
1048 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 3, MAY 2024

A Resetting Observer for Linear Time-Varying Systems With Application to
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Abstract— This brief presents a resetting observer for linear
time-varying (LTV) systems. The motivation for the observer
is better handling of unmodeled dynamics and reactiveness to
external disturbances without compromising steady-state perfor-
mance. A reset is triggered if the output estimation error exceeds
predefined bounds. The proposed observer uses a finite-time
observer (FTO) approach to calculate corrected state estimates
after a reset is triggered. The FTO equations are derived for
LTV systems, and a method for calculating the state transition
matrices online is presented. The observer equations are formu-
lated in a hybrid dynamical systems framework, and sufficient
conditions for uniform global preexponential stability are given.
The method is applied to observer design for dynamic positioning
(DP) of marine surface vessels. Numerical simulations as well
as model scale experiments of this application show promising
results, with improved transient performance compared to state-
of-the-art observers.

Index Terms— Dynamic positioning (DP), finite-time observers
(FTOs), hybrid dynamical systems, linear time-varying (LTV)
systems, marine surface vessels, observer design.

I. INTRODUCTION

OBSERVERS play a vital role in control systems. The
main objective of an observer is to estimate the states

of a system based on partial and uncertain measurements.
Also, an observer may have a signal processing role, where
it filters noise and unwanted frequency components before
the signal enters the control loop. Dynamic positioning (DP)
of a marine vessel is the process of automatic position and
heading control by dynamically controlling the thrusters [1].
The model-based nonlinear passive observer (NPO) of [2] is
state-of-the-art in industrial DP systems. The NPO takes only
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uncertain pose measurements as input and estimates pose,
velocity, and a bias load. A challenge for the NPO is to handle
unmodeled dynamics and external time-varying disturbances
in a reactive manner, without using too high injection gains
causing measurement noise to be amplified and unwanted
oscillations to occur in the state estimates. Addressing this
challenge has the potential to enhance the transient behavior
of the control system and reduce fuel consumption.

Several applications today call for DP systems able to
handle rapidly varying disturbances and transients. Examples
include DP in ice, anchor handling operations, subsea pipe
laying, automatic docking and DP while interacting with other
fixed or floating structures. In recent years, several observers
and controllers that improve the transient DP performance
have been proposed. An effective approach is to use velocity
measurements in the observer. However, high-quality velocity
measurements are usually not available from Global Naviga-
tion Satellite System (GNSS) receivers at low speeds, which
is the primary speed domain for most DP operations. Utilizing
acceleration measurements from an inertial measurement unit
(IMU) is another effective approach, this has been proposed
for use in DP system by GNSS-aided inertial navigation [3],
acceleration feedforward [4], and a hybrid observer switching
between a model-based and inertial observer [5]. Other pro-
posed approaches are implemented purely in software, and
thus avoid the installation of expensive additional sensors,
such as NPO with time-varying observer gains [6], and the
resetting observer of [7]. The latter has inspired our approach,
where the idea is to reset the state estimates if the output
estimation error exceeds a predefined bound. The concept
of finite-time observers (FTOs) appears to be a promising
candidate for calculating the estimated state after a reset
in a resetting observer. The FTO concept is that for an
observable linear system, two Luenberger observers can be
designed. By comparing the outputs of these observers, the
exact system state can be calculated. FTOs first appeared
in the literature in [8]. There, a continuous-time observer
for a linear time-invariant (LTI) system was developed using
time delays. Later, [9] designed an FTO for LTI systems
that corrects the state estimate at a predetermined time after
startup.

In this brief, we propose a hybrid observer design that
combines the idea of the resetting mechanism of [7], where
a reset is triggered if the estimation error exceeds predefined
bounds, with an FTO approach for calculating the corrected
state estimates after a reset. The FTO concept is extended to
cover linear time-varying (LTV) systems, and an observer for
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generic LTV systems is developed. We then show how this
observer can be applied for DP in a case study including sim-
ulations, a sensitivity analysis, and model scale experiments.

The brief is outlined as follows. First, some mathematical
preliminaries on LTV systems and hybrid dynamical systems
are given in Section II. In Section III, the novel observer
design is developed and its stability is analyzed using hybrid
dynamical systems theory. In Section IV the resetting observer
is applied to a DP system and results from numerical simula-
tions and model scale experiments are presented and analyzed.
Some technical aspects of the approach are discussed in
Section V with suggestions for further work, before concluding
remarks are given in Section VI.

