
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f C

iv
il 

an
d 

En
vi

ro
nm

en
ta

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Thomander Blichfeldt

Structural Optimization of the
Crossbar on the X-Rotor Offshore
Wind Turbine Concept

Master’s thesis in Civil and Environmental Engineering
Supervisor: Michael Muskulus
June 2024





Thomander Blichfeldt

Structural Optimization of the
Crossbar on the X-Rotor Offshore Wind
Turbine Concept

Master’s thesis in Civil and Environmental Engineering
Supervisor: Michael Muskulus
June 2024

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering





PREFACE

The research presented in this thesis is conducted in the context of optimizing the structural design
of the X-rotor offshore wind turbine, a concept that holds immense promise for sustainable energy
solutions. The insights gained from this study aim to contribute to the ongoing efforts to make
renewable energy structures more efficient and cost-effective by enhancing their design and material
usage.

This master’s thesis has been an incredible journey, providing me with extensive academic know-
ledge and fostering significant personal growth. The experiences and challenges I faced have
broadened my perspective, enhancing my problem-solving skills and perseverance.

I would like to express my deepest gratitude to my main advisor, Michael Muskulus, for his
invaluable guidance and support throughout the course of this thesis. His expertise and insightful
feedback have been crucial in navigating the complexities of this research, and his encouragement
has been a constant source of motivation.

I am also grateful to the students in my study hall, whose collaboration and mutual support have
created an enriching and stimulating study environment. Their camaraderie and shared dedication
have greatly contributed to the progress of my work.

Furthermore, I would like to extend my gratitude to the Department of Engineering at NTNU for
providing the resources and support necessary to complete this research.

Finally, I extend my heartfelt thanks to my family for their unwavering support and encouragement
throughout my academic endeavors. Their belief in me has been a pillar of strength during both
the highs and lows of this journey.

This thesis marks a significant milestone in my academic career, and I am excited to apply the
knowledge and skills I have acquired to future challenges in the field of engineering.

”Everything should be made as simple as possible, but not simpler.”

– Albert Einstein

Date: 17. June, 2024
Thomander Blichfeldt
Norwegian University of Science and Technology

i



ABSTRACT

(English)

The primary objective of this thesis is to optimize the structural design of the Load Reduction
System (LRS) of the X-rotor offshore wind turbine, aiming to reduce material costs while maintain-
ing structural integrity under ultimate limit state (ULS) and fatigue limit state (FLS) conditions
over a 20-year period. The study evaluates the impact of three key parameter changes: top tower
height, member cross-section, and top tower cross-section on the total structural volume.

Employing the Beam Elements Framework (BEEF) and the Non-Linear Optimization (NLopt)
Python packages, finite element analysis (FEA) and non-linear optimization were performed on the
crossbar structure. The study compares the initial design with a modified structure incorporating
an additional tower and support members to determine if the inclusion of these elements can
sufficiently reduce stress in the crossbar. This reduction aims to offset the added material costs,
achieving overall cost savings.

A comprehensive linear static analysis was conducted to determine the internal forces and displace-
ments within the structure. The optimization process targeted minimizing the crossbar diameter
and thickness, as well as the dimensions of the added tower and support members, to achieve an
overall reduction in material usage.

The most material-efficient configurations were identified as a 7-meter top tower height, a 1.0-meter
diameter and 0.02-meter thickness for the members, and a 3.60-meter diameter with a 0.06-meter
thickness for the top tower. These configurations resulted in a total structural volume reduction
to 99.64 m2 from an initial 100.01 m2, corresponding to a material saving of approximately 2.9
tons. This translates to a cost saving of 24.650 NOK, based on a steel price of 8 500 NOK per ton.

However, the analysis highlighted the necessity for comprehensive capacity checks to ensure all
structural components meet required load-bearing capacities. Future work should explore de-
tailed capacity evaluations, optimization of load paths, and a cost-benefit analysis considering
installation, maintenance, and lifecycle costs. Additionally, the feasibility of alternative structural
configurations, such as adding a third arm to the X-rotor, and expanded optimization objectives
including material selection and lateral deflections, should be investigated.

ii



(Norsk)

Hovedmålet med denne avhandlingen er å optimalisere den strukturelle utformingen av Load
Reduction System (LRS) for en offshore X-rotor vindturbin, som m̊al å redusere materialkost-
nadene samtidig som den strukturelle integriteten opprettholdes under bruddgrensetilstander og
utmattingsgrensetilstander over en periode p̊a 20 år. Oppgaven her evaluerer effekten av tre
nøkkelparameterendringer: høyde p̊a støttesøylen, tverrsnitt av støtteelementene, og tverrsnitt av
støttesøylen, p̊a det totale volumet til strukturen.

Ved bruk av Beam Elements Framework (BEEF) og Non-Linear Optimization (NLopt) Python-
pakker, ble finite element analysis (FEA) og ikke-lineær optimalisering utført p̊a strukturen. Op-
pgaven sammenligner den opprinnelige strukturen med en modifisert struktur som inkorporerer et
ekstra t̊arn og støtteelementer for å avgjøre om inkluderingen av disse elementene kan redusere
stresset i strukturen tilstrekkelig. Denne reduksjonen tar sikte p̊a å oppveie de ekstra materialkost-
nadene, og oppn̊a totale kostnadsbesparelser.

En omfattende lineær statisk analyse ble gjennomført for å bestemme de interne kreftene og for-
skyvningene i strukturen. Optimaliseringsprosessen hadde som m̊al å minimere strukturens dia-
meter og tykkelse, samt dimensjonene til det ekstra t̊arnet og støtteelementene, for å oppn̊a en
samlet reduksjon i materialbruken.

De mest materialeffektive parameterene var en t̊arnhøyde p̊a 7 meter, støtteelementer p̊a 1.0 meter
diameter og 0.02 meter tykkelse, og 3.60 meter diameter med 0.06 meter tykkelse for t̊arnet.
Disse parameterene resulterte i en reduksjon av det totale strukturelle volumet til 99.64 m³ fra
opprinnelig 100.01 m³, noe som tilsvarer en materialbesparelse p̊a omtrent 2.9 tonn. Dette gir en
kostnadsbesparelse p̊a 24 650 NOK, basert p̊a en st̊alpris p̊a 8 500 NOK per tonn.

Analysen fremhevet imidlertid nødvendigheten av omfattende kapasitetskontroller for å sikre at
alle strukturelle komponenter oppfyller de nødvendige bæreevnekravene. Fremtidig arbeid bør
utforske detaljerte kapasitetsvurderinger, optimalisering av lastbaner og en kost-nytte-analyse som
tar hensyn til installasjons-, vedlikeholds- og livssykluskostnader. I tillegg bør gjennomførbarheten
av alternative strukturelle parametere, som å legge til en tredje arm til X-rotoren, og utvidede
optimaliseringsm̊al inkludert materialvalg og laterale forskyvninger, undersøkes.

iii



TABLE OF CONTENTS

Preface i

Abstract ii

Contents vi

List of Figures vii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theory 3

2.1 Finite Element Method and Beam Theories . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Beam Element Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Euler-Bernoulli Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.4 Timoshenko Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Fatigue Phenomenon and Damage Mechanisms . . . . . . . . . . . . . . . . 8

2.2.2 S-N Curve Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Cumulative Fatigue Damage rev . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Structural Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.5 Single-Criterion vs. Multiobjective Optimization . . . . . . . . . . . . . . . 12

2.3.6 Deterministic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.7 Non-Linear Optimization (NLopt) . . . . . . . . . . . . . . . . . . . . . . . 12

iv



3 Methodology 14

3.1 Load Cases and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Initial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Structural Modeling of Initial Structure . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Linear Static Analysis with BEEF . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Stress Range and Fatigue Damage Analysis - Initial Structure . . . . . . . . 19

3.3 Structure With Load Reduction System (LRS) . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Structural Modeling of LRS Structure . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Linear Static Analysis of LRS Structure . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Stress Range and Fatigue Damage Analysis - LRS . . . . . . . . . . . . . . 21

3.4 Optimization of Crossbar Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 ULS Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 FLS Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 Optimization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.4 Gradient Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results and Discussion 27

4.1 Structural ULS Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Optimization of Critical Load Cases . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Structural Response and Load Redistribution . . . . . . . . . . . . . . . . . 28

4.1.3 Comparison of Element Numbers . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Fatigue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Stress Ranges for ULS minimum dimensions . . . . . . . . . . . . . . . . . . 32

4.2.2 Element Stress vs External Load Stress . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Optimizing FLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Final Analysis and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Conclusion to parameter changes . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 41

Bibliography 43

Appendices 43

A Tables of Higest and Lowest Forces and Moments Through All Load Cases 44

B Linear Static Analysis Code 45

v



C Code for Structure Material Properties 52

D External Forces for Load Case 18 54

E Supplementary codes 56

F Fatigue codes 67

G Gradient Calculator 68

H Structure Analysis Load Reduction System 71

I Optimization Code for ULS 80

J Optimization Code for FLS 86

vi



LIST OF FIGURES

2.1 Beam Element with applied distributed and concentrated applied loads and member-
end forces [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The local stiffness matrix, from a three-dimensional Timoshenko beam elements,
undergoing axial, torsional and bending deformations [5]. . . . . . . . . . . . . . . 4

2.3 Bending and shear deformations of an infinitesimal beam element in both (a) xy-
plane and (b) xz-plane [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 A tubular T joint showing a possible crack region due to fatigue damage, defining
the hot-spot stress [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 S-N curve used for predicting fatigue life based on stress range and number of cycles,
for different joint classes in air environment [10]. . . . . . . . . . . . . . . . . . . . 10

3.1 The initial assembly structure with 12 crossbar elements and 2 tower elements . . 16

3.2 Forces and Moments on Crossbar Ends [14]. . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Local coordinate system of the element lowest of the base tower. . . . . . . . . . . 18

3.4 The assembly structure with added tower and member parts . . . . . . . . . . . . 22

4.1 Deflection behavior of the LRS structure with crossbar diameter of 7 m and thickness
of 0.8 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Deflection behavior of the LRS structure with crossbar diameter of 1 m and thickness
of 0.3 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Displacement behavior of the LRS structure with different configurations . . . . . 30

4.4 Deflection of crossbar with LRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Offshore wind energy is an emerging sector with significant potential for sustainable energy solu-
tions. Among the innovative concepts in this field, the X-rotor offshore wind turbine stands out
due to its unique design aimed at reducing the cost of energy production. The X-rotor concept,
introduced by William Leithead and his team, seeks to lower both capital and operational costs
associated with offshore wind turbines. This is achieved through a novel design that integrates fea-
tures from both vertical axis wind turbines (VAWTs) and horizontal axis wind turbines (HAWTs).

Historically, VAWTs have struggled to compete with HAWTs due to lower aerodynamic efficiency
and higher drive train costs. The X-rotor addresses these issues by incorporating secondary hori-
zontal axis rotors, which are driven by the primary vertical axis rotor. This hybrid design increases
the energy capture while mitigating the high torque and low-speed challenges traditionally faced
by VAWTs. The secondary rotors enhance the overall system’s efficiency, allowing for a more
cost-effective power take-off without the need for heavy and expensive gearboxes.

The motivation behind this research stems from the potential of the X-rotor concept to significantly
reduce the cost of energy (COE) for offshore wind farms. According to the initial feasibility studies,
the X-rotor can reduce operational and maintenance (O&M) costs by up to 55% and capital costs
by up to 32% compared to existing offshore wind turbines. These reductions translate to a potential
decrease in COE by up to 26%. Such improvements are crucial for making renewable energy more
competitive and accelerating the transition to a sustainable energy future.

In addition to economic benefits, the X-rotor’s design offers practical advantages for offshore de-
ployment. The lower center of gravity and reduced overturning moments enhance stability, making
it suitable for floating platforms. Furthermore, the simplified power take-off system reduces the
need for heavy lift vessels during maintenance, further cutting down O&M costs.

Given these promising aspects, this thesis focuses on optimizing the structural design of the X-
rotor offshore wind turbine. By refining the crossbar and exploring the integration of additional
support structures, this research aims to enhance the efficiency and cost-effectiveness of the X-
rotor, contributing valuable insights to the field of offshore wind energy [1]. Building on previous
work, particularly the project thesis “Optimization of the x-rotor wind turbine structure”, some
key findings indicated potential material cost reductions through the implementation of additional
support structures [2].

1.2 Objective and Problem Statement

The X-rotor concept, despite its potential for significant cost reductions and enhanced performance,
requires further optimization of its dimensions. The primary challenge lies in balancing material
usage with structural integrity under various loading conditions over a 20 year period. The crossbar,
a critical component of the X-rotor design, must be robust enough to withstand these loads while
minimizing material costs.

Initial designs of the X-rotor have shown promise in reducing operational and maintenance costs.
However, the structural components, particularly the crossbar, still offer opportunities for optim-
ization. The addition of a central tower and support members could potentially reduce the stress

1



on the crossbar, allowing for a reduction in its dimensions. This change needs to be rigorously
analyzed to ensure that the overall material cost savings outweigh the added costs of the tower
and support members.

The goal of this research is to determine whether a modified structure, incorporating an additional
tower and support members, can achieve a net reduction in material costs while maintaining
or enhancing structural integrity. This study involves performing finite element analysis (FEA)
and non-linear optimization to determine the optimal dimensions of the crossbar and the added
structural components. Additionally, it evaluates the impact of these modifications on stress
distribution and material usage to assess potential material cost savings.

2



CHAPTER 2

THEORY

2.1 Finite Element Method and Beam Theories

2.1.1 Finite Element Method (FEM)

The Finite Element Method (FEM) is a powerful numerical technique used to solve complex
structural engineering problems. By discretizing a structure into smaller, simpler parts called finite
elements, as illustrated in figure 2.1, FEM allows for an accurate approximation of the structure’s
behavior under various loads and boundary conditions. Each element is connected at nodes, and
the behavior of the entire structure is derived by assembling the behavior of individual elements
[3].

Figure 2.1: Beam Element with applied distributed and concentrated applied loads and member-
end forces [4].

The notations in figure 2.1 includes:

• f1, f2, . . . , f12: Vectors of nodal internal forces and moments at the ends of the beam element.

• Pxi,Pyi,Pzi: Concentrated load vectors at location i of the element.

• Mxj ,Myj ,Mzj : Concentrated moment vectors at location j of the element.

• qx,qy,qz: Distributed load vectors along the beam.

• xi,xj : Local x-coordinates along the beam element’s length to location i and j, respectively.

Direct Stiffness Method

To calculate the local element member-end forces, the direct stiffness method can be used. In this
method, the member-end force vector {f}ij , can be expressed in terms of the element stiffness

matrices [k]jii and [k]ij , the transformation matrices [β]ij and [β]ji, and the global displacements
[∆]i and [∆]j . The relationship between these quantities is given by:

{f}ij = [k]jii[β]ij [∆]i + [k]ij [β]ji[∆]j (2.1)

3



Figure 2.2: The local stiffness matrix, from a three-dimensional Timoshenko beam elements,
undergoing axial, torsional and bending deformations [5].

The matrices [k]jii and [k]ij represent the stiffness properties of the beam element in its local

coordinate system. Specifically, [k]jii corresponds to the stiffness relating to the displaements at
node i, while [k]ij corresponds to the stiffness relating to the displacements at node j. From
the Timoshenko beam theory, described in section 2.1.4, the local stiffness matrix accounts for
both bending and shear deformations, shown in figure 2.2. Here, E is the materials Young’s
modulus, I are the elements second moment of area, and Φ̄ are the rotations related to the bending
deformations [5]. The [β]ij and [β]ji matrices, transforms the displacements of node i [∆]i, and
node j [∆]j , into the local coordinate system for the element [6].

2.1.2 Beam Element Theory

Beam elements are fundamental components in FEM used to model structures subjected to bend-
ing, shear, and axial loads. The underlying theory of beam elements can be based on different
assumptions, leading to varying levels of accuracy. The two most common theories are Euler-
Bernoulli and Timoshenko beam theories.

A beam is defined as a structure having one of its dimensions much larger than the other two. The
axis of the beam is defined along that longer dimension, and a cross-section normal to this axis
is assumed to vary smoothly along the length of the beam. Beam theory is crucial in structural
analysis because it provides a simple yet effective tool for analyzing numerous structures, offering
valuable insights during the pre-design stage.[7]

2.1.3 Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory, also known as the classical beam theory, is a fundamental ap-
proach in structural engineering for analyzing the load-carrying and deflection characteristics of
beams. It is based on a simplified linear theory of elasticity and is widely used for slender beams
where shear deformations are negligible [7].

Assumptions

The development of the Euler-Bernoulli beam theory is based on several key assumptions:

1. The cross-section of the beam is infinitely rigid in its own plane, so no deformations occur
within the plane of the cross-section.

2. The cross-section of the beam remains plane after deformation.

4



3. The cross-section of the beam remains perpendicular to the deformed axis of the beam.

These assumptions are generally valid for long, slender, and thin beams made of isotropic materials
with solid cross-sections. However, for short and thick beams or beams subjected to high-frequency
loads, the results of the Euler-Bernoulli beam theory may be inaccurate due to the neglect of
transverse shear deformation [4]. This limitation is addressed by the Timoshenko beam theory,
which includes shear deformations in its formulation.

Beam Deflection and Bending Moment

The relationship between the bending momentM(x), the shear force V (x), and the beam deflection
v(x) in the Euler-Bernoulli theory is governed by a set of differential equations. These relationships
are critical for understanding the structural behavior of beams under various loading conditions.

The moment-curvature relationship, shown in equation 2.2, relates the bending moment to the
curvature of the beam:

d2v

dx2
=

M(x)

EI
, (2.2)

where E is the Young’s modulus of the beam material, and I is the second moment of area (moment
of inertia) of the beam cross-section, and v(x) is the transverse delection of the beam at position
x.

The equilibrium of moments is expressed by equation 2.3, which states that the rate of change of
the bending moment along the beam is equal to the shear force:

dM(x)

dx
= V (x), (2.3)

Similarly, the equilibrium of shear forces, given in equation 2.4, indicates that the rate of change of
the shear force is equal to the negative of the distributed load per unit length acting on the beam:

dV (x)

dx
= −q(x), (2.4)

where q(x) is the distributed transverse load per unit length.

By combining equations 2.2, 2.3, and 2.4, the beam deflection equation shown in equation 2.5, can
be obtained [8].

EI
d4v

dx4
= q(x). (2.5)

This fourth-order differential equation describes the deflection of the beam under a given load
distribution q(x). Solving this equation provides the deflection profile v(x) of the beam [7].

While the Euler-Bernoulli theory primarily focuses on bending, axial forces can also be considered
for a more comprehensive analysis. Axial deformation due to axial forces is described by equation
2.6:

N(x) = EA
du

dx
, (2.6)

where N(x) is the axial force, A is the cross-sectional area, and u(x) is the axial displacement.

5



2.1.4 Timoshenko Beam Theory

The Timoshenko beam theory extends the classical Euler-Bernoulli beam theory by accounting
for shear deformation and rotational inertia effects, which are significant in short beams or beams
subjected to high shear forces. This theory is particularly important in the analysis of thick beams
where the assumption of plane sections remaining plane (as in the Euler-Bernoulli theory) does
not hold [5].

Beam Deformation

In Timoshenko beam theory, the deformation of a beam subjected to transverse shear forces and
bending moments is different from that described by the Euler-Bernoulli theory. The Euler-
Bernoulli theory assumes that cross-sections remain perpendicular to the neutral axis after de-
formation, which is valid for slender beams where shear deformations are negligible. However,
in Timoshenko theory, shear deformations are considered, meaning that cross-sections can rotate
relative to the neutral axis, as shown in Figure 2.3.

(a) Bending and shear deformations of an infinitesimal beam element in the xy-plane.

(b) Bending and shear deformations of an infinitesimal beam element in the xz-plane.

Figure 2.3: Bending and shear deformations of an infinitesimal beam element in both (a) xy-
plane and (b) xz-plane [4].

6



Shear Deformation

The total infinitesimal displacements duy and duz can be considered as the sum of the displacements
due to bending moments and shear forces. These displacements can be expressed as:

duy = θzdx+ γydx ⇒ duy

dx
= γy + θz (2.7)

duz = −θydx+ γzdx ⇒ duz

dx
= γz − θy (2.8)

where θy and θz are the rotations of the cross-section about the y and z axes, respectively, and γy
and γz are the transverse shear strains in the y and z directions, respectively [4].

Shear Strain

The shear strains γy and γz can be related to the shear forces Qy and Qz by:

γy =
Qy

AyG
and γz =

Qz

AzG
(2.9)

where Ay and Az are the effective shear areas in the y and z directions, respectively, and G is the
shear modulus of the material.

Equilibrium Equations

The equilibrium equations for the Timoshenko beam theory can be derived by considering both
bending moments and shear forces. The moment-curvature relationship is modified to include the
effect of shear deformation, leading to the following differential equations:

EI
d2θz
dx2

= −Mz + κGA

(
θz −

duy

dx

)
(2.10)

EI
d2θy
dx2

= My − κGA

(
θy −

duz

dx

)
(2.11)

where κ is the shear correction factor, and My and Mz are the bending moments about the y and
z axes, respectively.

Deflection and Rotation

The deflection and rotation of the beam can be obtained by integrating the equilibrium equations.
The deflection v(x) and rotation θ(x) can be expressed as:

dθz
dx

=
Mz

EI
+ κ

GA

EI

(
θz −

duy

dx

)
(2.12)

dθy
dx

=
My

EI
− κ

GA

EI

(
θy −

duz

dx

)
(2.13)

By solving these equations, the beam’s deflection and rotation can be determined, providing a
more accurate representation of the beam’s behavior under load, especially for short and thick
beams where shear deformations are non-negligible.

7



Beam Elements Framework (BEEF)

The Timoshenko beam theory offers a more comprehensive analysis of beam behavior by incor-
porating shear deformations and rotational effects, making it particularly useful for beams with
significant shear forces and for applications where higher accuracy is required. This theory forms
the basis for many advanced structural analysis tools, including the Beam Elements Framework
(BEEF) used in this thesis. BEEF is a Python package designed for finite element analysis (FEA)
of beam structures. This framework supports both 2D and 3D beam analysis, solving static and
dynamic problems, which is essential for the complex structural analyses required in offshore wind
turbine design.[9].

2.2 Fatigue

Fatigue is a critical phenomenon in offshore structures, particularly in components with welds,
where high stress concentrations can lead to damage and failure over time. Offshore structures are
subjected to a variety of time-dependent and continuous loading conditions, such as wind, waves,
currents, and earthquakes. Among these, waves play a significant role due to their continuous,
random nature, producing fluctuating stress responses in structural components. This continuous
cyclic loading, combined with severe corrosion and other environmental factors, makes fatigue a
major concern for the long-term structural integrity of offshore wind turbines.

2.2.1 Fatigue Phenomenon and Damage Mechanisms

Fatigue damage in materials occurs under fluctuating stress histories, even if the maximum working
stress is below the material’s ultimate elastic limit. This leads to a progressive reduction in local
strength, which may eventually result in crack initiation and propagation, leading to complete
fracture after sufficient stress cycles. For welded tubular joints, fatigue cracks often initiate at the
weld toe where stress concentration is the highest, known as the hot-spot stress, visualised in figure
2.4. The crack grows gradually through the material thickness and along the weld circumference,
eventually compromising the structural integrity.

The fatigue process consists of three main stages: crack initiation, crack propagation, and final
fracture. In the initial stage, micro-cracks form and grow slowly. In the propagation stage, the crack
growth accelerates, following a linear path in a logarithmic scale. The final stage is characterized
by rapid crack growth leading to unstable fracture when the remaining cross-sectional area can no
longer sustain the stress [4].

2.2.2 S-N Curve Approach

Figure 2.4: A tubular T joint showing a possible
crack region due to fatigue damage, defining the
hot-spot stress [4].

The S-N curve approach is based on experi-
mental fatigue-test data. In tubular joints, this
method relates the number of stress cycles to
failure N to the hot-spot stress σhotspot under
constant amplitude loading. And a relation
between the σhotspot and the nominal stress
σnominal, can be expressed by equation 2.14,
where SCF is a stress concentration factor.

σhotspot = SCF · σnominal (2.14)

8



2.2.3 Cumulative Fatigue Dam-
age rev

Cumulative fatigue damage in structures is commonly predicted using the Palmgren-Miner’s rule,
also known as the linear damage rule. This rule is based on the concept of cumulative damage,
where the total damage D is assumed to be the sum of the individual damages caused by each
load cycle i for a number of different stress ranges, given as stress blocks k. According to this rule,
fatigue failure is predicted when the cumulative damage ratio reaches a critical value η, typically
considered to be 1.0. However, for welded structures, η can vary, and conservative design codes
often adopt lower values to ensure safety.

The relationship between the number of cycles to failure (N) and the respective stress ranges (∆σ)
is typically expressed in a logarithmic scale as a linear function as shown in figure 2.5, allowing for
the derivation of fatigue life from regression analysis of test data.

The damage D accumulated due to ni cycles at stress range σi is given by the Palmgren-Miner
rule as:

D =

k∑
i=1

ni

Ni
(2.15)

where Ni is the number of cycles to failure at stress range σi, obtained from the S-N curve for the
material.

For a more accurate practical fatigue design, the fatigue life can be calculated using the formula
2.20, which is based on the S-N fatigue approach, as recommended by the DNVGL-RP-C203
recommended practice. This approach assumes linear cumulative damage and incorporates the
stress range ∆σi, given in equation 2.19, raised to a power m, where ā is the intercept of the design
S-N curve with the log N axis, ni is the number of cycles at respective stress range ∆σi, and m
is the negative inverse slope of the S-N curve [10]. Here, ā and m are constants determined from
regression analysis of the fatigue-test data. The multi-segmented S-N curve provides a better fit
to experimental data, defining different fatigue constants for each segment[4], [10]. A graphically
represented S-N curve can be shown in Figure 2.5, where the values for each joint class can be
seen in table 2.1. In the equation below, the maximum and minimum stresses would be calculated
by equation 2.18, which is a combination of the bending stress and axial stress. In equation 2.16
and 2.17, W , the elastic section modulus of the cross section, and the area A is defined for hollow
cylinders.

W =
π(D4 − (D − 2t)4)

32D
(2.16)

A =
π(D2 − (D − 2t)2

4
(2.17)

σ = σbending + σaxial =

√
M2

y +M2
z

W
+

Fx

A
(2.18)

∆σi = σmax − σmin (2.19)

D =
1

ā

k∑
i=1

ni · (∆σi)
m ≤ η (2.20)

2.3 Optimization Techniques

Optimization plays a crucial role in engineering design, particularly in enhancing the structural
integrity and cost-effectiveness of offshore wind turbines. In this thesis, the focus is on optimizing
the structural design of the X-rotor crossbar, and to minimize material costs while maintaining
structural integrity. This section outlines the key optimization techniques employed in the study,
leveraging the capabilities of the Non-Linear Optimization (NLopt) Python package.

9



Figure 2.5: S-N curve used for predicting fatigue life based on stress range and number of cycles,
for different joint classes in air environment [10].

Table 2.1: S-N curves in air [10]

N ≤ 107 cycles
S-N curve

m1 log ā1

N > 107 cycles
m2 = 5

log ā2

Fatigue limit at 107 cycles (MPa) Thickness exponent k
Structural stress
concentration embedded in
the detail (S-N class)

B1 4.0 15.117 17.146 106.97 0 0

B2 4.0 14.885 16.856 93.59 0 0

C 3.0 12.592 16.320 73.10 0.05 0

C1 3.0 12.449 16.081 65.50 0.10 0

C2 3.0 12.301 15.835 58.48 0.15 0

D 3.0 12.164 15.606 52.63 0.20 1.00

E 3.0 12.010 15.350 46.78 0.20 1.13

F 3.0 11.855 15.091 41.52 0.25 1.27

F1 3.0 11.699 14.832 36.84 0.25 1.43

F3 3.0 11.546 14.576 32.75 0.25 1.61

G 3.0 11.398 14.330 29.24 0.25 1.80

W1 3.0 11.261 14.101 26.32 0.25 2.00

W2 3.0 11.107 13.845 23.39 0.25 2.25

W3 3.0 10.970 13.617 21.05 0.25 2.50

10



2.3.1 Structural Optimization

In structural design problems, decision variables are referred to as design variables. These para-
meters quantify various aspects of the structural system, such as the diameter and thickness of a
tubular beam’s cross-section, or material properties like Young’s modulus. Design variables can
be continuous, discrete, or integer values. Continuous design variables can take any value within
a specified range, while discrete design variables are limited to specific values from a predefined
list, such as different materials or steel profiles. Integer design variables are used when only whole
numbers are acceptable, such as the number of bolts in a connection [4].

2.3.2 Objective Function

The objective function represents the measure used to evaluate the quality of acceptable solutions.
In structural design, this often involves minimizing the cost or weight of the structure. For ex-
ample, in reinforced concrete structures, the objective function might be the total cost of concrete,
reinforcing bars, and formwork. In steel structures, the weight is commonly used as the objective
function, though it should be noted that minimizing weight does not always equate to minimizing
cost. The selection of the objective function significantly impacts the optimal solution obtained
[4].

2.3.3 Design Constraints

Structural designers must adhere to numerous constraints, or restrictions functions, throughout
the design process to ensure the structure meets design codes and maintains adequate strength
against external loads over its lifetime. These design constraints encompass both strength and
serviceability requirements. For instance, stresses in structural members must be within allowable
limits, and displacements should be controlled to prevent excessive deflections.

