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A B S T R A C T   

The combined challenge of climate change and population aging requires novel solutions that enhance the 
resilience of building energy systems and secure indoor comfort for vulnerable occupants in extreme weather 
conditions. This research investigates the performance of a newly developed Energy Management (EM) system 
based on Collective Intelligence (CI) and Reinforcement Learning (RL), called CIRLEM, managing the energy 
performance of an urban complex in Ålesund, Norway, including an elderly care center with decentralized PV 
generation, EV charging and storage, while connected to a main electricity grid. CIRLEM controls multiple 
flexibility assets including independent thermal zones (the demand-side agents) and Electric Vehicle (EV) 
charging stations (the local storage). In a novel approach, CIRLEM coordinates the distributed storage and 
generation together with the demand side to control energy systems and react collaboratively to environmental 
variations. Under extreme weather conditions, without applying CIRLEM, the demand can be more than double 
that of typical weather conditions. The implementation of the double-layer CIRLEM can reduce the total demand 
by 35 % over a month. Furthermore, the inclusion of photovoltaic (PV) systems allows the system to be inde-
pendent from the grid for almost 40 % of its operational hours, while adding EV storage can increase it to around 
70 %. Finally, the application of CIRLEM reduced overheating hours from 17 h •◦C to 2 h •◦C under extreme 
conditions, while maintaining comfortable conditions even during temperature ramps.   

1. Introduction 

The confluence of climate change and rapid population aging 
has created a pressing need for immediate attention from researchers, 
policymakers, and planners. The pace of climate change has outstripped 
earlier predictions, heightening the likelihood of surpassing the 1.5 ◦C 
global warming threshold within the upcoming decade [1]. Moreover, 
the frequency and intensity of extreme weather events have been 
amplified by climate change [2]. Notably, the past twenty years have 
witnessed intermittent heatwaves associated with significant morbidity 
and mortality rates [3,4] culminating in July 2023 marking a historical 
zenith in temperature records [5]. According to the 2019 IPCC [6], 
Nordic countries have been met with the impacts of climate change at a 

rate higher than the global average, with the highest rate of country- 
specific warming [7]. At the same time, Europeans on average live 
longer than ever before, and the age profile of society is rapidly 
changing. It is projected that there will be close to half a million cen-
tenarians in the EU-27 by 2050 [8]. This will have profound implications 
on different aspects of society, such as urban development and housing, 
to meet the needs of the elderly and guarantee their well-being. The 
United Nations Sustainable Development Goals (UNSDG) 11 (sustain-
able cities and communities) identifies environmental impact reduction 
(Target 11.6) and resource efficiency and city resiliency (Target 11.b) as 
urgent international goals [9]. In parallel, SDG3 aims to ensure that 
people of all ages are guaranteed healthy lives and general well-being. 

Extreme weather conditions such as heat waves and cold snaps, 
influence both the demand- and supply-side of building energy systems 
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[10]. On the demand-side, extreme weather may disturb a building’s 
energy performance and the thermal comfort of occupants [11]. On the 
supply-side, unexpected and inordinate loads increase the risk of power 
outages and energy system disruption [12]. Impacts can become more 
pronounced when higher shares of Renewable Energy Sources (RESs) 
are integrated into the energy supply system, especially decentralized 
sources such as wind and solar power, due to their intermittent and 
climate-dependent nature [13]. RES penetration is expected to grow 
significantly by 2050 when distributed generation and storage are ex-
pected to have been widely implemented. Aggravated by the impacts of 
climate change, subsequent challenges will arise on the demand and 
supply sides, emphasizing the necessity of resilient energy systems [14]. 
A building’s operation is highly dependent on its energy systems [15] 
which maintain indoor thermal comfort, run appliances, provide light-
ing, and other functions. Accordingly, being resilient is a vital charac-
teristic of a viable and reliable energy system [16,17]. Meanwhile, a 
major concern about the climate resilience of energy systems is the 
increased energy demand during extreme weather events [18]. 
Although the design of building features can make its performance 
insensitive to typical climate and predictable extreme climate condi-
tions, these features cannot be deemed protected in case of unforesee-
able extreme events. In such instances, resilience is required, which 
focuses on withstanding and recovering during and after the occurrence 
of the event [19]. The United Nations (UN) defines the term resilience as 
“the ability of a system exposed to hazards to resist, absorb, accommo-
date, adapt to, transform and recover from the effects of a hazard in a 
timely and efficient manner” [20]. Therefore, being adaptable and 

flexible may increase the resilience of a system. The adoption of flexible 
strategies can improve the resilience of energy systems against extreme 
climate events [21]. This is even more crucial in the instance of elderly 
occupants as they are more vulnerable to critical overheating-related 
health issues such as exhaustion, dehydration, or even cardiac arrest 
which can occur during power outages [22]. 

Increases in mean life expectancy combined with evolving future 
climate scenarios and extreme events, underscore the necessity to 
investigate the dynamic and interactive relationship between the elderly 
and their living environments to guarantee their well-being and health 
[23,24]. Recent research by Wu et al. [24] found that elderly people 
experience a time lag and smaller variations in thermal responses than 
younger people when exposed to air temperature changes, particularly 
in non-neutral conditions. Younes et al. [25] developed a model for 
predicting the thermal experiences of the elderly under steady and 
transient states, helping to achieve thermally comfortable environments 
for elderly people with optimized costs. Jiao et al [26] studied the 
characteristics of the thermal environment in the transitional spaces of 
residential buildings occupied by the elderly and their impacts on the 
elderly’s thermal adaptation. Several studies have shown that the dif-
ferences between thermal perception and physiological response of the 
young and the elderly are relevant to distinguish between. Specific 
thermal comfort models for the elderly have been proposed in the 
literature [25,27,28]. In particular, Hughes et al. [22] proposed an age- 
corrected Predicted Mean Vote (PMV) model that could potentially 
produce relevant savings in energy use for winter heating. Hughes et al. 
argue that neither the PMV model nor the adaptive model accurately 

Nomenclature 

Abbreviation 
BEM Building Energy Model 
BIM Building Information Model 
CMIP5 Coupled Model Intercomparison Project 5 
CI Collective Intelligence 
CIRLEM Collective Intelligence + Reinforcement Learning Energy 

Management 
CV(RMSE) Coefficient of Variation ofthe Root Mean Square Error 
DR Demand Response 
DSM Demand-side Management 
DT Decision Tree 
ECY Extreme Cold Year 
EMS Energy Management System 
EOL End Of Life 
EPW Energy Plus Weather 
EV Electric Vehicle 
EWY Extreme Warm Year 
FL Federated Learning 
GA Grid Autonomy 
HVAC Heating, Ventilation, and Air Conditioning 
IEA International Energy Agency 
LRM Linear Regression Model 
MDP Markov Decision Process 
NREL National Renewable Energy Library 
PMV Predicted Mean Vote 
PPD Predicted Percentage of Dissatisfied 
PV Photovoltaic 
RES Renewable Energy Sources 
RL Reinforcement Learning 
SAM System Advisor Model 
SCR Self-Consumption Rate 
SD Standard Deviation 
SOC State Of Charge 

TDY Typical Downscaled Year 
TS Thermal Sensation 
UN United Nations 
UNSDG United Nations Sustainable Development Goals 
WTL Watch-Try-Learn 

Variables 
a EV battery technical parameter [%] 
E Measured electric energy use 
EEWY Total electricity use of the building in EWY 
E TDY Average seasonal electricity use in TDY 
h Hours of the analysis period 
n(S) Number of elements in the set S 
nd Number of days in calculation 
P Probability of state-action combinations 
P(d,t)

load Electricity load at tth hour of the day d 

P(d,t)
PV PV production at tth hour of the day d 

P(t)
grid Supplied electricity from the grid at time t 

P(t)
load Building electricity load at timestep t 

P(t)
PV PV production at timestep t 

PEV
max Maximum instantaneous power for EV 

SOCi Initial SOC of the EV in [%] 
SOCmax Maximum SOC for the EV [%] 
SOCt SOC for each EV and time interval [%] 
SOC(d,t)

EV SOC of EV at tth hour of the day d 

Parameters 
t timestamp 
Δt Time difference in each timestep 
T Measured outdoor air temperature 
A Action 
R Reward 
S State  
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predicted true thermal comfort during summer in naturally ventilated 
homes for the elderly [29]. Overall, researchers agree that further 
investigation is needed to predict the thermal comfort of elderly pop-
ulations accurately [27]. 

