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Summary

Model Predictive Control (MPC) has emerged as a highly influential
control strategy, leveraging models of real system dynamics to generate
input-state sequences that minimize costs under certain constraints. How-
ever, building an accurate MPC model, especially for stochastic systems,
remains a significant challenge, leading to potential performance degra-
dation. The integration of Machine Learning (ML) in Data-driven Model
Predictive Control (DMPC) aimed to alleviate this issue has brought its
own problems. Specifically, modeling in DMPC is often disconnected
from the control objectives because ML-based models focus on pre-
dictions rather than MPC performance, which can lead to significantly
suboptimal policies.

Reinforcement Learning (RL), a model-free approach, has arisen as
a promising tool, with a core advantage in learning policies through
interaction with the environment. Although does not rely on system
models, conventional RL methods are known to suffer from extensive
data requirements, a lack of formal tools to satisfy system constraints,
and challenges related to the parameterization of Deep Neural Network
(DNN).

This thesis focuses on an innovative Model Predictive Control-based
Reinforcement Learning (MPC-based RL) method that amalgamates
the strengths of MPC and RL, compensating for the shortcomings of
both. The approach focuses on parameterizing the MPC model, cost,
and constraints, applying RL to tune these parameters to minimize the
closed-loop performance. This fusion leads to a method that not only
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Summary

takes advantage of prior knowledge but also considers system constraints,
analyzes stability, overcomes uncertainties, and deals with long-term or
even infinite-horizon problems. The applicability and effectiveness of
the MPC-based RL approach are demonstrated through three engineering
applications, each characterized by no exact model, high uncertainty, or
economic cost function.

• Autonomous Surface Vehicle (ASV): By applying the MPC-RL
method to ASVs, the thesis demonstrates its efficacy in optimizing
a simplified freight mission with constraints like collision-free
path tracking and autonomous docking. Simulations showed an
improvement in closed-loop performance.

• Energy Management in Residential Microgrids: In a more complex
scenario involving fluctuating spot-market prices and uncertain-
ties, the MPC-based RL approach effectively optimized benefits
for residential microgrid systems, greatly cutting economic costs
while ensuring user comfort. The application also introduced
the Shapley value method for equitable bill distribution among
residents.

• Home Energy Management System (HEMS): The third application
tackled a real-world problem in HEMS, dealing with discrepancies
due to model mismatch and uncertainties in various parameters.
The MPC-based RL approach was shown to deliver policies satis-
fying thermal comfort and economic costs, even with inaccurate
models derived from model fitting.

In summary, the thesis contributes a nuanced understanding of the po-
tential synergies between MPC and RL, unveiling an approach that
transcends the boundaries of conventional methods. By applying and
slightly modifying or improving the MPC-based RL method to formulate
different algorithms across the three different applications, the research
verifies its theoretical merits, proposes new solutions to challenging
engineering problems, and identifies potential methodological issues.
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1 | Introduction

This chapter briefly describes the motivation and objectives of this thesis,
its outline and main contributions, and concludes with an overview of
published papers.

1.1 Motivation and Objectives

Model Predictive Control (MPC) utilizes predictive models to minimize
costs and manage constraints and has been widely adopted across various
industries [1]. However, the construction of an accurate MPC model, es-
pecially for real systems with inherent stochasticity, remains a significant
challenge. Inaccuracies in modeling can severely affect the performance
of the MPC scheme, especially when the objective is not just to attain a
specific state but to minimize a generic economic cost [2].

The challenges associated with building accurate MPC models have led
to an exploration of integrating Machine Learning (ML) techniques to
improve model precision. The classical approach has been to use ML to
develop more accurate Data-driven Model Predictive Control (DMPC)
models [3, 4]. This paradigm seeks to directly address the issues related
to model inaccuracies, which become highly problematic when dealing
with stochastic systems and economic objectives. However, the inte-
gration of ML into the MPC framework introduces new complexities.
Increasing model accuracy typically demands greater model complexity,
which can lead to more intricate MPC schemes. Consequently, DMPC
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Introduction

finds itself entwined with its own complexity, limiting the performance
enhancement it could provide [5]. Moreover, the objective of the ML-
based model, which is designed to deliver the best possible predictions,
may not align with the actual control goals of the MPC scheme. Even
model-free MPC techniques that aim to tailor predictions to MPC ob-
jectives have limitations, such as producing significantly suboptimal
MPC policies, and often lack formal support, making them vulnerable to
different regularization [6].

Reinforcement Learning (RL) offers an intriguing alternative to these
challenges by focusing on policy learning through environment interac-
tion. Unlike traditional methods that rely heavily on system models, RL
can leverage data to adapt to uncertainties and disturbances [7]. How-
ever, conventional RL methodologies are not without their challenges.
Firstly, for complex or highly uncertain systems, RL requires an enor-
mous amount of data to learn the policy from scratch, making it less
efficient [8]. Secondly, the frequent reliance on Deep Neural Network
(DNN) of RL poses problems, as DNN-based RL lacks formal tools to
handle system constraints and evaluate closed-loop stability. Moreover,
there is no systematic or physically meaningful way to configure the
intricate parameters of a DNN network, such as the initial values, num-
ber of hidden layers, and number of hidden units [9, 10]. Additionally,
the incorporation of time-series predictive information in RL can result
in the curse of dimensionality, exacerbating the complexities in model
formulation and execution.

Considering these limitations, the authors in [11] first proposed an Model
Predictive Control-based Reinforcement Learning (MPC-based RL) ap-
proach in combining the structure and constraints awareness of MPC
with the adaptiveness and data-driven nature of RL. Instead of using
DNN, this fusion applies a parametrized MPC as a function approximator
for a specific Markov Decision Process (MDP) within the context of RL.
It is proved that under a mild condition, by extensively parameterizing
the MPC model, costs, and constraints, the parametrized MPC scheme
could capture the optimal policy and value functions even in scenar-
ios with inaccurate modeling or system uncertainties. This is achieved
through the application of RL techniques such as Q-learning and policy

2
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gradient, which are harnessed to adjust the MPC parameters to achieve
optimized closed-loop performance. This approach bears significant
merits, including the ability to leverage prior knowledge, explicitly con-
sider system constraints, analyze stability, tackle long-term problems,
and most notably, align the control strategy directly with performance
objectives. However, the MPC-based RL method is in its infancy, and
many practical applications remain unexplored.

Therefore, this thesis aims to take the nascent theory into the realm of
practical engineering, focusing on applications marked by high uncer-
tainty, noise, inaccurate models, economic cost functions, and complex
challenges resistant to pure ML solutions.

• Autonomous Surface Vehicle (ASV): The development of a control
strategy that ensures collision-free path tracking and autonomous
docking amid time-varying disturbances presents a significant
challenge, as the complex dynamics of the marine environment,
coupled with intricate control requirements, lead to difficulties
in model accuracy, stringent safety, and real-time responsiveness.
MPC type methods struggle to encapsulate complex dynamics,
including time-dependent perturbations, often leading to conserva-
tive solutions, while RL-type approaches face difficulties in terms
of massive data requirements and ensuring safety within complex
MDP [12].

• Energy Management in Residential Microgrids: The objective of
Energy Management is to optimize energy dispatch, considering
factors such as operating costs, power demand, and consumer
preferences. However, the complex interplay between the volatile
nature of Renewable Energy Resources (RERs) and customer load
demand uncertainties presents significant challenges. MPC strate-
gies suffer from problems related to model accuracy, adaptability
to changing system characteristics, and difficulty in considering
long-term objectives. Conversely, RL-based methods grapple with
issues such as extensive data requirements and high-dimensional
spaces due to time-series information [13, 14].
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• Home Energy Management System (HEMS): Designing a HEMS
strategy is also a complex optimization challenge. First, the ther-
modynamic models of buildings are inherently intricate and typ-
ically reduced to simplified forms that overlook factors like air
permeability, furniture thermal mass, and occupancy changes. Sec-
ond, the system must contend with myriad uncertainties such as
renewable energy generation fluctuations, erratic household load
demand, electricity price volatility, and weather forecast incon-
sistencies. MPC grapples with the complexities and uncertainties
of real system dynamics, DMPC is heavily dependent on accu-
rate data representation, and RL is hindered by data requirements,
training time, and high-dimension issues [15, 16].

In the context of the three application problems delineated above, con-
ventional methodologies such as MPC, DMPC, and RL have been ex-
tensively applied. However, as presented earlier, they inherently grapple
with specific limitations that constrain their efficacy in these complex
scenarios. Recognizing these challenges, the focus of this research is to
meticulously design and implement MPC-based RL algorithms tailored
to each individual problem. The MPC-based RL approaches synergize
the strengths of both MPC and RL, enabling a more nuanced handling
of system constraints, stability analysis, uncertainties, and long-term op-
timization, and could intrinsically enhance the closed-loop performance.
The objective is to transcend the limitations of traditional approaches,
aiming for a more nuanced and comprehensive solution to those issues.
The proposed MPC-based RL solutions will be subjected to rigorous
simulation, serving to validate their effectiveness and underscore their
potential contributions to the field.

1.2 Outline and Contributions

The thesis is structured as follows. Chapter 1 sets the stage, elucidat-
ing the motivation, objectives, seminal contributions, and associated
publications of this research. Chapter 2 delves into the foundational
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underpinnings, introducing the rudiments of MPC, DMPC, and RL. It
further offers a comprehensive elucidation of the core idea and theoreti-
cal clarification of the MPC-based RL approach, which is the underlying
methodology utilized in this work. With a foundational understanding
established, Chapter 3 to Chapter 5 shift focus to practical applications:
Chapter 3 expounds on deploying the MPC-based RL method to address
the ASV freight transportation conundrum; Chapter 4 harnesses the
same methodology for the residential microgrid energy management
challenge; while Chapter 5 is dedicated to its application in resolving the
HEMS issue. Finally, Chapter 6 offers a comprehensive synthesis of the
research insights and casts a vision for prospective explorations in the
field of MPC&RL.

The main contribution of this thesis is that, in the scholarly realm of
MPC-based RL, this thesis pioneers its application to tangible real-world
contexts. Our deliberate adaptation of the MPC-based RL framework
across three distinct applications not only validates the theory at its core
but also introduces innovative engineering solutions. In doing so, we also
highlight areas where the approach may falter, providing a foundation
for subsequent methodological improvements and refinements. For
more details, we further elaborate on the respective contributions in
three application chapters, see subsection 3.1.3, subsection 4.1.4, and
subsection 5.1.5.

1.3 Publications

Throughout the Ph.D. journey, concerted efforts in the field have resulted
in the creation of 9 academic papers, with 4 of these attributing the
candidate as the lead contributor. This compilation comprises 5 papers
presented at conferences (with the candidate being the lead author in 2
instances), 3 articles prepared for scholarly journals (where the candidate
has been acknowledged as the main author in 2 instances), and 1 paper
written by invitation for an edited book. By the time this thesis was
composed, 5 conference papers and 3 journal articles have successfully
been published. The remaining works are in the peer review process.
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2 | Background

2.1 Model Predictive Control

MPC has emerged as a preferred approach to optimal control, particularly
valued for its adeptness at addressing both input and state constraints [1].
The essence of MPC lies in its iterative procedure: at every instance, it
evaluates the control and state sequence that minimizes a specified cost
function over a defined prediction horizon, all while respecting system
constraints.

Formally, given a system state s, the MPC methodology is rooted in the
continuous resolution of the optimal control problem, articulated as:

min
x,u

T (xN) +
N−1∑
k=0

L (xk,uk) (2.1a)

s.t. ∀ k = 0, . . . , N − 1

xk+1 = f (xk,uk) , (2.1b)

h (xk,uk) ≤ 0, hf (xN) ≤ 0, (2.1c)
x0 = s. (2.1d)

This optimization yields an optimal control input sequence u⋆, and the
associated state predictions x⋆. Conventionally, only the first control
action u⋆0 is implemented on the system. As the system advances to
the subsequent sampling time, the optimization is solved again over the
shifted horizon.
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MPC has a solid theoretical foundation and has been widely and success-
fully applied. However, it has some limitations:

• Model Dependence: If the model does not capture the true dy-
namics or uncertainties of the system, the performance of MPC
can degrade, leading to suboptimal or even unstable control ac-
tions. And for many complex systems in the real world, obtaining
accurate system models is difficult or even impossible [2].

• Computational Intensity: When dealing with intricate problems,
even when an accurate representation of a system is obtainable,
the resultant model can be inherently complicated. Such com-
plexity invariably escalates the computational demands of MPC,
especially when solving the optimization problem online at each
sampling instant [3].

• Cost Function Design: The design of the cost function can be
intricate and sometimes more of an art than a science [4]. An
improperly designed cost function can lead to undesirable control
behaviors or convergence to non-optimal solutions.

• Robustness Issues: While conventional MPC may struggle with
guaranteeing robustness amid model uncertainties or disturbances,
there are specialized variants such as Stochastic MPC (SMPC)
and Robust MPC (RMPC) aimed at addressing these challenges.
SMPC, tailored to grapple with uncertainties by accounting for
stochastic models, often entails increased computational demands
and can be complex to implement due to the intricacy of prob-
abilistic constraints and the necessity of scenario generation or
stochastic simulations [5, 6]. On the other hand, RMPC, designed
to remain feasible under a range of disturbance or model error
scenarios, tends to yield over-conservative control policies. Such
conservatism can limit the system’s operational efficiency and can
be overly restrictive in scenarios where a more aggressive control
strategy might be beneficial [7].
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2.2 Data-driven Model Predictive Control

DMPC, a.k.a learning-based MPC, represents a paradigm shift from
traditional model-based MPC towards harnessing the power of ML tech-
niques to either construct the predictive models directly from data or to
utilize MPC for the generation of training datasets for ML controllers [8].
Mathematically, considering the first variant, assuming we have a dataset
D = {(xi,ui,xi+1)}Ni=1 comprising of state-input-next state triples. A
predictive model fθ is learned, parameterized by θ, such that:

fθ(xi,ui) ≈ xi+1. (2.2)

This learned model can be integrated into the MPC optimization frame-
work replacing traditional dynamics. For the second variant, MPC can
be utilized to generate state-input trajectories that are subsequently used
to train an ML-based controller, denoted as πϕ(x), parameterized by ϕ.

DMPC offers several advantages over traditional MPC approaches. Pri-
marily, DMPC inherently adapts to changing dynamics by refining its
predictive models using observational data, negating the need for mod-
els based on first principles (deriving models from underlying physics),
which might not always be accurate or available [8]. This adaptability
also enables DMPC to effectively manage non-linear systems without re-
quiring linear approximations, a common constraint in traditional MPC,
as ML techniques are inherently adept at capturing non-linear relation-
ships [9]. Moreover, data-based models can reflect the stochastic nature
of the system and thus can improve the robustness of the control strategy
to some extent [10]. Finally, DMPC that leveraging pre-trained ML con-
trollers can reduce computational costs during real-time decision-making
compared to traditional MPC’s on-the-fly optimization.

However, DMPC still suffers from several limitations:

• Potential for Overfitting in Model Training: For DMPC variants
directly training predictive models from data, there is an inherent
risk of overfitting, especially when the training data isn’t represen-
tative of all possible operating conditions [11]. Overfitting implies
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that while the model might work impeccably on the seen data,
its performance can drastically degrade when exposed to unseen
conditions, leading to unpredictable and potentially unsafe control
actions.

• Model Explainability and Trustworthiness: For DMPC variants
using MPC-generated data to train ML controllers, the resulting
controllers might lack explainability. Machine learning models,
especially complex ones like deep neural networks, are notoriously
difficult to interpret. This black-box nature can be problematic in
critical systems where understanding control decisions is crucial
[12].

• Data Quality and Coverage Dependency: Both types of DMPC
methodologies intrinsically depend on the quality and coverage of
the data. If the dataset harbors biases, is noisy, or lacks samples
from critical regions of the state space, the performance of the
DMPC can be severely compromised. Ensuring a comprehensive
and high-quality data collection can be resource-intensive and not
always feasible in practice [13].

• Consistency with Physical Reality: Learned models, especially
those trained on limited datasets, might not capture the true under-
lying physics of the system. This could lead to scenarios where the
model suggests control actions that, while optimal according to its
training, are misaligned with the actual dynamics of the system,
potentially compromising safety and efficiency.

• Model Objectives Misalignment: A core issue with DMPC (those
using ML-based models) resides in the dichotomy between model-
ing objectives and control goals [14]. Traditional ML frameworks
tailored for DMPC primarily focus on ensuring the accuracy of
system predictions. Optimizing prediction accuracy, while invalu-
able, does not always guarantee optimal control performance in
a real-time scenario. This arises from the fact that the model
is trained to minimize the prediction error, rather than directly
optimize a control-relevant objective. As demonstrated in some
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studies, there exist scenarios in which a highly accurate predictive
model results in a significantly suboptimal control policy.

2.3 Reinforcement Learning

In the realm of RL, the fundamental framework revolves around the MDP,
which serves as the cornerstone for modeling sequential decision-making
problems and obeys the Markov property: Transitions only depend on
the most recent state and action, and no prior history. RL considers
real-world systems as instances of MDP, where the state transitions are
characterized by the conditional probability density P [s′|s, a]. Here, s
represents the current state, a denotes the chosen action, and s′ indicates
the subsequent state.

Central to RL is the concept of the Bellman Equation, which is the
bedrock of deriving optimal policies. The Bellman Equation mathemati-
cally encapsulates the relationship between the value of a state and the
expected cumulative rewards attainable from that state onwards. For-
mally, the optimum value function V ⋆(s) for a given state s is determined
as the minimum of the optimal action-value function Q⋆(s, a) over all
possible actions:

V ⋆(s) = min
a
Q⋆(s, a). (2.3)

The action-value function Q⋆(s, a) integrates the immediate reward,
characterized by the baseline stage cost L(s, a), with the discounted
expected value of future states that emanate from taking action a in state
s:

Q⋆(s, a) = L(s, a) + γE[V ⋆(s′)|s, a]. (2.4)

Here, γ ∈ (0, 1] represents the MDP discount factor, influencing the
balance between immediate rewards and future values. Then, each
state’s associated optimal action is the one minimizing the corresponding
optimal action-value function:

a⋆(s) = argmin
a
Q⋆(s, a). (2.5)
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The objective in RL is to determine a policy that minimizes the expected
cumulative stage cost when the agent follows it, which is quantified as
follows:

J(π) = E

[
∞∑
k=0

γkL (sk, ak)

∣∣∣∣∣ ak = π (sk)

]
. (2.6)

Consequently, RL seeks to find an optimal policy π⋆ that minimizes
J(π):

π⋆ = argmin
π
J(π). (2.7)

Two fundamental types of RL algorithms are Q-learning and Policy
Gradient methods.

• Q-learning: Methods in this family learn an approximator Qθ(s, a)
for the optimal action-value function Q⋆(s, a). The update rule
lies in minimizing the following Least Square (LS) problem:

min
θ

E
[
(Qθ(s, a)−Q⋆(s, a))2

]
. (2.8)

The iterative parameter update process is driven by the Bellman
equation, wherein parameters θ are updated as follows:

θ ← θ + α[L(s, a) + γmin
a′

Qθ(s
′, a′)−Qθ(s, a)]∇θQθ(s, a),

(2.9)
where α > 0 is the learning rate. Then the policy is obtained via
the connection between Q⋆ and π⋆:

π⋆(s) = argmin
a
Qθ⋆(s, a). (2.10)

• Policy Gradient: Methods in this family explicitly approximate
the optimal policy π⋆(a|s) by πθ(a|s). The parameters θ are
updated either directly by gradient descent on the performance ob-
jective J(πθ), or indirectly, by maximizing local approximations
of J(πθ):

θ ← θ − α∇θJ(πθ). (2.11)
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RL offers a transformative approach to control systems design, its most
significant advantage being its model-free nature. Traditional control
methods often necessitate precise models of system dynamics, which
can be arduous to derive for complex real-world systems. RL, how-
ever, allows control design without exhaustive knowledge of system
dynamics [15]. Moreover, RL’s adaptive nature makes it well-suited to
deal with uncertainties, non-stationarities, and evolving system dynam-
ics [16]. And They learn through interaction with their environment,
thereby continually refining their policies as new data become available.
Additionally, the integration of deep learning with RL, known as Deep
Reinforcement Learning (DRL), extends the methodology’s capability
to manage high-dimensional state and action spaces effectively. Such
capability is crucial in modern control challenges, such as robotics, au-
tonomous vehicles, and intricate industrial processes where controllers
must process rich sensor data, and this integration allows RL algorithms
to automatically identify relevant features from raw data [17].

Despite its advantages, RL also carries with it inherent limitations :

• Sample Inefficiency: One of the primary criticisms of RL is its
sample inefficiency. Many RL techniques, especially in their
nascent learning stages, demand vast amounts of data through
exploration to converge to optimal or near-optimal strategies. The
authors in [18] emphasize this challenge, highlighting how RL’s
data-hungry nature can be problematic, especially in environments
where collecting data is expensive, time-consuming, or risky.

• Safety Concerns and Constraint Handling: The explorative nature
of RL, vital for its learning process, can inadvertently result in
the selection of unsafe policies. Particularly during initial train-
ing phases, RL agents might pursue actions that are detrimental
or suboptimal, aiming to thoroughly explore their environment
[19]. This poses significant challenges in domains where safety
is paramount, such as automotive control systems. Furthermore,
integrating constraints directly within RL is not straightforward.
Unlike MPC where safety constraints are explicitly handled, RL
typically addresses these constraints by penalizing their violations
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within the reward function. This indirect approach introduces po-
tential risks, as constraints might not be rigorously adhered to, and
the severity of violations might not be sufficiently captured by the
penalty in the reward function.

• Interpretability and Transparency: RL often uses Neural Network
(NN) as function approximations. These "black-boxes" DRL mod-
els offer little transparency in the decision-making processes. This
can be particularly concerning in control applications where under-
standing why certain actions are taken is as crucial as the actions
themselves. The interpretability challenge extends not just to
end-users but also to researchers and developers who might find
debugging or refining these models a daunting task due to the
layers of abstraction [20].

