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Summary

In the digital age, online social networks (OSNs) have become essential plat-
forms for communication, information sharing, and social interaction. How-
ever, this widespread use has introduced significant privacy concerns. Users
often share personal information without a full understanding of the poten-
tial risks, which are compounded by the complex and dynamic nature of
digital interactions. These interactions span multiple platforms, making pri-
vacy management increasingly challenging. The ease with which personal
data can be accessed and potentially misused highlights the urgent need for
more effective privacy protection mechanisms.

One critical aspect of this problem is the static nature of current privacy
settings on most OSNs, which require manual adjustments. Users’ privacy
needs and preferences evolve over time and with varying types of content,
but current systems do not adequately accommodate these changes. This
often results in a mismatch between the desired level of privacy and the
actual settings applied. There is a clear need for adaptive privacy settings
that can respond to users’ changing requirements more intuitively and effi-
ciently. The primary goal of this thesis is to develop more accurate methods
for measuring privacy leakage and to explore how ML models can mitigate,
intensify, or alert users about potential privacy breaches. It aims to develop
a conceptual framework for measuring privacy leakage on OSNs, helping
users understand their privacy settings and associated risks. This frame-
work will also provide a basis for users to make more informed decisions
about their data sharing practices.

This research also examines the role of data linkability in privacy breaches
within and across different OSNs. By analyzing how the linkability of data—where
separate pieces of information can be connected to form a comprehensive
user profile—affects privacy leakage scores, this work provides valuable in-
sights into managing privacy risks. The study further investigates methods
for continuously adjusting user privacy settings in real-time without com-
promising privacy, evaluating the effectiveness of deep learning models in
automating privacy settings.

The introduction of advanced technologies like machine learning (ML)
in managing privacy settings offers both opportunities and challenges. Gen-
erative AI (GAI) has recently gained popularity, capable of uncovering and
potentially exposing sensitive information shared on OSNs. GAI models
can extrapolate and recreate sensitive data, raising concerns about security
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and privacy. As these models become more advanced, they enhance user
experience by providing personalized content but also pose risks of unin-
tentional data leakage. This duality necessitates a thorough exploration of
the implications of GAI on data privacy and security. This thesis explores
the potential for private information disclosure through public data and GAI
technologies, with a focus on facial features. It addresses the ”eyes-to-face”
problem, where only the eyes are visible, and assesses the potential for GAI
technologies to reconstruct the rest of the face, thereby compromising indi-
vidual privacy. This analysis highlights the privacy vulnerabilities inherent
in sharing partial biometric data and proposes methodologies to mitigate
such risks.

Moreover, while ML models can provide more sophisticated and adapt-
able privacy controls, they also introduce issues related to transparency, fair-
ness, and ethical considerations. The algorithms behind these models can be
opaque, making it difficult for users to understand how their privacy is man-
aged. Additionally, there is a risk that these models may perpetuate biases,
leading to unfair or discriminatory outcomes. We investigated the intricate
interactions between privacy, accuracy, and fairness in image classification
tasks. Our study highlights a consequential trade-off between privacy or
utility and fairness, as applying the generalization techniques.

In conclusion, the increasing use of online social networks (OSNs) has
significantly amplified privacy concerns due to the dynamic and multi-platform
nature of digital interactions. This thesis underscores the inadequacy of
static privacy settings and the necessity for adaptive mechanisms that cater
to the evolving needs of users. By developing a conceptual framework for
measuring privacy leakage and examining the role of data linkability, this re-
search provides critical insights into managing privacy risks. Furthermore,
the exploration of advanced technologies like machine learning and gener-
ative AI reveals both the potential and the challenges of these tools in en-
hancing privacy controls. This work emphasizes the importance of balanc-
ing privacy, accuracy, and fairness, proposing innovative methods to miti-
gate privacy vulnerabilities, especially in the context of biometric data and
image classification. The findings advocate for more transparent, fair, and
ethical approaches in privacy management, paving the way for safer digital
environments.
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Chapter 1

Introduction

In the digital age, the proliferation of online social networks (OSNs) has rev-
olutionized the way individuals interact, share information, and form con-
nections across the globe. While these platforms offer unprecedented op-
portunities for communication and collaboration, they also raise significant
concerns regarding privacy and data security. The vast amounts of personal
information shared on these networks expose users to various privacy risks,
from identity theft to unauthorized data mining and surveillance. Conse-
quently, understanding and preserving privacy on OSNs is not only crucial
for protecting individual users but is also imperative for maintaining the
trust and integrity of these digital platforms.

This thesis addresses the critical challenge of modeling and preserving
privacy in online social networks. It stems from the observation that while
users benefit greatly from these platforms, they often lack control over their
personal information and are unaware of how it may be used or exposed.
The primary aim of this research is to develop robust models that can accu-
rately measure privacy risks and implement effective mechanisms to protect
users’ data. By enhancing privacy on OSNs, this work seeks to empower
users, giving them greater control over their digital personas and the secu-
rity of their information.

The significance of this research is underscored by the dynamic nature of
both technology and user behavior. Online social networks are continually
evolving, with new features and complexities that can obscure how data is
handled and shared. Additionally, users’ perceptions of privacy and their
interaction patterns are constantly changing, influenced by societal trends
and personal experiences. This thesis proposes adaptive models that not
only respond to these changes but also anticipate future developments in
OSN functionalities and user engagement. Such proactive measures are vi-
tal for sustaining privacy and ensuring that the benefits of social networks
do not come at the expense of users’ security.

Furthermore, the methodology adopted in this research integrates multi-
disciplinary approaches, incorporating insights from computer science, be-
havioral studies, and ethical considerations. Through a series of focused
research questions, this thesis explores different aspects of privacy in OSNs,
including the measurement of privacy leakage, the linkability of user posts,
the potential for exposing hidden private information, the continuous ad-
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justment of privacy settings, and the balance between privacy and fairness
in the application of deep learning models. By addressing these complex
challenges, the thesis contributes valuable knowledge and practical solu-
tions that enhance our understanding of privacy in online social networks
and offer significant implications for users, developers, and policymakers
alike.

1.1 Motivation and problem description

In the digital age, online social networks (OSNs) have become a central part
of our daily lives, offering a platform for communication, information shar-
ing, and social interaction. However, this widespread use of OSNs raises
significant privacy concerns. Personal information is frequently shared on
these platforms, sometimes without the users’ full understanding of the po-
tential risks involved. This situation is exacerbated by the complex and ever-
evolving nature of digital interactions, where data is not only shared but also
linked across multiple platforms, making privacy management increasingly
challenging. The ease with which personal data can be accessed and poten-
tially misused underscores the need for more effective privacy protection
mechanisms.

Another critical aspect of this problem is the dynamic nature of privacy
itself. As users navigate through different stages of life and engage with
varying types of content, their privacy needs and preferences change. How-
ever, current privacy settings on most OSNs are static and require man-
ual adjustments, which can be cumbersome and not always intuitive for
all users. This gap often leads to a mismatch between the desired level of
privacy and the actual privacy settings applied.

Furthermore, with the introduction of advanced technologies like ma-
chine learning in managing privacy settings, questions arise regarding the
using these technologies, and their impact on user privacy. The integra-
tion of machine learning models in automating privacy settings presents a
double-edged sword. While these models offer the potential for more so-
phisticated and adaptable privacy controls, they also introduce new chal-
lenges in terms of transparency, fairness, and ethical considerations. The
algorithms driving these models can sometimes be opaque, making it diffi-
cult for users to understand how their privacy is being managed. Addition-
ally, there is a risk that these models may inadvertently perpetuate biases,
leading to unfair or discriminatory outcomes.

Generative AI, a technology that trains on extensive datasets to create
new data mimicking the original, has surged in popularity recently. GAI
models possess the capability to uncover and potentially expose sensitive
information that has been previously shared on OSNs. This ability to ex-
trapolate and recreate sensitive data highlights growing concerns about the
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security and privacy implications of using generative AI in various online
platforms. As these models become more advanced, they not only enhance
user experience by providing more personalized content but also raise criti-
cal questions about data privacy and the potential risks associated with un-
intentional data leakage.

1.2 Research aim, objectives and scope

The primary goal of this thesis is to develop more accurate methods for
measuring privacy leakage and to explore how machine learning models
can mitigate, intensify, or alert users about potential privacy breaches. This
research will concentrate on several critical objectives to tackle the privacy
issues arising from the evolution of OSNs as discussed below.

Firstly, it aims to develop a conceptual framework for accurately mea-
suring privacy leakage on OSNs. This framework will help users gain a
clearer understanding of their privacy settings and the potential risks asso-
ciated with their online activities. It will also provide a basis for users to
make more informed decisions about their data sharing practices.

The second objective is to examine the role of data linkability in pri-
vacy breaches both within and across different OSNs. This investigation
will delve into the implications of interconnected structured and unstruc-
tured digital footprints. Specifically, we will analyze how the linkability
of data—where separate pieces of information can be connected to form a
comprehensive profile of a user—can either increase, decrease, or leave un-
changed the privacy leakage score.

Third, this thesis aims to investigate methods for continuously adjusting
user privacy settings in real-time, without compromising the privacy itself.
This includes evaluating the effectiveness of deep learning models in au-
tomating privacy settings. By accomplishing these objectives, the research
will contribute to the development of more robust and user-friendly privacy
management tools for OSNs, enhancing user trust and security online.

In addition, this thesis will explore how private information can be dis-
closed through the use of public data and GAI technologies, enhancing our
understanding of both the capabilities and the associated risks of these tech-
nologies. Specifically, this thesis will focus on facial features, which are con-
sidered sensitive information due to their classification as biometric data.
The unique aspect of this study is the investigation of the ”eyes-to-face”
problem, where users of OSNs may choose to obscure most, but not all,
of their facial features. We will analyze scenarios in which only the eyes are
visible, assessing the potential for GAI technologies to reconstruct the rest of
the face and thereby compromise individual privacy. This analysis will not
only highlight the privacy vulnerabilities inherent in sharing partial biomet-
ric data but also propose methodologies to mitigate such risks, thus offering
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a more comprehensive perspective on privacy management within digital
environments.

1.3 Research questions

Based on the research aim, objective, and motivation, five research ques-
tions were formulated to guide this thesis work. The research questions are
outlined as follows:

Research question 1 (RQ1): How to measure privacy leakage in online
social networks?

OSNs often expose significant amounts of sensitive data. Users frequently,
albeit inadvertently, share their private information without fully under-
standing the associated privacy risks. It is essential for users to be well-
informed about their privacy levels and understand their position on a pri-
vacy scale. The aim of this research question is to develop a framework
capable of evaluating the privacy impact of each user action within an OSN.
This framework would adjust privacy settings in alignment with the user’s
preferred privacy limits.

Research question 2 (RQ2): Does the linkibility of a user’s posts influ-
ence privacy breaches across or within online social networks?

In an age where digital footprints are sprawling and often interconnected,
understanding the implications of linked posts is crucial for developing bet-
ter privacy protection strategies and tools. The purpose of this research
question is to explore whether the ability to link various posts by a single
user across different platforms or within the same platform contributes to
an increased risk of privacy violations. This research question underscores
the critical need for robust privacy measures in the face of the growing in-
terconnectedness of user data.

Research question 3 (RQ3): Is it possible to disclose hidden private
information using already published data?

It seeks to explore the extent to which publicly available data can be
utilized to uncover private information that an individual has not directly
disclosed. One method involves examining the linkability of different data
segments; by connecting separate pieces of publicly shared information, it
might be possible to deduce private details not directly disclosed. But the
purpose of this research question is to use of GAI technologies and investi-
gate their impact in disclosing private information using already published
data. These advanced algorithms can synthesize and interpret available data
to potentially uncover hidden private information. This extension of the re-
search is critical in understanding the depth to which modern technology
can penetrate privacy barriers.

Research question 4 (RQ4): How to adjust privacy user settings while
preserving privacy?
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This inquiry delves into developing methods for dynamically updating
a user’s privacy settings on social media platforms, ensuring these adjust-
ments do not compromise their privacy. This is particularly vital because
users’ privacy needs and the digital landscape are constantly evolving. As
social media becomes more integrated into daily life, users often struggle to
manually update their settings in response to new features, privacy risks, or
changes in their own privacy preferences. Effectively addressing this ques-
tion is important for enhancing user trust and safety on these platforms.
Therefore, it aims to provide a more adaptive, user-centric approach to pri-
vacy management, reducing the burden on users to continuously monitor
and adjust their settings. By automating this process while ensuring robust
privacy protection, the research could lead to significant advancements in
how social networks handle user data, potentially setting new standards for
privacy and user control in the digital world.

Research question 5 (RQ5): To what degree are the deep learning mod-
els employed in automating privacy on OSNs balance privacy concerns
and fairness?

Deep learning models are increasingly employed in assessing and ad-
justing users’ privacy settings, playing a crucial role in how personal data
is managed on various platforms. However, there is an uncertainty sur-
rounding the efficacy of these models in striking a balance between main-
taining user privacy and ensuring fairness in data handling and algorithmic
decision-making. This concern raises important questions about the trans-
parency, bias, and ethical implications of these AI-driven systems. It’s es-
sential to examine not only how these models process and protect sensitive
information, but also how they make decisions that could potentially affect
user experiences and rights. The impact of these models extends beyond
individual privacy, influencing broader issues such as data discrimination
and equitable access to digital services. Understanding and improving the
balance between privacy and fairness in deep learning models is critical for
fostering trust in digital ecosystems and ensuring that advancements in AI
are both responsible and beneficial to all users. This exploration could lead
to the development of more robust, ethical AI systems that respect user pri-
vacy while delivering fair and unbiased outcomes.

1.4 Background

This section presents relevant background and an overview of the thesis to
facilitate a better understanding of the remaining aspect of it. Other use-
ful discussions about the study framework, and aspects of the various ap-
proaches that were adopted in this work, have also been presented.
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Figure 1.1: Research questions and their mapping to the articles.

1.4.1 Measuring privacy in online social networks

In the realm of privacy management within OSNs, two predominant method-
ologies emerge: statistical-based and machine learning (ML)-based approaches.
Statistical-based methods hinge on two principal attributes: (i) the sensi-
tivity of the information divulged and (ii) the extent of its visibility within
the network framework. These methodologies typically operate on dichoto-
mous (binary-valued) or polytomous (multivalued) variables, or a fusion of
both. The essence of these methods is the computation of a privacy score,
derived from the amalgamation of partial privacy scores for individual pro-
file elements, such as email or phone number. This scoring system hinges
on both the intrinsic sensitivity of the data point and the degree of exposure
afforded by the user’s privacy configurations.

In contrast, ML-based models primarily focus on the privacy assessment
of unstructured data types, such as text and photographs. The foundational
work in this domain was introduced by Maximilian et al. (2009), which
proposed a pioneering framework for the calculation of privacy scores in
OSNs. This framework was predicated on the evaluation of two core com-
ponents: sensitivity and visibility of profile items. Sensitivity assessment is
a nuanced process, given the diverse interpretations and legal definitions,
such as those outlined in the GDPR. This complexity is heightened by the
variable levels of sensitivity that different data types might hold for individ-
ual users. The notion of sensitivity in this context encapsulates the degree
of risk associated with the public disclosure of user attributes, escalating as
the sensitivity augments.

The concept of visibility, as delineated in the framework, is contingent on
the user’s locational dynamics within the network topology. The potential
for private information leakage escalates with the user’s network connec-
tivity, whether direct or indirect. For instance, the sharing of a birth date

6



1.4 BACKGROUND

deemed private by a user with their immediate circle can inadvertently lead
to broader dissemination through that circle. The probability of such infor-
mation leakage is a function of both the individual’s visibility (i.e., the extent
of interest in the user’s information within the network) and the visibility of
their connections. Hence, the framework underscores that a higher propen-
sity for information leakage is correlated with increased visibility of both the
user and their immediate network contacts.

1.4.2 Continual learning

Continual learning (CL), also referred to as lifelong learning, is a dynamic
approach in machine learning where the model is designed to learn contin-
uously, accumulating knowledge and adapting to new data over time. This
approach is crucial for developing AI systems that can operate effectively
in real-world environments, which are constantly changing and presenting
new challenges. The core objective of continual learning is to mitigate the
problem of catastrophic forgetting, which occurs when a neural network
learns new information at the expense of previously acquired knowledge.
This is a significant departure from traditional machine learning paradigms
that typically rely on static datasets and often require retraining from scratch
when new data becomes available. In continual learning, the model is trained
on a sequence of data streams, ideally retaining the knowledge from earlier
data while integrating new information.

1.4.3 Differential privacy

Differential privacy is a mathematical framework designed to quantify and
control the privacy loss incurred when releasing information about a dataset.
The concept of (ϵ, δ)-differential privacy provides a more nuanced approach
than the standard ϵ-differential privacy, allowing for a small probability of
additional privacy loss. The formal definition is as follows:

A randomized algorithm A is (ϵ, δ)-differentially private if for any two
adjacent datasets D and D’ , and for all sets S of possible outputs, the following holds:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ (1)

In this definition, D and D′ are datasets that differ by at most one ele-
ment, representing the notion of ”adjacency” in the dataset space. The pa-
rameter ϵ (epsilon) represents the privacy loss, with smaller values indicat-
ing more privacy. The term eϵ is the base of the natural logarithm raised to
the power of ϵ, dictating the multiplicative bound on the increase in like-
lihood of any outcome. The parameter δ, on the other hand, represents a
small probability, allowing the privacy guarantee to be violated by a small
amount. This relaxation with the δ term provides flexibility, particularly in
scenarios where strict ϵ-differential privacy is too limiting or impractical.
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The significance of (ϵ, δ)-differential privacy lies in its balance between
data utility and privacy. While smaller values of ϵ and δ provide stronger
privacy guarantees, they can also limit the usefulness of the output data.
As such, selecting appropriate values of ϵ and δ is crucial and often involves
trade-offs. This framework has become fundamental in various fields where
the privacy of individuals in a dataset is paramount, such as in statistical
analysis, machine learning, and data mining.

1.4.4 Generative AI

The rise of generative AI in OSNs is a double-edged sword, offering the abil-
ity to produce content that appears authentic while simultaneously posing
significant risks for fabricating false information. This technology, which
can create convincingly human-like posts, comments, and profiles, has po-
tential applications in spreading disinformation, influencing public opinion,
and executing privacy breaches. The proliferation of deepfakes, a form of
generative AI that produces realistic fake videos and images, further exacer-
bates these risks. Deepfakes can be used for malicious purposes like revenge
porn, blackmail, or political manipulation. Moreover, generative AI’s role in
creating personalized advertisements raises concerns about covert data col-
lection and privacy infringement. The challenge lies in distinguishing fake
content from genuine material as the technology evolves and in regulating
its use, particularly in the context of rising fake news and misinformation.
Solutions include developing algorithms to detect AI-generated fake con-
tent and creating privacy-preserving tools for data analysis to protect user
privacy in personalized advertising.

Generative Adversarial Networks (GANs) have significantly impacted
privacy in the digital realm. GANs consist of two neural networks, the
generator and discriminator, working in tandem to create highly realistic
synthetic data, often indistinguishable from real data. This capability has
profound implications for privacy. On the one hand, GANs can generate
synthetic datasets that mimic real user data, enabling researchers and com-
panies to use data without compromising individual privacy. On the other
hand, GANs pose significant risks in creating realistic deepfakes, which can
be used to invade privacy, spread misinformation, and manipulate public
opinion. The authenticity of digital content is increasingly questioned, ne-
cessitating robust detection methods and ethical guidelines for GAN use.
The balance between leveraging GANs for beneficial purposes and safe-
guarding against their potential misuse remains a critical challenge in the
contemporary digital landscape.
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1.4.5 Measuring privacy and fairness

Privacy and fairness are essential elements of responsible AI. Privacy aims to
protect individual data contributions from being identified in computational
outputs, while fairness ensures equitable treatment across diverse groups.
However, the interplay between privacy and fairness, particularly in light
of recent advancements, is not fully understood. DP has been a significant
approach in maintaining privacy in deep ML models, with recent methods
striking a commendable balance between privacy and utility. For example,
De et al. employed differentially private stochastic gradient descent (DP-
SGD) with a 16-layer Wide-ResNet on CIFAR-10, achieving notable accuracy
while preserving privacy. Additionally, Park et al. introduced a more gen-
eralized algorithm, Differentially Private Sharpness-Aware Training (DP-
SAT), which outperforms DP-SGD in accuracy while providing comparable
privacy protections.

Despite these advancements, challenges remain, such as vulnerability to
Membership Inference Attacks (MIAs), which can reveal training samples.
This risk is particularly prevalent when employing a more relaxed privacy
constraint, leading to the ”Onion Effect” where removing the most vulnera-
ble data layer exposes another previously considered safe. Moreover, the
pursuit of privacy, especially through DP, can inadvertently compromise
fairness. Studies have shown that DP may result in greater accuracy drops
for unprivileged groups, leading to increased unfair outcomes. The impact
of generalization techniques, used to enhance privacy-utility trade-offs, on
fairness is also unclear, potentially introducing or exacerbating bias. Re-
search by Wang et al. highlights this by using databases with inherent biases
to investigate how ML algorithms modify bias in model outcomes, empha-
sizing the need for a nuanced understanding of these trade-offs in the de-
velopment of ethical ML technologies.

1.5 Related work and identified gap

1.5.1 Measuring privacy leakage

The prevailing methodologies in privacy score evaluation for online social
networks often view the privacy score as an aggregate of individual privacy
scores corresponding to each element of a user’s profile, such as email, re-
lationship status, and mobile phone number. The influence of each profile
item on the total privacy score is determined by two key factors: the inher-
ent sensitivity of the information and the level of visibility that arises from
the user’s chosen privacy settings. This approach underlines a critical un-
derstanding of privacy management in digital spaces.

Tracing back to the origins of this approach, Maximilian et al.’s 2009
work stands as a pioneering effort. They developed a framework that quan-
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tifies privacy scores through an interplay between the sensitivity and visibil-
ity of personal information. This conceptual model has been a cornerstone
for various subsequent researches that have adopted similar constituents
sensitivity and visibility for calculating Privacy Leakage Scores (PLS).

However, the definition and application of these components require
more in-depth analysis. When dissecting statistical-based methods, it be-
comes evident that traditional privacy metrics are employed to yield quan-
titative data on various aspects affecting user privacy. This includes, but is
not limited to, attribute information, network environment, trust dynam-
ics among users, and the nature of the published content. Despite this
comprehensive coverage, two major issues emerge with statistical-based ap-
proaches. Firstly, they tend to be inefficient. The process typically involves
isolating features, individually measuring them, and then amalgamating
these measurements into a singular privacy score. Moreover, the subjec-
tivity inherent in privacy as a concept raises significant doubts about the
validity of any derived numerical value. Secondly, these methods overly
rely on the artificial extraction of features. In the realm of privacy metrics
research, the selection and importance weighting of features for accurate
privacy leakage measurement remains a vexing issue. The identification of
inter-feature relationships and their collective impact on privacy is yet an-
other area that necessitates urgent attention.

In addition to these concerns, when the network environment of users
is taken into account, the analysis often becomes exceedingly complex and
cumbersome, especially considering the potentially millions of connections
a single user might have. Previous strategies that sought to derive a user’s
privacy score by examining their entire network frequently result in ineffi-
ciencies and inaccuracies.

Turning towards ML-based methodologies, these have recently gained
traction in addressing privacy leakage in unstructured data such as text and
images. For instance, certain studies alert users to potential exposure of
their biometric data. More importantly, ML-based approaches can uncover
hidden patterns in data that might reveal private information. This is a sig-
nificant leap from traditional methods. Despite these advancements, there
is a palpable research gap in effectively integrating ML approaches with the
traditional privacy metrics to enhance the accuracy and efficiency of privacy
leakage assessments. Such integration could potentially address the existing
inefficiencies and provide a more nuanced understanding of privacy in on-
line social networks.

1.5.2 Disclosing private information via generative AI

In the burgeoning field of generative AI, one emerging research gap is un-
derstanding and mitigating the risks associated with the unintentional dis-
closure of private information via these technologies on OSNs. While gen-
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erative AI offers innovative ways to create content, its potential to inad-
vertently reveal sensitive information has not been thoroughly investigated.
The concern is that generative AI can synthesize realistic images or other
forms of content that could unintentionally include or imply private data.
For example, AI might recreate facial features from partial images, leading
to identification risks even when users are cautious about sharing their pho-
tos. In OSNs, where users frequently post images, the risk of such uninten-
tional exposure is heightened. This gap is particularly evident in scenarios
like the ”eyes-to-face” problem, where AI-generated images of a person’s
eyes might be used to reconstruct their entire face, thus compromising their
anonymity and privacy.

1.5.3 Privacy settings automation through classification

The rapidly expanding area of automating privacy settings on OSNs offers
substantial research opportunities, especially in the context of advanced ma-
chine learning techniques. A pertinent example in this context is the au-
tomation of specific privacy settings on platforms like Instagram, such as
the ”allow profile picture expansion” option. This option in Instagram’s
privacy settings controls whether or not other users can tap on your profile
picture to see it enlarged. If the user enable this setting, other users will
be able to tap on your profile picture to view a larger version. If the user
disable it, the profile picture will only be viewable in the small format dis-
played on the user profile, helping to maintain more privacy. It is important
to note that allowing users to expand a profile picture grants them access
to a higher resolution image, thereby increasing their access to potentially
sensitive data.

One approach to automating this process involves the classification of
each user’s images. Consider a hypothetical scenario wherein a user prefers
to permit the expansion of images featuring their dogs, but not those depict-
ing their own face. In this instance, a classifier could be employed to dis-
tinguish between these categories of images. Consequently, the user could
configure the system to deactivate the expansion option when uploading a
personal portrait, and activate it when posting images of their dogs. This
method facilitates tailored privacy controls based on the content of the im-
age.

A personalized automated system for adjusting privacy settings could
be developed. Such a system would use CL to adapt to prevent storing data
when a new class of images has been added by user and therefore, less re-
sources will be used for training the classifier. Furthermore, incorporating
DP into the system enhances privacy protection, ensuring that these adjust-
ments do not compromise the user’s personal data. Therefore, a system
based on DP-CL could be implemented to classify each user’s profile image.
The final decision regarding the activation or deactivation of the ”allow pro-
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file profile picture expansion” option can be determined based on the user’s
initial action for that specific category of images.

Incorporating findings on the enhancement of privacy in machine learn-
ing algorithms, particularly in the realm of CL and DP, offers a promising
approach to this challenge. The research underscores the importance of bal-
ancing privacy protection and utility in machine learning models, especially
when faced with the need for continuous learning from streaming data. The
proposed methodology in the paper aims to effectively integrate DP into
CL, striking a balance between maintaining data privacy and ensuring the
model’s utility.

1.5.4 Privacy and fairness interplay

The interplay between privacy and fairness in machine learning models for
Online Social Networks (OSNs) is crucial due to the sensitive nature of user
data and the potential for algorithmic bias. Ensuring privacy involves pro-
tecting user data from unauthorized access, but overly strict privacy mea-
sures can lead to inadequate data representation, potentially causing bias
in model outputs. Conversely, to achieve fairness, machine learning mod-
els must be audited for biases, which requires a degree of transparency that
could conflict with privacy preservation.

This balance is further complicated by the need for personalization in
OSNs and compliance with regulatory frameworks like GDPR, which man-
date both privacy protection and non-discrimination. Achieving a harmo-
nious balance is key; models must be designed to personalize user expe-
riences without infringing on privacy or causing unfair outcomes. This is
not just a technical challenge but also a legal and ethical one. Maintaining
user trust and engagement hinges on the platform’s ability to navigate this
interplay effectively.

Addressing the privacy-fairness balance is therefore essential in creating
ethical, legally compliant, and user-friendly machine learning models for
OSNs. This approach ensures responsible data usage and algorithmic fair-
ness, fostering trust among users and aligning with regulatory standards.
It is a delicate task, but one that is crucial for the sustainable and equitable
operation of social networks in the digital age.