Building energy systems are composed of various components such 
as weather parameters, human behavior, materials, energy market, etc. 
showing behaviors of a complex system [30]. Complexity in such a 
system arises because of the inter-relationship, inter-action, and inter- 
connectivity of the entities within the system and between the system 
and its environment [31]. Entities in a complex system have agency 
characteristics, meaning individual agents’ capability to decide and act 
independently [32]. In such an environment, the concept of resilience 
can be applied to the behavior of the participating systems, implying to 
show the attribute of flexibility as a vital element of a resilient system 
[33–35]. Flexibility and resilience are thus strictly related: energy- 
flexible buildings and communities can increase the resilience of the 
energy networks by reducing the stress on the infrastructure but also 
making the buildings and communities more resilient to fluctuations in 
the energy supply [36]. A recent study by Li et al. [37] emphasizes the 
contribution of building energy flexibility to energy system resilience 
pointing out the impacts of extreme events on peak loads magnitude and 
duration and disruption of RES generation. These conditions signifi-
cantly affect the well-being of people, especially vulnerable populations 
where the capabilities of the building energy systems are prominent to 
maintain occupant comfort during adverse weather events. 

The flexibility of the energy systems can be promoted both on the 
supply- and demand-side. The International Energy Agency (IEA) de-
fines energy flexibility as “the ability for a building to manage its de-
mand and generation according to local climate conditions, user needs, 
and grid requirements” [37,38]. Flexible operation of buildings is 
possible through Demand Response (DR) which is based on the power 
adjustment on the demand side in response to the grid requirements or 
price. DR programs may include flexibility programs, either automated 
or manual, voluntary or involuntary, and price-based or incentive- 
based. They are scalable at different levels, such as the level of the 
system/appliance, building, and district, with different features, 
including flexibility assets, timesteps, purposes, and flexibility signals (i. 
e., the trigger or the activator of the flexibility program) [39,40]. 
Timesteps can vary in length from seconds to hours based on grid re-
quirements and flexibility assets whereas the last one refers to a specific 
energy component, strategy, or system that can be harnessed to modify 
energy demand or generation patterns to accommodate evolving cir-
cumstances [41,42]. Around 85 % of existing studies apply one or two 
different flexibility assets in their flexibility programs [39]. Flexibility 
on the demand-side can be generated through different strategies such 
as load shedding, load shifting, and load modulating [39,43]. The flex-
ibility signal could be generated based on price, typical loads, RES 
production, or weather conditions [41]. 

Collective behavior within energy communities demonstrates 
improved performance in terms of control strategies aimed at enhancing 
resilience and flexibility [37] through the provision of multi-carrier 
energy systems and clusters of buildings. Continuously advancing 
smart and communication technologies are being employed in interac-
tive flexibility programs [44] to facilitate energy flexibility on the 
demand-side in the cluster scale. In a previous work of the authors [35], 
the performance of Collective Intelligence (CI) to provide flexibility and 
resilience within clusters of buildings utilizing an advanced communi-
cation infrastructure is evaluated. CI is “a form of universally distributed 
intelligence, constantly enhanced, coordinated in real-time, and result-
ing in the effective mobilization of skills” [45] which is replicable within 
any large, distributed group of interactive agents with the least 
centralized control [46]. CI systems are complex by nature and can 
adapt their performance to uncertain and unknown conditions, organize 
themselves independently, and manifest emergent behavior [47]. 
Agents in a CI system perform Reinforcement Learning (RL) to improve 
their individual accomplishment and the performance of the whole 

system [48]. Interaction between agents improves their coordination 
within small groups of agents providing a cohesive behavior for the 
whole system while simple rules are applicable in smaller groups with 
less information about the environment and no central leadership [49]. 
Therefore, in such a structure of distributed intelligence, decision- 
making can happen at the agent level (distributed decision-making) 
which distributes computational power [50] while reducing data 
sharing leading to higher privacy and security [51]. 

Reinforcement Learning shows adequate performance in energy 
systems control [52,53]. Krishna G.S. et al. [54] suggest a diversity- 
induced RL algorithm to improve training processes without sacri-
ficing thermal comfort. Qui et al. [55] model a building community as a 
multi-agent RL to provide flexibility to building energy management 
while using Federated Learning (FL) to accelerate training and enhance 
privacy. Shen et al. [56] aim to reduce the energy cost of HVAC systems 
by increasing the utilization of RES by applying a multi-agent, cooper-
ative control strategy based on deep RL to achieve an optimal match 
between the supply- and demand-side. Khan et al. [57] study a cluster of 
smart homes with smart appliances to quantify the performance of RL to 
reduce energy use and discomfort, applying transfer learning to enhance 
the learning process when there is minimal or no training data. Syed 
Asad et al. [58] propose distributed control and computation with in-
dependent decision-making in an HVAC system to improve energy ef-
ficiency. Zhang et al. [59] employ a model-free deep RL to evaluate the 
effectiveness of EVs in adjusting supply and demand to minimize oper-
ating costs and satisfy charging expectations. The integration of RL into 
CI-based energy management is investigated by Nik & Hosseini [60]. 

Demand-Side Management (DSM) encompasses various methods 
that can modify energy consumption patterns and levels by reducing, 
increasing, or rescheduling energy demand. Since the early 1980 s, DSM 
has been recognized as a valuable tool for shaping energy demand [61]. 
It contributes to the growth of distributed energy generation, facilitates 
the decarbonization of energy systems, improves the reliability and se-
curity of energy supply, and delays the necessity for new network 
infrastructure investments [62]. RESs can experience fluctuations in 
supply due to changes in climate conditions. DR represents a dependable 
and efficient approach to seamlessly incorporate renewable energy 
sources by leveraging load flexibility as needed by the system [63]. 
Considering the inclusion of multiple parameters in DSM-based solu-
tions such as various sources of energy, weather conditions, volatile RES 
generation, and different user needs and preferences, increases the 
complexity of the energy system management compared to traditional 
approaches and makes them less competitive [62]. In addition to 
adopting technology-focused methods, it’s essential to cultivate 
occupant-centric approaches and information-based methods, offering 
comprehensive solutions [64]. Simpler techniques that have the po-
tential to enhance user participation are required [65] incorporating 
human feedback into the control process to mitigate user discomfort 
[66]. Additionally, there is a requirement to advance methodologies for 
quantifying costs and benefits, establishing market structures, and 
creating incentives [62]. In this context, data-driven solutions, such as 
machine learning [67] or reinforcement learning [66], can prove 
beneficial. Nevertheless, addressing the challenge of managing big data 
and user privacy remains an ongoing concern. This work aims to address 
the current issues in applying DSM to make them more practical and 
attractive by proposing a DSM and Energy Management (EM) algorithm 
with a focus on user comfort, operating with less amount of data storage 
while no private data sharing is required. 

In Norway, the population of more than 70 years old people is 
projected to grow by 200 % to 1.4 million in 2050 [68] while the 
country encounters severe heatwaves as a consequence of climate 
change [69,70]; thus, climate resilient elderly accommodation become 
prominent. The previous work of the authors [71] addresses the per-
formance of a DSM using a light-weight algorithm to increase the 
resilience of an elderly care center in Norway facing extreme warm 
weather. An energy management approach is further developed by 
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combining RL into CI showing outstanding performance on EM under 
extreme weather conditions called “CIRLEM” (CI + RL + EM) [60]. 
CIRLEM presents a notable enhancement in energy flexibility and 
climate resilience for a cluster of buildings, guaranteeing energy con-
servation while maintaining indoor comfort at the standard level. 

The transition from centralized to decentralized energy systems 
showing enhanced flexibility and efficiency [72,73], brings new per-
spectives in climate resilient buildings by the inclusion of distributed 
generation and storage. However, additional energy systems (i.e., 
distributed generation and storage) rise the complexity and cause the 
curse of dimensionality, which requires developing solutions to deal 
with a large number of control variables [13,74]. This research deploys a 
CIRLEM algorithm which, in a novel structure, exploits a double-layer 
learning algorithm, namely (1) meta-learning and (2) try-watch-learn, 
to accelerate the training process. To challenge CIRLEM, in addition to 
the demand side in the energy systems, distributed generation and 
storage are included in the system, leading to a higher degree of 
complexity and computation. This research aims to explore and evaluate 
the capabilities and performance of the proposed CIRLEM structure by 
deploying a high-resolution Building Energy Model (BEM) to achieve an 
accurate assessment of energy performance and thermal comfort. In 
addition to the creation of the meta-learning phase, compared to the 
previous work of the authors [60], this work contributes to further de-
velopments by adding the following components to CIRLEM to assess the 
performance with more complexity induced by additional energy 
systems:  

a) Electric Vehicles (EVs) as storage facilities (distributed storage).  
b) Photo Voltaic (PV) system as the local generation (distributed 

generation).  
c) Four adaptation measures namely, temperature setpoint, ventilation 

rate, equipment load, and EV storage. 

The evaluation is carried out on a pilot case in Norway, which is fully 
equipped with an Energy Management System (EMS), Photovoltaic (PV) 
station, Electric Vehicle (EV) chargers, and ventilation systems. The 
methodology in chapter 2, introduces the algorithm, data collection, and 
modeling process. Chapter 3 presents the results and analysis followed 
by the conclusion. 