• Theoretical Underpinnings and Guarantees: MPC is grounded
in well-established mathematical principles that provide concrete
guarantees on system behavior, stability, and convergence. In
contrast, the theoretical framework of RL, especially when consid-
ering real-world, non-episodic tasks, is less established. Questions
about convergence, optimality, and stability, while addressed in
academic literature, don’t always have clear-cut answers in the
context of RL [21].

• Dependency on Reward Design: Crafting an appropriate reward
function for RL can be intricate. An inadequately designed reward
might lead an agent to undesirable behavior or local optima [22].

2.4 Model Predictive Control-based Rein-
forcement Learning

The combination of MPC and RL is promising and has been explored
in various recent research efforts. The integration seeks to harness
the model-based predictive capability (as well as its ability to handle
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constraints and its solid theoretical foundation) of MPC and the adaptive,
data-driven learning capabilities of RL.

2.4.1 Other approaches

To the best of our knowledge, there are roughly four mainstream ap-
proaches to combine MPC and RL.
(1) MPC as a Guiding Policy for RL training [23, 24]:

• Principle: Use MPC as a "teacher" to guide the learning of an
RL agent to acquire good initial policies quickly. Essentially, the
MPC, with its model-based foresight, provides expert trajectories
or actions, and the RL agent learns from these.

• Advantage: This can significantly speed up the learning process,
especially in the early stages, because the RL agent gets guidance
from the model-based expertise of MPC.

• Limitations: This approach requires a certain level of model accu-
racy within the MPC. Besides, relying solely on MPC for initial
training can lead to sample inefficiency since MPC itself requires
multiple roll-outs to compute control actions. For some complex
problems, the iterative nature of MPC might introduce overhead
during the learning phase.

(2) Learning the Dynamics for MPC using RL [23, 25]:

• Principle: In environments where the system dynamics are uncer-
tain or non-stationary, RL (specifically model-based RL) can be
used to learn or refine these dynamics. This learned model is then
used in the MPC framework for control.

• Advantage: MPC can handle systems where the precise dynamics
are initially unknown.
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• Limitations: Learned dynamics might not perfectly represent the
real-world system, and/or the model is trained to minimize predic-
tion error rather than directly optimize the control objective.

(3) RL for Cost Function Design in MPC [26, 27]:

• Principle: Often, designing an appropriate cost function for MPC
(that truly represents desired behavior) can be challenging. RL can
be utilized to learn or adapt this cost function based on feedback
from the environment.

• Advantage: This ensures that the MPC’s objective aligns well with
the desired outcomes in the real-world system.

• Limitations: If the system model is poorly known or the uncertain-
ties are high, modifying the cost function alone may be far from
sufficient to eliminate the effects of model errors.

(4) Nested MPC-RL [28, 29]:

• Principle: An MPC scheme operates at a higher level, making
decisions based on a model, while an RL agent operates at a lower
level, making real-time decisions. The MPC provides setpoints
or reference trajectories for the RL agent, which then takes these
setpoints as goals and determines how to achieve them in real-
time, typically handling finer-grained decisions or adapting to
unmodeled disturbances.

• Advantage: Combines the foresight and constraint-handling abili-
ties of MPC with the adaptability of RL.

• Limitations: Having a two-level decision-making process might
introduce latency, especially in fast-changing environments. And
properly integrating the feedback from RL into the MPC and
vice-versa can be non-trivial, requiring careful design.
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In the presented review, while we strive for thoroughness, constraints of
scope and depth might lead to an incomplete coverage of all MPC&RL
methodologies. Nonetheless, our summary underscores that existing
approaches often retain some inherent limitations of both MPC and RL,
without achieving a seamless integration. This observation motivated us
to adopt our MPC-based RL methodology, which aims to integrate the
two paradigms in a more harmonized manner.

2.4.2 Our approach

(1) Core Theory

The MPC-based RL method employed in this thesis was first proposed
by Sebastien Gros and Mario Zanon in 2019 [14] and centers on the
following theorem.

Theorem 1. Consider a fully parameterized MPC:

min
x,u,σ

Tθ (xN) + ω
⊤
f σN +

N−1∑
k=0

(
Lθ (xk,uk) + ω

⊤σk
)
, (2.12a)

s.t. ∀ k = 0, . . . , N − 1

xk+1 = fθ (xk,uk) , (2.12b)
g(uk) ≤ 0, (2.12c)

hθ (xk,uk) ≤ σk, hfθ (xN) ≤ σN , (2.12d)
σk ≥ 0, σN ≥ 0 (2.12e)
x0 = s. (2.12f)

Given the MPC scheme as described in (2.12), where the parameteriza-
tion is "rich" enough such that the stage cost Lθ(·), terminal cost Tθ(·),
model fθ(·), and constraints hθ(·) are universal function approximators,
and exact relaxations σ (slack variables) are ensured with sufficiently
large ω and ωf , then there exist parameters θ⋆ such that the following
identities hold on ∀s ∈ S:
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1. Vθ⋆(s) = V ⋆(s),

2. πθ⋆(s) = π⋆(s),

3. Qθ⋆(s, a) = Q⋆(s, a) for the inputs a such that |E[V ⋆(s′)|s, a]| <
∞],

if the set

S =:
{
s ∈ S

∣∣∣ ∣∣E [V ⋆(sπ
⋆

k )
]∣∣ <∞} (2.13)

is non-empty.

See [14, 30] for a rigorous proof of the theorem.

Theorem 1 presents a pivotal connection between MPC and the principles
of MDP in the realm of RL. It suggests that, by intensively parameteriz-
ing aspects such as the system model, costs, and constraints, an MPC
framework is capable of capturing the optimal value functions and poli-
cies inherent to a specific MDP, even in situations marred by model
inaccuracies or system uncertainties. The integration of RL methodolo-
gies, notably Q-learning and policy gradient, facilitates the tuning of
these MPC parameters, pushing the system towards optimal closed-loop
performance. In simpler terms, provided the conditions are met, (2.12)
can effectively serve as a surrogate, delivering the optimal policy of the
real original MDP, regardless of potential model inaccuracies and un-
certainties. Therefore, an obvious conclusion is that one can use a fully
parameterized MPC as function approximators of the value function or
the policy, and then use RL to tune the parameters based on the principle
of minimizing the closed-loop performance.

The condition presented in (2.13) can be viewed as a type of stabil-
ity criterion for fθ⋆ following the optimal trajectory. In essence, this
requirement mandates that there exists a set S wherein the optimal
value function V ⋆ of the predicted optimal trajectory is finite with a
unitary probability for every initial state emanating from that set. This
assumption limits the indiscriminate use of any model within the MPC
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framework although this stability criterion is less stringent. In prac-
tice, it is not feasible to confirm this assumption directly. However, we
can avoid explicitly verifying this assumption in the MPC-based RL
approach. By integrating RL and MPC in a fully parameterized form,
the stability question can be approached as a fairly simple a priori de-
sign requirement rather than a complex a posteriori verification. To this
end, we can modify the stage cost function with a specific condition
(Lθ(s, a) ≥ α(||s − s̄θ||), where s̄θ is the steady state) and integrate a
storage function into the MPC cost.

Earlier in the discourse, we highlighted two predominant methodologies
for parameter updating: Q-learning and the policy gradient method. This
thesis predominantly harnesses the policy gradient approach, and for
good reason. The policy gradient method boasts a suite of advantages
over Q-learning, including its inherent capacity for direct policy opti-
mization and reduced overestimation bias. Crucially, when integrated
within the MPC-based RL framework, policy gradient emerges superior
in efficiency: Q-learning requires that the MPC optimization problem be
solved twice per iterative update [31], resulting in substantial computa-
tional overhead, while the policy gradient method only needs to solve it
once. Specifically, this thesis adopts the Deterministic Policy Gradient
(DPG) approach, as the problems addressed herein require deterministic
policies.

(2) Core Formulas: DPG for MPC-based RL

Due to the use of parameterized MPCs instead of NNs for function ap-
proximation in RL, the DPG update equation deviates somewhat from
its conventional form, where the primary distinction arises in the compu-
tation of the gradient. This section details how the DPG method adjusts
the parameters θ of the MPC scheme (2.12). The DPG method [32],
as a direct RL approach, directly optimizes the policy parameters θ via
gradient descent steps on the performance function J , As we showed
earlier in (2.11), i.e.,

θ ← θ − η ⊙∇θJ(πθ), (2.14)
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where η > 0 is the learning step-size vector and "⊙" represents the
element-wise product. Applying the DPG method developed by [33],
the gradient of J with respect to parameters θ is obtained as

∇θJ(πθ) = Eπθ
[∇θπθ(s)∇aQπθ

(s, a)|a=πθ
] , (2.15)

where Qπθ
and its inner function Vπθ

are the action-value function
and value function associated to the policy πθ, respectively, defined as
follows

Qπθ
(s, a) = L (s, a) + γEπθ

[
Vπθ

(
s+|s, a

)]
, (2.16a)

Vπθ
(s) = Qπθ

(s, πθ (s)) , (2.16b)

where s+ is the subsequent state of the state-input pair (s, a). The
calculations of∇θπθ(s) and∇aQπθ

(s, a) in (2.15) are discussed in the
following.

(a) ∇θπθ(s)

The Karush Kuhn Tucker (KKT) condition used in the primal-dual
interior-point method underlying the MPC scheme (2.12) is written as

R =
[
∇ζLθ

⊤ Gθ
⊤ diag (µ)Hθ + τ

]⊤
, (2.17)

where ζ = {x,u,σ} is the primal decision variable of the MPC and Lθ

is the associated Lagrange function, written as

Lθ(y) = Ωθ + λ
⊤Gθ + µ

⊤Hθ, (2.18)

where Ωθ is the MPC cost (2.12a), vector Gθ gathers the equality con-
straints and Hθ collects the inequality constraints of the MPC (2.12).
Vectors λ,µ are the associated dual variables. Argument y is read as
y = {ζ, λ, µ} and y⋆ refers to the solution of the MPC. Consequently,
the policy sensitivity∇θπθ required in (2.15) can be calculated as [14]

∇θπθ (s) = −∇θR (y⋆, s, θ)∇yR(y⋆, s, θ)−1 ∂y

∂u0

, (2.19)

24



2.4. Model Predictive Control-based Reinforcement Learning

where u0 is the first element of the MPC input solution.

(b) ∇aQπθ
(s, a)

Under some conditions1, the action-value function Qπθ
can be re-

placed by an approximator Qw, i.e. Qw ≈ Qπθ
, without affecting the

policy gradient. Such an approximation is labeled compatible and, in
this thesis, takes the following form

Qw (s, a) = (a− πθ (s))
⊤∇θπθ(s)

⊤︸ ︷︷ ︸
Ψ⊤(s,a)

w + Vv (s) , (2.20)

where Ψ(s, a) is the state-action feature vector and w is the parameters
vector. Component Vv ≈ Vπθ

is the parameterized baseline function
approximating the true value function. It can take a linear form as

Vv (s) = Φ (s)⊤ v, (2.21)

where Φ(s) is the state feature vector and v is the corresponding pa-
rameters vector. The state feature vector Φ(s) should be designed on
a problem-by-problem basis, which may require some expert knowl-
edge related to the system of the problem. Altogether, by adopting the
approximation function, we will have

∇aQπθ
(s, a) ≈ ∇aQw(s, a) = ∇θπθ (s)

⊤w, (2.22)

where the parameters w and v of the action-value function approximation
(2.20) can be obtained by solving the Least Squares (LS) problem

min
w,v

Eπθ

[(
Qπθ

(s, a)−Qw(s, a)
)2]

. (2.23)

In this thesis, we use two approaches to solve the above LS problem, the
Least-Squares Temporal-Difference (LSTD) approach and the gradient
Q-learning approach.

1See Theorem 3 in [33] and Assumption 1 in [34].
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LSTD [35] seeks to find the best fitting value function and action-value
function using an on-policy manner, and is therefore more stable com-
pared to the gradient Q-learning approach. The LSTD update formulas
are shown in below

v = Em
{[∑[

Φ(s)
(
Φ(s)− γΦ(s+)

)⊤]]−1∑[
Φ(s)L(s, a)

]}
,

(2.24a)

w = Em
{[∑[

Ψ(s, a)Ψ(s, a)⊤
]]−1

∑[(
L(s, a) + γVv

(
s+
)
− Vv (s)

)
Ψ(s, a)

]}
,

(2.24b)

where the summation is taken over the whole episode, and the values are
then averaged by taking expectation (Em) over m episodes.

Gradient Q-learning approach [36], on the other hand, uses off-policy
Q-learning to update, which significantly increases the data efficiency.
Besides, while a potential risk is that off-policy Q-learning may diverge
with the linear function approximation, the gradient Q-learning technique
would ensure that the parameters are updated towards the true gradient
descent and get converged eventually [15]. The update equations are
given as follows

w← w + αw
1

|B|
∑
B

[
δΨ(s, a)− γΨ(s+,πθ(s

+))(Ψ(s, a)⊤ν)
]
,

(2.25a)

v← v + αv
1

|B|
∑
B

[
δΦ(s)− γΦ(s+)(Ψ(s, a)⊤ν)

]
, (2.25b)

ν ← ν + αν
1

|B|
∑
B

[
(δ −Ψ(s, a)⊤ν)Ψ(s, a)

]
, (2.25c)

where B is the batch size, δ is the temporal difference, ν is an extra
parameter variable required for the gradient Q-learning approach, and
αw, αv, αν are the corresponding learning rates for each parameter.
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Finally, equation (2.14), for the MPC parameters updating, can be rewrit-
ten as

θ ← θ − η⊙Em

{
K∑
k=1

[
∇θπθ (sk)∇θπθ(sk)

⊤w
]}

, (2.26)

where the summation is taken over the whole episode (from k = 1 to
K), and the values are then averaged by taking expectation (Em) over m
episodes.

(3) Advantages of Our MPC-based RL Approach

Our proposed MPC-based RL approach, as applied to ASV navigation,
energy management in microgrids, and smart HEMSs, offers a range
of advantages that address the limitations of traditional MPC and RL
methods as well as the other mentioned MPC-based RL methods. These
advantages can be summarized as follows:

• Integration of MPC and RL: The MPC-based RL framework lever-
ages the structured, constraint-aware nature of MPC and the adap-
tive, performance-oriented capabilities of RL, resulting in a robust
and efficient control strategy.

• Enhanced Policy Approximation and System Performance: In this
approach, a parameterized MPC scheme is employed as a func-
tional approximation for the optimal policy, superseding the use of
DNNs. This allows for the tuning of MPC parameters via RL to en-
hance long-term performance, addressing the suboptimality often
inherent in traditional MPC applications. This dual adjustment of
MPC model parameters and the parameters within the MPC cost
and constraints enables the derivation of an optimal policy even
with an inaccurate model, as shown in theoretical frameworks and
practical applications.

• Utilization of Prior Knowledge and Data Efficiency: The MPC-
based RL approach can capitalize on existing model knowledge,
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starting with a suboptimal but reasonable policy. This use of prior
knowledge, particularly in complex systems like smart grids or
home energy management, enables more efficient learning from
smaller datasets compared to approaches that learn from scratch.

• Explicit Consideration of System Constraints: One of the sig-
nificant advantages of this approach is its inherent ability to ex-
plicitly consider system constraints (e.g., battery capacity, safety
requirements in ASV). This feature is critical in real-world appli-
cations where adherence to operational and safety constraints is
non-negotiable.

• Stability and Feasibility Analysis: The rich theoretical under-
pinnings of MPC allow for rigorous analysis of system stability
and solution feasibility. This aspect is crucial for ensuring the
reliability and predictability of the control systems in practical
applications.

• Handling System Uncertainties and Nonlinearities: The incorpo-
ration of RL enables the approach to effectively handle system
uncertainties and nonlinearities, such as those present in home
energy systems. This adaptability is essential for managing unpre-
dictable elements like renewable energy sources, varying loads,
and weather conditions.

• Performance-Driven Approach: Unlike methods that focus primar-
ily on model fidelity, the MPC-based RL approach is driven by the
objective of enhancing closed-loop performance. This focus on
performance, such as reducing power costs or improving energy
efficiency, aligns well with the practical objectives of the systems
it is applied to.

• Interpretability and Adaptability: The parameterized nature of the
MPC in this approach offers interpretability, a critical aspect often
lacking in DNNs. Additionally, the adaptability of the approach
makes it suitable for long-term or even infinite-horizon problems,
a key consideration in sustainable system management.
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In summary, the MPC-based RL approach presents a novel, robust, and
efficient strategy for control system optimization. Its ability to combine
the predictive power of MPC with the adaptive learning capabilities of
RL, while addressing their respective limitations, makes it a promising
solution for a variety of complex and dynamic systems.
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3 | MPC-based RL for Au-
tonomous Surface Vehicles

In this chapter, we propose a Model Predictive Control (MPC)-based
Reinforcement Learning (RL) method for Autonomous Surface Vehi-
cles (ASVs). The objective is to find an optimal policy that minimizes
the closed-loop performance of a simplified freight mission, includ-
ing collision-free path tracking, autonomous docking, and a skillful
transition between them. We use a parametrized MPC-scheme to approx-
imate the optimal policy, which considers tracking/docking costs and
states (position, velocity)/inputs (thruster force, angle) constraints. A
Least Squares Temporal Difference (LSTD)-based Deterministic Policy
Gradient (DPG) method is applied to update the action-value function
parameters and policy parameters. Our simulation results demonstrate
that the proposed MPC-LSTD-based DPG method could improve the
closed-loop performance during learning for the freight mission problem
of ASV.

3.1 Introduction

Autonomous Surface Vehicles (ASVs) are widely applied for many fields,
such as freight transportation, oceanographic, military, search and rescue
[1–3], and therefore attract broad attention for scientific and industrial
researches. For example, the project, Yara Birkeland [4], devoted to
realizing fully autonomous container vessels, exhibits many positive
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sides for bringing autonomy into the maritime sector.

3.1.1 Literature Review

Various methods have been proposed to solve the problem of operating
and automating the ASV, including path tracking (path following) [5, 6],
collision avoidance [7, 8], and autonomous docking [9, 10]. However,
designing a control strategy that could realize both collision-free path
tracking and docking in a freight mission with time-varying disturbances
is still an intractable topic. With the development of Machine Learning
(ML), Reinforcement Learning (RL)-based control strategies are getting
noticed by people, as they can make good use of real data to reduce the
impact of disturbances [11, 12].

RL is a technique for solving problems involving Markov Decision
Processes (MDP) without prior knowledge about the model dynamics
(state transition probabilities). RL exploits samples (state-action pairs)
and rewards to seek an optimal feedback policy that renders the best
closed-loop performance [13]. Deterministic Policy Gradient (DPG), as
the direct RL method, estimates the optimal policy by a parameterized
function approximator, and optimizes the policy parameters directly
via gradient descent steps of the performance [14, 15]. Deep Neural
Networks (DNNs) are very commonly used function approximators in
RL [16]. However, DNN-based RL lacks the abilities concerning the
closed-loop stability analysis, state/input constraints satisfaction, and
meaningful weights initialization [17].

3.1.2 MPC-based RL Approach

To address these problems, the perspective of using Model Predictive
Control (MPC)-based RL has been proposed and justified in [18], i.e. it
suggests using MPC as the function approximation for the optimal policy
in RL (Note that MPC can also be used as the function approximators
for the value function and action-value function). MPC is a well-known
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model-based control strategy that produces an input sequence over a
finite receding prediction horizon such that the resulting predicted state
trajectory minimizes a given cost function while respecting the con-
straints imposed on the system [19]. Unlike DNNs, MPC-based policies
satisfy the state/input constraints and safety requirements by construc-
tion, and its well-structured property enables the stability analysis of the
system.

However, for computational reasons, simple models are usually preferred
in the MPC-scheme. Hence, the MPC model often does not have the
required structure to correctly capture the real system dynamics and
stochasticity. As a result, MPC can deliver a reasonable approximation
of the optimal policy, but it is usually suboptimal [19]. Besides, choosing
the model parameters that best fit the MPC model to the real system does
not necessarily yield the MPC policy that achieves the best closed-loop
performance [18]. Therefore, choosing appropriate MPC parameters
to achieve the best closed-loop performance is extremely challenging.
Nevertheless, it is shown in [17, 18] that in principle, by adjusting not
only the MPC model parameters but also the parameters in the MPC cost
and constraints, the MPC scheme can generate the optimal closed-loop
policy, even if the MPC model is inaccurate. It is also shown that RL
is a suitable candidate to perform that adjustment in practice. Recent
researches focused on the MPC-based RL have further developed this
approach [20–23].

3.1.3 Contributions

In this chapter, we use the above-mentioned MPC-based RL method
for ASV to solve a freight mission problem with external disturbances.
A parametrized MPC-scheme is used to approximate the optimal pol-
icy, which considers tracking/docking costs and states (position, veloc-
ity)/inputs (thruster force, angle) constraints. Then the Least Squares
Temporal Difference (LSTD)-based DPG would tune the parameters
inside the MPC model, cost, and constraints, such that the MPC scheme
controlling the ship achieves a close-to-optimal policy to accomplish
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collision-free path tracking, docking, and the transition between them.

• From the theoretical point of view: based on the section IV-D of
reference [24], we elaborate the proposed MPC-based RL method
in the ASV problem framework, as well as formulate an algorithm
for the MPC-LSTD-based DPG method.

• From the application point of view: ASVs exhibit many positive
sides for bringing autonomy into the maritime sector. For exam-
ple, the project, Yara Birkeland [25], is devoted to realizing fully
autonomous container vessels. Our work, in this context, provides
a promising approach for a complicated ASV freight mission prob-
lem. We propose a strategy that solves obstacle avoidance, path
following, and autonomous docking simultaneously, in a stochastic
environment.

The rest of the chapter is structured as follows. Section 3.2 provides the
ASV model that consists of vessel dynamics and the thruster allocation.
Section 3.3 details the simplified freight mission problem: collision-free
path tracking, docking, and the objective function of the problem. The
proposed MPC-based RL method is elaborated in Section 3.4, which
first formulates the parametrized MPC-based policy approximation and
then explains the LSTD-based DPG method. Section 3.5 presents the
simulations and Section 3.6 delivers the conclusion.