1.6 Summary of contribution

This thesis encompasses the publication of six papers that address the re-
search questions posed. Initially, we introduced an adaptive privacy mea-
suring framework named PriMe. This framework is designed to calculate a
privacy leakage score for each user action within an OSN, and then adjust
the privacy settings according to the user’s preferred privacy scopes and

12



1.6 SUMMARY OF CONTRIBUTION

boundaries. To ensure the accuracy of the privacy leakage scores, the frame-
work considers various types of data, actions, and personal characteristics
of each user.

Second paper investigate the impact of linkability between user profiles
and shared content across various OSNs, a factor that has considerable im-
plications for privacy leakage. We introduce a novel method for quantifying
the linkability between profiles across multiple networks, based on key fea-
tures and metrics that capture profile similarities. We applied this method-
ology to a dataset of user profiles across three online social networks named
Flickr, Facebook, and Twitter. Our approach includes examining both struc-
tured and unstructured data related to user profiles, enabling us to offer a
valuable understanding of linkability trends and identify potential privacy
risks.

To assess the impact of GAI on revealing concealed private informa-
tion, we published two papers concerning the eyes-to-face problem. In the
first paper, we introduced a novel GAN-based deep learning model called
Eyes-to-Face GAN (E2F-GAN). This model features two primary modules: a
coarse module and a refinement module. The coarse module, supported by
an edge predictor, extracts essential features from the periocular region and
produces a preliminary output, which is then enhanced by the refinement
module. In the second paper, we developed another GAN-based model
named Eyes-to-Face Network (E2F-Net). This approach employs two spe-
cialized encoders to separate identity and non-identity features from the
periocular region. These features are mapped to the latent space of a pre-
trained StyleGAN generator, leveraging its advanced capabilities and its
rich, diverse, and expressive latent space without needing additional train-
ing. We also enhanced the StyleGAN output by implementing a new opti-
mization technique for GAN inversion, aimed at locating the optimal code
within the latent space.

To continuously adjust the privacy settings of a user profile, we proposed
a methodology by which we cannot only strike a tradeoff between privacy
and utility, but also mitigate the CF. The proposed solution presents a set
of key features: (1) it guarantees theoretical privacy bounds via enforcing
the DP principle; (2) we further incorporate a robust procedure into the pro-
posed DP-CL scheme to hinder the CF; and (3) most importantly, it achieves
practical continuous training for a CL process without running out of the
available privacy budget.

In the sixth paper, we explore how different generalization techniques af-
fect private and non-private learning in both biased and unbiased data sce-
narios. We assess the privacy risks associated with these scenarios through
membership inference attacks (MIAs) and analyze the effects of removing
samples that pose a high privacy risk, referred to as outliers. Additionally,
we introduce a new metric called ABE, which simultaneously measures ac-
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curacy, privacy, and bias.

1.7 Conclusion

In conclusion, this thesis has significantly advanced the understanding and
management of privacy within online social networks through its explo-
ration of key research questions. We have demonstrated innovative meth-
ods and frameworks that measure and adjust privacy settings dynamically,
addressing the urgent need for privacy management in an increasingly in-
terconnected digital world. Notably, the PriMe framework sets a precedent
in privacy management by calculating privacy leakage scores and adjust-
ing settings in real-time, based on user preferences and actions. Further-
more, our investigations into the linkability of user data across platforms
have highlighted potential privacy risks and provided strategies to mitigate
these through better privacy protection mechanisms. These contributions
underscore the importance of sophisticated privacy measures and provide
a foundation for further research in protecting user privacy in online envi-
ronments.

Additionally, our research delves into the possibilities of revealing hid-
den private information through advanced generative adversarial networks
and explores the dynamics of continuously updating privacy settings with-
out depleting privacy budgets. The Eyes-to-Face GAN and Network models
represent significant strides in using deep learning to analyze and protect
personal data. Through the deployment of these models, we have shown
that it is possible to enhance the security and fairness of automated systems
in managing user data, thereby fostering trust and ensuring equitable treat-
ment in digital interactions. Our work not only contributes to the academic
discourse on privacy and data security but also offers practical insights and
tools that can be adopted by developers and policymakers to create safer
and more respectful online spaces.
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Chapter 2

PriMe: A Novel Privacy Measuring
Framework for Online Social Networks

Ahmad Hassanpour, Bian Yang
Abstract

Online Social Networks are responsible for disclosing a large amount of
sensitive information. Users unintentionally reveal their sensitive informa-
tion and are unaware of the privacy risks involved. But the users should
be well informed about their privacy quotient and should know where they
stand on the privacy measuring scale. In this paper, we proposed an adap-
tive privacy measuring framework called PriMe that can measure the pri-
vacy leakage score for each action of a user in an OSN and subsequently ad-
just the privacy settings based on the preferred privacy scopes and bound-
aries. Various types of data, actions, and personal characteristics of each
user have been considered to ensure the calculated privacy leakage score is
accurate.

Keywords- Online social network, privacy leakage, measuring privacy.

2.1 Introduction

The ubiquity of information communication technologies which is leading
to present-day digital society has changed the basic principles of human
interaction. Although privacy, as one of these principles, has been noted
for several decades ago [1], it is attracted a lot of attention in recent years.
Online social networks (OSNs) (e.g., Facebook, LinkedIn, MySpace), as a
particular type of virtual community, attempt to provide helpful functional-
ities including maintaining/increasing social relationships [2], finding users
with similar interests, improving our knowledge [3], and financial bene-
fits, the published data in such environments can violate various aspects of
users’ privacy [4]. In fact, users are virtually interacting continuously, and
disclose various levels of private information about themselves or others
unconsciously [5]. Therefore, OSNs are one of the main bridges of revealing
personal information by allowing users to upload their footprints (e.g., text,
images, and videos) and interact with others in a variety of ways. Moreover,
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2. PRIME: A NOVEL PRIVACY MEASURING FRAMEWORK FOR
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by raising the number of users of an OSN which lead to more dissemination
of information, as well as sharing different varieties of information within
many OSNs, users’ privacy concerns may increase. Additionally, the recent
approval of the GDPR (General Data Protection Regulation) compels OSN
service providers to provide more data protection settings and offer further
control to OSN users over their personal data. In the following, some chal-
lenging problems which users and OSN providers are facing due to preserv-
ing the privacy of users have been discussed.

First, privacy is a multi-dimensional concept especially when it is under
investigation in the OSNs context. Inspiring by Burgoon et al. [6], Zhang
et al. [7] proposed a fourdimensional privacy concept including virtual ter-
ritory privacy, factual privacy, interactional privacy, and psychological pri-
vacy. C1) virtual territory privacy: differing from physical privacy which
is defined as the freedom from surveillance and unwanted intrusions upon
one’s space by the physical presence, touch, sights, sounds, or odors of oth-
ers, in the virtual social context, there are no physical boundaries that help
define the private territory. However, people still feel ownership of the dig-
ital belongings that they are entitled to or that are created by them (for ex-
ample, web-logs, personal spaces, profile pages, etc.). C2) factual privacy:
refers to the ability to control identifiable personal information about one-
self. C3) interactional privacy: individuals may feel compelled by or un-
comfortable under some circumstances relating to social interaction. For
example, conversation requests may be initiated obtrusively or at inappro-
priate times. C4) psychological privacy: people need the freedom to express
their own views and the capability to hide themselves from norms that they
do not agree with. Psychological privacy protects the individual from intru-
sions upon one’s thoughts, feelings, and values.

Second, each user usually has a scope in his/her mind before publishing
any data on OSNs, and privacy requires keeping the published information
in its predesignate scope. The work [8] defined the scope as S1) breadth
(the distribution of audience), S2) depth (the degree of allowed usage), and
S3) lifetime (the long life of the published data). When a piece of infor-
mation is moved beyond its predesignate scope in any of these dimensions
(accidentally or maliciously), a privacy breach occurs. Therefore, a breach
may occur when information is shared with a party for whom it was not
intended (disclosure), when information is abused for a different purpose
than was intended, or when information is accessed after its intended life-
time. Aside from the scope, users in OSNs are contending with privacy three
boundaries [9] including B1) disclosure (users try to handle the anxiety of
disclosing their information in a public or private manner) B2) identity (the
identity boundary is described as the ability to manage one’s information
with particular groups. For example, it shows users’ behaviors in differ-
ent situations: one at work and the other at a party) B3) temporal (it shows
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Figure 2.1: The relation between privacy dimensions, scopes, and bound-
aries has been presented. Each dimension has its own scopes (i.e., breadth,
depth, and lifetime), and each scope has its own boundaries (i.e., disclosure,
identity, temporal).

how the conduct of individuals may differ over time). Privacy has various
dimensions, and users try to consider different scopes and have their own
boundaries. Our notion of the relation between the dimensions, scopes, and
boundaries has been presented in Figure 2.1 Each dimension has its corre-
sponding scopes, and each user has a different boundary for each scope.

Finally, to perfectly utilize the provided functionalities of an OSN, users
need to publish more information, thus, there is a tradeoff between opti-
mal use of functionalities and user privacy. Moreover, another issue called
the privacy paradox has been observed in users’ online behavior [10][11].
Recent research has revealed discrepancies between user attitude and their
actual behavior. More specifically, while users claim to be very concerned
about their privacy, they nevertheless undertake very little to protect their
personal data.

Considering all dimensions of privacy and users’ scopes to preserve the
privacy of users in OSNs is extremely challenging. As a solution, OSNs
provide policies and privacy settings to control and adjust who can access
users’ profiles and posts [12], [13]. However, the privacy policies offered by
the system are confusing and expressed in legal jargon that is difficult to un-
derstand. Furthermore, privacy settings are complex, time-consuming, and
still insufficient to fully protect users’ privacy [14]. Besides, OSN providers
mostly store, process, analyze users’ data, and sometimes sell them to third-
parties for advertising and marketing purposes. Moreover, to prevent pri-
vacy breaches in OSNs, privacy has been investigated from various perspec-
tives (i.e., social, legal, and technical ) among researchers.

One of the effective solutions for preserving the privacy of OSNs’ users
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is measuring the privacy leakage for each piece of published data. By doing
this, users will be noticed the portion of privacy that might be violated. Con-
sidering the intended scope of users and more technically, extracting risks
from published data such as comments and posts to calculate the privacy
score is a demanding task. Interestingly, publishing some information that
is risk-free for many users can be detrimental to others such as a criticism
against religion or government since in some countries such criticisms are
acceptable, while in other countries, will lead to difficulties. Different au-
thors have proposed various techniques and methods from the algorithmic
approach to statistical ones to score and measure privacy. The main two
approaches for measuring privacy are statistical or machine learning (ML)-
based. For each approach, several models have been proposed to measure
the privacy of users in OSNs. The most well-known methods related to
these approaches have been discussed in the related work section.

In this paper, we proposed PriMe which is an adaptive privacy measur-
ing framework that can measure the privacy leakage score (PLS) for each ac-
tion of a user in an OSN and adjust the privacy setting of each user based on
the preferred privacy scopes and boundaries. Various types of data, actions,
and personal characteristics of each user have been considered to ensure
the calculated PLS is accurate. Moreover, we discussed why the previous
methods for calculating PLS are not precise and proposed a new method.

2.2 Related works

From the technical point of view, the statistical-based methods mostly rely
on two intuitive properties (i) the sensitivity of the information being re-
vealed and (ii) the visibility of the revealed information within the net-
work. The proposed methods are working on Dichotomous or Polytomous
variables or a combination of them. On the other hand, ML-based models
mostly try to measure the privacy of unstructured data (text, photo, etc.). In
the following, we briefly review the proposed methods for both approaches.

2.2.1 Statistical-based approaches

Notably, A dichotomous variable takes only one of two possible values when
observed or measured. The value is most often a representation of a mea-
sured variable (e.g., age: under 65/65 and over) or an attribute (e.g., gen-
der: male/female). A variable having more than two possible categories, ei-
ther ordered or unordered called polytomous variable. For example, college
matriculation could be described as a polychotomous variable: freshman,
sophomore, junior, or senior. Table 2.1 summarizes several statistical-based
methods for measuring privacy score the type of data (dichotomous, poly-
tomous variables, or their combination), the proposed formulation, and a
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short description has been extracted for each paper. Most proposed meth-
ods, consider privacy score as a combination of the partial privacy scores of
each one of his profile items (e.g., email, relationship status, mobile phone
number). The contribution of each profile item in the total score depends on
the sensitivity of the item and the visibility it gets due to the user’s privacy
settings.

one of the first attempts to design a privacy metric for online social net-
works was proposed by Maximilian et al. [15] in 2009. The authors have
proposed a framework to calculate the privacy score based on the sensitiv-
ity βi and the visibility v(i, j) of profile items i ∈ {1, . . . , n} of user j in a
social network.

PR(i) =
∑
i

PR(i, j) =
∑
i

βi × v(i, j) (1)

Several other papers, listed in Table 2.1, proposed other methods for mea-
suring PLSs based on the same components (i.e., sensitivity and visibility).
In the following, we will review the definition of these components and how
they have been used.

Sensitivity: Specifying the sensitivity of data is a challenging task since
sensitive data can be a number of things. One of the easiest ways to evaluate
is to think of personal data you would not want to be openly shared with just
anyone. There are, of course, federal laws and regulations that set specific
guidelines on what types of sensitive data must be protected, like financial
information (e.g., Credit card numbers, bank account information, and so-
cial security numbers), government information (e.g., any document that is
classified as secret or top-secret, restricted, or can be considered a breach of
confidentiality), business information (e.g., accounting data, trade secrets,
financial statements or accounts, and any sensitive information in business
plans), personal information (e.g., addresses, medical history, driver’s li-
cense numbers, or phone numbers). However, GDPR makes a clear distinc-
tion between sensitive and non-sensitive personal data. Article 9 of GDPR
establishes special categories that require extra attention. Sensitive data, or
special category data, according to GDPR is any data that reveals a sub-
ject’s information including racial or ethnic origin, political beliefs, religious
beliefs, genetic or biometric data, mental health or sexual health, sexual ori-
entation, and trade union membership. Besides having various types of
sensitive data, the level of sensitivity of each data type can be different for
each user. For example, politicians publish their political opinions on OSNs
without having any concerns.

Shortly, sensitive data is information most people would not want to
share with others who don’t have approval, and sensitivity shows the risk
associated with the attributes of the user. when the sensitivity of an attribute
increases, the risk posed by information disclosure of the individuals also
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Table 2.1: Summarize of various privacy scoring solutions based on
statistical-based approaches

Author and year Approach/Data
Type Data Source Proposed formulation Description

Renner (2010)
[16]

Dichotomous Facebook Risk = Negative consequence × Likelihood

defining privacy risk by considering
two privacy metrics including negative
consequence information leakage and the
likelihood of information leakage.

Maximilien et
al. (2009) [15] Dichotomous -

PR(k, l) = βk × v(k, l)
βk = (M−|Rk|)

M

PR(k, l) shows privacy score. βk shows the
sensitivity of k-th attribute, v(k, l) shows the
visibility of attribute k of user l, |Rk| is the
number of individuals that make their attributes
publicly available, M is number of users.

Maximilien et
al. (2009) [17] Dichotomous -

PR(k, l) = βk × v(k, l)
βk = (M−|Rk|)

M

PR(k, l) shows privacy score. βk shows the
sensitivity of k-th attribute, v(k, l) shows the
visibility of attribute k of user l, |Rk| is the
number of individuals that make their attributes
publicly available, M is number of users.

Srivastava and
Geethakumari
(2013)[18]

Dichotomous/U
nstructured private dataset

PQ(j) =
∑

k βk × v(k, l)
v(k, l) = |Rk|

M × |Rl|
M

βk = (M−|Rk|)
M

PQ(j) is final privacy score. βk shows the
sensitivity of k-th attribute. v(k, l) shows the
visibility of attribute k of user l, |Rk| is the
number of individuals that make their attributes
publicly available, M is number of users.

Domingo-Ferrer
(2010)[19]

Dichotomous/S
tructured

Simulation-
based
experiments

PRF

=
∑N

j′=1,j′ ̸=j

∑n
i=1

∑l
k=1 βikV (i,j′,k)I(j,j′,k)

1+
∑n

i=1

∑l
k=1 βikV (i,j′,k)

Where j and j′ are the two users in the social
networks, k indicates the number of links
between users and n indicates the number of
attributes for a user. I (j, j′, k) = 11 If j′ and
j are k links away from each other, otherwise 0.

Nepali and
Wang (2013)
[20][21]

- - PIDX =
∑m

k=1 p′
ks

′
k∑n

k=1 sk
× 100

p′k shows the visibility of each attribute, and s′k
shows the corresponding weight. n indicates the
number of attributes, and m shows a subset of
them which belongs to k-th user.

Talukder et al.
(2010)[22]

Dichotomous/S
tructured - Si

γ =
∑q

k=0 ω
(k)ψ

(k)
i ψ̃(k)

ω(k) is the relative sensitivity vector for
attributes, Privometer records the success and
failure of the inferred attributes as a vector,
called attribute matching vector, ψ̃. We also
represent ψ(k)

i as matching vector that records
the matches between two attributes.

Petkos et al.
2015[23]

Dichotomous - PQ(j) =
∑

k βk × v(k, l)
PQ(j) is final privacy score. βk shows the
sensitivity of k-th attribute. v(k, l) shows the
visibility of attribute k of user l.

Liu and Terzi
(2010)[24]

Polytomous/Str
uctured

Synthetic and
private dataset Pij =

1

1+e−αi(θj−βi)

βi shows the sensitivity of attribute i.
αi quantifies the discrimination power.3

Becker and
Chen (2009)
[25]

Polytomous Facebook Privacy measured based on inference
detection Try to infer attributes of each user.

Aghasian et al.
(2017) [26]

Polytomous/Str
uctured

Facebook,
ResearchGate,
LinkedIn, and
Google +

Privacy =
∑m

i=1 βi×Fvis(xi)

m

βi shows the sensitivity of attribute i.Fvis(xi)
indicates the visibility score for each attribute
calculated by fuzzy rules.

Pensa and Di
Blasi (2017)
[27]

Polytomous/Str
uctured Facebook Privacy measured based on sensitivity and

visibility

measure the privacy risk of the users and help
the users customize semi-automatically their
privacy settings

Table 2.2: Summarize of various privacy scoring solutions based on machine
learning-based approaches

Author and year Approach/Data
Type Data Source Machine learning Algorithm Description

Li et al., (2020)
[28]

Structured Collect data from Sina Weibo Deep neural network
Calculating privacy score by extracting profile
information and graph structure information of
users’ friends.

Aghasian et al.,
(2020)[29]

Structured and
unstructured (text)

Collect data from Facebook and
Twitter Fuzzy-based model

measure and warn users regarding the textual
data privacy risks they have shared in online
social platforms.

Aghasian et al.,
(2017)[30]

Structured
Collect data from Facebook,
ResearchGate, LinkedIn, and
Google+.

Statistical and fuzzy systems specify the potential information loss for a user
by using obtained privacy disclosure score

Yu et al., (2018)
[31]

Unstructured
(image)

public image sets, PicAlert and
Mirflickr Deep neural network

recommending fine-grained privacy settings
for social image sharing by considering content
sensitiveness of the images and trustworthiness
of the users

Orekondy et al.,
(2017)[32]

Unstructured
(image) Visual Privacy (VISPR) dataset Deep neural network

predict user specific privacy score from images
in order to enforce the users’ privacy
preferences

Battaglia et al.,
(2020)[34]

Unstructured (text) Collect data from social media
k-NN, decision tree (DT), Multi-layer
Perceptron (MLP), SVM, Random Forest (RF),
and Gradient Boosted trees (GBT)

Assign a score to any text sample according to
its degree of sensitivity

Tseng et al.,
(2024)[39]

Unstructured (image) Collect data from social media Deep Learning Localize sensitive objects

Zhao et al.,
(2023)[40]

Unstructured (image) Collect data from social media Deep learning predict privacy for online images

Liu et al.,
(2023)[41]

Unstructured (image) Collect data from social media Decision Tree model extract sensitive relations from the photos labeled private or public

Xompero et al.,
(2024)[42]

Unstructured (image) PrivacyAlert Dataset Deep Learning identify and quantify objects relevant to privacy classification
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increases. If |Rk| shows the number of individuals that make their attributes
publicly available, M is number of users, [15] calculates the sensitivity of k-
th item by βk = (M−|Rk|)

M .
Visibility: The probability of leakage of private information of a user also

depends on the position of the user in network topology. If the user himself
is directly or indirectly connected to a large set of nodes in the network,
then the chances of information leakage through his neighbors increase. For
example, if a user considers his birth date as a piece of private information
and shares only with his friends, it is highly likely that any one of his friends
may share such information further with his friends, thereby causing an
information leakage. The probability of this leakage will primarily depend
on the number of users in his vicinity in one or more hops. Therefore, the
probability of leakage increases with the visibility of the user himself(i.e.,
the number of users who would be interested in the information of the user)
as well as the visibility of his/her friends.

Assuming independence between items and users, we can compute Pi,j

to be the product of the probability of a 1 in the i-th row of R (i.e., |Ri|
N )

and the probability of a 1 in the j-th column of R (i.e., |Rj |
n ). That is, if

|Rj | is the number of items for which j sets R(i, j) = 1, we have v(i, j) =(
|Ri|
N

)
∗
(

|Rj |
n

)
. this notion does not measure the visibility for a specific item

very accurately. Consider two users i and k in an OSN with 10 users, and
a specific item j. Assume user i revealed 3 items out 10 items that existed
in the OSN, and user k revealed 6 items, both revealed item j. Also assume
the probability of revealing item j is 0.7 (i.e., |Rj |

n = 0.7 ). Therefore, the
visibility score for user j and item j is v(i, j) = 0.3 ∗ 0.7 = 0.21 and for
the user k is v(i, j) = 0.6∗0.7 = 0.42. The problem here is that the more a
user discloses its information, the more visibility score will be charged for
each disclosed item. Moreover, here, the visibility of an item is calculated
without considering the users’ network. Therefore, if user i and k have the
same network (friends), their visibility scores for the same item ( j ) is not
equal because one of them revealed more information.

Discussion on statistical-based approaches: The proposed statistical-based
methods are using traditional privacy metrics to obtain quantitative statis-
tics on all the aspects that affect users’ privacy disclosure, including but not
limited to attribute information, network environment information, trust
between users, and publishing information content. However, these ap-
proaches face two problems. First, these approaches are inefficient. Most of
these approaches first extract features, then measure them separately, and
finally integrate them into a numerical value. In addition, the calculation
method also faces various doubts because privacy is a virtual concept with-
out a unifying principle, and any calculation is considered to be subjective
and unconvincing. Second, this method relies too strongly on artificial fea-

23



2. PRIME: A NOVEL PRIVACY MEASURING FRAMEWORK FOR
ONLINE SOCIAL NETWORKS

Table 2.3: The proposed privacy leakage metrics for each data type

Data type Proposed Metrics
user network Number of friends, Measuring trust for each friend

structured /
unstructured data

If the data include sensitive information, types of
sensitive information (e.g., biometric, religion,
political view), transparency of provided data,
uniqueness.

action if the action include sensitive information (e.g.,
post a content, like a post), lifetime of action.

ture extraction. In previous research on privacy metrics, feature extraction
is a difficulty. Which features can be used for privacy measurement? Which
features are more important to measure privacy leakage more accurately?
What associations exist between these features? These problems urgently
need to be solved. Meanwhile, when considering the network environment
of users, there may be tens of millions of links around a user. Previous meth-
ods obtained only one user’s privacy score after analyzing the whole net-
work, which is undoubtedly inefficient and inaccurate [35].

2.2.2 Machine learning-based approaches

Apart from statistical-based approaches, ML-based models have been re-
cently used to measure privacy leakage in unstructured data (text, photo,
etc.). Some works like [38] can be used to warn the users when part of their
biometric data is not hidden, however, ML-based methods can be used to
infer the hidden patterns which can assist to disclose the privacy of users.
To do this, these approaches try to extract informative private features from
unstructured data. Table 2.2 presents some methods which used ML meth-
ods like deep learning to extract sensitive information or measure privacy
leakage.

2.3 Proposed privacy adaptive meter

2.3.1 Framework

Figure 2.2 shows our proposed adapted privacy meter framework called
PriMe including five main modules called User Data, Personal Attribute
Analyzer, Privacy Leakage Metrics, Privacy Meter, and Adaptive Privacy
Awareness. By considering various data types, actions, and privacy prefer-
ences, this framework allows to design and implement an adaptive privacy
meter such that different dimensions, scopes, and boundaries of privacy will
be measured and adapted for each user separately. Moreover, the frame-
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work is highly flexible due to our modular design, thus, some proposed
modules can be changed depending on the OSN’s requirements.

Moreover, we proposed a different way of measuring PLS comprising
three main parameters called sensitivity, linkability, and visibility, leading
to a more accurate PLS.

2.3.2 Users data

OSNs’ Users generate and provide various types of data including their
actions (e.g., like, reshare, add/remove/block to their friendship list), un-
structured data (e.g., images, texts, videos), structured data (e.g., birth date,
marital status, hometown), and user network (e.g., name of current friends,
blocked friends). Undoubtedly, each of this information discloses the pri-
vacy of the user to a different degree. For instance, sharing a personal video
clip that includes our biometric information (e.g., our face image) reveals
more sensitive data compared to liking our friends’ post that includes his
face image. Therefore, to have a comprehensive privacy meter framework,
all provided data types by users should be considered during the calcula-
tion.

2.3.3 Privacy leakage metrics

For each type of data, some metrics are calculated to assist the privacy me-
ter module in measuring the PLS more accurately. These metrics extract
some characteristics from the raw data or analyzed data. Table 2.3 shows
some of our proposed metrics for different data types. By employing these
metrics, we aim to convert each portion of data into a numerical value that
indicates the sensitivity of each data segment. Thus, the proposed metrics
serve multiple purposes. First, they help in identifying sensitive patterns
for various portion of data that could indicate potential privacy risks. Sec-
ond, they allow us to compare the sensitivity levels across different types
of data, facilitating a more comprehensive privacy analysis and therefore,
more accurate PLS. Lastly, these metrics are integral in developing strate-
gies to mitigate privacy risks by highlighting areas that require enhanced
protective measures.

2.3.4 Content analyzer

Measuring the sensitivity of published unstructured data is a highly chal-
lenging task. For instance, a political view can be revealed by a short text,
an image, or posting a protesting clip by the user. To detect the revealed
political view in each of these modalities, different types of AI algorithms
are required (e.g., usually natural language processing algorithms are be-
ing used for analyzing texts, and computer vision algorithms for analyzing
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images and videos). Thus, the content analyzer should include several AI
models which can detect various types of sensitive content in different un-
structured data.

2.3.5 Personal attribute analyzer

Personal attribute analyzer has the responsibility of extracting static (e.g.,
big five traits) and dynamic (e.g., emotions) personal attributes from the
shared data. These features assist us to measure privacy leakage more accu-
rately. For example, if a user posts, likes, or shares more compared to other
users, the value of the extravert attribute can increase for that user, and con-
sequently, he is leaking his privacy. Moreover, measuring these attributes
help us to develop an adaptive privacy measuring framework.

2.3.6 Privacy meter

Privacy meter is the main module of this framework which has the respon-
sibility of calculating PLS based on the received raw data, personal attribute
analyzer, content analyzer, and the calculated metrics by privacy leakage
metrics module. It should continuously measure the PLS for each taking
or withdrawing action. The main four submodules of privacy meter are
the sensitivity calculator, visibility calculator, linkage calculator, and privacy
leakage score calculator. Therefore, the privacy leakage score will be a func-
tion of three inputs PR = F (sensitivity, linkage, visibility). The function F
should be implemented in the privacy leakage score calculator, and each of
the three parameters has its own block, explained in the following subsec-
tions.

Sensitivity Calculator: previous methods calculated the sensitivity based
on the behaviors of users of a specific OSN which means the more users re-
veal a piece of information, the less sensitive score is considered for it. But
article 9 of GDPR defined the categories of sensitive information, explained
in section II (A). Therefore, if the content analyzer detects the seven cat-
egories of sensitive data (racial or ethnic origin, political beliefs, religious
beliefs, etc.), a high sensitivity score will be assigned for that piece of in-
formation. Other information will be categorized into semi-sensitive and
nonsensitive data. The semi-sensitive data refers to those data that some
users may have concerns about revealing them like home address, phone
number, working organization, or even some actions such as liking a post.
Semi-sensitive and nonsensitive can be adaptively categorized for each user
separately which will be done in the adaptive privacy awareness module,
described in the next section.