In the design of steel frames, constraints often include maintaining the combined axial and bending
strengths within acceptable bounds. Additionally, lateral deflections and inter-story drifts need to
be minimized to ensure stability and comfort. Practical considerations also impose limits on cross-
sectional dimensions and other properties to align with manufacturing capabilities and standards.
These constraints collectively ensure that the structure is safe, functional, and feasible to construct
[4].

2.3.4 Mathematical Formulation

From the above sections, combining the decision variables, objective functions, and constraints, a
mathematical model of the an optimization problem is typically expressed as follows:

minimize or maximize W (d)

subject to hj(d) = 0 j = 1, ..., ne

gk(d) ≤ 0 k = 1, ..., ni

dL ≤ d ≤ dU

(2.21)

Here, d = {d1, . . . , dn}T is the vector of decision variables, W (d) is the objective function, hj(d)
are the equality constraints, and gk(d) are the inequality constraints. dL and dU are the lower and
upper bounds of the variables. ne is the total number of equality constraints, and ni is the total
number of inequality constraints. The optimization techniques determine the variable values that
satisfy these constraints and minimize or maximize the objective function [4].

11



2.3.5 Single-Criterion vs. Multiobjective Optimization

In most practical design problems, there is only one objective function, such as minimizing cost or
weight. These are called single-criterion optimization problems. However, some problems require
considering multiple objectives, such as minimizing both the cost and top story sway in tall steel
frames. These are known as multiobjective optimization problems, which are more complex due
to the potential conflict between different objectives.

2.3.6 Deterministic Optimization

Deterministic optimization techniques rely on the precise calculation of derivatives of the objective
function and constraints to find the optimal solution. Methods such as linear programming, integer
programming, and nonlinear programming fall under this category. These techniques commence
with a pre-selected initial point and utilize gradients to determine subsequent points in the search
space. For maximization problems, the search progresses in the positive direction of the objective
function’s gradient, whereas for minimization problems, it moves in the negative direction.

The iterative process continues until the design variables exhibit negligible changes between consec-
utive iterations, indicating convergence. Although deterministic techniques are highly effective for
small-scale problems, they often face significant challenges when applied to large-scale, real-world
engineering problems. The complexity and irregularities inherent in the objective functions and
constraints can impede convergence, making it difficult to find an optimal solution. Despite these
challenges, deterministic methods remain a crucial tool in the optimization toolkit, particularly for
problems where the landscape of the objective function is well understood and relatively smooth
[4].

2.3.7 Non-Linear Optimization (NLopt)

In this thesis, the NLopt Python package is utilized for non-linear optimization of the X-rotor
wind turbine structure. NLopt provides a comprehensive suite of optimization algorithms, both
gradient-based and derivative-free, making it versatile for various types of optimization problems.
The specific algorithms employed in this study include the Sequential Least-Squares Quadratic
Programming (SLSQP) method, which is effective for constrained optimization problems [11].

Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) is one of the most effective mathematical programming
techniques for solving nonlinearly constrained optimization problems. The SQP method approx-
imates the original nonlinearly constrained problem with a series of quadratic subproblems. These
subproblems are solved iteratively until convergence on the original problem is achieved [4].

The SQP algorithm involves the following steps:

1. Initialization: Select an initial design point, convergence tolerance, and maximum number
of iterations.

2. Quadratic Programming Subproblem: Solve the quadratic programming problem to
find a feasible search direction.

3. Line Search: Determine the step size to ensure that the objective function value decreases
and the constraints are satisfied.

4. Update: Calculate the new design point and update the Hessian matrix approximation.

5. Iteration: Repeat the process until convergence criteria are met.

12



The programming problem in equation (2.21) can be modified using the Taylor’s expansion [12],
resulting in a quadratic programming subproblem. The objective is to minimize the quadratic
approximation of the Lagrangian function, subject to linearized constraints.

Derived by [4], the subproblem can be mathematically expressed as:

minimize P = {∇W (d)}Ts+
1

2
sTHs

subject to hj(d) + {∇hj(d)}Ts = 0, j = 1, . . . , ne

gk(d) + {∇gk(d)}T s ≤ 0, k = 1, . . . , ni

sL ≤ s ≤ sU

(2.22)

Here, H is usually the Hessian matrix of the Lagrangian function [∇2W (d)], but in practice it is
useful to replace it with a quasi-Newton approximation [13]. The s is the search direction with
respect to current active constraints.

Sequential Least-Squares Quadratic Programming (SLSQP)

Sequential Least-Squares Quadratic Programming (SLSQP) is a specialized implementation of
SQP designed to handle least-squares optimization problems effectively. While SQP is a general-
purpose algorithm, SLSQP focuses on minimizing a sum of squared residuals subject to equality
and inequality constraints, making it particularly useful for data fitting and parameter estimation
problems.

According to the NLopt documentation [11], SLSQP solves the optimization problem by treating
it as a sequence of constrained least-squares problems, which are equivalent to quadratic program-
ming (QP) problems. This approach involves optimizing successive second-order (quadratic/least-
squares) approximations of the objective function, updated via BFGS (Broyden–Fletcher– Gold-
farb–Shanno) updates, and first-order approximations of the constraints.

13



CHAPTER 3

METHODOLOGY

This chapter details the methodologies employed in the structural analysis and optimization of the
offshore X-rotor wind turbine crossbar. The primary objective was to determine if the material
cost of the structure could be reduced by implementing a tower in the middle of the crossbar,
with members connecting the top of the tower to the ends of the crossbar. This approach aimed
to reduce stress in the crossbar, potentially allowing for a reduction in its material dimensions
(diameter and thickness) such that the overall material usage was minimized.

The methodologies included finite element analysis (FEA) using the Beam Elements Framework
(BEEF), fatigue analysis, and optimization using the NLopt Python package. The FEA evaluated
the structural behavior of the crossbar under various loading conditions, while fatigue analysis
assessed the long-term durability of the structure. The optimization process aimed to find the
optimal dimensions for the crossbar and additional components to achieve material cost savings
without compromising structural integrity.

3.1 Load Cases and Data Collection

The analysis utilized an Excel sheet containing 28 load cases, categorized into operational and
ultimate limit state (ULS) conditions, although all load cases were checked for ULS. Load cases
1 to 18 represented the operational scenarios, while load cases 19 to 28 pertained to the ULS
conditions. Each load case included 45 data points corresponding to different positions throughout
a full rotation, from an azimuth angle of 0 to 2π radians (or more precisely, from 0.0698 to 6.21337
radians).

For each azimuth position, the Excel sheet provided detailed information on the forces and moments
acting on the structure. These forces and moments included components along the x, y, and z axes,
as well as the corresponding moments about these axes. This dataset enabled a thorough analysis
of the structural behavior under varying loading conditions, which was crucial for both the finite
element and fatigue analyses. An example of the detailed external forces for load case 18 is
presented in Appendix D.

3.2 Initial Structure

3.2.1 Structural Modeling of Initial Structure

For the modeling and analysis of the crossbar structure, the Beam Elements Framework (BEEF),
explained in section 2.1.4, was employed. The aim was to evaluate whether the material cost of the
crossbar could be reduced by implementing a central tower with additional members connecting
the tower to the crossbar ends, thereby reducing the stress in the crossbar and potentially allowing
for material reduction.

The moments about the x-axis (Mx) were not included in the analysis. This assumption was based
on the structural design and loading conditions of the crossbar. Typically, in such structures, the
dominant moments were those about the y and z axes due to the nature of applied loads and the
geometry of the structure. The moments about the x-axis were relatively insignificant and did
not substantially influence the overall behavior of the crossbar. Thus, neglecting these moments

14



simplified the analysis without compromising the accuracy of the results.

Crossbar Parameters

The structure was modeled using the BEEF package, by creating finite element models of the beam
structure. Initially, arbitrary dimensions for the crossbar’s diameter and thickness were selected to
set up and test the code. These initial dimensions were not intended for optimization but rather
to validate the modeling process. The crossbar was defined with an outer diameter of 3 meters
and a thickness of 0.05 meters, with a yield strength of 355 MPa. These values were defined in the
Python function crossbar parameters, in appendix C, line 5.

The properties of the crossbar section included:

• Young’s modulus (E) = 210 GPa

• Shear modulus (G) = 81 GPa

• Density (ρ) = 7850 kg
m3

• Poisson’s ratio = 0.3

• Cross-sectional area (A) = π × diameter× thickness[m2]

• Second moment of area (Iy, Iz) =
π×(diameter4−(diameter−2×thickness)4)

64 [m4]

• Polar moment of inertia (J) = π × (diameter4−(diameter−2×thickness)4)
32 [m4]

The properties for the base tower were defined using a similar method in the basetower parameters
function. To ensure that the tower’s displacements were relatively small compared to the crossbar,
the tower was modeled with a diameter of 100 meters and a thickness of 10 meters, making it
substantially more massive.

Mesh Definition

The crossbar was discretized into elements along its 50-meter length, maintaining a relatively low
number of elements to facilitate easier result verification. The base tower was modeled using
three nodes to represent its height, thereby creating an element matrix for the tower. Nodes
were positioned uniformly along the x-axis, resulting in a nodal matrix that defined the spatial
coordinates of each node. Although the structure is a 2D structure situated in a 3D space—with
all z-coordinates being zero—the node matrices were defined as a 3D array, containing the node
labels and their respective x, y, and z coordinates. Similarly, the element matrices were defined as
a 3D array containing the element labels and the node labels at each end of the elements.

The code used for mesh generation can be found in Appendix B, and Figure 3.1 illustrates the
initial structure with node and element labels.

Assembly Definition

The assembly process involved combining the crossbar and base tower parts and applying appro-
priate constraints. The bottom of the base tower was fixed in all degrees of freedom to the ground,
to simulate a rigid connection to the seabed. The middle node of the crossbar was connected to the
top of the base tower to allow for the transfer of forces and moments between these components,
where the tower node was set as the master node and the crossbar node as the slave node. This
connection was constrained in all degrees of freedom.

The assembly of these components, including the application of constraints, is detailed in the code
provided in Appendix B.

15



(a) Initial assembly with element labels (b) Initial assembly with node labels

Figure 3.1: The initial assembly structure with 12 crossbar elements and 2 tower elements

Force Definitions

Forces and moments were applied at the ends of the crossbar, derived from the load cases provided
in the Excel sheet. Load cases 1 to 18 represented the operational scenarios, while load cases 19
to 28 pertained to the non-operational, extreme conditions to evaluate the crossbar’s performance
under various scenarios.

For each load case, the forces and moments were defined for both side one and side two, as given
in Table 3.1 and the directions are illustrated in Figure 3.2. For the loads to be defined correctly
in the right hand coordinate system used for this thesis, the Fx1, Fz1, and Mz2 had their direction
changed. Looking at figure 3.1b, the node 1 would be side 2, and node 13 would be side 1.

Table 3.1: Forces and moments applied to the crossbar ends

Description Symbol Excel Column
Axial force (Side 1) Fx1 1Fn h N
Axial force (Side 2) Fx2 2Fn h N
Transverse shear force (Side 1, y-direction) Fy1 1Fn v N
Transverse shear force (Side 2, y-direction) Fy2 2Fn v N
Transverse shear force (Side 1, z-direction) Fz1 1FtanN

Transverse shear force (Side 2, z-direction) Fz2 2FtanN

Bending moment (Side 1, y-direction) My1 1Medge v Nm, 1Mpitch v Nm
Bending moment (Side 2, y-direction) My2 2Medge v Nm, 2Mpitch v Nm
Bending moment (Side 1, z-direction) Mz1 1MflapNm
Bending moment (Side 2, z-direction) Mz2 2MflapNm

These forces were applied to the finite element model as described in the code in Appendix B.

16



(a) shows the axial force FNH , the transverse shear
force FNV , and the bending moment MFlap about the
z-axis.

(b) Shows the pitching moments, MPitchingV about
the y-axis, and MPitchingH about the x-axis.

(c) presents the tangential force FTan in the z-
direction, and the bending moments MEdgeV about
the y-axis, and MEdgeH about the x-axis.

Figure 3.2: Forces and Moments on Crossbar Ends [14].

17



3.2.2 Linear Static Analysis with BEEF

Figure 3.3: Local
coordinate system of
the element lowest of
the base tower.

A linear static analysis was performed to determine the internal forces,
moments, and displacements within the structure under the applied loads.
This analysis assumes linear-elastic material behavior and small deforma-
tions, which is a reasonable assumption for initial structural evaluation.

The equation 2.1, was solved using BEEF. For BEEF to calculate the dis-
placements of the elements, it utilizes the local stiffness matrix, and the
transformation matrix. Since the transformation matrix that BEEF uses
is based on the deformed nodal coordinates and displacements, and the
local stiffness matrix from Figure 2.2, it was necessary to calculate a cus-
tom transformation matrix and local stiffness matrix using the undeformed
nodal placements from the undeformed assembly. This was achieved using
the compute local tmat function. The code for this function is shown in
Appendix E.

The compute local tmat function generates a transformation matrix based
on the element’s original orientation, ensuring the local z-axis points out
of the plane. This custom transformation matrix was then used in the
get local node forces function to accurately compute the local node forces.
This function extracts the beam elements from the initial assembly to com-
pute the local stiffness matrix and applies the custom transformation mat-
rix to obtain the local forces. The transformation matrix was multiplied by
the elements’ global displacements, collected from the analyzed assembly,
to obtain the local displacements of each element.

From this process, the local node forces were computed with the correct
local coordinate system, improving the consistency of the linear static ana-
lysis’ internal load directions. The corrected local coordinate system of the
elements was verified using the plot element localaxis function, which is il-
lustrated in Figure 3.3.

Find Critical Cases

To identify the critical cases for the ultimate limit state (ULS), an iterative process was employed
to check for the highest positive and lowest negative values of all loads across both sides of the
crossbar for all 28 load cases. This process was facilitated by the function analyze multiple columns,
which leverages the find lowest load case and find highest load case functions, detailed in the code
in Appendix B.

The analyze multiple columns function iterates through all load cases, determining the highest and
lowest values for each load component. Both the end load components (Fx, Fy, Fz, My, Mz), and
the hub load components (same loads, only at the hub) were checked for both sides of the structure.
For each load component, the function returned the corresponding load case, azimuth radian, and
the entire row of load data. This detailed information allowed for a comprehensive evaluation of
the external forces affecting the structure.

Once the critical values were identified, a static analysis was conducted for each identified load
case. For instance, after determining the highest Fx, a static analysis was performed using all
external forces for that specific load case. This approach ensured that the most severe loading
conditions were analyzed, providing a robust assessment of the structure’s performance under ULS
conditions.

The data collected from these analyses were used in the subsequent optimization process, ensuring
that the structural design could withstand the most critical loading scenarios while staying within
given constraints.

18



3.2.3 Stress Range and Fatigue Damage Analysis - Initial Structure

The stress range analysis was performed to determine the stress ranges experienced by the crossbar
under various load cases, which is essential for assessing the fatigue life of the structure over a 20-
year period. This analysis is critical for understanding how the structure will perform under
long-term loading conditions, ensuring that it remains safe and functional throughout its intended
lifespan.

Initially, the parameters for the crossbar section, such as diameter and thickness, were updated to
the optimal values derived from the ultimate limit state (ULS) results. This provided a baseline
for evaluating the damage on the crossbar using ULS dimensions.

To calculate the stress ranges, a finite element analysis (FEA) was performed for each of the
operational load cases, specifically load cases 1-18, and for each azimuthal position within these
load cases to evaluate the internal forces of each element. Despite being a time-consuming process,
this iterative approach ensured that the element with the highest stress range was identified for
the analysis. By reducing the number of elements, the process could be expedited.

The local node forces obtained from these computations were stored in DataFrames for each load
case, enabling a detailed evaluation of the stress ranges. The calculate element stress ranges func-
tion, detailed in Appendix E, was used to obtain the stress ranges for each element and each load
case. This function calculates the stress ranges for a given diameter and thickness by evaluating
the combined bending and axial stresses for both nodes of every element, iterating through the
combined stresses to find the maximum and minimum values. To define the maximum and min-
imum stresses, the highest and lowest bending moments about the z-axis (Mz) were used, as this
was the dominant load axis.

To make the stress range conservative, the maximum stress (σmax) was calculated as the bending
stress with the absolute value of the axial stress added, while the minimum stress (σmin) was the
bending stress with the absolute value of the axial stress subtracted, as shown in Equation 3.1. To
maintain the correct positive and negative values of the stresses, the opposite sign of Mz for the
first node of the element iterated was multiplied by the bending stress.

σmax = σbending + |σaxial| = −(sign(Mz) ·

√
M2

y +M2
z

W
+ |Fx

A
|

σmin = σbending − |σaxial| = −(sign(Mz) ·

√
M2

y +M2
z

W
− |Fx

A
|

(3.1)

The cumulative damage was then calculated using the Palmgren-Miner rule, as described in Section
2.2.3. This rule assumes linear damage accumulation, where the total damage is the sum of the
individual damages caused by each load cycle.

To determine the fatigue damage over a 20-year period, the number of cycles to failure for each
load case was calculated using the S-N curve approach, defined in section 2.2.2. The calcu-
late fatigue damage function, in Appendix E, computed the fatigue damage for each load case
based on the stress ranges and the number of cycles for each load case over 20 years. The cumu-
lative damage was obtained by summing the individual damages for all load cases, following the
equation 2.20, up to a total damage of D ≤ 1.

The total operating time in seconds per year was calculated, and the number of cycles over 20
years was determined by multiplying the rotations per year by the probability of occurrence for
each load case, as shown in Equation 3.2. The values used for these calculations are shown in Table
3.2.

To choose the correct values in Table 2.1 for the damage calculation, certain assumptions were
made. The assumed connection involves joining the tubular sections with continuous welds from
both sides and assuming high-quality welds free from significant defects. Based on Appendix
“A.5 Transverse butt welds, welded from both sides” of the DNV Recommended Practice [10], a

19



conservative approach was taken by selecting the S-N curve class C1 for calculating cumulative
damage. Although the weld quality could justify an increase from class C1 to C, maintaining class
C1 ensures a more conservative analysis.

By examining the results from the cycles over 20 years for each load case, none of the cases exceeded
107 cycles. Therefore, the fatigue values for joint class C1 were obtained from Table 2.1, where
m1 = 3.0 and log ā1 = 12.449, giving ā = 1012.449.

cycles in 20 years =

18∑
i=1

(rotations per year)i · (prob)i ∗ 20years

=

18∑
i=1

(total seconds per year)

(time of one rotation [s])i
· (prob)i ∗ 20years

(3.2)

The code implementation for these calculations is provided in Appendix F. This approach ensured
a thorough assessment of the fatigue life of the crossbar, providing critical data for the optimization
process.

Table 3.2: Summary overview of all load cases

LC U wind m/s Hs m Tp s prob rot speed rad/s T 1revolution s TSR Pitch Type
1 3.5 0 0 0.084 0.2333 26.93178443 5 0 Operational
2 4 0.9 7.6 0.063 0.2666 23.56783686 5 4 Operational
3 5 1 7.5 0.077 0.3333 18.85144107 5 4 Operational
4 6 1.2 7.4 0.088 0.4 15.70796327 5 4 Operational
5 7 1.4 7.3 0.094 0.4666 13.46589221 5 4 Operational
6 8 1.5 7.3 0.095 0.5533 11.35583826 5 4 Operational
7 9 1.7 7.3 0.092 0.6 10.47197551 5 4 Operational
8 10 2 7.3 0.084 0.6666 9.425720533 5 4 Operational
9 11 2.2 7.3 0.074 0.7333 8.568369436 5 4 Operational
10 12 2.4 7.3 0.063 0.8 7.853981634 5 4 Operational
11 13 2.6 7.4 0.051 0.8333 7.540123974 4.807692308 -9.7 Operational
12 14 2.9 7.5 0.04 0.8333 7.540123974 4.464285714 -14.2 Operational
13 15 3.2 7.5 0.03 0.8333 7.540123974 4.166666667 -14.7 Operational
14 16 3.4 7.6 0.021 0.8333 7.540123974 3.90625 -15.2 Operational
15 17 3.7 7.7 0.015 0.8333 7.540123974 3.676470588 -15.9 Operational
16 18 4 7.9 0.01 0.8333 7.540123974 3.472222222 -16.7 Operational
17 19 4.3 8 0.006 0.8333 7.540123974 3.289473684 -17.6 Operational
18 19.5 0 0 0.006 0.8333 7.540123974 3.205128205 -18.1 Operational
19 25 0 0 0 0 0 0.01 0 ULS
20 25 0 0 0 0 0 0.01 45 ULS
21 25 0 0 0 0 0 0.01 -45 ULS
22 25 0 0 0 0 0 0.01 90 ULS
23 25 0 0 0 0 0 0.01 -90 ULS
24 36.8 0 0 0 0 0 0.01 0 ULS
25 36.8 0 0 0 0 0 0.01 45 ULS
26 36.8 0 0 0 0 0 0.01 -45 ULS
27 36.8 0 0 0 0 0 0.01 90 ULS
28 36.8 0 0 0 0 0 0.01 -90 ULS

3.3 Structure With Load Reduction System (LRS)

To evaluate the potential reduction in net material usage by implementing a Load Reduction
System (LRS), a new assembly incorporating a central tower and connecting members to the ends
of the crossbar was created. This system aims to reduce the stress experienced by the crossbar,
potentially allowing for a reduction in its material dimensions. This section outlines the modeling,
meshing, and assembly definitions used for the LRS structure, and it compares these methods to
those applied to the initial structure described in Section 3.2.

20



3.3.1 Structural Modeling of LRS Structure

LRS Parameters

The parameters for the LRS were designed similarly to those of the initial structure. Both the
central tower and the connecting members were modeled as tubular structures, akin to the crossbar.
The primary differences lay in the diameters and thicknesses of these components. The material
properties, such as Young’s modulus, shear modulus, density, and Poisson’s ratio, were consistent
with those used for the crossbar, as detailed in Section 3.2.1 and Appendix C.

LRS Mesh Definitions

The LRS components were meshed to ensure an accurate representation of the structure’s geometry
and constraints. The element and node matrices for the top tower and connecting members were
defined to be interdependent. This interdependency ensures that any changes to the height of
the top tower would automatically adjust the positions of the connecting members’ top nodes,
maintaining the realism of the constraints between these parts. Detailed code for mesh definitions
are provided in Appendix H.

LRS Assembly Definition

The assembly of the LRS involved combining the crossbar, central tower, and connecting members
while applying appropriate constraints between the nodes. The top tower and crossbar nodes were
designated as master nodes, while the member nodes were assigned as slave nodes. The connection
between the crossbar and the central tower was modeled as a fixed joint, preventing any rotational
or translational movement of the tower. The connections between the connecting members and
the crossbar were constrained in translation but allowed rotational freedom around the z-axis to
prevent stress accumulation at the nodes. This approach also helped avoid over-constraining the
static analysis, which could lead to inaccurate results.

Figure 3.4 illustrates the LRS assembly. Subfigure 3.4a displays the assembly with element labels,
while Subfigure 3.4b shows the assembly with node labels. This assembly includes 2 base tower
elements, 12 crossbar elements, 3 top tower elements, and 4 elements for each connecting member.

3.3.2 Linear Static Analysis of LRS Structure

A linear static analysis was conducted for the new LRS assembly to evaluate the internal forces,
moments, and displacements under the applied loads. The same methodology as described in
section 3.2.2 was used, with updated parameters for the LRS components. To validate the new
local forces, a comparison was made with the initial structure under the same applied loads. The
check was performed using 12 crossbar elements for both assemblies, with the top tower and
members having 3 and 4 elements, respectively.

By using the worst-case scenario for ULS at 0.069 radians on side 1 in load case 18, the local forces
of node 13 were compared between the initial and LRS structures, confirming the validity of the
new analysis. Detailed results of this comparison are discussed in Section 4.1.2.

3.3.3 Stress Range and Fatigue Damage Analysis - LRS

The stress range analysis for the LRS structure followed the same methodology as described in
section 3.2.3. The updated parameters for the LRS components were used, and the analysis was
conducted for each operational load case and azimuthal position to evaluate the internal forces and
identify the element with the highest stress range. This iterative approach ensured an accurate
assessment of the fatigue life of the LRS structure over a 20-year period.

21



(a) Assembly with element labels (b) Assembly with node labels

Figure 3.4: The assembly structure with added tower and member parts

3.4 Optimization of Crossbar Design

The optimization of the crossbar design focused on finding the optimal diameter and thickness
to minimize material costs while maintaining structural integrity within the given constraints.
This process involved determining the optimal dimensions for the crossbar and comparing it to
the structure with the additional Load Reduction System (LRS) components. The optimization
procedure was guided by the principles outlined in Section 2.3.7, utilizing the Sequential Least-
Squares Quadratic Programming (SLSQP) algorithm from the NLopt Python package.

The SLSQP algorithm was chosen for this thesis due to its robustness and flexibility in handling
both equality and inequality constraints, which are essential for structural optimization problems.
SLSQP is particularly effective for problems involving complex, non-linear relationships among
design variables and constraints, as it iteratively refines the design to converge to an optimal solu-
tion. Its ability to accommodate gradient-based optimization makes it well-suited for applications
requiring precise control over design variables, such as the crossbar dimensions in this study.

Due to the complexity of multi-objective optimization, as discussed in Section 2.3.5, where conflicts
between objective functions can arise, the optimization was conducted using a single-criterion
approach. The area of the crossbar tube was chosen as the objective function, with the aim to
minimize it. The objective function, described in equation 3.3, is determined by the diameter and
thickness, denoted as D and t respectively in the NLopt framework. The optimizer was set to
minimize this function to achieve the lowest possible values. To facilitate the optimization process
and ensure correct iteration, the gradients of the area with respect to diameter and thickness were
provided, as shown in equations 3.4a and 3.4b.

A =
π

4
· (D2 − (D − 2t)2) (3.3)

dA

dD
= π ·D (3.4a)

dA

dt
= π · (D − 2t) (3.4b)

22



In this formulation, A represents the cross-sectional area, D is the diameter, and t is the thickness
of the crossbar. The SLSQP algorithm iteratively adjusts D and t to minimize A, ensuring that
the structural integrity is maintained while reducing material costs.

3.4.1 ULS Optimization

For the ULS optimization, constraints were defined according to the NORSOK standard [15].
Given that the crossbar is a tubular member subjected to both axial tension and bending, and
axial compression and bending, without hydrostatic pressure, specific constraints were applied to
ensure compliance with structural integrity requirements.

Axial Tension and Bending Constraints without Hydrostatic Pressure

The constraint for axial tension and bending without hydrostatic pressure was defined as follows.
The cross-sectional area A was computed using the diameter (D) and thickness (t):

A =
π

4
· (D2 − (D − 2t)2) (3.5)

The nominal resistance of the cross-section NRd was determined by:

NRd = A · fy
γM

(3.6)

where fy is the yield strength and γM is the material factor, which is assumed to always be 1.15.

The section modulus W and the plastic section modulus Z were calculated as:

W =
π · (D4 − (D − 2t)4)

32 ·D
(3.7)

Z =
D3 − (D − 2t)3

6
(3.8)

The bending moment resistanceMRd was calculated considering the characteristic bending strength
fm, where 0, 0517 <

fyD
Et ≤ 0.1034. This constraint is set, because

fyD
Et outside that constraint will

result in larger cross sections (add desmos graph to show that this is true):

fm =

(
1.13− 2.58 · fy ·D

E · t

)
· Z

W
· fy (3.9)

MRd = fm ·W · 1

γM
(3.10)

The combined effect of axial force and bending moment was represented as:

axial part =

(
Nsd

NRd

)1.75

(3.11)

bending part =

√
M2

y +M2
z

MRd
(3.12)

23



The constraint ensured that the sum of the axial and bending parts was less than or equal to 1:

axial part + bending part− 1 ≤ 0 (3.13)

Detailed implementations of the optimization code is provided in Appendix I.

Axial Compression and Bending Constraints without Hydrostatic Pressure

For the ULS optimization, constraints for axial compression and bending without hydrostatic pres-
sure were established based on the NORSOK standard [15]. The optimization process accounted for
both axial compression and bending moments applied to the crossbar, ensuring that the structure
adheres to safety and performance criteria.

The design axial compression force, Ncl,Rd, was calculated using fcl = fy, because a constraint for

the ratio of
fy
fcle

≤ 0.170 is set to avoid the tubular becoming a class 4 cross section, which would
make it behave as a shell:

Ncl,Rd =
fy ·A
γM

(3.14)

where fy is the yield strength, A is the cross-sectional area, and γM is the material factor, set to
1.15.

The fcle constraint is more conservative than the typical constraint of D
t < 120. The fcle was

calculated as 2 ·Ce ·E ·
(

t
D

)
, where Ce = 0.3 and E = 2.1 · 1011 Pa. For fy = 355 MPa, this results

in a D/t ratio of 60.3. This derivation ensures that the tubular section does not become overly
thin and vulnerable to local buckling

The Euler buckling strengths corresponding to the member y and z axes, NEy and NEz, were
calculated using:

NEy =
π2 · E ·A(

k·l
iy

)2 (3.15)

NEz =
π2 · E ·A(

k·l
iz

)2 (3.16)

where E is the Young’s modulus, k is the effective length factor, l is the longer unbraced length in
y or z direction, and iy and iz are the radii of gyration about the y and z axes, respectively.