3.2 ASV Model

The 3-Degree of Freedom (3-DOF) position of the vessel can be rep-
resented by a pose vector η = [x, y, ψ]T ∈ R3 in the North-East-
Down (NED) frame, where x is the North position, y is the East po-
sition, and ψ is the heading angle (see Fig. 3.1). The velocity vector
ν = [u, v, r]T ∈ R3, including the surge velocity u, sway velocity v, and
yaw rate r, is decomposed in the body-fixed frame.
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Figure 3.1: The 3-DOF ASV model in the NED frame.

3.2.1 3-DOF Model

The nonlinear dynamics can be written as follows [26]

η̇ = J(ψ)ν (3.1a)
Mν̇ +Dν = τ + τ a, (3.1b)

where J(ψ) ∈ R3×3 is the rotation matrix, given by

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (3.2)

M ∈ R3×3 is the mass matrix and D ∈ R3×3 is the damping matrix (see
[10] for their specific physical meanings and values). τ = [X, Y,N ]⊤ ∈
R3 is the external control forces (X , Y ) and moment (N ) vector empow-
ered by the thrusters. Vector τ a ∈ R3 is the additional forces rendered
from disturbances, e.g., wind, ocean waves and etc.
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3.2.2 Thruster Allocation

The thrust configuration is illustrated in Fig. 3.1. The vector τ could
be specifically written as τ = T (α) f , where f = [f1, f2, f3]

⊤ ∈ R3 is
the thruster forces vector as we consider one tunnel thruster f1 and two
azimuth thrusters f2, f3. They are subjected to the bounds

fpmin ≤ fp ≤ fpmax, p = 1, 2, 3. (3.3)

Matrix T (α) ∈ R3×3 presents the thruster configuration, written as

T (α) =

 0 cos (α2) cos (α3)
1 sin (α2) sin (α3)
lx1 T32 T33

 , (3.4)

where elements T32 = lx2 sin (α2) − ly2 cos (α2), and T33 =
lx3 sin (α3) − ly3 cos (α3). Constants lxi and lyi with i = 1, 2, 3
are the distances between each thruster and the cross line of the ship’s
center. Term α = [α1, α2, α3]

⊤ ∈ R3 is the corresponding orientation
vector. The angle α1 is fixed (π/2), while α2 and α3, associated to the
two azimuth thrusters, are restricted in the range

|α2 + π/2| ≤ αmax, |α3 − π/2| ≤ αmax. (3.5)

A maximum angle of αmax with a forbidden sector is considered in this
work to avoid thrusters 2 and 3 directly work against each other, as
shown in Fig. 3.1. With a sampling time of dt, we discretize the ship
system (3.1) as

sk+1 = F (sk, ak, τ a) , (3.6)

where sk =
[
η⊤
k ,ν

⊤
k

]⊤ and ak =
[
f⊤k ,α

⊤
k

]⊤
are system state and input

vectors, respectively. Subscript k denotes the physical time and F (·) is
the discretized real system.
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3.3 Problem Formulation – Simplified Freight
Mission

In this work, we consider a simplified freight mission problem: the ASV
starts from an origin A to the end B, which is supposed to follow a de-
signed collision-free course and finally dock at the wharf autonomously.
Note that the transition from path following to docking is a notable point
of this problem.

3.3.1 Collision-Free Path Following

Given a reference path Pref . At time instance k, Pref
k = [xrefk , y

ref
k ]⊤.

Then path following could be thought as minimizing the error l (ηk)

l (ηk) =
∥∥ηpk −Pref

k

∥∥2
2
= (xk − xrefk )2 + (yk − yrefk )2, (3.7)

where ηpk = [xk, yk]
⊤ contains the first two elements of ηk. Besides, we

assume obstacles of round shape. To avoid these obstacles, the following
term gn (ηk), representing the position of the ship relative to the nth

obstacle, should satisfy

(xk − ox,n)2 + (yk − oy,n)2 ≥ (rn + ro)
2 , (3.8)

i.e.,

1−
(
(xk − ox,n)2 + (yk − oy,n)2

)/
(rn + ro)

2︸ ︷︷ ︸
gn(ηk)

≤ 0, (3.9)

where (ox,n, oy,n) and rn are the center and radius of the nth circular
obstacle (n = 1, . . . , No), respectively. Constant ro is the radius of the
vessel and No is the number of obstacles.
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3.3.2 Autonomous Docking

Docking refers to stopping the vessel exactly at the endpoint B as well
as avoiding collisions between any part of the vessel and the quay [9].
The “accurate stop" requires not only an accurate docking position but
also zero-valued velocities and thruster forces at the final time, i.e., we
ought to minimize

h (ηk,νk, fk) = ∥ηk − ηd∥
2
2 + ∥νk∥

2
2 + ∥fk∥

2
2 , (3.10)

where ηd = (xd, yd, ψd) is the desired docking position. Successfully
docking requires h (ηK ,νK , fK) ≈ 0, where subscript K denotes the
terminal time step of the freight mission. As for “collision avoidance",
we define a safety operation region S as the spatial constraints for the
vessel. The operation region is chosen as the largest convex region that
encompasses the docking point but not intersecting with the land. Thus,
as long as the vessel is within the region S, no collision will occur during
docking, i.e. the following condition should hold

ηpk ∈ S, S = {x|Ax < b}, (3.11)

where ηpk = [xk, yk]
⊤ describes the position of the vessel. The matrix A

and the vector b are determined by the shape of the quay and together
define the convex region S.

3.3.3 Objective Function

In the context of RL, we seek a control policy π that minimizes the
following closed-loop performance J

J(π) = Eπ

[
K∑
k=0

γkL (sk, ak)

∣∣∣∣∣ak = π(sk)
]
, (3.12)

where γ ∈ (0, 1] is the discount factor. Expectation Eπ is taken over
the distribution of the Markov chain in the closed-loop under policy π.
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The RL-stage cost L(sk, ak), in this problem, is defined as a piecewise
function

L =

{
l (ηk) +O (ηk) + ξ (αk) ∥ηk − ηd∥

2
2 > d

h (ηk,νk, fk) + Γ (ηk) + ξ (αk) ∥ηk − ηd∥
2
2 ≤ d,

(3.13)

where O (ηk) is the obstacle penalty for path following

O (ηk) =
No∑
n=1

cn ·max(0, gn (ηk) + ds), (3.14)

where cn > 0 is the penalty weight, constant ds > 0 is the desired
safe distance between vessel and obstacles. Therefore, once the ship
breaks the safe distance, i.e. gn (ηk) + ds > 0, a positive penalty will
be introduced to the objective function. Function Γ (ηk) is the collision
penalty for docking

Γ (ηk) = κ · (1− 1S(η
p
k)), (3.15)

where κ > 0 is the penalty weight and 1S(·) is the indicator function.
When the ship is out of the safe region, i.e. ηpk /∈ S, a positive penalty
will be imposed in the objective function. Function ξ (αk) is the singular
configuration penalty, aiming to avoid the thruster configuration matrix
T (αk) in (3.4) being singular [27]

ξ (αk) =
ρ

ε+ det
(
T (αk)W

−1T⊤ (αk)
) , (3.16)

where “det" stands for the determinant of the matrix. Constant ε > 0
is a small number to avoid division by zero, ρ > 0 is the weighting
of maneuverability, and W is a diagonal weighting matrix. Constant
d > 0 is designed to substitute the stage cost from path following to
docking at ∥ηk − ηd∥

2
2 = d, which means that our target transits from

path-following to docking when the ship approaches the destination.

3.4 MPC-based RL

The core idea of our proposed approach is to use a parameterized MPC-
scheme as the policy approximation function, and apply the LSTD-based
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DPG method to update the parameters so as to improve the closed-loop
performance.

3.4.1 MPC-based Policy Approximation

Consider the following MPC-scheme parameterized by θ

min
η̂,ν̂,f̂ ,α̂,σ

θd

∥η̂N − ηd∥
2
2 + δ

·
(
hθ (η̂N , ν̂N) + Γθ (η̂N)

)
+

ω⊤
f σN +

N−1∑
i=0

γi
(
lθ (η̂i) + ξ (α̂i) + ω

⊤σi

)
(3.17a)

s.t. ∀i = 0, . . . , N − 1, n = 1, . . . , No[
η̂⊤

i+1, ν̂
⊤
i+1

] ⊤ = Fθ(η̂i, ν̂i, f̂ i, α̂i,θa) (3.17b)

fpmin ≤ f̂p,i ≤ fpmax, p = 1, 2, 3 (3.17c)
|α̂2,i + π/2| ≤ αmax, |α̂3,i − π/2| ≤ αmax, (3.17d)
gn (η̂i) + θg ≤ σn,i, gn (η̂N) + θg ≤ σn,N , (3.17e)
σi ≥ 0, σN ≥ 0, (3.17f)
η̂0 = ηk, ν̂0 = νk, (3.17g)

where N is the prediction horizon. Arguments η̂ = {η̂0, . . . , η̂N}, ν̂ =
{ν̂0, . . . , ν̂N}, f̂ = {f̂0, . . . , f̂N−1}, α̂ = {α̂0, . . . , α̂N−1}, and σ =
{σ0, . . . ,σN} are the primal decision variables. The term θd

∥η̂N−ηd∥
2
2+δ
·

(hθ (·) + Γθ (·)) introduces a gradually increasing terminal cost as the
ship approaches the endpoint, where δ > 0 is a small constant to avoid
division by zero. The weighting parameter θd, designed to balance the
priority of path following and docking, is tuned by RL. Note that θd is
chosen to minimize the closed-loop performance that considering both
path following and docking, although it may be suboptimal for either
single problem. Parameter θg is the tightening variable used to adjust
the strength of the collision avoidance constraints. If the value of θg
(positive) is larger, it means that the constraints are tighter and the ship
is supposed to be farther away from the obstacles. It is important to
use RL to pick an appropriate θg, since when θg is too large, although
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we ensure that the ship safely avoids obstacles, the path following error
is increased. Conversely, a smaller θg reduces the following error, but
we may gain more penalty when the vessel breaks the safe distance,
as described in (3.14). Note that the obstacle penalties are considered
directly as constraints (3.17e) in the MPC rather than as penalties in
the MPC cost, because (3.9) is a conservative model of the obstacle
penalty (3.14). Variables σi

(
σi = {σ1,i, . . . , σN0,i}

)
and σN

(
σN =

{σ1,N , . . . , σN0,N}
)

are slacks for the relaxation of the state constraints,
weighted by the positive vectors ω and ωf . The relaxation prevents the
infeasibility of the MPC in the presence of some hard constraints.

The parameterized stage cost lθ (·), terminal cost hθ (·), and docking
collision penalty Γθ (·) in the MPC cost (3.17a) are designed as follows

lθ =
∥∥η̂pi −Pref

i

∥∥2
Θl

(3.18a)

hθ = ∥η̂N − ηd∥
2
Θη

+ ∥ν̂N∥2Θν
(3.18b)

Γθ = θκ · (1− 1S(η̂
p
N)), (3.18c)

where Θl,Θη,Θν ∈ R3×3 are the weighing matrices that are symmet-
ric semi-positive definite. They are expressed as Θl = (diag(θl))

2,
Θη = (diag(θη))

2, Θν = (diag(θν))
2. Operator “diag" assigns the vec-

tor elements onto the diagonal elements of a square matrix. Parameter θκ
is treated as a degree of freedom for the docking collision penalty. The
real model is (3.6) and we assume the disturbance τ a follows a Gaussian
distribution. To address the disturbance without using a complex stochas-
tic model in the MPC scheme, one measure is to use a parameter vector
θa ∈ R3 to parameterize the model as Fθ(ŝi, âi,θa). As detailed in
[18], the full adaptation of the parametrized MPC scheme (model, costs,
constraints) can compensate for that unmodelled disturbance. Overall,
the adjustable parameters vector θ consists of

θ = {θl,θη,θν ,θa, θκ, θd, θg}. (3.19)

And θ will be adjusted by RL according to the principle of “improving
the closed-loop performance". Note that: 1. the span of the RL (K ≈
550) is much longer than the horizon of the MPC (N = 60); 2. the
RL cost (3.13) is a “switching" function, while the MPC cost (3.17a)
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contains simultaneously the path following and docking cost to avoid
the mixed-integer treatment of the problem; 3. the MPC model does not
perfectly match the real system. For the above reasons, having different
cost functions in the MPC scheme and RL is rational [18]. Therefore,
in order to improve the closed-loop performance of the MPC scheme as
assessed by the RL cost, it can be beneficial to parameterize the MPC
cost functions, model, and constraints. RL then adjusts these parameters
according to the principle of “improving the closed-loop performance".
From Theorem 1 and Corollary 2 in [18], we know that, theoretically,
under some assumptions, if the parametrization is rich enough, the MPC
scheme is capable of capturing the optimal policy π⋆ in presence of
model uncertainties and disturbances.

Importantly, the deterministic policy πθ(s) can be obtained as

πθ(s) = u⋆0(s,θ), (3.20)

where u⋆0(s,θ) is the first element of u⋆, which is the input solution of
the MPC scheme (3.17).

3.4.2 LSTD-based Deterministic Policy Gradient

For this problem, we use the LSTD-based DPG method elaborated in
Section 2.4.2: "Core Formulas: DPG for MPC-based RL" to update the
MPC parameters. The general update rule is

θ ← θ − α∇θJ(πθ), (3.21)

where α > 0 is the step size and the gradient ∇θJ(πθ) is computed
using the same formulas as in Section 2.4.2, except that the variables
are replaced with those defined in this ASV problem. Specifically, ζ in
(2.17) has the form ζ = {η̂, ν̂, f̂ , α̂,σ}, which is the primal decision
variable of the MPC (3.17). And in (2.18), Ωθ now represents the MPC
cost (3.17a), Gθ gathers the equality constraints and Hθ collects the
inequality constraints of the MPC (3.17). In addition, the first element
of the input u0 in (2.19) is represented in this case as

u0 =
[
f̂
⊤
0 , α̂

⊤
0

]⊤
. (3.22)
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The state feature vector Φ(s) in (2.21) is designed to constitute all
monomials of the state with degrees less than or equal to 2.

Finally, equation (3.21) can be rewritten as

θ ← θ − αEm

{
K∑
k=1

[
∇θπθ (sk)∇θπθ(sk)

⊤w
]}

, (3.23)

where the summation is taken over the whole episode, which terminates
at K when the ship reaches the destination (i.e. ∥ηK − ηd∥

2
2 ≤ derror)

and the values will be then averaged by taking expectation (Em) over m
episodes. The proposed MPC-LSTD-based DPG method is summarized
in Algorithm 1.

Algorithm 1: MPC-LSTD-based DPG method
Input: vessel model, objective function, initial parameters θ0
Output: locally optimal policy πθ⋆

1 repeat
2 for each episode in m episodes do
3 initialize η0, ν0;
4 while ∥ηk − ηd∥

2
2 ≤ derror do

5 solve the MPC (3.17) and get y⋆;
6 calculate and record the RL stage cost L(sk, ak)

according to (3.13) and the sensitivity∇θπθ(sk)
according to (2.19);

7 end
8 end
9 calculate v according to (2.24a);

10 calculate w according to (2.24b);
11 update θ according to (3.23);
12 until convergence;
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3.5 Simulation and Discussion

In the simulation, we choose the initial parameters vector as θ0 =
{0.55,3,3,1e−7, 60, 35, 0.5}, where the bold numbers represent con-
stant vectors with suitable dimension. Other parameter values used in
the simulation are given in Table 3.1.

Table 3.1: Parameters values.

Symbol Value Symbol Value

γ,N, dt 1, 60, 0.5 τa, αmax N (0, 1e−3), 17π
18

f1min,max −100, 100 f2,3min,max 0, 200

ρ, ε, δ 1, 0.001, 0.001 W diag([1, 1, 1])

ω,ωf [1, 5, 5]⊤ c1,2,3 5, 8, 8

d, ds, derror 42.5, 1, 0.5 No,m 3, 10

r0, r1, r2, r3 1, 1.4, 1.7, 1.9 ηd [21.3, 23.3, 8.4]⊤

η0 [0, 0, π
4
]⊤ ν0 [0.4, 0, 0]⊤

Figure 3.2 shows the prescribed reference path and the thirteen shipping
paths updated after each learning step. The last path P13 is obtained
under the final learned policy πθ⋆ with an episode length of K = 550.
It is worth noting that, although we say that if the parametrization is
rich enough, the MPC scheme can generate the optimal policy, this
is a theoretical result. In practice, the assumption of a “rich enough"
parametrization is typically not satisfied. Other practical issues can come
in the way of optimality such as, e.g., the local convergence of the RL
algorithm and of the solver treating the MPC scheme. Addressing these
potential issues typically requires good initial guesses. Although these
are often available in the MPC context, we can only claim that the final
learned policy πθ⋆ obtained from the converged parameters θ⋆ is locally
optimal. This observation applies to most RL techniques. Following the
reference path Pref defined from the origin A to the point q, the vessel
departs from A and passes through three obstacles to reach q. At the
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point q, where ∥ηk − ηd∥
2
2 = d, the vessel transits from path following

to docking. The vessel eventually stops at the end B with zero velocities
and thruster forces, and has no collision with the quay (within the safety
operation region S) during the docking process. It can be seen that in
the first few paths (P1-P4), the ship does not follow Pref precisely, and
is relatively far away from the three obstacles when it bypasses them.
After learning, such as in the P13, the ship closely follows the reference
route, and the distance when avoiding obstacles is also reduced.

Origin A

End B

q

Figure 3.2: Freight shipping paths from A to B. Pref : the reference path.
P1-P13: the renewed path after each learning step.

Figure 3.3 shows the convergences of the MPC parameters θ over learn-
ing steps (θ⋆ represents the converged parameters). Note that θ1l is the
first element of θl, and the same fashion for others. It can be seen
that the initial value of θl is relatively small, and the initial values of
θη,θν , θκ, θd are relatively large. Therefore, in the MPC cost (3.17a), the
terminal cost weighs more than the stage cost, i.e., docking is regarded
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as more important than path following. Consequently, the path following
performance is relatively poor in the initial episodes, and then gets im-
proved as θl increases and θη,θν , θκ, θd decrease. In addition, the initial
value of θg is large, which means that the ship must be very far away
from the obstacles. However, this is unnecessary under the premise of
ensuring the safe distance ds. To reduce the cost, RL gradually reduces
θg, and therefore results in what we have in Fig. 3.2: the distance for
avoiding obstacles tends to decrease over learning.

Figure 3.3: Variations of some selected MPC parameters
{θ1l , θ1η, θ1ν , θκ, θd, θg} over learning steps.

The Variations of the normed policy gradient ∥∇θJ(πθ)∥2 and the
closed-loop performance J(πθ) are displayed in Fig. 3.4. As can be
seen, the policy gradient converges to near zero with learning as the
parameters approach to their optimal points, and the performance is
improved significantly over the learning. Besides, since the value of
policy gradient∇θJ(πθ) is relatively large within the first 5 steps, the
performance J drops faster in this range.

Figure 3.5 illustrates the variations of error between the ship pose state η
and the desired docking state ηd under the learned optimal policy π(θ⋆).
Fig. 3.6 presents the variations of the vessel velocity ν with time under
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Figure 3.4: Variations of the normed policy gradient ∥∇θJ(πθ)∥2 and
the closed-loop performance J(πθ) over learning steps.

Figure 3.5: Variations of the error η − ηd with time under the learned
policy πθ⋆ . Red line: the desired value.
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the learned optimal policy π(θ⋆). The red dash lines in these two figures
represent the zero-valued reference lines. It can be seen that both the
pose error and velocity converge to the red dash lines, which signifies
a satisfactory docking. The variations of the vessel’s thruster force f

Figure 3.6: Variations of the vessel velocity ν with time under the
learned policy πθ⋆ . Red line: the desired value.

and thruster angle α under policy π(θ⋆) are exhibited in Fig. 3.7. The
red dash lines stand for the desired values as before, and the green lines
stand for the constraint values. Note that, since α1 of the tunnel thruster
is fixed as π/2, its force f1 is a vector that restricted in [−100, 100]KN,
while f2, f3 are scalars within [0, 200]KN. For thruster angles, αqmax

in (3.5) is chosen as 170◦. Both the forces and the angles obey their
constraints, and when approaching the endpoint, the forces decline to
zero and the angles remain constant.

3.6 Conclusion

This chapter presents an MPC-LSTD-based DPG method for the ASV to
accomplish a freight mission, which includes collision-free path tracking,
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Figure 3.7: Variations of the thruster force f and thruster angle α with
time under the learned policy πθ⋆ . Green line: the constraint value.
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autonomous docking, and an ingenious transition between them. We
use a parameterized MPC-scheme as the policy approximation function,
and adopt the LSTD-based DPG method to update the parameters such
that the closed-loop performance is minimized after learning. For future
works, we will further validate our proposed method by realizing the
experimental implementations.
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[16] Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and
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4 | MPC-based RL for Resi-
dential Microgrids

This chapter presents an Energy Management (EM) strategy for resi-
dential microgrid systems using Model Predictive Control (MPC)-based
Reinforcement Learning (RL) and Shapley value. We construct a typi-
cal residential microgrid system that considers fluctuating spot-market
prices, highly uncertain user demand and renewable generation, and col-
lective peak power penalties. To optimize the benefits for all residential
prosumers, the EM problem is formulated as a Cooperative Coalition
Game (CCG). The objective is to first find an energy trading policy that
reduces the collective economic cost (including spot-market cost and
peak-power cost) of the residential coalition, and then to distribute the
profits obtained through cooperation to all residents. An MPC-based RL
approach, which compensates for the shortcomings of MPC and RL and
benefits from the advantages of both, is proposed to reduce the monthly
collective cost despite the system uncertainties. To determine the amount
of monthly electricity bill each resident should pay, we transfer the cost
distribution problem into a profit distribution problem. Then, the Shapley
value approach is applied to equitably distribute the profits (i.e., cost sav-
ings) gained through cooperation to all residents based on the weighted
average of their respective marginal contributions. Finally, simulations
are performed on a three-household microgrid system located in Oslo,
Norway, to validate the proposed strategy, where a real-world dataset
of April 2020 is used. Simulation results show that the proposed MPC-
based RL approach could effectively reduce the long-term economic cost
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by about 17.5%, and the Shapley value method provides a solution for
allocating the collective bills fairly.