2. Methodology 

This research investigates the performance of a CIRLEM algorithm, 
designed to increase the resilience of building energy systems [60]. 
Cooling systems are not common in Scandinavian buildings due to his-
torically cold summers [75]; however, the increasing frequency of heat 
waves has introduced the risk of thermal discomfort [76,77]. A building 
in Norway that accommodates elderly people was selected for the pilot 
case study building, to provide the most restrictive thermal comfort 
conditions. Weather data representing a warm summer were used from 
the analysis period of July 2050. The analysis is carried out on a 15-min-
ute timescale to achieve a realistic understanding of extreme conditions 
and HVAC system performance. A high temporal resolution dataset, 
including energy and indoor temperature, is produced by the pilot case 
with an hourly timescale. Various energy systems are installed in the 
building including a PV station, an EV charging station, EMS, and a 
Heating, Ventilation, and Air Conditioning (HVAC) system. In this 
research, “measured electric energy use” refers to the measured deliv-
ered electrical energy for all purposes from the grid to the building, and 
“simulated electric energy use” refers to the summation of electric en-
ergy uses for cooling, heating, ventilation, lighting, and equipment (plug 
load) obtained via energy simulation. This chapter describes the pilot 
case, weather datasets used for the purpose of this research, the Building 
Energy Model (BEM) and calibration process, the CIRLEM algorithm, 
and its components, and finally evaluation indicators. 

2.1. The pilot case 

The pilot building is an elderly care center in Ålesund, Norway, 
consisting of five stories, 70 residential units, 40 public rooms and of-
fices, and a total floor area of 7000 m2. The building is equipped with 
EMS, which controls and monitors heating and cooling systems, venti-
lation, domestic hot water, and lighting. The EMS can send commands to 
each controller in the building to change their condition and capture the 
metered values for electricity, warm water, and conditioned air (i.e. flow 
and temperatures). The pilot building was built in 2017 with high- 
performing building components and systems. According to Norwe-
gian law, building owners are obliged to obtain energy certificates 
through periodic assessments. Therefore, an adequate database of 
building specifications and the Building Information Model (BIM) is 
available for the pilot building. The envelope characteristics are 
described in Table 1 and a photo of the building is presented in Fig. 1. 

There is a 170-kWp roof-top PV station with around 1000 m2 panel 
surface area which produces approximately 100 MWh over a year. There 
are five low-voltage EV charging points that are supplied by the deliv-
ered electric energy to the building. The primary sources of energy are 
electricity from the grid and PV production, which account for 82 % and 
18 % of annual electricity use, respectively. During the analysis period in 
this research (July 2050), the share of PV production increases to around 
34 % and the grid electricity usage decreases to 66 %. The measured 
electric energy use and PV production (annually and in July) are pre-
sented in Table 2, where the share of the electricity source is denoted. 
Fig. 2 illustrates the distributions of delivered electricity and PV pro-
duction in July in three years with a maximum hourly production of 
around 120 kWh and average production around 25 kWh. 

2.2. Weather data 

Two sets of weather data are used in this research. The first one is the 
historical data which is used for BEM calibration. The measured data is 
on an hourly scale, including the major parameters necessary for an 
energy simulation (air temperature, relative humidity, direct and diffuse 
solar radiation, wind speed and direction, and cloud index). Measured 
data is adapted to an Energy Plus Weather (EPW) file. The data corre-
sponds to the period of 2019–2021. The second set of weather data is 
future weather data and is used to evaluate the algorithm’s performance 
under future climate conditions. The future weather data is generated 
using 13 future climate scenarios from the “Coupled Model Intercom-
parison Project 5″ (CMIP5) over the 30-year period of 2040–2069, which 
we consider as the representative period of the 2050 s. Two sets of future 
weather data are generated based on the method developed by Nik [78], 
namely the Typical Downscaled Year (TDY) and Extreme Warm Year 
(EWY), representing typical and extreme warm conditions, respectively. 
More details about creating future climate weather data sets suitable for 
energy simulations are available in [79]. Fig. 3 shows the distribution of 
outdoor air temperature in July for historic and future weather data. The 
monthly average temperature under EWY-2050 is 17.7 ◦C, and under 
TDY-2050 is 13.9 ◦C, which demonstrates the difference between the 
typical and extreme conditions. Moreover, the differences in mean and 
minimum temperature values between historic values and future data, 
are significant. The boxplot of historical weather data shows that below- 
zero temperatures in July and the 1st quartile (25 % of the hours) were 
lower than 8 ◦C. The considerable differences between the current and 

Table 1 
Building envelope thermal transmittance (U-value).  

Building component U-value [W/m2K] 

Vertical opaque walls  0.12 
Windows (Glazing and frames)  0.85 
Slab on the ground  0.15 
Roof  0.13  
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future conditions emphasize the risk of thermal discomfort and energy 
system malfunction under future climate conditions. 

2.3. Building energy model (BEM) 

A high spatiotemporal resolution Building Energy Model (BEM) is 
deployed to simulate the deployment of the algorithm’s control of the 

EMS [76]. The BEM is developed in the dynamic building energy 
simulation program Energy Plus [80]. A High-resolution geometry is 
developed in the 3D modeling software Rhino which allows the geom-
etry to be coupled with Energy Plus using the Ladybug/Honeybee tool 
[81]. This produces accurate geometry (including balconies, shadings, 
rooms, etc.) based on the IFC files provided, where IFC files contain BIM 
data [82]. Open Studio is used to add the HVAC system to the energy 
model. Open Studio enables the addition of the HVAC system in detail. 
Energy Plus version 8.9.0 and Open Studio version 2.5 are used for 
building energy modeling. 

To achieve a reliable model, the BEM must be validated. Thus, the 
BEM is calibrated against measured electric energy use on an hourly 
scale over a year (8760 h), according to ASHRAE Guideline 14–2014 
[83]. The calibration is a part of the Measurement and Verification 
process which utilizes the Coefficient of Variation of the Root Mean 
Square Error (CV(RMSE)), and Normalized Mean Biased Error (NMBE) 
based on Eq. (1) and Eq. (2). ŷ stands for simulated data, y is measured 
data, y is the average of the measured data, and n represents the total 
number of values. p is recommended to be equal to 1 [84]. Within the 
calibration, BEM should include thermal mass effects, 8760 h per year, 

Fig. 1. The pilot building consists of 5 stories, the southern façade.  

Table 2 
Measured electric energy use and PV production over three years for annual and 
monthly periods. The ratio of delivered electric energy and PV production is 
mentioned in percentage.    

Measured electric energy use 
[MWh] 

Measured PV production 
[MWh] 

Annual 2019 623 (85 %) 104 (15 %) 
2020 657 (86 %) 106 (14 %) 
2021 727 (92 %) 61 (8 %) 

July 2019 36 (62 %) 22 (38 %) 
2020 41 (68 %) 19 (32 %) 
2021 43 (66 %) 22 (34 %)  

Fig. 2. Measured delivered electricity and PV production in July from 2019 to 
2021. The major statistical values for each boxplot are denoted on the top, 
including the total value (sum), mean value, and maximum. 

Fig. 3. Outdoor air temperature distribution in July for historic and future 
weather. The major statistical values for each boxplot are denoted on the top, 
including the number of values (count), mean value, standard deviation (SD), 
minimum, and maximum. 
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operation and occupancy schedules, and actual weather data. Using 
hourly timesteps, the BEM is considered calibrated if |NMBE|<10 % and 
CV(RMSE) < 30 %. 

CV(RMSE) =
1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n − p

√
√
√
√
√

(1)  

NMBE =
1
y

∑n
i=1(yi − ŷi)

n − p
(2)  

Aiming at minimizing the values of CV(RMSE) and NMBE, the BEM is 
modified by iterating in a set of values building characteristics and in-
ternal gains which are mentioned in Table 3. The iteration and modifi-
cation of BEM is done by a Grasshopper script including Galapagos 
component. Galapagos is a native Grasshopper component which, 
instead of trying all the possible combinations of the parameters, utilizes 
genetic algorithm to converge to the defined target (i.e., minimizing CV 
(RMSE) and NMBE) having common applications for architects and 
building designers [85]. 

Given the importance of indoor thermal comfort in this research, the 
second calibration is performed on the inherited model from the prior 
calibration process as it showed proper performance in similar cases 
[86]. In this process, the model is calibrated against measured indoor air 
temperature over June, July, and August 2022 for four sample rooms. 
This is to achieve a more accurate building model and internal thermal 
mass and to achieve a better estimation of indoor thermal comfort in the 
simulation given that thermal comfort assessment is a focal area of this 
research. The calibration process is carried out by tuning the mentioned 
parameters in Table 3 in a ± 10 % range iteration. In addition to the 
BEM, extra energy systems must be imported into the model, including 
the PV station and EV charging points. The PV station model is devel-
oped and calibrated using System Advisor Model (SAM) [87], open- 
source software developed by the National Renewable Energy Library 
(NREL) [88]. SAM provides a parametric study tool that is beneficial for 
the calibration process. The model is calibrated against the measured 
electricity production of the PV station over the 2019–2021 period. 