The sensitivity calculator receives the required information from the con-
tent analyzer, privacy leakage metrics, or even user data modules. There-
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Figure 2.2: Overview of proposed privacy measuring (PriMe) framework
including five modules called user data, privacy leakage metrics, personal
attribute analyzer, privacy meter, and adaptive privacy awareness.

fore, based on the received information, the type of sensitivity (sensitive,
semisensitive, non-sensitive) will be measured and converted to a score.

Visibility Calculator: the proposed methods by previous works for calcu-
lating the visibility of a specific item are dependent on the visibility of other
items shared by the user. Obviously, the more users can see a specific item,
the more PR = F ( sensitivity, linkage, visibility ) = sensitivity ∗ linkage *
visibility

visibility score should be considered for it. For those users who do not
have a small number of friends, the visibility of a published item should
not be high even if he/she is published many other personal items/data.
Moreover, a trustworthiness score should be considered for each user who
existed in the network. Undoubtedly, the visibility score will decrease if the
users in the network receive a high trustworthiness score since the revealed
data will not share with other users in the network.

The visibility of an OSN should be considered as another factor for mea-
suring the visibility of each published item. Some OSNs are open to search
engines, thus, all users on the Internet can search for the content of the pub-
lished information in a specific OSN. Besides, in some OSNs like LinkedIn
some actions (e.g., like, share) lead to users who are not in our connections
being able to see our published posts, resulting in more visibility of data.

Linkage Calculator: The linkability between two posts or a post and
action can disclose more privacy and thus increase the PLS. For instance,
user’s political view can be revealed after liking several posts of a specific
party. Therefore, the linkability between the provided information and ac-
tions should be considered during calculating the PLS (the dashed blue lines
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in Figure 2.2). Generally, for each portion of data d, the dependency and
linkage with other portions that existed in the whole internet should be cal-
culated, d ⊥ I, where I demonstrates the set of all data on the internet and
⊥ shows the linkability.

Privacy Leakage Score Calculator: After calculating the three main pa-
rameters, the PLS can be measured by simply multiplying the three pa-
rameters: Since the PLS should be measured continuously, thus, continual
ML-based methods that preserved the privacy of users should be utilized
[36][37].

2.3.7 Adaptive privacy awareness

Discrepancies between users’ attitude and their actual behavior, and hav-
ing different tastes and priorities for revealing information force a privacy
framework to be adaptive. For instance, revealing biometric information is
not important for some people while they do not like their political views
to be disclosed. Therefore, to have an adaptive privacy informant, some
personal characteristics of each user are required.

Adaptive Privacy Analyzer: After calculating the PLS by privacy meter
for each action of a user, each reaction of the user will be monitored by this
module. This assists to find a relation between the user’s personality and
his privacy preferences. By doing this, the preferred scopes and boundaries
of a user can be fulfilled and measured continuously.

Privacy Informant: this module can inform the user about any privacy
leakage after each action or adjust the privacy settings automatically.

2.4 Discussion

The characteristics of the proposed framework (i.e., considering all data
types, analyzing the personal attributes of each user, measuring the PLS,
and more importantly an adaptive privacy setting) lead to cover all aspects
of privacy including dimensions, scopes, and boundaries. Regarding di-
mensions (i.e., C1-C4), using PriMe users can specify their own virtual ter-
ritory, the identifiable information and psychological attributes of each user
will be detected, and privacy settings will be adjusted such that it complies
with the interactional privacy. In regard to the scopes (i.e., S1-S3), users can
utilize the provided metrics (by privacy leakage metrics) for their published
data (i.e., network, actions, and data), and decide about breadth, depth, and
the lifetime of data. The adaptivity of the proposed framework allows for
fulfilling all boundaries and thus, each user can choose its own identity, tem-
poral, and disclosure.

Calculating the sensitivity, linkability, and visibility for each piece of data
is not a trivial task, mostly because of two reasons. First, when the data is

28



2.5 CONCLUSION

unstructured, extracting sensitive features should be done by some ML al-
gorithms e.g., deep learning models, which need a large amount of training
data. Moreover, the selected ML algorithm should be trained on each sen-
sitive category separately, which might be different for each user. Second,
calculating linkability between a large number of actions on an OSN such
that the detected linkability leads to an increase or decrease of PLS is a diffi-
cult task.

2.5 Conclusion

In this paper, we proposed an adaptive privacy framework that can measure
a score for each action of a user including posting, liking, adding someone
to the network, etc. The proposed framework includes five main modules
including User Data, Personal Attribute Analyzer, Privacy Leakage Metrics,
Privacy Meter, and Correlation Analyzer. Moreover, we proposed a more ac-
curate method for measuring PLS which comprises three parameters called
sensitivity, linkage, and visibility. In future works, we will further elaborate
on the PriMe’s modules and provide practical solutions for calculating PLS
with more details.
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Chapter 3

The Impact of Linkability On Privacy
Leakage

Ahmad Hassanpour, Masrur Masqub Utsash, Bian Yang
Abstract

Online Social Networks are responsible for disclosing a large amount of
sensitive information. Often, users unknowingly disclose vast amounts of
sensitive and potentially (un)related data, oblivious to the associated pri-
vacy risks. Our research provides a comprehensive evaluation of the linka-
bility between user profiles and shared content across various OSNs, a factor
that has considerable implications for privacy leakage. We introduce a novel
method for quantifying the linkability between profiles across multiple net-
works, based on key features and metrics that capture profile similarities.
We applied this methodology to a dataset of user profiles across three on-
line social networks named Flickr, Facebook, and Twitter. Our approach
includes examining both structured and unstructured data related to user
profiles, enabling us to offer a valuable understanding of linkability trends
and identify potential privacy risks. Through our findings, we aim to in-
form the development of privacyenhancing technologies and contribute to
improving the current privacy landscape within OSNs. Our research un-
derscores the critical need for robust privacy measures in the face of the
growing interconnectedness of user data across different social networks.

Index Terms-Linkability, Online Social Networks, Privacy Leakage.

3.1 Introduction

The rise of the World Wide Web has significantly changed the fundamentals
of human interaction because of the increasing use of information commu-
nication technologies in the modern digital society. Online social networks
(OSNs) (e.g., Facebook, Twitter, LinkedIn, Reddit) provide an environment
through which individuals may interact, share knowledge, express their
emotions, and establish and preserve relationships with other online users
[28]. This advancement of technology is accompanied by huge privacy con-
cerns as most of the users tend to publish a lot of valuable information in
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the form of both structured (e.g., name, phone number, address, workplace,
school) and unstructured data (e.g., text, image, video) [33] without even
knowing them consciously [6]. Therefore, OSNs serve as a crucial platform
for exposing personal information by enabling users to share their activities
and engage with others through different means which can lead to violation
of users’ privacy in various aspects [16].

Protecting users’ privacy in OSNs is a multifaceted challenge that re-
quires consideration of all dimensions of privacy, including personal, con-
textual, and societal factors [34]. Although OSNs offer policies and privacy
settings to regulate user profiles and posts [7], but the used language is
complex and difficult to understand, making users vulnerable to privacy
breaches [29]. Moreover, OSN providers collect, process, and analyze user
data, and may also sell this data to third parties for advertising and mar-
keting purposes [24]. Consequently, researchers have investigated privacy
from various perspectives, including social, legal, and technical, in order to
prevent privacy breaches and improve privacy protections in OSNs.

Previous experimental findings have revealed conflicts between privacy
controls and the functionalities offered by OSNs which allows a range of pri-
vacy exploits such as indicating a misalignment between users’ desired level
of privacy control and the actual outcomes achieved [19]. Moreover, users
now a days tend to use multiple OSNs for separate purposes as the primary
capabilities differ from one another and users disclose different types of pri-
vate information within those platforms. As a result, being able to link one
user’s multiple OSN profiles can lead to increase privacy leakage because
of the access to more diverse private information [5] [1]. Crosslinking mul-
tiple OSN platforms thus can facilitate profile and data correlation, leading
to inadvertent information sharing and privacy breaches. In the context of
measuring privacy leakage, several previous experiments [21] [26] [11] [22]
suggested that the privacy quotient is calculated based on sensitivity (the
level of confidentiality and potential harm if disclosed [23]) and visibility
(the extent to which data can be accessed, viewed, or shared by other en-
tities [14]). Inspired from there, Hassanpour et al. [15] proposed an adap-
tive privacy leakage calculating framework where an additional and impor-
tant metric called linkage has been introduced which can be used alongside
sensitivity and visibility in order to obtain a more accurate privacy leakage
score calculation.

Our work is shown the impact of linkability on privacy leakage. We eval-
uate the degree of connection between identities and published content on
distinct OSNs. In the context of OSN, the linkability score is particularly
important for privacy leakage score calculation due to the vast amount of
personal information that is shared and interconnected across different plat-
forms. For example, if a user’s Facebook and Twitter accounts are linked,
it may be possible to infer additional information about the user based on
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their activity across both platforms which might increase the privacy leak-
age score. On the other hand, the disclosure of user interests on one OSN
may be accompanied by the publication of conflicting or unrelated infor-
mation on the same or other OSNs, resulting in a potential fluctuation or
decrease in the privacy score due to the contradicting nature of the newly
shared information.

The objective of this paper is to evaluate the degree of linkability be-
tween user profiles across multiple OSNs which can be referred as user
profiling and also evaluate the linkability of users’ published information
among different OSNs. User profiling is the process of constructing a thor-
ough description of a specific user based on that person’s actions, prefer-
ences, interests, and other crucial characteristics, thereby gathering insights
into their behaviors and preferences [12] [17]. To address this challenge, we
propose a method for measuring linkability between profiles across multi-
ple networks, based on a set of features and metrics that capture the simi-
larity between the profiles. Additionally, we conducted an analysis to estab-
lish connections between users’ posts across multiple online social networks
(OSNs) with the aim of identifying the linkability of users’ shared informa-
tion. Our method provides a quantitative assessment of linkability, enabling
the identification of potential privacy risks and informing the development
of privacy-enhancing technologies. We apply our method to a dataset of
user profiles across multiple social networks (i.e., Flickr, Facebook, Twitter)
and present our findings, demonstrating the utility of our approach in mea-
suring linkability between profiles and among published posts.

In order to accomplish our research objective, we used two main meth-
ods to evaluate linkability. The first strategy concentrated on looking at user
profiles’ related structured data, whereas the second strategy looked at un-
structured data. We sought to obtain a thorough grasp of linkability trends
by methodically examining both types of data. We then used the results
from these two methodologies to make a firm judgement on the degree of
linkability between user IDs. We were able to examine and quantify the
linkability of profiles across various OSNs using this integrated technique.

3.2 Background and related works

For calculating the privacy leakage score, numerous scholars have suggested
multitude of methodologies among which two major approaches are signif-
icant namely statistical-based and machine learning based models. The first
method relies on two intuitive properties which are sensitivity and visibility.
This statistical-based method works on Dichotomous variables (takes only
one of two possible values) or Polytomous variables (having more than two
possible categories, either ordered or unordered) or a combination of them.
On the other hand, ML-based models mostly try to measure the privacy of
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unstructured data (e.g., text, image, video).
One of the pioneering efforts towards the development of a privacy met-

ric for online social networks was put forward by Maximilian et al. [21] in
2009 where the authors have proposed a formulation (1) to calculate the pri-
vacy score based on the sensitivity βi and the visibility v(i, j) of profile items
i ∈ {1, . . . , n} of user j in a social network.

PR(i) =
∑
i

PR(i, j) =
∑
i

βi × v(i, j) (1)

On the other hand, over the past decade, there has been growing in-
terest in the analysis of linkability between user profiles on online social
networks (OSNs) [2]. Linkability refers to the ability to link or associate
various pieces of information or activities to a specific individual or entity,
even if that information or activity is intended to be anonymous or sep-
arate [32]. A number of previous studies have explored various aspects
of this issue, such as, identification of common patterns in user behavior
across multiple platforms for measuring linkability scores [20]. These efforts
have contributed to a greater understanding of the privacy risks associated
with social media use and have laid the groundwork for the development
of more effective privacy protection measures. In order to identify the link-
ability among two different sources, Chandok S. [5] proposed two separate
methods which can be used against identities drawn from same or separate
OSNs. First, weighted sum method, where the linkability score is calculated
based on the similarity of feature using a function of feature and metrics.
In this method, Computation of linkability score is performed in two steps
namely feature similarity indicator and linkability score calculator. Once
the weights have been assigned, the weighted sum score is calculated for
each pair of profiles. The score represents the degree of linkability between
the profiles, with higher scores indicating a greater risk of privacy leakage.
Second, probabilistic method, where the intuitive idea is that the linkability
score relies probabilistically on the feature similarity values. This approach
defines linkability score as the probability of discovering two identities that
are identical based on how similar their attributes are. Goga et al. [13] found
that it is possible to link a user across multiple OSNs using information in-
herited from posted content. The researchers focused on components such
as geo-location, post timestamp, and writing style to analyze their approach,
using Yelp, Twitter, and Flickr as examples. Labitzke et al. [18] had shown
the possibility of profile correlations based on extracted friends lists even
under legal and technical constraints.

However, upon thorough review of existing literature pertaining to the
computation of privacy leakage scores in association of the consideration
of linkability, limited references were identified. Hassanpour et al. [15]
suggested that the linkability between posts or actions can significantly im-
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pact privacy, leading to an increase or decrease in the Privacy Leakage Score
(PLS). He proposed a formula for calculating the privacy leakage score con-
sidering linkage score along with visibility and sensitivity.

PLS = sensitivity × linkage × visibility (2)

The scarcity of relevant studies in this domain suggests a research gap
in comprehensively addressing this particular aspect. The paucity of prior
work underscores the need for further exploration and development of method-
ologies for accurately quantifying privacy leakage scores. By acknowledg-
ing this knowledge gap, our study contributes to the existing body of re-
search by proposing novel approaches and methodologies in the calculation
of privacy leakage score.

3.3 Design experiment

This section expounds on our preliminary computations for the linkability
score metric, which serves as a measure of the degree of association between
two distinct online identities belonging to the same user on different online
social networks (OSNs). Specifically, we delve into the derivation of features
from user provided information and activity, which are subsequently used
to construct activity profiles. The efficacy of the linkability score is evaluated
by examining how accurately it estimates the extent to which two given
identities are linkable. This evaluation helps us understand the usefulness of
the linkability score in identifying potential privacy breaches and mitigating
them.

3.3.1 Targeted OSNs

In our study, we sought to test the efficacy of our proposed linkability score
metric across multiple OSNs. To accomplish this, we created datasets from
three distinct OSNs, Facebook, Twitter and Flickr. By employing diverse
datasets, our study aims to transcend platform-specific and user-specific
limitations, enabling broader generalizability of our findings across various
user populations and online contexts. Here, we overview three OSNs used
in our study.

Facebook is a social networking platform that allows users to create a
personal profile, share text, photos and videos, connect with friends and
family, join interest groups, and engage in various activities such as playing
games and participating in online events. The Facebook users can decide
to whom he wants to limit the information that he is publishing through
customized option for privacy. As of 2022, it has the highest number of
monthly active users among all online social networks worldwide, with ap-
proximately 2.96 billion users [10]. Every minute, about 400 new users reg-
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ister on Facebook. Simultaneously, over 510,000 comments, 293,000 status
updates, and 136,000 photos are posted, with 4 million posts being liked
[27].

Twitter is a micro-blogging OSN where registered users (known as tweet-
ers) post short messages (called tweets), which can be include text, photo,
or videos. Some Twitter users choose to make their tweets public, making
them accessible to anybody, even those without a Twitter account. Whereas
others only allow their so-called followers, or Twitter users who have specif-
ically asked for and received access to their tweets. Political figures, journal-
ists, sportsmen, and other celebrities have all joined Twitter, making it one
of the most widely used and diversified OSNs today. As of 2022, Twitter
has a monthly active user base of around 450 million, showing an audience
growth of over 40% since 2018 [31].

Flickr is an online social network and cloud storage provider, special-
izing in the sharing of multimedia content, specifically photographs and
videos. This platform allows users to annotate their multimedia content
with text, which enhances the user experience by providing additional con-
text to the content. In order to post or view restricted content on Flickr,
an account is generally required. However, public content can be viewed
by anyone without an account. Additionally, Flickr has a unique feature
known as contacts, which is similar to the concept of friends or connections
on Facebook and Twitter. As of 2022, the registered user base of Flickr ex-
ceeds 112 million, with 60 million being categorized as active users, defined
as those who access the platform at least once a month [4].

3.3.2 Collected data

Our experiment was conducted using a dataset that consisted of both struc-
tured and unstructured data, which was obtained from Facebook, Twitter,
and Flickr. As a measure to ensure compliance with the General Data Pro-
tection Regulation (GDPR), we exclusively extracted publicly posted infor-
mation of users from these platforms. However, the initial challenge that
we encountered was to identify users who had accounts across all three of
the aforementioned OSNs. In order to overcome this obstacle, we lever-
aged the feature on Flickr that allowed users to mention their associated
user accounts on other online social networks. This feature was instrumen-
tal in identifying our target users, which served as the ground truth for the
dataset that we acquired.

Out of a random selection of 5,473 Flickr users, we were able to sort out
45 users who possessed registered accounts across all our targeted OSNs.
The structured data that we collected consisted of users’ name, location
(both current and hometown), and user name, occupation and some other
publicly available information. Alongside this, we obtained unstructured
data that included bio, texts, images, and image captions. Our efforts in
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acquiring this data were aimed at analyzing the linkability score across di-
verse user pairs and evaluating the effectiveness of the score in estimating
the likelihood of linkability between two given identities.

Moreover, we gathered a total of 2264, 1684, and 693 images from Flickr,
Facebook, and Twitter, respectively, sourced from 45 users across these plat-
forms. We employed web scraping tools and APIs provided by each social
media platform to gather the data. Special care was taken to respect the rate
limits and terms of service of these platforms.

3.3.3 Methodology

To ascertain the linkability between users’ profiles, we employed two dis-
tinct approaches. The first approach involved user profiling, where we lever-
aged the structured data openly shared by the users. By analyzing attributes
such as name, user name, and location, we aimed to link profiles that cap-
ture the essence of each user. The second approach focused on identifying
the content correlation within an individual’s data. This involved examin-
ing the relationships between published image files, to unveil patterns and
associations that contribute to the linkability between profiles. By combin-
ing these approaches, we aimed to gain a comprehensive understanding of
the linkability dynamics present in users’ online profiles.

1) User Profiling Measuring: In order to calculate the similarity of the at-
tributes from different OSNs, we used the bert-base-nli-mean-tokens model
[25]. BERT (Bidirectional Encoder Representations from Transformers) is a
pre-trained language model developed by Google [9] that uses a bidirec-
tional transformer architecture to create deep contextual representations of
words in text. It has shown state-of-the-art performance in various natural
language processing tasks, such as text classification and sentence similar-
ity [35]. ’Bert-basenli-mean-tokens’ stands for BERT base model for natural
language inference using mean pooling of the token embeddings which is a
fine-tuned version of the original BERT language model.

Initially, we performed similarity calculations on the users belonging
to the same OSN. We used cosine similarity metrics to calculate similar-
ity. These similarity calculations were performed on various attributes of
the users such as their name, location, and user name. Once we had ob-
tained the similarity values for each attribute, we combined them to obtain
an overall similarity score. To achieve this, we took the average of the simi-
larity scores across all attributes for each pair of users. After calculating the
similarity values for users within the same OSN and obtaining the average
of the similarity values based on selected attributes, we proceeded to cal-
culate the similarity for cross-OSN users. For this, we employed the same
method of using the BERT-based embedding model to obtain the vector rep-
resentations of the user attributes. Next, we computed the cosine similarity
(3) between the vector representations of each pair of users from different
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OSNs. This resulted in a similarity score for each pair of users that belonged
to different OSNs. These similarity scores were then normalized to obtain a
value between 0 and 1 . From the matrix of calculated values, we used Top-1
(identifying the single best choice or outcome among multiple options) and
Top3 approach (considering 3 best choices instead of just one among mul-
tiple options) to identify the best linkability among the entities. For Top-1
approach, only the single best choice or outcome among multiple options
would be considered, whereas for a Top-3 approach the three best choices
would be included instead of just the best one [3].

Overall, this approach allowed us to estimate the linkability between
users across different OSNs by leveraging the similarity between their at-
tributes, as captured by the BERT-based embedding model.

2) Content Linkage Measuring: In this work, we compared and mea-
sure the linkilibity of posts’ content between Flickr, Facebook, and Twitter
for a specific user. We consider the image modality since Flickr manily are
being used for posting pictures. To measure the linkilibilty between each
pair of images, we first extract a representation vector for each image using
a deep learning model called EfficientNetV2 [30] which is trained on Im-
ageNet dataset [8]. Then, to calculate the similarity between each pair of
images, we utilize cosine similarity as below:

similarity = cos(θ) =
A ·B
∥A∥∥B∥

(3)

where A and B are the extracted representation vectors for the first (from
Flickr) and the second (from Twitter or Facebook) images, respectively. For
each image in Flickr, we found the most similar image in Facebook (or Twit-
ter when we are comparing posts’ content in Flickr and Twitter).

3.4 Results

This section provides an overview of the results obtained from the pro-
posed linkability scoring methods. In particular, we present the computed
linkability scores for the selected approaches and analyze the outcomes.
These results serve as a basis for evaluating the effectiveness of the methods
and their potential for accurate identity and content linkage across multiple
OSNs.

3.4.1 Data analysis

In order to gain a better understanding of the collected data for the 45 short-
listed users, we conducted some statistical analyses. In our dataset we found
28.89% female and 71.11% male population who were selected totally ran-
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Table 3.1: Gender distribution in dataset

Gender Percentage
Male 71.11%

Female 28.89%

Table 3.2: Location disclosure rate

OSN Location Disclosure
Facebook 75.55%

Twitter 93.33%
Flickr 97.77%

Table 3.3: Occupation disclosure

OSN Work Info Disclosure
Facebook 66.66%

Flickr 73.33%

domly (Table 3.1). In contemporary times, online social networks have be-
come

integral to daily life, and individuals frequently disclose their personal
information, including contact details, birthdays, relationship statuses, and
political and religious affiliations. While some may inadvertently reveal sen-
sitive information, others may do so intentionally.

In our obtained dataset, users disclosed their personal information to
various extend. Such as, the ratio of location (hometown and/or current
location) disclosure is 75.55% for Facebook, 93.33% for Twitter and 97.77%
for Flickr (Table 3.2). Among all, 73.33% of Flickr users shared their oc-
cupation and among the Facebook users, 66.66% disclosed that (Table 3.3).
Users also shared bio which typically refers to a short written description or
summary that a user includes on their profile to provide information about
themselves. We found that 97.77% Flickr users, 88.88% Twitter users and
60% Facebook users shared this type information on their profile which can
directly cause privacy leakage if displayed to unintended audience (Table
3.4). We also had access to some other sensitive information as the users
shared those publicly. Such as, 35.55% users shared their relationship sta-
tus, 6.66% users disclosed their date of birth and 20% users mentioned their
email address within the OSNs (Table 3.5). Among the unstructured data,
every user shared images in their profile (at least one) but there was some
variations for text data they shared. We also found 4.44% users who inten-
tionally chose to protect their shared content from the mass public in Twitter.
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Table 3.4: Short user introduction rate

OSN Bio Disclosure
Facebook 60%

Twitter 88.88%
Flickr 97.77%

Table 3.5: Other sensitive info

Sensitive Info Disclosure
Relationship status 35.55%

Date of birth 6.66%
Email address 20%

Table 3.6: Facebook vs. Flickr & Twitter

OSN Accuracy against Facebook
Name Top-1 Top-3
Flickr 88.88% 91.12%

Twitter 71.11% 80%

3.4.2 Profiling linkage performance

After conducting our experiment on the acquired dataset, we found that a
significant portion of the users were linkable using our proposed method.
Specifically, our approach was able to identify connections between users
across multiple online social networks with a high degree of accuracy. How-
ever, it is important to note that accuracy may vary depending on the spe-
cific attributes and features used in the analysis. In order to fully understand
the effectiveness of our approach, we analyzed the accuracy rate that we ob-
tained during the experiment.

During the evaluation process, we meticulously compared each online
social network with the others and discovered varying accuracy rates for
each pair of OSN. Such as, while calculating the linkability for Facebook
against Flickr we found 91.12% accuracy and against Twitter 80% accuracy
based on similarity score.

For the analysis of Flickr against Twitter we obtained 95.56% accuracy
and against Facebook 97.78%.

During the calculation of Twitter against Flickr we get 97.78% accuracy
for and Facebook we get 91.12% accuracy.

3.4.3 Content linkage performance

After linking user profiles, we generate separate poll of images for each user
in different OSNs. Thus, using similarity score, the most similar image for
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Table 3.7: Flickr Vs. Twitter & Facebook

OSN Accuracy against Flickr
Name Top-1 Top-3
Twitter 88.88% 95.56%

Facebook 95.55% 97.78%

Table 3.8: Twitter Vs. Flickr & Facebook

OSN Accuracy against Twitter
Name Top-1 Top-3
Flickr 91.11% 97.78%

Facebook 91.11% 91.12%

Figure 3.1: Similarity score distribution between Flickr (including 2264 im-
ages) and Facebook (including 1684 images) images. The x and y axis show
the cosine similarity values and number of images, respectively.

each image in Flickr has been found in Facebook for each user. We done
the same process between Flickr and Twitter polls. The distribution similar-
ity score for both cases (i.e., Flickr-Facebook and Flickr-Twitter) have been
shown in Figures 3.1 and 3.2. A similarity score between 0.9-1 shows a high
degree of similarity between the images being compared. In this context,
we operate under the assumption that a similarity score exceeding 0.8 (esti-
mated empirically) indicates nearly identical images, distinguished by only
a minimal degree of variation. Considering this threshold, as depicted in
Figure 1, approximately 450 images that were shared on Flickr have also
been published on Facebook.
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Figure 3.2: Similarity score distribution between Flickr (including 2264 im-
ages) and Twitter (including 693 images) images. The x and y axis show the
cosine similarity values and number of images, respectively.

3.5 Discussion

The first part of our experiment aimed at linking profiles across various On-
line Social Networks (OSNs) using minimal profile attributes, specifically,
name, user name, and location. Evidently, the accuracy of profile linkage
would potentially increase if additional information was incorporated into
the process. As can be deduced from Tables 3.6, 3.7, and 3.8, taking into
account the top-1 accuracy, the most accurate results were achieved when
information from Flickr profiles was used to establish a link with a corre-
sponding profile on Facebook. This suggests a high degree of similarity or
overlap between the information disclosed on Flickr and Facebook profiles.
In simpler terms, it appears that users tend to share closely matching infor-
mation across these two platforms. Therefore, if you have access to a user’s
Flickr profile, there’s a higher likelihood of accurately linking it to the same
user’s Facebook profile compared to Twitter. This observation emphasizes
the impact and value of shared data across multiple social media platforms
in enhancing the accuracy of profile linkage.
Furthermore, the latter segment of our study indicates that a significant
number of images shared on Flickr do not appear on other Online Social
Networks (OSNs). This situation can result in a heightened risk of privacy
breaches if profiles across different OSNs are linked. Take, for example, a
sample of 2264 images uploaded on Flickr. Our findings reveal that roughly
20 percent of these images were also found on Facebook, and a smaller por-
tion, about 8 percent, surfaced on Twitter. These statistics suggest a lower
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likelihood of successfully establishing a link between profiles on Flickr and
Twitter due to the reduced overlap in shared content. However, it’s essen-
tial to note that while the probability of linking is lower, the potential for pri-
vacy leakage escalates dramatically. The reason being, the content shared on
these two platforms is distinctly different. Therefore, if a link is established,
it would expose a broader range of the user’s information, potentially re-
vealing aspects of their personal lives that they intended to keep separate
on these individual platforms. This underscores the critical need for users
to be conscious of the data they share across different social networks, given
the potential risks associated with profile linkage across multiple platforms.