Combined Compression and Bending: The combined effect of axial compression and bending was
represented by the following constraints:

NSd

Ncl,Rd
+

√
M2

y,Sd +M2
z,Sd

M2
Rd

≤ 1 (3.17)

where NSd is the design axial compression force, My,Sd and Mz,Sd are the design bending moments
about the y and z axes, and MRd is the design bending moment resistance. For the second part,
accounting for variations in cross-section, axial load, and bending moment:

NSd

Nc,Rd
+


 Cmy ·My,Sd

MRd ·
(
1− NSd

NEy

)
2

+

 Cmz ·Mz,Sd

MRd ·
(
1− NSd

NEz

)
2


0.5

≤ 1 (3.18)

where Cmy and Cmz are reduction factors corresponding to the member y and z axes, respectively.

The detailed implementation of these constraints within the optimization code can be found in
Appendix I.

24



Constraint Wrapper

The constraint wrapper function, detailed in Appendix I, is designed to dynamically handle and ap-
ply different constraints during the optimization process. This function is essential for determining
and applying the appropriate constraints based on the internal forces of the structural elements.

The primary purpose of the constraint wrapper is to initiate the static analysis function for each
optimization iteration. It assesses whether the elements are in tension or compression based on the
internal forces. By checking the sign of the axial force (Fx), the function determines whether an
element is under tension (negative axial force) or compression (positive axial force). Depending on
this assessment, the corresponding constraints for axial tension and bending or axial compression
and bending are applied.

This approach ensures that each element is evaluated correctly, and the appropriate constraints
are consistently enforced throughout the optimization process. By doing so, the integrity and
feasibility of the design are maintained as the optimizer progresses towards an optimal solution.

In the optimization process, the check constraints and add function uses the constraint wrapper
to add the relevant constraints for each element based on its internal forces. This function iterates
through the elements, applies the constraint wrapper, and ensures that the correct constraints are
in place for both tension and compression scenarios. This dynamic application of constraints is
crucial for accurately modeling the structural behavior under various loading conditions, providing
a robust basis for optimization.

3.4.2 FLS Optimization

The optimization process for the Fatigue Limit State (FLS) focused on ensuring the structural
integrity of the crossbar under long-term cyclic loading conditions, using the fatigue constraints
derived from the S-N curves approach, discussed in Section 2.2.2. This was essential to ensure that
the structure could withstand the repeated loads experienced over its service life without failing
due to fatigue.

FLS Constraints and Objective Function

For the FLS optimization, the objective remained to minimize the cross-sectional area of the
crossbar while ensuring that the cumulative fatigue damage did not exceed acceptable limits over
a 20-year period. Thus, the objective function was the same as in the ULS optimization. The
detailed code for this optimization process is provided in Appendix J.

The fatigue constraint was based on the Palmgren-Miner rule for cumulative damage, as derived
in Section 3.2.3. According to this rule, the cumulative damage D is calculated using the equation
2.20.

where Ni is the number of cycles for load case i over the 20-year period, and Nf,i is the number of
cycles to failure for load case i based on the S-N curve. The S-N curve parameters obtained from
Table 2.1 were m1 = 3.0 and log ā1 = 12.449 .

Additionally, the fcle constraint from Section 3.4.1 was also included in this optimizer to ensure
the cross-sectional dimensions remained within the conservative limits.

3.4.3 Optimization Process

The optimization process involved a series of steps, beginning with an initial linear static analysis
to determine the internal forces within each element, followed by the optimization itself. Detailed
codes for this optimization process are provided in Appendix I and Appendix J.

Initially, a linear static analysis was conducted to obtain the internal forces for each element under

25



the applied loads. Once the internal forces were determined for all nodes, the optimizer performed
the optimization to identify the optimal dimensions for each element. When the optimizer returned
the new diameter and thickness, a new analysis was performed with the updated decision variables.
This iterative process continued until a set tolerance was reached, at which point the optimizer
returned the dimensions corresponding to the highest area of all the elements, ensuring that the
most critical element determined the final dimensions for the crossbar.

The optimizer employed the Sequential Least-Squares Quadratic Programming (SLSQP) algorithm
from the NLopt Python package, guided by the principles outlined in Section 2.3.7. This approach
ensured that the optimization was both robust and efficient, ultimately achieving a design that
balanced material cost reduction with structural integrity.

3.4.4 Gradient Calculator

To facilitate the optimization process, the gradients of the constraints with respect to the diameter
and thickness were calculated. This step was crucial for ensuring that the SLSQP algorithm can
efficiently navigate the solution space and find the optimal values for the crossbar dimensions.

To illustrate the gradient calculation process, consider the example of the axial compression and
bending constraint without hydrostatic pressure. This example demonstrates how the gradients
are derived and used in the optimization, and is provided in Appendix G.

1. The process begins by defining the symbolic variables and the constraint function using the
SymPy library.

2. Next, the constraint function for combined buckling and bending is defined. This function
includes both axial and bending components.

3. The get gradient function calculates the partial derivatives of the constraint function (func)
with respect to the diameter (D) and thickness (t).

4. Then, to verify the accuracy of the analytical gradients, a comparison is made with a numer-
ical calculation, using finite differences.

5. Lastly, the gradient check function tests the accuracy of the analytical gradients by com-
paring them with the numerical gradients for various test values of diameter and thickness.
This comparison ensures that the gradients used in the optimization process are correct and
reliable.

In Table 3.3, the results yield a difference of around 10−9, which implies that the gradient is correct.

Table 3.3: Gradient Check Results

Testing Values Analytical Gradient Numerical Gradient Difference
D=5, t=0.01 [3.10, -479.30] [3.10, -479.30] [2.39e-07, 2.24e-03]
D=10, t=0.5 [-0.01, -0.07] [-0.01, -0.07] [3.32e-10, 1.49e-08]
D=15, t=0.8 [-0.00, -0.02] [-0.00, -0.02] [4.75e-10, 2.56e-09]
D=20, t=1.0 [-0.00, -0.01] [-0.00, -0.01] [1.46e-10, 1.51e-09]

26



CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents the results of the structural and fatigue analyses of the offshore X-rotor wind
turbine crossbar, along with the optimization outcomes. The discussion interprets these results in
the context of design objectives, structural integrity, and material cost efficiency.

4.1 Structural ULS Analysis Results

4.1.1 Optimization of Critical Load Cases

Optimizing Initial Structure

From the critical cases identified from section 3.2.2, the external loads for the worst scenarios were
collected. The returned results were compared with the highest and lowest loads of the hub, where
only load case 18 at position 3.28 rad were different from the ones at the ends. These critical cases
provide insight into the maximum and minimum forces and moments experienced by the crossbar.
Tables A.1 and A.2 in Appendix A detail these forces and moments.

Running the optimizer for each of the critical cases, gave the results summarized in Tables 4.1 and
4.2. These tables list the optimal diameter, thickness, and corresponding cross-sectional area for
each load case checked, where the Load column represents what load was the highest or lowest.
The analysis was performed with six elements of the crossbar, providing a simple structural model.

By analyzing the results, it becomes evident that the lowest forces and moments present the most
critical cases for ULS. This observation aligns with the expectation that the crossbar experiences
the most significant stress when bending downward. Particularly, at load case 18 at position 0.0698
rad, when the Mz1 moment was the lowest proved to be the most critical of all, as it required the
largest optimal cross-sectional dimensions of D = 3.891m, t = 0.0645m, and A = 0.775m2.

After comparing the forces and moments at the ends of the crossbar and near the tower, it was
found that only the azimuth position of 3.28 radians in load case 18 was not included in the initial
iteration. This position was subsequently tested in the optimizer along with all the identified cases.

Table 4.1: Optimal diameter and thickness for highest forces with 6 element crossbar

Load Diameter (m) Thickness (m) Min Area (m2) Load Case

Fx1 1.5066 0.0250 0.11622 lc24

Fy1 3.0857 0.0511 0.48754 lc25

Mz1 3.0857 0.0511 0.48754 lc25

Fz1 2.7112 0.0449 0.37639 lc26

My1 Edge 2.9321 0.0486 0.44022 lc27

My1 Pitch 2.8403 0.0471 0.41308 lc25

Fx2 1.4466 0.0240 0.10715 lc24

Fy2 3.0065 0.0498 0.46284 lc25

Mz2 3.0065 0.0498 0.46284 lc25

Fz2 2.6185 0.0434 0.35109 lc28

My2 Edge 2.6185 0.0434 0.35109 lc28

My2 Pitch 2.6247 0.0435 0.35273 lc28

Mz2hub 3.8884 0.0644 0.77417 lc18

27



Table 4.2: Optimal diameter and thickness for lowest forces with 6 element crossbar

Load Diameter (m) Thickness (m) Min Area (m2) Load Case

Fx1 3.7585 0.0623 0.72334 lc18

Fy1 3.8449 0.0637 0.75696 lc18

Mz1 3.8908 0.0645 0.77516 lc18

Fz1 2.6572 0.0440 0.36153 lc27

My1 Edge 2.6572 0.0440 0.36153 lc27

My1 Pitch 2.6245 0.0435 0.35270 lc28

Fx2 3.8007 0.0630 0.73967 lc18

Fy2 3.8101 0.0631 0.74330 lc18

Mz2 3.8666 0.0641 0.76551 lc18

Fz2 2.6553 0.0440 0.36102 lc27

My2 Edge 2.6553 0.0440 0.36102 lc27

My2 Pitch 2.6553 0.0440 0.36102 lc27

4.1.2 Structural Response and Load Redistribution

Response of Initial Structure

The initial structure, consisting solely of the base tower and the crossbar without the Load Re-
duction System (LRS), exhibits relatively stable behavior when subjected to changes in crossbar
diameter and thickness. When analyzing the internal forces in the crossbar under varying dimen-
sions, it was observed that the forces remain nearly constant, with minimal changes.

For example, using the most critical ULS case from Section 4.1.1 (load case 18 at 0.069 rad),
modifying the crossbar diameter from 1 meter to 7 meters and the thickness from 0.3 meters to
0.8 meters resulted in negligible changes in Mz at the node closest to the tower (from -36551964
Nm to -36551962 Nm), representing a change of approximately 5.47× 10−6%.

This stability can be attributed to the simpler load path and lack of redundancy in the initial
structure. The crossbar alone bears the applied loads, leading to a direct and predictable distribu-
tion of internal forces. Consequently, variations in the crossbar dimensions have a limited impact
on the overall internal force distribution, making the structure relatively insensitive to dimensional
changes.

Response of LRS Structure

In contrast, the LRS structure, which includes a central tower and connecting members, exhibits
significantly different behavior when the crossbar dimensions are altered. The addition of the
LRS introduces additional load paths and structural redundancy, making the internal forces more
sensitive to changes in the crossbar diameter and thickness. For instance, changing the crossbar
dimensions within the same range (diameter from 1 meter to 7 meters and thickness from 0.3
meters to 0.8 meters) resulted in substantial variations in the moment at the node closest to the
tower, shifting from 9.75 · 107 Nm to −2.91 · 107 Nm.

This pronounced sensitivity is due to the complex interactions between the crossbar, central tower,
and connecting members. The LRS modifies the force distribution, causing a significant redis-
tribution of internal forces as the crossbar dimensions change. The introduction of additional
structural components alters the stiffness characteristics and load transfer mechanisms, leading to
more noticeable effects on internal force distribution.

For the above example, the top tower diameter was 1.5 meters and the thickness was 0.025 meters.
The members’ diameter and thickness were also 1.5 meters and 0.025 meters, respectively. The
diameter and thickness of these components significantly impact the overall structural behavior.
If the top tower is too thin, the horizontal displacement of the top node of the tower increases
significantly when the Mz moment on one side is relatively larger than the other side. For this
load case, the Mz on side 1 is −1.8 · 108 Nm and −0.2 · 108 Nm on side 2. In this scenario, the

28



moment from side 1 would drag its member enough for the crossbar on side 2 to bend upwards.
This change in bending would alter the stress ranges, affecting the structure’s fatigue life.

Additionally, because the constraint between the crossbar and the member is free around the z-axis
and the moment on the node is relatively large, the member will support the crossbar upwards
towards the tower, while the moment twists it down and inward towards the tower. This causes
the entire side 1 of the crossbar to transition from tension to compression, while also bending the
elements closest to the tower upwards. Consequently, the moment at the tower node changes from
a negative to a positive value. Figures 4.1 and 4.2 illustrate the deflection behavior of the structure
with crossbar dimensions of diameter 7 meters and thickness 0.8 meters, and diameter 1 meter and
thickness 0.3 meters, respectively. For these figures, the crossbar elements were set to 20 to better
view the deformations.

Figure 4.1: Deflection behavior of the LRS
structure with crossbar diameter of 7 m and
thickness of 0.8 m

Figure 4.2: Deflection behavior of the LRS
structure with crossbar diameter of 1 m and
thickness of 0.3 m

The results in Table 4.3 show that increasing the dimensions of the top tower and crossbar signi-
ficantly affects the global deflection of the top tower’s highest node. In the initial configuration,
the horizontal displacement (Trans X) is relatively high (Figure 4.3a). Increasing the top tower
dimensions reduces this displacement significantly (Figure 4.3b), suggesting that a stiffer top tower
can better resist horizontal loads and moments.

When the crossbar dimensions are increased to match the volume increase of the top tower, the
horizontal displacement is also reduced, but not as significantly as when the top tower dimensions
are increased (Figure 4.3c). This indicates that while both components contribute to the overall
stiffness, the top tower has a more pronounced effect on reducing horizontal displacements.

These findings suggest that the stiffness of the top tower plays a crucial role in minimizing deflec-
tions and ensuring the stability of the LRS structure, with minimal addition of mass. The results
also highlight the importance of considering both the crossbar and top tower dimensions in the
design process to achieve optimal performance and structural integrity.

Comparision of initial structure and LRS structure

The structural analysis compared the internal forces and moments at the connection between
the side 1 member and the crossbar, for both the initial structure and the LRS structure. This

29



Table 4.3: Global deflection of top tower highest node. All values in meter.

Dimension
change

Crossbar
Diameter

Crossbar
Thickness

Tower
Diameter

Tower
Thickness

Displacement Value

Trans X 1.5429 m

Trans Y -0.0062 m

Trans Z -0.0012 m

Rot X -0.0005 m

Rot Y -0.0013 m

Initial 1.0 m 0.1 m 0.8 m 0.05 m

Rot Z -0.2314 m

Trans X 0.9001 m

Trans Y -0.0016 m

Trans Z -0.0001 m

Rot X 0.0000 m

Rot Y -0.0001 m

Tower Change 1.0 m 0.1 m 3.015 m 0.05 m

Rot Z -0.0135 m

Trans X 0.9172 m

Trans Y -0.0061 m

Trans Z -0.0007 m

Rot X -0.0003 m

Rot Y -0.0007 m

X-bar Change 1.2215 m 0.1 m 0.8 m 0.05 m

Rot Z -0.1376 m

(a) Initial structure displacements before alter-
ing dimensions

(b) Structure showing displacements after alter-
ing top tower dimensions

(c) Structure showing displacements after alter-
ing the crossbar dimensions

Figure 4.3: Displacement behavior of the LRS structure with different configurations

comparison highlights the impact of the Load Reduction System (LRS) on the distribution of forces
and moments within the structure. The details are presented in Table 4.4, and Figure 4.4 shows
the bending path.

Axial Force (Fx):

In the original structure, the axial force at the connection is 3.07 · 106 N, while in the modified
structure with the LRS, it is −1.48 · 107 N. The significant increase in the opposite direction is
likely due to the additional constraints and load distribution caused by the LRS. The negative sign
indicates that the member is now in compression instead of tension. This compression is primarily
due to the high bending moment Mz, which pushes the crossbar in the negative x-direction as the
member attempts to support the crossbar.

Transverse Shear Forces (Fy and Fz):

Fy increased significantly from −1.49 · 106 N to 5.64 · 106 N, indicating a large shear force acting
upward in the y-direction. This increase can be attributed to the vertical component of the forces in
the members. In the LRS structure, the added members provide additional load paths, introducing
vertical loads that were previously absent. These vertical forces cause an increase in the transverse

30



Table 4.4: Comparison of forces and moments at connection between side 1 member and crossbar
for the original structure and the modified LRS structure

Force/Moment Original Structure With LRS

Axial force (Fx) 3.07 · 106 N −1.48 · 107 N

Transverse shear force (Fy) −1.49 · 106 N 5.64 · 106 N

Transverse shear force (Fz) 5.30 · 104 N 5.28 · 104 N

Bending moment (Mx) 0.00 Nm 557.07 Nm

Bending moment (My) −3.34 · 106 Nm −3.32 · 106 Nm

Bending moment (Mz) −2.15 · 108 Nm −2.15 · 108 Nm

shear force in the y-direction, as the structure now has to support additional upward forces due to
the presence of the LRS.

Fz remained relatively stable, with values of 5.30 · 104 N in the original structure and 5.28 · 104 N
in the LRS structure. This suggests that the vertical loads from the members attached to the top
of the tower do not significantly affect the transverse shear force in the z-direction.

Moments (Mx, My, Mz):

Mx changed from 0.00 Nm to 5.57 ·102 Nm, indicating a moment about the x-axis arising from the
eccentric loading and the new constraints from the tower and members. The introduction of the
LRS modifies the load path, creating an additional moment about the x-axis due to the eccentric
loads applied by the members.

My showed a slight decrease from -3,340,476.27 Nm to -3,320,719.45 Nm, suggesting that the
new structure helps distribute the load more evenly, thus reducing the bending moment in the
y-direction.

Mz remained unchanged, as the constraint between the crossbar and member is free around the
z-axis.

Figure 4.4: Deflection of crossbar with LRS

4.1.3 Comparison of Element Numbers

The structural analysis results can be significantly influenced by the number of elements used to
model the crossbar. To determine the optimal number of elements that balances accuracy and
computational efficiency, analyses were conducted with varying numbers of elements. Specifically,
the initial analysis was performed with 4 elements, and subsequent analyses were conducted with
20 and 88 elements to observe how the results converge.

31



The analyses were performed on the LRS structure with the following dimensions: the top tower
was modeled with 3 elements over 10 meters with a diameter of 1.5 meters and a thickness of 0.025
meters; the members were modeled with 4 elements each, with a diameter of 0.8 meters and a
thickness of 0.01 meters; and the crossbar was set with a diameter of 6.2 meters and a thickness
of 0.8 meters. The load case considered was lc18 at an azimuth of 0.0698 radians.

The results from the analysis are summarized in Table 4.5, which shows the internal forces and
moments for the node closest to the tower on both sides of the crossbar for different numbers of
elements. The forces and moments are represented as Fx, Fy, Fz, Mx, My, and Mz.

Table 4.5: Comparison of Forces and Moments at Nodes for Different Numbers of Elements

Elements Node Fx (N) Fy (N) Fz (N) Mx (Nm) My (Nm) Mz (Nm)

3 -579973 -294072 -27452 182 -2030853 -25606141
4 elements

3 -1948858 1039017 -53022 -162 4663850 241309643

11 -579973 -294072 -27452 182 -2030853 -25606141
20 elements

11 -1948858 1039017 -53022 -162 4663850 241309643

45 -579973 -294072 -27452 182 -2030853 -25606141
88 elements

45 -1948858 1039017 -53022 -162 4663850 241309643

The data in the table indicate that increasing the number of elements from 4 to 20 and then to
88 results in barely any change in the internal forces and moments. This observation holds true
even when varying the dimensions of the crossbar, top tower, and members. The most significant
difference observed was in the Mz moment at the crossbar node closest to the tower on side 1,
which differed by only 0.01 Nm between the highest and lowest element counts.

The internal forces of every connection between the crossbar, top tower, and both members were
also checked. This analysis compared 50 elements for each member, top tower, and crossbar with
4, 3, and 3 elements, respectively. The results yielded the same conclusion: there was barely any
change in the internal forces. The biggest change was again in the Mz moment in the crossbar
node closest to the tower on side 1, with a difference of 0.01 Nm.

These findings suggest that using a lower number of elements provides sufficient accuracy for the
linear static analysis, significantly speeding up the analysis process during iterative optimization,
from approximately 9 iterations per second to almost 300 iterations per second. The minimal
variation in results confirms that a simpler model with fewer elements can reliably represent the
structural behavior of the crossbar and its interactions within the LRS structure.

4.2 Fatigue Analysis

4.2.1 Stress Ranges for ULS minimum dimensions

This analysis pertains to the Ultimate Limit State (ULS) scenario, using dimensions derived from
the critical load cases discussed in section 4.1.1. Specifically, the structure has a diameter of 3.89
meters and a thickness of 0.0612 meters. In this context, negative stress values indicate downward
bending, while positive values indicate upward bending.

The Palmgren-Miner Rule was applied for the Fatigue Limit State (FLS) optimization. Table 4.2.1
illustrates that the stress ranges for the ULS minimum dimensions are excessively high, resulting
in substantial damage.

32



Load Case Max Stress (MPa) Min Stress (MPa) Stress Range (MPa)

lc1 38.37 -22.01 60.37
lc2 93.87 7.93 85.94
lc3 146.67 12.39 134.29
lc4 211.21 17.84 193.37
lc5 287.48 24.28 263.20
lc6 375.49 31.71 343.78
lc7 475.22 40.13 435.09
lc8 586.70 49.54 537.15
lc9 709.90 59.95 649.95
lc10 844.84 71.34 773.50
lc11 -431.15 -1841.09 1409.94
lc12 -675.80 -2562.42 1886.62
lc13 -532.37 -2698.96 2166.58
lc14 -301.80 -2841.84 2540.04
lc15 -213.39 -3016.59 2803.20
lc16 -151.73 -3205.73 3054.00
lc17 -111.81 -3404.89 3293.09
lc18 152.90 -3506.05 3658.95

The above results clearly indicate the excessive stress levels, emphasizing the necessity for fatigue
optimization to ensure structural integrity and longevity.

4.2.2 Element Stress vs External Load Stress

This subsection aims to clarify the need for iterating through all elements and radians in the
operational load cases to accurately determine the stress ranges for the crossbar. The initial analysis
indicated discrepancies between stress ranges derived from external loads and those calculated from
internal element forces.

To illustrate this, consider the stress range analysis for load case 1. The highest and lowest stresses
were recorded at specific azimuth angles. When comparing the stress ranges obtained from the
external loads to those from the internal forces of the element closest to the tower on side one,
notable differences were observed. This discrepancy highlighted the necessity of a detailed element-
wise analysis for accurate stress range determination.

Table 4.6 provides a comparison of the maximum and minimum stress values derived from external
loads and internal element forces for load case 1.

Table 4.6: Comparison of Stress Ranges: External Load vs. Internal Element Forces for Load
Case 1

Load Case Stress from External
Loads (MPa)

Stress from Internal
Forces (MPa)

Stress Range (MPa)

Max Stress (σmax) 0.9531 at 1.466 rad 1.0293 at 1.466 rad 0.0762

Min Stress (σmin) -0.548 at 5.794 rad -0.5500 at 3.979 rad 0.002

From this comparison, it was confirmed that there is a need to iterate through all elements and
azimuthal positions within each operational load case. This approach ensures the accuracy of the
calculated stress ranges, as relying solely on external loads can lead to inaccuracies due to the
localized nature of stress variations within the structure.

33



4.2.3 Optimizing FLS

The internal forces analysis conducted earlier demonstrated that the number of elements used
in the crossbar model had a minimal impact on the results. Specifically, varying the number of
elements from 4 to 20, and even up to 88 elements, showed negligible differences in internal force
calculations. For instance, the moment Mz at the node closest to the tower on side 1 showed a
difference of only 0.01 Nm.

Thus, the initial optimization was conducted using 2 elements for the crossbar, 3 elements for
the top tower, and 4 elements for each of the support members. This provided a preliminary
analysis to identify key trends. Subsequently, the crossbar elements were increased to 6 to achieve
a better balance between accuracy and computational efficiency. For all Fatigue Limit State (FLS)
optimizations, the lower bound was set to the Ultimate Limit State (ULS) optimal dimensions, with
a diameter of 3.89 meters and a thickness of 0.064 meters. Additionally, the optimizer tolerance
was set to a relative value of 1e − 4, ensuring adaptive precision across different scales, while the
constraint tolerances were also set to 1e− 4.

FLS Results Initial Structure

After running the FLS optimization for the initial structure with three different initial values for
diameter and thickness (x[0] = 6m and x[1] = 0.1m, x[0] = 5m and x[1] = 0.3m, x[0] = 7m and
x[1] = 0.13m), the results consistently converged to the same optimal dimensions, confirming the
validity of the solution.

The stress ranges for iteration 1 are summarized in Table 4.9. The table illustrates the stress ranges
obtained for the optimized dimensions across the different load cases. The results given in Table 4.7
gives the optimized values of what the structure can effectively handle the stress variations within
the specified limits, ensuring durability and structural integrity under fatigue loading conditions
for the 20 year period.

FLS Results LRS Structure

After optimizing the initial structure, the same process was applied to the Load Reduction System
(LRS) structure. This analysis was conducted with a top tower height of 10 meters. The initial
values for the crossbar diameter and thickness were set to x[0] = 6m and x[1] = 0.1m with
subsequent tests using x[0] = 5m and x[1] = 0.3m and x[0] = 7m and x[1] = 0.13m. The
optimization results consistently converged to the same dimensions, confirming the validity of the
solution.

Table 4.7: Optimization Results for Initial
Structure

Parameter Value

Optimal Diameter 6.2493 m

Optimal Thickness 0.1036 m

Minimum Area 2.0m2

Damage 1.0

Crossbar Volume 100.01m3

Table 4.8: Optimization Results for LRS
Structure

Parameter Value

Optimal Diameter 6.038 m

Optimal Thickness 0.100 m

Minimum Cross-Sectional Area 1.867 m2

Damage 1.0

Crossbar Volume 93.33m3

Top Tower Volume 8.20m3

Member Volume 4.92m3

Total Structure Volume 106.45m3

The stress ranges for the first LRS iteration are summarized in Table 4.10. The table illustrates the
stress ranges obtained for the optimized dimensions across the different load cases. The optimiza-

34



tion results for the LRS structure are summarized in Table 4.8. These values indicate the optimal
crossbar dimensions that meet the fatigue life requirements under the given loading conditions.

Table 4.9: Stress Ranges for Initial Struc-
ture from first iteration.

Load Case Stress Range (MPa)

lc1 1.34

lc2 1.87

lc3 2.92

lc4 4.20

lc5 5.72

lc6 7.47

lc7 9.46

lc8 11.67

lc9 14.13

lc10 16.81

lc11 32.81

lc12 45.26

lc13 53.84

lc14 62.73

lc15 66.88

lc16 74.69

lc17 87.64

lc18 90.58

Table 4.10: Stress Ranges for LRS Struc-
ture from first iteration.

Load Case Stress Range (MPa)

lc1 1.37

lc2 1.96

lc3 3.06

lc4 4.41

lc5 5.99

lc6 7.83

lc7 9.91

lc8 12.24

lc9 14.81

lc10 17.62

lc11 33.32

lc12 44.93

lc13 50.22

lc14 58.76

lc15 76.28

lc16 79.45

lc17 84.86

lc18 86.81

Material Volume Analysis for LRS Structure

To determine the overall impact on material usage by implementing the LRS, the total material
volume for the LRS structure is compared with the crossbar volume of the initial structure. By
adjusting the top tower height and the dimensions of both the top tower and the members, more
optimal results can be achieved.

Although the results in Table 4.7 and Table 4.8 seem promising due to a reduced cross-sectional
area, the calculation of the total structure volume tells a different story.

When modifying the thickness of the top tower structure, from 0.03m to 0.0166m, to meet the
D
t ≤ 60.3 ratio from the fy/fcle constraint detailed in section 3.4.1, the stress ranges in the crossbar
increased overall.

Upon optimizing the crossbar dimensions, an unexpected result was observed: the stress range for
load case 15 decreased when the crossbar thickness was reduced. To understand this anomaly, the
changes in stress range for load cases 1 to 18 were analyzed, as summarized in Table 4.11.

The majority of the load cases showed an expected increase in stress range due to the reduction in
crossbar thickness. However, load case 15 exhibited a negative increase in stress range, indicating
a reduction. This phenomenon could be attributed to several factors, like the stress distribution in
the structure under load is influenced by changes in cross-sectional geometry, leading to significant
redistribution of stresses. Reducing the thickness might reduce the stress concentration factor at
certain points, which can result in a decrease in the stress range for specific load cases. Furthermore,
the sensitivity of boundary conditions to thickness changes can influence the stress distribution
differently for various load cases. A reduction in thickness might lead to a more efficient load
path for certain load cases, reducing the overall stress experienced by the structure. Additionally,
numerical simulation artifacts, such as mesh sensitivity or solver precision, can sometimes produce
unexpected results.

Further investigation is needed to fully understand this behavior, potentially involving more de-
tailed modeling or experimental validation.

35



Table 4.11: Increase in Stress Range After Reducing Crossbar Thickness

Load Case Stress Ranges [MPa] Difference [MPa]

lc1 1.373 1.450 0.078

lc2 1.958 2.062 0.105

lc3 3.059 3.223 0.163

lc4 4.405 4.640 0.235

lc5 5.996 6.316 0.320

lc6 7.831 8.250 0.418

lc7 9.911 10.441 0.530

lc8 12.236 12.890 0.654

lc9 14.806 15.597 0.791

lc10 17.620 18.562 0.942

lc11 33.318 34.018 0.700

lc12 44.935 45.819 0.884

lc13 50.217 52.247 2.030

lc14 58.762 60.668 1.905

lc15 76.284 66.710 -9.574

lc16 79.449 81.390 1.941

lc17 84.863 85.995 1.132

lc18 86.806 88.978 2.172

Table 4.12, 4.13, and 4.14 compares different configurations of the LRS structure, focusing on the
total material volume required for each configuration.