2.4. Modeling of electric Vehicles (EVs) 

Modeling and importing EVs into the algorithm as on-site storage is 
vital due to the lack of other storage within the system. However, the 
primary purpose of the EVs is to meet the travel needs of users, EVs are 
also considered as electric energy storage which serves the building 
energy systems as local storage. Local storage can be beneficial for peak 
shaving and load modulating. A stochastic approach can be deployed to 
address the uncertain presence of EVs, their State Of Charge (SOC), and 
load demand [89]. Zhang et al. [59] apply a stochastic distribution to 
generate random behavior of EVs, which is used in this research to 
simulate the EV charging process, the arrival SOC, presence, and ca-
pacity. The presence of EVs is defined according to the measured elec-
tricity of EV chargers over three years. The hourly data for July 2019, 
2020, and 2021 is compiled and organized on a weekly basis keeping the 
weekdays and hours of the day fixed. This means that for each hour on a 
Monday, for example, there are measured values spanning three years 
and four weeks, providing a comprehensive overview of the variations 

and trends during that specific hour across multiple years and weeks. 
Afterward, a random value is generated based on the probability of the 
occurrences of the values under each hour of each day of the week (e.g., 
14:00 on Wednesday including all the values for 14:00 on all Wednes-
days in July 2019–2021) for the entire analysis period. This can repre-
sent the EV charging schedule based on the actual conditions in different 
days and hours considering the real EV users (employees and visitors) on 
the certain day of the week and the hour of the day. Fig. 4 illustrates the 
stochastic distribution of EV presence at charging points based on the 
number of hours over the analysis period (31 days). The heatmap shows 
the presence of an EV at each charging point from 0 to 12 h in a day. 

The EV battery life depends on the charging-discharging cycles. The 
influence of the self-discharge rate is ignored. Fig. 5 is a piecewise 
function that represents the manufacturer’s recommendations for the 
discharging process of EV batteries [90]. The figure shows there are two 
technical limits for charging and discharging the batteries, namely, the 
minimum and maximum SOC (SOCi and SOCmax) levels at maximum 
power (Pmax

EV ). Moreover, between the SOCi and a (an EV battery tech-
nical parameter), the discharge power is limited by a linear function 
which is dependent on the punctual SOC (SOCt). 

Unsuitable charging approaches will result in dramatic economic 
loss caused by rapid battery capacity degradation, which cannot be 
overlooked because the price of EV batteries is nearly half of the vehicle 
price [91]. To prevent a low partial load efficiency of power electronics, 
it is assumed that the minimum charging power is 10 % of the charging 
power rating [92]. It is also assumed that EVs can discharge only twice a 
day, and they will leave the station with at least 10 % more SOC than the 
SOC on arrival, as a guarantee that they will have enough charge to 
reach another charging station. The capacity of each EV battery is set to 
40 kWh as the average value of typical EVs. EVs can also only be charged 
from PV generation and do not use grid electricity. More EV charac-
teristics and EV charging points specifications are denoted in Table 4. 

2.5. CIRLEM algorithm 

Enabling flexibility in an environment could activate or improve the 
resilience of that environment [34]. Additionally, the collective 
behavior of entities within a complex system enables them to act as a 
unified whole making the cohesion in the system as a vital attribute of a 
resilient system. Therefore, resilience against extreme variations in the 
environment could be achieved. The concept of CIRLEM, accordingly, is 
inspired by nature to benefit from the emergence of collective behavior 
and enable flexibility and cohesion attributes on the demand side in 
energy systems. CI shows a good performance in building energy sys-
tems [35] considering the building energy systems as complex systems. 
Developing a CI-based control system is highly dependent on defining 
simple models of local interactions that arise in self-organized patterns 
that occur in different social behaviors in nature such as insects, fish, and 
birds [35]. Also, because social animals often face repeated tasks and 
conditions, learning from the past can improve future collective 

Table 3 
BEM Calibration parameters intervals and steps.  

Parameter Interval Step 

Extrerior walls U-Value [W/m2⋅K] 0.08 – 0.16 0.01 
Roof U-Value [W/m2⋅K] 0.08 – 0.16 0.01 
Slab on the groud U-Value [W/m2⋅K] 0.08 – 0.16 0.01 
Windows U-Value [W/m2⋅K] 0.8 – 1.2 0.05 
Windows g-Value [%] 40 – 60 5 
Infiltration rate [h− 1] 0.5 – 0.8 0.05  

Fig. 4. Heat map of probability of presence of EVs at charging points based on 
the presence hours in a day for 31 days. 
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behavior and enhance decision-making. Collective behavior allows in-
dividuals to gain valuable information from collective action when a 
repeated task is ongoing by the group [93]. Fig. 6 demonstrates the 
emergence of CI in nature (top) and building energy systems (bottom) in 
different scales. In a flock of animals, each individual member has a 
certain level of intelligence to be able to control their behavior and 
communicate with the neighboring members. This allows them to adjust 
their action with the overall action in the flock. The behaviors are 
recognized with simple parameters like speed, direction, and distance so 
that members can easily understand them, measure them, and apply 
them consistently. Simple rules are applicable to each behavior (e.g., a 
certain speed or distance); therefore, exceeding certain thresholds forces 

the member to adjust its behavior to satisfy the rules. Similar behavior 
emerges in building energy systems when an individual building/ther-
mal zone is equipped with a smart device to provide intelligence so that 
the building can adjust its conditions with the overall requirements of 
the urban area/cluster. Individual buildings are able to modify their 
conditions by applying adaptation measures, where a certain condition 
occurs (i.e., rule). Data management and decision-making happen at the 
individual building level; thus, there is no need for central control, data 
sharing, and computation. 

The key features of CIRLEM (like any other CI-based environment) 
are applying (1) adaptivity: It is expected that a CI-based energy system 
is able to adapt its conditions to the extreme climate events, (2) inter-
action: entities within CIRLEM, including thermal zones and systems, 
are able to interact to synchronize their need and status upon necessity, 
and (3) rule: simple rules are defined in the system to enable the 
adaptivity to react to the environmental variations [47]. Agents/entities 
have a certain level of intelligence and can control and modify their 
conditions [94] upon receiving the flexibility signal which governs the 
system based on the defined rules. 

Fig. 7 illustrates the algorithm’s components (left) and agents with 
their adaptation measures (right). Blue square (brain/chipset icon) 
shows the agents (smart device within the room or equipment), the 
dashed green line shows the communication flow (signal and demand) 
between CIRLEM and the agents, solid black lines represent the power 
supply, dashed black lines show the agent’s access to the appliances or 
equipment within the room for the purpose of control. The adaptation 
measures are the electronically controllable energy systems in the 
building that allow the flexibility program to adjust the demand. CIR-
LEM algorithm is implemented on the EMS in the building where it has 
the ability to send control commands to the available controls in the 
thermal zones such as thermostats, and smart plugs (for detailed infor-
mation see [60]). Therefore, the temperature and ventilation setpoints 
have to be controlled electronically and be able to receive commands 
from EMS. Equipment load is controlled by smart plugs that can be on or 
off through a digital command from EMS, and, finally, EV chargers have 

Fig. 5. Power limit for the charging and discharging process in the EV’s bat-
tery [90]. 

Table 4 
EV characteristics and EV charging points specifications.  

EVs and EV charging points specifications Value 

Number of EV charging points 5 
Minimum EV energy level 10 % 
Maximum EV energy level 80 % 
Arrival EV energy level 20 % − 60 % 
Max No. of discharge times 2 
Maximum charging power 6.6 kW  

Fig. 6. Collective Intelligence in nature (top) and in energy systems (bottom) representation from individual scales to large scales.  
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control switches to shift between charge/neutral/discharge. The intro-
duced pilot case is already equipped with these controls showing the 
possibility and practicality of the solution. Flexibility can be applied in 
different time scales, from a scale of a few hours to a sub-hourly scale. 
Studies show that shorter time steps perform better in reacting to vari-
ations [35]. In this framework, each room is an agent (110 agents in 
total), and the EV charging station is also considered an agent. CIRLEM 
applies a 15-minute time step in controlling and monitoring, to activate 
the flexibility program. The defined adaptation measures to provide 
adaptivity and enable flexibility are presented in Table 5. 

The control algorithm in CIRLEM utilizes the concept of RL, using a 
simplified scheme given that RL performs well in distributed and 
collaborative decision-making strategies [52,53]. Meta-learning was 
adopted for this work because meta-learning or “learning to learn” al-
lows for learning from very limited data and accelerates the learning 
process by narrowing the possible actions at each time step. Accord-
ingly, the algorithm is divided into two phases: (1) a Decision Tree (DT) 
and (2) a Watch-Try-Learn (WTL) algorithm. The first step (i.e., DT) uses 
the metadata which is imported into the process primitively to assist the 
agent to learn with less information thereafter. The second part (i.e., 
WTL) is the learning process inspired by RL which is fed by the meta-data 
[95]. The algorithm’s workflow is illustrated in Fig. 8. 