It is important to clarify that our analysis on content linkage is currently
focused solely on the image modality. However, this does not limit the ap-
plication of our techniques. They can indeed be adapted for other unstruc-
tured data types, such as text and video. This would entail using appropri-
ate deep learning models to extract representative vectors from these data
types, and then leveraging cosine similarity as a measure of distance be-
tween these vectors, much like we have done with images.

3.6 Conclusion

Our research on Online Social Networks (OSNs) focuses on the privacy im-
plications arising from linkability of user profiles and shared content across
different platforms. We developed a method to quantify this linkability, uti-
lizing key attributes (i.e., name, user name, location) to determine profile
similarities. Applying this to profiles and content from Flickr, Facebook,
and Twitter, we examined both structured and unstructured data, offering
a valuable view of linkability trends and potential privacy risks. Our find-
ings highlight that minimal profile attributes can significantly enhance the
accuracy of profile linkages, particularly between platforms like Flickr and
Facebook where data overlap is significant. However, we also found a sub-
stantial number of images shared on Flickr do not appear on other OSNs, re-
ducing the likelihood of profile linkage but paradoxically increasing poten-
tial privacy leakage. This discovery underscores the need for robust privacy
measures given the increased interconnectedness of user data across OSNs.
Our research emphasizes the importance of user consciousness in data shar-
ing across different OSNs, considering the potential privacy risks of profile
linkage. Our work aims to inform the development of privacy-enhancing
technologies and strategies to better protect user privacy in OSNs.

References

[1] E. Aghasian, S. Garg, L. Gao, S. Yu, and J. Montgomery, “Scoring users’
privacy disclosure across multiple online social networks,” IEEE Access, vol.

45



3. THE IMPACT OF LINKABILITY ON PRIVACY LEAKAGE

5, pp. 13118–13130, 2017.
[2] M. Backes, P. Berrang, O. Goga, K. P. Gummadi, and P. Manoharan,

“On profile linkability despite anonymity in social media systems,” in Pro-
ceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society,
2016.
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E2F-GAN: Eyes-to-Face Inpainting via
Edge-Aware Coarse-to-Fine GANs
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Abstract
Face inpainting is a challenging task aiming to fill the damaged or masked

regions in face images with plausibly synthesized contents. Based on the
given information, the reconstructed regions should look realistic and more
importantly preserve the demographic and biometric properties of the indi-
vidual. The aim of this paper is to reconstruct the face based on the periocu-
lar region (eyes-to-face). To do this, we proposed a novel GAN-based deep
learning model called Eyes-to-Face GAN (E2F-GAN) which includes two
main modules: a coarse module and a refinement module. The coarse mod-
ule along with an edge predictor module attempts to extract all required fea-
tures from a periocular region and to generate a coarse output which will be
refined by a refinement module. Additionally, a dataset of eyes-to-face syn-
thesis has been generated based on the public face dataset called CelebA-HQ
for training and testing. Thus, we perform both qualitative and quantitative
evaluations on the generated dataset. Experimental results demonstrate that
our method outperforms previous learning-based face inpainting methods
and generates realistic and semantically plausible images. We also provide
the implementation of the proposed approach to support reproducible re-
search via (https://github.com/amiretefaghi/E2F-GAN).

INDEX TERMS Face inpainting, generative adversarial networks, image
inpainting.

4.1 Introduction

Image inpainting is used to complete missing information or substituting
undesired regions of pictures with conceivable and fine-grained content. It
encompasses a wide extend of applications in fields of restoring harmed
photos, editing pictures, removing objects, etc. [1], [2]. Many conventional
methods typically use low-level and hand-crafted features from the cor-
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Figure 4.1: Example completion results of our proposed method in compar-
ison with original images.

rupted input image and utilize the priors or additional data. By propagating
the extracted features from visible and well-structured parts to the missing
regions or by filling missed small areas by looking and melding compara-
tive patches from the same or other images. In spite of the fact that these
strategies have great effects in the completion of replicating structures, they
are restricted by the accessible regions in an image and cannot create novel
image substance. In recent years, learning-based strategies have been pro-
posed to overcome these confinements by utilizing huge volumes of training
data [3], [4]. Notably, despite of great achievements of learning-based meth-
ods in this task, they are limited by at least three challenges: the inpainted
area should be C1) semantically filled based on overall scene, C2) continu-
ously structured with unmasked regions, and C3) visually realistic.

Recently, deep convolutional neural networks (CNNs) and generative
adversarial networks (GANs), known as learning-based methods, have been
widely used for various image inpainting tasks including removing objects,
noises, texts, and masks. Based on convolutional neural networks (CNNs)
and using encoder-decoder network structure several works have been pro-
posed for image inpainting [5]-[8]. For instance, Sidorov and Hardeberg [6]
proposed an encoder-decoder network for denoising, inpainting and super-
resolution for noised, inpainted and low-resolution images. Zhu et al. [5]
proposed a patch-based inpainting method for various deep learning (DL)
modules that have been proposed recently.

Coarse-to-fine based methods exploit one [9]-[11] or two [12]-[14]-stage

50



4.1 INTRODUCTION

architecture to complete content formation and texture refinement. A one-
stage architecture (also termed coarse-and-fine architecture) consists of two
parallel branches, coarse and fine, that extract two kinds of information si-
multaneously, coarse and fine information. The missed region, then, can
be constructed from the extracted information. Alternatively, a two-stage
architecture generates an intermediate coarse image after recovering struc-
tures in the first stage, and then feeds it to the second stage for improving
the texture. Additionally, another category called structural guidance-based
methods uses an assistance algorithm to provide more information for the
main inpainting method. An edge and a contour generator have been used
within a two-stage architecture in [15] and [16] respectively.

Although, it is worthy to mention that in face inpainting, besides the
above-mentioned challenges (i.e., C1-C3), we are facing further requirements.
Notably, a facial representation can be considered for the purpose of biomet-
ric recognition due to the special topology of different facial elements (i.e.,
forehead, eyes, eyebrows, nose, mouth, jaw, chin, cheek) and their distinc-
tive characteristics [42]. Thus, revealing the hidden parts of a face by using
other elements such that the topological face elements along with consis-
tency in face attributes (e.g., demographic and other biometric information
[43]) are preserved is a challenging task, yet it will have a strong impact on
the feasibility of biometric recognition conducted by human experts (i.e. in
forensic investigation [44]) or by machine learning [45] or hand-crafted al-
gorithms [46]. Therefore, the requirements of face inpainting are as follows:

R1) the face topological structure should be reconstructed so that all el-
ements are placed in the right position semantically and continuously. For
this, first, the shape of the face (oval shape, square shape, round shape, etc.)
should be predicted. Then all other elements should be placed proportion-
ally within the predicted frame. Additionally, to look more realistic, the
head pose should be naturally aligned and integrated with other elements.
These requirements are the main challenges (i.e., C1-C3) of every inpainting
method modified for face inpainting solutions. Since the aim of this paper is
a special case of face inpainting where a large region of the face except eyes
is hidden, besides R1, two other requirements which make the inpainting
task more challenging should be considered. R2) Researchers have found
that the area of skin around the eyes is useful to determine soft biomet-
ric information such as age or gender [17], [37]. The proposed inpainting
model should utilize the color, texture, and size of eyes and eyebrows to es-
timate this kind of demographic attributes and inpaint other face elements
according to the estimated features. R3) The proposed solution should pre-
serve the identity-related biometric properties present in the eyes regions
[18], [38] when generating the full face [39]. Noteworthy, this eye region is
demonstrated to encode a large part of the identity information present in
the face [44] enabling both person recognition and fake face detection [40].
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Additionally, it is worth to mention that the hidden portion of the image
can directly affect the performance of proposed solutions, and clearly large
masks make meeting the referred requirements (i.e., R1-R3) more difficult.
Considering this issue, the aim of this paper is to complete the face based
on the eyes region (periocular region), our used mask type will cover most
parts of the face.

In this paper, a novel DL-based architecture has been proposed such
that it complies with the referred requirements (i.e., R1-R3, see Figure 4.1).
Therefore, our contributions and novelties can be summarized as follows:
- In this work, an effective end-to-end solution for reconstructing the face
based on just the eyes region has been proposed. This innovative GAN-
based architecture called E2F-GAN benefits from the advantages of coarseto-
fine, coarse-and-fine, and structural guidance-based architectures. The code
for our proposed method is available in GitHub. 1

- By using various loss functions during the training process [41], not only
the quality of inpainted regions but also demographic and biometric fea-
tures have been preserved and measured by several quantitative and quali-
tative evaluation metrics.
- A new dataset of masked faces called E2Fdb has been generated and made
publicly available (same GitHub indicated before).
- In terms of selecting the most informative guidancebased method, we ex-
perimentally show that edges provide more structural and contextual infor-
mation compared to landmarks.

4.2 Related works

In eyes-to-face inpainting, a face (a raw image indicated by IH×W×N here-
after) is corrupted by a binary image mask

(
MH×W×N

)
, where H,W , and

N show the height, width, and number of channels of the image respec-
tively, and the corrupted image will be shown by Im (Im = I ⊙M , where
⊙ is the element-wise production). The inpainting model H takes Im and
M as input, and its output, reconstructed face, should fulfill the R1, R2, and
R3(I ∼= Î). The proposed inpainting methods use different architectures
and various types of masks. In this section, we review recent face inpaint-
ing methods based on DL architectures and widely used mask types.

4.2.1 Face inpainting methods

Apart from traditional methods which utilize low-level features extracted
from the same image or a group of images, the learning-based strategy is the
main focus of recent proposed methods due to using high-level features that
enable them to inpaint the damaged regions semantically. In the following,
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we review several learning-based existing works that attempted to inpaint
corrupted faces, similar to the aim of this paper.

The coarse-to-fine structure has been used in recent face inpainting tasks.
Li et al. [19] proposed a generative-based coarse-to-fine structure that bene-
fits from an attention layer to capture long dependency between features to
generate more realistic images. Yu et al. [13] uses a coarse-to-fine structure
to inpaint free-form masks. In the same context, Liu et al. [12] proposed
a coarse-to-fine architecture with a novel attention layer. Chen et al. [19]
proposed a coarseand-fine structure including a coarse network for extract-
ing global semantic information and a fine network to extract multi-level
local features. Besides the coarse-to-fine based strategies, another category
so-called structural guidance uses additional information to assist the main
inpainting module. Nazari et al. [15] leverage an edge generator first to
recover the edges, and the corrupted image is fed to the image inpainting
network along with predicted edges. Chen and Liu [16] use a dual branch
network including texture and edge branches to extract features and recover
structures and textures of missed regions. Some works estimate facial land-
marks to assist the main inpainting network [20], [21]. In this paper, we
will take the advantages of different architectures, i.e., coarse-to-fine, coarse-
and-fine, and structural guidance.

The above-mentioned methods produce a unique result per each input.
On the other hand, some approaches inpaint the corrupted regions differ-
ently per each execution for each specific input. Zheng et al. proposed a
Variational AutoEncoders (VAEs)-based [22] dual pipeline including a re-
constructive path that uses the ground truth to learn the prior distribution
of missing regions and a generative path for which the conditional prior is
connected to the distribution obtained in the reconstructive path. An unsu-
pervised conditional framework based on generative adversarial networks
for varied image inpainting that can learn conditional completion distribu-
tion has been proposed by Zhao et al. [23]. A similar approach using GANs
to restore low quality face images was recently proposed in [47]. It should
be noted that, in E2F-GAN, we need a unique output for each input even
after several executions to fulfill the requirements R2 and R3.

4.2.2 Mask coverage

The used masks in face inpainting scenarios can be classified into two cat-
egories called free and fixed-form masks. In widely used free-form masks
[8], [10], [15], [21], [22], [24], [26], there are irregular shapes randomly placed
on the images (Figure 4.2a). Instead, in the fixed-form masks [13], [21], [24],
[25], regular shapes cover part of the images which are located on the im-
ages randomly or purposefully (Figure 4.2b) [24], [25]. Since the aim of this
paper is to complete the face based on eyes, our used mask type is in the
latter category with a large-size mask ( ≈ 75% of the face).
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Figure 4.2: Examples of two types of widely used masks called free-form
[26] (a) and fixed-form [24], [25] (b).

4.3 Proposed method

The overall network architecture of our proposed method, which is based on
a coarse-to-fine architecture and includes two main modules called coarse
and refinement, is shown in Figure 4.3. Different from others [2], [3], [7],
[13], [19], both modules (i.e., coarse and refinement) are GAN-based net-
works, therefore, each of which includes a generator and a discriminator.
The coarse module, which comprises a generator called coarse generator
(C), has a dual encoder that follows the coarse-and-fine structure to capture
global semantic features and extract multi-level features from the eyes re-
gion. Besides this module, a GAN-based refinement module which consists
of a refinement generator (F ) and a discriminator (D2) has been utilized to
improve the coarse outputs. Intuitively, the refinement network sees a more
completed scene than the masked images, so its network can learn better
feature representations than the coarse network. Therefore, our end-to-end
method includes two GAN-based modules which are training to generate
the final result. In the following subsections, each module is described in
detail.

Notably, facial landmarks [21] or edges [15] are usually the most widely-
used structural guidance in image inpainting tasks. In our proposed E2F-
GAN, where the used mask covers most parts of the face, predicting both
landmarks and edges is a challenging problem. As a consequence, our pro-
posed method utilizes both landmarks and edges during our experiments,
in an effort to use the most effective structure (e.g., landmarks or edges).
For facial landmarks, we used the landmark prediction method proposed
in [27] and for predicting edges, we used the edge predictor proposed by
Nazari et al. [15]. Both methods have been trained again on our generated
dataset that contains specific eye masks. As we will see in the experiments,
our quantitative and qualitative metrics will show that the edge structural
guidance provides more effective information for our coarse generator.

Therefore, in our final setup we use edges generated by an edge predic-
tor (Ee) as structural guidance for C.
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Figure 4.3: Overview of our architecture with three main modules including
Edge Predictor ( Ee ), Coarse Module (C), and Refinement Generator (F ).

4.3.1 Coarse module

The proposed GAN-based coarse module is responsible for extracting the
required features from the masked image and generating the first coarse
result. To do this, we designed the module with three submodules including
edge predictor (Ee), coarse generator (C), and discriminator (D1). In the
following, we explain the role of each network, its architecture, and the used
loss functions.

4.3.1.1 Coarse generator

The coarse generator has the main responsibility for meeting the three re-
quirements (i.e., R1-R3). Not only the biometric and demographic feature
should be extracted from the periocular region, but also the initial coarse
prediction should look realistic, and semantically and continuously struc-
tured. This is achieved using three networks: two encoders so-called fine
encoder (Ef ) and pose encoder (Ep), and a decoder. The encoder Ef deals
with the finest features of Im and Ep deals with the predicted structure of
faces obtained from Ee. Therefore, first Im is fed to Ee to predict edges of
visible and hidden regions ( Iedge ) and then Iedge is concatenated with Im to
fed Ep. This assists to predict the pose of different elements of the face. Ad-
ditionally, Im will be fed to Ef with the aim of extracting identity attributes.
Finally, the decoder will predict and inpaint the hidden regions based on the
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two feature maps received from Ef and Ep. In the following, we describe
each of these networks and their roles in our scheme.

4.3.1.2 Fine encoder

The aim of using this encoder is mainly to extract demographic (e.g., age,
gender) and biometric properties (e.g., identity, skin color) from Im. There-
fore, the skin color around the eyes, wrinkles, the size of eyes and eyebrows,
the distance between two eyes, and other possible properties should be con-
sidered. On the other hand, it should be noted that due to the high coverage
ratio of Im, Ef is fed with a lot of unusable information (the black region).
To prevent deteriorating the quality of output and filter out these pixels,
the first seven blocks of Ef are configured as with gated convolutions (GC)
[14]. These blocks contain parallel convolution layers with different sorts
of activation functions which assist to extract an appropriate feature map
and eliminate extracted features from the masked region. Then, three inter-
leaved gated residual blocks (IGRB) [19] have been placed after GC blocks
to extract multi-level features.

4.3.1.3 Pose encoder

For extracting coarse structure and global semantics features, and conse-
quently preserving the quality as well as the structure of the predicted face,
an encoder called pose encoder (Ep) has been placed in the Coarse Module
(C). It has been fed by concatenation of Iedge and Im. Doing this, a receptive
field for recognizing face structures will be available for Ep. However, the
inputs Iedge and Im are both sparse. To extract a meaningful feature map,
similar to [29], we used three spatial pyramid dilation blocks (SPD) after six
convolution layers. Notably, SPD blocks contain parallel convolution layers
with various dilation rates to extract a large receptive field from the given
input image.

4.3.1.4 Decoder

To inpaint the coarse output based on features extracted by Ep and Ef , a de-
coder including seven layers (one attention layer and six upsampling con-
volution layers) has been used. In common encoder-decoder approaches,
the decoder receives features directly from the encoder but in our proposed
method, the decoder receives two types of features including low-level fea-
tures extracted by large receptive fields that may lack detailed information
(i.e., the output of Ep ), and high-level detailed features with a small recep-
tive field (i.e., the output ofEf ). Thus, we use a CSAB as the first layer of the
decoder to discriminate the more effective features from others by assigning
more weights.
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Channel and Spatial Attention Block (CSAB): According to the outputs
of Ep and Ef , the input to the attention block contains two types of features:
a) large receptive field that may lack detailed information and b) output of
Ef , i.e., highlevel detailed features with small receptive fields. We adopt
the concatenating operation to aggregate these two types of features. On
the other hand, we may achieve redundant information about multi-level
contextual information and this situation will not be efficient for our goals.
Thereby, as shown in Figure 4.3, we adopt a specific attention block called
channel and spatial attention block (CSAB) [19] to assign more weight to
important features [48] and alleviate the interference of redundant features
by channel and spatial attention. Hence, attention block composes of two
main attentions which we will introduce. Convolution operation leads to
local contextual information. Discriminative features representation is es-
sential for inpainting. We leverage the attention mechanism to fulfill this
desire. The channel attention emphasizes interdependent feature maps by
exploiting the dependencies between channels. Meanwhile, the spatial at-
tention encodes a wide range of contextual dependency within each chan-
nel, thereby improving the overall representation capability by gaining mu-
tual for similar features.

4.3.2 Refinement module

The coarse module’s output
(
Îc

)
consists of face coarse structure including

placed face elements, stated face pose, specified color skin, etc., suffering
from fine details. To add more details to the Îc, we propose a GAN-based
refinement module.

4.3.2.1 Refinement generator

Inspired by the U-Net architecture [28] and the refinement network pro-
posed by [29], we proposed a more effective architecture by replacing some
DL blocks with SPD and selfattention (SA) blocks which receive the concate-
nation of Îc and Iedge as its input. We have adopted SPD blocks with four
dilation rates in the middle of our architecture to extract features with var-
ious receptive fields from input images and then used SA blocks between
middle layers. SA benefits from the concept of self-similarity, which is use-
ful for reclaiming the reconstructed pattern based on the remaining ground
truth in a masked image. As mentioned before, the duty of this stage is that
it should improve fine details of images, hence, we use reconstruction and
perceptual losses to adjust the fine details.
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Table 4.1: Quantitative results over EtoF dataset for EtoFGAN and other
compared methods (PIC, LaFIn, EC). The best result of each column is bold-
faced. ↑ indicates that the higher the number the better is the model and ↓
indicates the lower the number the better is the model.

Method FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓
PIC 57.02 0.41 11.19 8.50 50.37
LaFIn 63.16 0.47 13.18 6.89 40.94
EC 70.63 0.42 12.67 5.27 121.08

E2F-GAN (ours) 46.39 0.51 13.66 0.02 41.54

4.3.2.2 Discriminator

To inpaint and generate more realistic high-quality faces, both coarse and re-
finement modules have been designed based on GAN structures, thus, two
discriminators have the responsibility of evaluating the output of C and F .
The coarse module’s discriminator (D1) receives Îc and consequently the
refinement module’s discriminator (D2) has been fed by Îf . We have com-
bined the concept of SN-GAN [30] and PatchGAN [31] for these discrimina-
tors to distinguish real or fake images. Besides this combination, we have
used the hinge adversarial loss function for our discriminators. These com-
binations and loss functions help us to train our discriminators faster and
more stable, distinguishing real or fake images efficiently.

4.3.2.3 E2F-GAN end-to-end training

The E2F-GAN model is trained in a supervised and endto-end manner. We
have defined four groups of loss functions [41] for various parts of our pro-
posed method to achieve considerable results. To train C, we have utilized
four specific loss functions including reconstruction loss, perceptual loss,
style loss, and adversarial loss; and just reconstruction and perceptual losses
have been used for training F . With the aim of having an end-to-end train-
ing process, we define the total loss Lwhich consists of four groups of com-
ponent losses as below:

L = λrec
(
Lc

rec + Lf
rec

)
+ λperc

(
Lc

perc + Lf
prec

)
+ λstyle Lc

style +
(
λgadv L

g
adv + λdadv Ld

adv
)

(1)

In the following, the formulation of the used losses and the notion be-
hind each loss is described. The reconstruction loss (Lrec ) or per-pixel loss
measures the pixel-wise difference between the synthesized image and the
ground truth image. This loss is essential for maintaining texture infor-
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mation. It is calculated as the L1-norm between Îz and the corresponding
ground truth Ig.Lrec is defined as follows:

Lz
rec =

1

H ×W ×N

H∑
i=1

W∑
j=1

∣∣∣Îz(i, j)− Ig(i, j)∣∣∣ (2)

where z is replaced with c or f depending on the Lrec is used for C or F ,
respectively.

It is worth to mention that, an element-wise loss cannot consider high-
level semantics. Accordingly, recent research [19], [21], [22] suggests using
perceptual distances based on a pre-trained network, VGG19 which was
trained on the ImageNet. The perceptual loss

(
Lperc

)
measures the differ-

ence between features extracted from the various layers of the VGG19 net-
work for Î and its corresponding ground truth.

Lz
perc =

L∑
l=1

|φ̂z − φg|
Nl ×Hl ×Wl

(3)

where φ̂z and φg are extracted features from Î and Ig respectively, and
z is replaced with c or f depending on the Lperc is used for coarse or re-
finement, respectively. We extract features from L layers of the pre-trained
network. relu1 1, relu2 1,relu3 1, relu4 1, and relu5 1 of the VGG19 utilized
to calculate Lperc as well as Lstyle described below.

In order to provide richer texture, we also employ style loss
(
Lstyle

)
. In

style loss, a Gram matrix calculates the correlation between channels in a
feature map. The style loss then calculates on the features map produced by
the pre-trained VGG19 network.

Lc
style =

L∑
l=1

1

Nl ×Nl

∥∥∥∥∥∥
Gl

(
Îc

)
−Gl (Ig)

Hl ×Wl ×Nl

∥∥∥∥∥∥
1

(4)

where Gl (.) = φl (.) Tφl (.) stands for the Gram matrix corresponding to
φ(.).

For generative adversarial learning, our discriminators are trained to dis-
tinguish between generated images and ground truth images. on the other
hand, the generators strive to cheat the discriminators by hardening that
classification. We employ hinge loss to train our model, Ld

adv and Ld
adv com-

puted as follows:
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Figure 4.4: FNMR curve for our proposed method (E2F-GAN) and other
compared methods (PIC, LaFIn, EC).

Lg
adv =− E

[
D1

(
C
(
Im, Iedge

))]
− E

[
D2

(
F
(
Îc, Iedge

))]
(5)

Ld
adv =E

[
Relu

(
1 +D1

(
C
(
Im, Iedge

)))]
+ E

[
Relu

(
1 +D2

(
F
(
Îc, Iedge

)))]
+ E [Relu (1−D1 (Ig))] + E [Relu (1−D2 (Ig))] (6)

As mentioned before, we combine the used loss functions with appropri-
ate weights as follows: λrec = 1, λperc = 0.1, λstyle = 250, λgadv = 0.1, λdadv =
1.

4.4 Experiments and discussion

In this section, we evaluate the E2F-GAN performance on a new generated
face dataset (E2Fdb) based on CelebA-HQ. We compared our results with
three other methods called EdgeConnect (EC) [15], Pluralistic Image Com-
pletion (PIC) [22], LaFIn [21]. To have fair comparison, the three methods
have been trained using the E2Fdb. For quantitatively measuring the perfor-
mance difference among the methods, we employ several statistical metrics.
Moreover, to measure the amount of preservation of demographic and bio-
metric features, we calculate False Non-Match Rate between original and
inpainted faces. Using a competitive face biometric matcher [49] based on
ArcFace [36].

4.4.1 Datasets

We conduct all experiments on our generated dataset called E2Fdb (avail-
able on project’s GitHub page) extracted from the well-known CelebA-HQ
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Table 4.2: The effect of various parts of E2F-GAN on final results.

Edge
Predictor

Attention
Block

Refinement
module FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓

x ✓ ✓ 64.89 0.34 12.18 12.91 45.99
✓ x ✓ 50.12 0.48 13.24 6.33 43.97
✓ ✓ x 75.21 0.46 13.22 5.49 42.13
✓ ✓ ✓ 46.39 0.52 13.66 0.02 41.54

dataset [32], [49]. To extract the periocular region from each face image,
the images are reshaped to size 256 × 256 and then by utilizing a landmark
detector [27], eyes are detected, similar to [50]. Doing this, M and Im are
produced for each image. Moreover, we removed misleading samples in-
cluding those eyes covered by sunglasses or faces that have more than 45
degrees in one angle (roll, pitch, yaw) leading to hiding one of the eyes
by using WHENet [33] algorithms. Finally, the total number of samples
is 24,554 among which 22,879 will be used for the training process and the
rest, which is 1,685 images, for the test.

4.4.2 Evaluation metrics

We evaluate the image inpainting performance of the proposed model using
quantitative and qualitative comparisons.

For quantitative comparison, two types of metrics called statistical and
identity metrics have been measured. In the following, we describe each
category and its corresponding metrics briefly.

4.4.2.1 Statistical metrics

We use five statistical metrics: ℓ1 loss, Peak Signal to Noise Ratio (PSNR),
Structural Similarity (SSIM) [34], Frenchet Inception Distance (FID) [35],
and Total Variation (TV). Notably, the ℓ1 loss shows the model’s reconstruc-
tion ability for images. PSNR measures the visibility of errors between
the ground truth Ig and image inpainting Î to evaluate the image quality.
SSIM aims at estimating the perceptual changes in the structural informa-
tion, which shows human’s subjective feelings more accurately than PSNR.
FID is a widely used metric in the image generation field to measure the
visual quality. TV assists to measure the amount of noise in the image by
calculating the sum of the absolute differences for neighboring pixels.

4.4.2.2 Identity metrics

To measure the amount of preservation of demographic and biometrics char-
acteristics after completing inpainting process, we calculate the False Non-
Match Rate (FNMR). FNMR is the rate at which a biometric algorithm miss-
categorizes two captures from the same individual as being from different
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Figure 4.5: Quality comparison among PIC, EC, LaFIn, and our proposed
method.

Figure 4.6: Illustration of image reconstruction at different age of the subject
among our proposed method, PIC, EC, LaFIn, and original image.
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individuals. Here, we assumed that Î and I are two faces for the same indi-
vidual and using ArcFace [36], we calculate the corresponding embedding
vectors for each face, and finally calculate the cosine similarity between each
pair. Finally, the FNMR for different thresholds is shown.

4.4.3 Comparison with existing work

By using the above-mentioned metrics and presenting some outputs, the
results of our proposed method have been qualitatively and quantitatively
compared against three state-ofthe-art approaches, named PIC, EC, and LaFIn.
We trained the three methods over our generated dataset (i.e., E2Fdb) ac-
cording to the best configurations of each method mentioned in the corre-
sponding paper. In the following subsections, we present the results.

4.4.3.1 Quantitative comparisons

The results of the statistical metrics calculated on the validation set of E2Fdb
including 1,675 samples are reported in Table 4.1. As can be seen from
the numbers in Table 4.1, E2F-GAN is superior over PIC, LaFIn, and EC
in most metrics, except for the ℓ1 loss for which LaFIn works slightly better.
Overall, our E2F-GAN outperforms the others by large margins in terms of
FID, SSIM, PSNR, and TV metrics. More specifically, our large margins in
FID and TV metrics demonstrate that our method can inpaint the masked
image with much higher quality compared to other methods. Moreover,
FNMR has been measured for E2F-GAN and other three compared meth-
ods as shown in Figure 4.4. For different thresholds, E2F-GAN has lower
false non-match rate which shows the ability of our algorithm extracting
identity information from the periocular region and transferring it to the re-
constructed face. Notably, since the PIC method generates different outputs
for a specific input, we executed this method five times and the best results
have been reported.