II. PRELIMINARIES

A. Notation
In this brief, ∥·∥ denotes the Euclidean vector norm (two-

norm), and |·| denotes the scalar absolute value. ∥x∥A denotes
the distance from the vector x to the set A, that is, ∥x∥A :=

infy∈A ∥x − y∥. Set-valued mappings are denoted by double
arrows, for instance, M : A ⇒ B denotes a mapping M which
maps values in A to subsets of B. The domain of a mapping is
denoted dom(·). The Cartesian product of A and B is denoted
A × B. ⌊·⌋ is the floor operator. κ(·) denotes the two-norm
condition number for inversion. x+ denotes the value of x after
a discrete jump.

B. LTV Systems

We consider LTV systems of the form

ż = A(t)z + B(t)u(t)+3(t)d(t) (1)
y = C(t)z (2)

where for each t ≥ 0, the state z(t) ∈ Rn , the output y(t) ∈

Rp, the input u(t) ∈ Rm , and the disturbance d(t) ∈ Rq .
We assume u(·), d(·), and the matrices A(·), B(·), C(·),
and 3(·) are continuous and bounded functions. Under these
conditions, a unique solution to (1) and (2) exists and is
defined for all time [10].

We introduce the notion of exponential stability and present
an important stability result for LTV systems, which will be
used in the stability analysis in Section III-F. The following
theorem guarantees the existence of a quadratic, time-varying
Lyapunov function for uniformly globally exponentially stable
(UGES) LTV systems.

Theorem 1 (Existence of a Quadratic Lyapunov Function
[11]): Let x = 0 be the exponentially stable equilibrium point
of ẋ = A(t)x , i.e., there exist k > 0 and λ > 0 such that
∥x(t)∥ ≤ k∥x(t0)∥ exp(−λ (t − t0)), ∀t ≥ t0 ≥ 0. Suppose also
that A(·) is continuous and bounded. Let Q(·) be a continuous,
bounded, symmetric, and uniformly positive definite matrix.
Then, there exists a continuously differentiable, bounded,
symmetric, and uniformly positive definite matrix P(·) that
satisfies

−Ṗ(t) = P(t)A(t)+ A(t)⊤ P(t)+ Q(t). (3)

Hence, V (x, t) = x⊤ P(t)x is a Lyapunov function for the
system for which there exist positive constants k1, k2, and

k3 such that

k1∥x∥
2

≤ V (x, t) ≤ k2∥x∥
2

∀x ∈ Rn and t ≥ 0 (4)

V̇ (x, t) =
∂V (x, t)
∂t

+
∂V (x, t)
∂x

A(t)

≤ −k3∥x∥
2

∀x ∈ Rn and t ≥ 0. (5)

C. Hybrid Dynamical Systems

To formulate the resetting observer equations and do a
formal analysis, the hybrid dynamical systems framework of
[12] is used. Only the main concepts and the results needed
in our analysis are presented here. The reader is referred to
[12] and [13], and references therein, for further details.

In this framework, the solution to a hybrid system is denoted
x(t, j), where t ∈ R≥0 is continuous time and j ∈ N is
discrete time. The solutions are defined over hybrid time
domains, formally defined in [12]. A hybrid dynamical system,
H = (C, F,D,G), is modeled as a constrained differential
inclusion and a constrained difference inclusion

x ∈ C ẋ ∈ F(x) (6a)
x ∈ D x+

∈ G(x). (6b)

When the state x(t, j) is in the flow set C, it evolves
continuously (flows) according to the differential inclusion
ẋ(t, j) ∈ F(x(t, j)). When x(t, j) is in the jump set D,
it evolves discretely (jumps) according to the difference inclu-
sion x(t, j + 1) ∈ G(x(t, j)).

Next, we define the notion of uniform global pre-
exponential stability (UGpES) for hybrid systems.

Definition 1 (UGpES [14]): Given a hybrid dynamical sys-
tem H, a nonempty set A ⊂ Rn is said to be globally
pre-exponential stable (UGpES) of there exists positive con-
stants c1 and c2 such that each solution x to H satisfies

∥x(t, j)∥A ≤ c1 exp (−c2(t + j))∥x(0, 0)∥A
∀(t, j) ∈ dom(x). (7)

The term preexponential as opposed to exponential stability
permits maximal solutions that are not complete.