2.5.1. Phase I: Meta-Learning (Decision Tree) 
The DT is implemented at the agent level to learn the common 

structure (see Zhou et al. [95]) such as time-dependent variables (e.g. TV 
time, bedtime, lunchtime, weekend schedule, weekday schedule, etc.) 
and event-based variables (indoor temperature, zone type, occupancy, 
etc.). The DT could be an empirical flowchart for different conditions in 
the building (such as day or night, occupied or unoccupied, weekday or 
weekend, etc.) to represent common rules and conditions. However, a 
DT can also be generated from observed data [96,97]. The DT, in this 
work, is developed based on measured electric energy (E), measured 
outdoor air temperature (T), and timestamps (t). Other weather pa-
rameters are removed from the model because they are of less signifi-
cance in the model based on the P-value test. To generate the DT, a 

Linear Regression Model (LRM) is developed based on E and T. The LRM 
is analyzed further to add nodes to better fit the regression line into the 
data point, which gives short lines corresponding to the sections of the 
data points (i.e., short lines are the broken regression line at each node). 
Subsequently, the most frequent timestamp (i.e., corresponding to the 
observations) over each short line is assigned to that short line as the 
time tag of that (E, T) combination. The time tags are presented in 
Table 6. Given that the data points at the end of each branch do not 

Fig. 7. The components of CIRLEM (left), and agents with their adaptation measures: room (top-right) and EV (bottom-right).  

Table 5 
Available adaptation measures within the agents.  

Agent Adaptation measure Values 

Room Temperature setpoint 22, 23, 24, 25, 26, 27 [◦C] 
Ventilation rate per floor area 0.1, 0.4, 0.7, 1.0 [l/s/m2] 
Equipment load 0, 2, 4 [W/m2] 

EV charger Discharge/Neutral/Charge − 1, 0, 1  

Fig. 8. CIRLEM workflow is divided into two phases: Meta-learning (top) and 
Watch-Try-Learn (bottom). 

Table 6 
Time tags for the Decision Tree.  

Period Time Time tag 

Weekly Mon – Fri Weekday  
Sat - Sun Weekend 

Daily 06:00–11:00 Morning  
12:00–17:00 Midday  
18:00–21:00 Evening  
22:00–06:00 Night  
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entirely represent the possible conditions, a complementary algorithm is 
added as Part II to produce more accurate decisions. 

2.5.2. Phase II: Watch-Try-Learn 
After identifying the correct branch in DT (the adequate time and 

event), the WTL component reacts to unseen occurrences. WTL is a Q- 
learning algorithm which is model-free values-based RL that learns by 
doing and improve its policy over time in a finite horizon. Q-learning 
provides the agents to take optimal actions through learning by expe-
riencing the consequences of each action [98]. The WTL component 
comprises State (S), Action (A), Probability of state-action combinations 
(P), and Reward (R), which can be denoted by (S, A, P, R) quadruple 
values. The state represents all the knowledge that the agent has about 
global conditions. An action is the process of updating the agent con-
ditions toward the goal via available adaptation measures. The reward is 
immediate feedback based on the system’s goal to enhance the system’s 
performance. Given the current state completely characterizes the pro-
cess, in such an environment this system can be counted as a Markov 
Decision Process (MDP) [99,100], where Q-learning performs remark-
ably in solving problems [101]. In an MDP, each state depends on the 
preceding states, as shown in Eq. (3), where s’ is the successor state of s 
and p(s′, r|s, a) is the probability of transition to state s’ with reward r, 
from state s and action a. Additionally, all the parameters in the 
quadruple values of (S, A, P, R) necessarily have finite numbers of ele-
ments, and actions and states interact in discrete time [102]. 

p(s′, r|s, a)≐Pr{St = s′,Rt = r|St− 1 = s,At− 1 = a} (3)  

In this research, the term state refers to an agent’s internal and external 
conditions, such as energy use, weather, occupancy, etc. A flexibility 
signal is generated based on the state (i.e., internal, and external con-
ditions) and carries the information to the agents. Therefore, agents are 
informed and updated via the signal. Agents can act through adaptation 
measures (see Table 5) which enable agents to modify their conditions 
by applying or disapplying adaptation measures independently from the 
whole system. The reward is a function of energy and thermal comfort as 
improving energy use and maintaining thermal comfort are primary 
goals of the study. This will be explained in detail in the following 
section. The CIRLEM’s kernel in this research is Edge Node Control 
(ENC) with a memory length of 24 and 10 % randomness, which are 
explained in detail in the following sections. 

2.5.3. Action 
As flexibility is required which is based on the signal received, the 

algorithm at the agent level selects actions based on the meta-learning 
phase and the rewards obtained in previous experiences. Actions are the 
changes to conditions made by an agent using available adaptation 
measures. Actions can be combinations of available adaptation mea-
sures at the agent level. Saying that action is a set of values for each zone 
made of each actuator (see Table 5) which can be denoted as {a1, a2, a3} 
where an is the available actuators in the zone; for example, an action 
can be {22, 0.4, 2} corresponding to {temperature setpoint, ventilation 
rate, plug load}. Each actuator, according to its current value can obtain 
a few values at each time step, and the changes are limited in time to 
avoid large fluctuations in the energy system and disruption in thermal 
comfort. Specifically, temperature setpoint and ventilation rate can vary 
maximum of ± 2 steps in values mentioned in Table 5. Also, not all 
adaptation measures are available at any time because the DT may filter 
them based on the time or conditions. For example, the plug load in the 
rooms supplies the fridge with electricity; therefore, there is a constraint 
that if the fridge is off, it needs to be turned on after a maximum of 3 h 
and it cannot be turned off before it has run for at least 1 h. Another 
example is the ventilation rate in public rooms over the weekend when 
visitors come to the care center. During these times, the algorithm does 
not change the ventilation rate. Accordingly, there would be different 
combinations of actions at each timestep. The possible choices, thus, 

give a 2D array in which each row is a set of actuators or an action like 
[{a1, a2, a3}, {a’

1, a’
2, a’

3}, {a”
1, a”

2, a“
3}]. As an example, taking {22, 0.4, 2} 

as the current actuators value in the zone, the possible actions could be 
[{22, 0.4, 2}, {22, 0.1, 2}, {22, 0.7, 2}, {22, 1.0, 2}, {22, 0.4, 0}, {22, 
0.1, 0}, {22, 0.7, 0}, {22, 1.0, 0}] by assigning the values of 22 for 
temperature setpoint, 0.4, 0.1, 0.7, and 1.0 to ventilation rate, and 0 and 
2 for plug loads. The algorithm then seeks in its memory to find the 
corresponding reward for these actions and chooses the action with the 
maximum reward unless the choice is random. The agent can also decide 
randomly in 10 % of the choices to explore all potential actions and 
avoid binding to limited choices (For more information check [60]). 

2.5.4. Reward 
According to the definition, reward leads the system to perform 

better in terms of reaching its goal. The goals of this pilot building study 
are to elevate grid autonomy and maintain thermal comfort in the 
defined zone. Agents earn rewards individually based on their perfor-
mance. To consider grid dependence in the reward, the reduction in 
purchased electricity is defined by the grid at the current timestep (t) 
compared to the previous timestep (t-1) as the indicator for electricity 
performance according to Eq. (4). 

The thermal comfort indicator in the reward is calculated using Eq. 
(5) and is based on whether the operative temperature (Topt) is within 
the range of comfortable conditions. Standard EN 16798–1 [103] pro-
vides guidance in guaranteeing proper indoor thermal comfort condi-
tions for the elderly. It recommends Category I, which presents the 
narrowest constraints. The building is mechanically cooled in summer; 
thus, the Fanger model is used. Assuming a metabolic rate of 1 met, 
which corresponds to a seated, quiet person, a typical summer indoor 
clothing of 0.5 clo, 60 % relative humidity, and an air speed of 0.1 m/s, 
the upper thermal comfort limit for indoor operative temperature in 
summer is 26.3 ◦C. However, if the occupants are taken as standing, the 
limit to maintain indoor thermal comfort conditions in Category I is 
decreased to 25.6 ◦C, due to a higher average metabolic rate (1.2 met). 
In this research, the most restricted threshold is used together with the 
CIBSE overheating criteria [104]. Finally, the reward function is 
calculated based on Eq.(6). 

E =

⎧
⎨

⎩

+1 Et
grid < Et− 1

grid

− 1 Et
grid ≥ Et− 1

grid

(4)  

C =

{
+1 Topt within the range
− 1 Topt outside the range (5)  

R =

⎧
⎨

⎩

+1 E > 0 and C > 0
0 E ≤ 0 or C ≤ 0

− 1 E < 0 and C < 0
(6)  

The reward is an independent value for each agent. Therefore, the 
calculation may differ slightly between agents. Given that EVs do not 
contribute to maintaining thermal comfort directly, the comfort indi-
cator (C) is equal to 0 for EVs at all times, and the reward for EVs can be 
0 or 1. 