4.1 Introduction

With the recent development of smart grids and smart cities, residential
communities have become essential stakeholders in future power grid
transactions [1, 2]. The aggregation of Distributed Generations (DGs),
Renewable Energy Resources (RERs), Energy Storage Systems (ESSs),
and controllable loads of consumers has led to the concept of residential
microgrids. To coordinate various DGs, RERs, ESSs, and loads to
achieve an optimal energy dispatch strategy considering operating costs,
power demand, and consumer preferences, the concept of microgrid
Energy Management (EM) has been proposed [3]. Its purpose is to
effectively coordinate the energy sharing/trading between each microgrid
and the main grid, and to achieve the optimal allocation of energy sharing
through rational strategies, thus improving the stability, reliability, and
energy efficiency of the overall power system. However, the volatile
and intermittent characteristics of RERs (e.g., Wind Turbines (WTs),
Photo-Voltaic (PV)) and the uncertainties of customer load demand pose
serious challenges to the energy management problem [4]. There have
been many research works for the EM problem. We mainly focus on
Model Predictive Control (MPC)-based approaches and Reinforcement
Learning (RL)-based approaches.

4.1.1 MPC-based Approaches

For EM problems, MPC is a widely considered and well-studied control
strategy. It leverages a known and explicit model to describe the dynam-
ics of residential microgrids, and can handle system constraints explicitly.
The authors in [5] applied a standard MPC approach to solve the EM
problem while satisfying time-varying requirements and operational con-
straints. Considering the uncertainties associated with fluctuations in
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demand and RERs production, a two-layer stochastic MPC approach was
proposed in [6]. Besides, uncertainties can also arise from the energy
storage units and demand-side management technologies in microgrids.
To accommodate these combined uncertainties, a two-stage robust MPC-
based optimization method was introduced [7]. In [8], the authors further
considered fluctuations in stochastic RERs as well as weather conditions,
and presented an innovative control strategy-based coordinated MPC ap-
proach for networked smart greenhouse integrated microgrids. The work
in [9] presented a hierarchical distributed MPC mechanism to tackle the
EM problem with multi-time frames and multi-layer optimization, dedi-
cated to large-scale system management. The author of [10] proposed
a novel EM framework based on tube-based MPCs that made energy
trading strategies robust to system uncertainties, reducing the loss of
economic performance and computational efficiency.

Despite the advantages of MPC over other classical control strategies and
its successful application in the aforementioned works, it has three known
drawbacks [11, 12]: 1. A sufficiently accurate model is required, which
is often difficult or even impossible for complex or highly uncertain
microgrid systems (e.g., where the RERs production, user demand, and
electricity prices are highly volatile). 2. Even if the current model is
accurate, in the long run it may not represent the characteristics of the real
system. For example, the structure, size, and capacity of the microgrid
may change over time, as may the uncertain distribution of RERs and
demand, which will result in suboptimal operation of the MPC. And if the
controller is redesigned according to system modifications, additional
development and maintenance costs will be required. 3. Due to the
finite-horizon formulation of MPC, it is challenging to fully consider
long-term objectives and constraints (e.g., seasonal storage and monthly
peak power penalties).

4.1.2 RL-based Approaches

RL, in contrast, does not rely on system models. RL learns a policy by
interacting with the environment and can make good use of data to reduce
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the effects of uncertainties and disturbances [13]. Many researchers
have deployed RL methods to solve the EM problem. The authors in
[14] proposed a two-step RL algorithm to plan battery scheduling for
microgrid EM. A deep RL-based adaptive EM strategy was proposed in
[15] for a microgrid with flexible demand. In [16], the authors presented
an RL algorithm based on a multi-agent system to develop an optimal
strategy for distributed EM. Similarly, a fuzzy Q-Learning for multi-
agent decentralized EM was presented in [17]. The authors in [18]
proposed an online optimization algorithm with Q-learning techniques
to address economic dispatch and unit commitment in smart grids. In
[19], the authors proposed a joint load scheduling strategy for household
EM that aims at reducing residential energy costs while maintaining
thermal comfort. The proposed method was also compared with a deep
Q-network-based approach and an MPC-based approach. For more
recent advances in RL-based approaches to residential microgrid EM,
see [20–24].

However, for the EM problem, those using conventional RL approaches
tend to suffer from the following three difficulties [12]: 1. Since it
is a model-free approach, for complex or highly uncertain microgrid
systems, RL requires a huge amount of data to learn the policy from
scratch. 2. The forecasts of RERs and demand in the form of time-series
in the decision policy create high-dimensional information spaces that
are detrimental to efficient learning. 3. RL often relies on Deep Neural
Networks (DNNs) as function approximators [25], yet DNN-based RL
does not offer formal tools to satisfy system constraints and evaluate
closed-loop stability. Furthermore, there is no systematic or physically
meaningful way to choose the initial values, number of hidden layers,
number of hidden units, etc. of a DNN network [26].

For a comprehensive comparative study of MPC and RL, see [12]. There,
the two methods are benchmarked simultaneously in the context of a
multi-energy management system, and their advantages and disadvan-
tages are elaborated.
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4.1.3 Combining MPC and RL

To compensate for the shortcomings of MPC and RL and benefit from
the advantages of both, we propose to combine these two strategies to
develop an MPC-based RL approach. Instead of DNN, a parameterized
MPC scheme is used as a function approximation of the optimal policy,
and RL helps to tune the parameters to reduce the long-term performance
(objective function). The idea of the MPC-based RL was first formally
proposed in [27], along with a complete analysis and a formal argument.
It states that, theoretically, under a mild condition1, if the MPC scheme
is parametrized “richly" enough, MPC can deliver the optimal policy
for the real system even if the MPC model is inaccurate or the system
has disturbances and uncertainties (see Theorem 1 and Corollary 2 in
[27] for rigorous statements and explanations). Besides, this approach
has been further developed [28–30] and successfully applied to some
practical problems [31–33].

The MPC-based RL approach has the following merits that motivate us
to use it to address the EM problem:

• Rather than learning from scratch, it could use prior knowledge of
the model to start learning with a suboptimal but reasonable policy.
(Thanks to MPC.)

• System constraints (e.g., battery capacity) can be explicitly taken
into account, whereas satisfying constraints can be challenging in
pure RL methods. (Thanks to MPC.)

• The rich theoretical framework behind MPC makes it possible
to analyze the stability of the system and the feasibility of the
solution. (Thanks to MPC.)

• System uncertainties (e.g., uncertainties in user demand, RERs,
etc.) can be overcome to some extent while obtaining optimized
closed-loop performance, whereas pure robust/stochastic MPCs

1See equation (9) in [27].
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tend to deliver conservative solutions that usually result in some
performance loss. (Thanks to RL.)

• It can deal with long-term or even infinite-horizon problems (e.g.,
consider the long-term operating costs of the system). (Thanks to
RL.)

• It is a performance-driven approach rather than a model-driven ap-
proach, i.e., the MPC parameters are tuned to improve the closed-
loop performance of the MPC scheme (e.g., reducing power costs
in our case) rather than to replicate the dynamics of the real system
as faithfully as possible.

4.1.4 Contributions

This chapter is an extension of [34] with some significant new contribu-
tions (marked in parentheses in the bullet points below) and presents a
more comprehensive discussion. The novelty of this chapter is that we
propose a novel and complete solution for microgrid energy management.
To the best of our knowledge, the MPC-based RL approach, proposed
in [27], has never been deployed to solve the optimization problem of
EM. And the Shapley value method, although a known method for profit
distribution problems, is used to solve the cost distribution problem of
EM with our modifications (by appropriate definitions of profits and
utility values). The main contributions of this article are summarized as
follows:

(i) We construct a typical residential microgrid EM problem, which
considers fluctuating spot-market prices, highly uncertain user
demand and RERs, and peak power penalties. Accordingly, the
problem is formulated as a Cooperative Coalition Game (CCG)
and a two-step strategy is proposed to first find an energy trading
policy that reduces the collective monthly cost of residents and
then distribute the cost fairly. (New contribution.)
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(ii) Given the difficulties posed by highly uncertain user demand and
RERs (i.e., stochastic local power consumption-production), we
innovatively apply an MPC-based RL approach to find the energy
trading policy that could reduce the collective cost (including
spot-market cost and peak-power cost) of the CCG.

(iii) A feasible solution for distributing the collective cost is proposed.
The energy management problem in this work requires the dis-
tribution of collective cost rather than collective profit, so one
contribution is to transform the cost distribution problem into a
profit distribution problem. Specifically, in the context of the EM
problem, we define properly the individual and coalitional profits
and utility values. Then, the collective bill is equitably distributed
to all residents based on the weighted average of their respective
marginal contributions, using the Shapley value mechanism. (New
contribution.)

(iv) A complete policy learning and profit distribution algorithm is
presented for the residential microgrid EM problem. (New contri-
bution.)

(v) The performance of the proposed algorithm is validated by con-
ducting multiple stochastic experiments using a real-world dataset.
The results show that the monthly collective cost is reduced by
about 17.5% by using the MPC-based RL approach, and the op-
timized collective cost can be fairly distributed to users by the
Shapley value approach. (Greatly improved.)

The remainder of this chapter is organized as follows. The problem back-
ground and formulation are given in Section 4.2. Section 4.3 develops
the MPC-based RL and Shapley value approaches for the residential EM.
A case study is presented in Section 4.4. Finally, Section 4.5 draws the
conclusions, limitations, and future works.
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4.2 Problem Formulation – Microgrid Energy
Management

4.2.1 Background

Consider a typical residential microgrid system, as shown in Fig. 4.1.
The main grid provides power to a group of households through a local
transformer. Each household is a prosumer whose electricity profile has
three components: production, consumption, and storage. Home-scale
renewable energy sources, like PVs, are used to generate electricity.
Power consumption comes from heating systems, appliances, Electrical
Vehicle (EV) chargers, etc. The battery is used to store energy generated
by RERs or purchased from the main grid, and its State-Of-Charge
(SOC) indicates the level of charge relative to the battery capacity.

The spot-market prices are hourly prices, announced publicly one day
in advance (e.g., prices for the next 24 hours are announced at around
13:00 each day). Therefore, all residents know the electricity prices for
at least the next 12 hours. This operating mode incentivizes residential
prosumers to consume and/or store energy at low prices, and to reduce
consumption and/or use the stored energy to meet demand when prices
are high [35]. As a result, each household could decide on an energy
trading policy (buying or selling amount) based on its power demand and
spot-market prices to reduce power costs. We refer to this cost incurred
by trading energy with the grid as the spot-market cost throughout the
text. However, finding such an energy trading policy is quite tricky
due to the high uncertainties in load demand and RERs (in local power
consumption and production).

Furthermore, the spot market may exacerbate power peaks. If all houses
in a neighborhood tend to exchange power with the grid at the same
time, the local power infrastructures (e.g., transformers), to ensure safe
operation, must be sized accordingly. Such sizing incurs high investment
costs for the distribution system. Utilities are thus attempting to reduce
the peak power that prosumers impose on the system via some economic
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Figure 4.1: Illustration of a typical Na-agent residential microgrid sys-
tem.
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incentives. An ideal structure of the economic incentive is to invoice the
prosumers behind a given transformer collectively. This collective bill
includes the peak-power cost caused jointly by all users, as well as the
sum of their individual spot-market costs. However, implementing such
management is not trivial because of two reasons:

• Reducing peak-power cost and spot-market cost are competing
goals. To avoid high peak-power penalties, or to make more peak
profits (pay less for peak costs), some households may need to
make some “compromises", such as deviating from their preferred
consumption patterns and/or buying or selling less energy than ide-
ally desired. This leads to lower profits from the power exchange.
Therefore, the balance between peak-power cost and spot-market
cost is delicate.

• Since the peak profits are earned at the expense of users’ spot-
market profits, and the final collective profit is obtained by offset-
ting the two, this collective profit should be distributed based on
the principle that prosumers who contribute more to the coalition
(“sacrifice" more) receive a larger share of the profit. Neverthe-
less, it is challenging to properly assess the contribution of each
individual house and distribute the profit in a fair manner.

Given all this background, we consider the problem from a coalition
perspective. The goal is to first find a global energy trading policy
that reduces the collective cost (including spot-market cost and peak-
power cost) for all residents over the course of a month; and then to
find a reasonable distribution strategy that allocates the collective bill
fairly, i.e., determines the electricity fee each prosumer should pay. The
difficulties lie in the need to deal with high uncertainties of the system
when finding the energy trading policy, and the need to equitably measure
user contributions when allocating the collective bill.
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4.2.2 System Model

Considering Fig. 4.1, the stochastic dynamics of the energy profile for
each household can be simply modeled as follows

socik+1 = socik + αi
(
bik − sik −∆i

k

)
(4.1a)

∆i
k= (β∆)

i
k + δik, (4.1b)

where superscript i = 1, . . . , Na denotes the index of the ith user among
the total Na users. The sampling time is 1h as the spot-market price
is hourly and the subscript k = 0, 1, 2 . . . is the physical time index.
Equation (4.1a) describes the energy flow of the user from the battery
perspective. State socik is a dimensionless variable corresponding to the
SOC level of battery i at time tk, which satisfies

0 ≤ socik ≤ 1. (4.2)

The interval [0, 1] represents the SOC level considered as non-damaging
for the battery (typically 20%− 80% range of the physical SOC). Con-
stant αi

[
kWh−1

]
> 0 reflects the battery size. Input bik (resp. sik) [kWh]

is the energy bought (resp. sold) from (resp. to) the main grid in time
interval [tk, tk+1], bounded as

0 ≤ bik ≤ Ū i, 0 ≤ sik ≤ Ū i, (4.3)

where Ū i is the maximum allowed buying (resp. selling) amount of
the ith user. The state socik is determined by the amount of electricity
bought bik and sold sik and the power consumption-production difference
∆i
k within time interval [tk, tk+1]. The dynamics of the state ∆i

k [kWh]
is provided in (4.1b), where (β∆)

i
k is the forecast of the consumption-

production difference at time tk and δik is the corresponding forecast
error. Note that the forecast β∆ can be easily obtained since the profile
of user demand and the generation pattern of RERs are usually known.
However, such forecasts are inaccurate and stochastic, as the production
of RERs may be affected by factors such as weather, and the load demand
may change significantly due to sudden changes in lifestyle habits. For
simplicity, we consider a normally distributed forecast error

δik ∼ N
(
0, σi

2
)
. (4.4)
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Consequently, for the whole system which is a setM = {1, 2, . . . , Na}
of Na households, we denote the system state sk and input2 ak, respec-
tively, as

sk = {soc1k, ∆1
k, . . . , soc

Na
k , ∆Na

k }, (4.5a)

ak = {b1k, s1k, . . . , bNa
k , sNa

k }. (4.5b)

Besides, it is worth mentioning that the battery model we adopted is
ideal because we ignore the effects of charge/discharge efficiency, energy
leakage, and battery usage on battery life. However, these factors can be
easily incorporated into the battery model without substantially affecting
our methodology and analysis.

4.2.3 Cooperative Coalition Game

In this section, we formulate the EM problem as a Cooperative Coali-
tion Game (CCG). CCG refers to the formation of coalitions or binding
agreements between game players in order to work together to achieve a
common goal. CCGs emphasize collective rationality, efficiency, fair-
ness, and equality, rather than individual rationality and personal optimal
decisions. This means that the participants are no longer in complete
competition with each other, avoiding the overall inefficiencies caused
by non-collaborative behavior among participants [36]. In this particular
energy trading CCG, individual prosumers are supposed to cooperate
together to reduce the collective cost including spot-market cost and
peak-power cost. This CCG is formulated as an episodic task in the RL
framework, since the electricity bill is paid on a monthly basis.

Collective spot-market cost

The spot-market cost of each agent at time tk is modeled as a linear
function based on the difference between the profit made by selling

2The input in the control community corresponds to the action in the RL context.
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electricity to the power grid, and the losses incurred from buying it [37],
i.e.,

LiS(b
i
k, s

i
k) = ϕbkb

i
k − ϕsksik, (4.6)

where ϕbk and ϕsk are the spot-market buying and selling prices at time
instance tk. The spot-market stage cost LS(sk, ak) is defined as the sum
of the individual spot-market costs for all prosumers

LS(sk, ak) =
Na∑
i=1

LiS(b
i
k, s

i
k). (4.7)

Then, the collective spot-market cost S of the whole system in the entire
interval [t0, tK ] is expressed as

S :=
K∑
k=0

LS(sk, ak) =
K∑
k=0

Na∑
i=1

LiS(b
i
k, s

i
k), (4.8)

where K is the index of tK , the terminal time of the episodic task, which
is assumed to be one month in this work with tK = 720h.

Collective peak-power cost

To formulate the collective peak-power cost, we first introduce the fol-
lowing monotonically non-decreasing variable P peak

k

P peak
k+1 = max

(
P peak
k ,

Na∑
i=1

bik,

Na∑
i=1

sik

)
, (4.9a)

P peak
0 = 0. (4.9b)

Variable P peak
k+1 describes the peak power up to time tk, and thus P peak

K+1 is
the monthly peak power for the entire interval [t0, tK ]. The collective
peak-power cost P can then be expressed as

P := λP peak
K+1 , (4.10)

where λ > 0 is a constant coefficient, determined by the bearing capacity
of the local transformer.
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Objective function in RL

Given the collective spot-market cost S and the collective peak-power
cost P , the objective is to find a control policy π(s) that reduces the
monthly cost J(π) (i.e., the closed-loop performance) for the multi-agent
system, expressed as

J(π) =Eπ

[
P + S

∣∣∣∣∣ ak = π(sk)
]

=Eπ

[
λP peak

K+1 +
K∑
k=0

LS(sk, ak)

∣∣∣∣∣ ak = π(sk)
]
, (4.11)

where the expectation Eπ is taken over the distributions of the system
uncertainties.

To deploy a classical RL method, we recast the monthly collective peak-
power cost (4.10) as a sum of peak-power stage cost LP (sk, ak), which
is defined as

LP (sk, ak) = λ(P peak
k+1 − P

peak
k ). (4.12)

Obviously, (4.10) equals to the sum of (4.12) over [t0, tK ], because

K∑
k=0

LP (sk, ak) =
K∑
k=0

λ(P peak
k+1 − P

peak
k )

= λ(P peak
K+1 − P

peak
0 ) = λP peak

K+1 . (4.13)

Then, the stage cost function L(sk, ak) of this problem can be defined
as consisting of the peak-power stage cost LP and the spot-market stage
cost LS , i.e.,

L(sk, ak) = LP (sk, ak)︸ ︷︷ ︸
Peak-power stage cost

+ LS(sk, ak)︸ ︷︷ ︸
Spot-market stage cost

. (4.14)

Consequently, the objective function (4.11) in RL can be equivalently
expressed as the expected sum of the stage costs (4.14) over the interval
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[t0, tK ], i.e.,

J(π) = Eπ

[
K∑
k=0

L(sk, ak)

∣∣∣∣∣ak = π(sk)
]
. (4.15)

Note that no discount factor is used here as we consider an episodic
scenario.

Finally, the CCG problem can be formulated as

min
π
J(π) = Eπ

[
K∑
k=0

L(sk, ak)

∣∣∣∣∣ak = π(sk)
]

s.t. ∀i = 1, . . . , Na, ∀k = 0, . . . , K

(4.1), (4.2), (4.3), (4.9), (4.16)

where all prosumers jointly decide the control policy π(s) to reduce the
monthly collective cost J(π).

4.3 MPC-based RL and Shapley Value Meth-
ods

As the core of this chapter, this section presents an EM solution to the
CCG problem in two steps: policy learning and profit distribution. The
objective of policy learning is to train a policy that reduces the monthly
collective cost (i.e., solve (4.16)) by the MPC-based RL approach. We
use a parameterized MPC as the optimal policy function approximation
whose parameters are learned using a Least Square (LS)-based Determin-
istic Policy Gradient (DPG) optimizer. The profit distribution discusses
how the profits obtained in the previous step are fairly distributed to all
prosumers through the Shapley value mechanism, and yields the electric-
ity bill that each household should pay. The complete policy learning
and profit distribution EM algorithm is developed at the end.
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4.3.1 MPC as An Optimal Policy Approximation

One technical point of the MPC-based RL approach is to use MPCs as
function approximators in RL. In this EM problem, the MPC is employed
as a function approximation for the optimal policy π⋆(s). However, there
are two difficulties here:

1. The horizons of MPC and RL are significantly inconsistent. The
objective of RL is to reduce the monthly cost J(π), whose horizon
is 720h. However, since prosumers only know the power prices for
12h in advance, the prediction horizon of MPC is only 12, which
is much shorter than the horizon of RL.

2. The MPC scheme should be fairly simple since it is beneficial to
use a cheap computing architecture for investment cost reasons.
However, the power consumption-production difference ∆i

k is
stochastic, i.e., there exist uncertainties in the real system. Hence,
a simple deterministic MPC cannot capture the optimal policy, and
in fact, even a stochastic MPC may not capture the policy well as
we typically just make a number of approximations (typ. scenario
trees) when doing so.

For the above two reasons, the policy delivered using a simple MPC
scheme can be significantly suboptimal. Therefore, it is very reasonable
to perform MPC adaptation. In this chapter, we parameterize the MPC
model and cost functions (one could also parameterize the MPC con-
straints). Then, RL is applied to adjust these parameters according to the
principle of improving the closed-loop performance evaluated by (4.15).
We describe this method in detail next.