4.4.3.2 Qualitative comparisons

Fig. 5 shows some faces generated by our model, PIC, EC, and LaFIn. Our
model is able to generate high quality results and a large fraction of face
structures including face shape, nose, mouth, forehead, etc. are appropri-
ately placed with a plausible size. Moreover, to compare the quality of re-
sults in terms of gender and skin color, we present different faces in Figures.
4.5 and 4.6. As it can be observed, the quality of PIC and EC is really low
compared to our and LaFIn results. Therefore, although like EC we used
edge predictor in our scheme, there is a large margin between our outcomes.
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Figure 4.7: Illustrative comparison of the effect of various parts on final out-
put.

Table 4.3: The effect of landmark or edge guidance on final results.

FID
↓

SSIM
↑

PSNR
↑

TV
↓

ℓ1 Loss
↓

Landmark
Loss ↓

Landmark
Guidance 48.56 0.44 13.33 7.31 42.48 15.37

Edge
Guidance 46.39 51.9 13.66 0.02 41.54 15.42

Additionally, with aim of further investigation of the models’ outputs re-
garding age and gender prediction based on the periocular region, we pre-
sented some challenging examples in Figure 4.6. That figure shows three
faces including two elders (a man and a woman) and a young woman. As
seen in those examples, E2F-GAN can assess the age based on periocular
region and reconstruct the face with a reasonable quality.

4.5 Ablation study

In this section, firstly we qualitatively and quantitatively analyze the effect
of three main components of our proposed model including the edge pre-
dictor, the refinement module, and the attention block. Table 4.2 and Figure
4.8 report statistical and identity metrics indicating the degree of effective-
ness each of the three components in the performance of E2F-GAN. Specif-
ically, the refinement network is the most conspicuous one which benefits
the model by providing conformity and consistency among face compo-
nents and skin texture around the eyes, such as wrinkles and skin color.
The edge guidance contributes to ensuring that the structure of the face is
well-preserved (see Figure 4.7). Visually, the effectiveness of the attention
block may not seem tangible. However, the quantitative results demonstrate
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Figure 4.8: The impact of various parts of E2F-GAN on FNMR ratio.

Figure 4.9: Illustration of gender preserve in our proposed method.

the advantages of attention block. We also compared the effect of edge and
landmark predictors. As shown in Table 4.3, the edge guidance provides
better values in most quantitative metrics specially for SSIM metric.

Finally, Figure 4.9 shows a few challenging examples for preserving the
gender of the person based on the periocular region. Our observations show
that E2F-GAN can preserve the gender of subjects with a high accuracy.

4.6 Conclusion

The aim of this paper is a particular case of face inpainting where we try
to reconstruct the face based on just using the periocular region. To do
this, we presented E2F-GAN, a GAN-based architecture that benefits from
the advantages of coarse-to-fine, coarse-and-fine, and structural guidance-
based architectures for face inpainting. It includes three main modules for
extracting face’s edges (edge predictor), coarse prediction of face elements
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(coarse generator) and refining the coarse predicted image (refinement gen-
erator). We analyzed E2F-GAN and compared it with other well-known
face inpainting methods to measure the efficiency and quality performance.
For doing this, we modified a widely used face inpainting dataset called
CelebA-HQ such that the whole face except the periocular region is masked
and used for E2F-GAN input, calling the resulting dataset E2Fdb. Our pro-
posed inpainting algorithm E2F-GAN and the used dataset E2Fdb are both
available in the project GitHub.

Several qualitative and quantitative metrics have been measured during
our experiments to show the performance of E2F-GAN in terms of preserv-
ing identity and non-identity features of each face after inpainting. Experi-
mental results show that our method outperforms previous learning-based
face inpainting methods and E2F-GAN can generate realistic and semanti-
cally plausible images.

Future work includes analyzing biometric quality aspects of the result-
ing faces using recent objective measures [51], [52]; analyzing [49] and re-
ducing [53] undesired biases in the face generation process; and combining
multiple face generation approaches for better outputs [48].
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[1] A. Criminisi, P. Pérez, and K. Toyama, ”Region filling and object re-
moval by exemplar-based image inpainting,” IEEE Trans. Image Process.,
vol. 13, no. 9, pp. 1200-1212, Sep. 2004.

[2] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, ”Image
inpainting: A review,” Neural Process. Lett., vol. 51, no. 2, pp. 2007-2028,
2019 .
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Chapter 5

E2F-Net: Eyes-to-Face Inpainting via
StyleGAN Latent Space

Ahmad Hassanpour, Fatemeh Jamalbafrani, Bian Yang, Kiran
Raja, Raymond Veldhuis, Julian Fierrez

Abstract
Face inpainting, the technique of restoring missing or damaged regions

in facial images, is pivotal for applications like face recognition in occluded
scenarios and image analysis with poor-quality captures. This process not
only needs to produce realistic visuals but also preserve individual iden-
tity characteristics. The aim of this paper is to inpaint a face given perioc-
ular region (eyes-to-face) through a proposed new Generative Adversarial
Network (GAN)-based model called Eyes-to-Face Network (E2F-Net). The
proposed approach extracts identity and nonidentity features from the peri-
ocular region using two dedicated encoders have been used. The extracted
features are then mapped to the latent space of a pre-trained StyleGAN gen-
erator to benefit from its state-of-the-art performance and its rich, diverse
and expressive latent space without any additional training. We further im-
prove the StyleGAN’s output to find the optimal code in the latent space
using a new optimization for GAN inversion technique. Our E2F-Net re-
quires a minimum training process reducing the computational complexity
as a secondary benefit. Through extensive experiments, we show that our
method successfully reconstructs the whole face with high quality, surpass-
ing current techniques, despite significantly less training and supervision
efforts. We have generated seven eyes-to-face datasets based on well-known
public face datasets for training and verifying our proposed methods. The
code and datasets are publicly available.

Keywords: Eyes-to-Face, Face Inpainting, Face Reconstruction, GAN La-
tent Space, StyleGAN.

5.1 Introduction

Face inpainting is the process of approximating the missing or masked face
elements using the auxiliary data from around of the missing region. Thus,
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Figure 5.1: The proposed face reconstruction framework utilizes two en-
coders called identity (Eid) and attribute (Eat), to generate the latent code
z. The latent code z is then mapped to the latent space W of a pre-trained
generator shown byG. Finally, the output ofGwill be refined by finding the
optimal point inW space using an optimizer (return arrow fromG ’s output
toW space).

estimating those missing regions is vital in practice, particularly in face recog-
nition under occlusions, and in general any image/video analysis appli-
cation on low quality, uncontrolled, or in-the-wild acquisition conditions.
Realistic approximation or inpainting despite being highly applicable, is
known to be particularly hard task. This is mainly due to high photometric,
geometric and kinematic complexities, and because the human face contains
numerous independent, high dimensional characteristics that are not easy
to approximate and also make it realistic for human perception [1]. Like
other image inpainting tasks (e.g., scenes inpainting [3, 4], streets inpainting
[2, 12]), some key requirements for face inpainting are:

• R1) the filled region in corrupted area should be semantically mean-
ingful in relation to the face,

• R2) the original content (unmasked) and approximated content should
be continuously assembled and consistent,

• R3) the inpainted image should be visually realistic and have high fi-
delity.

Reconstructing the corrupted/unavailable portions of a face such that
the topological consistency between facial attributes are preserved (both
identity and non-identity 2 attributes), is not a trivial task [6, 8]. One can
however exploit that human faces share common geometrical and appear-
ance distributions, which are then personalized for given subjects in specific
conditions. General face geometry/appearance models have been used to
ease face manipulation and completion for given subjects [2]. Notably, a
specific facial representation deviating from or sampling the general model
can be considered for the purpose of identity information completion due to
the unique topology of different facial elements and their distinctive charac-
teristics.

Among all facial elements, the eyes are one of the most expressive organs
on the human face and contain discriminative features [39]. In this paper, we
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aim to reconstruct a face using the periocular region alone which we refer
to as eyes-to-face inpainting (see Figure 5.1). Therefore, in addition to the
above-mentioned challenges (i.e., R1-R3), another set of criteria for eyes-to-
face inpainting are as follows:

• R4) The topological structure of the face should be reconstructed in
such a way that all elements are placed in the proper position both
semantically and continuously. For doing this, it is essential to predict
the shape of the face precisely and place the face’s elements (e.g., nose,
chin, mouth) proportionally within the predicted frame. Moreover,
the head pose should be aligned and integrated with other elements
based on the appearance of eye.

• R5) The usefulness of skin around the eyes for determining demo-
graphic features (e.g., age, gender) has been shown in previous re-
search [43]. The proposed inpainting model should therefore be able
to estimate demographic characteristics using the color, texture, and
size of the eyes and brows, then inpaint other facial attributes using
the predicted attributes.

• R6) The proposed solution should preserve the identity-related fea-
tures present in the eyes region when reconstructing the whole face.

It is also important to note that the performance of suggested solutions
can be directly impacted by the image’s masking, and it is obvious that big-
ger masks make it harder to achieve the referenced requirements (i.e., R1-
R6).

Generally, synthetic and natural masks are considered in face inpainting
scenarios, which can be classified into two categories called free- (irregular)
and fixed-form (regular) masks. In widely used free-form masks [23, 24],
there are irregular shapes randomly placed on the images (Figure 5.2(a)(b)),
useful for inpainting irregular scratches. Instead, in the fixed-form masks,
regular shapes cover some portions of the images which are placed on the
images randomly or purposefully (Figure 5,2(c)-(e)) [21, 22, 25].

Recently, learning-based techniques such as deep convolutional neural
networks (CNNs) and generative adversarial networks (GANs) have been
widely used for a variety of image inpainting tasks, such as eliminating
objects [7, 8], noises [9], texts [10], and masks [11]. Usually, the proposed
CNN-based methods are classified into three categories including coarse-to-
fine, coarse-andfine, and structural guidance-based methods. Coarse-to-fine
based methods [13, 14] exploit two-stage architectures to complete content

02 Here, identity features are facial features that can be used to verify the identity of a
person using his face including demographic characteristics (e.g., age, gender, color skin), and
non-identity features are characteristics like head pose, and facial expression.
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formation and texture refinement. A two-stage design produces an inter-
mediate coarse image after reconstructing structures in the first step, then
feeds it to the second stage for texture improvement. The second category
called coarse-and-fine [15, 16] consists of two parallel branches, i.e., coarse
and fine, that extract coarse and fine information simultaneously and fill
the missed regions using the extracted information. The final group of ap-
proaches, known as structural guidance-based methods, employs an assis-
tance algorithm to provide additional information, such as edges [17, 18],
contours [19], or landmarks [6], for the proposed inpainting method.

The rest of the paper is organized as follows. Recent works in face in-
painting, latent space embedding, and GAN inversion are reviewed in Sec-
tion 2. Limitations of related works and our contributions have been dis-
cussed in section 3. A detained description of the proposed method is pro-
vided in Section 4. The experimental results and ablation study are reported
in Sections 5 and 6. Finally, sections 7 and 8 present discussion and conclu-
sion.

5.2 Background and related work

In this section, we briefly review the most relevant research on face inpaint-
ing, latent space embedding, and GAN inversion in the following subsec-
tions.

5.2.1 Face inpainting

There are a few works that particularly attempted to reconstruct a face using
the periocular region. Luo et al. [27] proposed a three-step solution called
EyesGAN which includes two GANs to predict other parts of a face using
the eyes region. They proposed a self-attention mechanism to extract infor-
mative and attention feature maps from convolution layers. Unfortunately,
it is difficult to compare our results to EyesGAN due to its unavailability.
Hassanpour et al. [18] proposed a GAN-based coarse-to-fine method
called E2F-GAN such that the coarse module benefits from the coarse-and-
fine architecture. They used edges as the guidance information for the de-
signed coarse-to-fine network.

With the aim of face inpainting by placing randomly regular or irregu-
lar masks, several methods have been proposed recently. In order to pro-
duce more realistic images, Chen et al. [28] presented a generative-based
coarse-to-fine structure that takes advantage of an attention layer to capture
lengthy dependencies between features. Free-form masks are inpainted us-
ing a coarse-to-fine structure proposed by Yu et al. [13]. A novel attention
layer in a coarse-to-fine design was suggested by Liu et al. [30] in the same
context. Wang et al. [24] proposed a two-stage face inpainting method to
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detect the corrupted regions and then improve inpainting results using a
top-down refinement network.

A few works proposed guidance-based techniques. An edge generator
is used by Nazari et al. [17] to reconstruct the edges before feeding the cor-
rupted image and predicted edges to the image inpainting network. In order
to extract features and recover the structures and textures of missing regions,
Chen and Liu [19] employ a dual-branch network with texture and edge
branches. Some works estimate facial landmarks to assist the main inpaint-
ing network[6]. A unique output per each input is generated by the methods
indicated above. In contrast, some other approaches inpaint the corrupted
regions differently for each specific input. A dual pipeline based on Vari-
ational Auto-Encoders (VAEs) was proposed by Zheng et al. [26], with a
reconstructive path that uses the ground truth to learn the prior distribution
of missing regions and a generative path for which the conditional prior is
connected to the distribution learned in the reconstructive path. Zhao et al.
[32] have suggested a GAN-based unsupervised conditional framework for
different image inpainting that can learn conditional completion distribu-
tions.

5.2.2 Latent space embedding

With the rapid evolution of GANs, many works have tried to understand
and control their latent space for various image editing tasks [33]. Choos-
ing which latent space to embed an image into a GAN image generator is a
crucial design decision for editing flexibility and output quality. One of the
most successful approaches for generating this embedding was described in
the framework of StyleGAN, which has been followed extensively in the re-
cent past [34, 35]. By using an 8-layer multilayer perceptron (MLP) to create
a nonlinear mapping network M , StyleGAN [36] transforms a native z ∈ Z
to a style vector w ∈ W . The W space is the name given to this interme-
diate latent space. The W space of StyleGAN contains more disentangled
characteristics than the Z space does because of the mapping network M .

5.2.3 GAN inversion

GAN inversion tries to invert a given image back into a pretrained GAN
model’s latent space. The generator can then accurately rebuild the image
from the inverted code. Learning-based, optimization-based, and hybrid
methods are the three major strategies for GAN inversion with the purpose
of projecting images into the latent space. Learning-based GAN inversion
[39] typically involves training an encoding neural networkE (x; θE) to map
an input image, x, into the latent code z :
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θ∗E = argθE min
∑
n

L (G (E (xn; θE)) , xn) (1)

where xn denotes the n-th image in the training dataseEFand z = E (x; θ∗E).
The objective in (1) is reminiscent of an autoencoder pipeline, with an en-
coder E and a decoder G. Throughout the training, the decoder G remains
fixed. Furthermore, improving the latent vector is generally used to recon-
struct a target image by optimization-based GAN inversion approaches [40].

z∗ = argz minL (x,G (z; θG)) (2)

where x is a target image and G is a GAN generator parameterized by
θG. The hybrid methods [41] exploit the advantages of both previously de-
scribed approaches adjusting both the Encoder θ∗E and the specific location
in the latent space z∗.

5.3 Limitations of related works and our contributions

The existing face inpainting works use different strategies (e.g., coarse-to-
fine, coarse-and-fine, guidance information) to address R1-R3. The coarse-
to-fine structure has two limitations. First, the coarse result has to be reason-
ably accurate for an effective refinement, and second, the cascaded dilated
convolutions smooth the details of features, resulting in blurry inpainting
results [28]. Although structural information about the target image may as-
sist and increase the performance of the inpainting generator in some cases,
estimating that information can also slow the inference speed, increase the
computational cost, and introduce the necessity of handcrafting auxiliary in-
formation (e.g., edge, contour, or landmarks) for different applications when
guidance-based methods are used. Moreover, unlike approaches used in
[26, 32], an eyes-to-face approach should generate a unique output for each
input even after several executions to fulfill the requirements R5 and R6.

We address these requirements and limitations by proposing a novel
method to reconstruct a face using features extracted from the periocular
region. A major part of inpainting is solely done using relevant pre-trained
networks eliminating the need for additional training. The overall archi-
tecture of our proposed framework (see Figure 5.1) resembles coarse-and-
fine architecture, but differs in several ways, detailed in the following. Our
key idea is to directly map the extracted latent representation to the latent
space of a pre-trained generator, as depicted in Figure 5.1. To extract a la-
tent representation which includes identity (ID) and nonidentity (non-ID)
attributes from the periocular region, we use a pre-trained face recognition
method, shown by Eid, and a trainable network, shown by Eat respectively.
We then map the resulting latent code Z to the latent space W of a pre-
trained generator G, and evaluate the quality of the inpainting only on the
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Figure 5.2: Examples of two types of widely used masks: free-form masks
(a) (b), and fixed-form (c)-(e). The mask used in this work is shown in (f).

G ’s output. specifically, we use W space to convert the extracted ID and
nonID features into more disentangled space, and the Z space is created by
concatenating ID and non-ID characteristics instead of using a Gaussian dis-
tribution. An optimizer is further used to find the optimal point in the W
space based on the output of G in the last step as optimization-based GAN
inversion technique, leading to address R4-R6 more precisely. This mapping
empowers us to utilize a state-of-the-art pre-trained generator, inheriting its
high-resolution and output diversity, with minimum training process. In
our approach, the representation is split into two segments comprising sep-
arate and meaningful information (i.e., ID and non-ID information). Then
the mapping network (M) is trained to extract the relevant information from
the output of Eid and Eat to be merged into a proper representation of the
target face. We will show that our method can effectively perform this task
and inpaint the hidden region with high quality.

Further, we employ a large-size mask that covers about 75% of the face
image since the goal of this paper is to complete the face based on the region
of the eyes, unlike other existing works. Despite using large-size masks,
we do not use any guidance information during our training in our work as
compared to other related works [6, 17, 18, 19] to reduce training time and in-
crease inference speed. Like other face inpainting methods, the performance
of our face inpainting is dependent on the capabilities of the selected gen-
erator. Using StyleGAN as generator, the output of our proposed methods
benefits from high image quality, outperforming all previous face inpaint-
ing methods we have compared against. In addition to being of the highest
quality, our technique also successfully generates the entire face with realis-
tic hair region, which is reported to help in identification tasks. Therefore,
in contrast to state-of- the-art face inpainting methods, which need to train
one or more generators [18, 26], we use a pre-trained generator reducing the
training efforts. To validate our proposed method, several qualitative and
quantitative metrics have been evaluated and compared with four state-of-
the-art methods. Our experiments not only assess the quality of inpainted
regions but also estimated demographic and ID features. Moreover, the ef-
fectiveness of reconstructing and maintaining identification elements on un-
seen faces, as well as the quality and diversity of faces, have been compared
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Table 5.1: Comparative analysis of face inpainting methods.

Reference one-to-one
mapping

auxiliary
independence

bio-facial
reconstruction

high-resolution
output
(1024× 1024)

pre-trained
generator

focused on
eyes-to-face

fulfilled
requirements

mask type
(coverage ratio) Used losses

[17] ✓ x x x x x R1- R4 free-form (30−
60%)

Perceptual Loss, Hinge
loss, L1 Loss, Style Loss,

Adversarial Loss

[6] ✓ x x x x x R1−R4
free-form (30-

60%), fixed form
(50%)

Perceptual Loss, L2 Loss,
Style Loss, Total variation
loss, Adversarial Loss

[28] ✓ ✓ x x x x R1−R4 fixed form (50%)
Hinge loss, Adversarial

Loss

[13] ✓ ✓ x x x x R1- R4 fixed form (50%)
L1 Loss, Reconstruction
Loss, Adversarial Loss

[19] ✓ x x x x x R1−R4
free-form (30−

60%)
L1 Loss, Adversarial loss

[32] x ✓ x x x x R1−R4 fixed form (50%)
KL loss, Reconstruction
Loss, Adversarial Loss

[26] x ✓ x x x x R1- R4
free-form (30-

60%), fixed form
(50%)

L2 Loss, KL loss,
Adversarial Loss

[27] ✓ ✓ x x x ✓ R1- R6 fixed-form (75%)
Perceptual Loss, L1 Loss,

L2 Loss, KL loss,
Adversarial Loss

[18] ✓ x ✓ x x ✓ R1-R6 fixed-form (75%)
Perceptual Loss, Style

Loss, Reconstruction Loss,
Adversarial Loss

ours ✓ ✓ ✓ ✓ ✓ ✓ R1- R6 fixed-form (75%)

Perceptual Loss, Style
Loss, Identity Loss,

Landmark Loss,
Reconstruction Loss,

Adversarial Loss

across all methods. Our approach has been demonstrated to outperform
earlier work in addition to providing special benefits including the recon-
structing of the full head and hair, preservation of ID and non-ID traits, and
minimum supervision, which eliminates the need for a substantial training
set.

It should be noted that different face elements impacts face recognition to
varying degree as assessed in several works [54]. In this work, we attempt to
extract the ID information that existed in the periocular region and preserve
it in the reconstructed image. Our results show face recognition perfor-
mance using inpainted images provides better accuracy than the periocular
region alone, indicating our proposed algorithm not only preserves the ID
information from the periocular region but also it can predict the dependent
ID information and add it to reconstructed face for further recognition tasks.
Further, seven new datasets of masked faces called E2F-StyleGANdb, E2F-
CelebA-HQ, E2F-FFHQ, E2F-MS1MV2, E2F-LFW, E2F-CFP-FP, E2F-AgeDB-
30 have been generated to train and evaluate our proposed method. Addi-
tionally, to measure the ID information in the reconstructed image, we gen-
erated two other datasets, described in section 4.

Table 5.1 presents a comparative analysis of our methodology against
other related studies, focusing on key attributes essential for applications
involving eye-to-face reconstruction.

5.4 Proposed method

5.4.1 Overview

As shown in Figure 5.3, given a ground-truth face image Igt ∈ Rh×w×3, and
a binary mask Im ∈ Rh×w×1 (with value 1 for known pixels and 0 for un-
known pixels), the input image Iin ∈ Rh×w×3 is obtained as Iin = Igt ⊙ Im,
where ⊙ denotes the Hadamard product. The goal is to inpaint the whole
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Figure 5.3: The overview of our proposed reconstructing face method (E2F-
Net). Data flow and losses show by solid lines and dashed ones, respec-
tively. First, the ID and non-ID features are extracted from masked (Iin)
and cropped-masked (Ic) images using encoders Eid and Eat, respectively.
Through our mapping network M , the concatenated features are mapped
to W , the latent space of the pre-trained StyleGAN generator G. Finally,
the optimal latent code inW space has been found using an optimizer. The
blue, orange, and green highlights indicate our major contributions. The
R1-R4 are being addressed by the green blocks. The block highlighted with
blue is addressing R4-R6. The orange modules emphasize on R5 and R6.

face with preserving ID and other visual attributes, specifically pose, expres-
sion, and properly placing face elements with proper size. To extract ID and
other attributes, we used two encoders denoted as Eid and Eat whose out-
puts are concatenated into z (i.e., z = [Eid (Ic) , Eat (Iin)]). Then we map the
Z space to a new space calledW , and the new representation w feeds a gen-
erator. The generator generates a face based on both the ID and other facial
attributes. Finally, we use an optimizer to ensure that the optimal point has
been chosen in theW space to be fed to the generator. As depicted in Figure
5.3, the proposed E2F-Net consists of two encoders Eid and Eat, a mapping
network M , a generator network called G (StyleGAN). A few additional
pre-trained encoders are used for calculating corresponding multiple losses
as described afterwards: feature encoder (Efeat ), landmark encoder (Elnd ),
and face encoder (Eface ).

Notably, we use a state-of-the-art high-quality synthesize face generator
called StyleGAN as the pretrained generator for all our experiments. Dif-
ferent from other GANs, StyleGAN features two latent spaces: W , which is
induced by a learned mapping from Z, and Z, which is generated by a fixed
distribution. SinceW is a more disentangled latent space than Z and is more
suited to facilitate and accommodate image inpainting, we employ it to map
the combined face code into it. We reduce the difficulty of learning to pro-
duce high-quality and high-fidelity images by employing this cutting-edge
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Figure 5.4: Angle distributions of both positive and negative pairs on LFW,
CFP-FP, and AgeDB-30. Red area indicates positive pairs while blue indi-
cates negative pairs. All angles are represented in degrees.

generator (G). However, it is not simple to train the mapping between the
latent space of the encoders (Z) andW . To assist M in anticipating features
that lie withinW , we add a discriminator (Dw). To distinguish between real
samples from StyleGAN’s W space and M ’s predictions, Dw is trained in
an adversarial manner.

5.4.2 The architecture of the proposed method

The proposed E2F-Net has only three trainable modules: Eat,M , and Dw.
The Eid encoder is a pre-trained face recognition model called ArcFace,
trained on the edited version of the MS1MV2 dataset called E2F-MS1MV2,
described in the next subsection. The Eat encoder is implemented as Incep-
tionV3 [49]. The M and Dw both include four fully connected layers.

The generator, G is a pre-trained StyleGAN synthesis network, trained
on FFHQ [36]. In the following subsections, we will explain each used mod-
ule in detail.

5.4.2.1 Identity Encoder

To extract ID features from the periocular region, we utilized a face recogni-
tion model called ArcFace with a Resnet-50 backbone. To ensure that the fea-
tures provided by ArcFace are well adapted to the periocular region, we re-
trained ArcFace model on a modified version of the MS1MV2 dataset called
E2F-MS1MV2. To generate this dataset, all images in the MS1MV2 dataset
were cropped to keep only the periocular region. By doing this, the recogni-
tion task is enforced to used eyes region alone. To validate the effectiveness
of this model, we illustrate the angle distributions of both positive and neg-
ative pairs on edited versions of LFW, CFP-FP, and AgeDB-30, called E2F-
LFW, E2F-CFP-FP, and E2F-AgeDB-30, in Figure 5.4. We can see that the
periocular region can be very effective for face verification task, with ver-
ification accuracies for the three datasets E2F-LFW, E2F-CFP-FP, and E2F-
AgeDB-30 resulting in 95.6%, 68.91%, and 88.28%, respectively. Given the
trained network parameters (θid), the attribute encoder (Eid) is fixed and
used to obtain the attribute code zid ∈ R512×1, i.e., zid = Eid (Ic; θid).
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5.4.2.2 Attribute Encoder

Eat extracts non-ID features like pose, expression, illumination, skin color,
etc. We used a pre-trained version of InceptionV3 [49] which has been
trained on a large classification image dataset called ILSVRC 2012. Given the
pretrained network parameters

(
θ̂at

)
, the attribute encoder (Eat) is used to

obtain the attribute code zat ∈ R2048×1, i.e., zat = Eat

(
Iin; θat | θ̂at

)
. From

the pre-trained parameters θ̂at we finetune until the final θat using appro-
priate loss functions as described in the next section.

5.4.2.3 Mapping Network

A multi-layer fully-connected neural networkM , linearly maps the concate-
nated ID and non-ID attribute latent codes i.e., zid and zat, z ∈ R2560×1, to
a stochastic style code w ∈ R512×1, where w lies in an extended stochas-
tic latent space (W). Let θM be the learnable parameters in M , then we
have w =M (z; θf ). Notably, M is comprised of four fully connected layers.
Other network sizes are explored in the ablation section.

5.4.2.4 StyleGAN

In addition to producing impressively photorealistic, high-quality synthetic
photos of faces, StyleGAN, an extension to the GAN architecture, proposes
significant changes to the generator model and allows to control over the
style of the generated image at various levels of detail by adjusting the style
vectors and various noise parameters. Given the pre-trained StyleGAN net-
work parameters (θG), the reconstructed face (Iout ) is the output of G i.e.,
Iout = G (w; θG), with Iout ∈ Rh×w×3.