2.5.5. Flexibility signal 
The flexibility signal (mentioned as “signal” in this work) is a binary 

value that activates or deactivates the flexibility program. When the 
signal is 0, the EMS operates as usual. When the signal changes to 1, the 
flexibility algorithm is activated. It is the EMS that receives the signal 
from the environment and adopt it to make decisions and send com-
mands to the available controllers/adaptation measures which is certain 
values and range for each of the controllers (see Table 5). The signal 
depends on electricity demand in typical and extreme conditions. The 
typical building electricity demand profile is calculated based on the 
building energy performance simulation using TDY weather data. The 
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typical demand equals the seasonal average value, which is that of 
summer in this case. Thereafter, the electricity use under extreme con-
ditions is calculated at each timestep of the energy performance simu-
lation using EWY weather data (see section 2-2.2). Regardless of 
whether the total electricity use exceeds the typical baseline, the signal 
will be 1. Eq. (7) shows the signal values where EEWY is the total elec-
tricity use of the building under EWY and ETDY stands for the average 
seasonal electricity use in TDY (For more details see [35]). 

Signal =
{

0 EEWY ≤ ETDY
1 EEWY > ETDY

(7)  

2.5.6. Memory 
After each experience (i.e., iteration in time), CIRLEM stores the set 

of action-reward (A-R) in the memory to be able to retrieve the actions 
corresponding to higher rewards. Memory has two important parame-
ters: (1) length and (2) randomness. The length is the number of A-R sets 
that can be stored which limits the options for choosing, also, it helps to 
increase the processing speed and convergence. CIRLEM utilizes a 
memory with a length of 24 which is called ENC-L24. The random 
behavior is an intrinsic feature of RL letting it explore new choices and 
not stick to a few early-achieved good options. In this research, CIRLEM 
applies a random control to the agent with a 10 % probability (more 
information about the impacts of randomness on the outputs in [60]). 

2.6. Thermal comfort 

Commonly two approaches are used to assess thermal comfort: the 
PMV or Fanger model, which is indicated for heated or mechanically 
cooled buildings, and the adaptive model, which is used for occupant- 
controlled naturally conditioned spaces or, as introduced in ASHRAE 
55–2020 [105], when there is no mechanical cooling system or heating 
system in operation. These models have already been integrated into 
several international standards such as ISO 7730 [106], ASHRAE 55 
[105], and EN 16798 [103]. In addition, Standard EN 16798:1–2019 
defines categories of indoor environmental quality related to probable 
occupant expectations, providing specific thresholds based on these 
categories. The standard recommends Category I (which is characterized 
by the most restrictive constraints among all categories) for spaces 
occupied by very sensitive and fragile people like the elderly. Beyond 
providing thermally comfortable environments, it is necessary to ensure 
occupant health. According to the World Health Organization [107] a 
lower limit of 20–21 ◦C in winter should be catered. To control the risk 
of overheating, the Chartered Institution of Building Services Engineers 
(CIBSE) has defined the CIBSE [104] overheating criteria, which indi-
cate that there should be no more than “1% annual occupied hours over 
the operative temperature of 28 ◦C,” which is reduced to 26 ◦C in bed-
rooms unless ceiling fans are available. More recently, the guide was 
updated to incorporate considerations for adaptive comfort models 
[108]. 

2.7. Performance evaluation 

To assess the algorithm’s performance in the pilot case, a scenario is 
delineated to integrate all the components. The test period is July 2050 
under EWY conditions. The signal is calculated based on the average 
summer (June-July-August) electricity use under TDY (a similar 
approach was implemented in earlier work [35]). The building operates 
as usual, the staff work according to typical work schedules, and no 
holiday is included except weekends. Staff and visitors are allowed to 
charge their EVs for free if they tend to participate in the flexibility 
program through the EV agent. It is assumed that cars will leave the 
charger point with at least 10 % more SOC than the initial value; thus, 
staff and visitor EVs will not lose charge when parked. 

The performance evaluation focuses on (1) energy and (2) thermal 
comfort. Two indicators are defined to evaluate the energy performance 

quantitatively, including the Self Consumption Rate (SCR) and Grid 
Autonomy (GA). The SCR expresses how much energy use is covered by 
local generation in different consumption and production strategies 
[109]. Eq. (8) shows the calculation of SCR and GA is calculated through 
Eq. (9). GA aims to assess how the building withstands a power outage or 
high electricity price by applying the proposed control algorithm. 

SCR =

∑nd
d=1

∑24
t=1

(
P(d,t)

PV + SOC(d,t)
EV

)
Δt

∑nd
d=1

∑24
t=1

(
P(d,t)

load

)
• Δt

(8)  

GA =
n
({

t|P(t)
grid = 0

})

n(h) • Δt
• 100 (9)  

To ensure adequate indoor thermal comfort conditions, the Fanger 
comfort model is applied to the control algorithm. All zones are 
considered as Category I and the temperature thresholds of 23.5 ◦C and 
25.6 ◦C are set as constraints for indoor operative temperature [110]. In 
addition, the temperature ramps, which are defined as actively 
controlled operative temperature changes, are investigated with respect 
to the limits defined in ASHRAE 55–2020 [105]. The evaluation is car-
ried out in 15, 30, and 60 min based on the denoted limits in Table 7. 

The evaluation follows three scenarios as follows:  

• TDY-noCIRLEM: Under TDY conditions with regular operation 
without implementing CIRLEM  

• EWY-noCIRLEM: Under EWY conditions with regular operation 
without implementing CIRLEM  

• EWY-CIRLEM: Under EWY conditions with CIRLEM in operation 

Comparison between these scenarios will produce an understanding 
of how the building would perform in typical future weather (TDY- 
noCIRLEM), whether it would tolerate extreme warm conditions (EWY- 
noCIRLEM), and finally, assess the performance of the algorithm in 
coping with extreme climate conditions (EWY-CIRLEM). Afterward, the 
impacts of adding PV and EV to the system are assessed. 

3. Results and discussions 

This chapter presents the results and analysis of CIRLEM perfor-
mance. First, the calibration indicator values are discussed, and then the 
performance of CIRLEM is presented. In the latter, the building perfor-
mance with CIRLEM is compared to its regular operations (i.e., without 
CIRLEM) under typical and extreme climate conditions, without on-site 
generation and storage (EWY-noCIRLEM vs EWY-CIRLEM). Finally, the 
results of including of the PV (EWY-CIRLEM:PV) and EV charging sta-
tions (EWY-CIRLEM-PVEV) in CIRLEM are presented. 

3.1. Calibration of the energy model 

The calibration process was carried out first, for a period of one year 
based on hourly electricity demand, and secondly, for a period of 1 
month based on hourly intervals of indoor temperatures. Table 8 pre-
sents the values of the calibration indicators over the 1-year period for 
the electricity demand, 1 month period in July (n = 744) for indoor 
temperature, and PV production over July. The values of CV(RMSE) and 
NMBE are within the acceptable range according to ASHRAE Guideline 
14 [83]. 

Table 7 
Maximum allowed temperature ramps according to ASHRAE 55–2020.  

Time Step [minutes] 15 30 60 

Maximum operative temperature changes allowed [◦C]  1.1  1.77  2.2  

M. Hosseini et al.                                                                                                                                                                                                                               



Energy & Buildings 308 (2024) 114030

11

3.2. CIRLEM performance 

This section presents the results and findings from implementing 
CIRLEM. This section investigates the algorithm’s performance, first, 
regarding the total electricity demand (demand response), and second, 
with respect to local generation (PV) and storage (EV). 

3.2.1. CIRLEM and energy performance 
This section presents the outputs related to the building energy 

performance including total electricity demand and peak power. In 
different scenarios, we investigate the demand profile under different 
weather conditions. The simulated electric energy use for three sce-
narios is presented in Fig. 9. The values are presented in high temporal 
resolution using 15-minute timesteps to avoid eliminating changes on 
the sub-hourly scale. The line graph (left) shows the fluctuations in 
simulated electric energy use over the analysis period (i.e., July 2050). 
The boxplots (right) show the distribution of the values in 15-minute 
timesteps. 

