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being available for questions. I also want to thank Phd candidate Magnus Steinstø who assisted

me in the compilation of code needed to create the integrated simulation model.

i



Abstract

Loading operations are a largely manual process which poses a health hazard for involved crew.

Increasing the degree of automation for the systems involved can allow for mitigation of health

hazards, and an increase in efficiency. In order to contribute to an increase in automation for the

case of ship to shore loading, the thesis presents a functional control system and a bond-graph

model composed of a ship, crane, wire and spreader.

The ship in the integrated model is the Revolt vessel, which is a concept for a short distance

autonomous cargo ship created by DNV AS. Additionally, the crane used in the bond-graph model

has three degrees of freedom and was created by an earlier masters student. The crane is mounted

in the middle of the deck of Revolt, and is connected to a simplified wire and spreader mechanism.

The integrated system is implemented in a modular manner, and can be easily integrated or

changed in order to suit the given case investigated by the modeler. Additionally, the control

system is supervised by a finite state machine which is able to toggle between different modes of

action such as crane transportation, sway compensation and wire lowering.

ii



Oppsummering

Dagens lasteoperasjoner er i stor grad en manuell prosess som utgjør en helserisiko for involvert

mannskap. Med å øke graden av automasjon i hvert av systemene involvert i en lasteoperasjon, kan

operasjonen optimaliseres og antall skader reduseres. For å kunne bidra med en økning av auto-

masjon for lasteoperasjoner som foreg̊ar mellom havn og skip, presenterer oppgaven et fungerende

kontroll system og en bond-graf modell best̊aende av et skip, kran, vaier og conteiner̊ak.

Skipet i simuleringsmodellen er Revolt, som er et konsept for et kortdistanses autonomt lasteskip

skapt av DNV AS. Videre er kranen brukt i oppgaven prosjektert av en tildigere masterstudent,

og har tre frihetsgrader. Kranen er montert p̊a midten av dekket p̊a b̊aten, og er koplet til en

forenklet vaier og conteiner̊ak.

Det integrerte systemet er implementert p̊a modulært vis, og kan enkelt integreres med eksterne

modeller. I tillegg, er kontrollsystemet styrt av en tilstandsmaskin med mulighet til å bytte mellom

oppgaver i form av kran transport, svai kompensering, og senking av last.
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1 Introduction

1.1 Motivation and background

Ship to shore loading operations typically makes use of cranes to move cargo on and off a ship.

On the port-side it is common to use gantry cranes, which are either rail mounted or rubber

tired. In regards to shipboard cranes, these can come in different variants such as knuckle, static

or telescopic boom configurations. The cranes are typically controlled by on site operators using

either a control pendant or actuator stick.

A loading operation can be decomposed to four main parts. These can be summarized as:

• Connecting and preparing the cargo.

• Controlling the horizontal motions, lifting and slewing of the cargo.

• Lowering and placing the cargo safely

• Securing the cargo on either the ship or portside

In the phase concerned with cargo preparation, the type of cargo becomes important. Non-

standarized cargo in the form of break bulk often require hoisting gear to be installed, and then

manually attached to either hooks or gripping mechanisms connected to the crane in question.

However, standardized cargo such as containers allow for greater ease in automating the loading

operation, and can be carried by use of a spreader mechanism, which come equipped with twist-lock

mechanisms shown in Figure 1 which attach to each corner of a container.

Figure 1: Illustration of spreader mechanism showing twist locks [1].

The phase concerned with lift, slew and horizontal transport have several challenges. Slew motions

(horizontal rotations) of cargo often need direct crew involvement, where the crew or stevedores

adjust the cargo during landing and pickup by the use of ropes or wires. The lifting and horizontal

motions of the cargo is traditionally handled by the crane operator, and the movement of heavy

cargo poses a safety risk to onboard personnel. The process of lowering the cargo is also crew

intensive. The crane operator usually lowers the cargo manually, and if the operator loses visibility

of the cargo the crew will assist by the use of hand signals and 2-way radios [2].

In regards to automation there exist automated container terminals, and according to [3] 3% of

the worlds container terminals are either semi or fully automated. Where fully automated harbors
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are able to automate both the horizontal as well as the vertical motions of the cranes, and semi-

automated ports are only able to automate the vertical crane motions. Such ports often have cranes

with automated systems in the form of collision avoidance, heave-compensation and anti-rotation

systems on the cargo.

Smaller ports face constraints in securing adequate funding for near-term efficiency enhancements

[2], and are often frequented by vessels relying on their own loading equipment. These vessels are

often tasked with handling both containers and break bulk cargo. In order to contribute to an

increase in automation for loading operations making use of a shipboard crane, the thesis presents

a simulation model and control system containing an integrated ship, crane, wire and spreader

model able to transport a spreader to a desired container in the world by utilizing a 3 degree of

freedom (DOF) knuckle-boom crane.

1.2 Problem formulation

The thesis reviews the main particulars of a loading operation, and presents an integrated simula-

tion model and a functional control system in order to perform automatic transport and lowering

of cargo by using a shipboard knuckle-boom crane.

In order to create an integrated simulation model, the vessel parameters of Revolt had to be found.

A hull model was therefore provided by DNV, and used to gain the necessary vessel parameters.

Then the knuckle-boom crane presented in the master thesis of Gyberg [4] was then scaled by a

factor of 6,5 in order to enable cargo transport to and from the ship. The crane was the attached in

the middle of the deck of Revolt as this would provide the most stability. The spreader mechanism

and wire was then modeled as a rigid body and an over-damped 3D spring respectively.

Once the integrated system was created the control system was implemented. The control system

is supervised by a finite state machine which is able to toggle between different states. These states

are crane transportation, sway-compensation and station-keeping of the crane tip, and finally wire

lowering and heave compensation. In order to verify that the control system worked as intended, a

series of case studies investigating each algorithm as well as the integrated system was performed.

1.3 Chapter overview

Chapter 2 Theory and background material describes the main particulars of the case the

loading operation takes place in, and gives an overview of autonomous systems and bond graph

modeling.

Chapter 3 Lagrangian and Hamiltonian mechanics introduces the concepts of reference

frames, generalized and quasi coordinates. Additionally, the Lagrangian equations of motion is

presented both by the use of generalized and quasi coordinates.

Chapter 4 Ship and crane dynamics describes the equations of motion of a ship, and describes

the inertial and hydrodynamic terms of the equation. Additionally, the chapter describes the

importance of geometric jacobians and the concept of inverse kinematics and workspace of an

anthropomorphic manipulator.

Chapter 5 Ship and crane integration presents the equations used in integrating the ship and
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crane, and how one can use a .dll in parallel with a 20-sim application.

Chapter 6 Control gives a brief introduction to PID-controllers, and describes each of the control

algorithm as well as the finite state machine used in the thesis.

Chapter 7 Modeling explains the assumptions and simplifications done to the models of the

integrated system. Additionally, the most important bond graph models are presented.

Chapter 8 Results and discussion goes through a series of case studies in order to verify the

implemented control algorithms, and presents the system performance of the integrated system

under ideal conditions.

Chapter 9 Conclusion and further work comes with recommendations of further work and

concludes the work performed in the thesis.

1.4 Previous and related work

In order to create the integrated simulation model as well as the control system several main

sources have been used.

The master thesis of Gyberg [4] presented much of the necessary frame transformations and crane

dynamics that was needed in order to create an integrated ship-crane model. In addition, the

spreader and wire model developed in the project thesis [5] was also merged to the integrated

model with minor modifications.

The integration of ship and crane by the use of quasi coordinates is heavily based on the paper

Modeling of Generic Offshore Vessel in Crane Operations With Focus on Strong Rigid Body Con-

nections [6], which describes the modeling of a generic ship and crane system. This paper illustrates

how the quasi-coordinate equations of motion in state space form can be developed while using the

body-fixed frame of the vessel as a common frame of reference. Additionally the book of System

dynamics [7] and the lecture notes in TMR4275 modeling and simulation of physical systems [8]

provided the necessary modeling theory in order to create the final bond graph model.

To gain a overview of loading operations the paper Gap analysis for automated cargo handling

operations with geared vessels frequenting small sized ports [2] was used. The paper describes the

main phases of a loading operations, as well as some of the current challenges that need to be

solved in order to perform fully autonomous loading operations.

In order to develop equations of motion and perform crane control the books Methods of analytical

dynamics [9] and Modeling and Control of Robot Manipulators [10], was heavily used. The book

[9] introduces the use of quasi-coordinates as well as how one can express the Lagrangian equations

of motion by utilizing quasi-coordinates. Additionally, [10] presents several control schemes and

the importance of geometric jacobians in order to control various types of manipulators.
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2 Theory and background material

2.1 Case considerations

One of the cases to be considered in the thesis, is the transport and placement of spreader from

the ship to a container at port.

Figure 2: 2D sketch of shipboard crane performing a loading operation by harbor.

Figure 3: 6 DOFs of a vessel [11]

When investigating the case of ship to shore loading, it is worth considering the behaviors of the

ship, crane and spreader mechanism. Regarding the dynamics of a ship, it is important to know

that a ship is able to move in 6 degrees of freedom (DOF) as shown in Figure 3. The translational

movements in x, y and z direction are named surge, sway and heave. Meanwhile, the rotations

about each of these axis are usually represented as ϕ, θ and ψ and are called roll, pitch and yaw

respectively.

There are inertial as well as hydrodynamic forces acting on a vessel. In the case with a ship by

harbor one can assume a calm sea state, as such the wave frequencies of interest will be quite low,

and can be approximated to be zero. This gives potential damping in many DOFs to be equal

to zero, and makes viscous damping in the form of eddy making an important contributor to the

ships damping. Particular DOFs of interest is roll, pitch and heave. This is due to the fact that

the ship has only small movements in surge, sway and yaw while docked when assuming a calm

sea state and negligible contributions from current and wind forces.

Furthermore, an important factor impacting the roll, pitch and heave motions is the hydrostatic

restoring forces. The restoring forces in all three DOFs are due to the pressure the surrounding

water exerts on the hull as a result of the displaced water volume. In still waters the heave motion of

the ship is decided primarily by the hydrostatic restoring forces in z-direction and the weight from

the ship including any loaded cargo or equipment. As for roll and pitch, one usually investigates

the restoring moments arm GZ, where GZ is the moment arm between the center of gravity G,

and the buoyancy force Fb.
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Figure 4: Principle sketch in roll. Inspiration taken from [12].

Figure 5: Principle sketch in pitch. Inspiration taken from [12].

The principal sketches Figure 4 and Figure 5, show the restoring arm GZ for a given roll and pitch

angle as a result of an external trimming moment Me. The sketches also show the positions of

the keel K, center of gravity G and the metacenter M . Where the metacentre is the point of

intersection of the buoyancy attack angle and the line spanning between the keel and center of

gravity as shown in Figure 4 and Figure 5. In addition, the waterlines before and after rotation

is denoted as WL1 and WL2, where WL2 is the waterline after rotation. Lastly, the buoyancy

force Fb and its attack angle is also shown. The reason why the moment arm GZ is of particular

interest, is that one can investigate for what rotation angles a ship will be able right itself up, and

avoid capsizing. If for any reason the GZ value becomes less than zero the ship will capsize [12],

which is a possibility when a ship is performing a loading operation.

In addition to the Revolt vessel from DNV, the thesis makes use of the knuckle-boom crane

developed by Fredrik Gyberg [4]. This crane has 3 DOFs, and is able to rotate about the base,

and each of its links. The crane was chosen as it is a generic offshore crane, and contains model

parameters which allowed it to be scaled to the appropriate size to be able to perform a loading

operation. Important behavior to note is the effect that the crane has on the stability on the ship,

and how the crane movements effect the spreader and ship movements.
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Figure 6: Crane from the side to the left. Base of the crane shown on the right [4]

The crane shown in Figure 6 shows the how each of the joints can rotate. Here rotation about

the base is shown as θ1 and rotation about the first and second joint is denoted as θ2 and θ3

respectively. In addition, the spreader which is attached to the crane tip through a wire is able to

move in 4 DOF. These DOF consist of translational displacements along the x, y and z axis, and

the rotation about the z axis. As the case contains no environmental forces, the pendulum motions

induced on the spreader comes from transporting the spreader to a desired position. The vertical

motions will come due to the rotation of the ship, but also due to wire lowering. An important

simplification in the loading operation is that the rotation of the spreader mechanism is neglected,

as controlling and modeling necessary tugger wires is beyond the scope of the thesis.

Figure 7: Principal sketch of spreader

The sketch in Figure 7 shows the body-fixed frame and how the wires are connected to each end

of the spreader. It is important to note that the wires prevent rotational motion about the x,

and y axis, and that twist lock mechanisms have been excluded from the sketch. This was done

as the thesis will not be investigating the twist lock mechanics when the spreader attaches to a

container. Instead the spreader will be defined as attached to the container if it is in close enough

proximity to the container in question. Since the thesis does not allow the spreader to rotate,

and the container is assumed to be the same orientation as the spreader. The orientation of the

spreader is not checked before defining the spreader and container as attached.
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2.2 An introduction to autonomous systems

As the field of robotics have become more advanced with increases of computational power and

the recent advances in artificial intelligence, scientists and engineers are looking to increase the

degree of autonomy in both the automotive and maritime fields, with the end goal of making cars

and ships autonomous. The problem of autonomy can be divided into three main parts, which can

be summarized to the sense-plan-act methodology discussed in [13].

Figure 8: Sense plan act methodology

In Figure 8, sense is concerned with utilizing sensors such as camera, lidar or sonar in order to

map the environment. Plan consists of the ability to use sensor data in order to make decisions

such as stopping or generating new tracks to follow. Lastly, act is the robots ability to physically

accomplish the control objective by utilizing its actuators. These three key objectives can be seen

in more advanced autonomous system architectures, but it is worth noting that depending on the

type of problem to be solved autonomously, the system architecture may change.

A proposed architecture for autonomous loading using the Sense, Plan and Act methodology

could involve the following modules. The system would have a perception module able to detect

the cargo by use of machine vision and markers. The system would then have a planning module,

which based on the data fed by the perception module, would generate an appropriate route of the

crane in order to avoid collision. Finally the system would utilize a control module to automatically

attach to the cargo, and then transport it while compensation for heave, sway and heave motions

while an external operator supervises the loading operation.

Another example of an autonomy architecture can be found in [14] where autonomous underwater

vehicles (AUVs) is investigated. The book [14] presents an architecture consisting of planning

and decision making, sensing and perception, monitoring and diagnosis, learning and adaptation

as well as networking and collaboration. The modules monitoring and diagnosis and sensing

and perception utilize both intereo as well as extereoceptive sensors in order to give the AUV

situational awareness of both its internal conditions, as well as map the surrounding environment.

The gathered data is then utilized in the planning and decision making module in order to choose

the optimal behavior to accomplish the AUVs goal. Learning and adaptation is the capability to

adapt to unexpected events with no a priori information or knowledge [14]. Lastly networking and

cooperation, is the capability of multiple drones working together in order to accomplish a goal.

Regardless of the task to be solved, an autonomous system requires a way to toggle between

different behaviors. These behaviors are a collection of actions or maneuvers that allow the system

in question to accomplish its goal [14]. Examples of a behaviors that could be toggled for an AUV

is docking, altitude keeping or seafloor-mapping. A solution to behavior toggling can be found in

the subsumption architecture presented in [15]. This architecture was created with an autonomous

mobile robot in mind, and divides the problem of creating a autonomous mobile robot into what

is described as levels of competence. These range from avoiding contact with both moving and

stationary objects at the lowest level, to reasoning about the behavior of objects at the highest
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level [15]. These levels of competence are achieved by creating different layers of control, where

each control layer is able to interface with with the layer below it. Each of the control layers can

work on their own individual goals, but is kept in check by the use of a suppression mechanism

that mediates the actions taken. This allows for multiple goals being worked towards at the same

time, but allow certain goals such as collision avoidance to take precedence when needed.

Another method of choosing behaviors instead of using a suppression mechanism, is to organize

each behavior into states and utilize a finite state machine (FSM) in order to toggle between them.

An FSM consists of a set of states, and a set of transitions between pairs of states [16]. A transition

takes in a condition that causes the transition in state, and performs an action during the state

transition. In order to display FSMs, one can utilize state diagrams. Here states are shown as

circles, and transitions are shown as arrows from a source to a target state. Each arrow is labeled

with the condition and action of the transition [16].

Figure 9: State diagram showing two states and two transitions

In Figure 9 an illustration of how a state diagram can be drawn is shown. The state machine

is composed of State1 and State2, and contains two transitions. To each transition there is a

condition and a action that will trigger should the condition be met.

Utilizing an FSM approach in order to change the behavior of a robot is suited for pre-scripted

mission plans, where the FSM can either toggle between states based on what task has been

accomplished, or change states based on the amount of time has passed since the last change of

state. In order to account for uncertainties in the operation it is possible to add fallback states,

which are states that sets the autonomous system into a minimal risk condition. It is worth noting

however that these fallback states need to be implemented ahead of time as well, and will thus

only catch situations that the programmer has deemed likely to occur during the operation.
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2.3 Bond graph modeling

The following section is based on [8] and [7] and aims to give a brief summary of the bond graph

language, and how it can be used to model dynamical systems. For a more in depth explanation

of all constitutive laws the reader is advised to read [8] or [7] where the bond-graph modeling

language is thoroughly presented.

The bond graph modeling language allows for modular system implementations in a graphical

manner, and considers the energy flow, storage and dissipation between system components. The

modeling language considers a system to be composed of one or more sub-models, which can be

further simplified to elements. Energy is transferred instantaneously and without loss between

components by the use of ports and power bonds as can be seen in Figure 10. Elements with a

single port are called single-port elements, and elements with multiple ports are categorized as

multi-port elements.

Figure 10: A larger system consisting of 2 subsystems connected with a power bond. Ports are
shown as a black and white square.

Bond graph modeling utilizes four different variables in order to describe the energy flow of dy-

namic systems. These are the power variables effort e(t) and flow f(t) as well as the generalized

displacement q(t) and generalized momentum p(t). The power variables e(t) and f(t) are trans-

ferred by the use of a power bond, where the half-arrow indicates the positive power direction.

The power P delivered from a power bond can be defined in terms of the effort and flow variable

as

P = e · f. (1)

Additionally the generalized momentum and displacement are defined from the following con-

stitutive relations [8]:

p(t) =

∫ t

0

e(t)dt+ p(0) (2)

q(t) =

∫ t

0

f(t)dt+ q(0) (3)

The physical meaning behind the flow, effort and generalized momentum and displacement differs

depending on the domain of the system being modeled. In the case of a mechanical system con-

cerned with translations, the effort and flow variable will denote force [N ] and translational velocity

[m/s] respectively. The generalized displacement and momentum will then denote distance [m]
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and the linear momentum [kgm/s]. In the case of a mechanical system concerned with rotation the

effort and flow will be moments [Nm] and angular velocities [rad/s]. The generalized momentum

and displacement then becomes angular momentum [Nms] and angles [rad].

In order to dissipate, provide, transform as well as store both kinetic and potential energy, several

single and multi-port elements are used. Energy dissipation can be modeled by the use of the

single-port R-element, which can represent friction in a mechanical system. The single-port source

elements Sf and Se can introduce energy to a system by setting either a flow or an effort respect-

ively. Transformation of energy can be represented by the two-port transformer element TF, and

storage of kinetic energy can be modeled by the single-port I-element which can represent inertia

for a mechanical system. Lastly the storage of potential energy can be modeled as the single-port

C-element, which can represent a mechanical spring.

To connect the single and multi-port elements to a larger bond graph, one can make use of junctions.

The two main junctions are the common effort junction 0-junction and the common flow junction

1-junction. Each of these have their own laws. Inspecting Figure 11a showing the numbered

1-junction the following relations holds

e1 − e2 − e3 = 0 (4)

f1 = f2 = f3. (5)

For the numbered 0-junction in Figure 11b the opposite holds

e1 = e2 = e3 (6)

f1 − f2 − f3 = 0. (7)

(a) 1-junction with causal strokes (b) 0-junction with causal strokes

Figure 11: The common flow and effort junctions with assigned causality and numbered power
bonds.

In addition to transferring power, power-bonds also show the causality by the use of the causal

stroke which is represented as the vertical line on the power bond. The direction of the causal

stroke determines whether an effort is fed into or comes out of a given port element, as can be

seen in Figure 10. The junctions as well as several of the elementary bond graph elements have

causal considerations. The common effort junction can only have a single power bond providing

the effort, while the common flow junction can only have a single power bond providing the flow

to the junction as seen in Figure 11. Both of the source elements have a fixed causality, with the

flow source having fixed flow out, while the effort source having fixed effort out. The R-element

can either have a flow or effort entering the element, but the I and C element can have unwanted
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causality configurations called differential causality. Differential causality is a result of having to

differentiate instead of integrating in order to provide an effort or flow, and is unwanted due to

mathematical reasons.

Elements Constitutive laws
Se e
Sf f
MSe e(t)
MSf f(t)

e = Rf (linear)
R e = ϕR(f) (non-linear)

q = Ce (linear)
C q = ϕC(e) (non-linear)

p = If (linear)
I p = ϕI(f) (non-linear)
TF e1 = me2, f2 = mf1
MTF e1 = m(t)e2, f2 = m(t)f1

Table 1: Constitutive laws for common bond graph elements used in the thesis. The laws can be
found in [8] and [7].

Table 1 shows the constitutive laws for the most commonly used bond graph elements used in

the thesis. Here I,C and R are the constant inertia, compliance and resistance parameters, while

ϕI(f), ϕC(e), ϕR(f) are nonlinear functions. The parameters m and m(t) are the constant and

time-varying modoluses. For a more comprehensive overview on how the laws change with regards

to causality, the reader is recommended to read [7].

2.4 Fields and vectorial power bonds

When working with systems consisting of multiple DOFs it can be useful to use vectors and matrices

instead of scalars as this will allow for more compact bond-graphs. Similarly to the scalar power

bonds described in Section 2.3, vectorial power bonds also provide power in the direction of the

direction of the half-arrow.

Figure 12: Vectorial and scalar power bonds.

However now the effort and flow variables associated with the power bond becomes vectors as seen

in Figure 12:

f(t) = [f1(t), f2(t), . . . , fn(t)]
T (8)

e(t) = [e1(t), e2(t), . . . , en(t)]
T (9)

Additionally the power provided from the vectorial power bond becomes:
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P(t) = e(t) · f(t). (10)

The earlier single port elements are now changed to take in vectors rather than scalars and R, C, I -

elements now become fields containing several scalar ports. Additionally the IC-field is introduced.

This field has the characteristics of both an I and C elements, and can allow for more compact

bond graphs of rigid bodies while avoiding differential causality.

2.5 Power muxer and demuxer

An important element that the thesis makes use of is the power muxer and demuxer, as the

integrated model uses power bonds of different dimensions depending on the submodel.

Figure 13: Illustration of power muxer operating in 3 dimensions

Figure 14: Illustration of power demuxer operating in 3 dimensions

As seen in Figure 13 a power muxer is able to compose a power bond containing each of the scalar

bond graphs. The power demuxer shown in Figure 14 shows how a three dimensional vectorial

power bond can be decomposed into three separate power bonds. The power muxer and demuxer

is capable of performing these operations with n dimensional input and output power bonds.
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3 Lagrangian and Hamiltonian mechanics

The following section is based on the theory presented in [9] and will introduce the concepts of

coordinate frames, as well as quasi- and generalized coordinates. Then the concepts of potential,

as well as kinetic energy will be presented. Lastly, the Lagrangian equation of motion presented

with both generalized and quasi-coordinates will be shown.