Consider the following MPC-scheme parametrized with θ

min
ŝoc, ∆̂, b̂, ŝ

θλP̂
peak
N +

Na∑
i=1

(
T (ŝociN , θ

i
T , θ

i
φ)+

N−1∑
j=0

(
LiS(b̂

i
j, ŝ

i
j) + ψ(ŝocij, θ

i
ψ, θ

i
φ)
))

(4.17a)

72



4.3. MPC-based RL and Shapley Value Methods

s.t. ∀i = 1, . . . , Na, ∀j = 0, . . . , N − 1

ŝocij+1 = ŝocij + θiα(b̂
i
j − ŝij − ∆̂i

j), (4.17b)

∆̂i
j = θiβ(β∆)

i
j + θiδ, (4.17c)

0 ≤ ŝocij ≤ 1, 0 ≤ ŝociN ≤ 1, (4.17d)

0 ≤ b̂ij ≤ Ū i, 0 ≤ ŝij ≤ Ū i, (4.17e)

P̂ peak
j+1 = max

(
P̂ peak
j ,

Na∑
i=1

b̂ij,

Na∑
i=1

ŝij

)
, (4.17f)

ŝoci0 = socik, ∆̂i
0 = ∆i

k, P̂
peak
0 = 0, (4.17g)

where N is the prediction horizon. Arguments ŝoc = {ŝoc1,...,Na

0,...,N },
∆̂ = {∆̂1,...,Na

0,...,N }, b̂ = {b̂1,...,Na

0,...,N−1}, and ŝ = {ŝ1,...,Na

0,...,N−1} are the primal
decision variables. The parameterization is implemented as follows. For
difficulty 1), since the horizons of MPC and RL do not coincide, the
value function of MPC can not represent the one for RL. To compen-
sate for this inconsistency, we add additional parameterized stage cost
ψ(ŝocij, θ

i
ψ, θ

i
φ) and terminal cost T (ŝociN , θ

i
T , θ

i
φ) as cost modifiers in

(4.17a). Likewise, the peak power of the MPC at its terminal time is
not the actual monthly peak power in RL. Therefore, the peak-power
cost is parameterized as θλP̂

peak
N , such that the discrepancy caused by

the limited view of MPC would be compensated by an appropriate θλ.
As for difficulty 2), we parameterize the original model with θiα, θ

i
β, θ

i
δ

to form a simple deterministic MPC which, with appropriate parameter
values, is able to deliver the policy for the real stochastic system. It
is worth mentioning that, as detailed in [27], it is actually the full pa-
rameterization of the MPC model, cost functions, and constraints that
compensates for the system stochasticity and model error.

We now summarize (4.17) as follows:

• Cost (4.17a) includes the spot-market stage cost LiS(·), parameter-
ized additional stage cost ψ(·) and terminal cost T (·), as well as
the parameterized peak-power cost θλP̂

peak
N .

• Equality constraints (4.17b) and (4.17c) represent the parameter-
ized deterministic model of the real stochastic system (4.1).
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• Inequality constraints (4.17d) and (4.17e) are the state and input
constraints for each prosumer, respectively.

• Equality constraint (4.17f) indicates the dynamics of the peak
power.

• Equality constraints (4.17g) handle the MPC initialization.

The additional stage cost ψ(·) and terminal T (·) cost in (4.17a) are
designed as

ψ(ŝocij, θ
i
ψ, θ

i
φ) = θiψ(ŝoc

i
j − θiφ)2, (4.18a)

T (ŝociN , θ
i
T , θ

i
φ) = θiT (ŝoc

i
N − θiφ)2, (4.18b)

which are quadratic functions of SOC with adjustable parameter θiφ as
their setpoint, and positive factors θiT and θiψ as the coefficients. Overall,
the adjustable parameters vector θ is composed of

θ := {θiα, θiβ, θiδ, θiψ, θiT , θiφ, θλ}, i = 1, . . . , Na (4.19)

in which θiα, θiβ and θiδ play a major role in compensating for the system
stochasticity. Parameters θiψ with θiφ and θiT with θiφ modify the MPC
stage and terminal costs, respectively. Besides, the parameter θiφ allows
RL to assign some preferred SOC levels in the MPC scheme in view of
improving its long-term performance. Parameter θλ weighs the peak-
power cost against the spot-market cost. A larger θλ implies a greater
focus on the peak-power cost in the total cost of the MPC scheme. Again,
although the objective (4.15) involves a billing period of one month,
which is much longer than the short MPC horizon, those parameters with
suitable values can compensate for that discrepancy. Certainly, manually
tuning these parameters to optimal is extremely difficult, but RL is well
suited for this task, and all these parameters are tuned by RL toward
reducing the long-term collective cost (4.15). It is worth mentioning
that this choice of parameterization is arbitrary and different options
are possible. From Theorem 1 and Corollary 2 in [27], we know that,
theoretically, as long as the parametrization is “rich" enough, the MPC
scheme is capable of capturing the optimal policy π⋆(s).
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The parameterized policy for agent i at time k is the first input of the
input sequence delivered by the MPC scheme (4.17), i.e.,

πiθ(sk) =
[
b̂i⋆0 (sk,θ), ŝ

i⋆
0 (sk,θ)

]⊤
, (4.20)

where b̂i⋆0 and ŝi⋆0 are the first elements of b̂
i⋆

and ŝi⋆, which are the
solutions of the MPC scheme (4.17) associated to the decision variables
b̂
i

and ŝi. Consequently, the global parametric policy of the EM problem
can be written as

πθ(sk) =
[
π1
θ
⊤
, . . . , πNa

θ

⊤
]⊤
. (4.21)

The actual action performed in learning is obtained by adding a small
Gaussian exploration ϱ to the policy, i.e.,

a(sk) = πθ(sk) + ϱ. (4.22)

4.3.2 LSTD-based Deterministic Policy Gradient

To adjust the parameters (4.19) of the MPC scheme (4.17), we use the
LSTD-based DPG method elaborated in Section 2.4.2: "Core Formulas:
DPG for MPC-based RL". The general update rule is

θ ← θ − η ⊙∇θJ(πθ), (4.23)

where η > 0 is the learning step-size vector and the gradient ∇θJ(πθ)
is computed using the same formulas as in Section 2.4.2, except that
the variables are replaced with those defined in this microgrid energy
management problem. Specifically, ζ in (2.17) has the form ζ =
{ ˆsoc, ∆̂, b̂, ŝ}, which is the primal decision variable of the MPC (4.17).
And in (2.18), Ωθ now represents the MPC cost (4.17a), Gθ gathers the
equality constraints and Hθ collects the inequality constraints of the
MPC (4.17). In addition, the first element of the input u0 in (2.19) is
represented in this case as

u0 =
[
b̂
⊤
0 , ŝ

⊤
0

]⊤
. (4.24)
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The state feature vector Φ(s) in (2.21) is designed as

Φ(s) =
[
(soc1 − 0.5)2, . . . , (socNa − 0.5)2, (soc1 − 0.5), . . . ,

(socNa − 0.5), ∆1, . . . , ∆Na , 1]. (4.25)

Finally, equation (4.23) can be rewritten as

θ ← θ − η⊙Em

{
K∑
k=1

[
∇θπθ (sk)∇θπθ(sk)

⊤w
]}

, (4.26)

where the summation is taken over the whole episode, and the values are
then averaged by taking expectation (Em) over m episodes.

4.3.3 Profit Distribution

By applying the proposed MPC-based RL approach, we are able to
learn an energy trading policy that reduces the monthly collective cost
J(π). The next critical issue is to provide a feasible solution for fairly
distributing this collective cost. Note, however, that the EM problem
requires the distribution of collective cost rather than collective profit.
Thus, in our case, profit is defined as the cost savings gained through
cooperation, which relates cost and profit, and helps transform the cost
distribution problem into a profit distribution problem. In this CCG,
profit distribution is of great importance as a reasonable distribution can
facilitate the prosumers to strengthen the focus on collective benefits and
reduce the natural tendency to protect themselves at the expense of the
community. That is, a decent profit distribution scheme should ensure
that every prosumer receives a fair and more substantial benefit, which
discourages them from leaving the coalition. There are several profit
distribution methods for CCG, such as nucleolus sets, bargaining sets,
stable sets, and Shapley value [38]. Among them, the Shapley value
method, which represents the marginal contribution of each stakeholder
to the alliance, is a popular method due to its simple logic (based on
fairly intuitive reasoning) and the uniqueness of the solution [38]. The
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“fairness" and “uniqueness" of the Shapley value method have been
mathematically proven, see [39].

Recall that we have a setM = {1, 2, . . . , Na} of Na households. We
define a coalition I ⊆ M as a non-empty subset of M. There are
2Na − 1 possible coalitions (excluding the empty set). The coalitional
structure is formed by all possible combinations of coalitions that do
not overlap and their union contains all players. We further provide
an example of the coalition and coalitional structure in Table 4.1 for
a tri-player CCG [40]. The utility values, including coalitional utility

Table 4.1: Coalition I and coalitional structures of a tri-player CCG.

Coalition I Coalitional structures
{1} {{1}, {2}, {3}}
{2} {{1, 2}, {3}}
{3} {{1, 3}, {2}}
{1, 2} {{2, 3}, {1}}
{1, 3} {{1, 2, 3}}
{2, 3}
{1, 2, 3}

value, individual utility value and independent utility value, are defined
from different perspectives of a game. We denote V(I) as the coalitional
utility value that maps between coalition I to its collective profit. For
each player, Xi is denoted as the individual utility value of prosumer
i = 1, 2, . . . , Na in coalition I, where the solution of Xi is the Shapley
value to be calculated. And we denote Ui as the independent utility
value of player i without joining any coalition. In a CCG game, the
profit distribution should meet the following three conditions, otherwise,
player i will refuse to join the alliance [41]:

Individual rationality: Xi ≥ Ui. (4.27a)

Collective rationality: V(I) =
∑

i∈I
Xi. (4.27b)

Superadditivity property: (4.27c)
V(D ∪ B) ≥ V(D) + V(B), ∀D,B ⊆M, D ∩ B = ∅.
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From (4.27a) and (4.27b), it can be inferred that V(I) ≥
∑

i∈I Ui,
which implies that in a CCG, the collective profit of a coalition is greater
than the sum of profits made by all players independently. This is an
incentive for players not to leave the alliance. Furthermore, (4.27c)
corroborates that, the grand coalition M, the case considered in this
chapter, is the optimal coalitional structure that yields the highest profit.

The Shapley value Πi, as a unique solution of Xi, is the expected profit
allocated to player i. The expression is

Πi =
∑

I⊆M\i

(
|I|! (|M| − |I| − 1)!

|M|!

)[
V (I ∪ {i})− V (I)

]
, (4.28)

where |I|!(|M|−|I|−1)!
|M|! is the probability of prosumer i joining the coali-

tion I, and V (I ∪ {i})− V (I) indicates the marginal contribution
(marginal profit) that prosumer i brings to the alliance I.

For this EM problem, the coalitional utility value V(I), i.e., the collective
profit of coalition I, is defined as the cost savings obtained by the
members of I through cooperation. Specifically, it is calculated by
subtracting the collective cost JI from the sum of the individual costs Ji
of all members, i.e.,

V(I) =
(∑

i∈I
Ji

)
− JI , (4.29)

where the collective cost JI is calculated by solving the following opti-
mization problem

min
πI

JI(πI) = Eπ

[
K∑
k=0

LI (̄sk, āk)

∣∣∣∣∣āk = πI (̄sk)

]
(4.30a)

s.t. ∀i ∈ I, ∀k = 0, . . . , K

(4.1), (4.2), (4.3), (4.30b)

P peak
I, k+1 = max

(
P peak
I, k ,

∑
i∈I

bik,
∑
i∈I

sik

)
, (4.30c)

P peak
I, 0 = 0, (4.30d)
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with,

s̄k = {socik, ∆i
k ∀i ∈ I}, (4.31a)

āk = {bik, sik ∀i ∈ I}, (4.31b)
LI (̄sk, āk) = LI, P (̄sk, āk) + LI, S(̄sk, āk), (4.31c)

LI, P (̄sk, āk) = λ(P peak
I, k+1 − P

peak
I, k ), (4.31d)

LI, S(̄sk, āk) =
∑

i∈I
LiS(b

i
k, s

i
k). (4.31e)

Especially, we have JI = Ji when I contains only one prosumer i, i.e.,
I = {i}; and from (4.16) and (4.30), we have JI = JM = J when
I contains all prosumers, i.e., I = M. Therefore, (4.30) is actually
a general version of (4.16), and solving (4.30) is the same as solving
(4.16), except that it involves some specific prosumers rather than all of
them.

The profit V(M) gained through the grand coalition should be fairly
distributed to all prosumers according to (4.28), i.e., it obeys

V(M) =
∑

i∈M
Πi. (4.32)

Consequently, each prosumer i ∈ M is supposed to pay Bi for his/her
monthly electricity bill, computed as

Bi = Ji − Πi. (4.33)

This satisfies that the sum of individual payments equals the collective
cost (collective bill), i.e.,

∑
i∈M Bi = J , because∑

i∈M
Bi =

∑
i∈M

Ji −
∑

i∈M
Πi

=
∑

i∈M
Ji − V(M)

= JM = J. (4.34)

It is worth highlighting that although the Shapley method ensures a fair
distribution, it is computationally intractable due to the combinatorial
nature of its computation. For this Na-player game, we need to solve
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2Na−1 optimization problems, which is unrealistic. To address this issue,
numerous approaches have been proposed to estimate the Shapley value
instead of calculating it explicitly. Other than sampling-based approxi-
mations [42, 43], other techniques like multi-linear extension methods
[44, 45], permutation methods [46, 47], and linear regression-based
methods [48, 49] provide applicable solutions considering different met-
rics, such as computational complexity and estimation error. Therefore,
although computing the Shapley value is an NP-complete problem, es-
timating the Shapley value can be efficiently calculated in polynomial
time [42]. However, this is beyond the scope of this chapter and will not
be discussed intensively. For this chapter, the contribution is to properly
define the individual and coalitional profits and utility values for this EM
problem, and to give a logic about how the collective profit should be
distributed. In practice, by using the estimate of the Shapley value (4.28)
(e.g., through Monte Carlo sampling), and formulas (4.29), (4.30) and
(4.33), it is feasible to allocate the collective profit to all prosumers.

4.3.4 Policy Learning and Profit Distribution Algo-
rithm

We present the proposed algorithm in this section. The single-step com-
putation procedure of MPC (4.17) is given in Algorithm 2, which is
invoked in Algorithm 3. Algorithm 3 presents the complete algorithm
for residential microgrid energy management, including policy learning
and profit distribution. For further illustration, we add a flowchart of the
EM framework corresponding to Algorithm 3. As shown in Fig. 4.2, the
energy trading policy is generated by the parameterized MPC. At the be-
ginning of each month, based on the previous optimal MPC parameters,
the policy is supposed to be retrained using historical data and the latest
data from the previous month (including the predicted and actual values
of household consumption and production, as well as the spot-market
prices). This process uses the proposed MPC-based RL approach and
can be trained offline. Once the MPC parameters converge, the trained
policy can be used for the online application. Residents in the coop-
erative coalition will trade energy according to the well-trained policy
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that reduces the collective cost of the coalition. To fairly allocate the
collective cost, the Shapley value technique is employed to calculate the
contribution of each user in the coalition and, from there, the electricity
bill payable by each user. Besides, the real-time data collected from the
current month are uploaded to the cloud buffer for the next update of the
policy.

Algorithm 2: Single-step MPC computation.
Input: State sk, electricity prices ϕbk and ϕsk, parameters θ

1 Solve the MPC scheme (4.17) and get the solution y⋆;
2 Store the current state and action in the replay memory D;
3 Calculate the RL stage cost L(sk, ak) by (4.14) and add it to D;
4 Obtain the policy πθ(sk) by (4.21) and add it to D;
5 Calculate the sensitivity∇θπθ(sk) by (2.19) and add it to D;
6 Observe the next state sk+1 from the real system (4.1).

4.4 Simulation and Discussion

This section provides simulation results of the proposed algorithm in a
three-agent residential microgrid system, including an analysis of policy
learning and profit distribution.

4.4.1 Case Configuration

We chose three houses located in Oslo, Norway, with increasing house
size and peak power of the PV system, as shown in Table 4.2. A
real-world household consumption-production dataset (β∆)

1, 2, 3 is
adopted in the simulation. Considering the balance between power
consumption and production, the dataset of April 2020 is used be-
cause heating is still needed and the sunlight is relatively abundant
during this period. The spot-market prices are collected from the
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Algorithm 3: Policy learning and profit distribution for resi-
dential microgrid energy management.

1 repeat
2 (1) Policy learning;
3 Retrieve the MPC parameters θ from the cloud;
4 while not converge to θ⋆ do
5 Initialize state s0,1;
6 for episode l = 1 to m do
7 for k = 0 to K do
8 Confirm sk,l, ϕ

b
k,l, ϕ

s
k,l;

9 Single-step MPC computation (Algorithm 2);
10 end
11 end
12 Retrieve data from the replay memory D ;
13 Calculate v by (2.24a) and calculate w by (2.24b);
14 Update the MPC parameters θ by (4.26).
15 end
16 ——————————————————————–;
17 Online application: run the trained MPC to obtain the

minimized monthly collective cost J(πθ⋆), and upload θ⋆

and the real-time data collected online to the cloud;
18 (2) Profit distribution;
19 for each I ∈ M do
20 Calculate JI by solving (4.30);
21 end
22 Calculate the coalitional utility value V(I) by (4.29);
23 Calculate the Shapley value Πi for all prosumers by (4.28);
24 Calculate the individual payment Bi for each prosumer by

(4.33), i.e., distribute the collective cost J(πθ⋆).
25 until t→∞;
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Figure 4.2: Illustration of the residential microgrid energy management
framework.
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Nord Pool European Power Exchange [50]. The selling price is the
spot-market value, while the buying price is ϕb = 1.2ϕs, account-
ing for a 20% VAT. The initial values of the parameters θ are set
as θ0=

{
[1/50, 1/55, 1/60]⊤, 1, 0, 0.1, 0.1, 0.5, 0.32

}
, where the

bold numbers represent constant vectors of dimension three for the
three prosumers. The two main hyperparameters involved in this
work are the learning step size (η ∈ R19) and the exploration rate
(ϱ ∈ R6). They are initialized according to the magnitude of the
initial sensitivities and the range of actions, respectively. Then, the
two hyperparameters are coarsely tuned according to the performance
variations, and are continuously fine-tuned in turn until the best per-
formance is obtained. Finally, the exploration rate ϱ is chosen as
ϱ ∼ N (0, 0.12), which is a vector of dimension six, as we have in total
six actions in the three-agent system. The step size vector η correspond-
ing to {θ1, 2, 3α , θ1, 2, 3β , θ1, 2, 3δ , θ1, 2, 3ψ , θ1, 2, 3T , θ1, 2, 3φ , θλ} is chosen as η =
{5× 10−9, 5× 10−7, 5× 10−6, 5× 10−7, 5× 10−4, 5× 10−8, 7.5
×10−7}, with the bold numbers represent constant vectors of dimension
three. Other parameter values used in the simulation are listed in Table
4.3. In addition, considering the presence of stochastic prediction
errors in power consumption-production and stochastic explorations in
learning, we repeat the learning five times independently on the real
dataset to provide more solid simulation results.

Table 4.2: Specifications of the three houses.

Size PV info

House 1 127 m2 20 panels, 5.94 kWp

House 2 160 m2 25 panels, 8 kWp

House 3 192 m2 28 panels, 9.72 kWp

4.4.2 Analysis of the Policy Learning

The policy learning applies the proposed MPC-based RL approach to
seek an energy trading policy that reduces the monthly collective cost.
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Table 4.3: Parameter values.

symbol value symbol value

Sampling time 1h λ 15

α1, 2, 3 1/50, 1/55, 1/60 Na, N 3, 12

σ1, 2, 3 0.24, 0.28, 0.32 Ū i 20

K 720 ϱ N (0, 0.12)

θ0
{
[1/50, 1/55, 1/60]⊤, 1, 0, 0.1, 0.1, 0.5, 0.32

}
η {5× 10−9, 5× 10−7, 5× 10−6, 5× 10−7,

5× 10−4, 5× 10−8, 7.5× 10−7}

The results are presented in Fig. 4.3 - Fig. 4.8. Figure 4.3 shows the
parameter variations of the three prosumers, where the shaded areas rep-
resent the 95% confidence intervals of the five independent experiments.
The initial values of the parameters θ1, 2, 3α are consistent with those of
the actual system. Parameters θ1, 2, 3β and θ1, 2, 3δ are initialized as 1 and 0,
respectively, to replicate the values of (β∆)1, 2, 3. The setpoint parameters
θ1, 2, 3φ are initialized as 0.5, based on the sense that picking the reference
SOC at around half promotes the SOC to be in the middle of the feasible
domain, which provides more freedom for the MPC scheme to decide
to either store or release energy. However, the actual preferred values
should be determined by RL. It can be seen that as learning proceeds, all
the parameters approach the convergence values, denoted as θ⋆.

Figure 4.4 presents the variation of the parameter θλ, which is the most
crucial one among the total 19 parameters. It can be seen that the value
of θλ increases from 0.32 to about 0.52, which means that the concern for
peak-power cost increases gradually in the MPC cost (4.17a). Therefore,
the peak power should be decreased to reduce the peak-power cost.
As expected, we show in the right plot that the peak power continues
to decrease as the learning proceeds. Besides, it is worth mentioning
that the convergence value of θλ is 0.52 instead of 15 (the true penalty
coefficient λ in (4.10)) because, as we mentioned before, the actual
RL peak-power cost is computed over a one-month period, while MPC
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considers a much shorter interval of 12h, so it is reasonable that these
two values are not identical.

Figure 4.4: The parameter θλ and the peak power over learning steps.
The shaded areas represent the 95% confidence intervals of the five
independent experiments.