III. RESETTING OBSERVER DESIGN

A. Problem Statement

Consider an LTV system of the form given in (1) and (2).
The objective of this brief is to calculate a state estimate ẑ,
knowing the input u(t), and given measurements of the output
y(t). It is assumed nominally that the external disturbance
d(t) = 0, ∀t ≥ 0. This assumption may seem contradictory,
as a key motivation for the observer design is increased
reactivity to unmodeled disturbances. However, the following
developments will show that the unmodeled disturbances can
be added as internal states that are effectively estimated by the
observer. Furthermore, it can be assumed that these states are
constant in the model used by the observer, thereby removing
the external excitation d(t). The model used in the observer
design is thus reduced to

ż = A(t)z + B(t)u (8)
y = C(t)z. (9)
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We first derive how an exact state estimate for an LTV system
can be obtained from two Luenberger observers. Then we
propose how to use this result in a hybrid resetting observer.

B. FTO Equations for LTV Systems

Consider two Luenberger observers for (8) and (9) with state
estimates zi , i ∈ {1, 2}, and dynamics

żi = A(t)zi + B(t)u + L i (t)(y − C(t)zi ) (10)

where L i (t) ∈ Rn×p is a piecewise continuous and bounded
injection gain matrix. Define Ai (t) := A(t) − L i (t)C(t) and
the error variables ei := z − zi , and let L i (t) be chosen such
that the origin is UGES for the error dynamics

ėi = ż − żi = Ai (t)ei (11)

for i ∈ {1, 2}. The solutions for these systems can be expressed
in terms of the state transition matrix 8i [10], according to

ei (t) = 8i (t, t0)e(t0). (12)

We seek to calculate the true system state, z, at times tk+1 >

tk > · · · > t0 ≥ 0 to enable the observer to reset the state
estimates to z. At the start of each interval [tk, tk+1], the two
observers are initialized with the same state estimates, that is,
z1(tk) = z2(tk). The initial estimation error, e(tk) is thus equal
for both observers, which implies that (12) can be used to
set up two vectorial equations with two unknowns, e(tk) and
z(tk+1)

81(tk+1, tk)e(tk) = z(tk+1)− z1(tk+1) (13)
82(tk+1, tk)e(tk) = z(tk+1)− z2(tk+1). (14)

Solving (13) for e(tk) yields

e(tk) = 8−1
1 (tk+1, tk)(z(tk+1)− z1(tk+1)). (15)

Inserting this into (14) and solving for the true system state,
z(tk+1) then yields

z(tk+1) =
(
I −82(tk, tk+1)8

−1
1 (tk, tk+1)

)−1

×
[
−82(tk, tk+1)8

−1
1 (tk, tk+1) I

][z1(tk+1)

z2(tk+1)

]
. (16)

Hence, if 81(tk, tk+1) and I − 82(tk, tk+1)8
−1
1 (tk, tk+1) are

invertible matrices, the true system state can be calculated
from the state estimates z1(tk+1) and z2(tk+1). The calculated
value of the true system state will be used to update the state
estimates after a reset.

C. Calculating the State Transition Matrices

Section III-B shows that we need to know the value of
the state transition matrices, 81(tk+1, tk) and 82(tk+1, tk),
to calculate the true system state at a reset. For a generic LTV
system, a closed-form expression of the state transition matrix
rarely exists. Also, if the time dependence is driven by an
external signal, the signal may not be known in advance. Here,
we show how the state transition matrix can be numerically
calculated online in an observer.

Consider a generic LTV system ẋ = F(t)x which satisfies
the conditions for existence and uniqueness given in Section
II-B. Its solution is given by

x(t) = 8(t, t0)x(t0), t ≥ t0 ≥ 0 (17)

where 8(t, t0) is the state transition matrix. It is trivial to show
that 8(t, t0) is governed by the matrix differential equation

8̇(t, t0) = F(t)8(t, t0). (18)

Also, 8(t0, t0) = I , where I ∈ Rn×n is the identity
matrix. Therefore, the value of 8(t, t0) can be approximated
online by numerically integrating (18) with initial condition
8(t0, t0) = I .

D. Design Considerations

A reset is triggered if the output estimation error exceeds
predefined bounds. Let the error bounds be given by ϵ ∈ Rp

>0.
A jump is triggered if |(y − C(t)z1)i | ≥ ϵi for some i ∈

{1, 2, . . . , p}. The error bounds should be chosen such that
measurement noise does not trigger a jump.

The state estimate z1 is used as the output of the observer.
The variable z2 is included only to accommodate an FTO state
reset. The matrix L1(t) should therefore be tuned in the normal
relaxed manner, to avoid measurement noise propagating into
the state estimates. The matrix L2(t) should be tuned more
aggressively such that the state estimates converge faster to
measurements at the cost of less measurement noise filtering.
Because a nonaggressive observer is used during steady-state
conditions, and a jump is triggered only in the transient of a
disturbance, this design gives the observer a “low gain - high
reactivity” property, which is our aim.