3.1 Reference frames

In order to describe the movement of a rigid body moving in R3, one needs to be familiar with the

concept of reference frames. A reference frame is its own coordinate system and can be defined by

its linear independent base vectors i, j, k, and its origin pO = [xO, yO, zO]
T from which the base

vectors originate. Typically one defines these base vectors to be orthonormal, and in accordance

with the right hand rule. It is worth noting that any vector r can be resolved in one or more

coordinate systems [9].

When working with more than one reference frame, it is useful to add a superscript and subscript

of vectors and points in order to explain which coordinate frame the point or vector is explained

in terms of. In the case of two different frames {0} and {1}, then the vector r01/0 is described in

terms of the {0} frame as shown in the superscript. The subscript {1/0} explains that the origin

of the vector starts in {0} and spans to {1}. Utilizing the aforementioned conventions, one can

easily keep track of how one frame moves in relation to another, which is useful when one describes

the movement of reference frames relative to a inertial or common reference frame.

A useful tool for transforming from one coordinate system in R3 to another is utilizing rotation

matrices. The elementary rotation matrices allow for rotating along the x, y and z axis. Following

the conventions presented in [17] they are defined as Rx,ϕ, Ry,θ and Rz,ψ respectively, where the

rotation angle about the x, y and z axis is defined as ϕ, θ and ψ.

Rx,ϕ =

1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 ,Ry,θ =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 ,Rz,ψ =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


(11)

The rotation matrices have several key properties, such as not being commutative [9] Rx Ry Rz

̸= Rz Ry Rx, and being orthogonal which implies R−1 = RT.

3.2 Generalized coordinates

Generalized coordinates can be defined as the set of states that are able to express all possible

system configurations. For a system with n degrees of freedom, the generalized coordinates of a

system is represented in vectorial form as [9]

qk = [q1, q2, . . . , qn]
T . (12)
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It is important to note that the choice of generalized coordinates are not unique, and need to at

least correspond to the amount of degrees of freedom the system has.

3.3 Quasi coordinates

Quasi-coordinates are defined as linear combinations of the time rates of the generalized coordinates

of a system, where the generalized coordinate ωs can be presented as [9]

ωs = α1sq̇1 + α2sq̇2 + · · ·+ αnsq̇n (13)

In vectorial form this becomes:

ω = αT q̇k (14)

Here ω is the vector representing each quasi coordinate. αT is the transposed n × n transformation

matrix, and q̇k is the vector containing the timerate of each generalized coordinate.

3.4 The Lagrangian equation of motion

In order to present the Lagrangian, expressions for the kinetic end potential energy should be

presented. The kinetic energy of a rigid body existing in R3 is given as a function of both angular

and translational velocity:

T =
1

2
mvT

c vc +
1

2
ωT Iω. (15)

Here m is the mass of the rigid body, and vc is the translational velocity vector of the center of

mass in the rigid body. Meanwhile, ω and I are the rotational velocity vector and rotational inertia

matrix of the body [9].

The expression of potential energy of a rigid body can take different forms based on the presence

of restoring or gravitational forces acting on the body. However the potential energy will not be a

function of the velocities, but rather the position vector r of the system [9]. A general expression

of the potential energy V can be given as:

V (r) =

∫ r0

r

Fdr. (16)

Where F is a given force acting on the system, and r0 and r is a reference position and system

position respectively [9].

Now the Lagrangian can be defined as the difference in kinetic and potential energy as:

L = T − V. (17)
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Utilizing generalized coordinates, the Lagrangian equation of motion is found as [9]:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= Qk. (18)

Here Qk represents the generalized forces acting on the system, and qk represents the k-th gener-

alized coordinate. Another way of representing the same equation is represented in [7]

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Ek. (19)

where Ek contains both generalized forces, as well as terms from the potential energy V . Utilizing

Equation 19, it is possible to rewrite the equation into Hamiltonian form. This can be done as

shown in [7] by first defining the generalized momentum pk as

pk =
∂T

∂q̇k
. (20)

Equation 19 can now be rewritten into:

ṗk =
∂T

∂q̇k
+ Ek. (21)

In matrix form this becomes:

pk = M(qk, t)q̇k + a(qk, t). (22)

Here M(qk, t) is a symmetric matrix, and a(qk, t) is a vector that occurs when the system includes

time-varying velocity sources as explained in [7]. Finally solving for q̇k this results in:

q̇k = M(qk, t)
−1[p− a(qk, t)]. (23)

3.5 Lagrangian equation of motion in quasi coordinates

When utilizing quasi coordinates one needs to take into account the transformation matrices

between generalized and quasi coordinates when developing the equations of motion. The Lag-

rangian equation of motion found in Equation 18 then turns into:

d

dt

∂T̄

∂ω
+ βTγ

∂T̄

∂ω
− βT

∂T̄

∂q
+ βT

∂V

∂q
= βTQk. (24)

Here T̄ is the kinetic energy as a function of generalized and quasi coordinates as shown in [9].

Additionally, the transformation matrix β is defined as: β = (αT )
−1

, and relates the time rates

of the generalized coordinates to the quasi coordinates. Additionally γ is defined as the n × n

matrix:
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γ =


ξ11 . . . ξ1n
...

. . .
...

ξn1 . . . ξnn

−


ωTβT ∂α

∂q1
...

ωTβT ∂α
∂qn

 (25)

ξij = ωTβT
∂αij
∂qn

(26)

Here
∂αij

∂qn
is the element-wise partial derivative of the alpha matrix with respect to the n-th gener-

alized coordinate. It is important to note that the choice of using quasi-coordinates or generalized

coordinates is up to the preference of the modeler. Generalized coordinates makes it so that the

kinetic energy of the system needs to be expressed in regards to the inertial frame. However,

modeling a system using quasi-coordinates can allow the kinetic energy to be expressed in terms

of a non-inertial frame at the cost of using the aforementioned transformation matrices.
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4 Ship and crane dynamics

The following chapter uses the theory presented in [17] and [18] in order describe the equations of

motion for a ship. Then the theory presented in [10] will be used to review the concept of geometric

jacobians as well as inverse kinematics for an anthropomorphic manipulator.

4.1 Equation of motion of a ship in 6 DOF

As mentioned in Section 2.1 a ship is able to move in 6 DOF. These DOFs are translational

movement along the x, y and z axes, as well as the rotations along each axis. In order to describe

the motion of the body-fixed reference frame {b} relative to an inertial frame {0} the following

equation can be utilized:

(M+A)v̇0
b/0 +C(v0

b/0)v
0
b/0 +Dv0

b/0 +Gη0b/0 = τ0
b/0. (27)

The term (M+A)v̇0
b/0 represents the inertial forces. Here A is the 6 × 6 added mass matrix and

M is the 6 × 6 inertia tensor denoted as [17] and also presented in [5],

M =



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Ixz
mzG 0 −mxG −Iyx Iy −Ixz
−myG mxG 0 −Izx −Izy Iz


(28)

where xG, yG, zG represents the x, y and z coordinate of the center of gravity of the vessel. In

addition, Ix, Iy, Iz is the rotational inertia of the vessel about the x, y and z axis respectively, and

m is the mass of the vessel. Lastly, Izx, Izy, Ixy, Ixz, Iyx and Ixz are known as the products of

inertia, and describes the imbalance of mass distribution of the rigid body in question.

Additionally the coriolies and centripetal matrix C(v0
b/0)v

0
b/0 is composed of contributions from

the hydrodynamic added mass and rigid body centripetal matrices as:

C(v0
b/0)v

0
b/0 = CRB(v

0
b/0)v

0
b/0 +CA(v0

b/0)v
0
b/0 (29)

The termCA(v0
b/0)v

0
b/0 represent the hydrodynamic coriolis and centripetal forces, whileCRB(v

0
b/0)v

0
b/0

describes the rigid body coriolies and centripetal forces acting on the vessel. CRB(v
0
b/0) is a 6 ×

6 matrix as described in [17] and also presented in [5]:
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CRB(v) =



0 0 0 c41 −c51 −c61
0 0 0 c42 c52 −c62
0 0 0 −c43 −c53 c63

−c41 −c42 c43 0 −c54 −c64
c51 −c52 c53 c54 0 −c65
c61 c62 −c63 c64 c65 0


(30)

c41 = mzGr c42 = mω c43 = m(zGp− v)

c51 = m(xGq − ω) c52 = m(zGr + xGp) c53 = m(zGq + u)

c54 = Izxp− Ixr c61 = m(v + xGr) c62 = −mu

c63 = mxGp c64 = Iyq c65 = Ixp+ Ixzr

4.2 Hydrodynamic terms

In addition to inertial and centripetal terms, the equation of motion also contain the added mass

matrix A, and hydrodynamic damping and restoring forces from the terms Dv0
b/0 and Gη0b/0.

Added mass can be viewed as a virtual mass an accelerating body displaces as the body travels

through a fluid, as the body and fluid cannot occupy the same space at the same time [17]. The

damping matrix D can be viewed as a function of both potential and viscous damping, where

viscous damping can either be approximated from empirical formulas or found from experiments.

Estimates of the potential damping can be found by investigating the classical frequency-domain

model. By exciting the frequency-domain model with an external force at different frequencies it

is possible to gain approximations for the potential wave radiation damping, as well as develop

expressions for added mass. However, when observing the case of a calm sea state, the excitation

frequency can be approximated to zero, and as such the added mass, and damping coefficients only

need to be found for a specific frequency. The damping matrix can be expressed as [17]

D(ω)tot = Dpot(ω) +Dv(ω). (31)

Where Dpot(ω) is the frequency dependent potential wave radiation damping, and Dv(ω) is the

frequency dependent viscous damping, both being 6 × 6 matrices. Meanwhile the restoring force

matrix G can be defined as [18],[5]

C33 = ρgAwp (32)

C35 = C53 = −ρg
∫ ∫

Awp

xds (33)

C44 = ρg∇(zB − zG) + ρg

∫ ∫
Awp

y2ds = ρg∇GMT (34)
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C55 = ρg∇(zB − zG) + ρg

∫ ∫
Awp

x2ds = ρg∇GML. (35)

When linearizing and assuming that the ship in question has yz-symmetry the resulting restoring

force matrix becomes

G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ρgAwp 0 0 0

0 0 0 ρg∇GMT 0 0

0 0 0 0 ρg∇GML 0

0 0 0 0 0 0


. (36)

Here GMT and GML are the GM value in roll and pitch respectively. Meanwhile ρ, g and ∇
represent the fluid density, gravitational acceleration and displaced water volume. Awp is the

waterline area of the vessel. Additionally, the hydrodynamic coriloies and centripetal matrix

CA(v) is defined according to the maneuvering theory presented in [17] as:

CA(v) =

[
03×3 −S(A11v1 +A12v2)

−S(A11v1 +A12v2) −S(A21v1 +A22v2)

]
(37)

Here v1 and v2 are the translational and angular velocity vectors respectively. S(x) is the cross-

product operator, and A11, A12, A21 and A22 are 3 × 3 matrices that make up the system inertia

matrix of added mass as [17]:

A =

[
A11 A12

A21 A22

]
(38)

4.3 Crane dynamics

A crane can be viewed as an anthropomorphic robotic manipulator, and can be composed of one

or more links that are connected to either revolute or prismatic joints. Revolute joints induce

rotational motion, while prismatic joints induce translational motion.
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Figure 15: Sketch of anthropomorphic manipulator showing revolute joints and rotation axi. In-
spiration taken from [10]

In order to describe the motion of a robotic manipulator, expressions for kinetic as well as potential

energy of the system needs to be developed. This requires being able to describe the translational

and angular velocity of the center of gravity of each link on the robotic manipulator for a common

frame of reference. In order to accomplish this, describing the relationship between joint velocities

and the angular and translational velocities of each center of mass by the use of geometric jacobians

becomes important.

A geometric jacobian J is able to relate joint velocities q̇ to the translational and angular velocities

at a given point as [10]

v =

[
ṗ

ω

]
= J(q)q̇ (39)

where ṗ and ω are vectors representing the translational as well as angular velocity of the point.

However, in order to find a geometric jacobian, it is worth reviewing how one can perform frame

transformations. A frame transformation can be described by utilizing the elementary rotation

matrices, where a frame transformation from a given inertial frame {0} to given frame {n} can be

described as

Rn
0 = Rn

n−1 . . .R
2
1R

1
0. (40)

Consequently the positional vector describing the position of frame {n} relative to {0} in terms of

frame {0} can be transformed to describe the position relative to a given coordinate frame {i} by

the use of transformation matrices as:

rin/0 = Ri
0r

0
n/0 (41)

Now consider the derivative of a rotation matrix which is defined as:

Ṙ = S(t)R(t) (42)

Where S(t) can have the following physical definition [10]:
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S(t) =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (43)

When observing a physical system ωx, ωy, ωz can be interpreted as the angular velocities along

the x,y and z axis of the rigid body whose body-fixed frame is the time varying reference frame

R(t). Now the movement of the point p(t) in space described as a function of the time varying

rotation matrix R(t) and the constant vector p’ can be shown as [10]:

p(t) = R(t)p’ (44)

, which will have its velocity described as:

ṗ(t) = Ṙ(t)p′ = S(t)R(t)p′ = ω(t)×R(t)p’ (45)

Using these results the movement and velocity of a point in space relative to a given frame {n}
relative to a frame {0} can be described as:

p0
n/0 = 00

n/0 +R0
np

n
n/n (46)

ṗ0
n/0 = 0̇0

n/0 + ω(t)×R(t)0np
n
n/n (47)

This can be further simplified to:

ṗ0
n/0 = 0̇0

n/0 + ω(t)× p0
n/n (48)

The expression presented in Equation 48 is useful when expressing the velocities of each link in a

robotic manipulator. However it is worth noting that the translational and angular velocity of a

given link is dependent on the translational and angular velocities of the previous links. In order to

develop the translational velocity contributions for each link the following formula can be utilized

[6]:

v
(q̇)
cgi/0 = J

vcgi

q̇ q̇

=

(ebp × rbcgi/p) · q̇, for revolute

ebp · q̇, for prismatic
(49)

Here rcgi/p is the coordinate spanning from the origin of frame p to the center of gravity of the

i-th link, while ebp is the vector about which the frame p rotates or translates about. Lastly q̇ is

the time-rate of the generalized coordinate to be inspected. For the case of angular rates one can

use the formula:

ω
(q̇)
i = Jωi

q̇ q̇
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=

ebp, for revolute

03×1, for prismatic
(50)

4.4 Inverse kinematics and workspace of an anthropomorphic manipu-

lator

Inverse kinematics is the problem of acquiring the joint angles, when the desired end-effector

position is known. Using the lengths and angles shown in Figure 15 and given a desired end-

effector point Pd = [Pxd, Pyd, P zd] the inverse kinematics are given as [10]:

θ1d = atan2(Pyd, Pxd) (51)

θ2d = atan2(s2, c2) (52)

θ3d = atan2(s3, c3) (53)

c3 =
Px2d + Py2d + Pz2d − L12 − L22

2 · L1 · L2
(54)

s3 = −
√
1− c32; (55)

s2 =
(L1 + L2 · c3) · Pzd − L2 · s3 ·

√
Px2d + Py2d

Px2d + Py2d + Pz2d
(56)

c2 =
(L1 + L2 · c3) ·

√
Px2d + Py2d + L2 · s3 · Pzd

Px2d + Py2d + Pz2d
(57)

It is worth noting that one can only find the desired joint orientations when the desired end-effector

point is within the workspace of the robotic manipulator. The workspace can be defined as all

possible positions that the manipulator is able to reach. For an anthropomorphic manipulator

where one does not account for contact with the ground or other links, the workspace can be

represented as the set:

Ω =
{
x ∈ R3 | ∥x∥ ≠ 0 | ∥L1 − L2∥ < ∥x∥ ≤ ∥L1 + L2∥

}
. (58)

Where x is the 3× 1 vector representing the end-effector position spanning from joint1.
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5 Ship and crane integration

This chapter aims to explain how to integrate a ship and crane by the use of quasi-coordinates,

as well as discussing the impact a crane will have on the stability of an integrated ship and crane

system. Lastly the process of running 20-sim in parallel with a .dll in order to improve simulation

time will be explained.

5.1 Integrating a ship and crane by the use of quasi-coordinates

The procedure for creating an integrated crane and vessel model is explained in depth in the paper

[6]. This section aims to review the main particulars in order to crate such an integrated model

for the Revolt vessel and 3-DOF crane presented in Section 2.1.

In order to create an integrated vessel and crane model, one must first define the generalized

coordinates of the system. The generalized coordinates chosen in this thesis can be represented as

q =

r
0
b/0

Θ

qc

 . (59)

Here r0b/0 is the vector representing the surge, sway and heave motions of the ship and Θ is the

angular displacements along each of the axis of the body fixed frame. Lastly qc is the vector

containing the angular joint displacements.

The quasi coordinates are defined as time rates of each generalized coordinate defined in terms of

the body-fixed frame of the vessel as:

ω =

v
b
b/0

ωb
b/0

q̇c

 . (60)

The terms vb
b/0 and ωb

b/0 represent the translational as well as angular velocity vectors of the

vessel in the body fixed frame, while q̇c represents the vector denoting the angular joint rates

of the crane. Recall from Section 3.3 that the quasi coordinates can be found by utilizing a

transformation matrix α. The complete transformation matrix when including the crane joints

becomes:

αT (q) =

 Rb
0 03×3 03×3

03×3 T(Θ)−1 03×3

03×3 03×3 I3×3

 . (61)

The terms Rb
0 represents the rotation matrix transforming from the inertial to body fixed frame

of the vessel, while T(Θ)−1 is the rotation matrix defined as [6]:

T(Θ)−1 =
[
ib,R

T
x jb,R

T
xR

T
y kb

]
. (62)
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Where ib, jb, kb are defined as the unit normal vectors spanning from the body fixed frame:

ib =

10
0

 , jb =
01
0

 ,kb =
00
1

 (63)

Additionally, the quasi-coordinate equation of motion presented in Section 3.5 can be rewritten to

state space as explained in [6] as:

ω = B−1p (64)

q̇ = βω (65)

ṗ = fp(q,ω) + βT τ (66)

The terms β, fp(q,ω) and B are defined as:

β = (αT )−1 (67)

fp(q,ω) = βTγBω +
1

2
βTωT

∂B

∂q
ω +CA(ω)ω (68)

B = Bb +

3∑
i=1

Bi (69)

Where CA(ω) is the hydrodynamic coriolies and centripetal matrix, Bb is the mass matrix of the

ship expressed in terms of the body-fixed frame of the ship, while Bi are the mass matrices of each

crane links. These are defined as:

Bb = JTb

[
M 03×3

03×3 Ig

]
Jb. (70)

Bi = JTi

[
Mi 03×3

03×3 Ibi

]
JTi . (71)

Here Ig is the inertia tensor of the ship relative to the center of gravity, while Ibi is the inertia

tensor of the i-th link expressed in terms of the body fixed frame of the vessel.

The matrix M is defined as

M = mI3×3 (72)

where m is the mass of the ship. Additionally Mi is defined in a similar manner as

Mi = miI3×3 (73)
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where mi is the mass of the i-th link. Lastly the geometric jacobians Jb and Ji are defined as:

Jb =

[
Jv
b

Jωb

]
(74)

Jv
b =

[
I3×3 ib × rbcg/0 jb × rbcg/0, kb × rbcg/0 03×3

]
(75)

Jωb =
[
03×3 I3×3 03×3

]
(76)

Ji =

[
Jv
i (q)

Jωi (q)

]
. (77)

Here Jb is the geometric jacobian matrix that allows one to express the kinetic enegry of the ship

in terms of quasi coordinates, while Ji is the geometric jacobian of the i-th link expressed in terms

of the body-fixed frame of the vessel.

5.2 Simulation setup by use of external .dll

In order to connect a ship and crane there are two main approaches. One can either create

an integrated model by utilizing potential and kinetic energy and the Lagrangian equations of

motion, or connect the two models by the use of very stiff springs. One of the reasons creating

an integrated model is more preferred than simply utilizing stiff springs is due the increase of

computational power. However even an integrated model can also be computationally expensive

to simulate.

In order to combat this, one can utilize the math software Maple in order to find the kinetic

energy of the system, and export key parameters such as the partial derivatives of the mass and

alpha matrix presented in Section 5 to C-code. One can then utilize the integrated development

environment (IDE) Visual Studio in order to compile a .dll, which is an executable that can run

in parallel with a the simulation software 20-sim.

Figure 16: Block diagram of .dll setup in parallel with 20-sim used in thesis
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In Figure 16 the parameters rcog and Θ are the position of the center of gravity in terms of the

body-fixed frame, and the angular displacement vector of the ship. Additionally, qc is the vector

containing the crane joint displacements. The arguments Btot, ∂B/∂q and ∂αij/∂qn are the total

mass matrix of the system, the partial derivatives of the mass matrix with regards to generalized

coordinates and the element-wise partial derivatives of the alpha matrix with respect of to the

generalized coordinates.

5.3 Stability properties of a ship and crane system

The following section is based on [12], where the stability properties of a ship is thoroughly dis-

cussed. Recall from Section 2.1 where the restoring moments in roll and sway was briefly touched

upon. The moment arm GZ is a function of the GM value as shown in the formula

GZ = sin(θ)GM. (78)

The GM value is of particular note when inspecting the stability properties of a ship, and can be

defined as

GM = KM − V CG (79)

where KM is the distance from the keel to the metacentre, and V CG is the vertical position of

the centre of gravity. As discussed in [12], in order for a ship to be stable the GM value needs

to be larger than zero. Intuitively this makes sense when inspecting Equation 78, as a GM value

equal to zero will give zero restoring forces, while negative GM values will induce moments that

will lead a vessel to capsize. Additionally one can see that the larger the GM value is, the larger

the restoring moment will be.

By inspecting Equation 79 it becomes clear that the GM value is dependent on the vertical center of

gravity. The higher the center of gravity is relative to the keel, the smaller the GM-value becomes.

This makes the stability properties of a ship different before and after mounting a shipboard crane.

Attaching a crane on the deck of the ship will move the vertical center of gravity upwards. Addi-

tionally, if the crane is able to move, then the vertical center of mass will vary based on the crane

configurations. Should the crane also be carrying a load, then the vertical center of gravity will

also be further impacted, thus further reducing the restoring moments. Depending on the initial

stability of the ship, this can result in large roll angles.

Another thing to note is how GZ-curves are generated. A single GZ-curve will show the restoring

arm for a specific vertical center of mass and pitch angle, and in order to get accurate GZ-values

for a system consisting of a shipboard crane, one would need to generate a separate GZ curve for

each change in the center of gravity and pitch angle. A simplification to avoid this is to choose a

single GZ-curve when simulating a system where the roll and pitch angles have larger responses

than 10°.
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6 Control

In this chapter the PID-controller as well as the different control schemes used in the thesis will be

explained. The main algorithms to be described are: Point-to-point motion, sway compensation

and crane-tip station-keeping and lastly wire-lowering and heave compensation.

6.1 PID controllers

A PID-controller, short for proportional, integral and derivative controller is commonly used in

the thesis. The resulting control law can take two forms. The two different forms are

u = Kpe+Kdė+Ki

∫
edt (80)

and

u = Kpe+Kp/Tdė+Kp/Ti

∫
edt. (81)

It can be seen that there are two ways of writing the integral and derivative coefficients, as Ki

= Kp/Ti and Kd = Kp/Td, where Ti and Td is the integral and derivative time respectively [19].