Top Tower Height

Table 4.12: Change in total structural material volume with tower height change

Top Tower Height [m] 12 10 9 8 7 6 5

Top Tower Diameter [m] 3.8

Top Tower Thickness [m] 0.063

Member Length [m] 27.73 26.93 26.57 26.25 25.96 25.71 25.5

Member Diameter [m] 1.0

Member Thickness [m] 0.017

Crossbar Area [m2] 1.839 1.807 1.817 1.837 1.843 1.866 1.888

Crossbar Volume [m3] 91.966 90.346 90.863 91.863 92.134 93.305 94.413

Tower Volume [m3] 8.878 7.398 6.659 5.919 5.179 4.439 3.699

Member Volumes [m3] 2.842 2.759 2.723 2.690 2.660 2.635 2.613

Total Volume [m3] 103.686 100.503 100.244 100.471 99.973 100.379 100.724

The first analysis involves varying the top tower height while keeping other parameters constant,
and evaluating the resulting volumes of the crossbar, tower, and members. The results for top
tower height is shown in Table 4.12

Observations

1. Material Efficiency:

• Reducing the top tower height to 7 meters results in the lowest total volume of 99.97
m3. This is more efficient compared to the initial structure’s volume of 100.01 m3.

• As the top tower height decreases, both the tower volume and the member volumes
consistently reduce due to their lengths getting shorter.

2. Volume Distribution:

• The crossbar volume remains relatively stable around 10m top tower heights, and also
hits an extremal point. This suggests that changes in the height at this point gives an
optimal angle for the reduction of crossbar volume, but since the top tower adds a lot

36



more mass at this hight than the crossbar is reduced, the more optimal solution is at a
height around 7m.

• A shorter top tower height with an optimal cross-sectional mass could lead to stiffer
components, thus attracting more loads away from the crossbar, which could reduce the
volume more than resulting here.

Key Insights

• Efficiency: A 7-meter top tower height is the most material-efficient configuration, balancing
the structural requirements with material savings.

• Structural Considerations: Changes in height must be carefully evaluated for their impact
on load distribution and overall structural performance.

Member Cross-Section

Table 4.13: Change in total structural material volume with support member cross-section change

Top Tower Height [m] 7.00 7.00 7.00 7.00 7.00

Top Tower Diameter [m] 3.80 3.80 3.80 3.80 3.80

Top Tower Thickness [m] 0.06 0.06 0.06 0.06 0.06

Member Length [m] 25.96 25.96 25.96 25.96 25.96

Member Diameter [m] 0.70 0.90 1.00 1.10 1.50

Member Thickness [m] 0.01 0.01 0.02 0.02 0.02

Crossbar Area [m2] 1.90 1.86 1.84 1.84 1.81

Crossbar Volume [m3] 95.10 92.95 92.13 92.22 91.78

Tower Volume [m3] 5.18 5.18 5.18 5.18 5.18

Member Volumes [m3] 1.30 2.15 2.66 3.22 5.99

Total Volume [m3] 101.58 100.29 99.97 100.61 102.94

The table 4.13 provides an analysis of the total structural volume when varying the diameter and
thickness of the members, while keeping the top tower height fixed at 7 meters. The objective is
to determine the optimal member cross-sectional dimensions that minimize the total volume.

Observations

1. Material Efficiency:

• The configuration with member dimensions (diameter = 1.0 m, thickness = 0.02 m)
results in the lowest total volume of 99.97 m3.

• Deviating from this diameter, either increasing or decreasing, results in higher total
volumes, indicating that 1.0 m is the optimal diameter for material efficiency.

2. Volume Distribution:

• The crossbar area decreases slightly as the member diameter increases, indicating that
thicker members attract more load, thus reducing the load on the crossbar.

• When the member diameter decreases, the crossbar volume increases, likely due to the
crossbar taking on more load.

• The crossbar’s length of 50 meters, which is relatively long, causes significant volume
changes even with minor area variations.

37



Key Insights

• Optimal Design: Maintaining a member diameter of 1.0 m and thickness of 0.02 m is
optimal for minimizing total volume while ensuring load distribution.

• Load Redistribution: Adjusting member dimensions significantly affects load distribution,
and these changes must be evaluated for their impact on structural performance.

Top Tower Cross-Section

Table 4.14: Change in total structural material volume with change in top tower cross-section.

Top Tower Height [m] 7.00 7.00 7.00 7.00 7.00
Top Tower Diameter [m] 3.40 3.60 3.70 3.80 4.20
Top Tower Thickness [m] 0.06 0.06 0.06 0.06 0.07

Member Length [m] 25.96 25.96 25.96 25.96 25.96
Member Diameter [m] 1.00 1.00 1.00 1.00 1.00
Member Thickness [m] 0.02 0.02 0.02 0.02 0.02
Crossbar Area [m2] 1.87 1.85 1.84 1.84 1.84

Crossbar Volume [m3] 93.36 92.33 92.23 92.13 91.83
Tower Volume [m3] 4.15 4.65 4.91 5.18 6.33

Member Volumes [m3] 2.66 2.66 2.66 2.66 2.66
Total Volume [m3] 100.16 99.64 99.80 99.97 100.82

Observations

1. Material Efficiency:

• The configuration with a top tower diameter of 3.60 m and thickness of 0.06 m results
in the lowest total volume of 99.64 m3.

• Increasing the top tower’s diameter and thickness considerably impacts its material
volume, leading to higher total volumes. By increasing the cross-section more than
3.6m at the height of 7m, the total volume added from the top tower is more than the
possible reduction of the crossbar, without risking failure due to fatigue. This means
that the top towers balance between mass and attracting forces for this situation, would
be achieved at 3.6m diameter, and 0.06m thickness.

2. Volume Distribution:

• The crossbar area shows very slight variations with changes in top tower cross-section,
indicating that the top tower’s influence on load distribution is not that significant for
the crossbar.

• The top tower volume increases significantly with larger diameters and thicknesses,
reflecting the material cost associated with these changes.

Key Insights

• Material Efficiency: A top tower diameter of 3.60 m and thickness of 0.06 m is the most
efficient configuration for minimizing material volume for the entire structure.

• Load Distribution: Changes in the top tower cross-section clearly affect load paths, and
these must be carefully analyzed to ensure optimal structural performance.

38



4.3 Final Analysis and Future Work

4.3.1 Conclusion to parameter changes

The analyses of different parameter changes—top tower height, member cross-section, and top
tower cross-section—highlight the importance of optimizing these dimensions to achieve material
savings and structural efficiency. Each parameter affects the total structural volume and load
distribution differently. The most material-efficient configurations were found to be a 7-meter top
tower height, a 1.0-meter diameter for the members, and a 3.60-meter diameter with a 0.06-meter
thickness for the top tower. However, these changes must be balanced with the need to ensure
that all components meet the required load-bearing capacities to maintain the structural integrity
and safety of the LRS system.

For the most optimal structure found in this analysis, the total volume is 99.64 m3. Comparing
this to the initial volume of 100 m3, this corresponds to a reduction of 0.36 m3. With a density of
7850 kg

m3 , this reduction translates to a mass difference of approximately 2.83 tons. Assuming the
price of steel to be approximately 8500 NOK/ton, the total saving would be 24,055 NOK, which
is not that much looking at the big picture. Still, there is a lot of more research that can be done
to either reduce the material cost of the structure, or reduce the cost of energy in other ways.

Additional Considerations

1. Impact on Installation and Maintenance Costs:

• The reduction in material volume directly contributes to lower material costs. However,
this initial saving might be offset by potential increases in installation and mainten-
ance costs. Thinner or smaller components may require more frequent inspections and
maintenance, impacting the overall lifecycle cost of the structure.

2. Safety Margins and Design Standards:

• While the analysis suggests optimal configurations, it’s crucial to ensure that the chosen
dimensions for both members and the top tower, are within the capacity- and fatigue
limits, preventing structural failures.

3. Environmental Impact:

• Reducing material usage not only lowers costs but also has a positive environmental
impact by decreasing the carbon footprint associated with steel production. This aligns
with sustainable engineering practices and can be a significant factor in the decision-
making process.

4.4 Future Work

To build upon these findings, several areas of future work can be explored:

1. Detailed Capacity Checks:

• Perform comprehensive capacity checks for the members and top tower to ensure they
meet all load-bearing requirements.

2. Optimization of Load Paths:

• Investigate the potential for optimizing load paths to further reduce material usage.

• Analyze the impact of different constraint conditions, such as fully constraining the
crossbar to the members, to optimize load distribution.

3. Cost-Benefit Analysis:

39



• Conduct a detailed cost-benefit analysis considering not only material costs but also
installation, maintenance, and lifecycle costs.

4. Sustainability Considerations:

• Evaluate the environmental impact of the optimized designs.

• Consider using alternative materials or hybrid structures to enhance sustainability.

5. Upscaling the Structure:

• Evaluate the benefits and drawbacks of upscaling the entire structure. Adding a third
arm with a 120-degree angle between each arm could generate more power and poten-
tially balance the structure better.

6. Expanding Optimization Objectives:

• Expand the optimization to include many more objective functions such as minimum
area, minimum cost, minimum displacements/sway, different material selection, and
lateral displacements and deflections.

• Additionally, lateral deflections and inter-story drifts need to be minimized to ensure
stability and comfort.

7. Alternative Member Testing:

• Consider testing the members as wires instead of tubes. However, wires must always
stay in tension to avoid snapping effects, which adds complexity to the analysis. The
current analysis was done with tube members only due to these complications.

8. Eigenfrequency and Modal Analysis:

• Perform eigenfrequency and modal analysis to ensure the structure’s stiffness remains
within certain limits. This analysis will help understand how the structure’s mass,
thickness, and diameter variations affect its dynamic behavior and stability.

40



CHAPTER 5

CONCLUSION

This thesis investigated the structural optimization of the Load Reduction System (LRS) for off-
shore x-rotor wind turbines, focusing on minimizing the total structural volume to reduce material
costs. The analysis covered three main parameter changes for fatigue analysis: top tower height,
member cross-section, and top tower cross-section. The conclusions drawn from these analyses are
summarized below.

Optimization of Top Tower Height

The analysis of varying top tower heights revealed that a 7-meter top tower height resulted in the
lowest total volume of 99.64 m3, compared to the initial structure’s volume of 100.01 m3. This
reduction translates to a material saving of approximately 2.9 tons, which corresponds to a cost
saving of 24,650 NOK, assuming a steel price of 8,500 NOK per ton. This finding highlights the
potential for material and cost efficiency through careful optimization of the top tower height.

Optimization of Member Cross-Section

The optimization of member cross-sections indicated that maintaining a member diameter of 1.0
meters and a thickness of 0.02 meters was the most material-efficient configuration, resulting in
a total volume of 99.97 m3. Deviations from this diameter, either increasing or decreasing, led
to higher total volumes. This suggests that the chosen member dimensions play a critical role in
achieving optimal material usage.

Optimization of Top Tower Cross-Section

The analysis of varying top tower cross-sections demonstrated that a top tower diameter of 3.60
meters and a thickness of 0.06 meters resulted in a total volume of 99.64 m3, the lowest among the
tested configurations. This optimization further emphasizes the importance of selecting appropriate
cross-sectional dimensions to minimize material usage.

Structural Implications

While the optimized configurations achieved some material savings, it is crucial to ensure that all
components meet the required load-bearing capacities to maintain structural integrity and safety.
The current analysis did not include detailed capacity checks for the members and the top tower,
highlighting the need for further investigation in this area. Additionally, the constraint between
the crossbar and member, which is free to rotate around the z-axis, limits the load distribution
effectiveness. Fully constraining this connection could potentially improve load transfer and further
optimize the structure.

Future Directions

Future work should focus on comprehensive capacity checks for the members and top tower, optim-
izing load paths, conducting detailed cost-benefit analyses, and considering sustainability aspects.
Additionally, exploring the potential benefits of upscaling the structure, adding a third arm, and
conducting eigenfrequency and modal analyses would provide a more holistic understanding of the
structural behavior and optimization opportunities.

Final Remarks

The findings of this thesis provide valuable insights into the structural optimization of offshore
x-rotor wind turbines. By focusing on minimizing total volume and material costs, the proposed
optimizations contribute to the development of more cost-effective and efficient wind turbine struc-

41



tures. However, further studies are necessary to ensure the safety, reliability, and long-term per-
formance of the optimized designs.

42



BIBLIOGRAPHY

[1] W. Leithead, A. Camciuc, A. K. Amiri and J. Carroll, ‘The x-rotor offshore wind turbine
concept’, Journal of Physics: Conference Series, vol. 1356, no. 1, p. 012 031, Oct. 2019. doi:
10.1088/1742-6596/1356/1/012031.

[2] T. Blichfeldt, ‘Optimization of the x-rotor wind turbine structure’, Project Thesis, NTNU,
2023.

[3] O. Zienkiewicz, R. Taylor and J. Zhu, The Finite Element Method: Its Basis and Funda-
mentals. Elsevier, 2005.

[4] H. Karadeniz, Stochastic analysis of offshore steel structures (Springer Series in Realibility
Engineering), en, 2012th ed. Guildford, England: Springer, Aug. 2012.

[5] W. Fang, ‘En234: Three-dimentional timoshenko beam element undergoing axial, torsional
and bending deformations’, 2015.

[6] M. Okereke and S. Keates, Finite element applications (Springer Tracts in Mechanical En-
gineering), en, 1st ed. Basel, Switzerland: Springer International Publishing, Feb. 2018. doi:
https://doi.org/10.1007/978-3-319-67125-3.

[7] O. A. Bauchau and J. I. Craig, ‘Euler-bernoulli beam theory’, in Structural Analysis. Dordrecht:
Springer Netherlands, 2009, pp. 173–221. [Online]. Available: https://doi.org/10.1007/978-
90-481-2516-6 5.

[8] J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed. Florence, KY: Nelson
Engineering, Nov. 1996.

[9] K. A. Kv̊ale, knutankv/beef: Version 0.4.3: more robust feature treatment and added example,
version v0.4.3, Accessed: 2024-01-22, Dec. 2023. doi: 10.5281/zenodo.10370416. [Online].
Available: https://doi.org/10.5281/zenodo.10370416.

[10] DNVGL, Fatigue design of offshore steel structures. recommended practice dnvgl-rp-c203,
April, 2016, p. 216.

[11] S. G. Johnson, The NLopt nonlinear-optimization package, https://github.com/stevengj/
nlopt, Accessed: 2024-01-22, 2007.

[12] P. Venkataraman, Applied optimization with MATLAB programming. Nashville, TN: John
Wiley & Sons, Jan. 2002.

[13] S. W. Jorge Nocedal, Numerical Optimization (Springer series in operations research), 2nd
ed. Springer, 2006, isbn: 9780387303031; 0387303030.

[14] A. Correia, X-rotor - wp4 internal report: Blade coordinate system, Internal Report, Nov.
2022.

[15] S. Norway, Norsok standard n-004: Design of steel structures, 1st ed., 2022, p. 282.

43

https://doi.org/10.1088/1742-6596/1356/1/012031
https://doi.org/https://doi.org/10.1007/978-3-319-67125-3
https://doi.org/10.1007/978-90-481-2516-6_5
https://doi.org/10.1007/978-90-481-2516-6_5
https://doi.org/10.5281/zenodo.10370416
https://doi.org/10.5281/zenodo.10370416
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt


APPENDIX A

TABLES OF HIGEST AND LOWEST FORCES AND
MOMENTS THROUGH ALL LOAD CASES

Table A.1: Highest Forces and Moments

Force Azimuth (rad) Fx1 Fy1 Mz1 Fz1 My1 Edge My1 Pitch Fx2 Fy2 Mz2 Fz2 My2 Edge My2 Pitch Load Case

Fx1 1.61 1.48× 106 −2.05× 105 1.79× 107 2.85× 104 6.34× 105 −5.55× 104 −1.25× 106 1.66× 105 −1.56× 107 −1.59× 104 −4.11× 105 7.98× 104 lc24

Fy1 5.79 3.27× 105 1.10× 106 6.98× 107 −2.19× 105 −4.67× 106 2.40× 105 1.70× 105 −2.02× 105 −9.43× 106 −8.05× 104 −2.16× 106 1.09× 106 lc25

Mz1 5.79 3.27× 105 1.10× 106 6.98× 107 −2.19× 105 −4.67× 106 2.40× 105 1.70× 105 −2.02× 105 −9.43× 106 −8.05× 104 −2.16× 106 1.09× 106 lc25

Fz1 1.19 8.90× 105 −3.17× 105 −5.03× 105 1.13× 106 2.50× 107 1.26× 106 −5.06× 105 3.93× 105 1.14× 107 −3.15× 105 −7.50× 106 −2.88× 105 lc26

My1 edge 4.40 −7.66× 104 6.90× 105 3.82× 107 1.12× 106 2.55× 107 −1.35× 106 3.96× 105 −6.43× 105 −2.92× 107 −1.85× 105 −6.30× 106 1.79× 105 lc27

My1 pitch 2.86 9.37× 104 −1.11× 105 −5.23× 106 −2.34× 104 −6.62× 105 1.83× 106 2.84× 105 8.76× 105 5.30× 107 −2.26× 105 −5.33× 106 −2.02× 105 lc25

Fx2 4.68 −1.27× 106 1.72× 105 −1.56× 107 1.90× 104 4.70× 105 6.83× 104 1.45× 106 −1.99× 105 1.78× 107 2.82× 104 5.59× 105 −6.69× 104 lc24

Fy2 2.72 1.44× 105 −1.71× 105 −7.98× 106 −5.88× 104 −1.63× 106 1.40× 106 2.99× 105 1.03× 106 6.39× 107 −2.10× 105 −4.55× 106 1.28× 105 lc25

Mz2 2.72 1.44× 105 −1.71× 105 −7.98× 106 −5.88× 104 −1.63× 106 1.40× 106 2.99× 105 1.03× 106 6.39× 107 −2.10× 105 −4.55× 106 1.28× 105 lc25

Fz2 6.21 −1.96× 105 2.08× 105 6.58× 106 −1.06× 106 −2.38× 107 1.80× 106 1.15× 104 −2.33× 104 −1.23× 106 1.07× 106 2.40× 107 −1.44× 106 lc28

My2 edge 6.21 −1.96× 105 2.08× 105 6.58× 106 −1.06× 106 −2.38× 107 1.80× 106 1.15× 104 −2.33× 104 −1.23× 106 1.07× 106 2.40× 107 −1.44× 106 lc28

My2 pitch 3.14 −8.94× 103 1.05× 104 3.88× 105 1.10× 106 2.45× 107 −2.00× 106 −7.67× 104 9.25× 104 2.58× 106 −1.07× 106 −2.40× 107 1.78× 106 lc28

Force Azimuth (rad) Fx1hub Fy1hub Mz1hub Fz1hub My1hub Fx2hub Fy2hub Mz2hub Fz2hub My2hub Load Case

Mz2hub 3.28 5.52× 105 −1.08× 105 −3.06× 107 −4.79× 104 2.46× 106 −2.87× 106 −1.53× 106 2.14× 108 −9.98× 104 −5.62× 106 lc18

Table A.2: Lowest Forces and Moments

Force Azimuth (rad) Fx1 Fy1 Mz1 Fz1 My1 Edge My1 Pitch Fx2 Fy2 Mz2 Fz2 My2 Edge My2 Pitch Load Case

Fx1 6.07 −3.34× 106 −1.21× 106 −1.67× 108 1.51× 105 3.52× 106 −4.03× 105 −2.84× 105 −2.32× 105 −2.96× 107 −3.13× 104 −1.17× 106 −3.94× 103 lc18

Fy1 0.35 −2.19× 106 −1.59× 106 −1.64× 108 −2.09× 105 −5.60× 106 −1.11× 105 −5.29× 105 7.61× 104 −9.93× 106 7.30× 104 1.66× 106 1.62× 105 lc18

Mz1 0.07 −3.07× 106 −1.49× 106 −1.78× 108 −5.30× 104 −1.70× 106 −3.10× 105 −5.15× 105 −1.44× 105 −2.94× 107 2.75× 104 6.86× 105 −2.84× 104 lc18

Fz1 0.07 4.33× 104 −2.29× 104 −1.40× 106 −1.09× 106 −2.43× 107 −1.81× 106 −4.71× 104 3.32× 104 1.07× 106 5.48× 105 1.28× 107 3.13× 105 lc27

My1 edge 0.07 4.33× 104 −2.29× 104 −1.40× 106 −1.09× 106 −2.43× 107 −1.81× 106 −4.71× 104 3.32× 104 1.07× 106 5.48× 105 1.28× 107 3.13× 105 lc27

My1 pitch 3.14 −8.94× 103 1.05× 104 3.88× 105 1.10× 106 2.45× 107 −2.00× 106 −7.67× 104 9.25× 104 2.58× 106 −1.07× 106 −2.40× 107 1.78× 106 lc28

Fx2 3.00 −3.57× 105 −2.20× 105 −3.05× 107 −2.96× 104 −1.00× 106 −9.85× 103 −3.33× 106 −1.28× 106 −1.71× 108 1.05× 105 2.30× 106 −3.97× 105 lc18

Fy2 3.56 −5.68× 105 1.09× 105 −8.21× 106 8.90× 104 2.08× 106 2.13× 105 −1.94× 106 −1.58× 106 −1.57× 108 −2.20× 105 −5.93× 106 −7.58× 104 lc18

Mz2 3.14 −4.77× 105 −1.80× 105 −3.08× 107 7.15× 103 8.92× 104 −4.01× 104 −3.19× 106 −1.42× 106 −1.77× 108 2.33× 103 −3.11× 105 −3.51× 105 lc18

Fz2 3.14 −8.84× 103 1.05× 104 3.91× 105 5.19× 104 2.12× 106 −1.02× 105 −6.82× 104 9.73× 104 3.03× 106 −1.08× 106 −2.41× 107 −1.81× 106 lc27

My2 edge 3.14 −8.84× 103 1.05× 104 3.91× 105 5.19× 104 2.12× 106 −1.02× 105 −6.82× 104 9.73× 104 3.03× 106 −1.08× 106 −2.41× 107 −1.81× 106 lc27

My2 pitch 3.14 −8.84× 103 1.05× 104 3.91× 105 5.19× 104 2.12× 106 −1.02× 105 −6.82× 104 9.73× 104 3.03× 106 −1.08× 106 −2.41× 107 −1.81× 106 lc27

44



APPENDIX B

LINEAR STATIC ANALYSIS CODE

1 #%% Packages and imports

2 # Run to fix pyvista crash

3 from pyvistaqt import BackgroundPlotter

4 background = BackgroundPlotter ()

5 background.close ()

6
7 #Packages and imports

8 import beef

9 from beef import fe

10 from src.data_tool import Assembly_array_to_dataframe , extract_BeamElements

↪→ , get_local_node_forces , compute_local_tmat , plot_element_localaxis ,

↪→ read_load_cases , get_summary_data , force_dict_to_df ,

↪→ apply_max_load_equation , find_highest_load_case ,

↪→ find_lowest_load_case , calculate_stress_ranges ,

↪→ calculate_element_stress_ranges , calculate_fatigue_damage#

↪→ ##################

11 from src.StructureDesign import crossbar_parameters , basetower_parameters

12 from src.NORSOK_design import design_axial_tension ,

↪→ design_axial_compression , design_bending , design_shear_torsion ,

↪→ design_axial_tens_bending , design_buckling

13 # import nlopt

14
15 import numpy as np

16 import pandas as pd

17
18 import pyvista as pv

19 pv.set_jupyter_backend('trame ')
20
21 #%% Section definitions. Also modified in src.StructureDesign

22
23 xbar_outer_diameter = 7

24 xbar_thickness = 0.8

25 xbar_fy = 355e6

26
27 crossbar_params = crossbar_parameters(xbar_outer_diameter , xbar_thickness)

↪→ #diameter and thickness meter

28 crossbar_section = fe.Section (** crossbar_params)

29 basetower_params = basetower_parameters (100, 10)

30 basetower_section = fe.Section (** basetower_params)

31
32 #%% Define mesh crossbar and tower

33 xbar_elements = 6 #must be even integer for the constraint to be in middle

34 length = 50 #meter

35 node_labels = np.arange(1, xbar_elements +2) #nodes 1 to element +1

36 x = (node_labels - 1)/xbar_elements *length #placement for each node on x

↪→ axis

37 y = node_labels *0

38 z = node_labels *0

39
40 node_matrix_xbar = np.vstack ([ node_labels , x.T, y.T, z.T]).T #transpose the

↪→ nodes to a matrix so that its columns instead of rows

41 element_matrix_xbar = np.vstack ([np.arange(1, xbar_elements +1), node_labels

↪→ [0:-1], node_labels [1:]]).T # rows: label , n1 , n2

45



42
43 basetower_length = 50 #meter

44 tower_node_label = [(len(node_labels)+1) //2] #gives middle node as integer

↪→ rounded down

45 node_matrix_basetower = np.array ([[91 , length/2, -basetower_length , 0],

46 [92, length/2, -basetower_length /2, 0],

47 [93, length/2, 0, 0]

48 ])

49 element_matrix_basetower = np.array ([[91, 91, 92],

50 [92, 92, 93]])

51 #%% Define Assembly / Parts

52 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar ,sections=

↪→ crossbar_section)

53 part_basetower = fe.Part(node_matrix_basetower , element_matrix_basetower ,

↪→ basetower_section)

54
55 basetower_constraints = [fe.Constraint ([91] , dofs='all', node_type='beam3d '

↪→ , name='Fixed␣Constraint ')]
56 constraints = [fe.Constraint(tower_node_label , [93], name='Crossbar␣

↪→ constraint␣to␣basetower ', dofs='all', node_type='beam3d ')]+
↪→ basetower_constraints

57 assembly = fe.Assembly ([part_xbar , part_basetower], constraints=constraints

↪→ )

58
59 pl = assembly.plot(plot_nodes=True , node_labels=True , element_labels=False ,

↪→ plot_constraints=constraints , show=False)

60
61 #%% PLOT Assembly

62 pl.view_xy ()

63 pl.show()

64 #%% Define forces

65 # Side 1. Force sign is adjusted for correct coordinate system in

↪→ amplitudes.

66 Fx1 = -5.4771E+04

67 Fy1 = 1.1097E+03

68 Fz1 = 8.1620E+03

69 Mz1 = -1.2437E+08 + 25* Fy1

70 My1 = 1.8771E+05 -5.9501E+02+25* Fz1

71
72 Fx2 = -514609.401407

73 Fy2 = -143760.735865

74 Fz2 = 27496.853183

75 Mz2 = -129363925.440226

76 My2 = 686019.585219 + -28356.399565 + 25* Fz2

77
78 force_nodelabel_end2 = [node_labels [0]] # forces applied to left hand side

79 force_nodelabel_end1 = [node_labels [-1]] # forces applied to right hand

↪→ side

80
81 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-Fx1)#-

82 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=Fx2)

83 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=Fy1)

84 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=Fy2)

85 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-Fz1)#-

86 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=Fz2)

87 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=Mz1)

88 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-Mz2)#-

89 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=My1)

90 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=My2)

91 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 , force_z2 ,

↪→ moment_z1 , moment_z2 , moment_y1 , moment_y2]

92
93 #%% Analysis

46



94 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

95 analysis.run_lin_static(return_results=False)

96
97 pl = analysis.eldef.plot(node_labels=True , element_labels=False , plot_nodes

↪→ =True , plot_states =['undeformed ', 'deformed '], show=False)

98
99 analysis_assembly = analysis.eldef

100
101 displacements_assembly = analysis_assembly.u.reshape (-1,1)

102 displacements_df = Assembly_array_to_dataframe(analysis_assembly ,

↪→ analysis_assembly.u, 1)

103
104 #%% PLOT Deformations

105 pl.view_xy ()

106 pl.show()

107 #%% Element dictionary + element axis plot

108 elements_dict_assembly = extract_BeamElements(assembly)

109 elements_dict_analysis = extract_BeamElements(analysis_assembly)

110
111 #%% Forces

112 local_forces_dict = get_local_node_forces(assembly , analysis_assembly)[0]

113 local_forces_df = get_local_node_forces(assembly , analysis_assembly)[1]

114
115 #%%

116 element_1 = elements_dict_assembly['Element␣1']
117
118 # Plots own local axis , so ensure correct local coordinate system

119 plotaxis1 = plot_element_localaxis(analysis_assembly , element_1)

120
121 #%% Excel force extraction

122 from src.data_tool import apply_max_load_equation_df ,

↪→ analyze_multiple_columns#,find_worst_case

123
124 summary_df = get_summary_data('DesignLoads␣Xrotor.xlsx')
125 FLS_dict = read_load_cases('DesignLoads␣Xrotor.xlsx',1, 18)

126
127 ULS_dict = read_load_cases('DesignLoads␣Xrotor.xlsx', 1, 28)

128 force_names = ['azimuth_rad ', '1Fn_h_N ', '1Fn_v_N ', '1Mflap_Nm ', '1Ftan_N ',
↪→ '1Medge_v_Nm ', '1Mpitch_v_Nm ','2Fn_h_N ', '2Fn_v_N ', '2Mflap_Nm ', '2
↪→ Ftan_N ', '2Medge_v_Nm ', '2Mpitch_v_Nm ']

129 new_force_names = ['Azimuth␣rad','Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', '
↪→ My1_pitch ','Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']

130 # Dictionaries with dataframes of all used forces from excel with new names

131 applied_forces_dict = force_dict_to_df(ULS_dict , force_names ,

↪→ new_force_names)

132 applied_forces_fatigue_dict = force_dict_to_df(FLS_dict , force_names ,

↪→ new_force_names)

133
134 # Dictionaries with All combined forces for compression and tension.