5.4.2.5 Discriminator

The introduction of StyleGAN as a module in our method provides signif-
icant benefits (e.g., high realism of the output), but also comes with some
challenges. In particular, it is not simple to train the mapping between the
latent space Z and W . To help M estimate features that lie within W , we
add a discriminatorDw, which is trained in an adversarial manner to distin-
guish between real samples from StyleGAN’sW space and M’s predictions.
Note that we used E2F-StyleGANdb dataset for training D since we have
latent code w for each sample and during training with E2F-CelebA-HQ we
do not train this module.
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(a) StyleGANdb (b) CelebA-HQ dataset

Figure 5.5: The middle column shows the output of StyleGAN before opti-
mization and the right column after the optimization proposed in our E2F-
Net.

5.4.2.6 Inversion via Optimization

To fully exploit the ability and explore the interpretability of well-trained
StyleGAN models, GAN inversion has been proposed to find the optimal
latent codes within W space. In the optimization section, we generate the
reconstructed face by optimizing over the latent vector w :

w∗ = argw minL (Iin, G(w)) (3)

where Iin is target image and G(w) is the output of StyleGAN generator.
Equation (3) is a non-convex optimization problem. The used loss functions
for finding the optimum w have been defined in the next section.

Algorithm 5.1: Latent Space Embedding for StyleGAN

1 Input: Iout StyleGAN output, Iin masked input, Ic cropped input; G
the pre-trained StyleGAN generator .

2 Output: optimum latent code w∗

3 Initialize latent code w∗ = w
4 while not converged do
5 Iout c

← Cropped G (w∗)
6 Iout m ←Masked G (w∗)
7 Lopt = Lperc(Iin , Iout) + Lid(Ic, Iout)
8 w∗ ← w∗ − η∇wLopt
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5.4.3 Training and losses

First, a synthetic dataset using StyleGAN called E2F-StyleGANdb has been
created in the following manner. We sample 50,000 random Gaussian vec-
tors and forward them through the pre-trained StyleGAN. Then the peri-
ocular region has been cropped for each image generated from the vectors.
The Gaussian noise is transformed into a latent vector w in the forward pro-
cess, from which we crop the image and capture both the image and the
w vector. The E2F-StyleGANdb images are split into two parts for train-
ing and verifying ( 90% and 10% respectively) the proposed model. During
the training, the latent vectors w are used as ”real” samples for training the
trainable modules. Figure 5.5 (a) shows the generated results by E2F-Net
which are very close to the ground truth. Despite accurate results for the
E2F-StyleGANdb dataset, this behaviour is not seen presented in real-world
scenarios. To examine this, a modified version of the CelebA-HQ dataset
[48] called E2F-CelebA-HQ has been created. As shown in Figure 5.5 (b), the
gender and age of the person are preserved but the quality of outputs and
identity of the person have not been preserved very well. To overcome this,
the E2F-CelebA-HQ dataset has been used for training. The latent vectors
have been obtained for all training samples of E2F-CelebA-HQ dataset by
passing through Eid, Eat, and M . Similar to the previous attempt, the latent
vectors w are used as ”real” samples for training the trainable modules.

It is noteworthy to note that the E2F-Net model is trained in a super-
vised, end-to-end fashion. To achieve noteworthy results, we have used a
variety of loss functions, including identity loss, landmark loss, perceptual
loss, style loss, adversarial loss, and reconstruction loss for trainable compo-
nents of our proposed method. More specifically, the adversarial loss Ladv

ensures proper mapping to the W space. Identity preservation is encour-
aged using Lid, that penalizes differences in identity between Igt and Iout .
Attributes preservation is encouraged using Lrec and Llnd , which penalize
pixel-level and facial landmarks differences, respectively, between Igt and
Iout . In the following we describe all losses.

Perceptual Loss: Perceptual loss [51] has been utilized to guarantee the
similarity of high-level structures to keep the structure information of the
overall image. Therefore, instead of matching pixels between them, simi-
lar feature representations to the ground truth are required to achieve R1-
R4. We calculate the perceptual loss

(
Lperc

)
by feeding the generated image

(Iout ) and the ground truth (Igt) in a VGG-19 feature extractor. We then
obtain feature maps φgt and φout, extracted from layer l of the pre-trained
VGG19 network. The perceptual loss can be written as follows:

Lperc =

N∑
l=1

∥∥φgt
l − φout

l

∥∥
1

ClHlWl
(4)
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where Hl,Wl, and Cl represent the height, weight, and channel size of
the lth feature map, respectively. N is the number of feature maps that the
VGG-19 feature extractor generates.

Style Loss: Perceptual loss aids in obtaining high-level structure and pre-
vents the output image from deviating in content from the ground truth
which assist to enhancing R1-R4. We still need to maintain consistent style
elements like colors and patterns, though. This objective can be achieved by
adding style loss

(
Lstyle

)
to the loss function. Similar to Lperc , φ

gt and φout

are extracted from VGG-19, and we define φstyle
l as the product of a features

map (row vector) multiplied by its transpose:

φ
style
l = φlφ

T
l (5)

We then obtain the style loss by comparing φstyle
l between φgt and φout :

Lstyle =

N∑
l=1

∥∥∥∥∥ 1

Cl × Cl

φ
style gt

l − φstyle eout
l

ClHlWl

∥∥∥∥∥
1

(6)

Identity Loss: We enforce the identity similarity between the reconstructed
face Iout and the original face Igt in the embedding space which used to
achieve R5-R6. The identity loss is formulated as follows

Lid = ∥Eface (Igt)− Eface (Iout )∥1 (7)

where ∥.∥1 is ℓ1-norm. The Eface encoder is a pre-trained ArcFace model
[31] with ResNet-50 backbone, trained on MS1MV2 dataset [44].

Landmark Loss: Because facial landmarks represent the potential poses
of the face, we also include a sparseL2 cycle consistency landmarks loss con-
tributing to R1-R4. Using a pre-trained network named as Elnd , landmarks
are recovered. The landmark loss is formulated as follows

Llnd = ∥Elnd (Igt)− Elnd (Iout)∥2 (8)

A pre-trained landmarks network (Elnd ) [50] has been used to predict 68
facial keypoints.

Reconstruction Loss: An additional loss is also used to encourage pixel-
level reconstruction of Iout . This loss is clearly motivated by our desire for
Iout to be generally similar to Igt and mainly address R1-R4. Notably, this
loss can capture and preserve pixellevel information such as colors, illumi-
nation, and maintain texture information, not modeled by any other loss.
It is calculated as the ℓ1-norm between Iout and the corresponding ground
truth Igt · Lrec is defined as follows:

Lrec = α
(
1−MS− SSIM

(
Igt , Iout

))
+ (1− α)

∥∥Igt − Iout
∥∥
1

(9)
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where Multi-Scale Structural Similarity Index Metric (MS-SSIM) is calcu-
lated as in [13] and α = 0.84.

Adversarial Loss: For adversarial loss, we use the non-saturating loss
with R1 regularization [42] :

LD
adv = − E

w∼W
[logDw(w)]− E

z
[log (1−Dw(f(z)))] +

γ

2
E

w∼W

[
∥∇wDw(w)∥22

]
(10)

LG
adv = −E

z
[logDw(f(z))] (11)

Total objective: After defining the loss functions above, the total training
objective can be expressed as:

Ltotal = λid Lid + λlnd Llnd + λperc Lperc + λstyle Lstyle + λrec Lrec (12)

where λid, λlnd , λperc , λstyle and λrec are weights of corresponding losses,
respectively. We set λid = λrec = 1, λlnd = 0.001, λstyle = 0.1 and λperc =
0.01 in our settings.

Optimizer Loss: Here we use ADAM optimization with Mean Square Er-
ror (MSE) and perceptual losses as the objective functions to find the optimal
latent codes that can effectively approach Iout to Igt. This loss is aiding to
address R4-R6. The loss function for optimization consists of two different
loss terms including identity loss and perceptual loss:

Lopt = λoperc Lperc + λoidLid (13)

We set λoperc = 0.01 and λoid = 0.1 in our settings.
Algorithm 1 shows the pseudo-code of the optimizer. Beginning with

an appropriate initialization w, we look for an optimal vector w∗ that mini-
mizes the Lopt , which assesses how similar the given image and the image
produced by w∗ are.

5.5 Experiments

The performance of the E2F-Net is assessed in this section using the newly
created eyes-to-face datasets described in the next subsection. Our results
have been compared with four methods: Pluralistic Image Completion (PIC)
[26], EdgeConnect (EC) [17], LaFIn [6], and E2F-GAN [18]. To have fair
comparison, the four methods have been retrained using the E2F-CelebA-
HQ dataset. Five statistical metrics, described in subsection 4.3.1, have been
used to quantitatively measure the performance difference among the meth-
ods. Additionally, we calculate the False Non-Match Rate (FNMR) between
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original and inpainted faces using a competitive face identification matcher
[37] based on ArcFace [31] to assess the degree of retention of ID features.

5.5.1 Datasets

Experiments are conducted on seven generated datasets: E2F-StyleGANdb,
E2F-CelebA-HQ, E2F-FFHQ, E2F-MS1MV2, E2FLFW, E2F-CFP-FP, E2F-AgeDB-
30; which are all available on the project’s webpage. The images are re-
sized to 256 × 256, and then a landmark detector [53] is used to locate and
clip the eyes in order to extract the periocular area from each facial image.
Furthermore, we eliminated deceptive samples utilizing WHENet methods
[52], such as those with sunglasses over their eyes or faces that were tilted
more than 45 degrees in one direction (roll, pitch, yaw), which would have
hidden one of their eyes.

• E2F-StyleGANdb: A high-quality image dataset that consists of 50,000
pairs of (Igt, Iin) images collected from StyleGAN outputs. We ran-
domly selected 45,000 images for training and the remaining 5,000 im-
ages for testing. Each image has been resized to 256× 256.

• E2F-CelebA-HQ: A high-quality image dataset that consists of 24,564
portrait images collected from a publicly available dataset [48]. We
randomly selected 22,879 images for training and the remaining 1,685
images for testing. Each image has been resized to 256× 256.

• E2F-FFHQ: A high-quality image dataset with more variations, con-
sisting of 70,000 face images from a publicly available dataset known
as FFHQ dataset [20]. All samples are used for testing the proposed
E2F-Net. Each image has been resized to 256× 256.

• E2F-MS1MV2: The original version of E2F-MS1MV2 called MS1MV2
[44] includes 85k identities and 5.8M images. After applying a land-
mark detector to extract the periocular region from each image, 83.8 K
identities and 5.6M images remained. This dataset has been used to
train Eid.

• E2F-LFW: E2F-LFW is a modified version of LFW [45] including 6,000
pairs of faces in the validation part. After applying a landmark de-
tector to extract the periocular region from each image, 5,996 pairs re-
mained. This dataset has been used to evaluate Eid.

• E2F-CFP-FP: E2F-CFP-FP is a modified version of CFP-FP [46] includ-
ing 6,000 pairs of faces in the validation part. After applying a land-
mark detector to extract the periocular region from each image, 5,998
pairs remained. This dataset has been used to evaluate Eid.
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Figure 5.6: FNMR curves are displayed for our proposed method (E2F-Net)
and other compared methods (PIC, EC, LaFIn, E2F-GAN) using the E2F-
CelebA-HQ dataset.

Figure 5.7: FNMR curves are displayed for our proposed method (E2F-Net)
and other compared methods (PIC, EC, LaFIn, E2F-GAN) using the E2F-
FFHQ dataset.
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• E2F-AgeDB-30: E2F-AgeDB-30 is a modified version of AgeDB-30 [47]
including 6,000 pairs of faces in the validation part. After applying a
landmark detector to extract the periocular region from each image,
5,993 pairs remained. This dataset has been used to evaluate Eid.

5.5.2 Comparison methods

In this work, we compare our method with four state-of-the-art inpainting
methods, which are summarized as follows:

PIC [26]: PIC takes advantage of a dual pipeline using variational auto-
encoders that consists of a reconstructive path that uses the ground truth
to learn the prior distribution of missing regions and a generative path for
which the conditional prior is connected to the distribution learned in the
reconstructive path. It should be noted that, because the PIC approach pro-
duces distinct outputs for a certain input, it has been executed five times
and the best outcomes have been reported.

EC [17]: By predicting the edges using an edge generator, EC feeds the
damaged image and the predicted edges to the image inpainting network.

LaFIn [6]: LaFIn is an inpainting GAN-based network that uses pre-
dicted landmarks as guidance.

E2F-GAN [18]: E2F-GAN is a GAN-based coarse-to-fine method such
that the coarse module benefits from the coarse-and-fine architecture. More-
over, an edge detector has been utilized to provide more information for the
designed network.

5.5.3 Evaluation metrics

Through quantitative and qualitative comparisons, we assess the proposed
model’s face inpainting performance. Two different types of metrics, com-
prising five statistics and one identity measure, have been calculated for
quantitative analysis. We give a brief overview of each category and the
associated metrics in the sections that follow.

5.5.3.1 Statistical metrics

ℓ1 loss [20]. A simple and popular loss function used in the generation of
images is the pixel-wise ℓ1 loss. This loss function measures the discrepan-
cies between the synthesized content and the corresponding ground truth
at the pixel level:

ℓ1 (Igt, Iout ) =
1

hw

h∑
i=1

w∑
j=1

∥∥Igtij − Iout
∥∥
1

(5.0)

Peak Signal to Noise Ratio (PSNR) [38]:
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PSNR
(
Igt , Iout

)
= 10 loghw10

h∑
i=1

W∑
j=1

(
Igtij − Iout

)2 (5.1)

Structural Similarity (SSIM) [13]. The SSIM describes the degree of struc-
tural similarity between two images:

SSIM
(
Igt , Iout

)
=

(
2µgt µout + C1

) (
2σgt σout + C2

)(
µ2

gt + µ2
out + C1

)(
σ2

gt + σ2
out + C2

) (16)

where C1 and C2 are positive constants added to prevent cases in which
the denominator is zero.

Frechet Inception Distance (FID) [30]. Utilizing the Wasserstein distance
between the distributions of the actual and created images in the feature
space acquired by the Inception model [30], this metric assesses the visual
quality and variety of the generated images. The FID can be expressed as:

FID
(
Igt , Iout

)
=

∥∥µgt − µout
∥∥2
2
+Tr

(
σgt + σout − 2

(
σgt σout

) 1
2

)
(17)

In both SSIM and FID metrics, µgt and µout donate the mean values of
Igt and Iout , respectively; while σgt and σout represent the covariance of Igt
and Iout, respectively.

Total Variation (TV) [37]. TV calculates the total of the absolute differ-
ences for nearby pixels as formulated below to help quantify the degree of
noise in the image:

where Nh and Nw are the number of pixels in Iout except for the last row
and the last column, respectively.

5.5.4 Identity metrics

We used false non-match rate (FNMR) to measure the preserved ID attributes
in inpainted images. More specifically, FNMR measures the miss-categorization
rate for some pairs of face images where each pair belongs to the same in-
dividual. Here, we assumed that Iin and Iout are two faces for the same
individual. Using Eface , the corresponding embedding vectors for each face
have been obtained, and the cosine similarity for each pair of Iin and Iout
has been calculated. Finally, the FNMR for different thresholds has been
depicted.

5.5.5 Implementation details

We use StyleGAN pre-trained at 256x256 resolution in all our experiments.
Training is performed using the Adam optimizer, with β1 = 0.9 and β2 =
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Table 5.2: Quantitative results over E2F-CelebA-HQ dataset for E2F-Net and
other compared methods (PIC, EC, LaFIn, E2F-GAN). The best result of each
column is boldfaced. ↑ indicates that the higher the number the better is the
model and ↓ indicates the lower the number the better is the model.

Method FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓
PIC 57.02 0.41 11.19 8.50 50.37
EC 70.63 0.42 12.67 5.27 121.08
LaFIn 63.16 0.47 13.18 6.89 40.94
E2F-GAN 46.39 0.51 13.66 0.02 41.54
E2F-Net (Ours) 45.85 0.53 13.78 0.02 40.36

Table 5.3: Quantitative results over E2F-FFHQ dataset for E2F-Net and other
compared methods (PIC, EC, LaFIn, E2F-GAN). The best result of each col-
umn is boldfaced. ↑ indicates that the higher the number the better is the
model and ↓ indicates the lower the number the better is the model.

Method FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓
PIC 143.89 0.37 10.03 10.54 68.9
EC 134.63 0.37 10.84 7.59 197.84
LaFIn 97.48 0.43 11.32 6.98 55.29
E2F-GAN 101.27 0.45 11.52 0.02 53.64
E2F-Net (Ours) 91.14 0.49 12.12 0.02 49.12

0.999. On a single NVIDIA GeForce RTX 3090 GPU, the network is trained
end-to-end with batch sizes of 16 and converges in roughly two days. It
should be noted that this is quite effective considering that training Style-
GAN would take more than 35 days on the same GPU.

5.5.6 Comparison with previous works

We qualitatively and quantitatively compare our results against four state-
of-the-art approaches, i.e., PIC, EC, LaFIn, and E2FGAN, using the above-
mentioned metrics and plotting some outputs. It should be noted that we
trained the four methods using our own constructed training dataset, E2F-
CelebA-HQ, using the best reported setups for each method described in the
respective articles. The obtained results based on the E2F-CelebA-HQ and
E2F-FFHQ validation datasets have been presented in the following subsec-
tions.

5.5.7 Quantitative comparisons

The results of statistical metrics calculated on the validation set of the E2F-
CelebA-HQ dataset including 1,685 samples are reported in Table 5.2. As
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can be observed, E2F-Net is superior over PIC, EC, LaFIn, and E2F-GAN
in most metrics except TV loss which is equal to E2F-GAN. Overall, the
E2F-Net outperforms the other methods in terms of FID, SSIM, PSNR, and
ℓ1 metrics (addressing R1-R4). More precisely, the significant margins in
FID and ℓ1 measures show that, in comparison to previous approaches, our
method can inpaint the masked image with a significantly greater level of
quality. The large margin between our proposed method and others is also
patent in Table 5.3, when the E2F-FFHQ dataset has been used as a valida-
tion set. We conducted t-tests to statistically validate the E2F-Net model’s
superior performance in metrics such as FID, SSIM, PSNR, TV, and l1 loss,
against other methods with p-values under 0.05 . Our statistical analy-
sis revealed that our method outperforms other techniques across various
metrics for both datasets, with the exception of the TV metric. Specifically,
the TV metric showed no significant statistical difference when comparing
our method with the E2F-GAN across both E2F-CelebA-HQ and E2F-FFHQ
datasets.

Moreover, to measure the amount of preserving ID features, FNMR has
been calculated for both datasets as shown in Figures. 5.6 and 5.7 (address-
ing R6). E2F-Net has a decreased false non-match rate at various thresholds,
demonstrating the capability of our system to extract ID from the periocular
area and transfer it to the reconstructed face.

Additionally, to quantitatively measure the preserved demographic in-
formation (e.g., age, gender) (addressing R5), we used OpenCV age and
gender estimation library, to compare the reconstructed faces with ground
truth. Notably, the E2F-CelebAHQ, the modified version of CelebA-HQ, is
an ill-biased/imbalanced dataset over certain attributes such as gender, skin
color, and age.

Regarding gender, 66 percent of training images are female, and 34 per-
cent are male, indicating female gender representation over male gender
during training. Furthermore, this imbalance also exists for validation im-
ages, 58 percent are female and 42 percent are male. Regarding age, four
intervals are considered, and the percentage of each interval is reported in
Table 5.4. The training and validation sets are imbalanced such that the sec-
ond interval (i.e., between 15 and 40) has the maximum samples ( ≈ 55% )
and the fourth interval (i.e., older than 60 ) has the minimum samples (i.e.,
≈ 0.1% in training set and ≈ 1% in validation set). Considering the valida-
tion set percentage as the baseline for each interval, our proposed method
(E2F-Net) predicts the age attribute. Regarding gender, as shown in Table
5.5 our proposed method along with E2F-GAN and LaFIn methods can pre-
serve the attributes of both groups very well (i.e., 41.7% out of 42% of men
and 57.9% out of 58% of women).
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Figure 5.8: Quality comparison among PIC, EC, LaFIn, E2F-GAN, and our
proposed method using E2F-CelebA-HQ dataset. very close to the baseline.

5.5.8 Qualitative comparisons

A few samples of results are displayed in Figures 5.9 and 5.10 for E2F-
CelebA-HQ and E2F-FFHQ datasets, respectively. As it can be observed, the
quality of PIC and EC is really low compared to E2F-GAN, LaFIn, and our
results. Moreover, in comparison with other methods, our method generates
high quality and highly structured faces (addressing R1-R4). Additionally,
to measure the amount of preserved demographic information (addressing
R5), we present a variety of faces in Figures 5.8 and 5.9. For instance, Figure
5.8 rows 2, 4, and 7 show very young man and women with faces recon-
structed preserved well ID features. Similar high-quality results are demon-
strated in Figure 5.10 rows 5 and 6 for two elderly men.
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Figure 5.9: Quality comparison among PIC, EC, LaFIn, E2F-GAN, and our
proposed method using E2F-FFHQ dataset.

5.6 Ablation study

Number of layers of the mapper (M). A fully-connected network has been
used to map Z space latent codes toW space. Notably, in the original Style-
GAN network an eight-layer fully connected network was proposed. To
analyze the optimum mapper for this task, we have done the experiments
using a different number of layers: 2, 4, and 8 layers. As shown in Table 5.6,
a 4-layer fully-connected mapper generates better quantitative results.

Impact of optimizer: Table 5.7 shows quantitative metrics for the initial
output of StyleGAN and after executing our latent embedding optimizer.
We show the results of 25th , 100th , and 200th iterations. Utilizing an RTX
3090 graphics card, we recorded the optimization time consumed after the
25th , 100th , and 200th epochs, detailed in Table 5.7 and discussed in [28].
Notably, the consumed time before initiating the optimization process is 0.48
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Table 5.4: Age Evaluation of our proposed method (E2F-Net), PIC, EC,
LaFIn, and E2F-GAN using CelebA-HQ dataset. numbers are shown in per-
cent.

age<=15 15<age<=40 40<age<=60 age>60
E2F-CelebA-HQ
(training set) 38.1 54.8 7 0.1
E2F-CelebA-HQ validation set (baseline) 37 55 7 1
PIC 24 48.9 5.6 0.4
EC 16.4 45.6 4.4 0.2
LaFIn 34.8 53.2 6.3 0.7
E2F-GAN 34.8 53.2 6.2 0.8
E2F-Net (ours) 35.1 53.9 6.5 0.8

Table 5.5: Gender Evaluation of our proposed method (E2F-Net), PIC,
LaFIn, EC, and E2F-GAN using CelebA-HQ dataset. numbers are shown
in percent.

male female
CelebA-HQ training set 34 66
CelebA-HQ validation set (baseline) 42 58
PIC 40.6 56.8
EC 40.1 56.6
LaFIn 41.7 57.9
E2F-GAN 41.7 57.9
E2F-Net (ours) 41.7 57.9

Table 5.6: Quantitative results over E2F-CelebA-HQ dataset using 2, 4, 8-
layer mapper. for each metric, a triplet including the initial output of Style-
GAN, the output of StyleGAN after 25 and 200 iterations on f have been
reported respectively.

Method FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓
2-layer mapper
(initial/25/200)
4-layer mapper
(initial/25/200)
8-layer mapper
(initial/25/200)

54.19/50.87/48.61 0.47/0.49/0.49 13.62/13.57/13.38 0.02/0.018/0.019 40.77/39.77/40.25

second.
For all metrics, the optimizer has a positive impact. Figure 5.10 shows

the impact of the optimizer on improving quality, identity features, and fa-
cial expression.

Impact of our inpainting method on face/periocular recognition: To mea-
sure if our proposed inpainting method preserves or adds further ID infor-
mation in the reconstructed face, we created two datasets and used Eid (i.e.,
trained on periocular region) and Eface (i.e., trained on face) to calculate
FMR and FNMR curves.

We used CelebA-HQ validation set to create the required datasets. First,
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Table 5.7: the quantitative results of the initial outputs of StyleGAN and af-
ter optimizing the latent code in three different iterations over E2F-CelebA-
HQ dataset and consumed time using 4-layer mapper have been reported.

Method FID ↓ SSIM ↑ PSNR ↑ TV ↓ ℓ1 Loss ↓ Time [sec]
Initial output 49.8586 0.479774 13.6780 0.0208 40.360 0.48
25th iteration 48.3770 0.49789345 13.6619 0.0186 39.417 2.04
100th iteration 47.1548 0.5002335 13.5310 0.0181 39.384 6.4
200th iteration 47.2831 0.49711797 13.4402 0.0197 40.056 12.7

a dataset called sub-CelebA including 960 face pairs (480 positive pairs such
that both images are belonging to the same subject and 480 negative pairs in
which the images of each pair are belonging to different subjects) have been
selected. Then all images within the sub-CelebA dataset are cropped such
that just the periocular region remained, we called this dataset p-CelebA
(p for periocular). Finally, again using sub-CelebA, we create the inpaint-
CelebA dataset such that one of the faces in each pair is kept, and the other
one is replaced with its reconstructed version. Therefore, to measure the per-
formance of E2F-Net regarding preserving ID information, we feed the p-
CelebA to Eid and inpaintCelebA to the Eface . The results including the an-
gle distributions, the FMR, FNMR, and ROC curves for the above-mentioned
datasets are shown in Figure 5.11. The FNMR curves drawn using the Eface
increase more smoothly compared to FNMR curves drawn by Eid, and the
FMR curve drawn byEface decreases more quickly compared to FMR curves
drawn by Eid, leading to less EER value (crossing point between FMR and
FNMR curves). Notably, the large gap between FMRs curves demonstrates
that the inpainting-based face recognition can reduce inter-class distances
significantly. We hypothesize it as a result of our proposed architecture
being able to extract a great amount of ID information from the periocu-
lar region and transmit to inpainted face. The accuracies for p-CelebA and
inpaint-CelebA datasets are 90.81% and 96.04%, respectively.

Impact of other types of masks: while the current study focused on eyes-
to-face task, we have checked the capability of E2F-Net for four other types
of masks including free-form and fixed-form. Notably, since Eid is trained
to extract identity information from periocular region, we cannot use masks
that cover this region. The results are presented in Figure 5.12.

5.7 Discussion

Regarding preserving the ID information of each person (i.e., addressing
R6), we have done two main experiments. First, the outputs of our proposed
method are compared with other methods by calculating FNMR curves on
two datasets (i.e., E2F-CelebA-HQ and E2F-FFHQ) shown in Figures 5.7 and
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Figure 5.10: Impact of optimizer on improving quality, ID features, and fa-
cial expression of StyleGAN output.
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5.8. Second, we have explored if inpainted full faces are more adequate
for person ID compared to the input periocular images. Our conducted ex-
periments (i.e., in section V) show that inpainted full face recognition im-
proves the verification performance over periocular-based person verifica-
tion. Common sense tells us that 1) inpainting properly keeps ID informa-
tion, and 2) the state-of-the-art face recognition models work better in full
face compared to periocular images.

Limitations of our Work: Although our proposed method can recon-
struct a wide variety of faces while preserving ID features, there are two
main limitations. First, the color of the scalp hair and eyebrow hair can
result in different colors (as shown in Figure 5.13 row 1). Detecting and
properly inpainting these elements may not be feasible without other cues
if, e.g., part of the scalp hair is not visible in the periocular region, if the
person hides part of the scalp hair (e.g., by a hat as shown in Fig 5.13 row
2), or misses part the of scalp hair (see Figure 5.13 row 3). Another issue for
men is the difficulty to detect the existence of a beard on the face based on
the periocular region. Second, the existence of occlusion or closed eyes may
lead to reducing the quality of outputs as shown in Figure 5.14.

5.8 Conclusion and future work

In this paper, we show that a variety of faces can be reconstructed using only
the periocular region by our proposed

GAN-based network called E2F-Net. For this purpose, a pre-trained face
generator called StyleGAN has been used such that our proposed method
benefits from not only minimum training process but also high image qual-
ity and diverse facial outputs. Moreover, to carefully extract ID features
from the periocular region, we used a face recognition model called ArcFace
which is retrained on E2F-MS1MV2 dataset, a generated identity recognition
dataset based on the eyes region. Notably, we reveal that ID and non-ID
features can be extracted from the eyes region and finally reconstruct the
whole face based on these features. We conducted extensive experiments on
two datasets including a high diversity of faces with different gender, eth-
nicity (e.g., Caucasian, Asian, African), pose (e.g., frontal, upward, down-
ward), and expression (e.g., smiling, neutral), and show that our method
successfully reconstructs the whole face with high quality.