The PID-controller has three different gains. The proportional gain Kp · e allows the controller to

quickly converge towards the desired reference. The integral gain Kp/Ti ·
∫
e integrates the error

over time, and can eliminate offsets that can occur with only proportional gain in steady state.

The derivative gain Kp/Td · ė will give a larger contribution to the output for rapid changes in

the error, effectively damping the system. In Figure 17 the block diagram of a PID-controller is

presented.

Figure 17: Block diagram of PID-controller. Also discussed in [19].

6.2 Point-to-point motion of a knuckle-boom crane

In order to perform point-to-point motion with the 3 DOF crane, one must first find the desired

joint angles of the crane in order to reach a given position in the world. This can be done by

developing expressions for the inverse kinematics for the crane. Once the inverse kinematics are

available, one needs to generate a velocity profile describing the motion from the initial joint

configuration of the crane, to the end configuration found from the inverse kinematics. A block

diagram for performing point to point motion is shown in Figure 18.
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Figure 18: Block diagram of point-to-point motion [10].

According to [10] one can choose a third order polynomial in order to determine the joint motion:

q(t) = a3t
3 + a2t

2 + a1t+ a0. (82)

In order to determine the coefficients a3, a2, a1 and a0 the polynomial need to satisfy four con-

straints. These are the initial and end angles qi, qf , as well as the initial and end velocities q̇i,

q̇f . Additionally the time for the manipulator to perform the motion tf also needs to be specified.

The following constraint equations to be solved then becomes:

a0 = qi (83)

a1 = q̇i (84)

a3t
3
f + a2t

2
f + a1tf + a0 = qf (85)

3a3t
2
f + 2a2tf + a1 = q̇f (86)

(87)

However, in a loading operation controlling the start and end accelerations of the crane tip can

be of use. This is because smaller accelerations can allow for smaller pendulum motions of the

cargo attached to the wire. In order to choose the desired start and end accelerations, a fifth order

polynomial needs to be chosen. This gives six constraint equations to be solved. The polynomial

that represents the joint motion then becomes [10]:

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0. (88)

Meanwhile the constraint equations consisting of initial as well as end positions and velocities,

now also contain initial and end acceleration as well. The constraint equations to be solved then

becomes [10]:

28



a0 = qi

a1 = q̇i

2a2 = q̈i (89)

a5t
5
f + a4t

4
f + a3t

3
f + a2t

2
f + a1tf + a0 = qf (90)

5a5t
4
f + 4a4t

3
f + 3a3t

2
f + 2a2tf + a1 = q̇f (91)

20a5t
3
f + 12a4t

2
f + 6a3tf + 2a2 = q̈f (92)

(93)

Solving the constraint equations for the fifth order polynomial then allows one to generate the

velocity profile to each joint of the manipulator as [10]

q̇i = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+ a1 (94)

where the coefficients a5, a4, a3, a2, a1 and a0 needs to be solved for each joint velocity profile q̇i.

Utilizing Equation 94, one can the perform point-to-point motion with the manipulator. However

the the trajectory qi only satisfies the aforementioned constraints, and is thus not necessarily the

most optimal path the manipulator can take in order to reach the end-configuration.

6.3 Sway compensation and crane-tip station-keeping

The problem of sway compensation is to dissipate the kinetic energy of the load by steering the

movements of the crane tip and adjusting the wire length [20]. In this thesis the control problem

of sway compensation of a crane-tip can be categorized into three main components. The first

problem is station-keeping, as the desired crane tip location is not to diverge from the wanted

end-effector position. The second control problem is to minimize the pendulum motions of the

spreader mechanism which is attached to the crane tip by wire. This can be done by minimizing

the moment arm of the pendulum by controlling the crane tip to be in the same x and y position

of the spreader. Lastly one needs to translate translational motion in x, y and z to desired joint

angles.
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Figure 19: Principle sketch for sway compensation in y-direction

In Figure 19 the moment arm of the crane-tip and spreader system is shown as yw, while the crane

tip position relative to a wanted end effector position is shown as yt. In order to make yw, and

yt go towards zero as time goes to infinity PID-controllers are used. The control law for sway

compensation in y-direction then becomes:

usway−y = Kpey+Kdėy+Ki

∫
eydt = Kp[yspreader−ytip]+Kd[yspreader−ytip]

d

dt
+Ki

∫
[yspreader−ytip]dt.

(95)

In order to expand the control laws to include x - direction, one needs to include another DOF.

This can be simply done by using the same errors, but inspecting the x positions instead.

usway−x = Kpex+Kdėx+Ki

∫
edt = Kp[xspreader−xtip]+Kd[xspreader−xtip]

d

dt
+Ki

∫
[xspreader−xtip]dt.

(96)

Additionally the control law for station-keeping of the crane tip in x, y and z direction becomes:

ustationkeeping−x = Kpex +Kdėx +Ki

∫
exdt = Kp[xd − xm] +Kd[xd − xm]

d

dt
+Ki

∫
[xd − xm]dt.(97)

ustationkeeping−y = Kpey+Kdėy+Ki

∫
eydt = Kp[yd−ym]+Kd[yd−ym]

d

dt
+Ki

∫
[yd−ym]dt. (98)

ustationkeeping−z = Kpez+Kdėz+Ki

∫
ezdt = Kp[zd−zm]+Kd[zd−zm]

d

dt
+Ki

∫
[zd−zm]dt. (99)

Here xm, ym and zm represents the measured crane tip position and xd, yd and zd are the desired

crane tip positions. Kp, Kd and Ki the proportional, derivative and integral controller gains for
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each DOF, which do not need to be identical.

In order to accomplish both station-keeping and moment minimization, a control system that

utilized both station-keeping and moment-minimization in parallel was chosen. With the controllers

having the same proportional and derivative gains in order to not out-compete each-other. The

resulting control input for the crane then becomes:

utot =

usway−x + ustationkeeping−x

usway−y + ustationkeeping−y

ustationkeeping−z

 (100)

Lastly, in order to generate translational motion of the crane tip, the geometric jacobian relating the

joint velocities to the translational end-effector velocities was chosen. By inverting the geometric

jacobian one could find the desired joint angles that would induce the wanted translational motion.

The resulting control algorithm can then be seen in Figure 20.

Figure 20: Block diagram of sway compensation and crane-tip station-keeping

6.4 Wire lowering and heave compensation

Vessels at sea encounters environmental forces in the form of wind, waves and current. Out of

these waves in particular can induce unwanted vertical motions on cargo being transported by

the use of a shipboard crane. The minimization of the vertical displacements induced by heave

motions is called heave compensation and can take the form of both passive as well as active heave

compensation. Passive heave compensation involves utilizing spring damper systems which act as

load absorbers, which in turn attenuates heave motion of a given load. Meanwhile active heave

compensation involves a control system compensating for heave motion by the use of actuators

[21].

In this thesis a control scheme for active heave compensating by utilizing wire control has been

considered. In order to minimize the heave induced motions that the ship has on the cargo attached

to the crane tip the desired reference of the winch was set to be the opposite motion that would

be generated in heave, as this would cancel out the relative motion of the spreader mechanism.

Additionally the problem of lowering the cargo while the vessel experienced heave motions was also
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considered. In order to lower the spreader and attached cargo to the ground, while compensating

for heave motions, the winch controller was given a reference composed of both the opposing

heave motion reference added together with a reference generated from a reference filter. The final

reference is then fed into a PID controller.

Figure 21: Block diagram of heave and wire control

A reference filter allows for references that a controller can more easily follow by generating a

curve from the initial system position to a desired end position. The reference filter chosen for

wire control is taken from [22] where it is intended to generate references for a ship performing

dynamic positioning in the earth fixed reference frame:

aed +Ωved + Γxed = Γxref

ẋref = −Afxref +Afηr (101)

The terms xref ẋref is the reference and its timerate. Additionally, aed, v
e
d and xed represent the

desired acceleration, velocities and position trajectories in the earth fixed frame, while ηr is the

vector denoting new reference coordinates. The matrices Ω, Γ and Af is the non-negative damping

matrix, the diagonal stiffness matrix and a first order diagonal and non-negative set-point filter

gain matrices respectively. Each matrix are defined as [22]

Ω = diag{2ζiωi} (102)

Γ = diag{ωi} (103)

Ω = diag{1/ti} (104)

were ζi, ωi and ti are tuning parameters.

However, as the wire control algorithm has 1 DOF, the equations presented in Equation 101

becomes scalars. Additionally the reference frame used in the winch is simply the inertial reference

frame, this simplifies the earlier equations to be:
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a0d +Ωv0d + Γx0d = Γxref

ẋref = −Afxref +Afηr. (105)

6.5 Integrated control system

The integrated control system was created with the intent of being able to transport cargo from

an initial position, to a given end position. The cargo in question can either be the spreader itself,

or a spreader connected to a container. In order to accomplish this the integrated system makes

use of an FSM in order to toggle between the different states, to which different behaviors are

associated.

Figure 22: State diagram of FSM

The state diagram shown in Figure 22 shows how each state is toggled between, as well as the

transitions between each state. Each state is denoted as a circle, and the final state is shown as a

double circle.

In order to evaluate if the crane-tip has reached its desired end-goal the combined position error

in each DOF is used:

ex = |xd − xm|

ey = |yd − ym|

ez = |zd − zm|

CombinedError = ex + ey + ez (106)

Here xm, ym, zm are the measured x, y and z positions, while xd, yd, zd are the desired positions
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in each DOF. The combined error is then evaluated against an acceptable error margin which can

be adjusted. Additionally, the sway-compensation and station-keeping algorithm is toggled by the

use of a timer. If the simulation-time since the sway-compensation algorithm initiated surpasses a

given tmax, then the algorithm will stop and enter the next state. Lastly the desired cargo position

is determined to be reached if the combined error described in Equation 106 is sufficiently small.
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7 Modeling

The following chapter aims to give an overview of the implementation of the physical structures as

well as the control algorithms presentment in the thesis. Closer details on the implemented code,

and control algorithms are presented in the appendix.

7.1 Assumptions, simplifcations and model parameters

The geometric crane parameters for the downscaled crane modeled by Gyberg [4] is presented in

Table 2 and Figure 23. Due to the small size of the crane, it was chosen to scale it by a factor of

6,5. This increased the length of the crane links to 18.85 [m] for the lower arm and 6,5 [m] for the

upper arm, as seen in Table 3, providing a reach of around 20 [m]. This was also done in order to

improve the carrying capacity from 16 [kg] to several tonnes, as it was found that in that cranes

with reach spanning around 20 [m] is able to carry 9-6 [tonn] [23]. However the exact weight the

upscaled crane model would be able to carry is unknown, as this is dependent on the force of the

crane actuators, and material strength of the crane.

Figure 23: All crane lengths [4].
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Downscaled crane parameters Size Unit
Capacity 16 [kg]
L1 2900 [mm]
L2 1000 [mm]
h 1450 [mm]
a 100 [mm]
b 500 [mm]
u 300 [mm]
r 150 [mm]
w 2000 [mm]
c 200 [mm]
s 150 [mm]
Y cm1 0 [mm]
Xcm1 0 [mm]
k 500 [mm]
n 400 [mm]
p 400 [mm]
o 400 [mm]

Table 2: Key crane parameters of downscale knuckle-boom crane [4].

Upscaled crane parameters Size Unit
L1 18850 [mm]
L2 6500 [mm]
h 9425 [mm]
a 650 [mm]
b 3250 [mm]
u 1950 [mm]
r 975 [mm]
w 13000 [mm]
c 1300 [mm]
s 975 [mm]
Y cm1 0 [mm]
Xcm1 0 [mm]
k 3250 [mm]
n 2600 [mm]
p 2600 [mm]
o 2600 [mm]

Table 3: Geometric crane parameters used in simulation. Scaled by 6,5.

The crane actuators was also simplified to become Sf elements providing joint velocities, and the

mass and inertia of the piston actuators were removed from the model. This choice was done firstly

due to the thesis focus being high level control and modeling of an integrated simulation model

capable of performing a loading operation. Secondly the Maple script used in the ship and crane

integration was not able to take the partial derivatives of the mass matrices when the terms from

the crane actuators were included. The resulting crane actuators therefore lack any delay, respond

instantly and is able to carry any weight the crane or spreader should have.

Furthermore, the spreader mechanism was simplified to be a box with the dimensions width =

2.44 [m], height = 0.30 [m] and length = 6.10 [m]. The inertia was then found by assuming it

to be made of a homogeneous material, where the total mass was assumed to be 1.5 [tonn]. The

wire was simplified to be an overdamped 3D-spring, and controlled by a simplified winch which is
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modeled as a MSf element.

Additionally the GM -value of in roll was found to be larger than 0 even in the worst loading

configuration as shown in Section D. The GM -value of the ship in roll direction was found be

reduced from GM = 0.387 [m] to GM = 0.160 [m]. In order to find an expression of the restoring

coefficient in roll C44, the mean of these GM-values was used, which gave a resulting restoring

coefficients to be: GM = 0.273 and C33 = 6.442 · 106.

(a) Hull received from DNV. (b) Simplified Revolt hull.

Figure 24: Revolt hull before and after pruning.

All the coefficients and rotational inertias of the ship is derived from a 3D model of the Revolt

vessel provided by DNV, which can be seen in Figure 24a. Since the model provided by DNV

could not be imported into the computer aided design (CAD) software Autocad Inventor due to

its large size, work was done to simplify the model. After pruning the 3D model such that only the

simplified hull seen in Figure 24b was left, it was fed into both Autocad Inventor as well as the

ship stability computation program Delftship in order to find reasonable estimates of the inertias

as well as hydrostatic coefficients associated with the vessel.

The inertia tensor of Revolt was found by assuming the hull to be a homogeneous material. Then

the material density that corresponded with the ship weight and volume occupied by the hull was

used, as detailed information of the hull thickness was unavailable. In order to include added

mass, curves showing added mass at different excitation frequencies for a conventional ship in [17]

was used. The added mass coefficients was chosen at ω ≈ 0, as this corresponded with the wave

frequencies found in the case. Lastly hydrodynamic damping was tuned by inspecting the what a

reasonable time constant of the revolt ship would be.
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7.1.1 Main system parameters

Properties Revolt Units
Mass 2400 [tonn]
Ixx 5.902 ·107 [kgm2]
Iyy 5.870 ·108 [kgm2]
Izz 5.986 ·108 [kgm2]
Iyx 1852 [kgm2]
Izx 9.621 ·106 [kgm2]
Izy -527 [kgm2]
Loa 60 [m]
B 14.5 [m]
H 12.5 [m]
Draught 5.045 [m]
C33 4.667 · 106 [Nm/rad]
C44 6.442 · 106 [Nm/rad]
C55 1.624 · 109 [Nm/rad]
R11 150 · 106 [Ns/m]
R22 28.6 · 106 [Ns/m]
R33 1 · 109 [Ns/m]
R44 38.4 · 106 [Nms/rad]
R55 1 · 1010 [Nms/rad]
R66 16.14 · 106 [Nms/rad]
A11 1.4 · 106 [kg]
A22 7.2 · 106 [kg]
A33 11.1 · 107 [kg]
A44 1.75 · 108 [kgm2]
A55 8 · 108 [kgm2]
A66 4.2 · 109 [kgm2]

Table 4: Revolt parameters used in simulation.

Properties Base Lower arm(Link1) Upper arm (Link2) Units
Mass 27515,861 13648,269 1416,126 [kg]
Ixx 60595,194 366338,681 5984,350 [kgm2]
Iyy 64717,665 16050,499 173,304 [kgm2]
Izz 84633,157 372589,19 5851,933 [kgm2]

Table 5: Mass and rotational inertia for the knuckle-boom crane.

Properties Spreader Units
Mass 1.5 ·105 [kg]
Ixx 1.3272 ·108 [kgm2]
Iyy 7.3782 ·108 [kgm2]
Izz 6.880 ·108 [kgm2]
Ixz 7.200 ·106 [kgm2]

Table 6: Mass and rotational inertia for the spreader mechanism [5].
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7.2 All coordinate frames of integrated system

Figure 25: All coordinate frames of complete system

In Figure 25 Revolt has been simplified to be a box, while the 3-DOF knuckle-boom crane is

simplified to be an anthropomorphic manipulator. As seen in Figure 25, the final system consists

of 7 different coordinate systems. The frames related to the vessel is {Cog} and {b}, which

represent the frame associated with the center of gravity and the body-fixed frame of the ship.

The body-fixed frame is located in the middle of the deck of Revolt, and it is important to note

that the center of gravity does not coincide with the body-fixed frame. This is was taken into

account in Section 5, when the mass matrix of the ship was defined, and the center of mass is also

included as part of the arguments the .dll receives when computing the mass matrix and its partial

derivatives.

The crane joint frames remain mostly the same as in [4], but the frames associated with the piston

actuators have been removed as the crane model has been simplified. The frames {1}, {2} , {3}
and {4} correspond to the base frame, lower joint frame, upper joint frame and the crane tip frame

respectively. Lastly, the spreader and its frame {5} is also shown. Since slew control by the use of

tugger wires is outside the scope of the thesis, the rotations of the spreader frame coincides with

the inertial frame.
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7.3 Bond graph model of complete system

Figure 26: Complete system

Figure 26 shows the complete system, and due to the system complexity it has been split into

several sub-models. The ShipAndCrane sub-model contains the integrated bond graph model

of the crane and ship. The CraneJoints block finds the joint positions based on the the desired

joint velocities delivered from the control system. The CraneControlAndFSM block contains

the finite state machine which is responsible for toggling between the different behaviors of the

system, as well as the control algorithms enabling point-to-point motion, crane-tip station-keeping

and sway compensation.

Additionally a power-muxer can be seen. This takes in 3 3-dimensional power bonds, and combines

it into a single 9-dimensional power bond representing the quasi-coordinates of the system. This

power bond is then fed into the block named CraneGravitySpreaderAndWire which contains

the gravitational forces acting on the crane tip and each of the links. The submodel then converts

the gravitational forces into forces and moments which act on the vessel in the body-fixed frame.

Lastly, the submodel also contains the winch controller as well as the spreader and wire model.

7.4 Ship and crane model

Figure 27: Bond graph model of ship and crane
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Figure 27 shows the implementation of the IC-field which is responsible for calculating the quasi-

coordinate equations of motion of the integrated system. The IC-field runs a .dll file in parallel

to the 20-sim application in order to compute the state space equations of the 9 DOF ship-crane

model.

The MTF elements in Figure 27 transforms from the world to the body-fixed reference frame of

the vessel, and it can be seen that the hydrodynamic restoring forces has been implemented as

linear C-elements, while hydrodynamic damping is implemented as linear R-elements.

The forces and moments that act on the integrated ship-crane system due to the weight of each

of the crane-links as well as the attached cargo interface through the power ports p1 and p2

respectively, and have been transformed to the body-fixed frame of the vessel beforehand in the

block CraneGravitySpreaderAndWire.

Lastly there are several signals both received and sent out of the model. The craneTip signal

sends out the updated crane-tip position to both the control system and the wire and spreader

model. The heavePosition signal contains the heave motions of the ship, and is sent into the

winch controller for heave compensation. Lastly the jointAngles signal contain the joint positions

for all the crane joints. This is used in the IC-field in order to compute the newest crane position

and is also provided to the .dll in order to solve the system equations.

7.5 Gravity

Figure 28: Bond graph model of gravity and spreader model

Figure 28 shows how the gravitational force for each of the crane links as well as the weight of the

spreader mechanism is transformed to forces and moment to the body-fixed frame of the vessel.

Each of the MTF elements utilize the geometric jacobian relating the quasi coordinates to the

center of mass for each link, while also transforming between the world and body-fixed frame of the

vessel. The Se elements shown represent gravitational forces of the base and upper and lower crane

links respectively. The gravitational forces are related to the body fixed frame in the following

manner:

τcm1 = Jcm1
TRb

0Fcm1 (107)
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τcm2 = Jcm2
TRb

0Fcm2 (108)

τcm3 = Jcm3
TRb

0Fcm3 (109)

τtip = Jtip
TRb

0Ftip (110)

The force vectors τ cm1, τ cm2, τ cm3, and τ tip are the 9×1 force vectors corresponding to a force in

each of the DOFs of the integrated ship-crane system as a result of the gravitational forces. These

attack each crane joint as well as all 6 DOFs of the ship after being decomposed by the power

muxer seen in the integrated model.

The terms Jcm1, Jcm2, Jcm3 and Jtip are 6×9 geometric jacobian matrices relating the center of

mass for the base, lower and upper crane link as well as the crane tip to the body-fixed frame of

the vessel. The forces Fcm1, Fcm2 , Fcm3 and Ftip are 6×1 gravitational forces, and constructed

in the following manner:

Fcm1 =



0

0

mbaseg

0

0

0


Fcm2 =



0

0

mlink1g

0

0

0


Fcm3 =



0

0

mlink2g

0

0

0


Ftip =



0

0

(mspreader +mcargo)g

0

0

0


(111)

where mbase, mlink1 and mlink2 is the mass of the crane base as well as the lower and upper crane

links. mspreader, mcargo is the mass of the spreader and cargo. g is the gravitational acceleration.

7.6 Wire and spreader

Figure 29: Bond graph model wire and spreader

The bond graph model shown in Figure 29 shows the wire model, the winch actuator, as well as

the winch controller and the spreader which is modeled in the SpreaderRigidBody submodel.
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The power demuxer shown in Figure 29 decompose a 6-dimensional power bond into two into 2

3-dimensional power bonds. The power bonds associated with rotational motion relative to the

crane tip is set to zero, while the power bonds associated with translational motion is used in the

wire and spreader model. The winch actuator is shown as a MSf element, and provides the winch

velocity directly. The wire model is composed of two MTF-elements which are able to relate the

wire displacement δ to the velocities at the top and bottom of the tether. The bond graph also

contain a 1-junction which represent the resulting wire velocity δ̇, which is connected to a C and

MR - element, which induce a damping and restoring force on the spring. The stiffness used in

the C - element is found from the formula [6]

k =
EAw
Lw

(112)

where E is the young modulus of the wire, Aw is the cross-sectional area of the wire, and Lw is

the extended wire length. In the case of the MR- element the damping coefficient defined as [6]

c = 2ζ
√
kwmw. (113)

The parameters c, ζ and mw is the damping coefficient, relative damping, and wire-element mass

respectively.

Figure 30: Rigid body bond graph model

Figure 30 show the rigid body model of the spreader, where the inertial and rigid body centripetal

forces are implemented in the IC - field. The R represent friction forces from wind. The equation

of motion for the spreader is given as:

Mv̇ +CRB(v)v +Dv = τ . (114)

Here M is the inertia tensor of the spreader, v̇ and v is the 6×1 acceleration and velocity vector

of the spreader representing the translational and angular velocities of the spreader frame, while

CRB is the rigid body centripetal matrix. Lastly τ is the external forces acting on the spreader.
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7.7 Crane control and FSM

Figure 31: Crane control and FSM model

The implemented control system shown in Figure 31 takes in a desired container position in the

world, and then computes the desired end-effector point, and how much the wire needs to be

lowered in order for the spreader to reach the top of the container. The desired end-effector point

is then sent to PointToPointMotion, where the desired joint positions are computed by the

use of inverse kinematics, and velocity profiles are computed. Once the end effector is sufficiently

close to the desired end-effector point the sub-model IsDesiredEndEffectorPoseReached sends

a boolean to the FSM to signal that a different task should begin. The system will then start

sway-compensation and station-keeping of the crane-tip, and the sway controllers will be turned

off after a predetermined amount of time has passed. The system will then start the last task

which is wire-lowering and heave compensation. When the spreader is sufficently close to the top

of the container, the submodel IsDesiredSpreaderPositionReached will send a boolean to the

FSM and the system will enter the standby state.
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Figure 32: Block diagram of FSM implementation

How the FSM interfaces with each of the control algorithms can be seen in Figure 32. Each signal

shown is a boolean. It is important to note that station-keeping of the crane-tip will still be running

when the system lowers the wire.