Figure 4.5 and figure 4.6 show the amount of electricity bought (bik) and
sold (sik) by the three prosumers during the episodes of five sampled
RL steps: 1st, 50th, 100th, 150th, 200th. The gray curves represent the
electricity buying prices ϕbk and selling prices ϕsk, respectively. It can be
observed that purchases occur mainly when power prices are low, while
when prices are high, prosumers tend to use the energy stored in the
battery and sell the excess if there is any surplus. This energy trading
strategy ensures that the costs incurred due to the spot market remain
low. Moreover, during the learning process, the volume of buying/selling
transactions of each resident is significantly reduced due to the increase
in θλ. In other words, during price troughs or peaks, the buying/selling
strategy gradually tends to become more conservative compared to the
initial one, hence avoiding generating large peak power and therefore
reducing the peak-power cost in (4.15).

The battery SOC of each prosumer at different learning steps is presented
in Fig. 4.7. It can be seen that the variances of soc1, 2, 3 decrease grad-
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ually with learning, which further corroborates the conclusions drawn
from Fig. 4.5 and Fig. 4.6. Finally, the variations of the closed-loop
performance J(πθ) and the normalized policy gradient ∥∇θJ(πθ)∥2 are
given in Fig. 4.8. The policy gradient ∇θJ(πθ) is decreasing to zero.
Correspondingly, the closed-loop performance (4.15) decreases grad-
ually and eventually converges, i.e. we have J(πθ⋆) = 844NOK3. It
can be calculated that by using the MPC-based RL method, the monthly
collective cost J is reduced by about 17.5%, which is a considerable
improvement.

It is worth noting that although we mentioned that the MPC scheme
can yield the optimal policy if the parametrization is rich enough, this
is a theoretical result. In practice, the assumption of a “rich enough"
parametrization is usually not satisfied. And it is also possible that the
very simple choices of the value function and terminal cost entail that
some opportunities in the MPC tuning are “missed". All these reasons
lead to the MPC policy remaining suboptimal. Besides, other practical
issues can come in the way of optimality, such as the local convergence of
the RL algorithm, and of the solver treating the MPC scheme. Addressing
these potential issues typically requires good initial guesses, and this
observation applies to most RL-based techniques. However, it is a
token that the MPC can, in principle, converge to optimality as its
parametrization becomes finer and finer. For this specific EM problem,
the final learned policy πθ⋆ obtained from the converged parameters
θ⋆ may be locally optimal. However, the theoretical optimality of the
MPC-based RL method cannot be ignored, and the proposed method
does improve the closed-loop performance significantly.

Lastly, to understand which MPC parameters are more critical for the
learning performance, we conduct an ablation study. Specifically, each
kind of parameter of the MPC is ablated separately, i.e., the ablated
parameters cannot be learned. The performance J(πθ⋆

abl
) obtained after

training is observed and the loss is calculated by comparing J(πθ⋆
abl
)

with the performance obtained in the fully parameterized case J(πθ⋆).
Then, the Average Degradation Level (ADL) of the parameters is defined

3Norwegian kroner (NOK) is used as the unit of measure.
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Figure 4.8: The closed-loop performance J(πθ) and the normalized
policy gradient ∥∇θJ(πθ)∥2 over learning steps. The shaded areas rep-
resent the 95% confidence intervals of the five independent experiments.

as

ADL = E
[
J(πθ⋆

abl
)− J(πθ⋆)

J(πθ0)− J(πθ⋆)

]
, (4.35)

which is the average of the loss due to ablation, normalized by the value
obtained in the fully parameterized case. Therefore, a higher ADL means
that ablating this parameter can be more detrimental to the performance,
and hence implies a greater importance of this parameter. We ablate
similar parameters of the three prosumers as a whole, e.g., ablate θ1, 2, 3α

simultaneously, and compute the ADL of these parameters. The complete
ADL results for all parameters are shown in Table 4.4. An observation
is that θλ has a dominant effect on the performance, followed by θ1, 2, 3ψ ,
θ1, 2, 3φ , and θ1, 2, 3α , while others have the least effect.

4.4.3 Analysis of the Profit Distribution

The profit distribution is dedicated to allocating the optimized collective
cost J(πθ⋆) = 844NOK to each household in a rational way. The
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Table 4.4: Average degradation level of the MPC parameters.

MPC parameters θ1, 2, 3α θ1, 2, 3β θ1, 2, 3δ θ1, 2, 3ψ

Average degradation level 13.13% 4.07% 0.15% 15.66%

MPC parameters θ1, 2, 3T θ1, 2, 3φ θλ

Average degradation level 1.42% 13.38% 60.09%

results are shown in Fig. 4.9 - Fig. 4.10 and Table 4.5. In Fig. 4.9, we
illustrate the costs JI and cost savings VI (i.e. coalitional utility values)
for all seven coalitions of the tri-player CCG. As can be seen, the cost
savings are all zero for singleton coalitions {1}, {2}, {3}. And the
cost savings increase with the number of participants in the coalition,
which is consistent with the characteristics of CCG. In addition, since
the consumption-production levels of the three players in the simulation
are incremental, their contributions to the coalition are incremental as
well. That is, prosumers with higher consumption-production levels will
be more dominant in the alliance. Under the grand coalition {1, 2, 3},
the collective cost is 844NOK and the cost savings obtained through
cooperation is 310NOK. Therefore, the essence of the Shapley value
approach in this problem is to allocate the 310NOK cost savings.

The Shapley values Πi and individual payments Bi for each prosumer
under the grand coalition are summarized in Table 4.5. The correspond-
ing pie chart is depicted in Fig. 4.10 for a better understanding of the
relationship between those values. Briefly, the sum of the Shapley values
Πi equals the cost savings (310NOK) under the grand coalition; the sum
of the individual payments Bi equals the collective cost (844NOK); and
the cost of a prosumer in a singleton coalition would be the sum of its
payment and Shapley value in the grand coalition, i.e., Ji = Bi + πi.
Furthermore, the magnitude of each prosumer’s marginal contribution to
the coalition can be seen in the ratio term, where the third prosumer is
the most influential member in the alliance with a percentage of 42.54%.
Ultimately, the resulting individual payment Bi is the electricity bill that
each prosumer should pay in this EM problem.
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Figure 4.9: The costs and cost savings of all coalitions of the tri-player
CCG.

Table 4.5: Shapley value and profit distribution of the grand coalition.

Prosumer i 1 2 3 Total

Cost Ji(NOK) 325 385 444 1154

Shapley value Πi(NOK) 77.87 100.25 131.88 310

Ratio 25.12% 32.34% 42.54% 100%

Payment Bi(NOK) 247.13 284.75 312.12 844
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Figure 4.10: Pie chart of the Shapley value and profit distribution of the
grand coalition.

4.5 Conclusion

In this chapter, we propose a complete two-step strategy to solve the
energy management problem of a residential microgrid system, which is
formulated as a CCG problem. The proposed MPC-based RL approach
compensates for the drawbacks of MPC and RL and combines the ad-
vantages of both, where the parameterized MPC-scheme is served as
a function approximator of the optimal policy and the parameters are
adjusted by RL to optimize the closed-loop performance. Even with
stochastic local power consumption-production, this approach could re-
duce the monthly collective cost by a significant amount of about 17.5%,
as demonstrated in the simulations. Besides, we show that the Shapley
value is an applicable solution to fairly distribute the collective bill based
on the marginal contribution of each prosumer. Last but not least, some
may be concerned about the computation of the Shapley value. However,
as we mentioned in Section 4.3.3, many methods have been proposed to
estimate the Shapley value instead of computing it explicitly, ensuring
to efficiently compute the Shapley value in polynomial time. And for
future work, it would be interesting to consider more efficient ways of
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estimating Shapley values. For example, the estimation function of the
Shapley value for each user could be trained simultaneously during the
policy training.
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5 | MPC-based RL for Smart
Homes

This paper presents a Model Predictive Control (MPC)-based Reinforce-
ment Learning (RL) approach for a Home Energy Management System
(HEMS). The house consists of an air-to-water heat pump connected
to a hot water tank that supplies thermal energy to a water-based floor
heating system. Additionally, it includes a photovoltaic (PV) array and
a battery storage system. The HEMS is supposed to exploit the house
thermal inertia and battery storage to shift demand from peak hours
to off-peak periods and earn benefits by selling excess energy to the
utility grid during periods of high electricity prices. However, designing
such a HEMS is challenging because the discrepancies due to model
mismatch make erroneous predictions of the system dynamics, leading
to a non-optimal decision making. Besides, uncertainties in the house
thermodynamics, misprediction in the forecasting of PV generation,
outdoor temperature, and user load demand make the problem more
challenging. We solve this issue by approximating the optimal policy by
a parameterized MPC scheme and updating the parameters via a Com-
patible Delayed Deterministic Actor-Critic (with Gradient Q-learning
critic, i.e., CDDAC-GQ) algorithm. Simulation results show that the
proposed MPC-based RL HEMS can effectively deliver a policy that
satisfies both indoor thermal comfort and economic costs even in the
case of inaccurate model and system uncertainties. Furthermore, we
conduct a thorough comparison between the CDDAC-GQ algorithm
and the conventional Twin Delayed Deep Deterministic policy gradient

103



MPC-based RL for Smart Homes

(TD3) algorithm, the results of which affirm the efficacy of our proposed
method in addressing complex HEMS problems.

Nomenclature

Tw Wall temperature(◦C)

Tin Indoor temperature(◦C)

Tg Ground temperature(◦C)

Tp Water pipeline temperature(◦C)

Tout Outdoor temperature(◦C)

Tinl Inlet water temperature of the pipeline(◦C)

Tret Return water temperature of the pipeline(◦C)

T1 Node 1 (of the hot water tank) temperature(◦C)

T2 Node 2 temperature(◦C)

T3 Node 3 temperature(◦C)

Minl Inlet water mass flow rate to the pipeline(kg/s)

cwat Specific heat capacity of water(J/(kg ·K))

Xv Opening of the valve(%)

COP Coefficient of performance of the heat pump

E Battery stored energy (kWh)
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B Electricity buying price(EUR/MWh)

S Electricity selling price(EUR/MWh)

Php Compressor power of the heat pump(kW)

Prad Solar irradiance(kW/m2)

Ppv Generated PV power(kW)

Pch Battery charging power (kW)

Pdis Battery discharging power (kW)

Papp Total loads power of home appliances(kW)

Pbuy Buying power from the grid(kW)

Psell Selling power to the grid(kW)

5.1 Introduction

In recent years, as global warming and the energy crisis have intensified,
there has been a growing interest in Home Energy Management Systems
(HEMSs), which are considered to have great potential for reducing build-
ing energy costs and improving energy efficiency and stability of the grid
[1]. HEMSs monitor and manage home energy consumption patterns
to achieve specific goals (e.g., cost, comfort, etc.) by reducing or shift-
ing consumption [2]. Initially, the functionality of HEMS is relatively
simple, considering only a few of the most critical sources of energy
consumption: Heating, Ventilation, and Air Conditioning (HVAC), water
heaters, general appliances, and lighting [3]. Therefore, some schedul-
ing strategies based on mathematical optimization are proposed, such
as mixed integer nonlinear programming [4], dynamic programming
[5], stochastic optimization [6], etc. However, with the development of

105



MPC-based RL for Smart Homes

sensing, communication, intermittent Renewable Energy Sources (RES),
Energy Storage Systems (ESS), and home-to-grid technology, home
energy systems have become increasingly complex and highly uncertain.
Strategies based on mathematical optimization are apparently no longer
able to solve such large and complex optimization problems subject to
multiple known and unknown disturbances [7]. Therefore, the literature
survey in this paper focuses on more advanced HEMS approaches based
on Model Predictive Control (MPC), Data-driven MPC (DMPC), and
Reinforcement Learning (RL).

A typical modern HEMS connects household loads (controllable and
uncontrollable), RES and ESS (e.g., photovoltaic (PV)-batteries), and
the utility grid. It operates on a similar principle: based on the forecasts
of customer load consumption, weather, renewable generation, and other
factors, it creates an optimal energy consumption policy, while ensuring
user comfort, lower energy costs, and constraints satisfaction. The policy
is based on electricity price or grid incentive signals to achieve both
comfortable and economic purposes by reducing/shifting the power
consumption and/or trading power with the utility grid [8]. For example,
HEMS can take advantage of battery storage or the house thermal inertia
to shift energy consumption to periods of low electricity prices and sell
the produced/stored energy to the utility grid during periods of high
electricity prices, thereby generating revenue. However, designing an
effective HEMS is challenging for two main reasons:

• Thermodynamic models of buildings are extremely nonlinear and
complex, and existing models are often simplified forms of real
system dynamics. This is because these models usually consider
only important factors such as heating/cooling power and weather
conditions (heat dissipation), but ignore factors such as air perme-
ability, furniture thermal mass, occupancy changes, etc [9].

• Contemporary HEMSs have many sources of uncertainties, in-
cluding renewable energy generation, household load demand,
electricity price, and weather forecast [10].

As a result, more advanced HEMS strategies based on MPC, DMPC and
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RL have emerged in recent years, and we provide a brief summary of
these strategies in Table 5.1, Table 5.2, and Table 5.3.

5.1.1 MPC-based HEMS

MPC is one of the mainstream solutions for home energy management,
with the advantage of making full use of the house dynamics model
and predictive information (e.g. weather, electricity prices) to predict
its future behavior. The system constraints are easy to implement and
also have strong theoretical support to ensure its feasibility and stability.
A critical characteristic of HEMS is its inherent nonlinearity, which
can be attributed to factors like nonlinear thermodynamics, appliance
behaviors, and fluctuating consumer energy usage patterns. While some
studies have favored linearized MPC for its computational traceability
[30, 31], this linearization can be limiting. Specifically, for extended
prediction horizons or when the system significantly deviates from a
certain operating point, a linearized model may fall short of capturing the
system’s true dynamics. This inadequacy can result in suboptimal or even
unviable control strategies. Some studies have sought to address these
limitations by adopting Nonlinear Model Predictive Control (NMPC)
[32, 33]. While NMPC can handle system nonlinearities more accurately,
this improvement comes at the expense of a higher computational load.
Regardless of whether they are linear or nonlinear, traditional MPC
approaches share a common drawback: they require highly accurate
models and are sensitive to uncertainties commonly found in HEMS [1].
To address the uncertainty issues, Robust MPC (RMPC) and Stochastic
MPC (SMPC) are the two main variants. RMPC designs consider the
worst-case scenario and thus always lead to overly conservative solutions.
SMPC is characterized by the use of chance constraints. It is quite
effective against probabilistic uncertainties, but the obvious drawback
of the SMPC approach is the high computational cost. Compared to
classic MPC, SMPC and RMPC can improve the case with disturbances

1not comprehensive
2not comprehensive
3not comprehensive
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or uncertainties to satisfy constraints (i.e., maintain room temperature
or comfort level), but the cost-saving performance is correspondingly
weakened [34]. Beyond these classic methods, recent advancements
in the field have birthed innovative approaches like Ensemble NMPC
(EnNMPC). Ensemble techniques have been explored that can greatly
enhance the accuracy of energy forecasting models [35], and one notable
study demonstrates how EnNMPC can effectively address uncertainties
in battery degradation and fluctuating generation/load patterns while
significantly reducing the daily costs for prosumers [36]. However, they
may also amplify computational burden and the efficacy of EnNMPC
can be undermined if the quality and diversity of the ensemble models
are inadequate.

5.1.2 DMPC-based HEMS

DMPC (also known as Learning-based MPC (LBMPC)) combines the
advantages of Machine Learning (ML) and MPC, which can effectively
mitigate the effects of disturbances and uncertainties. DMPC for HEMS
can be divided into two main categories [37]. The first category (noted
as Type I) trains predictive models offline from data with uncertainty
quantification. The trained models are then used by MPC to predict
the output during online optimization. Since the MPC still acts as a
controller, this type of HEMS maintains the benefits of MPC in terms of
reliability and ease of implementing constraints. However, the accuracy
of the trained models depends on sufficient, high-quality data that should
fully reflect the state transitions of real systems under the influence of
many uncertainties. In addition to the potential problem of overfitting,
another easily overlooked issue is that model regression using data falls
under the category of “model-driven”, yet it has been argued in [38]
that learning the MPC model that best fits the real system does not
necessarily yield a policy that achieves the best closed-loop performance.
The second category (noted as Type II) uses the data generated by MPC
rollouts to train an ML controller. Since ML replaces MPC in online
optimization, the online computational complexity is greatly reduced.
However, the performance of the ML controller still depends on the
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MPC model that generates the training data. Another concern is the lack
of interpretability and reliability of ML controllers.

5.1.3 RL-based HEMS

RL is gaining increasing interest in HEMS. RL is a model-free approach
that seeks the optimal policy by interacting with the environment. RL
agents can take different control actions based on different observations
(i.e., can handle the uncertainties of HEMS) and can handle long-term
problems, e.g., considering the monthly operating cost of a HEMS [3,
39]. The early classic RL could not be applied to continuous action
spaces due to the use of Q-table. Deep RL (DRL) using Deep Neural
Networks (DNN) as function approximations solves this problem. How-
ever, there are still three main obstacles that prevent the wide application
of RL in HEMS. The first and most fatal drawback is that training RL
agents requires huge amounts of data and extremely long training times
due to the complexity, high stochasticity, and long sampling times of
HEMS [40]. For example, [41] noted that the RL agent may require at
least 47.5 years of training (consider 5 million interactions with a sam-
pling time of 5 minutes) to achieve the same performance as a feedback
controller for an HVAC system. Safety is the second drawback. RL
requires iterative “trial and error” learning, which can lead the system
into potentially dangerous or financially costly states. As a result, the
vast majority of RL-based HEMS studies are conducted in simulation
environments [40]. Due to the inevitable differences between simula-
tion environments and real systems, there are concerns about whether
trained RL controllers can remain safe and effective in real environments.
Wasting known information about models and predictions is also a ma-
jor concern. To avoid the curse of dimensionality, many works have
to discard the available sequence of prediction information that could
have been used as states. As can be seen from [42], the performance
of RL without prediction sequences is only about 38% of the best case
(where the model and all prediction information are known). Despite
the considerable progress of RL-based HEMS, it has to be recognized
that most of the current approaches either ignore certain uncertainties in
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the system, ignore the RES or ESS and consider only a few variables,
or use quite simplified thermodynamic models as environments, all of
which make the training of RL easier. However, in reality, it is still very
challenging to design HEMS based only on those highly random and
intricate data.

5.1.4 Combining MPC and RL

With this background, we propose to solve the HEMS problem with an
MPC-based RL approach, which was first proposed in [43] in 2019. The
main idea is that one can parameterize the model, cost function, and
constraints of an MPC, and if the parameterization is “rich” enough, then
the MPC with optimal parameters can yield the optimal policy even if
the model is inaccurate and the system has uncertainties [43, 44]. Some
advances have been made in both theory [45–48] and application [49–
51] of this approach. In this paper, we first construct a HEMS problem
that takes into account an inaccurate system model with uncertainties in
house thermodynamics, load demand, renewable energy generation, and
weather forecasts. We then approximate the optimal energy consump-
tion policy by a parametric MPC scheme in which the parameters are
deployed in the model, cost functions, and constraints of the MPC formu-
lation to overcome model mismatches and uncertainties. The parameters
are updated by a proposed RL algorithm according to the principle of
simultaneously satisfying thermal comfort and reducing economic costs.
Applying the MPC-based RL approach for HEMS design is motivated
by the following reasons:

• An approximate model of a house energy system is usually avail-
able, and the MPC-based RL approach can leverage this known
(though inaccurate) model, thus allowing the use of a smaller
dataset.

• Some information for a short period of time in the future, such as
electricity prices, outdoor temperature, solar radiation (PV gener-
ation), and household appliance loads, is usually either available
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or predictable. This information can simply be considered by the
MPC-based RL approach without causing the curse of dimension-
ality.

• Due to the use of the MPC framework, system constraints can
be easily implemented. Besides, since “action exploration” is
performed on the basis of the secure output of MPC, safety is
significantly improved compared to pure RL methods.

• Due to the use of RL, the MPC-based RL approach is designed
to adapt to the inherent nonlinear and uncertain properties of the
system, making it suitable for dealing with the challenges posed
by nonlinearities and uncertainties in HEMS.

• It is a performance-driven approach, which means that the con-
troller is trained to improve the overall performance considering
comfort and cost, rather than just to replicate the model more pre-
cisely. Moreover, unlike DNNs, parameters in the parameterized
MPC are interpretable.

5.1.5 Contributions

To the best of our knowledge, the MPC-based RL approach has never
been applied to HEMS, and we hope that this work will provide a new
perspective for solving the HEMS problem. The contributions of this
paper are summarized below:

• We construct a standard HEMS paradigm that incorporates weather
factors, renewable energy sources, energy storage, heat pump floor
heating units, other appliance loads, and the utility grid. Based
on the above system, an optimization problem is constructed in
the framework of RL considering both user comfort and economic
cost.

• To overcome the inaccurate model and system uncertainties, the
MPC-based RL method is proposed to solve the above optimiza-
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tion problem. We describe in detail the procedures and thoughts
for constructing the parameterized MPC.

• To optimize the parameter training process, we propose a new
learning algorithm, the Compatible Delayed Deterministic Actor-
Critic (with Gradient Q-learning critic, i.e., CDDAC-GQ), based
on our previously published work [52]. We also explain the im-
provements of the new algorithm compared to the old one.

• The performance of the proposed MPC-based RL approach is
quantified through simulation tests using real data such as elec-
tricity prices, weather forecasts, and load demand, and is further
examined through a comprehensive comparison with the tradi-
tional Twin Delayed Deep Deterministic policy gradient (TD3)
algorithm.

The remainder of the paper is constructed as follows. Section 5.2 intro-
duces the whole HEMS, and the problem formulation is given in Section
5.3. Section 5.4 is the main part that presents the proposed MPC-based
RL approach and the corresponding algorithm. Finally, the simulation
results are discussed in Section 5.5.

5.2 HEMS Model

In this study, we consider a typical smart home model in Nordic countries.
The house is heated by an air-to-water Heat Pump (HP) equipped with
a Hot Water Tank (HWT) and a water-based floor heating system (see
Fig. 5.1). In addition, a residential PV-battery system is included for
power generation and storage.