135 max_load_tension = apply_max_load_equation(applied_forces_dict ,

↪→ new_force_names , 'tension ')
136 max_load_compression = apply_max_load_equation(applied_forces_dict ,

↪→ new_force_names , 'compression ')
137
138 force_names_list = ['Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', 'My1_pitch ', '

↪→ Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']
139 results_highest = analyze_multiple_columns(applied_forces_dict ,

↪→ force_names_list , 'max')
140 results_lowest = analyze_multiple_columns(applied_forces_dict ,

↪→ force_names_list , 'min')
141
142 # # Worst combined cases for ULS

143 element1_names = ['Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', 'My1_pitch ']

47



144 element2_names = ['Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']
145 max_compression_df = apply_max_load_equation_df(results_highest ,

↪→ element1_names , element2_names , 'compression ')
146 max_tension_df = apply_max_load_equation_df(results_highest , element1_names

↪→ , element2_names , 'tension ')
147 min_compression_df = apply_max_load_equation_df(results_lowest ,

↪→ element1_names , element2_names , 'compression ')
148 min_tension_df = apply_max_load_equation_df(results_lowest , element1_names ,

↪→ element2_names , 'tension ')
149 #%% Highest hub forces

150 force_names_combined = ['azimuth_rad ',
151 '1Fz_hub_root_N ', '1Fx_hub_root_N ', '1Fy_hub_root_N

↪→ ','1Mz_hub_root_Nm ', '1My_hub_root_Nm ',
152 '2Fz_hub_root_N ', '2Fx_hub_root_N ', '2Fy_hub_root_N

↪→ ','2Mz_hub_root_Nm ', '2My_hub_root_Nm ',]
153
154 new_force_names_combined = ['Azimuth␣rad',
155 'Fz1hub ', 'Fx1hub ', 'Fy1hub ','Mz1hub ', 'My1hub '

↪→ ,

156 'Fz2hub ', 'Fx2hub ', 'Fy2hub ','Mz2hub ', 'My2hub '
↪→ ]

157 applied_combined_forces_dict = force_dict_to_df(ULS_dict ,

↪→ force_names_combined , new_force_names_combined)

158 combined_force_names = ['Fz1hub ', 'Fx1hub ', 'Fy1hub ','Mz1hub ', 'My1hub ',
159 'Fz2hub ', 'Fx2hub ', 'Fy2hub ','Mz2hub ', 'My2hub '

↪→ ]

160 combined_results_highest = analyze_multiple_columns(

↪→ applied_combined_forces_dict , combined_force_names , 'max')
161 combined_results_lowest = analyze_multiple_columns(

↪→ applied_combined_forces_dict , combined_force_names , 'min')
162
163 #%% Run static analysis function single row

164
165 def run_static_analysis(diameter , thickness , nr):

166 # Update parameters for crossbar_section based on the current

↪→ optimization variables

167 crossbar_params = crossbar_parameters(diameter , thickness)

168 crossbar_section = fe.Section (** crossbar_params)

169 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar ,sections=

↪→ crossbar_section)

170 assembly = fe.Assembly ([part_xbar , part_basetower], constraints=

↪→ constraints)# Basetower unchanged for now. Need to add top -tower

↪→ later on.

171
172 # External forces from DF

173 forces_row = applied_forces_fatigue_dict['lc18'].iloc[nr] # dataframe

↪→ with external forces , from load case. nr pick row by index. From

↪→ dict

174
175 Fx1 = np.array([ forces_row['Fx1']])
176 Fy1 = np.array([ forces_row['Fy1']])
177 Fz1 = np.array([ forces_row['Fz1']])
178 Mz1 = np.array([ forces_row['Mz1'] + 25 * forces_row['Fy1']])
179 My1_edge = np.array ([ forces_row['My1_edge ']])
180 My1_pitch = np.array([ forces_row['My1_pitch ']])
181 Fx2 = np.array([ forces_row['Fx2']])
182 Fy2 = np.array([ forces_row['Fy2']])
183 Fz2 = np.array([ forces_row['Fz2']])
184 Mz2 = np.array([ forces_row['Mz2'] + 25 * forces_row['Fy2']])
185 My2_edge = np.array ([ forces_row['My2_edge ']])
186 My2_pitch = np.array([ forces_row['My2_pitch ']])
187
188 My1 = My1_edge + My1_pitch + 25* Fz1

48



189 My2 = My2_edge + My2_pitch + 25* Fz2

190
191 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-Fx1)

192 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=Fx2)

193 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=Fy1)

194 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=Fy2)

195 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-Fz1)

196 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=Fz2)

197 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=Mz1)

198 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-Mz2)

199 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=My1)

200 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=My2)

201 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 , force_z2 ,

↪→ moment_z1 , moment_z2 , moment_y1 , moment_y2]

202
203 # Run analysis

204 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

205 analysis.run_lin_static(return_results=False)

206
207 # get forces

208 analysis_assembly = analysis.eldef

209
210 local_forces = get_local_node_forces(assembly , analysis_assembly)[0] #

↪→ Dictionary with element forces (12, 0)

211
212 # Exclude elements 91 and 92

213 x_bar_forces = {k: v for k, v in local_forces.items () if k not in ['
↪→ Element␣91', 'Element␣92']}

214
215 return x_bar_forces

216
217 # runlin = run_static_analysis (4, 0.07, 0)

218
219 #%%

220 def run_static_analysis_FLS(diameter , thickness):

221 """

222 Run static analysis for all load cases and return local forces for each

↪→ element.

223
224 Parameters:

225 ----------

226 diameter : float , outer diameter of the tube.

227 thickness : float , wall thickness of the tube.

228
229 Returns:

230 -------

231 dict , contains DataFrames of local forces for each element for each

↪→ load case.

232 """

233
234 # Update parameters for crossbar_section based on the current

↪→ optimization variables

235 crossbar_params = crossbar_parameters(diameter , thickness)

236 crossbar_section = fe.Section (** crossbar_params)

237 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar , sections=

↪→ crossbar_section)

238 assembly = fe.Assembly ([part_xbar , part_basetower], constraints=

↪→ constraints) # Basetower unchanged for now

239
240 local_forces_dict = {}

241
242 # Iterate over all load cases

243 for lc , df in applied_forces_fatigue_dict.items():

49



244 local_forces_dict[lc] = {}

245
246 # Create an empty dictionary to hold DataFrames for each element

247 element_forces = {f'Element␣{i}': pd.DataFrame(columns =['Azimuth␣
↪→ rad', 'Fx1', 'Fy1', 'Fz1', 'Mx1', 'My1', 'Mz1',

248 'Fx2', '
↪→ Fy2

↪→ ',
↪→ '
↪→ Fz2

↪→ ',
↪→ '
↪→ Mx2

↪→ ',
↪→ '
↪→ My2

↪→ ',
↪→ '
↪→ Mz2

↪→ '
↪→ ])

249 for i in range(1, len(element_matrix_xbar) + 1)}

250
251 # Iterate over all rows of external forces data for the current

↪→ load case

252 for idx , forces_row in df.iterrows ():

253 Fx1 = np.array([ forces_row['Fx1']])
254 Fy1 = np.array([ forces_row['Fy1']])
255 Fz1 = np.array([ forces_row['Fz1']])
256 Mz1 = np.array([ forces_row['Mz1'] + 25 * forces_row['Fy1']])
257 My1_edge = np.array ([ forces_row['My1_edge ']])
258 My1_pitch = np.array([ forces_row['My1_pitch ']])
259 Fx2 = np.array([ forces_row['Fx2']])
260 Fy2 = np.array([ forces_row['Fy2']])
261 Fz2 = np.array([ forces_row['Fz2']])
262 Mz2 = np.array([ forces_row['Mz2'] + 25 * forces_row['Fy2']])
263 My2_edge = np.array ([ forces_row['My2_edge ']])
264 My2_pitch = np.array([ forces_row['My2_pitch ']])
265
266 My1 = My1_edge + My1_pitch + 25 * Fz1

267 My2 = My2_edge + My2_pitch + 25 * Fz2

268
269 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-

↪→ Fx1)

270 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=

↪→ Fx2)

271 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=

↪→ Fy1)

272 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=

↪→ Fy2)

273 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-

↪→ Fz1)

274 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=

↪→ Fz2)

275 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=

↪→ Mz1)

276 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-

↪→ Mz2)

277 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=

↪→ My1)

278 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=

↪→ My2)

279 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 ,

50



↪→ force_z2 , moment_z1 , moment_z2 , moment_y1 , moment_y2]

280
281 # Run analysis

282 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

283 analysis.run_lin_static(return_results=False)

284
285 # Get forces

286 analysis_assembly = analysis.eldef

287 local_forces = get_local_node_forces(assembly ,

↪→ analysis_assembly)[0] # Dictionary with element forces

↪→ (12, 0)

288
289 # Exclude elements 91 and 92

290 local_forces = {k: v for k, v in local_forces.items () if k not

↪→ in ['Element␣91', 'Element␣92']}
291
292 # Add the local forces for the current azimuth radian position

↪→ to the DataFrames

293 for element , forces_array in local_forces.items():

294 if element in element_forces:

295 # Create a DataFrame for the current azimuth radian

↪→ position

296 forces_dict = {

297 'Azimuth␣rad': applied_forces_fatigue_dict[lc]['
↪→ Azimuth␣rad'][idx],

298 'Fx1': forces_array [0], 'Fy1': forces_array [1], '
↪→ Fz1': forces_array [2],

299 'Mx1': forces_array [3], 'My1': forces_array [4], '
↪→ Mz1': forces_array [5],

300 'Fx2': forces_array [6], 'Fy2': forces_array [7], '
↪→ Fz2': forces_array [8],

301 'Mx2': forces_array [9], 'My2': forces_array [10], '
↪→ Mz2': forces_array [11]

302 }

303 forces_df = pd.DataFrame ([ forces_dict ])

304
305 # Concatenate the DataFrame with the existing one

306 element_forces[element] = pd.concat ([ element_forces[

↪→ element], forces_df], ignore_index=True)

307
308 # Assign the DataFrames to the local forces dictionary for the

↪→ current load case

309 local_forces_dict[lc] = element_forces

310
311 return local_forces_dict

312
313 runlin_fls = run_static_analysis_FLS (3, 0.04)

51



APPENDIX C

CODE FOR STRUCTURE MATERIAL PROPERTIES

1 import numpy as np

2 import pyvista as pv

3 pv.set_jupyter_backend('trame ')
4
5 def crossbar_parameters(diameter , thickness):

6 return {

7 'E': 210e9 , # Young 's modulus in Pa [N/m^2]

8 'G': 81e9 , # Shear modulus in Pa [N/m^2]

9 'rho': 7850, # Density in kg/m^3

10 'poisson ': 0.3, # Poisson 's ratio

11 'A': np.pi/4*( diameter **2-( diameter -2* thickness)**2), #m^2??

12 'I_y': np.pi*( diameter **4-( diameter -2* thickness)**4)/64, #m^4

13 'I_z': np.pi*( diameter **4-( diameter -2* thickness)**4)/64, #m^4

14 'J': np.pi*( diameter **4-( diameter -2* thickness)**4)/32, #m^4

15 'name': 'Crossbar␣Section ',
16 #'m ': 2000, #mass per unit length. Calculated from mass density and

↪→ area

17 #add properties as needed

18 }

19
20 def basetower_parameters(diameter , thickness):

21 return {

22 'E': 210e9 , # Young 's modulus in Pa [N/m^2]

23 'G': 81e9 , # Shear modulus in Pa [N/m^2]

24 'rho': 7850, # Density in kg/m^3

25 'poisson ': 0.3, # Poisson 's ratio

26 'A': np.pi/4*( diameter **2-( diameter -2* thickness)**2), #mm^2??

27 'I_y': np.pi*( diameter **4-( diameter -2* thickness)**4)/64, #m^4

28 'I_z': np.pi*( diameter **4-( diameter -2* thickness)**4)/64,

29 'J': np.pi*( diameter **4-( diameter -2* thickness)**4)/32,

30 'name': 'Base␣Tower␣Section ',
31 #'m ': 2000, #mass per unit length. Calculated from mass density and

↪→ area

32 #add properties as needed

33 }

34
35 def toptower_parameters(diameter , thickness):

36 return {

37 'E': 210e9 , # Young 's modulus in Pa [N/m^2]

38 'G': 81e9 , # Shear modulus in Pa [N/m^2]

39 'rho': 7850, # Density in kg/m^3

40 'poisson ': 0.3, # Poisson 's ratio

41 'A': np.pi/4*( diameter **2-( diameter -2* thickness)**2), #mm^2??

42 'I_y': np.pi*( diameter **4-( diameter -2* thickness)**4)/64, #m^4

43 'I_z': np.pi*( diameter **4-( diameter -2* thickness)**4)/64,

44 'J': np.pi*( diameter **4-( diameter -2* thickness)**4)/32,

45 'name': 'Top␣Tower␣Section ',
46 #'m ': 2000, #mass per unit length. Calculated from mass density and

↪→ area

47 #add properties as needed

48 }

49
50 def member_parameters(diameter , thickness):

52



51 return {

52 'E': 210e9 , # Young 's modulus in Pa [N/m^2]

53 'G': 81e9 , # Shear modulus in Pa [N/m^2]

54 'rho': 7850, # Density in kg/m^3

55 'poisson ': 0.3, # Poisson 's ratio

56 'A': np.pi/4*( diameter **2-( diameter -2* thickness)**2), #mm^2??

57 'I_y': np.pi*( diameter **4-( diameter -2* thickness)**4)/64, #m^4

58 'I_z': np.pi*( diameter **4-( diameter -2* thickness)**4)/64,

59 'J': np.pi*( diameter **4-( diameter -2* thickness)**4)/32,

60 'name': 'Member␣Sections ',
61 #'m ': 2000, #mass per unit length. Calculated from mass density and

↪→ area

62 #add properties as needed

63 }

53



APPENDIX D

EXTERNAL FORCES FOR LOAD CASE 18

Table D.1: External forces on side 1 of load case 18.

azimuth rad 1Fn h N 1Fn v N 1Mflap Nm 1Ftan N 1Medge h Nm 1Medge v Nm 1Mpitch h Nm 1Mpitch v Nm

0.0698 -3.07E+06 -1.49E+06 -1.78E+08 -5.30E+04 2.61E+06 -1.70E+06 -1.69E+05 -3.10E+05

0.2094 -2.66E+06 -1.56E+06 -1.73E+08 -1.47E+05 6.42E+06 -4.04E+06 -1.19E+05 -2.05E+05

0.3491 -2.19E+06 -1.59E+06 -1.64E+08 -2.09E+05 9.74E+06 -5.60E+06 -7.42E+04 -1.11E+05

0.4887 -1.68E+06 -1.58E+06 -1.51E+08 -2.32E+05 1.23E+07 -6.25E+06 -4.17E+04 -4.10E+04

0.6283 -1.18E+06 -1.53E+06 -1.37E+08 -2.16E+05 1.39E+07 -5.99E+06 -1.90E+04 1.64E+03

0.7679 -7.06E+05 -1.46E+06 -1.22E+08 -1.64E+05 1.45E+07 -4.93E+06 -4.28E+03 1.57E+04

0.9076 -2.78E+05 -1.37E+06 -1.07E+08 -8.51E+04 1.43E+07 -3.24E+06 1.11E+04 9.62E+03

1.0472 8.49E+04 -1.27E+06 -9.20E+07 1.12E+04 1.34E+07 -1.17E+06 2.81E+04 -7.03E+03

1.1868 3.74E+05 -1.15E+06 -7.84E+07 1.13E+05 1.20E+07 1.03E+06 4.73E+04 -2.91E+04

1.3265 5.84E+05 -1.03E+06 -6.61E+07 2.08E+05 1.03E+07 3.11E+06 6.53E+04 -4.92E+04

1.4661 7.15E+05 -9.11E+05 -5.54E+07 2.83E+05 8.47E+06 4.84E+06 7.66E+04 -5.88E+04

1.6057 7.73E+05 -7.93E+05 -4.63E+07 3.31E+05 6.76E+06 6.04E+06 7.44E+04 -5.21E+04

1.7453 7.69E+05 -6.85E+05 -3.90E+07 3.50E+05 5.31E+06 6.60E+06 5.97E+04 -3.32E+04

1.8850 7.16E+05 -5.90E+05 -3.34E+07 3.40E+05 4.23E+06 6.50E+06 4.00E+04 -1.16E+04

2.0246 6.25E+05 -5.09E+05 -2.94E+07 3.03E+05 3.58E+06 5.80E+06 2.09E+04 4.72E+03

2.1642 5.08E+05 -4.41E+05 -2.68E+07 2.47E+05 3.32E+06 4.62E+06 6.86E+03 1.26E+04

2.3038 3.75E+05 -3.86E+05 -2.55E+07 1.80E+05 3.34E+06 3.14E+06 -1.04E+03 1.36E+04

2.4435 2.34E+05 -3.40E+05 -2.52E+07 1.10E+05 3.48E+06 1.58E+06 -4.19E+03 1.20E+04

2.5831 8.77E+04 -3.02E+05 -2.58E+07 4.58E+04 3.55E+06 1.59E+05 -3.21E+03 8.91E+03

2.7227 -6.11E+04 -2.71E+05 -2.70E+07 -4.88E+03 3.37E+06 -8.86E+05 -1.50E+03 5.92E+03

2.8623 -2.11E+05 -2.45E+05 -2.87E+07 -3.29E+04 2.76E+06 -1.33E+06 -1.38E+03 1.97E+03

3.0020 -3.57E+05 -2.20E+05 -3.05E+07 -2.96E+04 1.63E+06 -1.00E+06 -5.97E+03 -9.85E+03

3.1416 -4.77E+05 -1.80E+05 -3.08E+07 7.15E+03 1.05E+05 8.92E+04 -2.16E+04 -4.01E+04

3.2812 -5.52E+05 -1.08E+05 -2.79E+07 4.78E+04 -7.62E+05 1.28E+06 -9.38E+03 -1.67E+04

3.4208 -4.89E+05 4.30E+04 -1.16E+07 5.69E+04 9.53E+05 1.25E+06 6.48E+04 1.11E+05

3.5605 -5.68E+05 1.09E+05 -8.21E+06 8.90E+04 1.31E+06 2.08E+06 1.26E+05 2.13E+05

3.7001 -6.58E+05 1.65E+05 -5.75E+06 1.21E+05 1.64E+06 2.82E+06 1.77E+05 3.02E+05

3.8397 -7.62E+05 2.02E+05 -5.18E+06 1.50E+05 1.78E+06 3.48E+06 2.18E+05 3.88E+05

3.9794 -8.66E+05 2.27E+05 -5.66E+06 1.73E+05 1.84E+06 3.95E+06 2.53E+05 4.77E+05

4.1190 -9.72E+05 2.34E+05 -7.27E+06 1.90E+05 1.79E+06 4.22E+06 2.86E+05 5.63E+05

4.2586 -1.07E+06 2.22E+05 -9.85E+06 2.00E+05 1.65E+06 4.30E+06 3.18E+05 6.32E+05

4.3982 -1.17E+06 1.94E+05 -1.32E+07 2.01E+05 1.50E+06 4.21E+06 3.46E+05 6.76E+05

4.5379 -1.25E+06 1.55E+05 -1.72E+07 1.90E+05 1.34E+06 4.01E+06 3.63E+05 6.87E+05

4.6775 -1.32E+06 1.04E+05 -2.19E+07 1.76E+05 1.18E+06 3.78E+06 3.77E+05 6.90E+05

4.8171 -1.39E+06 4.52E+04 -2.72E+07 1.62E+05 1.03E+06 3.54E+06 3.86E+05 6.87E+05

4.9567 -1.48E+06 -1.95E+04 -3.31E+07 1.52E+05 9.06E+05 3.32E+06 3.89E+05 6.76E+05

5.0964 -1.59E+06 -8.73E+04 -3.98E+07 1.45E+05 8.35E+05 3.13E+06 3.83E+05 6.56E+05

5.2360 -1.74E+06 -1.74E+05 -4.98E+07 1.47E+05 3.76E+05 3.19E+06 3.58E+05 6.09E+05

5.3756 -1.89E+06 -2.56E+05 -5.85E+07 1.45E+05 3.32E+05 3.02E+06 3.07E+05 5.17E+05

5.5152 -2.08E+06 -3.57E+05 -6.96E+07 1.46E+05 2.00E+05 2.88E+06 2.23E+05 3.68E+05

5.6549 -2.37E+06 -5.14E+05 -8.73E+07 1.58E+05 -6.07E+05 3.07E+06 9.90E+04 1.50E+05

5.7945 -2.81E+06 -7.81E+05 -1.20E+08 2.02E+05 -3.80E+06 4.52E+06 -6.71E+04 -1.41E+05

5.9341 -3.22E+06 -1.05E+06 -1.55E+08 2.09E+05 -5.62E+06 5.04E+06 -1.75E+05 -3.32E+05

54



Table D.2: External forces on side 2 of load case 18.

azimuth rad 2Fn h N 2Fn v N 2Mflap Nm 2Ftan N 2Medge h Nm 2Medge v Nm 2Mpitch h Nm 2Mpitch v Nm

0.0698 -5.15E+05 -1.44E+05 -2.94E+07 2.75E+04 -3.29E+05 6.86E+05 -1.55E+04 -2.84E+04

0.2094 -5.21E+05 -3.24E+04 -1.98E+07 5.24E+04 9.58E+04 1.27E+06 2.77E+04 4.72E+04

0.3491 -5.29E+05 7.61E+04 -9.93E+06 7.30E+04 1.13E+06 1.66E+06 9.56E+04 1.62E+05

0.4887 -6.13E+05 1.37E+05 -6.98E+06 1.05E+05 1.47E+06 2.45E+06 1.52E+05 2.57E+05

0.6283 -7.10E+05 1.84E+05 -5.47E+06 1.35E+05 1.71E+06 3.15E+06 1.97E+05 3.45E+05

0.7679 -8.14E+05 2.15E+05 -5.42E+06 1.61E+05 1.81E+06 3.71E+06 2.35E+05 4.33E+05

0.9076 -9.19E+05 2.30E+05 -6.47E+06 1.81E+05 1.82E+06 4.08E+06 2.70E+05 5.20E+05

1.0472 -1.02E+06 2.28E+05 -8.56E+06 1.95E+05 1.72E+06 4.26E+06 3.02E+05 5.98E+05

1.1868 -1.12E+06 2.08E+05 -1.15E+07 2.00E+05 1.58E+06 4.25E+06 3.32E+05 6.54E+05

1.3265 -1.21E+06 1.75E+05 -1.52E+07 1.95E+05 1.42E+06 4.11E+06 3.54E+05 6.82E+05

1.4661 -1.28E+06 1.30E+05 -1.95E+07 1.83E+05 1.26E+06 3.89E+06 3.70E+05 6.89E+05

1.6057 -1.36E+06 7.48E+04 -2.45E+07 1.69E+05 1.11E+06 3.66E+06 3.81E+05 6.88E+05

1.7453 -1.44E+06 1.29E+04 -3.02E+07 1.57E+05 9.71E+05 3.43E+06 3.87E+05 6.81E+05

1.8850 -1.53E+06 -5.34E+04 -3.65E+07 1.48E+05 8.71E+05 3.22E+06 3.86E+05 6.66E+05

2.0246 -1.66E+06 -1.31E+05 -4.48E+07 1.46E+05 6.06E+05 3.16E+06 3.71E+05 6.33E+05

2.1642 -1.82E+06 -2.15E+05 -5.41E+07 1.46E+05 3.54E+05 3.11E+06 3.33E+05 5.63E+05

2.3038 -1.99E+06 -3.06E+05 -6.41E+07 1.46E+05 2.66E+05 2.95E+06 2.65E+05 4.42E+05

2.4435 -2.22E+06 -4.35E+05 -7.85E+07 1.52E+05 -2.03E+05 2.98E+06 1.61E+05 2.59E+05

2.5831 -2.59E+06 -6.47E+05 -1.04E+08 1.80E+05 -2.20E+06 3.79E+06 1.60E+04 4.51E+03

2.7227 -3.01E+06 -9.17E+05 -1.37E+08 2.05E+05 -4.71E+06 4.78E+06 -1.21E+05 -2.36E+05

2.8623 -3.28E+06 -1.13E+06 -1.61E+08 1.80E+05 -4.87E+06 4.28E+06 -1.95E+05 -3.68E+05

3.0020 -3.33E+06 -1.28E+06 -1.71E+08 1.05E+05 -2.65E+06 2.30E+06 -2.13E+05 -3.97E+05

3.1416 -3.19E+06 -1.42E+06 -1.77E+08 2.33E+03 7.12E+05 -3.11E+05 -1.90E+05 -3.51E+05

3.2812 -2.86E+06 -1.52E+06 -1.76E+08 -9.98E+04 4.51E+06 -2.87E+06 -1.44E+05 -2.58E+05

3.4208 -2.43E+06 -1.58E+06 -1.68E+08 -1.78E+05 8.08E+06 -4.82E+06 -9.65E+04 -1.58E+05

3.5605 -1.94E+06 -1.58E+06 -1.57E+08 -2.20E+05 1.10E+07 -5.93E+06 -5.79E+04 -7.58E+04

3.7001 -1.43E+06 -1.56E+06 -1.44E+08 -2.24E+05 1.31E+07 -6.12E+06 -3.03E+04 -1.97E+04

3.8397 -9.44E+05 -1.50E+06 -1.29E+08 -1.90E+05 1.42E+07 -5.46E+06 -1.16E+04 8.68E+03

3.9794 -4.92E+05 -1.42E+06 -1.14E+08 -1.25E+05 1.44E+07 -4.08E+06 3.41E+03 1.27E+04

4.1190 -9.68E+04 -1.32E+06 -9.92E+07 -3.70E+04 1.39E+07 -2.21E+06 1.96E+04 1.29E+03

4.2586 2.30E+05 -1.21E+06 -8.52E+07 6.21E+04 1.27E+07 -7.25E+04 3.77E+04 -1.81E+04

4.3982 4.79E+05 -1.09E+06 -7.22E+07 1.60E+05 1.11E+07 2.07E+06 5.63E+04 -3.91E+04

4.5379 6.50E+05 -9.73E+05 -6.07E+07 2.45E+05 9.38E+06 3.98E+06 7.10E+04 -5.40E+04

4.6775 7.44E+05 -8.52E+05 -5.08E+07 3.07E+05 7.61E+06 5.44E+06 7.55E+04 -5.55E+04

4.8171 7.71E+05 -7.39E+05 -4.27E+07 3.41E+05 6.03E+06 6.32E+06 6.70E+04 -4.27E+04

4.9567 7.43E+05 -6.37E+05 -3.62E+07 3.45E+05 4.77E+06 6.55E+06 4.98E+04 -2.24E+04

5.0964 6.70E+05 -5.49E+05 -3.14E+07 3.22E+05 3.91E+06 6.15E+06 3.04E+04 -3.46E+03

5.2360 5.66E+05 -4.75E+05 -2.81E+07 2.75E+05 3.45E+06 5.21E+06 1.39E+04 8.65E+03

5.3756 4.41E+05 -4.13E+05 -2.62E+07 2.14E+05 3.33E+06 3.88E+06 2.91E+03 1.31E+04

5.5152 3.04E+05 -3.63E+05 -2.54E+07 1.45E+05 3.41E+06 2.36E+06 -2.61E+03 1.28E+04

5.6549 1.61E+05 -3.21E+05 -2.55E+07 7.81E+04 3.52E+06 8.70E+05 -3.70E+03 1.04E+04

5.7945 1.33E+04 -2.87E+05 -2.64E+07 2.05E+04 3.46E+06 -3.64E+05 -2.35E+03 7.41E+03

5.9341 -1.36E+05 -2.58E+05 -2.78E+07 -1.89E+04 3.06E+06 -1.11E+06 -1.44E+03 3.94E+03

6.0737 -2.84E+05 -2.32E+05 -2.96E+07 -3.13E+04 2.20E+06 -1.17E+06 -3.67E+03 -3.94E+03

6.2134 -4.17E+05 -2.00E+05 -3.06E+07 -1.12E+04 8.68E+05 -4.56E+05 -1.38E+04 -2.50E+04

55



APPENDIX E

SUPPLEMENTARY CODES

1 import pandas as pd

2 import numpy as np

3 from sympy import diff

4 import beef

5 from beef import fe

6
7 #Extract loadcase 1-18 to dictionary as dataframe

8 def read_load_cases(file_path , start_LC , end_LC):

9 xl = pd.ExcelFile(file_path)

10 FLS_sheet_names = ['lc' + str(i) for i in range(start_LC , end_LC +1)]

11 FLS_sheets = {sheet: xl.parse(sheet , skiprows =5) for sheet in

↪→ FLS_sheet_names}

12 return FLS_sheets

13
14 #Extract Summary sheet to dataframe

15 def get_summary_data(file_path):

16 xl = pd.ExcelFile(file_path)

17 summary_data = xl.parse('Summary ', nrows =18, usecols='A:J')
18 return summary_data

19
20
21 def Assembly_array_to_dataframe(assembly , array , iterations): # in other

↪→ words: Analysis , which array (e10.u, e9.q, e2.q_loc?), rows/dofs ,

↪→ columns.