7.8 Crane-tip station-keeping and sway-control

Figure 33: Sway and crane-tip control

Figure 33 shows how crane-tip-station-keeping and sway-compensation is implemented with regards

to toggling from the FSM. The submodels Measurement toggler, Measurement toggler1,

Reference toggler, Reference toggler1 all contain code that sets the reference and measure-

ment to the controllers to be equal to zero when not in use. Additionally u sway toggler contain

additional code to set the output of the sway controllers to zero when the state is toggled off.

This was done as the controllers would sometimes deliver an output despite both the reference

and measurement being set to zero. Lastly, the SwayControlToggler submodel is responsible for

toggling the sway-control off when a sufficient time has passed. One can also see the submodels

CraneTipControllers and SwayControllers, which contain the controller for sway-control and
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station-keeping.

Figure 34: Implemented crane tip controllers

In Figure 34, it can be seen how the crane-tip station-keeping algorithm is implemented in 20-sim.

The control algorithm consists of 3 PID controllers, which perform station-keeping in each DOF of

the crane. The PID controllers used are the same as the standard PID controllers from [24] with

integral anti-windup added.

Figure 35: Implemented sway controllers

In Figure 35 one can see how the sway-controllers are implemented, and that it consists of 2 PID-

controllers. One for x-direction, and one for y-direction. All the PID-controllers implemented in

the thesis are similar with integral anti-windup.
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7.8.1 Winch controller

Figure 36: Implemented winch-controller and reference filter

Figure 36 shows how the winch controller and reference filter is connected. The signal for toggling

the wire lowering task is also shown.

7.9 Implementation of point-to-point

Figure 37: Implementation of point-to-point

Figure 37 shows that the implementation of the point-to-point motion algorithm is the same as the

block diagram presented in Figure 18. The resulting velocities are then fed into a vectorial MSf

element which sends the calculated velocities to the actuators.
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8 Results and discussion

This chapter presents results that verify each of the algorithms presented in Section 6 work. Ad-

ditionally, the performance of the whole control system while being supervised by the FSM will be

presented. In the following cases the lowest joint will be referred to as the base joint. The joint of

the lower arm will be referred to as joint1. The upper joint connecting the upper and lower arm

will be referred to as joint2. This naming convention also corresponds to how each joint is named

in Figure 15.

8.1 Result and discussion overview

The following chapter is composed of four subchapters. The first three chapters aim to verify that

each of the control algorithms presented in Section 6 work by themselves, and the final subchapter

investigates the integrated system under ideal conditions with no environmental forces.

• The first subchapter is Point-to-point point motion, where the crane is made to reach a

desired end-effector point by generating velocity profiles for each of the joints.

• The second subchapter is Sway-compensation and crane-tip station-keeping, where

the system performance with and without sway compensation is investigated by using an

impulse force in x and y direction.

• The third subchapter is Wire control and heave compensation. This chapter shows the

performance of the wire-lowering algorithm with and without heave compensation when the

Revolt vessel is exposed to a sinusoidal external force.

• Lastly the subchapter Integrated system [ideal conditions] aims to showcase how the

system is able to attach the spreader mechanism to a container in the world by toggling

between different modes of action. No environmental forces is included in this subchapter.

8.2 Point-to-point motion

The point-to-point motion algorithm consists of several steps. It first takes in a desired position

in the world relative to the base frame, and uses inverse kinematics to generate the desired joint

configurations. The algorithm then generates velocity profiles that the crane joints are made to

follow in order to reach the desired end position. In order to verify that the algorithm worked as

intended the crane was made to move from an initial position, to a desired end position.
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(a) Initial crane position (b) End crane position

Figure 38: Crane configurations before and after point-to-point motion. Desired end-effector pos-
ition is shown as a green sphere.

Constraints Base Joint1 Joint2 Units
qi 0 0.663 -0.995 [rad]
q̇i 0 0 0 [rad/s]
q̈i 0.1 0.1 0.1 [rad/s2]
qf 1.326 0.702 -1.006 [rad]
q̇f 0 0 0 [rad/s]
q̈f -0.1 -0.1 -0.1 [rad/s2]
tf 10 10 10 [s]

Table 7: Constraints for each crane joint.

Here qi, q̇i and q̈i represent the intital joint position, velocity and acceleration, while qf , q̇f and

q̈f are the end joint position, velocity and acceleration. Lastly tf is the time the joint will take in

order to reach the desired end configuration.

The following section will illustrate that while the crane joints are able to adhere to the constrains

provided in Table 7, the algorithm does not care about the generated trajectory, as long as the

constraints are adhered to.
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8.2.1 Crane tip positions

Figure 39: Here xd and xm is the desired and measured end-effector positions in x-direction.

Figure 40: Here yd and ym is the desired and measured end-effector positions in y-direction.

Figure 41: Here zd and zm is the desired and measured end-effector positions in z-direction.
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The aim of the point-to-point motion algorithm is for the end-effector to reach the desired position

in the world, and observing Figure 40 and Figure 41 one can conclude that the resulting end-

effector has a significant offset relative to the desired position in the world in z and y direction.

The offset, which is more apparent in Figure 41 than Figure 40, can be explained as the result of

the ship rolling when the crane joints reach the desired rotation angles. Since the ship is rolling,

it makes sense for the crane position to be lower in z, while slightly overextending in y. It can also

be seen from Figure 39, that the x-position of the end-effector is able to reach the desired position.

This is due to the pitch angle the vessel experiences when the crane is extended port-side would

be negligible. Additionally the crane positions in Figure 41 is reminiscent of a sine curve. This

behavior is unwanted, as traditionally one would want to take the most cost effective trajectory in

order to reach the end goal, and highlights the limitations of the point-to-point motion algorithm.

8.2.2 Crane joint positions

Figure 42: Here qi and qf denote the initial and end joint configurations for the base joint. qr is
the generated position reference of the base joint.

Figure 43: Here qi and qf denote the initial and end joint configurations for joint1. qr is the
generated position reference of joint1.
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Figure 44: Here qi and qf denote the initial and end joint configurations for joint2. qr is the
generated position reference of joint2.

The Figure 42, Figure 43 and Figure 44 show how the crane joints move with respect to the

constraints presented in Table 7. It can be seen that all crane joints adhere to the constraints, and

is able to reach the desired orientations after 10 [s]. It should be noted that while the algorithm

makes the crane reach a desired end position, it does not care about the path it takes to reach the

desired end position. In an autonomous system, one would rather chain different set-points and

generate trajectory curves based on what the situational awareness is able to detect.

8.2.3 Crane joint velocities compared to constraints

Figure 45: Here q̇i and q̇f denote the initial and end joint velocities for the base. q̇r is the generated
velocity reference of the base.
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Figure 46: Here q̇i and q̇f denote the initial and end joint velocities for joint1. q̇r is the generated
velocity reference of joint1.

Figure 47: Here q̇i and q̇f denote the initial and end joint velocities for the joint2. q̇r is the
generated velocity reference of joint2.

Observing Figure 45, Figure 46 and Figure 47 one can see that the velocity profile generated

adheres to the initial and end velocities presented in Table 7. It can be seen that the base velocity

profile differs significantly from the velocity profiles of joint1 and joint2. This can be explained

as a difference in constraints, as while all joints have the same constraints on the velocity and

acceleration, the base joint needs to rotate over a larger span.
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8.2.4 Crane joint accelerations compared to constraints

Figure 48: Here q̈i and q̈f denote the initial and end joint accelerations for the base. q̈r is the
generated acceleration reference of the base.

Figure 49: Here q̈i and q̈f denote the initial and end joint accelerations for joint1. q̈r is the
generated acceleration reference of joint1.

Figure 50: Here q̈i and q̈f denote the initial and end joint accelerations for joint2. q̈r is the
generated acceleration reference of joint2.
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Lastly the joint accelerations presented in Figure 48, Figure 49 and Figure 50, can also be seen

to adhere to the constraints presented in Table 7. One can also observe that the base joint has a

different acceleration profile compared to the lower and upper joint. This may be due to the base

joint needing to rotate over a larger span of angles compared to joint1 and joint2. It can be noted

for an autonomous system utilizing point to point motion, it could be of interest to either adapt

the constraints presented in Table 7 based on the angle span the joint need to travel, or utilize a

different algorithm which would chain multiple points together while attempting to minimize the

pendulum motions of the wire.
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8.3 Sway-compensation and crane-tip station-keeping

Recall form section Section 6.3 that the sway compensation algorithm performs station-keeping of

the crane tip while also minimizing the pendulum motions of the wire. The following section will

illustrate that the algorithm is able to reduce the amplitude of the pendulum motions over time.

In order to verify this, an impulse force was induced on the spreader mechanism in both x and y

direction, and the response with and without sway compensation is presented.

(a) Initial crane position (b) Spreader and crane after 4 sec

Figure 51: Crane and spreader positions shown at t=0 and t=4 sec. Desired end-effector position
is shown as a green sphere.

Figure 52: Fx, Fy and Fz is external forces in the x,y and z directions.
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8.3.1 No sway compensation and stationary crane tip in x-direction

Figure 53: xcrane and xspreader is the x-positions of the crane-tip and the spreader mechanisms

Figure 54: esway−x is the distance between the spreader and crane tip in x-direction.

The graphs in Figure 53, and Figure 54 show the spreader position relative to the stationary crane-

tip as well as the error without any sway compensation. It can be seen that the pendulum motions

do not seem to attenuate as the time increases.
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8.3.2 No sway compensation and stationary crane tip in y-direction

Figure 55: ycrane and yspreader are the y-positions of the crane-tip and the spreader mechanisms

Figure 56: esway−y is the distance between the spreader and crane tip in y-direction.

Again it can be seen that without sway compensation, the y-position of the spreader in Figure 55

and the error shown in Figure 56 oscillate and does not seem to decrease over time.
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8.3.3 Sway controller x-direction

Figure 57: Here xcrane and xspreader are the x-positions of the crane-tip and the spreader mech-
anisms

Figure 58: esway−x is the distance between the spreader and crane tip in x-direction.

Figure 59: usway−x is the commanded end effector velocity from the sway controller in x direction.
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Observing Figure 57 it can be seen that both the crane-tip as well as the spreader has a sinusoidal

motion. Additionally it can be seen that the amplitude of motions attenuates as time increases. As

a result of this the error shown in Figure 58 also decreases over time. Lastly the commanded crane

tip-velocity from the sway controller shown in Figure 59 also decreases over time, which makes

sense as the commanded crane tip velocity is a result of the error shown in Figure 58. However

the commanded velocity in x-direction has several spikes, and ideally these would be removed from

the control input as the joint actuators would experience unnecessary wear and tear from such

rapid motions. A way to accomplish this would be to filter the control inputs through a low-pass

filter. The spikes seen in the measured crane tip position could be a result of the controllers. The

controllers provide a desired velocity to the actuators, and due to model simplifications it will be

responded to instantly. This can explain why the crane tip is able to respond quickly enough to

induce spikes in the measurements. However the controllers themselves should not induce noise to

the control loop, and the noise generated from the controllers may be due to numerical errors that

originate from the solver. It is possible by reducing the timestep on the solver would give more

desirable results.

8.3.4 Sway controller y-direction

Figure 60: Here ycrane and yspreader are the y-positions of the crane-tip and the spreader mechan-
isms

Figure 61: esway−y is the distance between the spreader and crane tip in y-direction.
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Figure 62: usway−y is the commanded end effector velocity from the sway controller in y direction.

Again it can be seen from the spreader and crane tip motions shown in Figure 60, that they

decrease over time. Again this results in the error shown in Figure 61 to also decrease over time.

Lastly the commanded crane-tip velocity from the end-effector shown in Figure 62 also decreases

over time, and have the same spikes as discussed in Section 8.3.3.

8.3.5 Station-keeping x-direction

Figure 63: Here xm and xd is the measured and desired crane positions in x-direction.
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Figure 64: Here ex is the error between the desired and measured crane tip position in x-direction.

Figure 65: Here ustationkeeping−x is the commanded crane-tip velocity in x direction delivered from
the station-keeping controller.

Observing the crane-tip reference and measurement in Figure 63 it can be seen that the crane

tip position converges towards the reference as time increases. This results in the error shown in

Figure 64 to decrease over time. However the commanded crane-tip velocity in Figure 65 seems

to stabilize around a nonzero value. This could be due to the staitonkeeping controller competing

against the sway controller which has the crane-tip follow the spreader mechanism.

62



8.3.6 Station-keeping y-direction

Figure 66: Here ym and yd is the measured and desired crane positions in y direction.

Figure 67: Here ey is the error between the desired and measured crane tip position in y -direction.

Figure 68: Here ustationkeeping−y is the commanded crane-tip velocity in y direction delivered from
the station-keeping controller.
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The results shown in Figure 66, Figure 67 and Figure 68 show the same behavior as discussed in

Section 8.3.5 with an error that decreases over time.

8.3.7 Station-keeping z-direction

Figure 69: Here zm and zd is the measured and desired crane positions in z direction.

Figure 70: Here ez is the error between the desired and measured crane tip position in z -direction.
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Figure 71: Here ustationkeeping−z is the commanded crane-tip velocity in z direction delivered from
the station-keeping controller.

The controller in z-direction can be seen to reach the desired end effector position after approxim-

ately 6 seconds, as shown in figure Figure 69. This in turn gives an error and control input that

converges to 0 as shown in Figure 70 and Figure 71.
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8.4 Wire control and heave compensation

Recall from Section 6.4, that the wire control algorithm utilizes a reference filter that generates

the desired wire position for the winch to follow. The heave compensation is implemented by

subtracting the heave motions of the vessel in the final reference. This results in a time varying

reference that the winch controller can follow in order to remove heave motions from the spreader.

In order to verify wire-control and heave compensation two cases will be discussed, namely wire

lowering with and without heave compensation.

(a) Initial spreader position. Wire-length = 2.5 [m] (b) End spreader position. Wire-length = 10 [m]

Figure 72: Spreader position before and after wire control

Figure 73: Heave motion of vessel for both cases, zship is the vertical movements of the ship.

The initial and end spreader positions are shown in Figure 72, and the heave motion the vessel

experiences in both cases is presented in Figure 73. It is worth noting that the measured wire

position is measured relative to the initial wire length which is 2.5 [m].
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8.4.1 Wire lowering without heave-compensation

Figure 74: zm and zd is the measured and desired spreader positions in z-direction.

Figure 75: δm and δd is the measured and desired wire lengths relative to an initial wire length of
2.5 [m].

Figure 76: ewire is the error between the measured and desired wire lengths.
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Figure 77: uwinch is the commanded winch velocity.

Observing the measured compared to the desired spreader position shown in Figure 74, it can be

seen that the vertical spreader position oscillates with an amplitude of approximately 0.5 [m], and

is not able to reach the wanted spreader position as time increases. Additionally, it can be seen

that with only wire lowering, the system is able to track the generated reference as can be seen in

Figure 75. This in turn gives an error that converges to 0 as shown in Figure 76. Lastly it can

be seen that the commanded winch velocity shown in Figure 77 also converges to 0 as the wire

converges to the reference.

8.4.2 Wire lowering with heave-compensation

Figure 78: zm and zd is the measured and desired spreader positions in z-direction.
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Figure 79: δm and δd is the measured and desired wire lengths relative to an initial wire length of
2.5 [m].

Figure 80: ewire is the error between the measured and desired wire lengths

Figure 81: uwinch is the commanded winch velocity while taking heave motions into account.

Inspecting the spreader position relative to the wanted reference shown in Figure 78, one can see

that the error is able to stay close to the reference, and the earlier oscillations have now mostly died
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out. However there is an offset between the end spreader position and the desired reference. This

could be due to the resulting pitch motion the vessel experiences due to the crane and spreader

weight. This response can be explained by observing the measured and desired wire position shown

in Figure 79. Here it can be seen that the new reference is able to take the heave motions of the

vessel into account, which in turn cancels out most of the heave motions. The error between the

desired and measured wire position shown in Figure 80 shows that the controller is able to respond

to the reference reasonably well. Lastly it can be seen that the commanded winch velocity shown

in Figure 81 responds to the oscillations in the reference model.
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8.5 Integrated system [ideal conditions]

The integrated system is able to move the spreader to a given container position in the world. This

is done by first utilizing point-to-point motion to reach the approximate position of the desired-end

effector point. Once the end-effector is in close enough proximity, the FSM sets the velocity profiles

generated from point-to-point motion to 0, and toggles sway-compensation and station-keeping.

Once 15 [s] pass the FSM then toggles off sway-compensation, and enters the wire-control state.

It is worth noting that station-keeping of the end-effector is turned on both during the sway-

compensation as well as the wire-lowering phase. In the following case there are no external forces,

and the system performance under ideal conditions are investigated. Additionally, friction forces

acting on the spreader from wind is turned off in this case.

(a) Initial position (b) Crane transport

(c) End-effector position reached (d) Spreader hits top of container

Figure 82: Screenshots of simulated case. Container and desired end-effector point are shown as a
box, and green sphere respectively.

In Figure 82 one can see the different phases of simulated case. In Figure 82a one can see the initial

position of the spreader and end-effector which initializes at the stern of Revolt. In Figure 82b one

can see the system while performing point-to-point motion. Lastly in Figure 82c and Figure 82d

one can see the crane reaching the desired position, and the spreader landing at the top of the

container.

Constraints Base Joint1 Joint2 Units
qi 0 0.663 -0.995 [rad]
q̇i 0 0 0 [rad/s]
q̈i 0.1 0.1 0.1 [rad/s2]
qf 1.326 0.702 -1.006 [rad]
q̇f 0 0 0 [rad/s]
q̈f -0.05 -0.1 -0.1 [rad/s2]
tf 15 10 10 [s]

Table 8: Constraints for each crane joint in integrated case.
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Table 8 shows the constraints fed into pont-to-point motion. The constraints are mostly the same

as before, but now the desired end-acceleration q̈f and tf of the base joint is set to -0.05 [rad/s2]

and 15 [s], as a smaller acceleration would give less pendulum motions.

8.5.1 FSM and state toggling

Figure 83: Graph showing when standby and cargo transport state is toggled.

Figure 84: Graph showing when crane-transport,sway-compensation and wire-control are toggled

From Figure 83 and Figure 84 showing the two main modes of operation of the crane system, as

well as the task toggling it can be observed that the system is able to successfully toggle between

different modes of operation.
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8.5.2 Desired compared to desired end-effector-position

Figure 85: xd and xm is the desired and measured end-effector position in x-direction

Figure 86: yd and ym is the desired and measured end-effector position in y-direction

Figure 87: zd and zm is the desired and measured end-effector position in z-direction
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The positions of the end-effector relative to the desired position in x, y and z direction shown in

Figure 85, Figure 86 and Figure 87 show that the end-effector is able to converge towards the desired

position. It can be seen that around 12 [s] the crane-tip position undergoes a change in response in

all three figures. This is due to the system changing between point-to-point motion and the crane

tip station-keeping algorithms, as the end-effector is deemed sufficiently close to the desired point

to change modes from crane-transportation to sway-compensation and station-keeping as can be

seen in Figure 84.

8.5.3 Spreader position compared to desired container position

Figure 88: xspreader and xcontainer is the position of the spreader and container in x-direction

Figure 89: yspreader and ycontainer is the position of the spreader and container in y-direction
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Figure 90: zspreader and zcontainer is the position of the spreader and container in z-direction

The figures Figure 88, Figure 89 and Figure 90 show the spreader position compared to the desired

container position in x,y and z direction respectively. It can be seen that at 45 [s] the spreader

is able to converge towards the container position in z-direction, but overshoots by approximatly

10 [cm]. This overshoot may stem from the reference filter itself as it will later be seen that the

crane-tip and winch controllers are able to reach their references. Additionally, it still oscillates

in x, and y -direction. This could possibly be improved by not stopping the sway compensation

algorithm even during the wire-lowering phase.

8.5.4 Point-to-point motion performance [base]

Figure 91: Here qi and qf denote the initial and end joint configurations for the base joint. qr is
the generated position reference of the base joint.
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Figure 92: Here q̇i and q̇f denote the initial and end joint velocities for the base. q̇r is the generated
velocity reference of the base.

Figure 93: Here q̈i and q̈f denote the initial and end joint accelerations for the base. q̈r is the
generated acceleration reference of the base.

The figures Figure 91, Figure 92 and Figure 93 show the position, velocity and acceleration profile

generated from point-to-point motion for the base of the crane. It can be seen that around 12 [s]

the position, velocity as well as the acceleration profile becomes zero. This is due to the system

toggling from point-to-point motion and entering sway-compensation and station-keeping.
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8.5.5 Point-to-point motion performance [joint1]

Figure 94: Here qi and qf denote the initial and end joint configurations for joint1. qr is the
generated position reference of joint1.

Figure 95: Here q̇i and q̇f denote the initial and end joint velocities for joint1. q̇r is the generated
velocity reference of joint1.

Figure 96: Here q̈i and q̈f denote the initial and end joint accelerations for joint1. q̈r is the
generated acceleration reference of joint1.
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The figures shown in Figure 94, Figure 95 and Figure 96 show the position,velocity and acceleration

profiles delivered from point-to-point motion regarding joint1. It can be seen that at 10 [s] all

profiles reach their desired end constraints, and are toggled to 0. The toggling occurs either when

the joint has reached its desired position or the end-effector is sufficiently close to the end goal.

8.5.6 Point-to-point motion performance [joint2]

Figure 97: Here qi and qf denote the initial and end joint configurations for joint2. qr is the
generated position reference of joint2.

Figure 98: Here q̇i and q̇f denote the initial and end joint velocities for joint2. q̇r is the generated
velocity reference of joint2.
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Figure 99: Here q̈i and q̈f denote the initial and end joint accelerations for joint2. q̈r is the
generated acceleration reference of joint2.

Observing Figure 97, Figure 98 and Figure 99 they display similar behavior as seen in Section 8.5.5,

where the position,velocity and acceleration profile perform as expected until 10 [s], where the joint

has reached its constraint and is set to 0.

8.5.7 Sway-compensation performance [x-direction]

Figure 100: Here xcrane and xspreader are the x-positions of the crane-tip and the spreader mech-
anism
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Figure 101: esway−x is the distance between the spreader and crane tip in x-direction.

Figure 102: usway−x is the commanded end effector velocity from the sway controller in x direction.

The sway-compensation starts with a significant initial error. This is caused in part of the point-

to-point motion algorithm, which generates a trajectory which induces pendulum motions on the

spreader. Another factor is that the station-keeping controllers of the crane tip makes the crane-tip

accelerate more than the point-to-point motion algorithm does, thus inducing pendulum motions.

However the pendulum motions die out as can be seen in the error shown in Figure 101. Lastly the

commanded end-effector velocity shown in Figure 102 shows the commended velocity stabilizing

at approximately -1. This could be due to the integral gain term in the sway controller competing

against the station-keeping controller. Similarly to Section 8.3.3, the crane-tip position is filled

with spikes. This could again be an effect from the controllers experiencing small numerical errors

due to the timestep of the solver, which when fed into the simplified actuators introduce errors

into the control-loop, further amplifying the undesired behavior.
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8.5.8 Sway-compensation performance [y-direction]

Figure 103: Here ycrane and yspreader are the y-positions of the crane-tip and the spreader mech-
anism

Figure 104: esway−y is the distance between the spreader and crane tip in y-direction.