Despite promising effectiveness, the proposed method still needs to be
further improved: (1) the capacity of the generated GAN latent space through
adversarial loss to represent the space from ground-truth data is challenging
to measure. While current experiments with different mapper and discrimi-
nator architectures provide some insights, there’s still uncertainty about the
adequacy of the latent space representation. Future work should explore
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Figure 5.11: Comparing the performance of Eface and Eid fed by inpaint-
CelebA and p-CelebA datasets, respectively. The first row shows the angle
distributions for positive and negative pairs for both inpaint-CelebA (left)
and p-CelebA (right) datasets. The ROC, FMR and FNMR curves for both
datasets are shown in the second row.

novel ways to validate the representation capacity of the GAN latent space.
(2) The size of the training dataset and its influence on generalization is an-
other concern. With the current architecture relying on only three trainable
components and relatively shallow networks for M , and Dw, the impact of
a larger dataset may be limited. However, future studies could explore scal-
ing up the architecture to leverage larger datasets more effectively. (3) To
address the challenges associated with hair and eyebrow color consistency,
the presence of occlusions, and the detection of facial hair from limited vi-
sual information. These factors currently impede the method’s reliability in
reconstructing facial features with high fidelity. (4) by systematically ma-
nipulating various facial elements, future research could yield valuable in-
sights into the differential contributions of ID and non-ID features to facial
recognition. (5) we fine-tuned the model’s trainable components using high-
resolution facial datasets (i.e., E2F-CelebA-HQ) which resulted in the model
being specialized for high-resolution imagery. However, certain use cases,
like public security and criminal identification, may not always have high-
resolution images available. Therefore, subsequent research could focus on
refining our model to perform effectively in situations where only lower-
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Figure 5.12: Comparative analysis of E2F-Net’s performance with various
mask types.
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Figure 5.13: Quality comparison among PIC, EC, LaFIn, E2F-GAN, and our
proposed method using E2F-FFHQ dataset.

Figure 5.14: Example impact of closed eyes and eyes occlusion on output.
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resolution images are accessible.
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Robust Continual Learning

Ahmad Hassanpour, Majid Moradikia, Bian Yang, Ahmed Ab-
delhadi, Christoph Busch, Julian Fierrez

Abstract
Enhancing the privacy of machine learning (ML) algorithms has become

crucial with the presence of different types of attacks on AI applications.
Continual learning (CL) is a branch of ML with the aim of learning a set of
knowledge sequentially and continuously from a data stream. On the other
hand, differential privacy (DP) has been extensively used to enhance the pri-
vacy of deep learning (DL) models. However, the task of adding DP to CL
would be challenging, because on one hand the DP intrinsically adds some
noise that reduce the utility, on the other hand the endless learning proce-
dure of CL is a serious obstacle, resulting in the catastrophic forgetting (CF)
of previous samples of ongoing stream. To be able to add DP to CL, we have
proposed a methodology by which we cannot only strike a tradeoff between
privacy and utility, but also mitigate the CF. The proposed solution presents
a set of key features: (1) it guarantees theoretical privacy bounds via en-
forcing the DP principle; (2) we further incorporate a robust procedure into
the proposed DP-CL scheme to hinder the CF; and (3) most importantly, it
achieves practical continuous training for a CL process without running out
of the available privacy budget. Through extensive empirical evaluation on
benchmark datasets and analyses, we validate the efficacy of the proposed
solution.

INDEX TERMS Differential privacy, continual learning, deep learning,
privacy.

6.1 Introduction

Recently, deep learning (DL) models have shown significant improvement
as compared to the human decision making on different tasks [1]-[5]. De-
spite the striking results, since DL models are built upon the static models,
they cannot be applied simply over data streams. More explicitly, a time
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frame of data stream may vanish soon due to storage constraints or privacy
issues, which requires a dynamic training process to begin upon receiving
the new data. This gap motivates the researchers to develop DL models,
able to adapt frequently and resume learning over time. A typical example
of such a system is human cognition by which one tends to learn concepts
sequentially. One prominent feature of such a system is that old concepts
might be revisited though it is not necessary to keep them in mind [6]. By
contrast, conventional DL models cannot learn in this way and thus they
suffer from catastrophic forgetting (CF) of old concepts upon learning new
ones [7]. Hence, conventional DL (CDL) models often concentrate on static
tasks whose data are shuffled to guarantee the independent and identically
distributed (i.i.d.) requirement. Despite performance improvement, CDL
models cannot be applied over data streams as the training data is revis-
ited over several computations. To circumvent this issue while preventing
the CF, described above, Continual Learning (CL) comes into play, aimed
at gradually extending attained information to be exploited for future learn-
ing.

In real world, DL algorithms are extensively vulnerable to security at-
tacks e.g., adversarial example where an adversary fool the DL via pertur-
bation samples [8], [9]. Based on the knowledge of adversaries from the
target model, the adversarial attacks belong to one of the main group of:
white-box, gray-box, and black-box attacks. In blackbox attack model, the
attacker is not able to access to the model weights; whilst in the white-box
attack, the attacker has completely access to the architecture and weights of
the model, comprised of countermeasure methods.

Gray-box attacks also presume that the attacker knows everything about
the network and defense, except the parameters.

To confront with such attacks, three well known methods have been
broadly used in several literature: fully homomorphic encryption (HE) [10],
[11], [37], k-anonymity [12], and differential privacy (DP). Although the HE
offers strong data privacy preservation, it is ineffective in DL models ow-
ing to the computational burden imposed due to the dimension of training
datasets. On the other hand, k-anonymity also performs weakly when fac-
ing large datasets [13], [14]. Thus, both HE and k-anonymity are inefficient
in case of data stream in which a large amount of data is coming in over a
long period of time and it is not practically possible to keep the entire data
set in memory at once.

Recently, DP has attracted a great deal of attention in DL-based solutions
due to providing the capability of analyzing a dataset without disclosure of
an individual’s information for DL models [17]. The main goal of such a
system is to control the cost of losing privacy, called privacy budget (PB),
so that it should not exceed the predefined global privacy budget (GPB).
Notably, without adding computational burden, it tries to preserve the pri-
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vacy of data by perturbing the weights, objective function, or outputs of DL
models systematically [15], [38]. The noise added to the dataset will affect
the privacy-utility trade-off. Explicitly, upon increasing the amount of noise
the dataset would be useless, while reducing the noise up to the little values
will degrade the privacy. Concerning using DP in DL models, a differen-
tially private version of the SGD algorithm, is proposed in [16], where the
amount of random noise and the privacy budget (PB) constantly increase
upon growing the number of training epochs which is in contrast to the
limited PB in practice. Dwork and Roth [15] proposed a method for incor-
porating DP into distributed DL. They designed a practical framework that
allows multiple clients to collaboratively train a DL model without sharing
their training data.

To the best of our knowledge, despite the applicability of DP in DL mod-
els (DP-DL) [16], [17] and stream data [18] separately, there is no study on
adding DP into CL models such that all characteristics of a CL process meet,
so far. However, this task would be challenging, because on the one hand
the DP intrinsically adds some noise that reduce the utility, and on the other
hand the endless learning procedure of CL is a serious impediment. Thus,
to compromise between privacy and utility in the proposed DP-CL, we need
to rethink and redesign the existing DP-DL models to be adapted for the CL
process. To elaborate further, on the one hand difficulties arise from two
significant characteristics of the CL process as follows:

C1) The learner used in the CL process should be able to learn the new
received data continuously and endlessly.

C2) To mitigate the CF, a small portion of data or model’s parameters
needs to be stored for future learner’s computations.
On the other hand, a DP-enabled algorithm has two significant limitations
as follows:

L1) Each computation of the DL algorithm not only increases the bound
over data leakage, but also consumes a portion of predefined privacy bud-
get (PB). Although it is desired that the leakage bound does not exceed the
available PB, it has been shown in [16], [17] that a DL process run out of the
PB after a few computations.

L2) DP tends to perturb the data or the algorithm’s parameters by adding
noise, leading to diminishing the utility.

In our proposed approach where we aim to add DP into CL, we en-
counter the following issues:

I1) the L1 is in contrast to the C1, as the available PB is limited, prevent-
ing the CL process to be continued endlessly.

I2) Moreover, lowering the utility mentioned in L2 exacerbates the detri-
mental impact of CF described in C2, which motivates us to look for a robust
design.

In this paper, we proposed a novel robust DP-CL approach by which we
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tackle these issues effectively. To the best of our knowledge, this is the first
paper which studies the integration of DP into CL by addressing I1 and I2,
concurrently. Against this background, our contributions and novelties can
be summarized as follows:

• To address I1, (or more explicitly to be able to continue the training
process endlessly without running out of the PB), at each iteration of
the training process, the spent PB is measured for each training sample
and learner. Once the resultant PB is being exceeded to the predefined
GPB, the previous samples in the temporary memory are replaced by
new zero-PB ones, coming from the data stream. Similarly, we will
do the same approach to substitute the previous learner with a new
zero-PB one.

• To overcome I2 (or more explicitly to combat the CF), we further incor-
porate a robust procedure into the proposed DP-CL scheme, including
three steps 1) adding a new noisy layer to the DL architecture, 2) re-
fining the CL algorithm’s objective function (OF), and 3) filling the
episodic memory (EM) more effectively. We will detail throughout the
paper that how each of these steps can help to increase the robustness
of our proposed algorithm. We will experimentally show that each of
these steps can assist to make the DP-CL process more robust against
white-box attacks.

• To evaluate the effectiveness of the proposed robust DP-enabled CL
process, different adversarial attacks have been used to fool the trained
models. Particularly four types of white box attacks have been used in-
cluding: 1) Fast Gradient Sign Method (FGSM) 29], 2) Iterative-FGSM
(I-FGSM) [30], 3) Momentum Iterative Method (MIM) [28], and 4) the
attack proposed by Madry et al. [29]. Our simulation results confirm
that the proposed method yields the stable and steady outputs, even
when facing of such strong attacks.

The rest of the paper is organized as follows. Recent works in the con-
text of using DP in machine learning algorithms are reviewed in Section II. A
brief description of CL models, DP, and adversarial attacks are presented in
Section III as a preliminary. A detailed description of the proposed method-
ology is provided in Section IV. The experimental results and discussions are
reported in Sections V and VI. Finally, Section VII presents the conclusion

6.2 Related works

So far, several papers have attempted to add DP to DL algorithms [16], [19]-
[21]. This task would be challenging in terms of limited PB and the privacy-
utility tradeoff requirement. Upon DL models progresses, for example when
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we aim to apply DP on those DL models using dynamic dataset, some other
demands will ensue which exacerbate the abovementioned issues. Some of
the most prominent demands, which are close in spirit to the requirements
of CL, as we need here, are listed as follows:

R1: Endless execution
R2: Multiple usage of data subsets
R3: Capability of changing DP parameters during the execution
Satisfying all the R1-R3 together is hard, therefore related papers address

only one or two of these requirements. Along this line, two recent DL-based
papers of [22], [23] have enabled DP to work on growing databases (dy-
namic datasets). More explicitly, to address R1 Cummings et al. have con-
sidered a scheduler to re-execute the DL algorithms whenever the new re-
ceived data is sufficient [23]. To achieve the desired privacy loss, the privacy
parameter (ϵ) is reduced upon increasing the size of dataset.

In order to jointly address R1 and R3, one can partition the data stream
into blocks. After applying the DP on data blocks, each of which is fed into
an individual learner, the learners’ outputs are aggregated [24]. Accord-
ingly, the conventional composition theorem can be exploited to calculate
the privacy loss at the block level. Now, deploying the conventional com-
position theorem, the data blocks incur no privacy loss from the previous
learners and thus the requirements of R1 and R3 are supported. However,
it is against R2 as each learner cannot access other learners’ blocks.

In another scenario, aimed at addressing R2 and R3, Lecuyer et al. have
proposed a DP-DL platform including several pipelines, each of which com-
prised a DL algorithm, training endlessly from the growing database. Note
that, since each block of data might be used by different DL algorithms cor-
responding to the pipelines, calculating the PB spent by the whole pipelines
would be challenging. To reach this goal, the authors of [22], have proposed
the so-called block composition theorem by which the DL algorithms are
executed till the PB consumption of each block 1 does not exceed the prede-
fined GPB. To achieve the desired accuracy, with the aim of re-training the
pipelines, either the relevant PB of each pipeline or the number of available
samples is doubled. Therefore, each pipeline can continue till the consumed
PB is smaller than GPB, violating R1.

6.3 Preliminaries

6.3.1 Continual learning

A typical CL process, e.g., A-GEM [25], has generally two important fea-
tures. First, the used learner in the CL process should be able to learn the
new received data continuously and endlessly (growing database). In other

01 We can interchangeably use the word of ”block” and ”sample” throughout the paper.
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words, the commonly used CL model can be fed by consecutive parts of a
data stream, each of these parts includes multiple number of samples and
corresponds to a particular task. Second, a small part of data will be stored
model’s parameters or training data for future learner’s calculations to pre-
vent catastrophic forgetting. Thus, CL refers to the ability of a system to
learn over time from a continuous stream of data without having to revisit
previously encountered training samples.

First, the i th sample of the training set D includes a triplet (xi, ti, yi),
where xi ∈ Xt is a feature vector, ti ∈ T is a task descriptor, and yi ∈ Y is a
target vector. In general, CL algorithms aim to learn a predictor fθ : X×T →
Y in which θ denotes the relevant tunable parameters of predictor f .

To get more insight, in the following we succinctly explain A-GEM [25].
Using the A-GEM algorithm, the detrimental impact of catastrophic forget-
ting can be alleviated by allocating an episodic memory (EM), which is de-
noted by M and equally divided between total T tasks, to store some train-
ing samples randomly for each task k. These stored samples assist the DL
model to maintain its performance for previous tasks. For a total number
of T tasks, if we let Dk represents the relevant data with respect to previous
tasks, i.e., k ≤ T , the abovementioned explanations can be mathematically
formulated as the following constrained optimization problem

min
θ
LAG (fθ, Dt) , s.t. LAG (fθ,Mk) ≤ LAG

(
f t−1
θ ,Mk

)
∀k < t (1)

where the objective function LAG (fθ, Dt) stands for the loss of the A-
GEM model on the current task t. Using the stored data of previous tasks
in EM(Mk), the constraint attempts to reduce the loss of the model with
respect to the loss of previous tasks.

6.3.2 Differential privacy

The DP technique prevents the disclosure of information corresponding to
individual records of database D against any adversarial processing. Using
DP, the records are contaminated with noise through a randomized algo-
rithm A : B → R. The DP is often characterized by the parameters (ϵ, δ)
where the privacy budget (PB)ϵ > 0 and the broken probability δ ∈ [0, 1] are
control parameters to tune the strength of the privacy preservation. Thus,
given the randomized algorithm A, the following inequality must hold
true to satisfy the (ϵ, δ)-DP:

P [A(D) ∈ O] ≤ eϵP [A (D′) ∈ O] + δ (2)

where {D,D′} ∈ B are two neighboring inputs and O ⊆ R represents
any subsets of outputs. Besides, P [·] denotes the probability function with
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the space over the coin flips of the algorithm A. The Eq. (2) implies that if
we change a tuple in the database slightly, the output distribution does not
vary significantly.

Now, in the following we invoke the definitions of some basic concepts
used in DP, which lay the grounds for a better understanding.

1. Privacy loss [15]: Privacy loss is a random variable dependent on
the random noise added to the algorithm. For neighboring databases
D,D′, auxiliary input aux, and an outcome O ⊆ R, define the privacy
loss at O is defined as:

c (O;A, aux,D,D′) =
P [A(aux,D) = O]

P [A (aux,D′) = O]
(3)

2. Gaussian mechanism [15]: This mechanism will be used in this paper.
Using this kind of mechanism the white Gaussian noise N

(
0, σ2

)
is

added to the output entries. Given ϵ ∈ (0, 1], the Gaussian mechanism

with σ ≥
√
2 ln

(
1.25
δ

)
·∆A

ϵ is (ϵ, δ)−DP and the l2 sensitivity parameter
∆A therein is defined as ∆A = maxD,D′ ∥A(D)−A (D′)∥2.

3. Composition theorem: If we consider several DP subroutines, each of
which applied into separate algorithms to reach a specified privacy
level, incorporation of these DP subroutines relying on the compo-
sition property significantly degrades the privacy such that it is less
than that of achieved by a single subroutine. In particular, based on
one kind of composition theorem, namely ”basic composition theo-
rem” [26], considering ℓ subroutines each of which is (ϵ, 0) differen-
tially private, the privacy of an algorithm including a combination of
these subroutines is degraded up to the bound of (ϵℓ, 0) as compared
to the single subroutine.

6.3.3 Adverserial examples

Adversarial examples are a kind of attack against ML models, where the
attacker add a small perturbation α ≜ {ai}Ii=1 ∈ RI to the given input
x ≜ {xi}Ii=1 ∈ RI of the DL model, resulting in a considerable change at
the output y ≜ {yi}ci=1 ∈ Rc. The perturbation is usually specified by a
lp− norm ball of radius µ, i.e., Θµ ≜ {α : ∥α∥p ≤ µ} where p ∈ {1, 2,∞}
[27]. To evaluate the robustness of the proposed method, particularly four
well-known white box 2 attack algorithms are utilized to generate the adver-
sarial samples: i) Fast Gradient Sign Method (FGSM) [27], ii) Iterative-FGSM
(I-FGSM) [30], iii) Momentum Iterative Method (MIM) [28], and iv) the at-
tack proposed by Madry et al., [29], are utilized to generate the adversarial
samples.
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6.4 Proposed robust dp-enabled continual learning

In this section we present the notion of adding DP to A-GEM algorithm and
then make the proposed DP-CL model robust. Thus, by considering the
characteristics of CL processes (i.e., C1 and C2) and created limitations by
DP (i.e., L1 and L2), we address the A-GEM requirements and finally pro-
pose a scheme for a DP-enabled CL process the during the next subsections
(i.e., 4.1 and 4.2). Then, to overcome catastrophic forgetting and reduce the
impact of attacks, in subsection 4.3 we add robustness methods to DP-CL:
1) modifying the DL architecture, 2) refining the objective function (OF) of
the A-GEM algorithm, and 3) filling the EM more effectively.

6.4.1 Adding DP to CL process

Given the properties of DP, as discussed above, the problem of adding DP to
CL would be challenging. First, adding perturbations to the learner(s) will
effect on the training accuracy and consequently worsen CF. Moreover, the
composition theorem, imposes some predefined bounds for DP algorithms,
including the number of subroutines (iterations (k)) and privacy parame-
ters (ϵ, δ). As per requirements of a CL process these variables need to be
updated and thus a CL-based composition theory must satisfy the three fol-
lowing requirements:

R1: Endless execution
R2: Handling the concern of overlapping data stored in EM
R3: Capability of updating DP parameters during the execution
Hence, it is required to think about how to satisfy each of R1−R3

which are responded to, in the sequel.

1. How to add DP while CL is executed endlessly (Addressing R1.)?

The everlasting approach of CL is a serious impediment to deploy either
of the proposed solutions in [22] or [23]. In particular, if one intends to add
DP to CL, the limited GPB hinders the process to be continued. To deal with
these problems, we here propose a novel learning procedure, comprised of
several learners in L ≜ {l1, l2, . . .}, each of which is trained sequentially on
a specific part of the data stream. Before exceeding the PB consumed by
each learner from the GPB, we add a zero-PB (ZPB) learner to the process.
This newly added learner starts from the point where the previous one has
been halted and would be continued using the untouched data coming from
the dynamic database S = {b1, b2, . . .} (and/or the stored data in EM M =
{bi, bj , . . .}, where bi shows the i th block of database).

Based on the discussion above, selecting an appropriate composition the-
orem is of vital importance to calculate PB for each training step through
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which, we can determine the halting time of the current learner (lc), learn-
ing the current task (tc). We here use the moments accountant algorithm
(MAA) [16], appropriate for computing the PB for each data access in the
DL models. When lc runs out of the PB, computed by MAA, this learner is
left out and added to
the set of trained learners L, i.e., L ≜ {l1, l2, . . . , lc−1, lc} and the learning
process will be continued via the next ZPB learner lc+1. There are some
technical concerns which must be considered in our design, listed as fol-
lows:

• The significance of GPB parameter values (ϵg, δg) : More explicitly,
a large selection of the GPB leads to higher privacy leakage, despite
yielding higher accuracy due to injecting less noise into the current
learner lc as well as using fewer number of learners for the whole pro-
cess. In contrast, although upon reducing the GPB the leakage is de-
creased, the accuracy is degraded, as well. The performance degra-
dation originates from the fact that, using small GPB values not only
more noise is fed into the current learner lc, but also more number of
learners must be deployed.

• Keeping the performance while deploying multiple learners: In the
case the PB of lc reaches to the GPB in the middle of learning tc, lead-
ing to degrading the performance of upcoming learner lc+1, we pro-
posed early starting ES) strategy that assists to predict the termination
of lc. More clearly, the random initial values of learning parameters
θc+1 which are going to be used by lc+1 have not been optimized for
the current task tc. To prevent this issue, we propose the ES strategy
where the remaining PB, i.e.,

(
PBr ≜ GPB − PBlc

)
of the lc is com-

pared with the required PB of tc+1 (PBc+1), and the lc continues if
and only if PBr > PBc+1. To estimate PBc+1, since the noise mag-
nitude and the sampling probability (Gaussian probability) is equal
during the training process of each learner, it is trivial to calculate the
consumed PB of next iterations or the required PB for the next task
(i.e., PBc = PBc+1 ). Doing this, lc will not be halted in the middle of
training a task, and each learner starts its training procedure from the
beginning of a task.

2. How to add DP while subsets of data are used repeatedly (Addressing
R2.)?

A serious impediment to deploy either of the proposed solutions in [22]
or [23] in a CL process, is the data coming from the stream as well as samples
stored in the EM to avoid catastrophic forgetting (CF). Note that, although
the learners observe most of the data coming from the stream just once, a
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small portion stored in the EM is observed several times. For each observa-
tion the corresponding learner consumes the PBs associated with a portion
of the sample stored in EM. Thus, if the spent PB of each stored sample in
EM (PBbi) exceeds the GPB, the privacy is compromised. In the following,
we elaborate this further.

The samples in EM that have been observed repeatedly, might be ob-
served in different iterations of the learners’ training process. Depending
on the privacy loss of the lc used at each iteration, a portion of the sample’s
PB will be consumed and can be stored in PBbi =

{
PBmi,lk , . . . , PBmj ,lh

}
,

where PBmi,lk stands for the consumed PB of i th iteration of the learner lk.
By doing so, we can calculate the total consumed
PB for the sample via feedingPBbi to the Block Composition Theorem (BCT)
[22]. Tracking the behavior of PBbi , if it exceeds the GPB, we no longer use
that sample in our CL procedure

Remarkably, to avoid the CF, EM should include some samples for each
task. Thus, ZPB samples will be randomly replaced from the stream with
ones that are removed at each iteration. We also proposed other different
strategies for replacing new samples described in subsection 4.3 (c) to make
the DP-CL process more robust. By following this strategy, we can use a
subset of data (those stored in EM and their consumed PB is less than GPB)
multiple times. Therefore, since there is a limitless of data in real world CL
scenarios, the halting of lc will not occur because of limitation in data PB.

3. Adaptivity in the choice of DP parameters during the CL process. (Ad-
dressing R3. )

To address the privacy-utility tradeoff, the proposed DPCL process bene-
fits from an adaptive training procedure such that controls the utility of DP-
CL models by using new data and/or changing DP parameters. The block
composition theorem allows us to train the used CL algorithms with differ-
ent PB. For those tasks that have high number of samples in their training
set, we will be able to adjust small PB leading to decrease privacy leakage
and vice versa. If a model does not reach the pre-defined quality criteria
(e.g., an accuracy target) until specific iteration and PB < GPB, the model
can decrease the added noise (σ) to its weights, results in expediting in-
creasing accuracy, although PB reaches GPB earlier. On the other hand, if
a model reaches the pre-defined quality criteria in a specific iteration and
PB < GPB, then the model can increase the added noise to its weights to
increase the privacy of the model.

6.4.2 DP-CL architecture

The proposed (ϵg, δg)-DP-CL Architecture includes three main modules called
Learners’ Managing Unit ( LMU), Privacy Meter Unit (PMU), and Data Man-
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Figure 6.1: The proposed DP-CL architecture.

aging unit (DMU). The detailed procedure of our proposed DP-CL method
is shown in Algorithm 1, and is conceptually described in the following.

The LMU is composed of two sub-modules, called Training Controller
(TC) and Data Controller (DC). The TC is responsible for adding new learn-
ers to the process, adjusting the lc parameters, saving the lc ’s parame-
ters, and collecting the information about the tasks corresponding to each
learner. Moreover, TC also receives the information related to halting time
of a learner from the PMU. Besides, the DC also receives the training data
from theDMU and feed them to the lc. Additionally, theDC specifies which
samples should be saved in the EM and send them to the DMU.

The PMU is responsible for measuring the spent PB of learners and
training samples respectively by two submodules of Trainer PB Meter Unit
(TPBMU) and Data PB Meter Unit (DPBMU). For each training iteration of
lc, the spent PB will be calculated by TPBMU so that if it exceeds

the GPB, the TC will be notified to halt the lc. The DPBMU calculates
the spent PB for those samples, used in the current iteration of lc and send
this information to the DMU . It should be noted that, the PB for all samples
will be stored in a submodule of DMU namely EM Data Controller (EDC),
since we may need to remove some samples from EM and replace them by
samples whose spent PB is less than GPB.

The DMU is responsible for managing the data and is composed of three
sub-modules of Data Controller (DC), EDC, and Stream Data Controller
(SDC). The DC fetches the data from the stream or EM by sending a request
to EDC or SDC. It also collects the spent PB of the training samples stored
at EM or coming from the stream. SDC also stores the received data from

115



6. DIFFERENTIAL PRIVACY PRESERVATION IN ROBUST
CONTINUAL LEARNING

the stream into a temporary database. Upon receiving a request from DC or
EDC, the SDC will deliver the requested data to those modules. The EDC
is responsible for adding/removing the samples having spent PB more than
GPB. When the privacy loss for a sample reaches to GPB, the sample will be
removed.

6.4.3 Adding robustness to DP-CL

To combat the CF and mitigate the effect of attacks, we incorporate a ro-
bust procedure into the proposed DPCL scheme, including three steps 1)
modifying the DL architecture, 2) refining the OF of the A-GEM algorithm,
and 3) filling the EM more effectively. In what follows we elaborate each of
these steps separately. The first method has the aim of reducing the attacks
success rate by making the CL parameters noisy, and the other two meth-
ods assist to prevent CF. However, our experiments show that the last two
proposed methods can also decrease the attacks success rates to some extent

6.4.3.1 Modifying the DP-CL architecture

To provide a robust DP-CL architecture, we change each learner’s architec-
ture by adding a DP noise layer, that provide (ϵ, δ)-DP guarantees, after the
first layer of each learner. Adding the DP noisy layer can be considered
as a certified defense against p-norm bounded adversarial example attacks
proved by [31]. More explicitly, in accordance with the sensitivity (∆) and
size of the first layer (|h1|), a noise with zero mean and standard devia-

tion σ =
√

2 ln
(
1.25
δ

)
∆p,2L/ϵ is produced by Gaussian mechanism (noise

(∆, L, ϵ, δ ), line 6 , Algorithm 2).

6.4.3.2 Refining the objective function of the A-GEM algorithm

Furthermore, to prevent CF, we incorporate a robustness condition into the
training stage (called robust-A-GEM hereafter). In this regard, it should be
noted that, the expected output of the randomization mechanismA for class
j during the training of current task t should be greater or equal to that of
the previous task, i.e., Et (Aj(x)) − Et−1 (Aj(x)) ≥ 0 where Et (Aj(x)) =
1
n

∑
n aj,n(x) and n denotes the number of invocation of A(x) and aj,n(x)

demonstrates the nth draw from the distribution of the randomized function
A on the jth label. To meet this condition, the computed angle between the
gradient of lc for tc with respect to label j (g̃j) and the gradient of lc for
the previous tasks (∀k < t) for label j (gj,k) should be greater than zero
(⟨g̃j , gj,k⟩ ≥ 0).