State resets need to be separated by some dwell time in
order for the FTO mechanism to robustly calculate corrected
state estimates. The manifestation of this is that the condition
number of (I − 82(tk, tk+1)8

−1
1 (tk, tk+1)) will grow large as

tk+1 − tk → 0, which gives numerical issues when calculating
its inverse. On the other hand, the integral of the state transition
matrices of (18) should be reset frequently to avoid modeling
errors and disturbances causing drift in the state transition
matrices resulting in inaccurate state resets. To control the
timing of the jumps, we propose to always reset the state
transition matrix integrals after a constant time interval δ. That
is, they are reset at times tk+1 > tk > · · · > t0 ≥ 0, where
tk+1 = tk + δ. The state transition matrices are reset to the
identity matrix and z2 is reset to the value of z1, such that
the two observers are initialized with the same estimation
error before the next interval. A state reset in the output
estimate, z1, is triggered only if |(y − C(t)z1)i | ≥ ϵi for
some i ∈ {1, 2, . . . , p}. Otherwise, z1 is kept unchanged after
the reset. Also, because conditions that ensure nonsingular-
ity of (I − 82(tk, tk+1)8

−1
1 (tk, tk+1)) for all times are not

established for generic LTV systems, we propose to jump
the output state estimate, z1, only if the condition number
of (I − 82(tk, tk+1)8

−1
1 (tk, tk+1)) is sufficiently low. This is

discussed further in Section V.
As shown in Section III-B, the FTO approach will reset the

state estimates exactly to the true values of the states in the
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nominal case, and therefore improve the transient performance.
As noted in Section III-A, if the system is expected to be
subject to severe unmodeled disturbances, it may be beneficial
to add the disturbances as states to be estimated by the
observer. Furthermore, it can be assumed that these states are
constant in the model used by the observer. Every δ seconds,
the resetting mechanism will check if |(y − C(t)z1)i | ≥ ϵi

for some i ∈ {1, 2, . . . , p}. If this is the case, the system is
likely subject to an unmodeled disturbance and a reset of the
state estimates will occur using the FTO approach. Equation
(16) will then calculate the correct magnitude for a constant
disturbance acting over the previous δ seconds and update
the disturbance state estimates accordingly. Hence, adding the
disturbance as a state enables the resetting observer to be
effective also when subject to severe disturbances.

Finally, our experience has shown that resetting to the true
system state may cause overshooting behavior after a reset due
to measurement noise and disturbances causing inaccuracies
in the FTO estimates. To address this challenge, we propose
to add a tunable linear interpolation to the jump map. That is,
instead of jumping directly to the z value computed by (16),
the system jumps to kz + (1 − k)z1, where k ∈ [0, 1] is a
tunable scalar.

E. Hybrid Observer Equations

We are now ready to state the hybrid observer equations
for the resetting observer using the hybrid dynamical systems
framework introduced in Section II-C.

We begin by defining the state variables of the hybrid
system. Let z be the true system state, which is assumed to
live in a compact set K ⊂ Rn . The state estimates z1 and
z2 live in Rn . The state transition matrices for the Luenberger
observer error dynamics 81 and 82 are governed by (18),
and will thus have no finite escape times. Also, since they
are periodically reset to identity, these matrices will live in a
compact set M ⊂ Rn×n . The variable ζ is a scalar timer for
the resets, and τ is the time variable. In total, the state of the
hybrid system is defined as

x = (z, z1, z2,81,82, ζ, τ )

∈ K × Rn
× Rn

× M × M × R≥0 × R≥0. (19)

Following the developments of Section III, the flow map is
expressed as the set-valued mapping

ẋ ∈ F(x) :=

⋃
u∈U

f (x, u) (20)

where U is a compact subset of Rm and

f (x, u) :=



A(τ )z + B(τ )u
A1(τ )z1 + B(τ )u + (A(τ )− A1(τ ))z
A2(τ )z2 + B(τ )u + (A(τ )− A2(τ ))z

A1(τ )81
A2(τ )82

1
1


. (21)

The jump map is defined as

x+
= g(x) :=



z
h(x)
h(x)

I
I
0
τ


(22)

where

h(x) :=



k9(x)

[
z1

z2

]
+ (1 − k)z1;

if |Cz1 − y|i ≥ ϵi ,

for some i ∈ {1, 2, . . . , p} and
κ
(
I −828

−1
1

)
≤ cmax

z1; otherwise

(23)

for k ∈ [0, 1] and

9(x) :=
(
I −828

−1
1

)−1[
−828

−1
1 I

]
. (24)

The threshold cmax ∈ R≥1 is the highest value of the
condition number of I − 828

−1
1 for which a reset using 9

can occur.
The flow set is defined as

C := K × Rn
× Rn

× M × M × [0, δ] × R≥0 (25)

and the jump set is defined as

D := K × Rn
× Rn

× M × M × {δ} × R≥0. (26)

This completely defines the hybrid system H = (C, F,D, g).