Figure 105: usway−y is the commanded end effector velocity from the sway controller in y direction.
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The sway controller performance is similar to that seen in Section 8.5.7. The initial offset in crane

and spreader position is significant at approximately 12 [s] as shown in Figure 103. Additionally

the error converges to 0 as shown in Figure 104. Lastly the commanded velocity input shown in

Figure 105 converges to 0 [m/s].

8.5.9 Station-keeping performance [x-direction]

Figure 106: Here xm and xd is the measured and desired crane positions in x-direction.

Figure 107: Here ex is the error between the desired and measured crane tip position in x-direction.
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Figure 108: Here ustationkeeping−x is the commanded crane-tip velocity in x direction delivered
from the station-keeping controller.

Investigating the measured and desired end-effector position shown in Figure 106, it can be seen

that the controller experiences a large difference between the desired and measured crane tip

position at approximately 12 [s]. At approximately 27 [s] one can see that sway control gets

toggled off in Figure 84. This corresponds to when the measured end-effector has a slight jump.

The jump in position could be due to the sway controller no longer competes with the station-

keeping controller. Lastly it can be seen that the error shown in Figure 107 goes to zero after

approximately 33 [s]. The commanded control in Figure 108 seems to stabilize at 1. However this

does not make sense as the sway-controller is turned off, and the error is 0.

8.5.10 Station-keeping performance [y-direction]

Figure 109: Here ym and yd is the measured and desired crane positions in y-direction.
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Figure 110: Here ey is the error between the desired and measured crane tip position in y-direction.

Figure 111: Here ustationkeeping−y is the commanded crane-tip velocity in y direction delivered
from the station-keeping controller.

Inspecting Figure 109 showing the measured and desired crane position, it can be seen that the

reference and measurement jumps from 0 to 20 [m]. This is due to the references and measurements

of all station-keeping as well as sway-controllers are set to 0 while deactivated. Around 12 [s],

some minor oscillations of the end-effector position can be observed, and as the time increases the

measurement converges towards to the desired position. Additionally Figure 110 which shows the

error of the end-effector can be seen to oscillate in accordance to the results shown in Figure 109,

before finally converging to 0 around 40 [s]. The commanded control input shown in Figure 111

performs as expected and converges to 0.
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8.5.11 Station-keeping performance [z-direction]

Figure 112: Here zm and zd is the measured and desired crane positions in z direction.

Figure 113: Here ez is the error between the desired and measured crane tip position in z -direction.

Figure 114: Here ustationkeeping−z is the commanded crane-tip velocity in z direction delivered
from the station-keeping controller.
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In Figure 112, one can see that around 12 [s] the station-keeping controller in z-direction is ac-

tivated, and the reference and measurement jumps from 0 to 17.5 [m]. It can also be seen that

the reference and measurement converges around 20 [s]. This can also be seen in the error shown

in Figure 113, where the error dies out after 20 [s]. Lastly the commanded control input shown

in Figure 114 has an intial spike in control input, and then proceeds to stay around 0 after 20

[s]. In both Figure 113 and Figure 114 one can observe small spikes in both the error and control

input. These should preferably be filtered out of the control loop. The possible reason for these

are discussed in Section 8.5.7.

8.5.12 Wire lowering performance

Figure 115: δm and δd is the measured and desired wire lengths relative to an initial wire length
of 2.5 [m].

Figure 116: ewire is the error between the measured and desired wire lengths.
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Figure 117: uwinch is the commanded winch velocity.

The measured and desired wire length relative to the initial wire of length 5 [m] are shown in

Figure 115. Here it can be seen that the reference filter starts generating a trajectory once the

wire lowering is toggled in Figure 84. The controller is then able to follow the reference a relatively

small error as can be seen in Figure 116, where the error is at most 0.21 [m] from the reference.

Lastly the commanded winch velocities shown in Figure 117 show that the commanded winch

velocity converges to 0 after 40 [s].

8.5.13 Revolt response

Figure 118: Position of Revolt in surge, sway and heave in terms of the inertial frame.
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Figure 119: Angular displacements of Revolt in roll,pitch and yaw.

Inspecting Figure 118 which shows the traslational motions of Revolt in the inertial frame, it can

be seen that in ideal conditions the position in heave measured from the keel of the ship is stable

at what the draught is expected to be. Additionally the motions in surge and sway of the ship

is quite small, where the ship sways slightly to the side as seen around 40 [s]. This could be

due to the inertial force of the crane, as it extends from an an initial stern position to port-side.

Figure 119 shows the angular displacements of the ship and it can be seen that the roll angle is

quite large and stabilizes around 8.5°. Such roll angles during a loading operation under ideal

conditions is unacceptable, and comes as a result of the increased vertical center of mass from the

crane as seen in Section D. This should be rectified in further work by either scaling down the

crane, or using ballast tanks, as this would lower the vertical center of gravity and then improve

the stability characteristics of the complete system. Additionally it can also be seen that there is

a small change in yaw angle around 40 [s]. This also makes sense as the inertial force from the

crane should induce a yaw-motion on the ship.

88



9 Conclusion and further work

In order to accomplish a autonomous loading operation the thesis presents an integrated simulation

model as well as a functional control system. The simulation model contains a ship, crane, wire

and spreader, while the control system is able to correctly toggle between the tasks such as crane

transport, sway compensation and wire-lowering.

Each of the control algorithms have been found to work correctly by themselves, but the integ-

rated system show unwanted behavior. The rapid transition between point-to-point motion and

sway compensation and station-keeping induces pendulum motions on the spreader, and the sway

controllers seem to compete with the station-keeping controllers, which create a small unwanted

offset until sway compensation gets turned off.

The point-to-point algorithm allows the crane to reach a desired end configuration, but should be

replaced with a point-chaining algorithm, or be able to change its trajectory based on obstructions

in the generated trajectory of the crane.

Additionally the integrated system is found to be stable in the worst case configurations, but the

stability should be improved. This can be done by scaling down the crane, or adding weight in the

bottom of Revolt in order to decrease the height of the vertical center of gravity.

The integrated system also lack any way of controlling the slewing motions of the spreader, which

is an important part of the loading operation, and actuators that allow rotational control of the

cargo such as tugger-wires should be implemented into the integrated model.

The workspace as well as all actuator models should also be improved. The current workspace of

the crane does not take invalid crane configurations or collisions between crane links into account.

All actuators have also been simplified to provide velocities directly and as such will be able to

respond to any control input without delay or fail. In further work, the actuators of the crane

should be modeled such that any actuator delay, weight and inertia is included in the integrated

system.

Additionally the state-machine only takes the transport of the spreader to the container in the

world into account, and in further work should be expanded upon to handle all phases of an load-

ing operation as well as include fallback states should the system experience unexpected events and

hazards. Lastly, the thesis has focused on developing the control system and a simulation model

that is able to perform a loading operation. Due to the case considered, environmental models has

not been the focus of the thesis, but in further work it could be of interest to implement environ-

mental models in the form wind, waves and current in order to investigate system performance in

conditions closer to real life. This would however demand station-keeping of the Revolt vessel to

be implemented in the integrated model.

9.0.1 Further work summarized

• Make crane transportation algorithm take obstacles into account

• Make sway and station-keeping controllers not compete with each-other

• Include restrictions in crane workspace

• Model tugger wires to control rotations of spreader mechanism
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• Improve stability properties of Revolt-crane system

• Include fallback states

• Create higher fidelity winch and crane joint actuators

• Include more states to FSM to automate more parts of a loading operation

• Include environmental models and include more cases for integrated system
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Appendix

A Ship-crane integration
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Integrating ship and crane
Conventions:

- R{b}_{a} represents the transform from frame {a} to frame  {b}.
- r_{a}_{b}_{c} represents the vector going from frame {c} to frame {b} described in terms of frame {a}.

Defenitions of generalized and quasi coordinates:

The generalized coordinates of the total system is: q = [(r_b/0^0)^T , Theta_b/0^0^T, q_e^T]^T.

- Here (r_b/0^0)^T is the position vector from inertial frame {0} to the body fixed frame of the ship{b} 
expressed in terms of the inertial frame {0}.
- Thetâ T is the vector denoting the rotations in x, y and z axis of the body-fixed frame {b} expressed in
terms of the inertial frame {0}
- q_e^T = [theta_1, theta_2, theta_3]^T , which represents the rotations of each of the crane joints from 
joint 1-3.

The quasi coordinates of the system is defined as the time rates of the movement and rotations of the 
vessel in body frame, and the time rates of the generailzed coordinates representing the rotations of teh 
crane joints.

omega = [ v_b/0^b, omega_b/0^b,  q_dot_ e]^T

NB!

Body frame is defined as half the length of the perpendiculars on deck. Location of body fixed frame of 
vessel relative to bottom left on deck: (x = Lpp/2, y = 0, z = H)

Defining elementary rotation matrixes:

restart :
with LinearAlgebra :
with VectorCalculus :
 with CodeGeneration : with codegen, optimize, makeproc :
Rotation matrix relating from body {b} to inerial frame {0}

 Rx d Matrix 1, 0, 0 , 0, cos f ,Lsin f , 0, sin f , cos f :
Ry d Matrix cos q , 0, sin q , 0, 1, 0 , Lsin q , 0, cos q :
Rzd Matrix cos y ,Lsin y , 0 , sin y , cos y , 0 , 0, 0, 1  :
Rb_0d simplify Rz  Ry  Rx :
 
Rx_inv d Transpose Rx : 



Ry_inv d Transpose Ry :
Rz_inv d Transpose Rz :

Defining quasi coordinates transforms

i_b d Vector 1, 0, 0 :
j_b d Vector 0, 1, 0 :

k_b d Vector 0, 0, 1 :
 
  T_inv d Matrix i_b, Rx_inv  j_b,  Rx_inv Ry_inv k_b :

alpha_TdMatrix Transpose Rb_0 ,  ZeroMatrix 3, 3 ,  ZeroMatrix 3, 3 ,
  ZeroMatrix 3, 3 , T_inv , ZeroMatrix 3, 3 ,
 ZeroMatrix 3, 3 , ZeroMatrix 3, 3 , IdentityMatrix 3 :
beta d MatrixInverse alpha_T :
alpha d Transpose alpha_T :
 
 
Defining crane parameters and transforms:

GYBERG PARAMETERS

Defining delta1, as a function of theta2. 

u_xd sin theta2 $u :
b_xd cos theta2 $b :
e_xd b_xC u_xL a :
b_zd sin theta2 $b :



u_zd cos theta2 $u :
e_zd hC b_zL u_z :
ed sqrt e_z2C e_x2 :

delta1d arcsin
e_z
e

:

Warning, if e is meant to be the exponential e, use command/symbol 
completion or palettes to enter this special symbol, or use the exp 
function

Defining delta2, as a function of theta2, and theta3. 

c_markd sqrt s2C c2 :

beta2d arcsin
s

c_mark
:

my2d piC theta3L beta2L epsilon2 :
vd sqrt r2C L1Lw 2 :

epsilon2d arcsin
r
v

:

dd sqrt v2C c_mark2L 2$ v$c_mark$cos my2 :
phi2d solve v = sqrt d2C c_mark2L 2$ d$c_mark$cos Phi2 , Phi2 :

alpha2d piL
p
2
L theta2 C theta3L beta2 :

kappa2d piL alpha2L phi2 :

delta2d
pi
2
L kappa2 :

Defining all rotation matrixes:

#from {1} to {b}

Rb_1 d  Matrix cos Pi , 0, sin Pi , 0, 1, 0 , Lsin Pi , 0, cos Pi     Matrix cos
Pi
2

,

Lsin
Pi
2

, 0 , sin
Pi
2

, cos
Pi
2

 , 0 , 0, 0, 1     Matrix cos theta1 ,Lsin theta1 ,

0 , sin theta1 , cos theta1 , 0 , 0, 0, 1 :
R1_b d Rb_1L1 :

#from {2} to {1}
R1_2dMatrix 1, 0, 0 , 0, cos theta2 ,Lsin theta2 , 0, sin theta2 , cos theta2 : 

# from {3} to {2}
R2_3d Matrix 1, 0, 0 , 0, cos theta3 ,Lsin theta3 , 0, sin theta3 , cos theta3 : 

 

Local corrdinate frame positions



rb_1_bd Vector 0, 0, 0 : #position of frame 1 relative to frame b
r1_2_1d Vector 0, 0, h : #position of frame 2 relative to frame 1
r2_3_2d Vector 0, L1, 0 : #position of frame 3 relative to frame 2
r3_4_3d Vector 0, L2, 0 : #position of frame 4 relative to frame 3

r1_cm2_1d Vector Xcm1, Ycm1, 0 : #centre of gravity of base realtive to frame 1
r2_cm3_2d Vector 0, k, 0 : #centre of gravity of  lower arm (link1) realtive to frame 2
r3_cm4_3d Vector 0, n, 0 : #centre of gravity of upper arm (link2) realtive to frame 3

 
Positions in terms of the b-frame 

rb_2_1d rb_1_b C Rb_1 r1_2_1 :
rb_3_2d Rb_1 R1_2 r2_3_2 :
rb_4_3d Rb_1 R1_2 R2_3 r3_4_3 :

rb_2_bd rb_1_b C rb_2_1 :
rb_3_bd rb_2_bC rb_3_2 :
rb_4_b d rb_3_bC rb_4_3 :

Unit vectors that each joint revolve about

i_vectd Vector 1, 0, 0 :
j_vectd Vector 0, 1, 0 :

k_vectd Vector 0, 0, 1 :

e1d Rb_1 k_vect : #rotation of base
e2d Rb_1 R1_2 i_vect : #rotation of lower arm
e3d Rb_1 R1_2 R2_3 i_vect : #rotation of upper arm

Position for each Center of mass defined relative to and in terms of base frame

rb_cm2d Rb_1 r1_cm2_1 :#Mass of the platform
rb_cm3d rb_2_b C Rb_1 R1_2 r2_cm3_2 :#Mass of lower arm
rb_cm4d rb_3_b C Rb_1 R1_2 R2_3 r3_cm4_3 : #Mass of upper arm

Defining geometric jacobian of vessel:

r_cg1_0_b d Vector X_cg, Y_cg, Z_cg :
j_cg1_0_vbd Matrix IdentityMatrix 3 , CrossProduct i_b, r_cg1_0_b , CrossProduct j_b,

r_cg1_0_b , CrossProduct k_b, r_cg1_0_b :
j_cg1_0_wb d Matrix ZeroMatrix 3, 3 , IdentityMatrix 3 , :

Jcm1b d Matrix j_cg1_0_vb,  ZeroMatrix 3, 3 , j_cg1_0_wb,  ZeroMatrix 3, 3 :
# Geometric jacobian relating quasi coordinates to vessel velocity

Geometric Jacobian for each center of mass



# Finding geometric jacobian relating quasi coordinates to base centre of gravity
rb_cm2_1d rb_cm2 L rb_1_b :
jcm2v_0_vb d Matrix IdentityMatrix 3 :

jcm2v_0_wb d Matrix CrossProduct i_b, rb_cm2_1 , CrossProduct j_b, rb_cm2_1 ,
 CrossProduct k_b, rb_cm2_1 :

  jcm2v_0_qedMatrix CrossProduct e1, rb_cm2_1 , ZeroMatrix 3, 2 :
Jcm2v d Matrix jcm2v_0_vb,  jcm2v_0_wb,   jcm2v_0_qe :
 
 jcm2w_0_vb d Matrix ZeroMatrix 3, 3 :
jcm2w_0_wb d Matrix IdentityMatrix 3, 3 : 
jcm2w_0_qe d Matrix e1, ZeroMatrix 3, 2  :

Jcm2w d Matrix jcm2w_0_vb, jcm2w_0_wb , jcm2w_0_qe :
Jcm2b d Matrix Jcm2v , Jcm2w :
 
  # Finding geometric jacobian relating quasi coordinates to centre of  gravity of lower arm (link1)
rb_cm3_1d rb_cm3L rb_1_b :
rb_cm3_2d rb_cm3 L rb_2_b :
 
jcm3v_0_vb d Matrix IdentityMatrix 3 :

jcm3v_0_wb d Matrix CrossProduct i_b,  rb_cm3 , CrossProduct j_b,  rb_cm3  ,
 CrossProduct k_b,  rb_cm3 :

jcm3v_0_q1 d Vector CrossProduct e1,  rb_cm3_1 :
jcm3v_0_q2 d Vector CrossProduct e2, rb_cm3_2 :
jcm3v_0_q3 d Vector 0, 0, 0 :

Jcm3v d Matrix jcm3v_0_vb, jcm3v_0_wb, jcm3v_0_q1, jcm3v_0_q2, jcm3v_0_q3 :
 
jcm3w_0_vb d Matrix ZeroMatrix 3 :
jcm3w_0_wb d Matrix IdentityMatrix 3 :
jcm3w_0_q1 d e1 :
jcm3w_0_q2 d e2 :
jcm3w_0_q3 d Vector 0, 0, 0 :

Jcm3w d Matrix jcm3w_0_vb,  jcm3w_0_wb,  jcm3w_0_q1, jcm3w_0_q2, jcm3w_0_q3 :
Jcm3b d Matrix Jcm3v , Jcm3w :
 
  # Finding geometric jacobian relating quasi coordinates to centre of  gravity of  upper arm (link2)
rb_cm4_1d rb_cm4L rb_1_b :
rb_cm4_2d rb_cm4 L rb_2_b :
rb_cm4_3d rb_cm4L rb_3_b :
 
jcm4v_0_vb d Matrix IdentityMatrix 3 :

 jcm4v_0_wb d Matrix CrossProduct i_b,  rb_cm4 , CrossProduct j_b,  rb_cm4  ,
 CrossProduct k_b,  rb_cm4 :

jcm4v_0_q1 d Vector CrossProduct e1, rb_cm4_1 :
jcm4v_0_q2 d Vector CrossProduct e2, rb_cm4_2 :
jcm4v_0_q3 d Vector CrossProduct e3, rb_cm4_3 :

Jcm4v d Matrix jcm4v_0_vb,  jcm4v_0_wb, jcm4v_0_q1, jcm4v_0_q2, jcm4v_0_q3 :
 
jcm4w_0_vb d Matrix ZeroMatrix 3 :



jcm4w_0_wb d Matrix IdentityMatrix 3 :
jcm4w_0_q1 d e1 :
jcm4w_0_q2 d e2 :
jcm4w_0_q3 d e3 :

 Jcm4w d Matrix jcm4w_0_vb,  jcm4w_0_wb, jcm4w_0_q1, jcm4w_0_q2, jcm4w_0_q3 :
Jcm4b d Matrix Jcm4v , Jcm4w :

 
Mass inertia matrixes

#Ship
I_g_shipd Matrix Ixx_ship,  LIxy_ship, LIxz_ship , LIyx_ship, Iyy_ship, LIyz_ship ,

LIzx_ship,LIzy_ship, Izz_ship :

M_ship d Matrix m_ship$IdentityMatrix 3 :
 B_ship d Transpose Jcm1b  Matrix M_ship , ZeroMatrix 3, 3 , ZeroMatrix 3, 3 , I_g_ship,

 Jcm1b :

#Base
I_1_1_based Matrix Ixx_base,  0, 0 , 0 Iyy_base, 0 , 0, 0 , Izz_base : 
 I_1_b_base d R1_b I_1_1_base Rb_1 :
 M_base d Matrix m_base$IdentityMatrix 3 , ZeroMatrix 3, 3 , ZeroMatrix 3 ,

I_1_b_base :
B2d Transpose Jcm2b  M_base  Jcm2b :

#Lower arm (link1)
I_2_2_link1d Matrix Ixx_link1,  0, 0 , 0, Iyy_link1,  0 , 0, 0, Izz_link1 :
I_2_b_link1 d R2_b I_2_2_link1 Rb_2 :
M_link1 d Matrix m_link1$IdentityMatrix 3 , ZeroMatrix 3, 3 , ZeroMatrix 3 ,

I_2_b_link1 :

B3d Transpose Jcm3b  M_link1 Jcm3b :

#Upper arm (link2)
I_3_3_link2d Matrix Ixx_link2,  0, 0 , 0, Iyy_link2, 0 , 0, 0, Izz_link2 :
I_3_b_link2 d R3_b I_3_3_link2 Rb_3 :
M_link2 d Matrix m_link2$IdentityMatrix 3 , ZeroMatrix 3, 3 , ZeroMatrix 3 ,

I_3_b_link2 :

B4d Transpose Jcm4b  M_link2 Jcm4b :

B_tot d B_ship C B2 C B3 C B4 :

Jacobian for crane-tip

#Crane Tip
rb_4_1d rb_4_bL rb_1_b :
rb_4_2d rb_4_bL rb_2_b :



rb_4_3d rb_4_b L rb_3_b :
 
j11v_0_vb d IdentityMatrix 3 :

j11v_0_wb d Matrix CrossProduct i_b, rb_4_b , CrossProduct j_b, rb_4_b , CrossProduct k_b,
rb_4_b :

j11v_0_q1 d CrossProduct e1, rb_4_1 :
 j11v_0_q2 d CrossProduct e2, rb_4_2 :
  j11v_0_q3d CrossProduct e2, rb_4_3 :
J11v d Matrix j11v_0_vb, j11v_0_wb, j11v_0_q1, j11v_0_q2 , j11v_0_q3 :
 
j11w_0_vb d ZeroMatrix 3, 3 :
j11w_0_wb d IdentityMatrix 3 :
j11w_0_q1 d e1 :

 j11w_0_q2 d e2 :
  j11w_0_q3d e3 :
J11w d Matrix j11w_0_vb, j11w_0_wb, j11w_0_q1, j11w_0_q2 , j11w_0_q3 :
 
J11b d Matrix J11v , J11w :

Differentiating alpha
qvd Vector f, q, y : 

#We only inclue the euler angeles as taking the partial derivative of the other states gives 0

 
dalphaij_dqd Matrix 3, 81 : 

 
col1 d Vector 1, 10, 19, 28, 37, 46, 55, 64, 73 :
col2 d  Vector 2, 11, 20, 29, 38, 47, 56, 65, 74 : 
col3 d  Vector 3, 12, 21, 30, 39, 48, 57, 66, 75 :
col4 d  Vector 4, 13, 22, 31, 40, 49, 58, 67, 76 : 
col5 d  Vector 5, 14, 23, 32, 41, 50, 59, 68, 77 : 
col6 d  Vector 6, 15, 24, 33, 42, 51, 60, 69, 78 : 
col7 d  Vector 7, 16, 25, 34, 43, 52, 61, 70, 79 : 
col8 d  Vector 8, 17, 26, 35, 44, 53, 62, 71, 80 :  
col9 d  Vector 9, 18, 27, 36, 45, 54, 63, 72, 81 :  
 
 iterator d Matrix col1, col2, col3 , col4, col5, col6, col7, col8, col9 :

 for i from 1 to 3 do for j from 1 to 9 do for k  from 1 to 3 do  dalphaij_dq k, iterator i, j  d
 diff alpha i, j , qv k :end do end do end do

 
 
Differentiating B_tot

dBdq7d simplify  map diff, B_tot, theta1  :



dBdq8d simplify  map diff, B_tot, theta2 : 
dBdq9d simplify  map diff, B_tot, theta3 :  

Code export
Export the mass-inertia matrix, partial derivatives of B, and partial derivatives of alpha