5.2.1 House Thermodynamics

The house model, referring to [53], describes the energy conservation
among the house walls, indoor, ground, and water pipeline temperatures.
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The thermodynamics are given by

Ṫw =
1

Cw

[kw,out(Tout − Tw) + kw,in(Tin − Tw)] + ϵ1, (5.1a)

Ṫin =
1

Cin

[kw,in(Tw − Tin) + kg,in(Tg − Tin)] + ϵ2, (5.1b)

Ṫg =
1

Cg

[kg,in(Tin − Tg) + kp,g(Tp − Tg)] + ϵ3, (5.1c)

Ṫp =
1

Cp

[kp,g(Tg − Tp) +Minlcwat(Tinl − Tp)] + ϵ4, (5.1d)

where Cw,Cin,Cg, and Cp are the corresponding heat capacities of the
wall, indoor-air, ground pavement, and water pipeline; kw,out, kw,in,
kg,in, and kp,g are the heat transfer coefficients between each medium.
Variables ϵ = {ϵ1, ϵ2, ϵ3, ϵ4} are the internal uncertainties of the house
thermodynamics and assumed to be normally distributed. (The physical
meaning of the other variables is given in the Nomenclature.) The
outdoor temperature forecast Tout is one of the external uncertainties
of the system and is assumed to be a variable with Gaussian prediction
error.

5.2.2 Heat Pump and Hot Water Tank

The convective heat transfer in the HWT is characterized by a three-node
model [54], shown as

Ṫ1 =
1

m1cwat
[R1(T2 − T1)−Rw(T1 − Tout)+

XvMinlcwat(T2 − T1)], (5.2a)

Ṫ2 =
1

m2cwat
[R2(T3 − T2)−R2(T2 − T1)−Rw(T2

− Tout) +XvMinlcwat(T3 − T2) + COPPhp], (5.2b)

Ṫ3 =
1

m3cwat
[−R3(T3 − T2)−Rw(T3 − Tout)+

XvMinlcwat(Tret − T3)], (5.2c)
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HP
compressor HWT

𝑃hp
𝑇w

𝑇g
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𝑇in𝑙
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𝑇1

𝑀in𝑙
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𝑇1

𝑇2

𝑇3
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Figure 5.1: Schematic of the floor heating house equipped with a heat
pump and a hot water tank. The external air (Tout) passes through the
heat pump compressor converting electricity into heat. The input power
of the heat pump (Php) directly controls the temperature of the middle
layer (T2) of the water tank. The upper water flow of the tank (T1) is
connected to the floor heating pipes through a valve (Xv). After heating
the inside air (Tin), the water flow returns to the lower layer of the tank
(T3).

with

Tret = (1− exp (−ρ))Tg + exp (−ρ))Tp, (5.3)
Tinl = Xv(T1 − Tret) + Tret. (5.4)

Parameters R1,2,3 and Rw are the heat transfer coefficients of the HWT
layers and tank wall; m1,2,3 are the water masses of each layer; ρ is the
absorption coefficient of the pipeline. (The physical meaning of the
other variables is given in the Nomenclature.) The heat output from
the HP compressor is approximated by its coefficient of performance
(COP) as Qhp = COPPhp, where Php represents the power supplied to
the compressor and COP adopts a time-varying linear function as

COP = acopTout + bcop

(
T2 + T3

2

)
+ ccop. (5.5)

Coefficients acop, bcop, ccop are chosen based on the experimental analysis
in [55]. Besides, the temperature of each layer of the HWT, the service
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power of the HP, and the valve opening of the HWT should comply with
the following constraints

15◦C ⪅ T1, T2, T3 ⪅ 60◦C, (5.6)
0kW ≤ Php ≤ 3kW, (5.7)
20% ≤ Xv ≤ 80%. (5.8)

5.2.3 Solar PV

The power generated by PV is assumed as a linear function of the solar
irradiance [56], described as

Ppv(t) = 10−3βApvPrad(t), (5.9)

where β and Apv are the conversion efficiency and effective radiant area
of the PV panel. The variable Prad with Gaussian error represents an
inaccurate prediction of the solar irradiance, which is another external
uncertainty of the system. The generated PV power has three destina-
tions: to be sold to the utility grid, to meet the home load demand, and
to charge the battery.

5.2.4 Battery

The battery with a capacity of 5kWh is modeled as

Ė(t) = ηPch(t)−
1

η
Pdis(t), (5.10)

with

1kWh ⪅ E(t) ⪅ 4kWh, (5.11)
0kW ≤Pch(t), Pdis(t) ≤ 1kW, (5.12)

Pch(t)Pdis(t) = 0, (5.13)

where η is the efficiency coefficient. To prolong the battery life, it is
recommended to keep the battery level around 20%− 80%, as described
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in (5.11). The charging/discharging power limit is shown in (5.12). Note
that the charging and discharging processes should not occur simultane-
ously, i.e., constraint (5.13) should be satisfied, but due to the presence of
η, the solved policy would follow this rule even if (5.13) is not explicitly
required. It is worth mentioning that for the sake of clarity and focus, we
choose not to delve into the battery degradation issue. However, it should
be recognized that its inclusion in the proposed algorithm is straightfor-
ward (could be perceived as just another source of system uncertainty)
and would not compromise the core of the proposed methodology.

5.2.5 Utility Grid

The power bought from the utility grid Pbuy(t) is used to charge the
battery and to meet the home load demand, while the sold power Psell(t)
comes from battery discharging and PV generation. It should satisfy

Pbuy(t)Psell(t) = 0, (5.14)
0kW ≤ Pbuy(t), Psell(t) ≤ 5kW, (5.15)

where (5.14) is likewise an implicit constraint that the optimal policy
would obey due to the gap between the buying and selling prices. And
(5.15) takes into account the peak power constraint to ensure a smooth
operation of the grid.

5.2.6 Power Balance

Overall, for the power balance in the house, we have

Papp(t) + Php(t) + Pch(t)+Psell(t) = Pdis(t)

+ Pbuy(t) + Ppv(t). (5.16)

The left side of the equation is the total consumption power, including the
power of household appliances 4, heat pumps, charging batteries, and sell-
ing electricity; while the right side of the equation is the total absorption

4Those uncontrollable appliances such as lamps, induction cookers, TVs, etc.
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power, including the power of discharging batteries, buying electricity,
and PV generation. Note that the total load demand of appliances Papp(t),
similar to Tout(t) and Prad(t), is a highly uncertain variable, which is an
estimated value with Gaussian error based on the user’s consumption
pattern. Another interesting point to mention is that, in constructing the
model, while for some it may seem intuitive to represent Pch(t)/Pdis(t)
and Pbuy(t)/Psell(t) actions with a singular variable-where positive val-
ues indicate one action and negative values indicate the opposite-we
opted for two independent variables. This decision was driven primar-

Outdoor 
temperature

Solar 
irradiance

Weather forecasts

Appliances
loads

Heat Pump &
Hot water tank

𝑃pv(𝑡)

𝑃hp 𝑡 , 𝑋v 𝑡

𝑃rad(𝑡)

𝑃app(𝑡)

𝑇out(𝑡)

𝜖{1,2,3,4}
Inaccurate House model

Process noise

𝑃ch(𝑡)
𝑃dis(𝑡)

𝑃buy(𝑡)

𝑃sell(𝑡)

PV Grid

Battery

Figure 5.2: Schematic of the home energy management system, where
the blue font variables indicate control signals and the red fonts indicate
uncertainty sources, including internal uncertainties from the thermody-
namics, and external uncertainties from the predictions of the outdoor
temperature, solar irradiance/PV generation, and appliances load de-
mand. Besides, as marked in green, we also consider an inaccurate
(simplified) house model in the setting, which will be explained in the
later section.

ily by two considerations. First, distinct variables ensure the absence
of discontinuities and non-differentiable regions in our optimization
model, crucial for effective gradient-based optimization. Second, given
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that our model inherently differentiates between coefficients for bat-
tery charging/discharging and for buying/selling transactions, using a
single variable would introduce complications. Specifically, it would
necessitate conditional checks within the algorithmic differentiation tool,
e.g. CasADi [57], during the MPC formulation, presenting a technical
challenge. Consequently, the schematic of the whole HEMS is shown in
Fig. 5.2.

5.3 Problem Formulation

5.3.1 Real Model

The HEMS can be formulated as a stochastic optimization problem. The
state vector s ∈ R8 reads as

s = {Tw, Tin, Tg, Tp, T1, T2, T3, E}. (5.17)

The input vector a ∈ R6 reads as

a = {Pch, Pdis, Pbuy, Psell, Php, Xv}. (5.18)

The internal uncertainties from the house thermodynamics is ϵ, and the
external uncertainties vector could be written as

d = {Prad, Papp, Tout}, (5.19)

where Prad, Papp, and Tout are equal to their baseline estimations plus the
corresponding normally distributed estimation errors (Gaussian white
noise), i.e., we have

Prad =P̄rad + ξrad, (5.20a)
Papp =P̄app + ξapp, (5.20b)
Tout =T̄out + ξout. (5.20c)

Note that in real-world scenarios, the errors may neither be strictly
Gaussian nor exhibit white noise characteristics. Instead, errors in these
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predictions can have auto-correlations. However, it is crucial to highlight
that the foundation of the following proposed algorithm is not contingent
solely upon this Gaussian assumption. Its strength lies in leveraging the
inherent characteristics of RL, which excels in learning from interactions
with the actual environment or real data. (This means that the proposed
algorithm is adept at handling a variety of noise or error distributions
and strives to learn the optimal policy regardless of the specific form of
the error.)

Applying the Explicit fourth-order Runge-Kutta (ERK4) method with a
sampling time of ∆t = 15min, the system is discretized as

st+1 = f(st, at,dt, ϵt). (5.21)

5.3.2 RL Objective

The objective of the HEMS is to seek an optimal policy π⋆(s) that
decreases the customer’s net energy costs while satisfying indoor tem-
perature comfort conditions. Therefore, the objective function that we
aim to minimize is described as

J(π) = Eπ

[
N∑
t=0

l(st, at)

∣∣∣∣∣at = π(st)
]
, (5.22)

where the stage cost (reward) l is composed of spot-market energy cost
lspot and temperature comfort term ltemp, written as

l(st, at) = [B(t)Pbuy(t)− S(t)Psell(t)]︸ ︷︷ ︸
lspot

+

[clow(20− Tin(t))+ + chig(Tin(t)− 24)+]︸ ︷︷ ︸
ltemp

. (5.23)

Variables B(t), S(t) are the spot-market electricity buying and selling
prices. With consideration of a 25% tax rate, we approximately assume
that B(t) = 1.25S(t). The price for B(t) can be obtained from the day-
ahead market prices on Nord Pool [58]. It’s imperative to highlight that
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this study is grounded in the assumption that electricity prices are known
and remain constant. This aligns with the prevalent practices in Norway,
where the emphasis is on the spot-market prices (day-ahead market
prices). Such prices are determined a day prior, based on anticipated
supply and demand, facilitating strategic planning for utilities and market
players within a (at least) 12-hour forecast horizon. (Although the more
dynamic energy landscape of future power markets may necessitate real-
time or intraday markets to promptly respond to unforeseen fluctuations
in demand, renewable energy sources, and other grid contingencies, it is
beyond the primary scope of this study.) The function (x)+ equals xwhen
x > 0 and zero otherwise, which implies that the indoor temperature
is supposed to be within [20◦C, 24◦C]. Being lower or higher than the
bounds would introduce a penalty to the objective function weighted by
clow and chig respectively.

5.3.3 Simplified Control-Oriented Model

Model (5.21) gives a relatively comprehensive but not completely accu-
rate description of the system. This is due to the practical limitation that
arises from having a finite number of sensors and gauges, which restricts
the amount of information that can be obtained. It can be expected that
the dynamics of the real system are much more complex, so (5.21) is only
a simplified and inaccurate model of the real system. In reality, precisely
modeling the entire home energy system is very challenging because
of its intricate dynamics with many variables and uncertainties. More-
over, even if a sufficiently accurate model could be built, solving such a
complex model in an optimization problem would be computationally
expensive and completely impractical. In this work, in order to verify
the effectiveness of our proposed approach, we assume that (5.21) is the
real system and an oversimplified model is used for controller design.
Therefore, the assumption is made of having poor knowledge about the
cumbersome heat transfer process. Specifically, instead of the complete
heat transitions between Tw, Tin, Tg and Tp, the house thermodynamics
is described with only T ′

in and T ′
g. Likewise, the heating system (HP and

HWT) is represented by only one state T ′
2 instead of the sophisticated
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three-node model. Although the thermodynamics between the retained
states are reconstructed rationally based on the physical sense and the
heat transfer coefficients are superimposed accordingly, model errors are
inevitable. It is well known that a common method to eliminate model
errors is model fitting, i.e., parameterizing the coefficients in the dynamic
equations with some unknown parameters, which is also adopted in this
paper.

Overall, the simplified model is described as below

Ṫ ′
in =

1

Cin

[θm1kw,outkw,in(T̄out − T ′
in)+

θm2kg,in(T
′
g − T ′

in)] + θϵ2, (5.24a)

Ṫ ′
g =

1

Cg

[θm3kg,in(T
′
in − T ′

g)+

θm4MinlcwatXv(T
′
2 − T ′

g)] + θϵ3, (5.24b)

Ṫ ′
2 =

1

(m1 +m2 +m3)cwat
[−θm5Rw(T

′
2 − T̄out)+

θm6XvMinlcwat(T
′
g − T ′

2) + COPPhp], (5.24c)

COP = acopTout + bcopT
′
2 + ccop, (5.24d)

15◦C ≤ T ′
2 ≤ 60◦C, (5.24e)

(5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.15), (5.16), (5.24f)

which forms the new state vector s′ ∈ R4

s′ = {T ′
in, T

′
g, T

′
2, E}. (5.25)

The corresponding discrete system is noted as f ′
θm

, with

s′t+1 = f ′
θm

(s′t, at,dt). (5.26)

Note that the input vector and external uncertainties vector are
the same as (5.18) and (5.19). The model fitting parameters
θm = {θm1, θm2, θm3, θm4, θm5, θm6, θϵ2, θϵ3}, where the two param-
eters θ{ϵ2,ϵ3} are used to replace the dynamics uncertainties ϵ{2,3} in (5.1).
Therefore, f ′

θm
(·) is a deterministic model rather than the stochastic

one in (5.21), which avoids tackling the computationally expensive
stochastic optimization problem.
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5.3.4 Fitting the Simplified Model

The physical parameters of the HEMS are given in Table 5.4. To fit
the simplified model, we train the model parameters by minimizing the
mean squared error, where the training data are collected by running
the real system (5.21) for long enough time. The model parameters are
initialized as θmi and are converged to θmf after the fitting process, their
values are given in Table 5.5. Note that the fitting error can not decrease
to zero due to the intrinsic structure mismatch, therefore, the fitted model
f ′
θmf

(·) still can not capture the real system and an MPC scheme that uses
the inaccurate fitted model would yield a deviated solution. In summary,
data fitting does compensate for some model errors, but it is far from
sufficient for the goal of finding the optimal policy.

Fortunately, we show in the next section that, in addition to the model
parameterization, proper parameterizations of the MPC cost functions
and constraints could further improve the performance (after learning
the parameters), and the discrepancies induced by both model errors and
system uncertainties can be compensated. The mind map of the process
is shown in Fig. 5.3.

Table 5.4: System parameters.

Cw 3.12× 106[J/K] kw,out 64.8[W/K]
Cin 4.4× 106[J/K] kw,in 64.8[W/K]
Cg 1.8× 106[J/K] kg,in 594.8[W/K]
Cp 1.7× 106[J/K] kp,g 506.2[W/K]
η 90% Rw 0.99[W/K]
Minl 0.062[kg/s] cwat 4180[J/(kg ·K)]
R{1,2,3} 18.8[W/K] ρ 7.5
m{1,2,3} 66.38[kg] acop 0.088
β 0.429 bcop -0.079
Apv 35[m2] ccop 7.253

ϵ{1,2,3,4} N (0, 2.5× 10−5) ϵrad N (0, 3.6× 10−5)
ϵapp N (0, 1.6× 10−3) ϵout N (0, 3.6× 10−1))

126



5.4. MPC-based Reinforcement Learning

Table 5.5: Parameters variations in model fitting.

Parameter Initial After model fitting
θm1 1 9.99454383× 10−1

θm2 1 1.00003276
θm3 1 9.99998532e× 10−1

θm4 1 9.99990420× 10−1

θm5 1 1.00000006
θm6 1 1.00000675
θϵ2 0 2.54631645× 10−2

θϵ3

θm

0

θmi

−8.29237256× 10−4

θmf

θin1 N/A 5
θin2 N/A 0
θin3 N/A 0
θen1 N/A 30
θen2

θct

N/A 3
θt2 N/A 0
θe

θcs N/A 0

θ0

5.4 MPC-based Reinforcement Learning

Based on the inaccurate fitted model, this section presents an MPC-
based RL approach that could deliver a near-optimal energy consumption
policy for the above constructed HEMS problem. This is achieved by
parameterizing the MPC cost functions and constraints in addition to the
parametric model (5.26). The fully parameterized MPC scheme serves
as a policy approximator in RL and the parameters are trained according
to minimizing the RL performance (5.22). It has been mathematically
proved that, even with an inaccurate model and with system uncertainties,
the trained MPC can deliver the optimal policy if the parameterization is
sufficiently rich (i.e., the MPC model, cost function, and constraints are
adequately parameterized) [43].
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5.4.1 MPC-based Policy Approximation

Consider the following MPC-scheme fully parametrized with θ

min
ŝ′,â,σ

Tθ(ŝ
′
n) + ω

⊤
nσn +

n−1∑
i=1

lθ(ŝ
′
i, âi) + ω

⊤
l σi (5.27a)

s.t. ∀ i = 0, . . . , n− 1

ŝ′i+1 = f ′
θm

(ŝ′i, âi, d̄i), (5.27b)

15− σt2,i ≤ T̂ ′
2,i + θt2, T̂

′
2,i − θt2 ≤ 60 + σt2,i, (5.27c)

15− σt2,n ≤ T̂ ′
2,n + θt2, T̂

′
2,n − θt2 ≤ 60 + σt2,n, (5.27d)

1− σe,i ≤ Êi + θe, Êi − θe ≤ 4 + σe,i, (5.27e)

1− σe,n ≤ Ên + θe, Ên − θe ≤ 4 + σe,n, (5.27f)

0 ≤ P̂hp,i ≤ 3, (5.27g)

0.2 ≤ X̂v,i ≤ 0.8, (5.27h)

0 ≤ P̂ch,i, P̂dis,i ≤ 1, (5.27i)

0 ≤ P̂buy,i, P̂sell,i ≤ 5, (5.27j)

P̂app,i + P̂hp,i + P̂ch,i + P̂sell,i = P̂dis,i+

P̂buy,i + P̂pv,i, (5.27k)
σi ≥ 0,σn ≥ 0, (5.27l)

ŝ′0 = {T̂ ′
in,0, T̂

′
g,0, T̂

′
2,0, Ê0} = {Tin,t, Tg,t, T2,t, Et}, (5.27m)

where equations (5.27c) and (5.27d) ensure the temperature T̂ ′
2 remains

within the desired bounds, and (5.27e) and (5.27f) restrain the battery
energy Ê. The slack variables vector σ = {σt2,0...n, σe,0...n} is used to
penalize and minimize deviations from the desired range. By including
σ weighted by a constant vector ω in the cost function, any minor
violations are penalized, pushing the solution to the desired bounds. On
the other hand, these slack variables allow the hard constraints of the
MPC to transform into soft constraints, providing not only flexibility
in adhering to the constraints but also enhancing the MPC feasibility,
especially in scenarios where minor deviations can be tolerated for better
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overall performance. (It’s noteworthy that, we have already taken into
account a certain margin when designing the constraint models for T2
and E. Therefore, minor violations of these constraints are acceptable.)
The subsequent equations (5.27g)-(5.27j) ensure that the input variables
remain strictly within their operational limits. The power balance is
enforced in (5.27k), and the slack variables are further constrained to be
non-negative in (5.27l), indicating that they only serve to represent the
magnitude of constraint violations. Lastly, equation (5.27m) describes
the MPC initialization conditions. Note that at every time instant, the
MPC initial states are extracted from the current full states of the real
system.

The details of the parametrization of the model, cost functions, and
constraints are explained below:

• As for the parameterization of the MPC model, f ′
θm

(ŝ′i, âi, d̄i) uses
the same parametrization in (5.27b) as in the simplified model
(5.26), and we use the fitted model parameters θmf as the initial
values for learning. One noteworthy point is that we use d̄ =
{P̄rad, P̄app, T̄out} in the MPC formulation instead of the uncertain
values d to mimic the prediction errors (i.e, system uncertainties)
that would be encountered in realistic scenarios.

• As for the parameterization of the cost functions in (5.27a), the
parameterized stage cost is designed as

lθ(ŝi, âi) = θin1(T̂in − 20− θin2)(T̂in − 24− θin3)︸ ︷︷ ︸
lθtemp

+

[BP̂buy − SP̂sell]︸ ︷︷ ︸
lθspot

, (5.28)

and the parameterized terminal cost is designed as

Tθ(ŝn) = θen1(Ên − θen2)2. (5.29)

Because of the mismatch between the MPC horizon (n) and the
RL horizon (N ), parameterization of the stage cost function and
the extra terminal cost function are essential.
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• As for the parameterization of the constraints, we put θt2 and θe
into the state constraints (5.27c)-(5.27f).

Some remarks are listed below regarding the parametric MPC:

• The MPC horizon n can be different from the RL horizon N . To
speed up the computation, we usually choose n << N . As a
result, the terminal cost function of the MPC is critical because
it needs to compensate for the “short-sightedness” of the MPC to
some extent.

• Due to the differences between the MPC and RL formulations (e.g.,
mismatches between N and n, s and s′, ϵ and θϵ, d and d̄), the
solution generated by a non-parameterized MPC must be a severely
suboptimal solution to (5.22). Therefore, it is sensible to use the
parametric MPC (5.27) to compensate for these discrepancies so
that the optimal policy can be captured.