Moreover, instead of n times invoking A(x) for a specific sample x, to
calculate Et (Aj(x)), we use n samples belonging to the jth class within the
current batch, and for calculating Et−1 (Aj(x)) , n samples having label j

116



6.4 PROPOSED ROBUST DP-ENABLED CONTINUAL LEARNING

Algorithm 6.1: Proposed DP-CL.

1 Procedure DP-CL:
2 // Learners’ Managing Unit (LMU):
3 While bi,ti ← ask data from DMU
4 If lc = ∅ then
5 Initialize lc
6 train lc with bi,ti
7 SPBlc ← PMU (lc, bi,ti)
8 DMU(bi,ti , SPBlc) // save part of bi,ti in EM
9 IfSPB ll ≥ GPB then

10 C ← [lc, (tj , . . . , ti)]
11 lc ← Initialize a new learner
12 //Privacy Meter Unit (PMU):
13 If lc, bi,ti ← receive request from LMU then
14 LMU ← Calculate the spent PB of lc using MAA
15 DMU ← Calculate the spent PB of each training sample in bi,ti

using BCT
16 I/Data Managing Unit (DMU):
17 If receive data from Stream then
18 Save the data temporary
19 If receive request from LMU then
20 Fetch a batch of data from EM/Stream and send to LMU
21 If receive data from LMU then
22 Store data in EM
23 Store spent PB for each bi
24 Update EM by replacing those samples which run out their PB with

ZPB samples (Procedure UpdateEpsMem, Alg.2)
25 end procedure

are chosen from the EM. This notion assists to incorporate this condition to
the training process by changing the constraint A-GEM objective function.
Therefore, we modify the optimization function as below:

min
g̃

1

2
∥g − g̃j∥22 s.t. ⟨g̃j , gj,k⟩ ≥ 0∀ k < t (4)

where gj,k will be the average gradient from the previous tasks with re-
spect to j th class. By doing that, the new updated rule will be obtained as
follows:

g̃ ← g − g⊤gj,ref
g⊤j, ref gj,ref

gj, ref (5)
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The proof of this update rule is given in Appendix A.

6.4.3.3 Filling the EM efficiently

The easy-to-forget samples (which worsen CF) which classify correctly with
small robust boundary during the training process have a chance to enter
EM. Therefore, having such samples which are not a good representative of
their corresponding classes in EM leads to CF during the learning of next
tasks. Particularly this issue happens if the computed angle between the
gradient vector of the samples extracted for class j from EM (g̃j) and the
proposed gradient (g) at current iteration is larger than zero. Here, we pro-
pose a robustness condition by which that if a sample meets this condition,
then it will be added to the EM (called efficient-EM). For sample xz located
in a batch including n samples, the robustness condition calculated as fol-
low:

Elb
t

(
fj (xz)−max

i:i ̸=j
Eub
t (fj (xz))

≥ 1

1 + e

∑n
s=1 Elb(fj(xs)−maxi:i̸=j Eub (fj(xs))

n

(6)

Elb
t (fj (xz)) and Eub

t (fj (xz)) are the η-confidence lower and upper bound,
respectively. We estimate these bounds using Hoeffding’s inequality with

probability η,Elb(f(x)) ≜ E(f(x)) −
√

1
2n ln

(
2y
1−η

)
≤ E(f(x)) ≤ E(f(x))+√

1
2n ln

(
2y
1−η

)
≜ Eub(f(x)) for yth label (Lines 26, 33, Algorithm 2).

6.4.3.4 The proposed robust dp-cl algorithm

The proposed robust DP-CL algorithm (shown in Algorithm 2) includes
three procedures called Train, UpdateEpsMem, and Evaluation. The Train
procedure takes the train and test data, as well as the lc ’s parameters. Con-
sidering the size of first hidden layer, a generated random Gaussian noise
(line 3), is added to the first hidden layer (line 6). By wisely sampling from
the EM (considering the notion presented at section 4.3 b; line 7), the gradi-
ent for the current batch (line 9) and the sampled batch (line 8) have been
calculated. Then, g and gref are clipped so that its 12-norm is bounded by
a predefined gradient clipping bound C and subsequently, a random Gaus-
sian noise N

(
0, σ2C2I

)
with a predefined noise scale σ is added (Line, 11

and 12). Depending on the computed angle between g′ and g′ref , the new
gradient will be applied (lines 13-18). After feeding each batch and updat-
ing the lc, the EM will be updated by executing the UpdateEpsMem proce-
dure. During this procedure, we first replace the samples that run out their
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(a) (b)

Figure 6.2: a) Fully connected network with two hidden layers used for PM-
NIST dataset. b) Reduced ResNet18 for SCIFAR dataset.

PB with ZPB ones from Dtrain
yi,ti . Then some samples from the current task

which meet the proposed robustness condition (presented at section 4.3c )
will be added to the EM. Finally, the Evaluation procedure measures the
effectiveness of the training procedure by calculating the accuracy.

6.5 Evaluation

We have carried out extensive experiments on two benchmark datasets (per-
muted MNIST and split CIFAR) and evaluate our proposed robust DP-CL
process by answering the following questions:

Q1: How does the added DP mechanism affect the accuracy of the A-
GEM algorithm?

Q2: What is the impact of using several learners on the accuracy of the
DP-CL process?

Q3: How can the ES deal with the performance degradation in the train-
ing process?

Q4: How the proposed robust DP-CL acts against attacks?
Q5: How much data the DP-CL process will need?
Before answering these questions, we will briefly describe the used datasets

description, the used DL architectures, the evaluation metrics, and observe
the behavior analysis of DP’s parameters in the following subsections.

6.5.1 Dataset description

Two datasets have been considered to train and test the proposed robust
DP-enabled CL process. First, Permuted MNIST (PMNIST) [32] is a vari-
ant of MNIST dataset including handwritten digits. It consists of 20 tasks
each of which is composed of 10 classes, 60,000 training and 10,000 test sam-
ples. Each task describes a certain random permutation of the input pix-
els, applied to the entire images of that task. Split CIFAR (SCIFAR) [33]
devides of dividing the original CIFAR-100 dataset [34] into 20 disjoint sub-
sets, each of which is generated through random sampling of 5 classes with-
out replacement from the total number of 100 classes. The whole number
of training samples for each task is 2500 whose 20% are allocated for test-
ing. In general, there are two streams of tasks, described by the sequences
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Algorithm 6.2: Robust DP-CL.

1 Procedure Train
(
fθ, D

train , Dtest
)

Input: Datasets Dtrain and Dtest ,
batch size m, learning rate for each task ζt, gradient norm band C,
privacy budget ϵ, broken probability δ, robustness parameters:
σr, ϵr, δr,∆r, size of first hidden layer |h1| , f includes z hidden
layers {h1, . . . , hz}, EM depicted by M .

2 Initialize θ randomly
3 γ ← N

(
0, σ2 |h1|

)
4 for t = {1, . . . , T} do
5 for (x, y) ∈ Dtrain

t do
6 h1 ←WT

1 x+ γ
7 (xref , yref ) ∼M(y)
8 gref ← ∇θl (fθ (xref , t) , yref )
9 g ← ∇θl (fθ(x, t), y)

10 Clipping gradient and adding noise

11 g′ref ←
1
m

 gref

max

(
1,

∥rref ∥
C

) +N
(
0, σ2C2I

)
12 g′ ← 1

m

(
gref

max(1, ∥g∥C )
+N

(
0, σ2C2I

))
13 If g′g′ref ≥ 0 then
14 g̃ ← g′

15 else

16 g̃ ← g′ − g′⊤g′
j, ref

g′
j, ref g

′
j,ref

gj, ref

17 end if
18 θ ← θ − ζtg̃
19 end for
20 UpdateEpsMem

(
M,Dtrain

t , T
)

21 end for
22 end procedure
23 Procedure UpdateEpsMem

(
M,Dtrain

t , T,GPB
)

24 // remove stored samples in |M |with high PB
25 for i = {1, . . . , |M |} do
26 if spentPB Bi > GPB do
27 remove (x, yi, ti)←Mi

28 (x)← Dtrain
yi,ti which meet robustness condition

29 Mi ← (x)
30 end for
31 // Add a few samples from current task
32 s← |M |

T
33 for i = {1, . . . , s} do
34 (x, y)← Dtrain

t

35 If (x, y) meet the robustness condition then
36 M ← (x, y)
37 end for
38 return M
39 end procedure
40 Procedure Evaluation (fθ, D

test )

41 a← 0 ∈ RT

42 for t = {1, . . . , T do
43 end procedure
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of datasets DCV = {D1, . . . , DTcv
} and DEV = {DTcv+1, . . . , DT } where

Dk =
{(
xki , t

k
i , y

k
i

)nk

i=1

}
is the dataset of k th task. Notably, we have Tcv < T

and set Tcv = 3 while T = 20 in all our experiments. DCV represents
the stream of datasets allocated for cross-validation; this stream allows the
learner to replay all samples several times aimed at model hyper-parameters
selection as well as system adjustment. By contrast, DEV stands for the ac-
tual dataset used for final training and evaluation on the test set. Actually,
this means that the model sees the training examples from DEV just one
time.

6.5.2 Network architecture

Shallow and a deep DL architectures including a fullyconnected network
with two hidden layers of 256 units each (Figure 6.2. a) for PMNIST dataset,
a reduced ResNet 18 (Figure 6.2 (b)) for SCIFAR dataset like in [35], will be
used in our experiments. While the models are randomly initialized, the
stochastic gradient descent (SGD) with mini-batch size 10 is used to opti-
mize the network parameters. Similar to the approach in [25], in order to
tune the hyper-parameters, the data of the first three tasks is fed into the
first learner several times.

6.5.3 Evaluation metrics

We have used three metrics called Average Accuracy [36], Average Forget-
ting [36], and Certified Accuracy [31] to evaluate our proposed robust DP-
CL model. In the following we briefly define these metrics. The training
dataset of each task, Dt, consists of a total Bt mini-batches. After each ob-
servation of Bt, the performance of the learner is examined over the whole
tasks on the associated test sets. Let at,i,j ∈ [0, 1] expresses the accuracy ob-
tained using the test set of task j, after the model has been trained with i th
minibatch of task t.

Average Accuracy [36], varying between [0, 1], can be calculated after
completing the continually learning procedure of the A-GEM model with
all the minibatches corresponding to the tth task and is defined as: AAt =
1
k

∑t
j=1 ak,Bk,j .

Average Forgetting [36], varying between [−1, 1], is computed after the
model has been trained for the tasks 1, 2, . . . , t− 1. This metric is defined as
Fk = 1

k

∑t−1
j=1 f

t
j where f tj is the forgetting measure on task j after the model

is trained for the tasks 1, 2, . . . , t− 1, obtained as:
f tj = maxl∈{1,...,k−1} al,Bl,j − ak,Bt,j . AF is crucial to be measured after

learning the entire tasks for a two-fold reason. On one hand, AF quantifies
the accuracy degradation on the earlier tasks, while on the other hand it
specifies how fast a model learns a new task.
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Figure 6.3: Behavior of δ vs. different tasks for ϵ = 2, as well as different
level of noise σ ∈ {2, 4, 8}. (a) PMNIST dataset, (b) SCIFAR dataset.

Figure 6.4: Behavior of ϵ vs. different tasks for δ = 1
10000 , as well as different

level of noise σ ∈ {2, 4, 8}. (a) PMNIST dataset, (b) SCIFAR dataset.

Certified Accuracy [31] measures the prediction robustness, varying be-

tween [0, 1] is defined as CF ≜
∑|test |

i=1 isCorrect(xi) & isRobust (xi)

| test | where |test| is
the size of testing set and isCorrect (xi) denotes a function returning 1 if the
prediction on test sample xi returns the correct label, and 0 otherwise, and
isRobust (xi) returns 1 if the robustness size is larger than a given attack
bound µa and 0 otherwise.

The three metrics evaluate our proposed robust DP-CL model, each cov-
ering a distinct high-level aspect. Average Accuracy assesses the overall
performance across all tasks, indicating how well the model performs af-
ter training on multiple tasks. Average Forgetting measures the model’s
memory retention capability by quantifying accuracy degradation on ear-
lier tasks and the speed of learning new tasks. Certified Accuracy evaluates
prediction robustness against adversarial attacks.

6.5.4 Behavior analysis of DP’s parameters

In this section, we aim for observing the behavior of DP parameters (ϵ, δ)
for two abovementioned DL architectures. To generate the figures, we have
exploited the MAA for two various dataset MNIST(a) and CIFAR(b). Figure
6.3 shows six plots where δ is calculated for a given ϵ = 2, while σ ∈ {2, 4, 8},
and t ∈ {1 . . . 17}. As it can be seen from Figure 6.3 (a), for the cases σ = 2
as well as σ = 4 the value of δ smoothly increases during the first tasks,
while sharply grows for the 4 last tasks. While, in case of σ = 8δ values are
smoothly rising for the entire tasks. As it would be expected, the more noise
we add to the classifier, the smaller values of δ would be resulted.

Figure 6.4 depicts six other plots where ϵ is calculated for a given δ =
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1
10000 , while σ, and t are opted same as what we used to generate Figure 6.3.
As it would be expected, the more noise we add to the classifier, the smaller
values of ϵ would be resulted.

6.5.5 Performance evaluation

Now in the following we respond to Q1-Q5 separately.
Q1: How does the added DP mechanism affect the accuracy of the A-

GEM algorithm?
To answer this question, we compare the accuracy of AGEM with or

without adding DP. To do so, we execute the DP-A-GEM with different level
of noise σ ∈ {2, 4, 8}. We further consider the high GPB assumption where
ϵ = 2 for PMNIST while for SCIFAR we have ϵ = 4. By doing so, the spent
PB will no longer reach to the GPB, and thus no additional learner is needed
to be added (i.e., L = 1 ). Figure 6.5 shows the average accuracy after 5
executions for each configuration on PMNIST (Figure 6.5 (a)) and SCIFAR
(Figure 6.5 (b)) datasets. As it can be observed, upon increasing the level of
noise, the accuracy is reduced so that in case of σ = 8, a CF phenomenon has
been happened, i.e., this can be interpreted from the negative slope of this
curve. As another important observation, the results of DP-A-GEM method
have less fluctuations and more stable accuracy as compared to the A-GEM
method in which DP has been eliminated.

Q2: What is the impact of having several learners on the accuracy of the
DP-CL process?

To observe the accuracy of our proposed DP-A-GEM method we need
to include several learners in the process. In this regard, aimed at involv-
ing two learners, three various small GPB values (ϵ = {0.41, 0.19, 0.12} for
PMNIST dataset and ϵ = {2.2, 1.22, 0.5} for SCIFAR dataset) are considered
for different levels of noise σ = {2, 4, 8}. As observed in Figure 6.4, the
value of σ affects the spent PB for each iteration of each learner. To per-
ceive how these two learners are subsequently involved, we get into one of
our experiments shown in Figure 6.6(a). To do so, using PMNIST dataset,
three different configurations of (ϵ, δ) including (0.41, 0.0005), (0.19, 0.0005),
and (0.12, 0.0005) have been utilized. As it is witnessed, once the PB of first
learner reaches to GPB at the end of task 9 , the second learner comes into
play to proceed the training process.

From Figure 6.6, a sudden drop in accuracy can be observed when a new
learner starts its learning process. For example, in Figure 6.6(a), the accu-
racy of three abovementioned configurations is decreased about 40 percent.
However, by insisting the training process via the second learner, the accu-
racy gradually returns to the previous value. There are two main reasons
for this issue. First, the noise generated by Gaussian mechanism starts to be
added to the weights from the first iteration of second learner. Whilst for the
first learner this noise is added after the fine-tuning step, mitigating the im-
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Figure 6.5: The accuracy of A-GEM method and the proposed DP-A-GEM
method for PMNIST (a) and SCIFAR (b) datasets. Various levels of noise
σ ∈ {2, 4, 8} have been adjusted.

Figure 6.6: The results of DP-CL algorithm for PMNIST and SCIFAR
datasets, when two learners are used during the process, show in a and c
respectively. For having two learners (a), GPB adjusted such that the first
learner will finish its PB at the end of task 9. Since three levels of noise
σ = {2, 4, 8} have been considered during our experiments, three values of
(ϵ, δ) including (0.41, 0.00001), (0.19, 0.00001), and (0.12, 0. 00001) used for
PMNIST dataset, and (2.2, 0. 00001), (1.22, 0. 00001), and (0.5, 0. 00001) used
for SCIFAR dataset. Moreover, for having three learners, the GPB values
(ϵ, δ) adjusted such that the PB of first learner reaches to GPB after train-
ing task 6 , and PB of second learner reaches to GPB after training task
12((0.35, 0.00001), (0.16, 0.00001), and (0.115, 0.00001) for PMNIST (b), and
(1.8, 0.00001), (0.81, 0.00001), and (0.4, 0.00001) for SCIFAR (d)).

pact of noise on accuracy. Second, the second learner does not exploit DCV

for hyper-parameters’ fine-tuning. To circumvent this performance degra-
dation, besides of using theDCV for fine-tuning, we start earlier the training
process for new learners, i.e., ES.

Q3: How the ES can deal with the performance degradation in the train-
ing process?

ES here means that the training process of the new learner commences
one task earlier than the task where the spent PB reaches to the GPB. For in-
stance, in case of having two learners, the second learner initiates its training
at the beginning of task 9 , whilst the first learner runs out its PB at the end
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of this task. During this time, both learners are involved in learning task 9 ,
concurrently. Notably, this will be performed only during the training pro-
cess where we aimed to fine-tuning the learners. Thus, during the inference
time, the entire samples belonging to task 9 are fed to l1.

Now, we re-execute all our experiments for two various cases. In the
first one, namely FT, only DCV is used for finetuning. For the second case,
called FT-ES, ES is involved, as well. The curves with transparent colors il-
lustrated in Figure 6.7, correspond to the accuracies corresponding to the FT,
dark colors are associated with the accuracies corresponding to the FT-ES. If
we have only FT, the accuracy respectively increases 37%, 18% for PMNIST
and SCIFAR datasets, as compared to their counterparts when even FT is not
performed. Moreover, in case of FT-ES the accuracy respectively improves
to 4%, 6% for PMNIST and SCIFAR datasets, as compared to their counter-
parts when only FT is performed. In addition to the accuracy, the forgetting
score is evaluated for different levels of noise, when one/two learners are
utilized in the process (See Figure 6.8).

6.5.6 The impact of attacks on the robust DP-CL process

Q4: How the proposed robust DP-CL acts against attacks?
In this regard, we first apply the four white-box attacks mentioned in

Section 3.3 on 5 different scenarios, comprised of: 1) A-GEM algorithm, 2)
DP-A-GEM, 3) PixelDP-AGEM, 4) RAGEM-PixelDP-A-GEM, and 5) EEM-
RAGEMPixelDP-A-GEM. Before that, we applied the attacks on A-GEM
and DP-A-GEM algorithms. Figure 6.9 shows the impact of attack on A-
GEM algorithm, after learning of each task, the four attack algorithms have
been applied on test set and the accuracy has been measured (Figure 6.9,
light colors). Compared to A-GEM algorithm, the DP-AGEM algorithms
obtained better accuracy by 9.3 percent and 4.6 percent for PMNIST and
SCIFAR datasets respectively. Finally, by measuring forgetting average and
certified accuracy metrics, we evaluated the effect of the proposed robust so-
lutions (PixelDP, robust-A-GEM (RAGEM), and efficient-EM(EEM)) by ap-
plying the white-box attacks on two PMNIST (Figure 6.10 (a)) and SCIFAR
(Figure 6.10 (b)) datasets.

6.5.7 Data consumption

Q5: How much data the DP-CL process will need?
The number of replaced samples in EM has been observed during the

training process for both datasets, which helps to have a good estimation
of number of necessary training data in DP-CL training process. Figure
6.11 shows the number of replaced samples for different levels of noise σ =
{2, 4, 8} for the two PMNIST (Figure 6.11 (a,b) ) and SCIFAR (Figure 6.11(c,
d)) datasets when one or two learners have been used in the process. As it
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Figure 6.7: Using FT and ES, the accuracy of DP-CL algorithm increases
when two or three learners have been used. For each experiment, we in-
vestigate the effect of ES and start the training process for Ic+1 one task
earlier. At each plot, the light color shows the result without using ES (e.g.,
DP −A−GEMσ = 2), FT .) and the dark color shows when ES uses along
with FT (e.g., DP −A−GEM(σ = 2), FT +ES). The DP parameters ((ϵ, δ))
have been adjusted the same as previous step.

Figure 6.8: The forgetting average has been calculated for two PMNIST (a),
and SCIFAR (b) datasets. For each one, when there are one or two learners
in the process and σ = {2, 4, 8}, the forgetting measure has been calculated.
When two learners have been used, the forgetting score has been measured
for each of which (i.e., I1, I2 ).
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can be observed from Figure 6.11, when there is one learner, and σ = 2, the
training process needs more training samples. Therefore, the more we add
noise, the less data the DP-CL process will need.

6.6 Discussion

There are two DL networks in our experiments, a shallow with 2 hidden
layers including ∼= 269, 000 trainable parameters and another one with a
deeper architecture including 18 hidden layers including 11 million train-
able parameters. By measuring the DP parameters, it can be observed that,
the deeper the network, the more noise will be added to the network, and
consequently the DP parameters increase more quickly. For instance, at the
end of training Resnet 18 , the value of δ is more than 20 times higher than
the shallow network for all levels of noise. A similar effect is observed for
ϵ such that for different levels of noise σ ∈ {2, 4, 8}, its value is 5.45, 5.38,
and 5 times larger than shallow network respectively. Notably, although the
deeper network has 40 times more parameters than the shallow network, the
DP parameters do not increase linearly with respect to number of networks’
parameters.

To increase the privacy of both networks, we raised the noise level from
2 to 8(σ ∈ {2, 4, 8}). Although, the accuracy of both networks constantly
increases for σ ∈ {2, 4}, it decreases by about 6% and 20% for FC2 and
Resnet 18 networks respectively, when σ = 8. Interestingly, the results of
DP-A-GEM method have less fluctuations and more stable accuracy com-
pared to simple A-GEM method specially for σ ∈ {2, 4}. In the next step, we
decreased the GPB to evaluate the performance of DP-A-GEM when there
are several learners. Depending on the noise level, the accuracy of second
and third learner has a sudden drop between 35-45% for PMNIST dataset,
and between 20-30% for SCIFAR dataset. But by using the fine-tuning and
ES strategies, the performance increases about 43% and 23% for FC2 and
Resnet18 networks respectively. To accurately measure the degradation,
when there are several learners, we calculate the forgetting accuracy. No-
tably, when there are two learners, the forgetting accuracy of each learner
is less than when there is one learner in the process. For instance, the for-
getting accuracy for first and second learner are 0.071 and 0.103 respectively
(Figure 6.8 (a), σ = 4 ) and less than 0.124 which is the forgetting score of
when there is just one learner. In other words, the long training process with
just one learner leads to high forgetting score and the CF will finally happen.

Furthermore, the proposed three methods to robustize the DP-CL pro-
cess are effective against the applied four whitebox attacks. First, we ap-
plied the attacks on simple A-GEM algorithm and DP-A-GEM algorithm to
investigate the effect of adding DP against attacks. As shown in Figure 6.9,
almost in all cases the DP-enabled version of A-GEM increases the accuracy
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Figure 6.9: The (certified) accuracy of A-GEM algorithm (light colors) and
DP-A-GEM algorithm (dark colors) after applying attacks on PMNIST (a)
and SCIFAR (b) datasets has been measured (i.e., I∞(µ = 0.1), σ = 4).

Figure 6.10: The (certified) accuracy of A-GEM algorithm (light colors) and
DP-A-GEM algorithm (dark colors) after applying attacks on PMNIST (a)
and SCIFAR (b) datasets has been measured (i.e., I∞(µ = 0.1), σ = 4).

compared to simple A-GEM which is about 7 percent for PMNIST, and 4 per-
cent for SCIFAR on average. Then, by adding the robust methods one-after-
another, the attacks have been applied. As shown in Figure 6.10, each of
the proposed methods has positive effect on the accuracy of the DP-A-GEM
algorithm under attacks. On average, PixelDP improved the accuracy by 3.3
percent for PMNIST and 3.8 percent for SCIFAR dataset. Robust-A-GEM,
which is applied after adding PixelDP method, improved the accuracy by
1.65 for PMNIST, and 4.1 percent for SCIFAR dataset. Finally, the efficient-
EM increased the accuracy by 3.6 and 2.3 percent for PMNIST and SCIFAR
datasets respectively. Therefore, the robustness methods increased the ac-
curacy of DP-A-GEM algorithms by 8.55 and 10.2 percent for PMNIST and
SCIFAR datasets respectively. Moreover, by adding the robustness methods,
the forgetting average decreased from 0.124 to 0.075 for PMNIST and from
0.155 to 0.123 for SCIFAR dataset.
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Figure 6.11: The number of replaced training samples have been monitored
for the two PMNIST (a and b) and SCIFAR (c and d) datasets when one ( a, c
) or two (b,d) learners have been used in the training process.

6.7 Conclusion

The major contribution of this paper is adding differential privacy (DP) into
continual learning (CL) procedures, aimed at protecting against adversar-
ial examples. In CL processes, the model learns sequentially and endlessly
from timevarying data streams which makes the task of adding DP to CL
challenging. More explicitly, the added noise due to DP together with the
endless learning feature of CL leads to CF which is a serious obstacle. To ad-
dress this concern, we have proposed an innovative approach by which we
cannot only strike a tradeoff between privacy and utility, but also mitigate
the CF. We continually control the instantaneous spent PB to not exceed the
available GPB. Besides, a threestep robust procedure is also included in our
approach to mitigate the negative impact of CF, as much as possible. We
also assessed the proposed approach against four wellrecognized adversar-
ial attacks comprised of: 1) FGSM, 2) IFGSM, 3) MIM, and 4) the attack by
Madry et al. [29]. Our simulation results validated the effectiveness of the
proposed method in facing such strong attacks so that we could improve the
criteria of both the certified accuracy and the forgetting measure, simultane-
ously.
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6.8 APPENDIX A: Modifying a-gem update rule (EQ. (5))

Here we provide the proof DP-A-GEM’ update rule, stated in Section IV
(C2), Eq. 5. To proof, we first invoke the DPA-GEM problem in Eq. 4 as
follows:

min
g̃j

1

2
∥g − g̃j∥22

s.t. ⟨g̃j , gj,k⟩ ≥ 0 ∀k < t (A.1)

Replacing g̃j with z and rewriting Eq. A. 1 yields:
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min
z

1

2
z⊤z − g⊤z s.t. − z⊤gj,ref ≤ 0 (A.2)

Note that we removed the term g⊤ > g from the OF and change the
direction of the inequality constraint. The Lagrangian function can be ac-
quired as:

L(z, α) =
1

2
z⊤z − g⊤z − αz⊤gj, ref (A.3)

Now, we pose the dual of Eq. A. 3 as:

θD(α) = min
z
L(z, α) (A.4)

Lets find the value z∗ that minimizes the L(z, α) by setting the deriva-
tives of L(z, α) w.r.t. to z to zero:

∇zL(z, α) = 0

z∗ = g + αgj,ref (A.5)

The simplified dual after putting the value of z∗ in Eq. A. 4 can be written
as:

θD(α) =
1

2

(
g⊤g + 2αg⊤gj,ref + α2g⊤j,refgj,ref

)
− g⊤g − 2αg⊤gj,ref − α2g⊤j,refgj,ref

=− 1

2
g⊤g − αg⊤gj,ref −

1

2
α2g⊤j,refgj, ref (A.6)

This solution α∗ = maxα;α>0 θD(α) to dual is given by:

∇αθD(α) = 0

α∗ = − g⊤gref
g⊤refgref

(A.7)

By putting α∗ in Eq. A.5, we recover the A - GEM update rule:

z∗ = g − g⊤gj,ref
g⊤j, ref gj,ref

gj, ref = g̃ (A.8)
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