#for i from 1 to 9 do for j from i to 9 do  Fd makeproc B_tot i, j ; C F, resultname = cat "B", i, j ,
output = "exportedCode.txt", optimize :end do end do:

 

#for i from 1 to 9 do for j from i to 9 do  Fd makeproc dBdq7 i, j ; C F, resultname
= cat "dBdq7_", i, j , output = "exportedCode.txt", optimize :end do end do:

 
#for i from 1 to 9 do for j from i to 9 do  Fd makeproc dBdq8 i, j ; C F, resultname

= cat "dBdq8_", i, j , output = "exportedCode.txt", optimize :end do end do:

 
#for i from 1 to 9 do for j from i to 9 do  Fd makeproc dBdq9 i, j ; C F, resultname

= cat "dBdq9_", i, j , output = "exportedCode.txt", optimize :end do end do:

#for i from 1 to 3 do for j from 1 to 81 do  Fd makeproc dalphaij_dq i, j ; C F, resultname
= cat "dalphaij_dq_", i, j , output = "exportedCode.txt", optimize :end do end do:



B Inertia calculations of Revolt
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Revolt autocad inventor inertia values

Autocad inventor computes the inertia of revolt using the material density 0,298 g/cm^3. 
This is found from using the volume computed in Autocad, and inserting the mass of the 
fullscale Revolt to be 2 400 000 kg into the iProperties sheet in Autocad. The following 
parameters was found:

**Center of Gravity:
X: 28763,646 mm (Relative Error = 0,307593%)
Y: 7318,761 mm (Relative Error = 0,307593%)
Z: 6986,913 mm (Relative Error = 0,307593%)

**Mass Moments of Inertia with respect to Center of Gravity(Calculated using negative 
integral)

Ixx        5,9107472699289195E+13 kg mm^2 (Relative Error = 0,
307593%)

Iyx     1852782120,100 kg mm^2 (Relative Error = 0,307593%)
                Iyy           5,86959713478641250E+14 kg mm^2 (Relative Error = 0,307593%)

Izx 9,620599561592400E+12 kg mm^2 (Relative Error = 0,
307593%) 
                Izy -527698338,200 kg mm^2 (Relative Error = 0,307593%) 
                Izz 5,98623282290516000E+14 kg mm^2 (Relative Error = 0,
307593%)

The centre of gravity is found realtive to the bottom right of the ship shown below:



 

 

Converting from [mm] to [m]

Centre of gravity:

X_c d 28763.646$10
L3



(1)(1)

(5)(5)

(7)(7)

(4)(4)

(8)(8)

(6)(6)

(9)(9)

(2)(2)

(3)(3)

X_cd 28.76364600

Y_c d 7318.761$10
L3

Y_cd 7.318761000

Z_c d 6986.913$10
L3

Z_cd 6.986913000

 

Inertias in [kg * m^2]:

Ixxd5.9107472699289195E13 $ 10
L6

 
Ixxd 5.910747270#107

Iyxd1852782120.100 $ 10
L6

Iyxd 1852.782120

Iyyd 5.86959713478641250E14 $ 10
L6

Iyyd 5.869597135#108

Izxd9.620599561592400E12 $ 10
L6

Izxd 9.620599562#106

IzydL527698338.200 $ 10
L6

IzydL527.6983382

Izzd5.98623282290516000E14 $ 10
L6

Izzd 5.986232823#108
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Design hydrostatics report
Designer
Created by
Comment
Filename Revolt (Final part ASCI (NO LEAKS)).fbm
Design length 60,000 (m) Midship location 30,000 (m)
Length over all 60,231 (m) Relative water density 1,0250
Design beam 14,500 (m) Mean shell thickness 0,0000 (m)
Maximum beam 14,575 (m) Appendage coefficient 1,0000
Design draft 5,045 (m)

Volume properties Waterplane properties
Moulded volume 2341,67 (m3) Length on waterline 60,185 (m)
Total displaced volume 2341,67 (m3) Beam on waterline 14,563 (m)
Displacement 2400,21 (tonnes) Entrance angle 65,757 (Degr.)
Block coefficient 0,5335 Waterplane area 738,46 (m2)
Prismatic coefficient 0,6968 Waterplane coefficient 0,8488
Vert. prismatic coefficient 0,6285 Waterplane center of floatation 28,474 (m)
Wetted surface area 977,22 (m2) Transverse moment of inertia 11072 (m4)
Longitudinal center of buoyancy 31,038 (m) Longitudinal moment of inertia 171971 (m4)
Longitudinal center of buoyancy 1,724 %
Vertical center of buoyancy 3,152 (m)

Midship properties Initial stability
Midship section area 56,01 (m2) Transverse metacentric height 7,880 (m)
Midship coefficient 0,7657 Longitudinal metacentric height 76,591 (m)

Lateral plane
Lateral area 230,40 (m2)
Longitudinal center of effort 33,164 (m)
Vertical center of effort 2,918 (m)

The following layer properties are calculated for both sides of the ship
Location Area Thickness Weight LCG TCG VCG

(m2) (m) (tonnes) (m) (m) (m)
Layer 0 2843,52 0,000 0,00 28,314 0,000 (CL) 7,493

 NOTE 1: Draft (and all other vertical heights) is measured from base Z=0,000
NOTE 2: All calculated coefficients based on project length, draft and beam.  

Design hydrostatics report

28.02.2024 DELFTship 10.20 (311) 1



Cross curves

Trim= 0,000
0,0º 10,0º 20,0º 30,0º 40,0º 50,0º

KN sin(ø) 0,000 1,369 2,684 3,901 5,025 6,080
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Heel angle 0 deg 

 

 

 

Heel angle 50 deg 

 

 



D Stability with and without crane
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(8)(8)

(5)(5)

(7)(7)

(3)(3)

(10)(10)

(9)(9)

(1)(1)

(4)(4)

(2)(2)

(6)(6)

 

Hydrostatic calculations ReVolt

The ReVolt vessel coeficents from Delfstship

Params:

p_sea d 1025
p_sead 1025

gd 9.81
gd 9.81

 
 Initial params from Delftship:
 
V d 2341.67 ## Displaced water volume

Vd 2341.67

 
  KM_T d 7.88

KM_Td 7.88

KM_L d 76.591
KM_Ld 76.591

A_wld 738.46
A_wld 738.46

 
Verification that the vessel does not capsize:

m_base d 27515.861
m_based 27515.861

m_link1 d 13648
m_link1d 13648

m_link2 d 1416
m_link2d 1416

m_ship d 2400$103

m_shipd 2400000

m_spreader d 1.5$103



(19)(19)

(20)(20)

(13)(13)

(17)(17)

(16)(16)

(21)(21)

(12)(12)

(14)(14)

(15)(15)

(18)(18)

(11)(11)

(22)(22)

(23)(23)

m_spreaderd 1500.0

m_container d 5$103

m_containerd 5000

 
  L1 d 19.201

L1d 19.201

L2  d 6.24
L2d 6.24

Lcg_link1d 8.31
Lcg_link1d 8.31

Lcg_link2 d 2.727
Lcg_link2d 2.727

H_ship d 12.5 
H_shipd 12.5

vcg_ship_delftship d 7.493
vcg_ship_delftshipd 7.493

Checking loaded crane in worst configuration while loaded with 5 tonn container

numenator d m_base$H_ship C m_link1$ H_shipCLcg_link1  C m_link2$ H_shipC L1 
C Lcg_link2 C m_spreader C m_container $ H_shipCL1 C L2   C m_ship
$vcg_ship_delftship :

denominator d  m_base C m_spreader C m_container C m_link1 C m_link2 C m_ship :

cog_ship_craned 
numenator

denominator
cog_ship_craned 7.719850214

GM_T_worstCased KM_T L cog_ship_crane 
GM_T_worstCased 0.160149786

Finding restoring coefficient for roll:

 
GM_T_noCraned KM_T L vcg_ship_delftship

GM_T_noCraned 0.387

C_44_worstd p_sea $ g $V$GM_T_worstCase

C_44_worstd 3.770899236#106

  C_44_nocraned p_sea $ g $V$GM_T_noCrane

C_44_nocraned 9.112331903#106



(28)(28)

(27)(27)

(29)(29)

(26)(26)

(32)(32)

(30)(30)

(25)(25)

(31)(31)

(24)(24)

GM_mean d 
GM_T_worstCase C GM_T_noCrane

2
GM_meand 0.2735748930

C_44_mean d p_sea $ g $V$ GM_mean  

C_44_meand 6.441615570#106

Finding restoring coefficent for pitch:

GM_Ld KM_L Lvcg_ship_delftship  
GM_Ld 69.098

GM_L_worst d KM_L L cog_ship_crane
GM_L_worstd 68.87114979

 
 
 C_55 = p_sea $ g $V$GM_L

C_55 = 1.626986847#109

GM_L_mean d  
GM_L C GM_L_worst

2
 

GM_L_meand 68.98457490

 
 C_55_mean = p_sea $ g $V$GM_L_mean

C_55_mean = 1.624316131#109

Finding restoring force in heave:

#Faltinsen

C_33_F = A_wl $ p_sea$g

C_33_F = 7.425399915#106

# Finding restoring coefficent given draft of 5.045 from delftship

C_33 = 
m_ship$g

5.045

C_33 = 4.666798811#106

 



E Point-to-point coefficients
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(2)(2)

(8)(8)

(7)(7)

(9)(9)

(5)(5)

(3)(3)

(4)(4)

(6)(6)

(10)(10)

(1)(1)

Point-to-point motion finding a0, a1, a2, a3, a4, a5
 
restart :
 
q d a5$t5C a4$t4 C a3$t3 C a2$t2 C a1$t C a0

qd a5 t5C a4 t4C a3 t3C a2 t2C a1 tC a0

q_dot d diff q, t

q_dotd 5 a5 t4C 4 a4 t3C 3 a3 t2C 2 a2 tC a1

q_ddot d diff q_dot, t

q_ddotd 20 a5 t3C 12 a4 t2C 6 a3 tC 2 a2

 
 
#Finding initial position, valocity and accel terms
 
eq1 d qi  = eval  q, t = 0

eq1d qi = a0

eq2 d qi_dot = eval q_dot, t = 0
eq2d qi_dot = a1

eq3 d qi_ddot = eval q_ddot, t = 0  
eq3d qi_ddot = 2 a2

 
 #Finding end position, valocity and accel terms
 
 eq4 d qf = eval  q, t = tf

eq4d qf = a5 tf 5C a4 tf 4C a3 tf 3C a2 tf 2C a1 tfC a0

 eq5 d qf_dot = eval q_dot, t = tf

eq5d qf_dot = 5 a5 tf 4C 4 a4 tf 3C 3 a3 tf 2C 2 a2 tfC a1

 
eq6 d qf_ddot = eval q_ddot, t = tf

eq6d qf_ddot = 20 a5 tf 3C 12 a4 tf 2C 6 a3 tfC 2 a2

 
 
# Solving for a1,a2,a3,a4,a5
 
solve eq1, eq2, eq3, eq4, eq5, eq6 , a0, a1, a2, a3, a4, a5

a0 = qi, a1 = qi_dot, a2 =
qi_ddot

2
, a3

=
qf_ddot tf 2L 3 tf 2 qi_ddotL 8 qf_dot tfL 12 qi_dot tfC 20 qfL 20 qi

2 tf 3 , a4 =



L
2 qf_ddot tf 2L 3 tf 2 qi_ddotL 14 qf_dot tfL 16 qi_dot tfC 30 qfL 30 qi

2 tf 4 , a5

=
qf_ddot tf 2L tf 2 qi_ddotL 6 qf_dot tfL 6 qi_dot tfC 12 qfL 12 qi

2 tf 5

 
 
 

 



F Code from all physical elements in bond graph

F.1 Ship and crane parameters

1 parameters

2

3 real global g= 9.81; //Gravitational Constant

4 real scalingFactor = 6.5; //Scaling

factor↪→

5 real global r_tip_container = 15; // desired distance from crane-tip and top of contanienr

6 real global P_desired_container[3] = [0;20;7.69]; // Desired container position

7

8

9 // Ship parameters

10 real global H = 12.5; // [m] Height of vesssel

11 real global B = 14.4; // [m] (Width)

12 real global Draught = 5.045; // [m] Draught of vessel

13 real global Lpp = 56.82; // [m] (Length

between perpendiculars)↪→

14 real global Mass = 2400000; // [kg] (Ship weight)

15 real global Rho_w = 1025; // [kg/m^3] (Sea water density)

16 real global vcg_ship = 7.493; // [m] Vertical centre of gravity of ship without crane from

delftship↪→

17

18

19

20

21

22

23 // Hydrostatic restoring matrix calculated in Maple

24 real global C[6,6] = [ 0.0, 0.00,

0.00, 0.00,

0.00, 0.00;

↪→

↪→

25 0.00,

0.0,

0.00,

0.00,

0.00,

0.00;

↪→

↪→

↪→

↪→

↪→

26 0.00,

0.00,

46667 ⌋
98.811, 0.00,

0.0,

0.00;

↪→

↪→

↪→

↪→

↪→

27 0.00,

0.00,

0.00,

6.44 ⌋
1615570*10^6,

0.00,

0.0;

↪→

↪→

↪→

↪→

↪→

↪→
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28 0.00,

0.00,

0.00,

0.00,

1.624 ⌋
540534*10^9,

0.00;

↪→

↪→

↪→

↪→

↪→

↪→

29 0.00,

0.00,

0.00,

0.00,

0.00,

0.0];

↪→

↪→

↪→

↪→

↪→

30

31 // Tuned Damping matrix

32 real global D[6,6] = 10^2*[ 150160.00*10, 0.00,

0.00, 0.00, 0.00,

0.00;

↪→

↪→

33 0.00, 286 ⌋
000.0, 0.00,

0.00,

0.00,

0.00;

↪→

↪→

↪→

↪→

34 0.00, 0.00 ⌋
,

1e7,

0.00,

0.00,

0.00;

↪→

↪→

↪→

↪→

↪→

35 0.00,

0.00,

0.00, ⌋
3*128000.0, ⌋
0.00,

0.00;

↪→

↪→

↪→

↪→

↪→

36 0.00,

0.00,

0.00,

0.00,

1e7*1 ⌋
0,

0.00;

↪→

↪→

↪→

↪→

↪→

↪→

37 0.00,

0.00,

0.00,

0.00,

0.00, ⌋
161440.0];

↪→

↪→

↪→

↪→

↪→

38

39

40

41

42

43 variables

44

45

46 // Vessel initial angels

47 real global phi_rad_init,theta_rad_init,psi_rad_init;
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48

49 //Crane parameters //

50 real global L1,L2,b,a,h,w,c,u,r,s,k,n,o,p,Xcm1,Ycm1;

51 real global m1,m2,m3;

52 real global theta1_init_deg,theta2_init_deg,theta3_init_deg;

53 real global theta1_rad_init,theta2_rad_init,theta3_rad_init;

54

55 // Crane link vectors

56 real global rb_1_b[3];

57 real global r1_2_1[3];

58 real global r2_3_2[3];

59 real global r3_8_3[3];

60

61 initialequations

62 //Parameters for crane arm

63 L1= 2.954*scalingFactor; L2= 0.96*scalingFactor; b=

0.445*scalingFactor; a= 0.1*scalingFactor;↪→

64 h= 0.495*scalingFactor; w= 2.150*scalingFactor; c=

0.19*scalingFactor; u=

0.280*scalingFactor;

↪→

↪→

65 r= 0.100*scalingFactor; s= 0.118*scalingFactor; k=

1.286*scalingFactor; n=

0.420*scalingFactor;

↪→

↪→

66 o= 0.324*scalingFactor; p= 0.429*scalingFactor; Xcm1 =

0*scalingFactor; Ycm1 = -0.023*scalingFactor;↪→

67

68 m1 = 27515.861 ; // [kg] mass of base

69 m2 = 13648.269 ; // [kg] mass of lower arm (link1)

70 m3 = 1416.126 ; // [kg] mass of upper arm (link2)

71

72 theta1_init_deg = 0;

73 theta2_init_deg = 50;

74 theta3_init_deg = -57;

75

76 // Crane vectors to find crane tip

77 rb_1_b = [0; 0; 0]; r1_2_1 = [0; 0; h]; r2_3_2 = [0; L1; 0]; r3_8_3 = [0; L2; 0];

78

79

80 theta1_rad_init = theta1_init_deg*pi/180;

81 theta2_rad_init = theta2_init_deg*pi/180;

82 theta3_rad_init = theta3_init_deg*pi/180;

83

84

85

F.2 Spreader and wire parameters

1 parameters

2 // Spreader params

3

4 // Dimensions

5 real global H_spreader = 0.3048; // [m] Height

6 real global B_spreader = 2.4384; // [m]

Width↪→

7 real global L_spreader = 6.096; // [m] Length

8 real global MassSpreader = 1500; // [kg] Weight

119



9 real global initalWireLength = 5; // Initial length of spreader line [m]

10 real global E_wire= 200000000000; //Wire E-module [Pa]

11 real global D_wire= 0.002;//Diameter of wire [m]

12 real global r_CG_Spreader [3,1] = [0;0;0]; // centre of gravity relative to geometric

centre↪→

13

14 // Inertia calculations from Maple

15 real I_44 = 1.3272e8;

16 real I_55 = 7.3782e8;

17 real I_66 = 6.8804e8;

18 real I_46 = 7.2000e6;

19

20 variables

21 real hidden zc;

22 real global M[6,6];

23 real global Minv[6,6];

24

25 initialequations

26

27 zc = r_CG_Spreader[3];

28

29 M = [ MassSpreader, 0.00,

0.00,

0.00,

MassSpreader*zc, 0.00;

↪→

↪→

↪→

30 0.00, ⌋
MassSpreader,

⌋

⌋
0.00,

⌋
-MassSpreader*zc,

⌋
0.00,

0.00;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

31 0.00, ⌋
0.00,

⌋

⌋
MassSpreader,

⌋
0.00,

⌋
0.0,

0.00;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

32 0.00, ⌋
-MassSpreader*zc,

⌋

⌋
0.00,

⌋
I_44,

⌋
0.00,

-I_46;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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33 MassSpreader*zc, ⌋
0.00,

⌋

⌋
0.00,

⌋
0.00,

⌋
I_55, ⌋
0.00;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

34 0.00, ⌋
0.00,

⌋

⌋
0.00,

⌋
-I_46,

⌋
0.00,

I_66];

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

35

36

37

38 Minv = inverse(M);

39

40

F.3 IC ship-crane

1

2 parameters

3

4 string dll_name = 'Ship-crane-integration.dll';

5 real initialTransformAngles[3] = [-pi;0;0];

6 real global H;

7 real global Draught;

8 real global vcg_ship;

9

10 variables

11

12

13 real initialWaterlinePosition;

14 // quasi coordinate vector

15 real omega[9];

16 real vx, vy, vz; // translational velocity of vessel

17 real phi, theta, psi; // Rotations of vessel

18 real theta1, theta2, theta3; // Crane joint rotations

19 real phi_dot, theta_dot, psi_dot, theta1_dot, theta2_dot, theta3_dot;

20 real EulerAngles[3];

21 real EulerAngles_dot[3];

22

23

24 // State space terms

25

26 real fp[9];

27 real omega_T_dBdq[9,9];
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28

29

30 real e_in[6];

31 real e_out[9];

32 real f_out[6];

33

34 // trasformation matrixes

35 real craneTip[3];

36 real craneBase[3];

37 real craneLink1[3];

38 real craneLink2[3];

39 real global r0_b_cog[3];

40 real global r0_cog_0[3];

41 real r0_cog_0_viz[3];

42 real r0_b_cog_viz[3];

43 real cog_body[3];

44 real global Rb_0[3,3], Rb_1[3,3], R1_2[3,3], R2_3[3,3];

45 // Frame vizualization

46 real revoltBottomPosition[3];

47 real BodyFrame[3,3];

48 real BaseFrame[3,3];

49 real Link1Frame[3,3];

50 real Link2Frame[3,3];

51 real CraneTipFrame[3,3];

52

53 real global rb_1_b[3];

54 real global r1_2_1[3];

55 real global r2_3_2[3];

56 real global r3_8_3[3];

57 real global theta1_rad_init,theta2_rad_init,theta3_rad_init;

58 real global beta[9,9];

59 real global beta_T[9,9];

60 real T_mat[3,3];

61

62 real global initialVesselAngles[3];

63 //Mass matrix B

64 real B_tot[9,9];

65 real B_in[6],B_out[45];

66

67 // Added mass matrix coriolies matrix from added mass

68 real A[9,9];

69 real B_A[9,9];

70 real C_A[9,9];

71 real Xu;

72 real Yv;

73 real Zw;

74 real Kp;

75 real Mq;

76 real Nr;

77 //Partial derivatives of B

78

79 real dBdq1[9,9];

80 real dBdq2[9,9];

81 real dBdq3[9,9];

82 real dBdq4[9,9];

83 real dBdq5[9,9];

84 real dBdq6[9,9];

85
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86 real dBdq7[9,9];

87 real dBdq8[9,9];

88 real dBdq9[9,9];

89

90 real dBdq7_out[45];

91 real dBdq8_out[45];

92 real dBdq9_out[45];

93

94 // alpha matrix parial derivatives

95 real alpha[9,9];

96 real dalpha_dtheta_mat[9,9];

97 real dalpha_dphi_mat[9,9];

98 real dalpha_dpsi_mat[9,9];

99

100 real dalpha_dq1[9,9];

101 real dalpha_dq2[9,9];

102 real dalpha_dq3[9,9];

103 real dalpha_dq7[9,9];

104 real dalpha_dq8[9,9];

105 real dalpha_dq9[9,9];

106

107 real alpha_in[3];

108

109 real dalpha_dtheta_out[81];

110 real dalpha_dphi_out[81];

111 real dalpha_dpsi_out[81];

112

113 // gamma

114 real Xi[9,9];

115 real daplha_ij_dq[9];

116 real gamma[9,9];

117 real gamma_right[9,9];

118

119 // Iteration variables

120 real i,j;

121 real counter, turn_counter;

122

123 // Intial angles

124 real init_phi_rad;

125 real init_theta_rad;

126 real init_psi_rad;

127

128 initialequations

129

130

131

132 initialVesselAngles = [0;0;0] + initialTransformAngles;

133

134 init_phi_rad = initialVesselAngles[1];

135 init_theta_rad = initialVesselAngles[2];

136 init_psi_rad = initialVesselAngles[3];

137 // System mass matrix of marine vessel is not a

138 // function of generalized coord.