TDY-noCIRLEM (green line) shows the energy performance of the 
building in typical conditions. This can be considered a baseline to better 
understand how extreme conditions stress energy systems given demand 
and peak power usage. This curve is also used as the baseline to generate 
the signal; the mean value of simulated electric energy use in TDY- 
noCIRLEM is the reference value to generate the signal (see 2.5.5). 
EWY-noCIRLEM (the gray dashed line) shows the building performance 
under extreme climate conditions without using CIRLEM which in-
dicates the simulated energy performance if CIRLEM is not deployed 
under extreme events. Finally, EWY-CIRLEM (the red line) indicates the 
performance of CIRLEM. TDY-noCIRLEM (the green boxplot), which 
conveys the results under typical conditions without CIRLEM, shows a 
maximum of 25 kW, while this can reach up to approximately 72 kW 
under EWY-noCIRLEM (the gray boxplot), in extreme conditions and 
without CIRLEM. Where CIRLEM was applied, EWY-CIRLEM (the red 
boxplot), peak power could be reduced by 26 % to 57 kW. In typical 
conditions (TDY-noCIRLEM) the building is expected to experience a 
demand of 11.3 MWh in July. The extreme weather conditions (EWY- 
noCIRLEM) may increase the demand to 27.5 MWh, and by applying 

CIRLEM the total demand (EWY-CIRLEM) could be reduced to 18.1 
MWh over the month with 35 % reduction. Over this period (2976 
timesteps) signal-1 s were generated 1260 times and transmitted to the 
agents (42 % signal-1 and 58 % signal-0). The line graph shows that in 
the 3rd and 4th weeks of July there were considerably extreme climate 
conditions. Therefore, this period was selected for further analysis in 
finer resolution. 

An investigation of the two-week period with the highest demand in 
July was performed and the results are presented in Fig. 10. The graph 
on the left shows the electricity use for three scenarios. The signal is 
presented at the top as a 0 or 1 value (white/blue). In total, 840 signal-1 
s were transmitted to the agents among 1344 timesteps over the two- 
week period which was roughly 62 % of all signals. Compared to the 
entire month, 66 % of all signal-1 s were generated in these 14 days 
showing a higher necessity for flexibility in this period. The difference 
between EWY-noCIRLEM (the dashed gray line) and EWY-CIRLEM (the 
red line) shows the load curtailment at each timestep. Particularly on 
days of higher demand, such as the 19th, 24th, and 25th, CIRLEM flat-
tened the energy demand profile by up to 20 kW in the middle of the 
days from around 11:00 to 16:00. As expected, signal-1 was transmitted 
mostly during the day as higher outdoor temperatures and solar radia-
tion increased the demand for cooling and ventilation. 

3.2.2. CIRLEM and grid electricity 
This section presents the outputs and discussions of CIRLEM 

including PV and EV, and focuses on the effects of on-site generation and 
storage on the volume of electricity delivered from the grid. To inves-
tigate the performance of distributed generation and storage in collab-
oration with the demand response (which refers to EWY-CIRLEM 
scenario), two sub-scenarios for EWY-CIRLEM were introduced: (1) 
EWY-CIRLEM:PV and (2) EWY-CIRLEM:PVEV. According to the findings 
from the previous section, signal-1 was transmitted primarily in diurnal 
hours, which provides preemptive support for the proposal of using the 
EVs as the storage side. This can enhance the flexibility of the system and 
provide a degree of grid autonomy. EWY-CIRLEM-PV adds PV to CIR-
LEM as an on-site supply source. However, PV was not an agent itself 
since CIRLEM does not control it and there was no adaptation measure 
for PV in the algorithm. The impact of PV appears on EVs’ SOC and as an 
agent it earns rewards for taking actions. EVs are charged only by PV 
production, not the grid, and have three modes: charge, discharge, and 
neutral. The EWY-CIRLEM-PVEV scenario was developed to include the 
EV charging station as an agent of CIRLEM to create on-site storage. The 
grid electricity was calculated from GridEl. = Pt

load − Pt
PV − Pt

storage where 
Pt

storage was taken as the power supplied by the EVs. In EWY-CIRLEM:PV, 
Pt

storage was equal to 0 as there were no EVs in the system. 
Fig. 11 shows the simulated electric energy for EWY-CIRLEM:PV (in 

Table 8 
Calibration indicators values for BEM and PV modeling.   

Calibration data CV(RMSE) [%] NMBE [%] 

BEM Annual electricity demand 
(n = 8760 h) 

15 2 

BEM July indoor temperature 
(n = 744 h) 

15 0 

PV July PV production 
(n = 744 h) 

5 0  

Fig. 9. Simulated electric energy use over a period of one month (July 2050) for EWY-CIRLEM (red), EWY-noCIRLEM (dashed gray), TDY-noCIRLEM (green): hourly 
profiles (left), and boxplots with major statistical values (right). 
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red) which equals the building load minus electricity supplied by the PV 
station at each timestep. EWY-CIRLEM:PVEV (in dark red) shows the 
electricity purchased from the grid (i.e., the load covered by the grid) 
when the system used the stored electricity in the on-site storage (i.e., 
EVs). The yellow fade shows the difference between the two profiles 
which resulted from the storage. As expected, the impact of utilizing the 
storage appears mostly during nights when there is no PV production. 
The total supplied electricity from the grid without storage (EWY-CIR-
LEM:PV) was 9.5 MWh while adding the storage (EWY-CIRLEM:PVEV) 
reduced grid electricity usage by around 25 %, to 7.2 MWh. The dif-
ference (2.3 MWh) was provided by the stored PV production. 

The PV station produced 18.9 MWh over the analysis period, and the 
building’s electricity demand was equal to 18.1 MWh. However, the 
building demand was not entirely covered by PV production due to the 
demand and production mismatch. According to Fig. 11, applying EWY- 
CIRLEM:PVEV covered 10.9 MWh of the total demand, giving a value of 
grid electricity equal to 7.2 MWh (18.1 − 10.9). The remainder of the PV 
production equaled 8.4 MWh (18.8 − 10.9) which was used to charge the 
EVs. This PV production excess can be considered as an encouragement 
for EV owners to participate in flexibility, encouraging adherence to best 
practices regarding when and for how long to plug the car in. Therefore, 
building and EV owners could be encouraged to participate in this 
mutually beneficial arrangement. 

To investigate how much of the electricity demand on-site genera-
tion could cover, the self-consumption rate was deployed. In EWY- 
noCIRLEM the value of SCR was equal to 68 %. This value increased 
to more than 100 % by applying CIRLEM in the building with a 
maximum value of 132 % when utilizing EVs (EWY-CIRLEM:PVEV). The 

values of grid autonomy were equal to 30 %, 41 %, and 69 % for EWY- 
noCIRLEM, EWY-CIRLEM:PV, and EWY-CIRLEM:PVEV, respectively, as 
presented in Table 9. Adding PV and EVs to the building energy system 
can reap significant benefits for grid autonomy. 

Further investigation was carried out on grid autonomy using the 
hourly values for EWY-CIRLEM:PV and EWY-CIRLEM:PVEV. The results 
are shown in Fig. 12. The values on the horizontal axis represent hours of 
the day containing the total number of timesteps (15-minutes in length) 
with grid autonomy in each hour over the analysis month (each hour 
refers to 124 (31*4) values for the correlated hour in July). For instance, 
number 13 (13:00) refers to all the 13:00 s in 31 days of the month with 
sub-hourly (13:00, 13:15, 13:30, 13:45) values. The percentage on the 
vertical axis is the ratio of timesteps with grid autonomy to the total 
timesteps (31*4 = 124), where, for example, at hour 2, around 81 % of 
timesteps are independent of the grid in EWY-CIRLEM:PVEV (the blue 
line). 

The percentage of GA in EWY-CIRLEM:PV was around 0 % after 
midnight until morning while this value increased to around 70 % in the 
middle of the day due to day-time PV production. Adding the storage 
(EWY-CIRLEM:PVEV) raised grid autonomy significantly between 
midnight (0:00) and early morning (5:00–6:00) from 0 % to 60 %-80 % 

Fig. 10. Simulated electric energy use over two weeks with the highest demand in July 2050 for EWY-CIRLEM (red), EWY-noCIRLEM (dashed gray), TDY-noCIRLEM 
(green): hourly profiles and flexibility signal (blue) (left) and boxplots with major statistical values (right). 

Fig. 11. Simulated electric energy from the grid for EWY-CIRLEM:PV (red) and EWY-CIRLEM:PVEV (blue) over two weeks (from 14th to 17th July). The solid yellow 
shows the difference between the two scenarios. The gray fade strips point out the nocturnal hours from 18:00 to 06:00. 

Table 9 
SCR and GA values for EWY-CIRLEM.  

Scenario SCR [%] GA [%] 

EWY-noCIRLEM 68 30 
EWY-CIRLEM:PV 104 41 
EWY-CIRLEM:PVEV 132 69  
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due to the stored electricity from the day before in the EVs plugged in 
overnight. During the day, the value increased by approximately 7 % 
each hour. 

In total, PV meant that for almost 41 % of the hours simulated, the 
building was independent of the grid, and when EV storage was added 
this increased to approximately 69 % of the whole period. The sharp 
decrease of the GA value between 4:00 and 7:00 in EWY-CIRLEM:PVEV 
was caused by reductions in the state of charge (SOC) of EVs after several 
hours without PV production while the demand was growing at the 
beginning of the day. The relatively constant difference between the red 
and blue curves shows the availability of electricity from EVs for almost 
the entirety of the day when PVs generated electricity. This demon-
strated the potential performance of the independent decision-making of 
EVs as an agent, influenced by rewards earned. 

