

of obscurity due to varying distances, illumination, and debris in the water. Furthermore, the

resolution of the eye images is low, and the pattern of the iris is, therefore, harder to differen-

tiate for a neural network. No publications on using images of the pectoral and caudal fin for

re-identification exist to our knowledge. Similar to the dorsal fin, these fins are unique regard-

ing scars and deformities, but to a lower degree. Also, the pectoral fin is usually angled in such a

way that it is difficult to capture the whole fin from where the camera is located, as can be seen

in figure 5.12. The caudal fin is continuously moving, thereby changing its shape. This makes it

difficult to differentiate between pose variability and individual variability, which is likely why

the caudal fin re-identification models perform so poorly.

The number of individual fish analyzed in this project is a limiting factor. Out of 30 individ-

uals, 8 were analyzed using the re-identification pipeline. A higher number of individuals will

give a more accurate estimation of the re-identification accuracy, as a large set of individuals will

give more confidence in how re-identification models will perform in general for the Atlantic

salmon species. 16 individuals were annotated, but due to the large image imbalances between

individuals, the 8 individuals with the most annotated images were analyzed. 250 images per

individual are used for training, and 10 from a new video are used for evaluating the models and

pipeline. More data is always desired; however, as we achieve high accuracies for some body

parts, it seems that one can also manage to train deep learning models for re-identification with

limited data.

The results from this thesis help build insight into how certain parts of the salmon are better

suited for re-identification than others. With this knowledge, one can build faster and more ro-

bust algorithms in the future. By focusing on the fish’s most informative parts, one can manage

with less data than using other parts of the fish. It allows the use of multiple body parts simul-

taneously to determine an individual’s identity. A voting system, where each body part votes

for an individual, can improve re-identification accuracy, as relying on more than one trait can

provide more stable results. For example, one can make the most informative body parts, such

as the thorax and dorsal fin, carry more weight in the decision.

The physical re-identification methods like tagging and fin clipping, which hurt the fish, may

soon be replaced by more salmon welfare-friendly methods based on, e.g., computer vision. The

results presented here are a step towards using computer vision as the main re-identification

method in research and production. This is important also due to the costs and time of physi-

cally tagging fish. With computer vision, the cost is potentially lower, as placing a few cameras

in a farming facility can cover a large volume inside the cage. Innovation in re-identification

algorithms can save fish farmers cost and time in the future.



Chapter 7

Conclusion and Recommendations for

Further Work

In this Master�s thesis, a salmon re-identification pipeline is successfully developed. The pipeline

takes images from video material and predicts the individuals based on body part images. The

salmon detection module achieves an mAP@50:95 of 93.87%. The salmon body-part detection

module achieves an mAP@50:95 of 86.97%. The salmon re-identification module is split into

models for each body part of the salmon. Evaluating the re-identification module on a separate

test set yields the following accuracies for each body part: Thorax (89%), dorsal fin (87.7%), eye

(54.8%), pectoral fin (52.1%), and caudal fin (49.3%). By evaluating the pipeline as a whole, the

re-identification accuracy on images for each body part is the following: Thorax (87.7%), dorsal

fin (86.3%), eye (50.0%), pectoral fin (43.1%), and caudal fin (49.3%).

Objective 1 is to develop a salmon re-identification pipeline with Deep learning models us-

ing body parts to re-identify an individual. As seen in chapter 5, this objective is accomplished.

The pipeline takes underwater images of salmon as input. Individual salmon are detected in

Module 1 with a Faster R-CNN model. They are cropped out of the image and sent into a body

part detection model in Module 2 with a Faster R-CNN model. Finally, in Module 3, the body

parts are sent into body part re-identification models that assign body parts to individuals. Ob-

jective 2 is to analyze the body parts using the re-identification pipeline to find the body parts

with the most biometric information. As seen in chapter 6, this is accomplished, and the results

from this analysis are presented in figure 6.1.

In chapter 2, salmon welfare and the current state of the art within salmon re-identification

are discussed. Relevant theory for the techniques used in this project is found in chapter 3.