22 dofs = 6

23 number_of_nodes = len(assembly.all_nodes ([ assembly ]))

24 iterations = 1

25 reshaped_array = array.reshape (( number_of_nodes , dofs , iterations))

26 labels = assembly.get_node_labels () #element.nodelabels

27 dof_labels = ['Trans␣X', 'Trans␣Y', 'Trans␣Z', 'Rot␣X', 'Rot␣Y', 'Rot␣Z
↪→ ']

28
29 data = {'Node': np.array(labels)}

30 for iter in range(iterations):

31 for dof , label in zip(range(dofs), dof_labels):

32 column_name = f'{label}␣Iter␣{iter␣+␣1}'
33 data[column_name] = reshaped_array [:, dof , iter]. flatten ()

34
35 array_df = pd.DataFrame(data)

36 return array_df

37
38
39 def Element_array_to_dataframe(element , array , iterations , force=None): #

↪→ in other words: Element , which array (e10.u, e9.q, e2.q_loc ?), rows/

↪→ dofs , columns.

40 dofs = 6

41 reshaped_array = array.reshape ((2, dofs , iterations))

42 labels = element.nodelabels

43 if force == None:

44 dof_labels = ['Trans␣X', 'Trans␣Y', 'Trans␣Z', 'Rot␣X', 'Rot␣Y', '
↪→ Rot␣Z']

45 else:

46 dof_labels = ['Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz']

56



47
48 data = {'Node': np.array(labels)}

49 for iter in range(iterations):

50 for dof , label in zip(range(dofs), dof_labels):

51 column_name = f'{label}'#' Iter {iter + 1}'
52 data[column_name] = reshaped_array [:, dof , iter]. flatten ()

53
54 array_df = pd.DataFrame(data)

55
56 return array_df

57
58
59 def extract_BeamElements(assembly):

60 elements_dict = {}

61 elements_list = assembly.all_elements ([ assembly ]) #list of all

↪→ BeamElement3d

62 for elements in range(len(elements_list)):

63 element_label = elements_list[elements ]. label

64 elements_dict[f'Element␣{element_label}'] = assembly.get_element(

↪→ element_label)

65 return elements_dict

66
67
68 def compute_local_tmat(element): #compute local axis and transformation

↪→ matrix

69 """

70 Compute new local transformation matrix for given element.

71 Use plot_element_localaxis to see the transformed coordinate system.

72 """

73 e1 = element.get_e ()

74 transform_unit = beef.transform_unit(e1, np.array([-e1[1], e1[0], 0]))

75 tmat = fe.blkdiag(transform_unit , 4)

76 return tmat

77
78
79 def plot_element_localaxis(assembly_eldef , element): #plots new local

↪→ coordinate system from compute_local_tmat

80 """

81 Shows the given element local coordinate system.

82 """

83 e2 = compute_local_tmat(element)[1, 0:3]

84 print(f"e2␣=␣{e2}")

85 element_to_plot = fe.element.BeamElement3d(nodes=element.nodes , section

↪→ =assembly_eldef.get_sec ()[0], e2=e2 , label=element.label)

86 eldef_to_plot = fe.eldef.ElDef(element.nodes , [element_to_plot ])

87 print(f"element␣plotted␣=␣{element_to_plot}")

88 pl = eldef_to_plot.plot(plot_nodes=True , node_labels=True ,

↪→ element_labels=True , view='xy', tmat_on='undeformed ',
↪→ tmat_scaling =1)

89 return pl

90
91
92 def get_local_node_forces(assembly , analysed_assembly):

93 """

94 Gives the local node forces with new constructed coordinate system (z-

↪→ axis out of the plane: e3 = 0, 0, 1)

95 Parameters

96 ----------

97 assembly : original assembly , before analysing.

98 analysed_assembly : Analysed assembly , after analyse.

99
100 Returns

101 -------

57



102 force_dict : [0] gives dictionary with all node forces.

103 force_df : [1] gives dataframe with all node forces.

104
105 """

106 #get all elements in dictionaries

107 assembly_elements = extract_BeamElements(assembly)

108 analysed_elements = extract_BeamElements(analysed_assembly)

109
110 force_dict = {}

111 df_force_list = []

112
113 for elements in zip(assembly_elements.items(), analysed_elements.items

↪→ ()):

114 element_stiff_mat = elements [0][1]. get_local_kd () #element3d from

↪→ assembly

115 element_tmat = compute_local_tmat(elements [0][1]) #element3d from

↪→ assembly

116 element_glob_displacements = elements [1][1].u #element from

↪→ analysis

117 force_dict[elements [0][0]] = element_stiff_mat @ element_tmat @

↪→ element_glob_displacements

118
119 force_element_array = force_dict[elements [0][0]]. reshape (2,6)

120 element_force_df = Element_array_to_dataframe(elements [0][1] ,

↪→ force_element_array , 1, force =0)

121 df_force_list.append (( element_force_df))

122 force_df = pd.concat(df_force_list , ignore_index=True)

123 return force_dict , force_df

124
125
126 def force_dict_to_df(lc_dict , force_names , new_force_names):

127 """

128 lc_dict: put in dictionary with the loadcases from excel sheet.

129 force_names: List with names of forces from excel sheet.

130 new_force_names: List of new names for each force.

131
132 returns dictionary with DataFrames for each force from every loadcase.

133
134 """

135 # results = {name: pd.DataFrame () for name in new_force_names}

136 results = {lc_name: pd.DataFrame () for lc_name in lc_dict}

137
138 for lc_name , df in lc_dict.items():

139 for force_name , new_force_name in zip(force_names , new_force_names)

↪→ :

140 if force_name in df.columns:

141 results[lc_name ][ new_force_name] = df[force_name]

142 else:

143 print(f"Column␣{force_name}␣not␣found␣in␣DataFrame␣{lc_name

↪→ }")

144
145 return results

146
147
148
149 def apply_max_load_equation(applied_forces_dict , force_names , condition):

150 """

151 Applies a custom equation to specified columns of forces and moments

↪→ for each row

152 in all load cases , organized by element groups.

153
154 Parameters

155 ----------

58



156 applied_forces_dict : dict , contains dataframes for each load case.

157
158 force_names : list , list of column names including 'Azimuth rad' and

↪→ forces/moments for both elements.

159
160 condition : str , 'compression ' or 'tension '
161
162 Returns

163 -------

164 dict , contains dataframes with the results of the applied equations and

↪→ azimuth for each load case.

165
166 """

167 results_dict = {}

168
169 azimuth_col = force_names [0]

170 element1_columns = force_names [1:7]

171 element2_columns = force_names [7:]

172
173 def equation(row , force_cols , element , condition):

174 """

175 moment resultants + axial forces for compression or tension , for

↪→ each side.

176 """

177 # Extract values using dynamic force and moment column names

178 Fx = row[force_cols [0]]

179 Fy = row[force_cols [1]]

180 Mz = row[force_cols [2]]

181 Fz = row[force_cols [3]]

182 My_edge = row[force_cols [4]]

183 My_pitch = row[force_cols [5]]

184
185 # Check if Fx indicates compression or tension

186 is_compression = Fx > 0

187 should_calculate = (condition == 'compression ' and is_compression)

↪→ or (condition == 'tension ' and not is_compression)

188
189 # Calculate only if the condition matches

190 if should_calculate:

191 result = abs(Fx) + np.sqrt((Mz + 25*Fy)**2 + (My_edge +

↪→ My_pitch + 25*Fz)**2)

192 else:

193 result = None

194 return result

195
196 for lc , force_df in applied_forces_dict.items():

197 solution_1 = force_df.apply(lambda row: equation(row ,

↪→ element1_columns , 1, condition), axis =1)

198 solution_2 = force_df.apply(lambda row: equation(row ,

↪→ element2_columns , 2, condition), axis =1)

199
200 # Construct the resulting DataFrame

201 result_df = pd.DataFrame ({

202 'Azimuth␣rad': force_df[azimuth_col],

203 'Max␣load␣1': solution_1 ,

204 'Max␣load␣2': solution_2 ,

205 })

206
207 results_dict[lc] = result_df

208
209 return results_dict

210
211 def apply_max_load_equation_df(df , element1_cols , element2_cols , condition)

59



↪→ :

212 """

213 Applies a custom equation to specified columns of forces and moments

↪→ for each row

214 based on specified conditions ('compression ' or 'tension ') and

↪→ aggregates them into a new DataFrame.

215
216 Parameters:

217 ----------

218 df : DataFrame , contains results from multiple columns with forces/

↪→ moments and azimuth.

219 element1_cols : list , column names for forces/moments on side one.

220 element2_cols : list , column names for forces/moments on side two.

221 condition : str , 'compression ' or 'tension '
222
223 Returns:

224 -------

225 DataFrame , contains the results of the applied equations along with

↪→ azimuth and load case.

226 """

227 def equation(row , force_cols , condition):

228 Fx = row[force_cols [0]]

229 Fy = row[force_cols [1]]

230 Mz = row[force_cols [2]]

231 Fz = row[force_cols [3]]

232 My_edge = row[force_cols [4]]

233 My_pitch = row[force_cols [5]]

234
235 # Check if Fx indicates compression or tension

236 is_compression = Fx > 0

237 should_calculate = (condition == 'compression ' and is_compression)

↪→ or (condition == 'tension ' and not is_compression)

238
239 if should_calculate:

240 return abs(Fx) + np.sqrt((Mz + 25*Fy)**2 + (My_edge + My_pitch

↪→ + 25*Fz)**2)

241 else:

242 return None

243
244 # Apply the equation to each row for both element groups

245 results = []

246 for _, row in df.iterrows ():

247 result1 = equation(row , element1_cols , condition)

248 result2 = equation(row , element2_cols , condition)

249 results.append ({

250 'Azimuth␣rad': row['Azimuth␣rad'],
251 'Max␣load␣side␣1': result1 ,

252 'Max␣load␣side␣2': result2 ,

253 'Load␣Case': row['Load␣Case'] # Assuming this column is

↪→ available

254 })

255
256 # Construct the resulting DataFrame

257 result_df = pd.DataFrame(results)

258
259 return result_df

260
261 def find_highest_load_case(results_dict , column_name):

262 """

263 Finds the highest load case from the results of max load calculations

↪→ on a specified column ,

264 and returns the entire row where this max value is found.

265

60



266 Parameters:

267 results_dict: dict , dictionary containing DataFrames with results from

↪→ load calculations.

268 column_name: str , the name of the column to search for the maximum load

↪→ .

269
270 Returns:

271 A tuple containing the name of the load case with the highest load , the

↪→ maximum load value , and the entire row data as a dict.

272 """

273 max_load = float('-inf')
274 max_load_case = None

275 max_load_position = None

276 row_data = None

277
278 # Iterate through each load case in the results dictionary

279 for lc , df in results_dict.items():

280 # Check maximum in specified column for each load case

281 current_max = df[column_name ].max()

282 current_max_index = df[column_name ]. idxmax ()

283
284 # Retrieve the azimuth or position if applicable

285 current_max_position = df['Azimuth␣rad'].iloc[current_max_index] if

↪→ 'Azimuth␣rad' in df.columns else None

286
287 if current_max > max_load:

288 max_load = current_max

289 max_load_case = lc

290 max_load_position = current_max_position

291 row_data = df.iloc[current_max_index ]. to_dict ()

292
293 return max_load_case , max_load , max_load_position , row_data

294 def find_lowest_load_case(results_dict , column_name):

295 """

296 Same as find_highest_load_case , but for lowest values.

297 """

298 min_load = float('inf')
299 min_load_case = None

300 min_load_position = None

301 row_data = None

302
303 # Iterate through each load case in the results dictionary

304 for lc , df in results_dict.items():

305 # Check minimum in specified column for each load case

306 current_min = df[column_name ].min()

307 current_min_index = df[column_name ]. idxmin ()

308
309 # Retrieve the azimuth or position if applicable

310 current_min_position = df['Azimuth␣rad'].iloc[current_min_index] if

↪→ 'Azimuth␣rad' in df.columns else None

311
312 if current_min < min_load:

313 min_load = current_min

314 min_load_case = lc

315 min_load_position = current_min_position

316 row_data = df.iloc[current_min_index ]. to_dict ()

317
318 return min_load_case , min_load , min_load_position , row_data

319
320 def analyze_multiple_columns(results_dict , column_names , mode='max'):
321 """

322 Applies the find_highest_load_case or find_lowest_load_case function to

↪→ multiple columns based on the mode , and returns the results in

61



↪→ a DataFrame.

323
324 Parameters:

325 results_dict: dict , dictionary containing DataFrames with load case

↪→ results.

326 column_names: list of str , list containing the names of the columns to

↪→ analyze.

327 mode: str , 'max' for max loads or 'min' for min loads.

328
329 Returns:

330 DataFrame , with rows as column names and columns as details from the

↪→ max or min row data.

331 """

332 results_by_column = {}

333
334 # Choose the function based on the mode

335 if mode == 'max':
336 find_load_case = find_highest_load_case

337 elif mode == 'min':
338 find_load_case = find_lowest_load_case

339 else:

340 raise ValueError("Mode␣should␣be␣'max'␣or␣'min'")
341
342 # Loop through each column name in the list

343 for column in column_names:

344 # Apply the function and store the result

345 load_case , load , _, row_data = find_load_case(results_dict , column)

346 label = 'Max␣Load' if mode == 'max' else 'Min␣Load'
347 row_data.update ({

348 'Load␣Case': load_case ,

349 label: load

350 })

351 results_by_column[column] = row_data

352
353 # Convert results_by_column to a DataFrame

354 results_df = pd.DataFrame.from_dict(results_by_column , orient='index')
355
356 return results_df

357
358 def find_worst_case(df):

359 """

360 Identifies the worst case scenario for compression or tension by

↪→ comparing maximum loads between two sides.

361
362 Parameters:

363 ----------

364 df : DataFrame , contains maximum loads for two sides along with azimuth

↪→ and load case information.

365
366 Returns:

367 -------

368 A DataFrame row , the worst case scenario with the highest load.

369 """

370 # Check if 'Max load side 1' or 'Max load side 2' is higher , and create

↪→ a new column 'Max Load'
371 df['Max␣Load'] = df[['Max␣load␣side␣1', 'Max␣load␣side␣2']].max(axis =1)
372
373 # Find the index of the row with the highest 'Max Load'
374 worst_index = df['Max␣Load']. idxmax ()
375
376 # Return the row with the maximum load

377 return df.loc[worst_index]

378

62



379
380 def calculate_stress_ranges(applied_forces_dict , diameter , thickness):

381 """

382 Calculate stress ranges for external loads.

383
384 Parameters:

385 ----------

386 applied_forces_dict : dict , contains DataFrames for each load case.

387 diameter : float , outer diameter of the tube.

388 thickness : float , wall thickness of the tube.

389
390 Returns:

391 -------

392 dict , contains detailed stress information including maximum and

↪→ minimum stresses , positions , and sides.

393 """

394
395 A = np.pi/4 * (diameter **2 - (diameter - 2* thickness)**2)

396 W = (np.pi * (diameter **4 - (diameter - 2* thickness)**4)) / (32 *

↪→ diameter)

397 stress_range_details = {}

398 stress_ranges = {}

399
400 for lc , df in applied_forces_dict.items():

401 # Adjust moments by including Fy and Fz contributions

402 df['Total␣My1'] = df['My1_edge '] + df['My1_pitch '] + 25 * df['Fz1']
403 df['Total␣My2'] = df['My2_edge '] + df['My2_pitch '] + 25 * df['Fz2']
404
405 df['Total␣Mz1'] = df['Mz1'] + 25 * df['Fy1']
406 df['Total␣Mz2'] = -1*(df['Mz2'] + 25 * df['Fy2'])
407
408 # Calculate bending stresses keeping the sign of Mz

409 df['Bending␣Stress␣1'] = (np.sqrt(df['Total␣My1']**2 + df['Total␣
↪→ Mz1']**2) / W) * np.sign(df['Total␣Mz1'])

410 df['Bending␣Stress␣2'] = (np.sqrt(df['Total␣My2']**2 + df['Total␣
↪→ Mz2']**2) / W) * np.sign(df['Total␣Mz2'])

411 # Calculate axial stresses with absolute values

412 df['Axial␣Stress␣1'] = abs(df['Fx1']) / A

413 df['Axial␣Stress␣2'] = abs(df['Fx2']) / A

414
415 # Combine stresses for maximum and minimum calculations. Use

↪→ Negative Fx for min and pos Fx for Max , so that we account

↪→ for largest

416 # stress range

417 df['Max␣Combined␣Stress␣1'] = df['Bending␣Stress␣1'] + df['Axial␣
↪→ Stress␣1']

418 df['Min␣Combined␣Stress␣1'] = df['Bending␣Stress␣1'] - df['Axial␣
↪→ Stress␣1']

419 df['Max␣Combined␣Stress␣2'] = df['Bending␣Stress␣2'] + df['Axial␣
↪→ Stress␣2']

420 df['Min␣Combined␣Stress␣2'] = df['Bending␣Stress␣2'] - df['Axial␣
↪→ Stress␣2']

421
422
423 # Find max and min stresses and their positions

424 max_stress_1 = df['Max␣Combined␣Stress␣1'].max()
425 min_stress_1 = df['Min␣Combined␣Stress␣1'].min()
426 max_stress_2 = df['Max␣Combined␣Stress␣2'].max()
427 min_stress_2 = df['Min␣Combined␣Stress␣2'].min()
428
429
430 max_index_1 = df[df['Max␣Combined␣Stress␣1'] == max_stress_1 ]. index

↪→ [0]

63



431 min_index_1 = df[df['Min␣Combined␣Stress␣1'] == min_stress_1 ]. index

↪→ [0]

432 max_index_2 = df[df['Max␣Combined␣Stress␣2'] == max_stress_2 ]. index

↪→ [0]

433 min_index_2 = df[df['Min␣Combined␣Stress␣2'] == min_stress_2 ]. index

↪→ [0]

434
435
436 # Determine which side has the greater stress range , and convert to

↪→ N/mm^2

437 range_1 = max_stress_1 *1e-6 - min_stress_1 *1e-6

438 range_2 = max_stress_2 *1e-6 - min_stress_2 *1e-6

439
440 if range_1 > range_2:

441 stress_range_details[lc] = {

442 'Max␣Stress ': max_stress_1 *1e-6, 'Min␣Stress ': min_stress_1

↪→ *1e-6,

443 'Stress␣Range ': range_1 ,

444 'Max␣Position ': df.at[max_index_1 , 'Azimuth␣rad'],
445 'Min␣Position ': df.at[min_index_1 , 'Azimuth␣rad'],
446 'Side': 'side␣1'
447 }

448 stress_ranges[lc]= range_1

449 else:

450 stress_range_details[lc] = {

451 'Max␣Stress ': max_stress_2 *1e-6, 'Min␣Stress ': min_stress_2

↪→ *1e-6,

452 'Stress␣Range ': range_2 ,

453 'Max␣Position ': df.at[max_index_2 , 'Azimuth␣rad'],
454 'Min␣Position ': df.at[min_index_2 , 'Azimuth␣rad'],
455 'Side': 'side␣2'
456 }

457 stress_ranges[lc]= range_2

458
459 return stress_ranges , stress_range_details # change if details are

↪→ wanted for maximums and minimums.

460
461 def calculate_element_stress_ranges(local_forces_dict , diameter , thickness)

↪→ :

462 """

463 Calculate stress ranges for all elements , using the local forces.

464
465 Parameters:

466 ----------

467 local_forces_dict : dict , contains dictionaries with load cases (lc1 ,

↪→ lc2 , etc.),

468 which contains Data Frames for each element (Element 1, etc.) with

↪→ local forces for each radian ,

469 where the local forces for each element correspond to first and second

↪→ node of respective element.

470 diameter : float , outer diameter of the tube.

471 thickness : float , wall thickness of the tube.

472
473 Returns:

474 -------

475 dict , contains the stress range for each element for each load case.

476 dict , contains detailed stress information including maximum and

↪→ minimum stresses , positions , and nodes.

477 dict , contains the highest stress range for each load case.

478 """

479
480 A = np.pi / 4 * (diameter **2 - (diameter - 2 * thickness)**2) #Area

481 W = (np.pi * (diameter **4 - (diameter - 2 * thickness)**4)) / (32 *

64



↪→ diameter) #Section modulus

482 stress_range_details = {}

483 stress_ranges = {}

484 highest_stress_ranges = {}

485 bending_max = {} # Used for gradient in optimizer: M

486 bending_min = {}

487 axial_max = {} # Used for gradient in optimizer: F

488 axial_min = {}

489
490 for lc , elements in local_forces_dict.items(): # Iterate through all

↪→ load cases

491 highest_stress_range = float('-inf')
492 for element , df in elements.items(): # Iterating through the

↪→ DataFrames of each element

493 # Calculate bending stresses keeping the -sign of Mz1 for both

↪→ nodes , since Mz1 positive means downward bending =

↪→ negative stress.vica versa

494 df['Bending␣Stress␣1'] = (np.sqrt(df['My1']**2 + df['Mz1']**2)
↪→ / W) * -np.sign(df['Mz1'])

495 df['Bending␣Stress␣2'] = (np.sqrt(df['My2']**2 + df['Mz2']**2)
↪→ / W) * -np.sign(df['Mz1'])

496 # Calculate axial stresses with absolute values

497 df['Axial␣Stress␣1'] = abs(df['Fx1']) / A

498 df['Axial␣Stress␣2'] = abs(df['Fx2']) / A

499
500 # Initialize columns for combined stresses

501 df['Max␣Combined␣Stress␣1'] = df['Bending␣Stress␣1'] + df['
↪→ Axial␣Stress␣1']

502 df['Min␣Combined␣Stress␣1'] = df['Bending␣Stress␣1'] - df['
↪→ Axial␣Stress␣1']

503 df['Max␣Combined␣Stress␣2'] = df['Bending␣Stress␣2'] + df['
↪→ Axial␣Stress␣2']

504 df['Min␣Combined␣Stress␣2'] = df['Bending␣Stress␣2'] - df['
↪→ Axial␣Stress␣2']

505
506 # Find max and min stresses and their positions

507 max_stress_1 = df['Max␣Combined␣Stress␣1'].max()
508 min_stress_1 = df['Min␣Combined␣Stress␣1'].min()
509 max_stress_2 = df['Max␣Combined␣Stress␣2'].max()
510 min_stress_2 = df['Min␣Combined␣Stress␣2'].min()
511
512 max_index_1 = df[df['Max␣Combined␣Stress␣1'] == max_stress_1 ].

↪→ index [0]

513 min_index_1 = df[df['Min␣Combined␣Stress␣1'] == min_stress_1 ].

↪→ index [0]

514 max_index_2 = df[df['Max␣Combined␣Stress␣2'] == max_stress_2 ].

↪→ index [0]

515 min_index_2 = df[df['Min␣Combined␣Stress␣2'] == min_stress_2 ].

↪→ index [0]

516
517 # Determine stress range and convert to N/mm^2

518 stress_range_1 = max_stress_1 * 1e-6 - min_stress_1 * 1e-6

519 stress_range_2 = max_stress_2 * 1e-6 - min_stress_2 * 1e-6

520
521 if stress_range_1 > stress_range_2:

522 stress_range_details[f"{lc}_{element}"] = {

523 'Max␣Stress ': max_stress_1 * 1e-6, 'Min␣Stress ':
↪→ min_stress_1 * 1e-6,

524 'Stress␣Range ': stress_range_1 ,

525 'Max␣Position ': df.at[max_index_1 , 'Azimuth␣rad'],
526 'Min␣Position ': df.at[min_index_1 , 'Azimuth␣rad'],
527 'Node': 'node␣1'
528 }

65



529 stress_ranges[f"{lc}_{element}"] = stress_range_1

530 if stress_range_1 > highest_stress_range:

531 highest_stress_range = stress_range_1

532 bending_max[lc] = df.at[max_index_1 , 'Bending␣Stress␣1'
↪→ ]*W*10** -6# M value in optimizer

533 bending_min[lc] = df.at[min_index_1 , 'Bending␣Stress␣1'
↪→ ]*W*10** -6

534 axial_max[lc] = df.at[max_index_1 , 'Axial␣Stress␣1']*A
↪→ *10** -6 # F value optimizer

535 axial_min[lc] = df.at[min_index_1 , 'Axial␣Stress␣1']*A
↪→ *10** -6

536 # Mz1[lc] = df.at[max_index_1 , 'Mz1 '] #Just for

↪→ visualizing Desmos

537 # Mz2[lc] = df.at[min_index_1 , 'Mz1 ']
538 # My1[lc] = df.at[max_index_1 , 'My1 ']
539 # My2[lc] = df.at[min_index_1 , 'My1 ']
540 # Fx1[lc] = abs(df.at[max_index_1 , 'Fx1 '])
541 # Fx2[lc] = abs(df.at[min_index_1 , 'Fx1 '])
542 else:

543 stress_range_details[f"{lc}_{element}"] = {

544 'Max␣Stress ': max_stress_2 * 1e-6, 'Min␣Stress ':
↪→ min_stress_2 * 1e-6,

545 'Stress␣Range ': stress_range_2 ,

546 'Max␣Position ': df.at[max_index_2 , 'Azimuth␣rad'],
547 'Min␣Position ': df.at[min_index_2 , 'Azimuth␣rad'],
548 'Node': 'node␣2'
549 }

550 stress_ranges[f"{lc}_{element}"] = stress_range_2

551 if stress_range_2 > highest_stress_range:

552 highest_stress_range = stress_range_2

553 bending_max[lc] = df.at[max_index_2 , 'Bending␣Stress␣2'
↪→ ]*W*10** -6# M value in optimizer

554 bending_min[lc] = df.at[min_index_2 , 'Bending␣Stress␣2'
↪→ ]*W*10** -6

555 axial_max[lc] = df.at[max_index_2 , 'Axial␣Stress␣2']*A
↪→ *10** -6 # F value optimizer

556 axial_min[lc] = df.at[min_index_2 , 'Axial␣Stress␣2']*A
↪→ *10** -6

557
558 highest_stress_ranges[lc] = highest_stress_range

559
560 return stress_ranges , stress_range_details , highest_stress_ranges ,

↪→ bending_max , axial_max , bending_min , axial_min#, Mz1 , Mz2 , My1 ,

↪→ My2 ,Fx1 ,Fx2

66



APPENDIX F

FATIGUE CODES

1 import pandas as pd

2
3 def calculate_fatigue_damage(stress_ranges , summary_df):

4 m1 = 3.0

5 log_a1 = 12.449

6 a = 10 ** log_a1

7 # eta = 1 # design fatigue factor

8
9 # Total operating time in seconds

10 total_seconds_per_year = 365 * 24 * 3600

11
12 # Create a new DataFrame for fatigue calculations

13 fatigue_df = pd.DataFrame(summary_df['LC'])
14
15 # Calculate the number of rotations per load case per year

16 fatigue_df['rotations_per_year '] = total_seconds_per_year / summary_df[

↪→ 'T_1revolution_s ']
17
18 # Calculate the number of cycles over 20 years

19 fatigue_df['cycles_in_20_years '] = fatigue_df['rotations_per_year '] *

↪→ summary_df['prob'] * 20

20
21 # Add the stress ranges directly into the DataFrame

22 fatigue_df['stress_range '] = fatigue_df['LC']. apply(lambda x:

↪→ stress_ranges[f'lc{x}'])
23
24 # Calculate the number of cycles to failure for each load case

25 fatigue_df['N_i'] = a * (fatigue_df['stress_range '] ** -m1)

26
27 # Calculate the damage for each load case

28 fatigue_df['damage '] = fatigue_df['cycles_in_20_years '] / fatigue_df['
↪→ N_i']

29
30 # Calculate the cumulative damage

31 cumulative_damage = fatigue_df['damage '].sum()
32
33 return cumulative_damage

67



APPENDIX G

GRADIENT CALCULATOR

1 #Gradient calculator

2 from src.NORSOK_design import design_buckling , design_bending

3 from sympy import symbols , sqrt , diff

4
5 def get_gradient(formula , vars , ** values):

6 grad = {}

7 for var in vars:

8 # Differentiate formula with respect to each variable

9 partial_derivative = diff(formula , var)

10 # Substitute any values if provided

11 if values:

12 partial_derivative = partial_derivative.subs(values)

13 # Store the result in the dictionary

14 grad[str(var)] = partial_derivative

15 return grad

16
17 D, t, fy, fcl , E, G, pi, L, Nsd , C, My, Mz, eta , m1, a, ni, M, F= symbols('

↪→ D␣t␣fy␣fcl␣E␣G␣pi␣L␣Nsd␣C␣My␣Mz␣eta␣m1␣a␣ni␣M␣F')
18 # D, t, pi , G, fy , E, Nsd , My , Mz= symbols('D t pi G fy E Nsd My Mz ')
19
20
21 # combined buckling -bending

22 #Axial

23 A = pi/4 * (D**2 - (D-2*t)**2)

24 fcl = fy

25 i = sqrt(D**2+(D-2*t)**2)/4

26 slender_para = (L/pi/i)*sqrt(fcl/E)

27 fc = fcl *(1 -0.28* slender_para **2)

28 NRd = A*fc/G

29 C = 1

30
31 axial_part = Nsd/NRd

32
33 #Bending

34 W = (pi * (D**4 - (D - 2*t)**4)) / (32 * D)

35 Z = (D**3 - (D - 2*t)**3) / 6

36 fm = (1.13 -2.58*( fy*D/E/t))*(Z/W)*fy

37 MRd = fm*W/G

38
39 NEy = pi**2*E*A/(L/i)**2

40 NEz = NEy

41 bending_part = 1/MRd *( (C*My/(1-Nsd/NEy))**2 + (C*Mz/(1-Nsd/NEz))**2 )

↪→ **0.5

42
43 func = axial_part + bending_part - 1

44
45 get_gradient(func , [D,t])