• The parameterization could be in principle arbitrary, but its de-
sign is usually motivated by some consideration of the physical
meaning of the problem and is hence often interpretable.

The approximated policy πθ(s) and action a are obtained as

πθ(s) = u⋆0(s,θ), (5.30a)
a = πθ(s) + kϱ

κϱ, (5.30b)

where u⋆0(s,θ) is the first element of the MPC input solution and ϱ is a
Gaussian term that adds weighted explorations onto the actions. In the
learning, we adopt a decayed exploration by multiplying the exploration
by a decay coefficient kϱ (less than one), which exponentially decreases
according to the policy updating times κ. Overall, the parameters vector
θ ∈ R15 consists of

θ = {θm1, θm2, θm3, θm4,θm5, θm6, θϵ2, θϵ3, θin1, θin2,

θin3, θen1, θen2, θt2, θe}. (5.31)

With an appropriate choice of θ, the short-horizon, deterministic MPC
scheme (5.27) can yield the optimal policy π⋆(s,θ⋆) to the long-horizon,
stochastic problem (5.22).
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5.4.2 Compatible Delayed Deterministic Actor-Critic

In this section, we present an updating algorithm called CDDAC-GQ to
adjust the parameters (5.31) of the MPC scheme (5.27). CDDAC-GQ is
derived based on the DPG method elaborated in Section 2.4.2: "Core
Formulas: DPG for MPC-based RL". The policy gradient ∇θ (a.k.a
∇θJ(πθ)) is computed using the same formulas as in Section 2.4.2,
except that the variables are replaced with those defined in this microgrid
energy management problem. Specifically, ζ in (2.17) has the form
ζ = {ŝ′, â,σ}, which is the primal decision variable of the MPC (5.27).
And in (2.18), Ωθ now represents the MPC cost (5.27a), Gθ gathers the
equality constraints and Hθ collects the inequality constraints of the
MPC (5.27).

The critic parameters w,v in (2.20), the solution to the Least Squares
problem (2.23), obtained by updating using the gradient Q-learning
method as described in Equation (2.25) in Section 2.4.2. Besides the
gradient Q-learning technique, in CDDAC-GQ, the actor parameters θ
are designed to update less frequently (delayed) than the critic, and it
employs the ADAptive Moment estimation (ADAM) optimizer. See
Algorithm 4 for details. Compared to the Least Squares Temporal Dif-
ference based-Deterministic Policy Gradient (LSTD-DPG) used in the
previous sections, the CDDAC-GQ is superior in the following aspects:

• Compared to the LSTD-DPG which uses an on-policy manner, the
CDDAC-GQ uses off-policy Q-learning to update the critic, which
significantly increases the data efficiency.

• Concerning that off-policy Q-learning may diverge with linear
function approximators, the gradient Q-learning critic is adopted.
With this technique, the critic parameters are updated towards the
true gradient descent and convergence is thus ensured [59].

• We adopt the “delayed” policy updates in CDDAC-GQ, i.e., one
policy update for every several Q and V-functions updates, which
smooths the learning.
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• Rather than the Stochastic Gradient Descent (SGD) used in LSTD-
DPG, we update the actor parameters via ADAM in CDDAC-GQ.
ADAM assigns a learning rate for each parameter and the rate is
adapted based on the average of recent magnitudes of gradients
[60]. This improves the efficiency and smoothness of the policy
learning process.

5.5 Simulation

This section presents the simulation results of our proposed MPC-based
RL approach, assessing the performance of the CDDAC-GQ algorithm.
Besides, we provide a comprehensive comparative analysis between
CDDAC-GQ and the recent RL algorithm TD3 in terms of economic
efficiency and computational cost.

5.5.1 Results of the MPC-based RL Approach (CDDAC-
GQ)

The parameters used in the MPC scheme and RL updating of CDDAC-
GQ are given in Table 5.6. It can be seen that N = 96, i.e., the goal of
RL is to minimize the combined cost (net energy cost and temperature
comfort considerations) of the user for a day. The values of the action
exploration ϱ, exploration decay coefficient kϱ, and learning step sizes
αw, αv, αν , αθ are chosen empirically after several trials. The initial val-
ues of MPC parameters θ0 are composed of the fitted model parameters
θmf , the cost function parameter θct, as well as the constraint parameter
θcs (i.e., θ0 = {θmf ,θct,θcs}), see Table 5.5. Although any initial value
in the defined domain should be theoretically allowed, the initial values
of θct and θcs are chosen based on certain considerations. For example,
the initial value of θin1 is chosen as 5 to be consistent with the coefficient
in the RL equation, and θen2 is initialized as 3 to be in the middle of the
battery charge.
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Algorithm 4: Compatible Delayed DAC with Gradient Q-Learning Critic
Input: initialize policy parameters θ, ADAM parameters m,n, Q-function

parameters w, V-function parameters v, greedy-GQ parameters ν,
replay buffer D, number of policy updates κ

1 repeat
2 Randomly initialize starting state s
3 for t = 1, . . . , T in episode do
4 Observe state s and select action a by (5.30b)
5 Execute a in the environment
6 Observe next state s†, reward r, and additional information d

7 Store transition (s,a, r, s†, d) in the replay buffer D
8 for j = 1, . . . , ntrain do
9 Randomly sample a batch of transitions, B = {(s,a, r, s†, d)}

from D
10 Compute temporal difference errors

δ = r + γQw(s†,πθ(s
†)))−Qw(s,a))

11 Update Q-function and V-function using gradient Q-learning

w← w + αw
1

|B|
∑
B

[
δψ(s,a)− γψ(s†,πθ(s

†))(ψ(s,a)⊤ν)
]

v← v + αv
1

|B|
∑
B

[
δϕ(s)− γϕ(s†)(ψ(s,a)⊤ν)

]
ν ← ν + αν

1

|B|
∑
B

[
(δ −ψ(s,a)⊤ν)ψ(s,a)

]
12

if j mod policy delay = 0 then
13 Compute policy gradient

∇θ =
1

|B|
∑
B

[
∇πθ(s)∇πθ(s)

⊤w
]

Update policy parameters via ADAM

m← βmm+ (1− βm)∇θ, m̂ =
m

1− βκ
m

n← βnn+ (1− βn)(∇θ)
2, n̂ =

n

1− βκ
n

θ ← θ − αθ
m̂√
n̂+ ε

, κ = κ+ 1

14 end
15 end
16 One step forward s← s†

17 end
18 until convergence;
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By applying the CDDAC-GQ update rule outlined in Algorithm 4, the
MPC parameters are effectively learned, achieving convergence at ap-
proximately 1000 steps. The variation of its changing from θ0 to θ⋆

is presented in Fig. 5.4, and the corresponding RL performance J(πθ)
decreases consequently as presented in Fig. 5.5. (For better comparison
with TD3 in the later section, the Y-axis (performance) is on a logarith-
mic scale.) Note that the results are averaged across five independent
experiments for reliability, and the shaded areas are the 95% confidence
intervals. It can be observed that even though the uncertainties, initial
values, and explorations are random for each trial, the parameters even-
tually converge to similar values, and the optimal values of the obtained
performance J(πθ) are almost identical. This consistent convergence
signifies the robustness of our proposed MPC-based RL method in vary-
ing situations. Thus, it holds potential for real-world HEMS where such
variations and uncertainties are commonplace. Another important re-
mark is that identifying an explicit optimal policy is actually a formidable
task due to inherent model inaccuracies and system uncertainties. In
theory, our MPC-based RL approach can yield the optimal policy even
in the face of these complexities [43]. Yet, the practical application may
not always reflect this theoretical promise due to limited parameters
and other learning-related limitations. Nonetheless, as shown in Fig. 5
(the economic cost before and after training), our approach significantly
reduces the cost, and the convergence consistency of the five random
experiments shows that our approach always targets the (sub)optimal
policy-which is important in cases where the truly optimal policy cannot
be determined due to intrinsic uncertainties. For real-world implementa-
tions of the MPC-based RL approach, striving for closer alignment with
the optimal policy would necessitate richer MPC parameterizations and
more effective RL training, which involves a balance between training
complexity and economic benefits.

In Fig. 5.6, we show the 24-hour accumulated costs obtained using the
parameterized MPC before and after the training. The blue shaded parts
represent the spot-market net energy costs

∑
24h lspot, the orange shaded

parts represent the temperature penalty costs
∑

24h ltemp, and the red
dashed lines are the sum of the two, i.e,

∑
24h l =

∑
24h(lspot + ltemp).
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It can be seen that before training, although the energy cost is almost
zero, the temperature penalty cost is very large, resulting in a large
combined cost. While after training, although the energy cost increases,
the temperature cost decreases significantly and the total cost is greatly
reduced compared to the previous case. The reduced temperature penalty
cost after training provides quantifiable evidence that the algorithm is
effective in learning from the environment and adapting its policy to
achieve a more balanced trade-off between energy savings and user
comfort.

Furthermore, we show in Fig. 5.7 and Fig. 5.8 the state solution and
input solution of the parameterized MPC before and after training using
the proposed CDDAC-GQ algorithm. As can be observed from Fig. 5.7,
the indoor temperature Tin in the θ0 case drops almost continuously and
is severely out of the comfort range (shaded area in the figure), while the
indoor temperature with θ⋆ is within the comfort range most of the time.
There are two reasons why the control performance of the untrained
MPC is so poor. The first and main reason is that the MPC model is
inaccurate, so the input solution derived from this faulty model is invalid;
the second reason is that the MPC horizon we used is 6, which is much
shorter than the actual length of the problem 96 (24h). Thus, the solution
yielded by the short-sighted MPC is inevitably much less effective in
dealing with the true problem. On the other hand, the well-trained MPC
can compensate for these deficiencies, since the update of parameters
is driven by the objective of the true RL problem. It can be seen that
the trained MPC buys a large amount of electricity to supply the heat
pump to raise the indoor temperature during the lowest electricity price
period of the day (0h− 5h), which exploits the thermal inertia of the air
to store energy for the high price period later in the day. This reflects a
sophisticated learning capability of our approach, which not only reacts
to the environment, but also predicts future states and acts accordingly.
This predictive ability demonstrates the predictive power inherent in the
MPC framework when fine-tuned through RL. Besides, the observations
made in the state and input solutions emphasize the importance of a
well-parameterized MPC. The policy of the untrained MPC is greatly
improved upon training, emphasizing the role of RL in aligning the MPC
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objective more closely with the true system dynamics and constraints.

Table 5.6: CDDAC-GQ: MPC and learning parameters.

∆t, T 15min, 96
N , n 96, 6

clow, chig 5, 5
ntrain 5

batch size 500
γ 0.99

policy delay 5
βm, βn, ε 0.9, 0.999, 10−8

ωl,ωn [1, 1]
ϱ [1, 1, 5, 5, 3, 1]×N (0, 6.4× 10−4)
kϱ 0.9985

αw, αv, αν , αθ 2× 10−5, 2× 10−5, 2× 10−5, 10−4

Table 5.7: TD3: learning parameters.

Networks 2Q, 2Qtarg,Π,Πtarg

Hidden sizes [256, 256, 256]
Q-nets activation functions LeakyReLU, Identity
Π-nets activation functions ReLU, Tanh
Q,Π-nets learning rate 1e-6

Polyak 0.995
Policy delay 4

Initial steps with random policy 19200
Exploration noise [1, 3, 1]×N (0, 2.25× 10−4)

Smoothing noise added to Πtarg [1, 3, 1]×N (0, 2.25× 10−4)
Total learning steps 1.152× 106
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Figure 5.5: Comparative performance evaluation of J(πθ) for CDDAC-
GQ and TD3 algorithms over learning steps. The solid line indicates the
mean performance for CDDAC-GQ and the dashed line for TD3, with
the shaded areas representing their respective 95% confidence intervals,
averaged across five experiments.
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Figure 5.6: CDDAC-GQ: Accumulated costs using the parameterized
MPC-scheme before (with θ0) and after (with θ⋆) the training. The blue
shaded parts represent the spot-market net energy costs

∑
24h lspot, the

orange shaded parts represent the temperature penalty costs
∑

24h ltemp,
and the red dash lines are the combined costs

∑
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5.5.2 Comparison with TD3

To fairly assess our proposed MPC-based RL approach, we apply the
RL algorithm TD3 to address the same HEMS problem characterized by
inaccurate model and system uncertainties. (We initially attempted to
use the DDPG algorithm, but DDPG failed to converge effectively due
to the significant uncertainties of this problem.)

To circumvent the curse of dimensionality, we follow the approach of
[42], which uses time as a state variable instead of the full sequence of
prediction information. This would not only avoid the dimensionality
issue but also incorporate predictive information to some extent. Un-
like the MPC framework which cannot handle conditional statements,
we can use fewer action variables in TD3, with single variables repre-
senting charging/discharging battery and buying/selling power, denoted
as Pch/dis and Pbuy/sell, respectively. However, RL methods could not
explicitly enforce system constraints like the MPC-based RL method.
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They could only implicitly enforce constraints through penalties, making
it challenging to strictly adhere to the power balance constraint (5.16)- a
mandatory system constraint. To address this, we eliminate the Pbuy/sell

variable and algebraically express it using the power balance constraint
(5.16). This ensures that (5.16) is forcibly met, with penalties only ap-
plied for Pbuy/sell. Consequently, the final action variables are defined
as a = [Pch/dis, Php, Xv]. Furthermore, the constraint of battery state E
faces a similar issue due to its physical limit, which has to be strictly
followed. We therefore implement a “forced action” trick where if the
new Pch/dis would cause the next state E to exceed the range, we would
force Pch/dis = 0. There are additional minor technical details, such as
considering soft constraints along with hard constraints for a fair com-
parison with CDDAC-GQ, allowing some slack for soft constraints, and
normalizing state and action variables, which are not elaborated here
due to space limitations. In essence, from a design perspective, TD3
struggles to incorporate prediction information and handle constraints
effectively, particularly when dealing with hard constraints that involve
multiple action variables. This requires designing some reasonable tricks
based on expert experience, and it is not trivial.

TD3 employs two action-value networks (Q), two target action-value net-
works (Qtarg), a policy network (Π), and a target policy network (Πtarg),
with other training parameters presented in Table 5.7. Like CDDAC-GQ,
we conduct five random experiments, and the result is shown in Fig. 5.5.
As can be seen, CDDAC-GQ demonstrates superior performance with a
lower cost metric from the beginning of the learning process, as indicated
by its consistently lower J(πθ) value. The graph illustrates that CDDAC-
GQ not only starts stronger but also converges to a better performance
value of approximately 104, compared to 167 for TD3, signifying around
a 37.7% improvement in cost efficiency. Moreover, the CDDAC-GQ
algorithm reaches this performance with 1000 learning steps, which is
substantially fewer than the 1152000 steps required by TD3, highlight-
ing the data efficiency of CDDAC-GQ. The 95% confidence intervals
represented by the shaded areas further substantiate that CDDAC-GQ
has slightly lower variance and slightly higher stability throughout the
learning process.

142



5.5. Simulation

The results yielded by the policy network trained via TD3 are presented
in Fig. 5.7 and Fig. 5.8. It is observed that the policy network generated
by TD3 has some awareness of future electricity price fluctuations,
buying electricity during low-price periods and selling during high-
price periods. However, there are two notable deficiencies in the TD3
behaviour compared to CDDAC-GQ: 1. The Php and Tin subplots reveal
that TD3 does not fully exploit the thermal inertia of the house for
“slightly excessive” heating during low electricity price intervals between
[0h−7h], resulting in the necessity for heating during the more expensive
peak price period later on; 2. As seen from the Pbuy and Psell subgraphs,
unlike CDDAC-GQ, which trades perfectly following price fluctuations,
TD3 appears unable to capture the full spectrum of electricity price
information, leading to a discrepancy between its trading actions and the
price fluctuations. These shortcomings primarily stem from the limited
incorporation of predictive information of TD3, only factoring in the
time as a state, unlike CDDAC-GQ, which fully integrates predictive
information. Consequently, it is within expectations that the performance
of TD3 would be approximately 37% lower than that of CDDAC-GQ.

In the following discussion, we compare the computational performance
of our proposed CDDAC-GQ algorithm with the TD3 algorithm. The
machine used in the simulation is 2.3GHz 8-Core Intel Core i9 @ 16GB
2667MHz DDR4. The proposed CDDAC-GQ algorithm requires approx-
imately 5h37min10s for the total training duration, averaging around
20.23s per learning step over 1000 steps. In contrast, the TD3 algorithm
completes training in about 2h25min5s, with an average time of 7.56ms
per learning step over 1152000 steps. While TD3 appears faster in terms
of per-step computation, the developmental efficiency of the algorithms
must be considered. Implementing and tuning TD3 involved substantial
time and effort, with considerable trial-and-error in adjusting the reward
function, step function, and hyperparameters. As for the real-time imple-
mentation of the proposed MPC-based RL approach, the time to solve an
MPC instance in CDDAC-GQ is about 0.08s, significantly less than the
15min sampling time, indicating its suitability for real-time applications.

In summary, although our proposed CDDAC-GQ algorithm requires
a longer training time, this process can be entirely conducted offline.
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It can effectively integrate a large sequence of predicted information
and excels in adhering to system constraints, thus significantly reducing
development and design efforts. Most importantly, the policy derived
from CDDAC-GQ shows a performance improvement of approximately
37.7% over TD3, demonstrating its significant advantages in solving
complex HEMS problems.

5.6 Conclusion

In this paper, we propose an MPC-based RL approach to solve the HEMS
problem. We show that data-driven model fitting may not completely
eliminate model errors, and the MPC-based RL approach is precisely
a powerful tool for tackling the HEMS problem with model errors and
system uncertainties. By parameterizing the model, cost function, and
constraints of MPC and training the parameters by RL, an optimal policy
that satisfies both economy and comfort is finally obtained. Compared
to the conventional TD3 algorithm, the proposed approach has the ad-
vantages of higher sampling efficiency, easier incorporation of predictive
information, easier realization of constraints, higher robustness, and
better cost-effectiveness. However, it should be acknowledged that this
work still uses a simulated environment and that the uncertainties are ide-
ally Gaussian distributed. In future work, we will try to further validate
the effectiveness of the proposed method in a real system.
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6 | Discussion

In this chapter, we will conclude the thesis by summing up some of its
main contributions and a discussion on each contribution. In addition,
we will suggest some future research directions for the topics.

6.1 Conclusion

This thesis has successfully showcased the versatility and efficacy of the
MPC-based RL approach in addressing the complexities of stochastic
systems across various applications. The research specifically targeted
the limitations of traditional MPC and machine learning methods in deal-
ing with inaccurate modeling and performance optimization. Through
rigorous application in three diverse areas—ASV, residential micro-
grid energy management, and HEMS—the thesis has not only validated
the theoretical principles of MPC-based RL but also demonstrated its
practical utility in engineering solutions.

The work on ASVs emphasized improved closed-loop performance, par-
ticularly in tasks requiring precision, such as collision-free path tracking
and autonomous docking. The research on residential microgrids effec-
tively showcased the ability to manage energy distribution and optimize
economic costs under stochastic conditions, introducing the Shapley
value method for equitable bill distribution. In the domain of HEMS, the
MPC-based RL approach proved robust in handling model inaccuracies
and uncertainties, achieving a balance between economic viability and
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comfort.

Taken together, these studies underscore the robustness of the MPC-
based RL framework, setting a foundation for future advancements in
control systems, especially in integrating MPC with RL. This approach
opens new possibilities for addressing complex, uncertain, and dynamic
systems in various engineering fields.

6.2 Limitations and Future Work

The limitations of this approach and the corresponding reflections are
discussed below:

• In those cases where the MPCs to be solved are quite intractable,
the proposed MPC-based RL approach may consume longer train-
ing time than standard RL approaches (those using NNs as function
approximators). Fortunately, the training can be done offline. Be-
sides, the parameterization of the MPC is quite flexible, allowing
us to design the MPC cost from a numerical perspective that makes
the MPC implementation as easy and effective as possible.

• In those cases with very short sampling times, the MPC-based RL
method may struggle a bit in the real-time application. Indeed, the
real-time burden comes mostly from solving the MPC (computing
the sensitivity is inexpensive). Nonetheless, the progress in the
optimization algorithms and in the computational hardware makes
the deployment of real-time MPC possible for most of the real
applications, as presented in [1].

• For more complex problems, the simple quadratic parameterization
of the value function used in this thesis may no longer be sufficient
to capture the true function. Alternatively, one could consider more
general forms of value functions such as radial basis functions,
Lagrangian polynomials, and neural networks, or one could even
use MPC itself as a value function. Then updating the function
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parameters in the MPC-based RL framework will become a bit
more tricky, but it is still feasible.

The discussion of the limitations of this work has accordingly inspired
our future works, summarized as follows:

• From the methodology point of view, it is interesting to consider
how to reduce the time required for solving the MPC during train-
ing or even to avoid this process altogether. For example, our
recent work [2] proposes a solution for efficient offline training
without explicitly solving the MPC. Another heuristic solution is
to perform “cost-matching" between the MPC formulation and the
data based on some existing dataset. It is interesting to consider
how to make the MPC-based policy approximator more general.
For example, our recent work [3] uses convex neural networks
as the cost functions for MPC. Furthermore, another promising
research direction could delve into developing distributed MPC-
based RL algorithms. This advancement aims to enhance scalabil-
ity and efficiency for large-scale and complex systems, addressing
the need for robust control strategies in expansive networked envi-
ronments.

• From an application perspective, the focus can shift to applying
MPC-based RL methods to a variety of industries, such as manu-
facturing or transportation, which offers exciting opportunities for
broader application and impact. Experimental validation and real-
world implementation, particularly in smart home applications
we are currently investigating, are crucial next steps to validate
the efficacy of this approach beyond simulated environments. Ad-
dressing the challenges of handling non-Gaussian uncertainties to
enhance the robustness and applicability of the approach is also
paramount. Lastly, scalability and the application of MPC-based
RL to larger, more complex systems are critical areas for future
exploration.
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