Datasets are constructed for each module and are used for model training and evaluation, as

shown in chapter 4. In chapter 5, the developed re-identification pipeline and module evalua-

tion is presented. Evaluation of the pipeline is presented in chapter 6, along with a discussion

about the significance of the technology.
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The results from this thesis are a step toward automatic welfare analysis of farmed Atlantic

salmon. Knowing which parts of the salmon’s body give information about the individual�s

identity is valuable. This knowledge helps construct faster and more robust re-identification

algorithms. Being able to re-identify each individual in a fish farm makes it easier to evaluate

each individual�s welfare. When you know how the fish population perceives their life, you can

take appropriate action to improve it if needed.

There are things that can be done to improve the approach and results in this thesis. For

the short term, optimizing the re-identification models for each body is a way to gain higher

accuracy for the re-identification. One can tune the model’s hyperparameters by intuition or

do a more systematic approach by using grid search, random search, or Bayesian optimization.

Another thing is implementing a Siamese network to perform re-identification based on the dis-

tance between images. Such an approach can be generalized to open-set re-identification. This

is good as one can compare the similarity between an individual in the training set and individu-

als not present in the set. There is, however, no guarantee that this approach would perform bet-

ter than the one in this thesis on the closed-set task, but it would be interesting to compare the

performance of these approaches. In the medium term, one can develop a semi-automated an-

notation tool that makes datasets from video recordings. Such a tool can be iteratively improved

by manually inspecting, adjusting, and re-training accordingly. One can also add new body parts

to the dataset so that more body parts are analyzed. A known problem within re-identification is

perspective variation. One can lower the perspective variation between images by transforming

the input data to a standardized perspective. This can make the re-identification models more

robust towards perspective changes. In the long term, one can create other approaches for re-

identifying salmon. One approach can be annotating the melanin spots on the salmon body

using bounding boxes or segmentation masks. As mentioned above, one can semi-automate

the annotation process, which can drastically improve the dataset creation. Then, one can re-

identify salmon based on the pattern directly. One can use detection or segmentation models to

extract the meaning pattern from the body, standardize the perspective, and compare patterns

using metrics like, e.g., IoU. It would be interesting to compare this approach to the body part

re-identification approach in this thesis.



Appendix A

Acronyms

AI Artificial intelligence

COCO Common objects in context

IoU Intersection over union

FPN Feature-pyramid network

R-CNN Region-based convolutional neural network

ResNet Residual network

RPN Region proposal network

XAI Explainable Artificial Intelligence
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Appendix B

Training data and results from pipeline

evaluation

B.1 Training datasets for re-identification models
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Figure B.1: Training dataset for thorax re-identification model with data augmentation applied.
The images in the figure are sorted for ease of comparing images for different individuals. The
letter in the bottom right of every image is the first letter of the name of the individual.
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Figure B.2: Training dataset for dorsal fin re-identification model with data augmentation ap-
plied. The images in the figure are sorted for ease of comparing images for different individuals.
The letter in the bottom right of every image is the first letter of the name of the individual.
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Figure B.3: Training dataset for pectoral fin re-identification model with data augmentation ap-
plied. The images in the figure are sorted for ease of comparing images for different individuals.
The letter in the bottom right of every image is the first letter of the name of the individual.
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Figure B.4: Training dataset for eye re-identification model with data augmentation applied.
The images in the figure are sorted for ease of comparing images for different individuals. The
letter in the bottom right of every image is the first letter of the name of the individual.
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Figure B.5: Training dataset for tail fin re-identification model with data augmentation applied.
The images in the figure are sorted for ease of comparing images for different individuals. The
letter in the bottom right of every image is the first letter of the name of the individual.
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B.2 Confusion matrices from pipeline evaluation

Figure B.6: Pipeline: Salmon re-identification test set results for thorax model.
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Figure B.7: Pipeline: Salmon re-identification test set results for dorsal fin model.

Figure B.8: Pipeline: Salmon re-identification test set results for eye model.
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Figure B.9: Pipeline: Salmon re-identification test set results for pectoral fin model.

Figure B.10: Pipeline: Salmon re-identification test set results for caudal fin model.
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