139 dBdq1[1:9,1:9] = 0;

140 dBdq2[1:9,1:9] = 0;

141 dBdq3[1:9,1:9] = 0;

142 dBdq4[1:9,1:9] = 0;

143 dBdq5[1:9,1:9] = 0;
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144 dBdq6[1:9,1:9] = 0;

145

146 // alpha matrix is only dependent on vessel rotations: phi, theta and psi

147 dalpha_dq1[1:9,1:9] = 0;

148 dalpha_dq2[1:9,1:9] = 0;

149 dalpha_dq3[1:9,1:9] = 0;

150 dalpha_dq7[1:9,1:9] = 0;

151 dalpha_dq8[1:9,1:9] = 0;

152 dalpha_dq9[1:9,1:9] = 0;

153

154

155 counter = 0;

156 turn_counter = 0;

157

158

159 // From {b} to {0}

160 Rb_0 = [cos(init_psi_rad)*cos(init_theta_rad), sin(init_psi_rad)*cos(init_theta_rad),

-sin(init_theta_rad);↪→

161 -sin(init_psi_rad)*cos(init_phi_rad) +

cos(init_psi_rad)*sin(init_theta_rad)*sin(init_phi_rad),

cos(init_psi_rad)*cos(init_phi_rad) +

sin(init_psi_rad)*sin(init_theta_rad)*sin(init_phi_rad),

cos(init_theta_rad)*sin(init_phi_rad);

↪→

↪→

↪→

↪→

162 sin(init_psi_rad)*sin(init_phi_rad) +

cos(init_psi_rad)*sin(init_theta_rad)*cos(init_phi_rad),

-cos(init_psi_rad)*sin(init_phi_rad) +

sin(init_psi_rad)*sin(init_theta_rad)*cos(init_phi_rad),

cos(init_theta_rad)*cos(init_phi_rad)];

↪→

↪→

↪→

↪→

163

164 // From {1} to {b}

165 Rb_1 = [sin(theta1_rad_init ), cos(theta1_rad_init ), 0;

166 cos(theta1_rad_init ), -sin(theta1_rad_init ), 0;

167 0, 0, -1];

168

169 // From {2} to {1}

170 R1_2 = [1, 0, 0;

171 0, cos(theta2_rad_init), -sin(theta2_rad_init);

172 0, sin(theta2_rad_init), cos(theta2_rad_init)];

173 // From {3} to {2}

174 R2_3 = [1, 0, 0;

175 0, cos(theta3_rad_init), -sin(theta3_rad_init);

176 0, sin(theta3_rad_init), cos(theta3_rad_init)];

177

178 craneTip = transpose(Rb_0)*rb_1_b + transpose(Rb_0)*transpose(Rb_1)*r1_2_1 +

transpose(Rb_0)*transpose(Rb_1)*R1_2*r2_3_2 +

transpose(Rb_0)*transpose(Rb_1)*R1_2*R2_3*r3_8_3;

↪→

↪→

179

180 //Constructing added mass matrix from conevntional ship params

181 B_A = 0;

182 B_A[1,1] = 1.4e6; B_A[2,2] = 7.2e6; B_A[3,3] = 11.1e7;

183 B_A[4,4] = 1.75e8; B_A[5,5] = 8e10; B_A[6,6] = 4.2e9;

184

185 equations

186

187

188

189 // Rotation matrices

190 Rb_0 = [cos(psi)*cos(theta), sin(psi)*cos(theta), -sin(theta);
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191 -sin(psi)*cos(phi) + cos(psi)*sin(theta)*sin(phi),

cos(psi)*cos(phi) + sin(psi)*sin(theta)*sin(phi),

cos(theta)*sin(phi);

↪→

↪→

192 sin(psi)*sin(phi) + cos(psi)*sin(theta)*cos(phi),

-cos(psi)*sin(phi) + sin(psi)*sin(theta)*cos(phi),

cos(theta)*cos(phi)];

↪→

↪→

193

194 T_mat = [1, sin(phi)*tan(theta), cos(phi)*tan(theta);

195 0, cos(phi), -sin(phi);

196 0, sin(phi)* 1/cos(theta), cos(phi)* 1/cos(theta)];

197

198

199

200

201 // Model only recives input forces on the vessel, as the crane joint velocities are

governed by actuators↪→

202 e_in[1] = vI.e[1]; e_in[2]=vI.e[2]; e_in[3]=vI.e[3];

203 e_in[4] = wI.e[1]; e_in[5] = wI.e[2]; e_in[6] = wI.e[3];

204

205 // Setting input velocities

206 EulerAngles_dot=T_mat*wC.f;

207 EulerAngles = int(T_mat*wC.f,initialVesselAngles);

208

209 vx = vC.f[1]; vy=vC.f[2]; vz=vC.f[3];

210 phi = EulerAngles[1]; theta = EulerAngles[2]; psi = EulerAngles[3];

211 phi_dot = EulerAngles_dot[1]; theta_dot = EulerAngles_dot[2]; psi_dot =

EulerAngles_dot[3];↪→

212 theta1 = jointAngles[1]; theta2 = jointAngles[2]; theta3 = jointAngles[3];

213 theta1_dot = qc_C.f[1]; theta2_dot = qc_C.f[2]; theta3_dot = qc_C.f[3];

214

215 // Creating quasi-coordinate vector

216 omega= [vx;vy;vz ;wC.f[1];wC.f[2];wC.f[3]; theta1_dot; theta2_dot; theta3_dot];

217

218 // Setting input arguments to .dll functions

219 r0_cog_0 = transpose(Rb_0) * int(vC.f) + [0;0;vcg_ship-Draught];

220 cog_body = Rb_0 * r0_cog_0;

221 B_in = [theta1; theta2; theta3; cog_body[1];cog_body[2];cog_body[3]];

222 alpha_in = [phi;theta;psi];

223

224 // Exporting outputs from .dll

225 B_out = dll(dll_name, 'updatedB', B_in);

226 dBdq7_out = dll(dll_name, 'update_dBdq7', B_in);

227 dBdq8_out = dll(dll_name, 'update_dBdq8', B_in);

228 dBdq9_out = dll(dll_name, 'update_dBdq9', B_in);

229

230 dalpha_dtheta_out = dll(dll_name, 'dalpha_dtheta', alpha_in);

231 dalpha_dphi_out = dll(dll_name, 'dalpha_dphi', alpha_in);

232 dalpha_dpsi_out = dll(dll_name, 'dalpha_dpsi', alpha_in);

233

234 // Creating the matrixes B_tot, dBdq7, dBdq8, dBdq9 from .dll outputs

235 if counter < 45 then

236 for i = 1 to 9 do

237 for j = i to 9 do

238 counter = counter + 1;

239 B_tot[i,j] = B_out[counter];

240 B_tot[j,i] = B_tot[i,j];

241 end;

242 end;
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243 counter = 0;

244 end;

245

246 if counter < 45 then

247 for i = 1 to 9 do

248 for j = i to 9 do

249 counter = counter + 1;

250 dBdq7[i,j] = dBdq7_out[counter];

251 dBdq7[j,i] = dBdq7[i,j];

252 end;

253 end;

254 counter = 0;

255 end;

256

257 if counter < 45 then

258 for i = 1 to 9 do

259 for j = i to 9 do

260 counter = counter + 1;

261 dBdq8[i,j] = dBdq8_out[counter];

262 dBdq8[j,i] = dBdq8[i,j];

263 end;

264 end;

265 counter = 0;

266 end;

267

268 if counter < 45 then

269 for i = 1 to 9 do

270 for j = i to 9 do

271 counter = counter + 1;

272 dBdq9[i,j] = dBdq9_out[counter];

273 dBdq9[j,i] = dBdq9[i,j];

274 end;

275 end;

276 counter = 0;

277 end;

278

279 // Exporting dalpha_dphi, dalpha_dtheta, dalpha_dpsi from .dll output

280

281 if counter < 81 then

282 for i = 1 to 9 do

283 for j = 1 to 9 do

284 counter = counter + 1;

285 dalpha_dphi_mat[i,j] = dalpha_dphi_out[counter];

286 end;

287 end;

288 counter = 0;

289 end;

290

291 if counter < 81 then

292 for i = 1 to 9 do

293 for j = 1 to 9 do

294 counter = counter + 1;

295 dalpha_dtheta_mat[i,j] = dalpha_dtheta_out[counter];

296 end;

297 end;

298 counter = 0;

299 end;

300
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301

302 if counter < 81 then

303 for i = 1 to 9 do

304 for j = 1 to 9 do

305 counter = counter + 1;

306 dalpha_dpsi_mat[i,j] = dalpha_dpsi_out[counter];

307 end;

308 end;

309 counter = 0;

310 end;

311

312 // Creating the beta trasnformation matix

313 beta[1:3,1:3] = Rb_0;

314 beta[4:6,4:6] = T_mat;

315 beta[7:9,7:9] = eye(3);

316 beta[1:3,4:9] = 0;

317 beta[4:9,1:3] = 0;

318 beta[7:9,1:6] = 0;

319 beta[3:6,7:9] = 0;

320 beta_T = transpose(beta);

321

322 //Creating gamma

323 if counter < 81 then

324 for i = 1 to 9 do

325 for j = 1 to 9 do

326 counter = counter + 1;

327 daplha_ij_dq = [0;0;0;dalpha_dphi_mat[i,j];dalpha_dtheta_mat[i,j] ⌋
;dalpha_dpsi_mat[i,j];0;0;0];↪→

328 Xi[i,j] = transpose(omega)*transpose(beta)*daplha_ij_dq;

329 end;

330 end;

331 counter = 0;

332 end;

333

334 gamma = Xi;

335

336

337 gamma_right[1,1:9] = transpose(omega)*beta_T* dalpha_dq1;

338 gamma_right[2,1:9] = transpose(omega)*beta_T*dalpha_dq2 ;

339 gamma_right[3,1:9] = transpose(omega)*beta_T*dalpha_dq3;

340 gamma_right[4,1:9] = transpose(omega)*beta_T*dalpha_dphi_mat;

341 gamma_right[5,1:9] = transpose(omega)*beta_T*dalpha_dtheta_mat;

342 gamma_right[6,1:9] = transpose(omega)*beta_T*dalpha_dpsi_mat;

343 gamma_right[7,1:9] = transpose(omega)*beta_T*dalpha_dq7;

344 gamma_right[8,1:9] = transpose(omega)*beta_T*dalpha_dq8;

345 gamma_right[9,1:9] = transpose(omega)*beta_T*dalpha_dq9;

346

347 gamma = Xi - gamma_right;

348

349

350 //Finding fp(q, omega)

351

352 omega_T_dBdq[1,1:9] = transpose(omega)*dBdq1;

353 omega_T_dBdq[2,1:9] = transpose(omega)*dBdq2;

354 omega_T_dBdq[3,1:9] = transpose(omega)*dBdq3;

355 omega_T_dBdq[4,1:9] = transpose(omega)*dBdq4;

356 omega_T_dBdq[5,1:9] = transpose(omega)*dBdq5;

357 omega_T_dBdq[6,1:9] = transpose(omega)*dBdq6;
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358 omega_T_dBdq[7,1:9] = transpose(omega)*dBdq7;

359 omega_T_dBdq[8,1:9] = transpose(omega)*dBdq8;

360 omega_T_dBdq[9,1:9] = transpose(omega)*dBdq9;

361

362 // Coriolies matrix from added mass

363

364 C_A[1:9,1:9] = 0;

365 C_A[1:3,4:6] = -skew(B_A[1:3,1:3]*vC.f+B_A[1:3,4:6]*wC.f);

366 C_A[4:6,1:3] = -skew(B_A[1:3,1:3]*vC.f+B_A[1:3,4:6]*wC.f);

367 C_A[4:6,4:6] = -skew(B_A[4:6,1:3]*vC.f+B_A[4:6,4:6]*wC.f);

368

369 fp = -beta_T*gamma*B_tot*omega + 0.5*beta_T*omega_T_dBdq*omega + C_A*omega;

370 e_out = fp;

371 f_out = inverse(B_tot[1:6,1:6] + B_A[1:6,1:6])*int(e_in);

372

373 // Setting output velocities as a result of input forces

374 vI.f[1] = f_out[1]; vI.f[2] = f_out[2]; vI.f[3] = f_out[3];

375 wI.f[1] = f_out[4]; wI.f[2] = f_out[5]; wI.f[3] = f_out[6];

376

377 // Setting output inertia force as a result of the input velocities

378 vC.e[1] = e_out[1]; vC.e[2] = e_out[2]; vC.e[3] = e_out[3];

379 wC.e[1] = e_out[4]; wC.e[2] = e_out[5]; wC.e[3] = e_out[6];

380 qc_C.e[1] = e_out[7]; qc_C.e[2] = e_out[8]; qc_C.e[3] = e_out[9];

381

382

383

384 //Finding transformation matrices to find crane tip

385

386 Rb_1 = [sin(theta1), cos(theta1), 0;

387 cos(theta1), -sin(theta1), 0;

388 0, 0, -1];

389

390 R1_2 = [1, 0, 0;

391 0, cos(theta2), -sin(theta2);

392 0, sin(theta2), cos(theta2)];

393 R2_3 = [1, 0, 0;

394 0, cos(theta3), -sin(theta3);

395 0, sin(theta3), cos(theta3)];

396

397

398 //Frame locations and crane tip

399

400 r0_b_cog = [sin(theta)*(H - vcg_ship); sin(phi)*(H - vcg_ship);(H - vcg_ship)] + r0_cog_0;

401 craneBase = r0_b_cog + transpose(Rb_0)*rb_1_b;

402 craneLink1 = r0_b_cog + transpose(Rb_0)*rb_1_b + transpose(Rb_0)*transpose(Rb_1)*r1_2_1;

403 craneLink2 = r0_b_cog + transpose(Rb_0)*rb_1_b + transpose(Rb_0)*transpose(Rb_1)*r1_2_1 +

transpose(Rb_0)*transpose(Rb_1)*R1_2*r2_3_2;↪→

404 craneTip = r0_b_cog + transpose(Rb_0)*rb_1_b + transpose(Rb_0)*transpose(Rb_1)*r1_2_1 +

transpose(Rb_0)*transpose(Rb_1)*R1_2*r2_3_2 +

transpose(Rb_0)*transpose(Rb_1)*R1_2*R2_3*r3_8_3;

↪→

↪→

405

406 //Visualization

407 initialWaterlinePosition = 0;

408 revoltBottomPosition = r0_cog_0 - [sin(theta)*(vcg_ship); sin(phi)*(vcg_ship);(vcg_ship)];

409 r0_cog_0_viz = r0_cog_0;

410 r0_b_cog_viz = r0_b_cog;

411

412
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413 // Frame vizualization

414 BodyFrame = Rb_0; // From {b} to {0}

415 BaseFrame = Rb_0*Rb_1; // From {1} to {0}

416 Link1Frame = Rb_0*Rb_1*R1_2; // From {2} to {0}

417 Link2Frame = Rb_0*Rb_1*R1_2*R2_3; // From {3} to {0}

418 CraneTipFrame = Rb_0*Rb_1*R1_2*R2_3;

419

420 craneTip_signal = craneTip;

421

422

423

F.4 MTF - world-to-body-transform

1 variables

2 real global beta[9,9];

3 real global beta_T[9,9];

4

5

6 equations

7 p1.e = beta[4:6,4:6] * p2.e;

8 p2.f = beta_T[4:6,4:6] * p1.f;

9

F.5 R-translational

1 parameters

2 real global D[6,6];

3 equations

4 p.e = D[1:3,1:3] * p.f;

5

6

F.6 R-rotational

1 parameters

2 real global D[6,6];

3 equations

4 p.e = D[4:6,4:6] * p.f;

5

6

F.7 C-translational

1 parameters

2 real global C[6,6];

3 real init [3,1] = [0;0;-5.045];

4

5 equations

6

7 state = int(p.f,init);
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8 p.e = C[1:3,1:3] *state;

9

10

F.8 C-rotational

1 parameters

2 real global C[6,6];

3 equations

4 state = int(p.f);

5 p.e = C[4:6,4:6] *state;

6

F.9 Se - ship gravity

1 parameters

2 real global Mass;

3 real global g;

4 real effort[3,1] = [0; 0;-Mass*g];

5 variables

6 real flow [3];

7 equations

8 p.e = effort;

9 flow = p.f;

10

G Gravity from crane links and spreader

G.1 Se-base

1 parameters

2 real global g;

3 variables

4 real flow[6];

5 real global m1,m2,m3;

6 equations

7 p.e = 0;

8 p.e[3] = -m1*g;

9 flow = p.f;

10

G.2 Se-link1

1 parameters

2 real global g;

3 variables

4 real flow[6];

5 real global m1,m2,m3;

6 equations

7 p.e = 0;
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8 p.e[3] = -m2*g;

9 flow = p.f;

G.3 Se-link2

1 parameters

2 real global g;

3 variables

4 real flow[6];

5 real global m1,m2,m3;

6 equations

7 p.e = 0;

8 p.e[3] = -m3*g;

9 flow = p.f;

G.4 Se-spreader

1 parameters

2 real global MassSpreader;

3 real global g;

4 variables

5 real flow [3];

6 real effort[3,1];

7 equations

8 effort = [0; 0; -MassSpreader * g];

9 p.e = effort;

10 flow = p.f;

11

G.5 MTF Jcm-base

1 variables

2 real Jcm_base[6,9], test[9,6], theta1;

3 real global Ycm1,Xcm1;

4 real global Rb_0[3,3];

5 real a[6];

6 real b[6];

7 equations

8

9 theta1 = jointAngles[1];

10 Jcm_base = [1, 0, 0, 0, 0, -cos(theta1)*Xcm1 + sin(theta1)*Ycm1, cos(theta1)*Xcm1 -

sin(theta1)*Ycm1, 0, 0;↪→

11 0, 1, 0, 0, 0, sin(theta1)*Xcm1 + cos(theta1)*Ycm1,

-sin(theta1)*Xcm1 - cos(theta1)*Ycm1, 0, 0;↪→

12 0, 0, 1, cos(theta1)*Xcm1 - sin(theta1)*Ycm1,

-sin(theta1)*Xcm1 - cos(theta1)*Ycm1, 0, 0, 0, 0;↪→

13 0, 0, 0, 1, 0, 0, 0, 0, 0;

14 0, 0, 0, 0, 1, 0, 0, 0, 0;

15 0, 0, 0, 0, 0, 1, -1, 0, 0];

16

17

18 a[1:3] = Rb_0 * p2.e[1:3];

19 a[4:6] = Rb_0 * p2.e[4:6];
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20 p1.e = transpose(Jcm_base) *p2.e;

21

22

23 b = Jcm_base * p1.f;

24

25 p2.f[1:3] = transpose(Rb_0)* b[1:3];

26 p2.f[4:6] = transpose(Rb_0)* b[4:6];

27

G.6 MTF Jcm-link1

1 variables

2 real Jcm_link1[6,9], theta1, theta2;

3 real global Ycm1,Xcm1,k, h;

4 real a[6],b[6];

5 real global Rb_0[3,3];

6 equations

7

8 theta1 = jointAngles[1];

9 theta2 = jointAngles[2];

10

11

12 a[1:3] = Rb_0 * p2.e[1:3];

13 a[4:6] = Rb_0 * p2.e[4:6];

14

15 Jcm_link1 = [1,0,0,0,-h-sin(theta2)* k,sin(theta1)* cos(theta2)* k,-sin(theta1)*

cos(theta2)* k,-cos(theta1) * sin(theta2)* k,0;↪→

16 0,1,0,h+sin(theta2)* k,0,cos(theta1)* cos(theta2)*

k,-cos(theta1)* cos(theta2) *k,sin(theta1)*

sin(theta2)* k,0;

↪→

↪→

17 0,0,1,-sin(theta1)* cos(theta2) *k,-cos(theta1)*

cos(theta2)* k,0,0,-(sin(theta1))^2 * cos(theta2)*

k-(cos(theta1))^2 * cos(theta2)* k,0;

↪→

↪→

18 0,0,0,1,0,0,0,sin(theta1),0;

19 0,0,0,0,1,0,0,cos(theta1),0;

20 0,0,0,0,0,1,-1,0,0];

21

22 p1.e = transpose(Jcm_link1) * p2.e;

23 b = Jcm_link1 * p1.f;

24

25 p2.f[1:3] = transpose(Rb_0)* b[1:3];

26 p2.f[4:6] = transpose(Rb_0)* b[4:6];

G.7 MTF Jcm-link2

1 variables

2 real Jcm_link2[6,9], theta1, theta2, theta3;

3 real global Ycm1,Xcm1,k, h,L1,n;

4 real global Rb_0[3,3];

5 real a[6], b[6];

6 equations

7

8 theta1 = jointAngles[1];

9 theta2 = jointAngles[2];

10 theta3 = jointAngles[3];
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11 Jcm_link2 = [1, 0, 0, 0, -h - sin(theta2)*L1 + (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*n, sin(theta1)*cos(theta2)*L1 -

(-sin(theta1)*cos(theta2)*cos(theta3) + sin(theta1)*sin(theta2)*sin(theta3))*n,

-sin(theta1)*cos(theta2)*L1 + (-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*n, cos(theta1)*(-sin(theta2)*L1 +

(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*n),

cos(theta1)*(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*n;

↪→

↪→

↪→

↪→

↪→

↪→

12 0, 1, 0, h + sin(theta2)*L1 - (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*n, 0,

cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*n,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*n,

-sin(theta1)*(-sin(theta2)*L1 +

(-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*n),

-sin(theta1)*(-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*n;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

13 0, 0, 1, -sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*n,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*n, 0, 0,

sin(theta1)*(-sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*n) -

cos(theta1)*(cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*n),

sin(theta1)*(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*n -

cos(theta1)*(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*n;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 0, 0, 0, 1, 0, 0, 0, sin(theta1), sin(theta1);

15 0, 0, 0, 0, 1, 0, 0, cos(theta1), cos(theta1);

16 0, 0, 0, 0, 0, 1, -1, 0, 0];

17 a[1:3] = Rb_0 * p2.e[1:3];

18 a[4:6] = Rb_0 * p2.e[4:6];

19 p1.e = transpose(Jcm_link2) * p2.e;

20 b = Jcm_link2 * p1.f;

21

22 p2.f[1:3] = transpose(Rb_0)* b[1:3];

23 p2.f[4:6] = transpose(Rb_0)* b[4:6];

24

G.8 MTF J-tip

1 variables

2 real J_tip[6,9], theta1, theta2, theta3;

3 real global Ycm1,Xcm1,k, h,L1,L2,n;

4 real global Rb_0[3,3];

5 real a[6], b[6];

6 equations
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7

8 theta1 = jointAngles[1];

9 theta2 = jointAngles[2];

10 theta3 = jointAngles[3];

11

12 J_tip = [1, 0, 0, 0, -h - sin(theta2)*L1 + (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2, sin(theta1)*cos(theta2)*L1 -

(-sin(theta1)*cos(theta2)*cos(theta3) + sin(theta1)*sin(theta2)*sin(theta3))*L2,

-sin(theta1)*cos(theta2)*L1 + (-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2, cos(theta1)*(-sin(theta2)*L1 +

(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*L2),

cos(theta1)*(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

13 0, 1, 0, h + sin(theta2)*L1 - (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2, 0, cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2,

-sin(theta1)*(-sin(theta2)*L1 + (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2),

-sin(theta1)*(-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 0, 0, 1, -sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2, 0, 0,

sin(theta1)*(-sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2) -

cos(theta1)*(cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2),

sin(theta1)*(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2 -

cos(theta1)*(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

15 0, 0, 0, 1, 0, 0, 0, sin(theta1), sin(theta1);

16 0, 0, 0, 0, 1, 0, 0, cos(theta1), cos(theta1);

17 0, 0, 0, 0, 0, 1, -1, 0, 0];

18

19 a[1:3] = Rb_0 * p2.e[1:3];

20 a[4:6] = Rb_0 * p2.e[4:6];

21 p1.e = transpose(J_tip) * a;

22 b = J_tip * p1.f;

23

24 p2.f[1:3] = transpose(Rb_0)* b[1:3];

25 p2.f[4:6] = transpose(Rb_0)* b[4:6];

26

27

28

29
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H Wire modoluses

1 variables

2 real denominator;

3 real x1,y1,z1,x2,y2,z2;

4 real mx1,my1,mz1,mx2,my2,mz2;

5 equations

6

7 x1 = TipPosition[1];

8 y1 = TipPosition[2];

9 z1 = TipPosition[3];

10

11 x2 = SpreaderPosition[1];

12 y2 = SpreaderPosition[2];

13 z2 = SpreaderPosition[3];