46
47 #%% Gradient checker

48 from numpy import *

49
50 def func(D, t): #add all values and function

51 #Variables

68



52 Nsd =99e6

53 My=3.4e6

54 Mz=215e6

55 fy=355e6

56 fcl=fy

57 G=1.15

58 E=2.1 e11

59 k=2

60 L = k*25 #column effective length

61 A = pi/4 * (D**2 - (D-2*t)**2)

62 i = sqrt(D**2+(D-2*t)**2)/4

63 slender_para = (L/pi/i)*sqrt(fcl/E)

64 fc = fcl *(1 -0.28* slender_para **2)

65 NRd = A*fc/G

66 C=1

67
68 axial_part = Nsd/NRd

69
70 #Bending

71 W = (pi * (D**4 - (D - 2*t)**4)) / (32 * D)

72 Z = (D**3 - (D - 2*t)**3) / 6

73 fm = (1.13 -2.58*( fy*D/E/t))*(Z/W)*fy

74 MRd = fm*W/G

75
76 NEy = pi**2*E*A/(L/i)**2

77 NEz = NEy

78 bending_part = 1/MRd *( (C*My/(1-Nsd/NEy))**2 + (C*Mz/(1-Nsd/NEz))**2 )

↪→ **0.5

79
80 func = axial_part + bending_part - 1

81
82 return func

83
84 def analytical_grad(D, t): #add all values and derivatives

85 #Variables

86 Nsd =99e6

87 My=3.4e6

88 Mz=215e6

89 fy=355e6

90 fcl=fy

91 G=1.15

92 E=2.1 e11

93 k=2

94 L = k*25 #column effective length

95
96 dD = -16*G*Nsd*t/(fy*pi*(1 - 4.48*L**2*fy/(E*pi**2*(D**2 + (D - 2*t)

↪→ **2)))*(D**2 - (D - 2*t)**2) **2) + G*(-D**2/2 + (D - 2*t)**2/2)

↪→ *(My **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 +

↪→ (D - 2*t)**2)))**2 + Mz **2/(1 - 64*L**2* Nsd/(E*pi **3*(D**2 - (D

↪→ - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2) **0.5/( fy*(D**3/6 - (D -

↪→ 2*t)**3/6) **2*( -2.58*D*fy/(E*t) + 1.13)) + G*(0.5* My**2*( -512*L

↪→ **2* Nsd*t/(E*pi**3*(D**2 - (D - 2*t)**2) **2*(D**2 + (D - 2*t)

↪→ **2)) + 128*L**2* Nsd*(-4*D + 4*t)/(E*pi**3*(D**2 - (D - 2*t)**2)

↪→ *(D**2 + (D - 2*t)**2) **2))/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D

↪→ - 2*t)**2)*(D**2 + (D - 2*t)**2)))**3 + 0.5*Mz**2*( -512*L**2*

↪→ Nsd*t/(E*pi **3*(D**2 - (D - 2*t)**2) **2*(D**2 + (D - 2*t)**2)) +

↪→ 128*L**2* Nsd*(-4*D + 4*t)/(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2

↪→ + (D - 2*t)**2) **2))/(1 - 64*L**2* Nsd/(E*pi **3*(D**2 - (D - 2*t)

↪→ **2)*(D**2 + (D - 2*t)**2)))**3)/(fy*(D**3/6 - (D - 2*t)**3/6) *(

↪→ My **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D

↪→ - 2*t)**2)))**2 + Mz **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D -

↪→ 2*t)**2)*(D**2 + (D - 2*t)**2)))**2) **0.5*( -2.58*D*fy/(E*t) +

↪→ 1.13)) + 0.892857142857143*G*L**2* Nsd*(-4*D + 4*t)/(E*pi

69



↪→ **3*(0.223214285714286 - L**2*fy/(E*pi **2*(D**2 + (D - 2*t)**2))

↪→ )**2*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2) **2) +

↪→ 0.387596899224806*G*(My **2/(1 - 64*L**2* Nsd/(E*pi **3*(D**2 - (D

↪→ - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2 + Mz **2/(1 - 64*L**2* Nsd/(

↪→ E*pi **3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2) **0.5/(

↪→ E*t*(D**3/6 - (D - 2*t)**3/6)*(-D*fy/(E*t) + 0.437984496124031)

↪→ **2)

97 dt = -0.387596899224806*D*G*(My **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D

↪→ - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2 + Mz **2/(1 - 64*L**2* Nsd

↪→ /(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2)

↪→ **0.5/(E*t**2*(D**3/6 - (D - 2*t)**3/6)*(-D*fy/(E*t) +

↪→ 0.437984496124031) **2) + 4*G*Nsd*(-4*D + 8*t)/(fy*pi*(1 - 4.48*L

↪→ **2*fy/(E*pi**2*(D**2 + (D - 2*t)**2)))*(D**2 - (D - 2*t)**2)

↪→ **2) - G*(D - 2*t)**2*( My **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (

↪→ D - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2 + Mz **2/(1 - 64*L**2* Nsd

↪→ /(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2)

↪→ **0.5/( fy*(D**3/6 - (D - 2*t)**3/6) **2*( -2.58*D*fy/(E*t) + 1.13)

↪→ ) + G*(0.5* My **2*(128*L**2* Nsd*(-4*D + 8*t)/(E*pi **3*(D**2 - (D

↪→ - 2*t)**2) **2*(D**2 + (D - 2*t)**2)) + 128*L**2* Nsd *(4*D - 8*t)

↪→ /(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2) **2))/(1 -

↪→ 64*L**2* Nsd/(E*pi **3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)

↪→ ))**3 + 0.5*Mz **2*(128*L**2* Nsd*(-4*D + 8*t)/(E*pi **3*(D**2 - (D

↪→ - 2*t)**2) **2*(D**2 + (D - 2*t)**2)) + 128*L**2* Nsd *(4*D - 8*t)

↪→ /(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2) **2))/(1 -

↪→ 64*L**2* Nsd/(E*pi **3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)

↪→ ))**3)/(fy*(D**3/6 - (D - 2*t)**3/6) *(My **2/(1 - 64*L**2* Nsd/(E*

↪→ pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2)))**2 + Mz

↪→ **2/(1 - 64*L**2* Nsd/(E*pi**3*(D**2 - (D - 2*t)**2)*(D**2 + (D -

↪→ 2*t)**2)))**2) **0.5*( -2.58*D*fy/(E*t) + 1.13)) +

↪→ 0.892857142857143*G*L**2* Nsd *(4*D - 8*t)/(E*pi

↪→ **3*(0.223214285714286 - L**2*fy/(E*pi **2*(D**2 + (D - 2*t)**2))

↪→ )**2*(D**2 - (D - 2*t)**2)*(D**2 + (D - 2*t)**2) **2)

98
99 return array ([dD, dt])

100
101 def numerical_grad(func , D, t, h=1e-7):

102 # Calculate numerical gradient using finite differences

103 f_D_t = func(D, t)

104 f_D_h_t = func(D + h, t)

105 f_D_t_h = func(D, t + h)

106 grad_D = (f_D_h_t - f_D_t) / h

107 grad_t = (f_D_t_h - f_D_t) / h

108 return array ([grad_D , grad_t ])

109
110 def gradient_check ():

111 test_values = [(5, 0.01) , (10, 0.5), (15, 0.8), (20, 1.0)]

112
113 for D, t in test_values:

114 anal_grad = analytical_grad(D, t)

115 num_grad = numerical_grad(func , D, t)

116 print(f"Testing␣at␣D={D},␣t={t}")

117 print("Analytical␣Gradient:", anal_grad)

118 print("Numerical␣Gradient:␣", num_grad)

119 print("Difference:␣␣␣␣␣␣␣␣␣", abs(anal_grad - num_grad))

120
121 gradient_check ()

70



APPENDIX H

STRUCTURE ANALYSIS LOAD REDUCTION SYSTEM

1 #%% Packages and imports

2 # Run to fix pyvista crash

3 from pyvistaqt import BackgroundPlotter

4 background = BackgroundPlotter ()

5 background.close ()

6
7 #Packages and imports

8 import beef

9 from beef import fe

10 from src.data_tool import Assembly_array_to_dataframe , extract_BeamElements

↪→ , get_local_node_forces , compute_local_tmat , plot_element_localaxis ,

↪→ read_load_cases , get_summary_data , force_dict_to_df ,

↪→ apply_max_load_equation , find_highest_load_case ,

↪→ find_lowest_load_case , calculate_stress_ranges ,

↪→ calculate_element_stress_ranges , calculate_fatigue_damage#

↪→ ##################

11 from src.StructureDesign import crossbar_parameters , basetower_parameters ,

↪→ toptower_parameters , member_parameters

12 from src.NORSOK_design import design_axial_tension ,

↪→ design_axial_compression , design_bending , design_shear_torsion ,

↪→ design_axial_tens_bending , design_buckling

13 # import nlopt

14
15 import numpy as np

16 import pandas as pd

17
18 import pyvista as pv

19 pv.set_jupyter_backend('trame ')
20
21 #%% Section definitions. Also modified in src.StructureDesign

22
23 xbar_outer_diameter = 3.891

24 xbar_thickness = 0.0645

25 xbar_fy = 355e6

26
27
28
29 crossbar_params = crossbar_parameters(xbar_outer_diameter , xbar_thickness)

↪→ #diameter and thickness meter

30 crossbar_section = fe.Section (** crossbar_params)

31 basetower_params = basetower_parameters (100, 10)

32 basetower_section = fe.Section (** basetower_params)

33 toptower_params = toptower_parameters (6, 0.2)

34 toptower_section = fe.Section (** toptower_params)

35 member_params = member_parameters (1, 0.03)

36 member_section = fe.Section (** member_params)

37
38 #%% Define mesh crossbar and tower

39 xbar_elements = 2#must be even integer for the constraint to be in middle

40
41 length = 50 #meter

42 node_labels = np.arange(1, xbar_elements +2) #nodes 1 to element +1

43 x = (node_labels - 1)/xbar_elements *length #placement for each node on x

71



↪→ axis

44 y = node_labels *0

45 z = node_labels *0

46 xbar_last_node = [xbar_elements +1]

47 #%%

48 node_matrix_xbar = np.vstack ([ node_labels , x.T, y.T, z.T]).T #transpose the

↪→ nodes to a matrix so that its columns instead of rows

49 element_matrix_xbar = np.vstack ([np.arange(1, xbar_elements +1), node_labels

↪→ [0:-1], node_labels [1:]]).T # rows: label , n1 , n2

50
51 basetower_length = 50 #meter

52 tower_node_label = [(len(node_labels)+1) //2] #gives middle node as integer

↪→ rounded down

53 node_matrix_basetower = np.array ([[91 , length/2, -basetower_length , 0],

54 [92, length/2, -basetower_length /2, 0],

55 [93, length/2, 0, 0]

56 ])

57 element_matrix_basetower = np.array ([[91, 91, 92],

58 [92, 92, 93]])

59 # Top tower

60 toptower_elements = 3

61 toptower_length = 7#meter

62
63 toptower_last_node = [100+ toptower_elements]

64 x_tower_nodes = np.full(toptower_elements + 1, length / 2) # All x-

↪→ coordinates are length /2

65 y_tower_nodes = np.linspace(0, toptower_length , toptower_elements + 1) #

↪→ Evenly spaced y-coordinates

66 z_tower_nodes = np.zeros(toptower_elements + 1) # All z-coordinates are 0

67
68 node_matrix_toptower = np.vstack ([np.arange (100, 101+ toptower_elements , 1),

↪→ x_tower_nodes , y_tower_nodes , z_tower_nodes ]).T

69 element_matrix_toptower = np.vstack ([np.arange (100, 100+ toptower_elements ,

↪→ 1), np.arange (100, 100+ toptower_elements , 1), np.arange (101, 101+

↪→ toptower_elements , 1)]).T

70
71 # Members

72 member_elements = 4

73 #%%

74 # Left member (side 2)

75 x_member2_nodes = np.linspace(0, 25, member_elements + 1)

76 y_member2_nodes = np.linspace(0, toptower_length , member_elements + 1)

77 z_member2_nodes = np.zeros(member_elements + 1)

78
79 node_matrix_member2 = np.vstack ([np.arange (300, 301+ member_elements , 1),

↪→ x_member2_nodes , y_member2_nodes , z_member2_nodes ]).T

80 element_matrix_member2 = np.vstack ([np.arange (300, 300+ member_elements , 1),

↪→ np.arange (300, 300+ member_elements , 1), np.arange (301, 301+

↪→ member_elements , 1)]).T

81
82 member2_last_node = [300+ member_elements]

83
84
85 # Right member (side 1)

86 x_member1_nodes = np.linspace (25, 50, member_elements + 1) # Evenly spaced

↪→ x-coordinates from 25 to 50

87 y_member1_nodes = np.linspace(toptower_length , 0, member_elements + 1) #

↪→ Evenly spaced y-coordinates from 10 to 0 (reverse of member 2)

88 z_member1_nodes = np.zeros(member_elements + 1) # All z-

↪→ coordinates are 0

89
90 node_matrix_member1 = np.vstack ([np.arange (200, 201+ member_elements , 1),

↪→ x_member1_nodes , y_member1_nodes , z_member1_nodes ]).T

72



91 element_matrix_member1 = np.vstack ([np.arange (200, 200+ member_elements , 1),

↪→ np.arange (200, 200+ member_elements , 1), np.arange (201, 201+

↪→ member_elements , 1)]).T

92
93 member1_last_node = [200+ member_elements]

94
95 #%% Define Assembly / Parts

96 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar ,sections=

↪→ crossbar_section)

97 part_basetower = fe.Part(node_matrix_basetower , element_matrix_basetower ,

↪→ basetower_section)

98 part_toptower = fe.Part(node_matrix_toptower , element_matrix_toptower ,

↪→ toptower_section)

99 part_member1 = fe.Part(node_matrix_member1 , element_matrix_member1 ,

↪→ toptower_section)

100 part_member2 = fe.Part(node_matrix_member2 , element_matrix_member2 ,

↪→ toptower_section)

101
102 # Constraints

103 basetower_constraints = [fe.Constraint ([91] , dofs='all', node_type='beam3d '
↪→ , name='Fixed␣Constraint ')]

104 crossbar_basetower_const = [fe.Constraint(tower_node_label , [93], name='
↪→ Crossbar␣to␣basetower ', dofs='all', node_type='beam3d ')]

105 crossbar_toptower_const = [fe.Constraint(tower_node_label , [100], name='
↪→ Crossbar␣to␣toptower ', dofs='all', node_type='beam3d ')]

106 toptower_member1_const = [fe.Constraint(toptower_last_node , [200] , name='
↪→ Toptower␣to␣member1 ', dofs=[0,1,2,3,4], node_type='beam3d ')]

107 toptower_member2_const = [fe.Constraint(toptower_last_node ,

↪→ member2_last_node , name='Toptower␣to␣member2 ', dofs=[0,1,2,3,4],

↪→ node_type='beam3d ')]
108 crossbar_member2_const = [fe.Constraint ([1], [300] , name='Crossbar␣to␣

↪→ member2 ', dofs=[0,1,2,3,4], node_type='beam3d ')]
109 crossbar_member1_const = [fe.Constraint(xbar_last_node , member1_last_node ,

↪→ name='Crossbar␣to␣member2 ', dofs=[0,1,2,3,4], node_type='beam3d ')]
110
111 constraints = basetower_constraints + crossbar_basetower_const +

↪→ crossbar_toptower_const + toptower_member1_const +

↪→ toptower_member2_const + crossbar_member2_const +

↪→ crossbar_member1_const

112
113 assembly = fe.Assembly ([part_xbar , part_basetower , part_toptower ,

↪→ part_member1 , part_member2], constraints=constraints)

114
115 pl = assembly.plot(plot_nodes=True , node_labels=False , element_labels=True ,

↪→ plot_constraints=constraints , show=False)

116
117 #%% PLOT Assembly

118 pl.view_xy ()

119 pl.show()

120 #%% Define forces

121 # Side 1. Force sign is adjusted for correct coordinate system in

↪→ amplitudes.

122 Fx1 = -5.4771E+04

123 Fy1 = 1.1097E+03

124 Fz1 = 8.1620E+03

125 Mz1 = -1.2437E+08 + 25* Fy1

126 My1 = 1.8771E+05 -5.9501E+02+25* Fz1

127
128 Fx2 = -514609.401407

129 Fy2 = -143760.735865

130 Fz2 = 27496.853183

131 Mz2 = -129363925.440226

132 My2 = 686019.585219 + -28356.399565 + 25* Fz2

73



133
134
135 force_nodelabel_end2 = [node_labels [0]] # forces applied to left hand side

136 force_nodelabel_end1 = [node_labels [-1]] # forces applied to right hand

↪→ side

137
138 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-Fx1)#-

139 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=Fx2)

140 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=Fy1)

141 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=Fy2)

142 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-Fz1)#-

143 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=Fz2)

144 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=Mz1)

145 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-Mz2)#-

146 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=My1)

147 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=My2)

148 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 , force_z2 ,

↪→ moment_z1 , moment_z2 , moment_y1 , moment_y2]

149
150 #%% Analysis

151 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

152 analysis.run_lin_static(return_results=False)

153
154 pl = analysis.eldef.plot(node_labels=True , element_labels=False , plot_nodes

↪→ =True , plot_states =['undeformed ', 'deformed '], show=False)

155
156 analysis_assembly = analysis.eldef

157
158 displacements_assembly = analysis_assembly.u.reshape (-1,1)

159 displacements_df = Assembly_array_to_dataframe(analysis_assembly ,

↪→ analysis_assembly.u, 1)

160
161 #%% PLOT Deformations

162 pl.view_xy ()

163 pl.show()

164 #%% Element dictionary

165 elements_dict_assembly = extract_BeamElements(assembly)

166 elements_dict_analysis = extract_BeamElements(analysis_assembly)

167
168 #%% Forces

169 local_forces_dict = get_local_node_forces(assembly , analysis_assembly)[0]

170 local_forces_df = get_local_node_forces(assembly , analysis_assembly)[1]

171
172 #%% plot element axis

173 element_1 = elements_dict_assembly['Element␣1']
174
175 # Plots own local axis , so ensure correct local coordinate system

176 plotaxis1 = plot_element_localaxis(analysis_assembly , element_1)

177
178 #%% Excel force extraction

179 from src.data_tool import apply_max_load_equation_df ,

↪→ analyze_multiple_columns ,find_worst_case

180
181 summary_df = get_summary_data('DesignLoads␣Xrotor.xlsx')
182 FLS_dict = read_load_cases('DesignLoads␣Xrotor.xlsx',1, 18)

183
184 ULS_dict = read_load_cases('DesignLoads␣Xrotor.xlsx', 1, 28)

185 force_names = ['azimuth_rad ', '1Fn_h_N ', '1Fn_v_N ', '1Mflap_Nm ', '1Ftan_N ',
↪→ '1Medge_v_Nm ', '1Mpitch_v_Nm ','2Fn_h_N ', '2Fn_v_N ', '2Mflap_Nm ', '2
↪→ Ftan_N ', '2Medge_v_Nm ', '2Mpitch_v_Nm ']

186 new_force_names = ['Azimuth␣rad','Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', '
↪→ My1_pitch ','Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']

187 # Dictionaries with dataframes of all used forces from excel with new names

74



188 applied_forces_dict = force_dict_to_df(ULS_dict , force_names ,

↪→ new_force_names)

189 applied_forces_fatigue_dict = force_dict_to_df(FLS_dict , force_names ,

↪→ new_force_names)

190
191 # Dictionaries with All combined forces for compression and tension.

192 max_load_tension = apply_max_load_equation(applied_forces_dict ,

↪→ new_force_names , 'tension ')
193 max_load_compression = apply_max_load_equation(applied_forces_dict ,

↪→ new_force_names , 'compression ')
194
195 force_names_list = ['Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', 'My1_pitch ', '

↪→ Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']
196 results_highest = analyze_multiple_columns(applied_forces_dict ,

↪→ force_names_list , 'max')
197 results_lowest = analyze_multiple_columns(applied_forces_dict ,

↪→ force_names_list , 'min')
198
199 # # Worst combined cases for ULS

200 element1_names = ['Fx1', 'Fy1', 'Mz1', 'Fz1', 'My1_edge ', 'My1_pitch ']
201 element2_names = ['Fx2', 'Fy2', 'Mz2', 'Fz2', 'My2_edge ', 'My2_pitch ']
202 max_compression_df = apply_max_load_equation_df(results_highest ,

↪→ element1_names , element2_names , 'compression ')
203 max_tension_df = apply_max_load_equation_df(results_highest , element1_names

↪→ , element2_names , 'tension ')
204 min_compression_df = apply_max_load_equation_df(results_lowest ,

↪→ element1_names , element2_names , 'compression ')
205 min_tension_df = apply_max_load_equation_df(results_lowest , element1_names ,

↪→ element2_names , 'tension ')
206 #%% Highest hub forces

207 force_names_combined = ['azimuth_rad ',
208 '1Fz_hub_root_N ', '1Fx_hub_root_N ', '1Fy_hub_root_N

↪→ ','1Mz_hub_root_Nm ', '1My_hub_root_Nm ',
209 '2Fz_hub_root_N ', '2Fx_hub_root_N ', '2Fy_hub_root_N

↪→ ','2Mz_hub_root_Nm ', '2My_hub_root_Nm ',]
210
211 new_force_names_combined = ['Azimuth␣rad',
212 'Fz1hub ', 'Fx1hub ', 'Fy1hub ','Mz1hub ', 'My1hub '

↪→ ,

213 'Fz2hub ', 'Fx2hub ', 'Fy2hub ','Mz2hub ', 'My2hub '
↪→ ]

214 applied_combined_forces_dict = force_dict_to_df(ULS_dict ,

↪→ force_names_combined , new_force_names_combined)

215 combined_force_names = ['Fz1hub ', 'Fx1hub ', 'Fy1hub ','Mz1hub ', 'My1hub ',
216 'Fz2hub ', 'Fx2hub ', 'Fy2hub ','Mz2hub ', 'My2hub '

↪→ ]

217 combined_results_highest = analyze_multiple_columns(

↪→ applied_combined_forces_dict , combined_force_names , 'max')
218 combined_results_lowest = analyze_multiple_columns(

↪→ applied_combined_forces_dict , combined_force_names , 'min')
219
220 #%% Run static analysis function single row

221
222 def run_static_analysis(diameter , thickness , nr):#, d, t):

223 # Update parameters for crossbar_section based on the current

↪→ optimization variables

224 crossbar_params = crossbar_parameters(diameter , thickness)

225 crossbar_section = fe.Section (** crossbar_params)

226 toptower_params = toptower_parameters (3.8, 0.07)

227 toptower_section = fe.Section (** toptower_params)

228 member_params = member_parameters (1, 0.03)

229 member_section = fe.Section (** member_params)

230

75



231 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar ,sections=

↪→ crossbar_section)

232 part_toptower = fe.Part(node_matrix_toptower , element_matrix_toptower ,

↪→ toptower_section)

233 part_member1 = fe.Part(node_matrix_member1 , element_matrix_member1 ,

↪→ member_section)

234 part_member2 = fe.Part(node_matrix_member2 , element_matrix_member2 ,

↪→ member_section)

235 assembly = fe.Assembly ([part_xbar , part_basetower , part_toptower ,

↪→ part_member1 , part_member2], constraints=constraints)

236
237 # External forces from DF

238 # forces_row = applied_forces_fatigue_dict['lc18 '].iloc[nr] #

↪→ dataframe with external forces , from load case. nr pick row by

↪→ index. From dict

239 forces_row = results_lowest.iloc[nr] # dataframe with external forces ,

↪→ from load case. nr pick row by index. From dict

240
241 Fx1 = np.array([ forces_row['Fx1']])
242 Fy1 = np.array([ forces_row['Fy1']])
243 Fz1 = np.array([ forces_row['Fz1']])
244 Mz1 = np.array([ forces_row['Mz1'] + 25 * forces_row['Fy1']])
245 My1_edge = np.array ([ forces_row['My1_edge ']])
246 My1_pitch = np.array([ forces_row['My1_pitch ']])
247 Fx2 = np.array([ forces_row['Fx2']])
248 Fy2 = np.array([ forces_row['Fy2']])
249 Fz2 = np.array([ forces_row['Fz2']])
250 Mz2 = np.array([ forces_row['Mz2'] + 25 * forces_row['Fy2']])
251 My2_edge = np.array ([ forces_row['My2_edge ']])
252 My2_pitch = np.array([ forces_row['My2_pitch ']])
253
254 My1 = My1_edge + My1_pitch + 25* Fz1

255 My2 = My2_edge + My2_pitch + 25* Fz2

256
257 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-Fx1)

258 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=Fx2)

259 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=Fy1)

260 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=Fy2)

261 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-Fz1)

262 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=Fz2)

263 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=Mz1)

264 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-Mz2)

265 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=My1)

266 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=My2)

267 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 , force_z2 ,

↪→ moment_z1 , moment_z2 , moment_y1 , moment_y2]

268
269 # Run analysis

270 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

271 analysis.run_lin_static(return_results=False)

272
273 #Plot deformations

274 # pl = analysis.eldef.plot(node_labels=False , element_labels=False ,

↪→ plot_nodes=True , plot_states =[' undeformed ', 'deformed '], show=

↪→ False)

275 # pl.view_xy ()

276 # pl.show()

277
278 # get forces

279 analysis_assembly = analysis.eldef

280
281 #displacements

282 displacement_df = Assembly_array_to_dataframe(analysis_assembly ,

76



↪→ analysis_assembly.u, 1)

283
284 #Plot local element axis

285 element_dict = extract_BeamElements(assembly)

286 plelement = element_dict['Element␣101']
287 plotaxis = plot_element_localaxis(analysis_assembly , plelement)

288
289 local_forces = get_local_node_forces(assembly , analysis_assembly)[0] #

↪→ Dictionary with element forces (12, 0)

290
291 # Exclude elements 91 and 92

292 x_bar_forces = {k: v for k, v in local_forces.items () if k not in ['
↪→ Element␣91', 'Element␣92']}

293
294 return x_bar_forces#local_forces , displacement_df#

295
296
297 def run_static_analysis_FLS(diameter , thickness , topD , topt , membD , membt):

298 """

299 Run static analysis for all load cases and return local forces for each

↪→ crossbar element.

300
301 Parameters:

302 ----------

303 diameter : float , outer diameter of the tube.

304 thickness : float , wall thickness of the tube.

305
306 Returns:

307 -------

308 dict , contains DataFrames of local forces for each crossbar element for

↪→ each load case.