As mentioned before, on-site generation was more than the defined 
EV capacity. Thus, there is still potential to increase the GA value by 
increasing the EV capacity. The EV capacity could grow further through 
greater participation among local people, employees, and visitors. 
Monetizing solutions and incentives may also increase participation. 
Indeed, an accurate analysis of the electricity price should be carried out 
given that in Norway, the dynamic pricing system is applied on an 
hourly scale with considerable differences between day and night. 
However, this study has aimed to increase resilience under extreme 
weather conditions, and the economic aspects were deferred. 

3.2.3. CIRLEM and indoor thermal comfort 
Given the stated aims of this research, namely, to facilitate the 

maintenance of proper indoor thermal comfort conditions for vulnerable 
residents while enhancing energy performance, in this section, the 
operative temperature variations in the indoor environment are 
analyzed. Fig. 13 illustrates the distribution of indoor temperatures 
under the scenario EWY-CIRLEM (in red), EWY-noCIRLEM (in gray), 
TDY-noCIRLEM (in green), and measured values registered in July 2022 
(in dark gray). The simulated values refer to 110 thermal zones (i.e., 110 
zones × 31 days × 24 h × 4 timesteps/hour) while historic values 
correspond to the four sample rooms (i.e., 4 zones × 31 days × 24 h). 
Given that CIRLEM seeks the temperature thresholds for the Fanger 
comfort model based on EN 16798–2:2019 [110], the upper and lower 
thresholds are visualized on the graph (the red lines). 

The historic measured values show that the indoor temperature was 
always within the recommended upper limit with a mean value of 
23.9 ◦C, a minimum of 21.5 ◦C, and a maximum of 25 ◦C. Under a typical 
future climate (TDY-noCIRLEM), overheating would occur with only 
0.5 h •◦C per zone during the entire month. However, extreme 

conditions did increase the overheating to 17 h •◦C per zone over a 
month when CIRLEM was not in operation. Adding CIRLEM into the 
building could reduce overheating under extreme conditions (EWY- 
CIRLEM) to 2 h •◦C per zone during the entire month. It is important to 
consider that these values are not distributed evenly between the zones. 
The sub-scenarios of EWY-CIRLEM were subject to the same impacts on 
the demand profile and indoor conditions; hence, they were not inves-
tigated separately. As CIRLEM modified the temperature setpoint 
continuously, there is a risk for indoor temperature fluctuation which 
could disturb indoor comfort conditions. The temperature ramps are 
assessed to verify that the rate of change in operative temperature does 
not exceed comfort acceptability, as indicated in ASHRAE 55–2020 
[105]. Fig. 14 shows the temperature variations at each timestep with 

Fig. 12. The percentage of timesteps with grid autonomy among all timesteps 
(24*4*31) over the analysis period (July) for EWY-CIRLEM:PV (red) and EWY- 
CIRLEM:PVEV (blue). Each hour contains sub-hourly (15-minute) values 
referring to the hour in all 31 days of the analysis period. 

Fig. 13. Indoor air temperature distribution for EWY-CIRLEM (red), EWY- 
noCIRLEM (gray), TDY-noCIRLEM (green) including 110 zones, and 
measured values in July 2022 (dark gray) including 4 zones. Red lines show the 
thresholds for indoor temperature based on the Fanger thermal comfort model. 
Major statistical values are denoted on top. 

Fig. 14. Indoor operative temperature variations in 15-minute, 30-minute, and 
60-minute timesteps in all the zones over the analysis period. Data is related to 
EWY-CIRLEM. The overall statistical descriptions are denoted on the top of 
each boxplot. 
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15-, 30-, and 60-minute intervals in all the zones. The box plot shows the 
absolute values of the temperature variations in ◦C (i.e., |(Tt2 − Tt1)| • Δt, 
Δt ∈ {15′,30′,60′}) for EWY-CIRLEM where the dashed dotted red lines 
indicate the ASHRAE 55–2020 limits for the temperature ramps. 

In the 15-minute timestep, the mean value was 0.38 ◦C, and the 
interquartile range lay between 0.15 ◦C and 0.55 ◦C. The outliers show 
temperature variations from 1.15 ◦C up to around 2.05 ◦C. The tem-
perature variations in the 15-minute timestep exceeded the limit for less 
than 2 % of the time in all the zones. In the 30-minute timesteps, the 
mean value was equal to 0.40 ◦C where the upper quartile lay at 1.20 ◦C. 
In this case, around 0.1 % of the time the temperature variations 
exceeded the limit. The hourly timestep (60-minute) showed a mean 
value of 0.43 ◦C while the upper quartile was equal to 1.27 ◦C. The 
temperature variation in the hourly time span almost did not exceed the 
limit (i.e., less than 0.02 % of the time). Accordingly, the defined con-
straints for the adaptation measures could maintain the indoor tem-
perature with acceptable variations. 

3.3. Future Development 

Future work is ongoing in two main branches. The first one is per-
formance evaluation in winter under extreme cold conditions. The sec-
ond one is to develop the functioning algorithm for CIRLEM at the 
cluster level where several buildings are included in the EM. This re-
quires a higher level of decision-making to coordinate different build-
ings with different owners, preferences, and characteristics. After all, 
CIRLEM is to be applied in a real case to evaluate the performance in real 
conditions. In this case, it is possible to evaluate how is the performance 
with a low amount of data sharing and computation power when CIR-
LEM is running on a small service equipped with a single-board com-
puter. According to the results of this simulation-based research, an 
experiment is ongoing to deploy CIRLEM in a real case with regular 
operation under extreme conditions. 

4. Conclusion 

Climate change affects the aged population with more pronounced 
effects, especially under extreme events. The United Nations (UN) Sus-
tainable Development Goals (SDG) emphasize the resilience of cities and 
ensuring well-being for all residents of all ages. Accordingly, the UN 
defines adaptability as an essential need to achieve resilience. Energy 
flexibility, therefore, plays a significant role in providing resilience in 
energy systems where building can adapt their demand and production 
based on the users’ needs and grid requirements. Maintaining thermal 
comfort is a vital role of buildings which is highly dependent on energy 
systems, which, in the case of failure, may cause severe health issues for 
the occupants especially vulnerable groups of people. 

CIRLEM is an Energy Management (EM) algorithm based on Col-
lective Intelligence (CI) integrated with Reinforcement Learning (RL). 
This research proposes a novel structure for CIRLEM to coordinate de-
mand-, generation-, and storage-side in building energy systems 
deploying a learning process in two stages: (1) Meta-learning, and (2) 
Watch-Try-Learn (WTL). The first stage helps to accelerate the second 
layer which is a simplified model-free Reinforcement Learning (RL) al-
gorithm. The aim is to reduce the computational demand and data 
required for decision-making without the need for data gathering and 
sharing such as data for weather conditions, building models, or user 
behaviors. The algorithm applies the logic of action-reward where the 
flexibility is enabled by a signal. The signal is generated based on the 
typical energy demand as the baseline. The algorithm is based on the 
independent agents in the system which could control their conditions 
autonomously through CIRLEM. Agents are equipped with adaptation 
measures and sensors to control the energy systems and monitor con-
ditions, respectively. Therefore, agents could modify their conditions 
independently based on the rewards earned. In this research, agents are 
defined as private rooms, public rooms, offices, and EV chargers. The 

adaptation measures are temperature setpoint, ventilation setpoint, plug 
loads for the rooms, and charging or discharging for the EV charging 
points. 

The research investigates the variation of energy use and indoor 
conditions in an elderly care center in Ålesund, Norway during summer 
considering typical and extreme warm conditions to evaluate the 
effectiveness of the proposed control approach under future climate 
conditions. The case study uses a newly constructed building fully 
equipped with the Energy Management System (EMS). In addition, there 
is a roof-top Photo Voltaic (PV) station and a low-current Electric 
Vehicle (EV) charging station. To evaluate the performance of the al-
gorithm, monthly energy demand and peak power, Self-Consumption 
Rate (SCR), and Grid Autonomy (GA) are taken into the account. 

The results of the dynamic energy simulations show that the imple-
mentation of CIRLEM can significantly decrease energy use under the 
assumption of extreme weather conditions, while guaranteeing proper 
indoor thermal comfort conditions, even during temperature ramps. 
Specifically, applying CIRLEM under extreme warm conditions could 
reduce the energy demand by around 35 % and peak power by 26 %. 
Deploying CIRLEM can increase SCR and GA from 68 % to 132 % and 30 
% to 69 %, respectively. The assessment of indoor thermal comfort 
shows that the indoor temperature stays within the accepted limits and 
the temperature ramps in 15-, 30-, and 60-minute timesteps meet the 
necessary criteria. 

Further research is required to extend the investigation to the winter 
while exploring, in more detail, the potential of combining different 
CIRLEM strategies. Moreover, the function of CIRLEM in real buildings 
and running on a smart device (i.e., a single board computer) is ongoing 
to prove the performance with low data sharing and computation power. 
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