14

15 mx1 = 0.5*(-2*x2 + 2*x1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

16 mx2 = 0.5*(2*x2 - 2*x1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

17 my1 = 0.5*(-2*y2 + 2*y1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

18 my2 = 0.5*(2*y2 - 2*y1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

19 mz1 = 0.5*(-2*z2 + 2*z1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

20 mz2 = 0.5*(2*z2 - 2*z1)/sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2);

21

22

23 TipModoluses = [mx1;

24 my1;

25 mz1];

26

27

28 SpreaderModoluses = [mx2;

29 my2;

30 mz2];

I MR-wire

1

2 parameters

3 real tsi = 5; // Realtive damping factor

4 real MassOfWire = 10; // [kg]

5 variables

6 real c;

7 equations

8 c = 2*tsi*sqrt(inputSignal_wireStiffness*MassOfWire); // Damping coefficent

9 p.e = c * p.f;

J C-wire

1 parameters

2 real global initalWireLength;

3 real global initial[3,1];

4 real global E_wire; //Wire E-module [Pa]

5 real global D_wire;//Diameter of wire [m]

6

7 variables
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8 real initialLength[1];

9 real k_wire;

10 real totalWireLength;

11 initialequations

12 totalWireLength = initalWireLength;

13 equations

14

15 totalWireLength = int(p.f,initalWireLength);

16

17 k_wire = E_wire * pi*(D_wire/2)^2/totalWireLength;

18 state = int(p.f);

19 p.e = k_wire*state;

20

21 outputSignal_wireStiffness = k_wire;

22

23

K Integrator- spreaderPosition

1 parameters

2 real global initial[3,1]; // initial value

3 real global initalWireLength;

4 real global H;

5 real global Draught;

6 real global vcg_ship;

7 variables

8 real initialSpreaderPosition[3];

9 real craneTip_init[3];

10 real craneBase[3];

11 real craneLink1[3];

12 real craneLink2[3];

13 real global r0_b_cog[3];

14 real global r0_cog_0[3];

15 real global Rb_0[3,3], Rb_1[3,3], R1_2[3,3], R2_3[3,3];

16

17 real global rb_1_b[3];

18 real global r1_2_1[3];

19 real global r2_3_2[3];

20 real global r3_8_3[3];

21 real global theta1_rad_init,theta2_rad_init,theta3_rad_init;

22 real init_phi_rad;

23 real init_theta_rad;

24 real init_psi_rad;

25 real global initialVesselAngles[3];

26 initialequations

27

28 init_phi_rad = initialVesselAngles[1];

29 init_theta_rad = initialVesselAngles[2];

30 init_psi_rad = initialVesselAngles[3];

31

32 Rb_0 = [cos(init_psi_rad)*cos(init_theta_rad), sin(init_psi_rad)*cos(init_theta_rad),

-sin(init_theta_rad);↪→
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33 -sin(init_psi_rad)*cos(init_phi_rad) +

cos(init_psi_rad)*sin(init_theta_rad)*sin(init_phi_rad),

cos(init_psi_rad)*cos(init_phi_rad) +

sin(init_psi_rad)*sin(init_theta_rad)*sin(init_phi_rad),

cos(init_theta_rad)*sin(init_phi_rad);

↪→

↪→

↪→

↪→

34 sin(init_psi_rad)*sin(init_phi_rad) +

cos(init_psi_rad)*sin(init_theta_rad)*cos(init_phi_rad),

-cos(init_psi_rad)*sin(init_phi_rad) +

sin(init_psi_rad)*sin(init_theta_rad)*cos(init_phi_rad),

cos(init_theta_rad)*cos(init_phi_rad)];

↪→

↪→

↪→

↪→

35

36 Rb_1 = [sin(theta1_rad_init), cos(theta1_rad_init), 0;

37 cos(theta1_rad_init ), -sin(theta1_rad_init ), 0;

38 0, 0, -1];

39 R1_2 = [1, 0, 0;

40 0, cos(theta2_rad_init), -sin(theta2_rad_init);

41 0, sin(theta2_rad_init), cos(theta2_rad_init)];

42 R2_3 = [1, 0, 0;

43 0, cos(theta3_rad_init), -sin(theta3_rad_init);

44 0, sin(theta3_rad_init), cos(theta3_rad_init)];

45

46 r0_b_cog = [sin(0)*(H - vcg_ship); sin(0)*(H - vcg_ship);(H - vcg_ship)]

+[0;0;vcg_ship-Draught];↪→

47 craneTip_init = r0_b_cog + transpose(Rb_0)*rb_1_b +

transpose(Rb_0)*transpose(Rb_1)*r1_2_1 + transpose(Rb_0)*transpose(Rb_1)*R1_2*r2_3_2

+ transpose(Rb_0)*transpose(Rb_1)*R1_2*R2_3*r3_8_3;

↪→

↪→

48 initialSpreaderPosition = craneTip_init - [0;0;initalWireLength];

49 SpreaderPositionZ = initialSpreaderPosition[3];

50 equations

51

52 output = int (input, initialSpreaderPosition);

53 SpreaderPositionZ = output[3];

54

L IC - spreader

1 parameters

2

3 real global Mass;

4 real global r_CG_Spreader[3,1];

5 real I_bb [3,3] = [0,0,0;

6 0,0,0;

7 0,0,0];

8 variables

9 // Mass matrix of spreader

10 real global M[6,6];

11 real global Minv[6,6];

12

13 // Vectors to calculate generalized momentum of spreader

14 real p_tot [6,1];

15 real pIf_tot [6,1];

16 real pCe_tot [6,1];

17 real p_tot1[3], p_tot2[3];

18

19 // Matrix containing rigid bbody centripetal and coriolies matrix

20 real CRB [6,6];
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21

22 initialequations

23

24 I_bb = M[4:6,4:6] - Mass*skew(r_CG_Spreader)*skew(r_CG_Spreader);

25 equations

26

27 p_tot1 = int(pIv.e);

28 p_tot2 = int(pIw.e);

29

30 p_tot[1:3] = p_tot1;

31 p_tot[4:6] = p_tot2;

32 pIf_tot = Minv*p_tot;

33

34 CRB[1:3,1:3] = [0,0,0;

35 0,0,0;

36 0,0,0];

37 CRB[1:3,4:6] = -Mass*skew(pIv.f) - Mass*skew(skew(pIw.f)*r_CG_Spreader);

38 CRB[4:6,1:3] = -Mass*skew(pIv.f) - Mass*skew(skew(pIw.f)*r_CG_Spreader);

39 CRB[4:6,4:6] = Mass*skew(skew(pIv.f)*r_CG_Spreader) - skew(I_bb*pIw.f);

40

41 pCe_tot = -CRB*pIf_tot;

42

43 // Setting output

44 pIv.f = pIf_tot[1:3];

45 pCv.e = pCe_tot[1:3];

46 pIw.f = pIf_tot[4:6];

47 pCw.e = pCe_tot[4:6];

48

49

L.1 R-element rotational wind resistance

1 parameters

2 real r[3,3] = 0*[100.0, 0.0, 0.0; 0.0, 100.0, 0.0; 0.0, 0.0, 100.0];

3 equations

4 p.e = r * p.f;

5

L.2 R-element translational wind resistance

1 parameters

2 real r[3,3] = 0*[5.0, 0.0, 0.0; 0.0, 5.0, 0.0; 0.0, 0.0, 5.0];

3 equations

4 p.e = r * p.f;

5

M Code for control system

M.1 FSM

1

2
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3 variables

4 real CargoTransport;

5 real Standby;

6 initialequations

7

8 // Setting intial

9 Standby = FALSE ;

10 CargoTransport = TRUE;

11 InitiateCraneTransport = FALSE;

12 InitiateSwayComp = FALSE;

13 InitiateStationKeeping = FALSE;

14 InitiateWireControl = FALSE;

15

16 equations

17

18

19 if Standby then

20 CargoTransport = FALSE;

21 end;

22

23

24 if CargoTransport == TRUE then

25

26 if EndEffectorPointReached == FALSE then

27 InitiateCraneTransport = TRUE;

28 elsif EndEffectorPointReached == TRUE then

29 InitiateSwayComp = TRUE;

30 InitiateStationKeeping = TRUE;

31 InitiateCraneTransport = FALSE;

32

33 if SwayErrorMarginReached == TRUE then

34 InitiateSwayComp = FALSE;

35 InitiateWireControl = TRUE;

36

37 if CargoTuchdown == TRUE then

38 CargoTransport = FALSE;

39 Standby = TRUE;

40 end;

41

42 end;

43

44 end;

45

46 end;

47

48

49

50

N MTF translational motion to crane joints

1

2

3 variables

4 real J_tip[6,9], theta1, theta2, theta3;

5 real global Ycm1,Xcm1,k, h,L1,L2,n;
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6 real global R0_b[3,3];

7 real a[3], b[3];

8 real global Rb_0[3,3];

9 equations

10

11 theta1 = jointAngles[1];

12 theta2 = jointAngles[2];

13 theta3 = jointAngles[3];

14

15 J_tip = [1, 0, 0, 0, -h - sin(theta2)*L1 + (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2, sin(theta1)*cos(theta2)*L1 -

(-sin(theta1)*cos(theta2)*cos(theta3) + sin(theta1)*sin(theta2)*sin(theta3))*L2,

-sin(theta1)*cos(theta2)*L1 + (-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2, cos(theta1)*(-sin(theta2)*L1 +

(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*L2),

cos(theta1)*(-sin(theta2)*cos(theta3) - cos(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

16 0, 1, 0, h + sin(theta2)*L1 - (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2, 0, cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2,

-sin(theta1)*(-sin(theta2)*L1 + (-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2),

-sin(theta1)*(-sin(theta2)*cos(theta3) -

cos(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

17 0, 0, 1, -sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2,

-cos(theta1)*cos(theta2)*L1 -

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2, 0, 0,

sin(theta1)*(-sin(theta1)*cos(theta2)*L1 +

(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2) -

cos(theta1)*(cos(theta1)*cos(theta2)*L1 +

(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2),

sin(theta1)*(-sin(theta1)*cos(theta2)*cos(theta3) +

sin(theta1)*sin(theta2)*sin(theta3))*L2 -

cos(theta1)*(cos(theta1)*cos(theta2)*cos(theta3) -

cos(theta1)*sin(theta2)*sin(theta3))*L2;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

18 0, 0, 0, 1, 0, 0, 0, sin(theta1), sin(theta1);

19 0, 0, 0, 0, 1, 0, 0, cos(theta1), cos(theta1);

20 0, 0, 0, 0, 0, 1, -1, 0, 0];

21

22 a = Rb_0*p1.f;

23 b = transpose(Rb_0)*p2.e;

24

25 p1.e = J_tip[1:3,7:9]*b;

26 p2.f = inverse(J_tip[1:3,7:9])*a;
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N.1 Station-keeping controllers for crane-tip x,y,z

1 parameters

2 real K = 1 {}; // Proportional gain

3 real Td = 1.0 {s}; // Derivative time constant: Td > 0

4 real N = 1 {}; // Derivative gain limitation.

5 real Ti = 1.0 {s}; // Integral time constant: Ti > 0

6 real minI = -2;

7 real maxI = 2;

8 variables

9 real error;

10 real hidden uP,uI,uD,uDstate;

11 equations

12 error = SP - MV;

13 uP = K * error;

14 uI = limint ((K * error / Ti), minI, maxI);

15 uDstate = int (uD * N / Td);

16 uD = K * error * N - uDstate;

17 output = uP + uD + uI;

N.2 Sway controllers x,y

1 parameters

2 real K = 1 {}; // Proportional gain

3 real Td = 1.0 {s}; // Derivative time constant: Td > 0

4 real N = 1 {}; // Derivative gain limitation.

5 real Ti = 1.0 {s}; // Integral time constant: Ti > 0

6 real minI = -2;

7 real maxI = 2;

8 variables

9 real error;

10 real hidden uP,uI,uD,uDstate;

11 equations

12 error = SP - MV;

13 uP = K * error;

14 uI = limint ((K * error / Ti), minI, maxI);

15 uDstate = int (uD * N / Td);

16 uD = K * error * N - uDstate;

17 output = uP + uD + uI;

N.3 Reference filter

1

2 parameters

3 real zeta = 1;

4 real omega = 2*pi/10;

5 real global wireLength;

6 variables

7 real OMEGA;

8 real GAMMA;

9 real A_f;

10 real t;

11 real x_ref_dot;

12 real x_d;
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13 real v_d;

14 real a_d;

15 real x_ref;

16 real initalWirePosition;

17 initialequations

18 t = 1/omega;

19 A_f = 1/t;

20 OMEGA = 2*zeta*omega;

21 GAMMA = omega^2;

22 x_ref_dot = 0;

23 x_d = 0; v_d = 0; a_d = 0;

24 initalWirePosition = -wireLength;

25 equations

26

27

28 // first order

29 //x_ref = eta_d/A_f - int(x_ref_dot)/A_f;

30 x_ref_dot = -int(x_ref_dot)*A_f + eta_d*A_f;

31 x_ref = int(x_ref_dot);

32 //third order

33

34 a_d = x_ref*GAMMA - OMEGA*v_d - GAMMA*x_d;

35 v_d = int(a_d);

36 x_d = int(v_d);

37 referenceSignal = x_d;

N.4 Wire lowering and heave compensation PID controller

1 parameters

2 real K = 3 {}; // Proportional gain

3 real Td = 1.0 {s}; // Derivative time constant: Td > 0

4 real N = 1 {}; // Derivative gain limitation.

5 real Ti = 1.0 {s}; // Integral time constant: Ti > 0

6 real minI = -2;

7 real maxI = 2;

8 variables

9 real error;

10 real hidden uP,uI,uD,uDstate;

11 equations

12 error = SP - MV;

13 uP = K * error;

14 uI = limint ((K * error / Ti), minI, maxI);

15 uDstate = int (uD * N / Td);

16 uD = K * error * N - uDstate;

17 output = uP + uD + uI;

O Inverse kinematics

1

2 /* Equation Submodel

3 Enter your equations here. You can use the Toolbar buttons at the top ( Add , f(x) etc. ).

4 */

5 parameters

6 real global H;
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7 variables

8 real thetha1_desired, thetha2_desired, thetha3_desired;

9 real global L1,L2, r1_2_1[3];

10 real c3,c2,s3,s2;

11

12 equations

13

14

15

16

17

18 //Computing desdired joint angles

19 c3 = (desiredPosition[1]^2 + desiredPosition[2]^2 + desiredPosition[3]^2 -

L1^2-L2^2)/(2*L1*L2);↪→

20 s3 = -sqrt(1-c3^2);

21 s2 = ((L1 + L2*c3)*desiredPosition[3]-L2*s3*sqrt(desiredPosition[1]^2 +

desiredPosition[2]^2))/(desiredPosition[1]^2+ desiredPosition[2]^2

+desiredPosition[3]^2);

↪→

↪→

22 c2 = ((L1 + L2*c3)*sqrt(desiredPosition[1]^2 + desiredPosition[2]^2) +

L2*s3*desiredPosition[3])/(desiredPosition[1]^2+ desiredPosition[2]^2

+desiredPosition[3]^2);

↪→

↪→

23

24 thetha1_desired = atan2(desiredPosition[2],desiredPosition[1]);

25

26 thetha2_desired = atan2(s2,c2);

27

28 thetha3_desired = atan2(s3,c3);

29

30 desiredJointAngles[1] = thetha1_desired;

31 desiredJointAngles[2] = thetha2_desired;

32 desiredJointAngles[3] = thetha3_desired;

P Velocity profile generation

1 /* Equation Submodel

2 Enter your equations here. You can use the Toolbar buttons at the top ( Add , f(x) etc. ).

3 */

4

5

6 //Same acceleration and velocity for all paths

7 parameters

8

9 //Params for base

10 //Initial velocity, accel

11 real qi_dot_base = 0;

12 real qi_ddot_base = 0.1;

13 //End velocity, accel, time

14 real qf_dot_base = 0;

15 real qf_ddot_base = -0.05;

16 real tf_base = 15;

17

18 //Params for joint1

19 //Initial velocity, accel

20 real qi_dot_joint1 = 0;

21 real qi_ddot_joint1 = 0.1;

22 //End position,velocity, accel, time
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23 real qf_dot_joint1 = 0;

24 real qf_ddot_joint1 = -0.1;

25 real tf_joint1 = 10;

26

27

28 //Params for joint2

29 //Initial velocity, accel

30 real qi_dot_joint2 = 0;

31 real qi_ddot_joint2 = 0.1;

32 //End velocity, accel, time

33 real qf_dot_joint2 = 0;

34 real qf_ddot_joint2 = -0.1;

35 real tf_joint2 = 10;

36

37 variables

38 real q1,q2,q3; // Joint

positions↪→

39 real q1_dot,q2_dot,q3_dot; // Joint velocities

40 real q1_ddot,q2_ddot,q3_ddot; // joint accelerations

41 real a10,a11,a12,a13,a14,a15;

42 real a20,a21,a22,a23,a24,a25;

43 real a30,a31,a32,a33,a34,a35;

44 real global theta1_rad_init, theta2_rad_init, theta3_rad_init;

45

46 // inital and end positions of all three joints

47 real qi_base, qf_base;

48 real qi_joint1, qf_joint1;

49 real qi_joint2, qf_joint2;

50

51 // time param

52 real activationTime;

53 real t_relative;

54 initialequations

55

56 activationTime = -1;

57 t_relative = 0;

58 equations

59

60 //Setting initial and and rotations

61

62 qi_base = theta1_rad_init;

63 qf_base = desiredJointAngles[1];

64 qi_joint1 = theta2_rad_init;

65 qf_joint1 = desiredJointAngles[2];

66 qi_joint2 = theta3_rad_init;

67 qf_joint2 = desiredJointAngles[3];

68

69 if InitializeTransport == TRUE then

70

71 if activationTime < 0 then

72 activationTime = time;

73 else

74 t_relative = time - activationTime;

75 end;

76

77

78 //Params for base

79 a10 = qi_base;
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80 a11 = qi_dot_base;

81 a12 = qi_ddot_base/2;

82 a13 = (qf_ddot_base*tf_base^2 - 3*qi_ddot_base*tf_base^2 - 8*qf_dot_base*tf_base

- 12*qi_dot_base*tf_base + 20*qf_base - 20*qi_base)/(2*tf_base^3);↪→

83 a14 = -(2*qf_ddot_base*tf_base^2 - 3*qi_ddot_base*tf_base^2 -

14*qf_dot_base*tf_base - 16*qi_dot_base*tf_base + 30*qf_base -

30*qi_base)/(2*tf_base^4);

↪→

↪→

84 a15 = (qf_ddot_base*tf_base^2 - qi_ddot_base*tf_base^2 - 6*qf_dot_base*tf_base -

6*qi_dot_base*tf_base + 12*qf_base - 12*qi_base)/(2*tf_base^5);↪→

85

86 // Params for lower joint

87 a20 = qi_joint1;

88 a21 = qi_dot_joint1;

89 a22 = qi_ddot_joint1/2;

90 a23 = (qf_ddot_joint1*tf_joint1^2 - 3*qi_ddot_joint1*tf_joint1^2 -

8*qf_dot_joint1*tf_joint1 - 12*qi_dot_joint1*tf_joint1 + 20*qf_joint1 -

20*qi_joint1)/(2*tf_joint1^3);

↪→

↪→

91 a24 = -(2*qf_ddot_joint1*tf_joint1^2 - 3*qi_ddot_joint1*tf_joint1^2 -

14*qf_dot_joint1*tf_joint1 - 16*qi_dot_joint1*tf_joint1 + 30*qf_joint1 -

30*qi_joint1)/(2*tf_joint1^4);

↪→

↪→

92 a25 = (qf_ddot_joint1*tf_joint1^2 - qi_ddot_joint1*tf_joint1^2 -

6*qf_dot_joint1*tf_joint1 - 6*qi_dot_joint1*tf_joint1 + 12*qf_joint1 -

12*qi_joint1)/(2*tf_joint1^5);

↪→

↪→

93

94 // Params for upper joint

95 a30 = qi_joint2;

96 a31 = qi_dot_joint2;

97 a32 = qi_ddot_joint2/2;

98 a33 = (qf_ddot_joint2*tf_joint2^2 - 3*qi_ddot_joint2*tf_joint2^2 -

8*qf_dot_joint2*tf_joint2 - 12*qi_dot_joint2*tf_joint2 + 20*qf_joint2 -

20*qi_joint2)/(2*tf_joint2^3);

↪→

↪→

99 a34 = -(2*qf_ddot_joint2*tf_joint2^2 - 3*qi_ddot_joint2*tf_joint2^2 -

14*qf_dot_joint2*tf_joint2 - 16*qi_dot_joint2*tf_joint2 + 30*qf_joint2 -

30*qi_joint2)/(2*tf_joint2^4);

↪→

↪→

100 a35 = (qf_ddot_joint2*tf_joint2^2 - qi_ddot_joint2*tf_joint2^2 -

6*qf_dot_joint2*tf_joint2 - 6*qi_dot_joint2*tf_joint2 + 12*qf_joint2 -

12*qi_joint2)/(2*tf_joint2^5);

↪→

↪→

101

102

103 if t_relative <= tf_base then

104 q1 = a15*t_relative^5 + a14*t_relative^4 + a13*t_relative^3 +

a12*t_relative^2 + a11*t_relative + a10;↪→

105 q1_dot = 5*a15*t_relative^4 + 4*a14*t_relative^3 + 3*a13*t_relative^2 +

2*a12*t_relative + a11;↪→

106 q1_ddot = 20*a15*t_relative^3 + 12*a14*t_relative^2 + 6*a13*t_relative +

2*a12;↪→

107 velocityReferences[1] = q1_dot;

108 else

109 velocityReferences[1] = 0;

110 q1 = 0;

111 q1_dot = 0;

112 q1_ddot = 0;

113

114 end;

115

116 if t_relative <= tf_joint1 then

117 q2 = a25*t_relative^5 + a24*t_relative^4 + a23*t_relative^3 +

a22*t_relative^2 + a21*t_relative + a20;↪→
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118 q2_dot = 5*a25*t_relative^4 + 4*a24*t_relative^3 + 3*a23*t_relative^2 +

2*a22*t_relative + a21;↪→

119 q2_ddot = 20*a25*t_relative^3 + 12*a24*t_relative^2 + 6*a23*t_relative +

2*a22;↪→

120 velocityReferences[2] = q2_dot;

121 else

122 velocityReferences[2] = 0;

123 q2 = 0;

124 q2_dot = 0;

125 q2_ddot = 0;

126 end;

127

128 if t_relative <= tf_joint2 then

129 q3 = a35*t_relative^5 + a34*t_relative^4 + a33*t_relative^3 +

a32*t_relative^2 + a31*t_relative + a30;↪→

130 q3_dot = 5*a35*t_relative^4 + 4*a34*t_relative^3 + 3*a33*t_relative^2 +

2*a32*t_relative + a31;↪→

131 q3_ddot = 20*a35*t_relative^3 + 12*a34*t_relative^2 + 6*a33*t_relative +

2*a32;↪→

132 velocityReferences[3] = q3_dot;

133 else

134 velocityReferences[3] = 0;

135 q3 = 0;

136 q3_dot = 0;

137 q3_ddot = 0;

138 end;

139

140 else

141 q1 = 0;

142 q2 = 0;

143 q3 = 0;

144 q1_dot = 0;

145 q2_dot = 0;

146 q3_dot = 0;

147 q1_ddot = 0;

148 q2_ddot = 0;

149 q3_ddot = 0;

150 end;
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