309 """

310
311 # Update parameters for crossbar_section based on the current

↪→ optimization variables

312 crossbar_params = crossbar_parameters(diameter , thickness)

313 crossbar_section = fe.Section (** crossbar_params)

314 toptower_params = toptower_parameters(topD , topt)

315 toptower_section = fe.Section (** toptower_params)

316 member_params = member_parameters(membD , membt)

317 member_section = fe.Section (** member_params)

318
319 part_xbar = fe.Part(node_matrix_xbar , element_matrix_xbar ,sections=

↪→ crossbar_section)

320 part_toptower = fe.Part(node_matrix_toptower , element_matrix_toptower ,

↪→ toptower_section)

321 part_member1 = fe.Part(node_matrix_member1 , element_matrix_member1 ,

↪→ member_section)

322 part_member2 = fe.Part(node_matrix_member2 , element_matrix_member2 ,

↪→ member_section)

323 assembly = fe.Assembly ([part_xbar , part_basetower , part_toptower ,

↪→ part_member1 , part_member2], constraints=constraints)

324
325 local_forces_dict = {}

326
327 # Iterate over all load cases

328 for lc , df in applied_forces_fatigue_dict.items():

329 local_forces_dict[lc] = {}

330
331 # Create an empty dictionary to hold DataFrames for each element

332 element_forces = {f'Element␣{i}': pd.DataFrame(columns =['Azimuth␣
↪→ rad', 'Fx1', 'Fy1', 'Fz1', 'Mx1', 'My1', 'Mz1','Fx2', 'Fy2',
↪→ 'Fz2', 'Mx2', 'My2', 'Mz2'])

77



333 for i in range(1, len(element_matrix_xbar) + 1)}

334
335 # Iterate over all rows of external forces data for the current

↪→ load case

336 for idx , forces_row in df.iterrows ():

337 Fx1 = np.array([ forces_row['Fx1']])
338 Fy1 = np.array([ forces_row['Fy1']])
339 Fz1 = np.array([ forces_row['Fz1']])
340 Mz1 = np.array([ forces_row['Mz1'] + 25 * forces_row['Fy1']])
341 My1_edge = np.array ([ forces_row['My1_edge ']])
342 My1_pitch = np.array([ forces_row['My1_pitch ']])
343 Fx2 = np.array([ forces_row['Fx2']])
344 Fy2 = np.array([ forces_row['Fy2']])
345 Fz2 = np.array([ forces_row['Fz2']])
346 Mz2 = np.array([ forces_row['Mz2'] + 25 * forces_row['Fy2']])
347 My2_edge = np.array ([ forces_row['My2_edge ']])
348 My2_pitch = np.array([ forces_row['My2_pitch ']])
349
350 My1 = My1_edge + My1_pitch + 25 * Fz1

351 My2 = My2_edge + My2_pitch + 25 * Fz2

352
353 force_x1 = fe.Force(force_nodelabel_end1 , dofs=0, amplitudes=-

↪→ Fx1)

354 force_x2 = fe.Force(force_nodelabel_end2 , dofs=0, amplitudes=

↪→ Fx2)

355 force_y1 = fe.Force(force_nodelabel_end1 , dofs=1, amplitudes=

↪→ Fy1)

356 force_y2 = fe.Force(force_nodelabel_end2 , dofs=1, amplitudes=

↪→ Fy2)

357 force_z1 = fe.Force(force_nodelabel_end1 , dofs=2, amplitudes=-

↪→ Fz1)

358 force_z2 = fe.Force(force_nodelabel_end2 , dofs=2, amplitudes=

↪→ Fz2)

359 moment_z1 = fe.Force(force_nodelabel_end1 , dofs=5, amplitudes=

↪→ Mz1)

360 moment_z2 = fe.Force(force_nodelabel_end2 , dofs=5, amplitudes=-

↪→ Mz2)

361 moment_y1 = fe.Force(force_nodelabel_end1 , dofs=4, amplitudes=

↪→ My1)

362 moment_y2 = fe.Force(force_nodelabel_end2 , dofs=4, amplitudes=

↪→ My2)

363 forces = [force_x1 , force_x2 , force_y1 , force_y2 , force_z1 ,

↪→ force_z2 , moment_z1 , moment_z2 , moment_y1 , moment_y2]

364
365 # Run analysis

366 analysis = fe.Analysis(assembly , forces=forces , itmax =1000)

367 analysis.run_lin_static(return_results=False)

368
369 # Get forces

370 analysis_assembly = analysis.eldef

371 local_forces = get_local_node_forces(assembly ,

↪→ analysis_assembly)[0] # Dictionary with element forces

↪→ (12, 0)

372
373 # Include only the crossbar elements

374 crossbar_elements = [f'Element␣{i}' for i in range(1,

↪→ xbar_elements + 1)]

375 local_forces = {k: v for k, v in local_forces.items () if k in

↪→ crossbar_elements}

376
377 # Add the local forces for the current azimuth radian position

↪→ to the DataFrames

378 for element , forces_array in local_forces.items():

78



379 if element in element_forces:

380 # Create a DataFrame for the current azimuth radian

↪→ position

381 forces_dict = {

382 'Azimuth␣rad': applied_forces_fatigue_dict[lc]['
↪→ Azimuth␣rad'][idx],

383 'Fx1': forces_array [0], 'Fy1': forces_array [1], '
↪→ Fz1': forces_array [2],

384 'Mx1': forces_array [3], 'My1': forces_array [4], '
↪→ Mz1': forces_array [5],

385 'Fx2': forces_array [6], 'Fy2': forces_array [7], '
↪→ Fz2': forces_array [8],

386 'Mx2': forces_array [9], 'My2': forces_array [10], '
↪→ Mz2': forces_array [11]

387 }

388 forces_df = pd.DataFrame ([ forces_dict ])

389
390 # Concatenate the DataFrame with the existing one

391 element_forces[element] = pd.concat ([ element_forces[

↪→ element], forces_df], ignore_index=True)

392
393 # Assign the DataFrames to the local forces dictionary for the

↪→ current load case

394 local_forces_dict[lc] = element_forces

395
396 return local_forces_dict

79



APPENDIX I

OPTIMIZATION CODE FOR ULS

1 from src.NORSOK_design import design_buckling , design_bending ,

↪→ design_axial_tens_bending , design_axial_tension ,

↪→ design_axial_comp_bending

2 from src.data_tool import get_gradient , calculate_stress_ranges

3 from src.Static_Analysis import run_static_analysis , results_highest ,

↪→ results_lowest

4
5 import nlopt

6 from numpy import sqrt , pi

7
8
9 def area_objective(x, grad): #Dia and thickness objective function

10 if grad.size > 0:

11 grad [0] = pi*x[1]

12 grad [1] = pi*(x[0] -2*x[1])

13 return pi/4 * (x[0]**2 - (x[0] - 2*x[1]) **2)

14
15 def dia_thickness_fcle_const(x,grad): #fcl = fy for fy/fcle <= 0.170

↪→ constraint. Varies with fy. fy=355e6 ->D/T <65.9

16 """

17 fy/fcle <= 0.170 to satisfy assumption of a cross section not being

↪→ class 4, and not behave as a shell.

18 "An unstiffened shell in cross section class 4, is an example of a

↪→ member that can show such an unfavourable resistance deformation

↪→ relationship ."

19 for fy = 355e6 ,

20 also , for bending constraint fyD/Et <= 0.1034 and D/t <=120, will

↪→ always be outside fy/fcle constraint assumption => fcle is

↪→ enough.

21 """

22 fy = 355e6

23 E = 2.1e11

24
25 if grad.size > 0:

26 grad [0] = 1/x[1]

27 grad [1] = -x[0]/x[1]**2

28
29 return x[0]/x[1] - 0.102*E/fy #fy=355e6 => D/t < 60.3

30
31 def comb_tens_bending(x, grad , local_forces , element_id , node_index):

32 Nsd = abs(local_forces[element_id ][ node_index ]) # Axial force Fx at the

↪→ first or second node of the element

33 My = local_forces[element_id ][ node_index + 4] # Moment My at the first

↪→ first or second node of the element

34 Mz = local_forces[element_id ][ node_index + 5] # Moment Mz at the first

↪→ first or second node of the element

35
36 fy = 355e6

37 G = 1.15

38 E = 2.1e11

39
40 if grad.size > 0:

41 grad [0] = G*(-x[0]**2/2 + (x[0] - 2*x[1]) **2/2)*sqrt(My**2 + Mz**2)

80



↪→ /(fy*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6) **2*( -2.58*x[0]*fy/(E

↪→ *x[1]) + 1.13)) - 79.1959594928933*x[1]*(G*Nsd/(fy*pi*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)))**1.75/(x[0]**2 - (x[0] - 2*x

↪→ [1]) **2) + 0.387596899224806*G*sqrt(My**2 + Mz**2)/(E*x[1]*(

↪→ x[0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x[0]*fy/(E*x[1]) +

↪→ 0.437984496124031) **2)

42 grad [1] = -0.387596899224806*x[0]*G*sqrt(My**2 + Mz**2)/(E*x

↪→ [1]**2*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x[0]*fy/(E*x[1])

↪→ + 0.437984496124031) **2) - G*(x[0] - 2*x[1]) **2* sqrt(My**2

↪→ + Mz**2)/(fy*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6) **2*( -2.58*x

↪→ [0]*fy/(E*x[1]) + 1.13)) + 19.7989898732233*(G*Nsd/(fy*pi*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)))**1.75*( -4*x[0] + 8*x[1])/(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)

43 A = pi/4 * (x[0]**2 - (x[0]-2*x[1]) **2)

44 NRd = A*fy/G

45
46 W = (pi * (x[0]**4 - (x[0] - 2*x[1]) **4)) / (32 * x[0])

47 Z = (x[0]**3 - (x[0] - 2*x[1]) **3) / 6

48
49 fm = (1.13 -2.58*( fy*x[0]/E/x[1]))*(Z/W)*fy

50
51 MRd = fm*W/G

52
53 axial_part = (Nsd/NRd)**1.75

54 bending_part = sqrt(My**2 + Mz**2)/MRd

55
56 return axial_part + bending_part - 1

57
58 def comb_buckling_bending(x, grad , local_forces , element_id , node_index):

59 Nsd = abs(local_forces[element_id ][ node_index ])

60 My = local_forces[element_id ][ node_index + 4]

61 Mz = local_forces[element_id ][ node_index + 5]

62
63 fy = 355e6

64 G = 1.15

65 E = 2.1e11

66 k = 2

67
68 #Axial

69 A = pi/4 * (x[0]**2 - (x[0]-2*x[1]) **2)

70 fcl = fy #because of dia_thickness_fcle_const constraint , makes fy/fcle

↪→ < 1.170

71 L = k*25 #column effective length

72 i = sqrt(x[0]**2+(x[0]-2*x[1]) **2)/4 #radius of gyration

73 slender_para = (L/pi/i)*sqrt(fcl/E)

74 fc = fcl *(1 -0.28* slender_para **2)

75 NRd = A*fc/G

76 C = 1 #Annex A Norsok

77
78 axial_part = Nsd/NRd

79
80 if grad.size > 0:

81 grad [0] = -16*G*Nsd*x[1]/( fy*pi*(x[0]**2 - (x[0] - 2*x[1]) **2) **2)

↪→ + G*(-x[0]**2/2 + (x[0] - 2*x[1]) **2/2) *(C**2*My **2/(1 - 64*

↪→ L**2* Nsd/(E*pi **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 +

↪→ (x[0] - 2*x[1]) **2)))**2 + C**2*Mz **2/(1 - 64*L**2* Nsd/(E*pi

↪→ **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x

↪→ [1]) **2)))**2) **0.5/( fy*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)

↪→ **2*( -2.58*x[0]*fy/(E*x[1]) + 1.13)) + G*(0.5*C**2*My

↪→ **2*( -512*L**2* Nsd*x[1]/(E*pi **3*(x[0]**2 - (x[0] - 2*x[1])

↪→ **2) **2*(x[0]**2 + (x[0] - 2*x[1]) **2)) + 128*L**2* Nsd*(-4*x

↪→ [0] + 4*x[1])/(E*pi **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x

↪→ [0]**2 + (x[0] - 2*x[1]) **2) **2))/(1 - 64*L**2* Nsd/(E*pi

81



↪→ **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x

↪→ [1]) **2)))**3 + 0.5*C**2*Mz**2*( -512*L**2* Nsd*x[1]/(E*pi

↪→ **3*(x[0]**2 - (x[0] - 2*x[1]) **2) **2*(x[0]**2 + (x[0] - 2*x

↪→ [1]) **2)) + 128*L**2* Nsd*(-4*x[0] + 4*x[1])/(E*pi**3*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)

↪→ **2))/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] - 2*x[1])

↪→ **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**3)/(fy*(x[0]**3/6 - (

↪→ x[0] - 2*x[1]) **3/6) *(C**2*My **2/(1 - 64*L**2* Nsd/(E*pi **3*(

↪→ x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)

↪→ ))**2 + C**2*Mz **2/(1 - 64*L**2* Nsd/(E*pi **3*(x[0]**2 - (x

↪→ [0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**2)

↪→ **0.5*( -2.58*x[0]*fy/(E*x[1]) + 1.13)) + 0.387596899224806*G

↪→ *(C**2*My **2/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] - 2*

↪→ x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**2 + C**2*Mz

↪→ **2/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] - 2*x[1]) **2)

↪→ *(x[0]**2 + (x[0] - 2*x[1]) **2)))**2) **0.5/(E*x[1]*(x

↪→ [0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x[0]*fy/(E*x[1]) +

↪→ 0.437984496124031) **2)

82 grad [1] = -0.387596899224806*x[0]*G*(C**2*My **2/(1 - 64*L**2* Nsd/(E

↪→ *pi **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x

↪→ [1]) **2)))**2 + C**2*Mz **2/(1 - 64*L**2* Nsd/(E*pi**3*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2))

↪→ )**2) **0.5/(E*x[1]**2*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x

↪→ [0]*fy/(E*x[1]) + 0.437984496124031) **2) + 4*G*Nsd*(-4*x[0]

↪→ + 8*x[1])/(fy*pi*(x[0]**2 - (x[0] - 2*x[1]) **2) **2) - G*(x

↪→ [0] - 2*x[1]) **2*(C**2*My **2/(1 - 64*L**2* Nsd/(E*pi **3*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2))

↪→ )**2 + C**2*Mz **2/(1 - 64*L**2* Nsd/(E*pi **3*(x[0]**2 - (x[0]

↪→ - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**2) **0.5/( fy

↪→ *(x[0]**3/6 - (x[0] - 2*x[1]) **3/6) **2*( -2.58*x[0]*fy/(E*x

↪→ [1]) + 1.13)) + G*(0.5*C**2*My **2*(128*L**2* Nsd*(-4*x[0] +

↪→ 8*x[1])/(E*pi**3*(x[0]**2 - (x[0] - 2*x[1]) **2) **2*(x[0]**2

↪→ + (x[0] - 2*x[1]) **2)) + 128*L**2* Nsd *(4*x[0] - 8*x[1])/(E*

↪→ pi**3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x

↪→ [1]) **2) **2))/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] -

↪→ 2*x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**3 + 0.5*C**2*

↪→ Mz **2*(128*L**2* Nsd*(-4*x[0] + 8*x[1])/(E*pi**3*(x[0]**2 - (

↪→ x[0] - 2*x[1]) **2) **2*(x[0]**2 + (x[0] - 2*x[1]) **2)) + 128*

↪→ L**2* Nsd *(4*x[0] - 8*x[1])/(E*pi **3*(x[0]**2 - (x[0] - 2*x

↪→ [1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2) **2))/(1 - 64*L**2*

↪→ Nsd/(E*pi **3*(x[0]**2 - (x[0] - 2*x[1]) **2)*(x[0]**2 + (x[0]

↪→ - 2*x[1]) **2)))**3)/(fy*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)

↪→ *(C**2*My **2/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] - 2*

↪→ x[1]) **2)*(x[0]**2 + (x[0] - 2*x[1]) **2)))**2 + C**2*Mz

↪→ **2/(1 - 64*L**2* Nsd/(E*pi**3*(x[0]**2 - (x[0] - 2*x[1]) **2)

↪→ *(x[0]**2 + (x[0] - 2*x[1]) **2)))**2) **0.5*( -2.58*x[0]*fy/(E

↪→ *x[1]) + 1.13))

83
84 #Bending

85 W = (pi * (x[0]**4 - (x[0] - 2*x[1]) **4)) / (32 * x[0])

86 Z = (x[0]**3 - (x[0] - 2*x[1]) **3) / 6

87 fm = (1.13 -2.58*( fy*x[0]/E/x[1]))*(Z/W)*fy

88 MRd = fm*W/G

89
90 NEy = pi**2*E*A/(L/i)**2

91 NEz = NEy

92 bending_part = 1/MRd *( (C*My/(1-Nsd/NEy))**2 + (C*Mz/(1-Nsd/NEz))**2 )

↪→ **0.5

93
94 return axial_part + bending_part - 1

95
96 def comb_buckling_bending2(x, grad , local_forces , element_id , node_index):

97 Nsd = abs(local_forces[element_id ][ node_index ])

82



98 My = local_forces[element_id ][ node_index + 4]

99 Mz = local_forces[element_id ][ node_index + 5]

100
101 fy = 355e6

102 G = 1.15

103 E = 2.1e11

104
105 #Axial

106 A = pi/4 * (x[0]**2 - (x[0]-2*x[1]) **2)

107 fcl = fy #because of dia_thickness_fcle_const constraint , makes fy/fcle

↪→ < 1.170

108 Ncl_Rd = A*fcl/G

109
110 axial_part = Nsd/Ncl_Rd

111
112 if grad.size > 0:

113 grad [0] = -16*G*Nsd*x[1]/( fy*pi*(x[0]**2 - (x[0] - 2*x[1]) **2) **2)

↪→ + G*(-x[0]**2/2 + (x[0] - 2*x[1]) **2/2)*sqrt(My**2 + Mz**2)

↪→ /(fy*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6) **2*( -2.58*x[0]*fy/(E

↪→ *x[1]) + 1.13)) + 0.387596899224806*G*sqrt(My**2 + Mz**2)/(E

↪→ *x[1]*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x[0]*fy/(E*x[1])

↪→ + 0.437984496124031) **2)

114 grad [1] = -0.387596899224806*x[0]*G*sqrt(My**2 + Mz**2)/(E*x

↪→ [1]**2*(x[0]**3/6 - (x[0] - 2*x[1]) **3/6)*(-x[0]*fy/(E*x[1])

↪→ + 0.437984496124031) **2) + 4*G*Nsd*(-4*x[0] + 8*x[1])/(fy*

↪→ pi*(x[0]**2 - (x[0] - 2*x[1]) **2) **2) - G*(x[0] - 2*x[1])

↪→ **2* sqrt(My**2 + Mz**2)/(fy*(x[0]**3/6 - (x[0] - 2*x[1])

↪→ **3/6) **2*( -2.58*x[0]*fy/(E*x[1]) + 1.13))

115
116 #Bending

117 W = (pi * (x[0]**4 - (x[0] - 2*x[1]) **4)) / (32 * x[0])

118 Z = (x[0]**3 - (x[0] - 2*x[1]) **3) / 6

119 fm = (1.13 -2.58*( fy*x[0]/E/x[1]))*(Z/W)*fy

120 MRd = fm*W/G

121
122 bending_part = sqrt(My**2 + Mz**2)/MRd

123
124 return axial_part + bending_part - 1

125
126
127
128 nr = 2 #choosing which row of forces from dataframe in run_static_analysis

129
130
131 def create_constraint_wrapper(constraint_func , element_id , node_index):

132 return lambda x, grad: constraint_func(x, grad , run_static_analysis(x

↪→ [0], x[1], nr), element_id , node_index)

133
134 def check_constraints_and_add(opt , element_id , local_forces , constraint_tol

↪→ ): #checking sign Fx if element in tension or compression

135 if local_forces[element_id ][0] < 0:

136 # Element is in tension

137 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_tens_bending , element_id , 0), constraint_tol)

138 else:

139 # Element is in compression

140 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_buckling_bending2 , element_id , 0), constraint_tol)

141 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_buckling_bending , element_id , 0), constraint_tol)

142
143 if local_forces[element_id ][0] < 0:

144 # Element is in tension

83



145 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_tens_bending , element_id , 6), constraint_tol)

146 else:

147 # Element is in compression

148 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_buckling_bending2 , element_id , 6), constraint_tol)

149 opt.add_inequality_constraint(create_constraint_wrapper(

↪→ comb_buckling_bending , element_id , 6), constraint_tol)

150
151
152
153 # Run Optimizer

154 opt = nlopt.opt(nlopt.LD_SLSQP , 2)

155 opt.set_lower_bounds ([1, 0.003])

156 opt.set_upper_bounds ([7, 7/16])

157 opt.set_min_objective(area_objective)

158
159 constraint_tol = 1e-8

160 local_forces = run_static_analysis (4, 0.1, 0) # initial guess to define

↪→ the current elements

161
162 # Add combined constraints individually

163 for element_id in local_forces.keys():

164 check_constraints_and_add(opt , element_id , local_forces , constraint_tol

↪→ )

165 opt.add_inequality_constraint(dia_thickness_fcle_const , 1e-7)

166
167 opt.set_xtol_rel (1e-8)

168 x_initial = [4, 0.1]

169 x_opt = opt.optimize(x_initial)

170
171 # Printing values with opt forces for elements

172 optimized_forces = run_static_analysis(x_opt[0], x_opt [1], nr)

173 minf = opt.last_optimum_value ()

174
175 for element_id in optimized_forces.keys():

176 print("\n")

177 print(f"Element␣{element_id }:")

178 print("Combined␣Capacity␣Tension␣=␣", design_axial_tens_bending(x_opt

↪→ [0], x_opt [1], optimized_forces , element_id))

179 print("Combined␣Capacity␣Buckling␣=␣", design_axial_comp_bending(x_opt

↪→ [0], x_opt [1], optimized_forces , element_id))

180 print("Result␣Code␣=␣", opt.last_optimize_result ())

181 if optimized_forces[element_id ][0] <0:

182 print('Element␣is␣in␣Tension!')
183 else:

184 print('Element␣is␣in␣Compression!')
185
186 print('\n')
187 print(f"Optimum␣Dia␣and␣Thickness␣=␣{x_opt [0]},␣{x_opt [1]}")

188 print("Minimum␣Area␣=␣", minf)

189 print(f"Load␣case:␣{results_lowest['Load␣Case '][nr]}␣\nat␣Position:␣{
↪→ results_lowest['Azimuth␣rad '][nr]}␣rad␣\nCheck␣if␣'Mz1'␣or␣'Mz2'␣is␣
↪→ side␣one␣or␣two")

190 print("Buckling␣Capacity␣=␣", design_buckling(x_opt[0], x_opt [1]))

191 print("Bending␣Capacity␣=␣", design_bending(x_opt[0], x_opt [1]))

192 print("Tension␣Capacity␣=␣", design_axial_tension(x_opt[0], x_opt [1]))

193 def print_results(result_df , force):

194 force = result_df.index[force]

195 lc = result_df['Load␣Case'][ force]
196 results = f"{force}␣-␣{x_opt [0]:.4f},␣{x_opt [1]:.4f}␣-␣{minf :.5f}␣-␣{lc

↪→ }"

197 return results

84



198
199 print_results(results_lowest , nr)

85



APPENDIX J

OPTIMIZATION CODE FOR FLS

1
2 from src.NORSOK_design import design_buckling , design_bending ,

↪→ design_axial_tens_bending , design_axial_tension ,

↪→ design_axial_comp_bending

3 from src.data_tool import calculate_stress_ranges , calculate_fatigue_damage

↪→ , calculate_element_stress_ranges

4 from src.static_analysis_with_tower import run_static_analysis_FLS ,

↪→ summary_df

5
6 import nlopt

7 from numpy import sqrt , pi

8 import pandas as pd

9
10
11 def area_objective(x, grad): #Dia and thickness objective function

12 if grad.size > 0:

13 grad [0] = pi*x[1]

14 grad [1] = pi*(x[0] -2*x[1])

15 return pi/4 * (x[0]**2 - (x[0] - 2*x[1]) **2)

16
17 def dia_thickness_fcle_const(x,grad): #fcl = fy for fy/fcle <= 0.170

↪→ constraint. Varies with fy. fy=355e6 ->D/T <65.9

18 """

19 fy/fcle <= 0.170 to satisfy assumption of a cross section not being

↪→ class 4, and not behave as a shell.

20 "An unstiffened shell in cross section class 4, is an example of a

↪→ member that can show such an unfavourable resistance deformation

↪→ relationship ."

21 for fy = 355e6 ,

22 also , for bending constraint fyD/Et <= 0.1034 and D/t <=120, will

↪→ always be outside fy/fcle constraint assumption => fcle is

↪→ enough.

23 """

24 fy = 355e6

25 E = 2.1e11

26
27 if grad.size > 0:

28 grad [0] = 1/x[1]

29 grad [1] = -x[0]/x[1]**2

30
31 return x[0]/x[1] - 0.102*E/fy

32
33 def fatigue_constraint(x, grad , local_force_dict):

34
35 m1 = 3.0

36 log_a1 = 12.449

37 a = 10 ** log_a1

38 eta = 1 # design fatigue factor

39 # A = pi / 4 * (x[0]**2 - (x[0] - 2 * x[1]) **2)

40 # W = (pi * (x[0]**4 - (x[0] - 2 * x[1]) **4)) / (32 * x[0])

41
42 local_forces = local_force_dict #Get local forces.

43 stress_ranges = calculate_element_stress_ranges(local_forces , x[0], x

86



↪→ [1]) [2] #get Dictionary with highest stress range for each LC

44
45 # Total operating time in seconds

46 total_seconds_per_year = 365 * 24 * 3600

47
48 # Create a new DataFrame for fatigue calculations

49 fatigue_df = pd.DataFrame(summary_df['LC'])
50
51 # Calculate the number of rotations per load case per year

52 fatigue_df['rotations_per_year '] = total_seconds_per_year / summary_df[

↪→ 'T_1revolution_s ']
53
54 # Calculate the number of cycles over 20 years

55 fatigue_df['cycles_in_20_years '] = fatigue_df['rotations_per_year '] *

↪→ summary_df['prob'] * 20

56 ni = fatigue_df['cycles_in_20_years ']
57
58 # Add the stress ranges directly into the DataFrame

59 fatigue_df['stress_range '] = fatigue_df['LC']. apply(lambda x:

↪→ stress_ranges[f'lc{x}'])
60 stress_range = fatigue_df['stress_range ']
61
62 # Calculate the number of cycles to failure for each load case

63 fatigue_df['N_i'] = a * (fatigue_df['stress_range '] ** -m1)

64
65 # Calculate the damage for each load case

66 fatigue_df['damage '] = fatigue_df['cycles_in_20_years '] / fatigue_df['
↪→ N_i']

67
68 # Calculate the cumulative damage

69 cumulative_damage = fatigue_df['damage '].sum()
70
71 # Values for gradient

72 bend_max = calculate_element_stress_ranges(local_forces , x[0], x[1]) [3]

73 ax_max = calculate_element_stress_ranges(local_forces , x[0], x[1]) [4]

74 bend_min = calculate_element_stress_ranges(local_forces , x[0], x[1]) [5]

75 ax_min = calculate_element_stress_ranges(local_forces , x[0], x[1]) [6]

76
77 fatigue_df['M'] = fatigue_df['LC'].apply(lambda x: (bend_max[f'lc{x}'])

↪→ - (bend_min[f'lc{x}']))
78 fatigue_df['F'] = fatigue_df['LC'].apply(lambda x: (ax_max[f'lc{x}']) +

↪→ (ax_min[f'lc{x}']))
79 M = fatigue_df['M']
80 F = fatigue_df['F']
81
82 fatigue_df['d_stressrange_dD '] = 32*x[0]*M*(-4*x[0]**3 + 4*(x[0] - 2*x

↪→ [1]) **3)/(pi*(x[0]**4 - (x[0] - 2*x[1]) **4) **2) - 16*F*x[1]/( pi

↪→ *(x[0]**2 - (x[0] - 2*x[1]) **2) **2) + 32*M/(pi*(x[0]**4 - (x[0]

↪→ - 2*x[1]) **4))

83 fatigue_df['d_stressrange_dt '] = -256*x[0]*M*(x[0] - 2*x[1]) **3/(pi*(x

↪→ [0]**4 - (x[0] - 2*x[1]) **4) **2) + 4*F*(-4*x[0] + 8*x[1])/(pi*(x

↪→ [0]**2 - (x[0] - 2*x[1]) **2) **2)

84 d_stressrange_dD = fatigue_df['d_stressrange_dD ']
85 d_stressrange_dt = fatigue_df['d_stressrange_dt ']
86
87 fatigue_df['grad_sum_D '] = ni * stress_range **(m1 -1) * d_stressrange_dD

88 fatigue_df['grad_sum_t '] = ni * stress_range **(m1 -1) * d_stressrange_dt

89
90 if grad.size > 0:

91 grad [0] = m1 / a * fatigue_df['grad_sum_D '].sum()
92 grad [1] = m1 / a * fatigue_df['grad_sum_t '].sum()
93
94 return cumulative_damage - eta

87



95
96 # Run Optimizer

97 opt = nlopt.opt(nlopt.LD_SLSQP , 2)

98 opt.set_lower_bounds ([3.9, 0.064]) # ULS dimensions

99 opt.set_upper_bounds ([9, 0.25]) #9, 0.56

100 opt.set_min_objective(area_objective)

101
102 constraint_tol = 1e-4

103
104 topDia = 3.6

105 topThic = topDia /60.3

106 memDia = 1

107 memThic = memDia /60.3

108
109 opt.add_inequality_constraint(lambda x, grad: fatigue_constraint(x, grad ,

↪→ run_static_analysis_FLS(x[0], x[1], topDia , topThic , memDia , memThic

↪→ )), 1e-4)

110 opt.add_inequality_constraint(dia_thickness_fcle_const , 1e-4)

111
112
113 opt.set_xtol_rel (1e-8)

114 x_initial = [6.1, 0.099]

115 # x_initial = [5.9, 0.09]

116 x_opt = opt.optimize(x_initial)

117
118 # Printing values with opt forces for elements

119 minf = opt.last_optimum_value ()

120
121 element_local_forces = run_static_analysis_FLS(x_opt [0], x_opt [1], topDia ,

↪→ topThic , memDia , memThic)

122 opt_stress_ranges = calculate_element_stress_ranges(element_local_forces ,

↪→ x_opt [0], x_opt [1]) [2] #get dictionary with stress ranges for

↪→ optimal dia thickness.

123 damage = calculate_fatigue_damage(opt_stress_ranges , summary_df)

124
125 print('\n')
126 print("Dia\nThickness\nArea")

127 print(f"{x_opt [0]}")

128 print(f"{x_opt [1]}")

129 print(minf)

130 print(f"Damage␣=␣{damage}")

88




	Preface
	Abstract
	Contents
	List of Figures
	Introduction
	Background and Motivation
	Objective and Problem Statement

	Theory
	Finite Element Method and Beam Theories
	Finite Element Method (FEM)
	Beam Element Theory
	Euler-Bernoulli Beam Theory
	Timoshenko Beam Theory

	Fatigue
	Fatigue Phenomenon and Damage Mechanisms
	S-N Curve Approach
	Cumulative Fatigue Damage rev

	Optimization Techniques
	Structural Optimization
	Objective Function
	Design Constraints
	Mathematical Formulation
	Single-Criterion vs. Multiobjective Optimization
	Deterministic Optimization
	Non-Linear Optimization (NLopt)


	Methodology
	Load Cases and Data Collection
	Initial Structure
	Structural Modeling of Initial Structure
	Linear Static Analysis with BEEF
	Stress Range and Fatigue Damage Analysis - Initial Structure

	Structure With Load Reduction System (LRS)
	Structural Modeling of LRS Structure
	Linear Static Analysis of LRS Structure
	Stress Range and Fatigue Damage Analysis - LRS

	Optimization of Crossbar Design
	ULS Optimization
	FLS Optimization
	Optimization Process
	Gradient Calculator


	Results and Discussion
	Structural ULS Analysis Results
	Optimization of Critical Load Cases
	Structural Response and Load Redistribution
	Comparison of Element Numbers

	Fatigue Analysis
	Stress Ranges for ULS minimum dimensions
	Element Stress vs External Load Stress
	Optimizing FLS

	Final Analysis and Future Work
	Conclusion to parameter changes

	Future Work

	Conclusion
	Bibliography
	Appendices
	Tables of Higest and Lowest Forces and Moments Through All Load Cases
	Linear Static Analysis Code
	Code for Structure Material Properties
	External Forces for Load Case 18
	Supplementary codes
	Fatigue codes
	Gradient Calculator
	Structure Analysis Load Reduction System
	Optimization Code for ULS
	Optimization Code for FLS