F. Formal Stability Analysis

The following stability result gives sufficient conditions for
establishing UGpES of the resetting observer error dynamics.

Theorem 2: For the resetting observer H defined by (20)–
(26), let u(·), A(·), B(·), C(·), L1(·), and L2(·) be continuous
and bounded functions, and let L i (·), i ∈ 1, 2, be chosen such
that ei = 0 for (11) is UGES. Furthermore, let δ > 0 and
k ∈ [0, 1]. Then, the set A := {(z, z1) ∈ K × Rn

: z =

z1} × Rn
× M × M × [0, δ] × R≥0 is UGpES for H.

Proof: First we note that ∥x∥A = ∥z − z1∥ = ∥e1∥

since z2, 81, 82, ζ , and τ are always in their respective
subsets of A by construction. We also note that the time
dependence of the LTV system has been replaced by the time
state, τ , in the hybrid system. Because the error dynamics
of e1 are governed by the UGES LTV system (de1/dτ) =

A1(τ )e1, Theorem 1 implies that there exist Q(·), P(·), and
V (e1, τ ) := e⊤

1 P(τ )e1 that satisfy (4) and (5) when H is
evolving continuously. Using the upper bound in (4) we can
turn (5) into

V̇ (e1, τ ) ≤ −
k3

k2
V (e1, τ ). (27)

Then, using a standard comparison theorem (e.g., Lemma
3.4 from [11]) we get that for each (s, j), (t, j) in the domain
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of the solution with t > s, we have

V (e1(t, j), τ (t, j)) ≤ exp
(

−
k3

k2
(t − s)

)
V (e1(s, j), τ (s, j)).

(28)

Using both the lower bound and the upper bound from (4) we
get

k1∥e1(t, j)∥2
≤ exp

(
−

k3

k2
(t − s)

)
k2∥e1(s, j)∥2. (29)

Dividing both sides by k1 and taking square roots we arrive
at the following exponentially decreasing bound when H is
evolving continuously:

∥e1(t, j)∥ ≤

√
k2

k1
exp

(
−

k3

2k2
(t − s)

)
∥e1(s, j)∥. (30)

If ∥e1∥ is nonincreasing at jumps, that is, for each (t, j), (t, j+
1) in the domain of the solution we have

∥e1(t, j + 1)∥ ≤ ∥e1(t, j)∥ (31)

then it follows from (30), that, for each (s, i), (t, j) in the
domain of the solution with s + i < t + j we have

∥e1(t, j)∥ ≤

√
k2

k1
exp

(
−

k3

2k2
(t − s)

)
∥e1(s, i)∥. (32)

We show that ∥e1∥ is nonincreasing at jumps next. From
(23) we have that

e+

1 = e1 (33)

or

e+

1 = z+
− z+

1 = z −

(
k9(x)

[
z1
z2

]
+ (1 − k)z1

)
. (34)

In the first case, ∥e1∥ is trivially nonincreasing. In the second
case, we have that 9(x)

[ z1
z2

]
= z, as shown in Section III-B.

It follows that:

e+

1 = z − (z1 + k(z − z1)) = (1 − k)e1. (35)

Hence, ∥∥e+

1

∥∥ = (1 − k)∥e1∥ ≤ ∥e1∥ (36)

since k ∈ [0, 1]. Hence, ∥e1∥ is always nonincreasing at jumps
and (32) holds for H.

The bound in (32) shows that ∥e1∥ is exponentially decreas-
ing when t grows. In order to satisfy the definition of UGpES
in (7), we need to show that e1 is exponentially decreasing
when t + j grows. To achieve this, we will find a K∞ function
α(·) such that t ≥ α(t + j), and replace t with α(t + j) in (30).
Since jumps are always separated by δ > 0 time units, due
to the construction of C and D and the fact that ζ+

= 0 and
ζ̇ = 1, we have that

j =

⌊
t
δ

⌋
≤

t
δ

H⇒ t ≥ δ j. (37)

Adding δt to both sides of the inequality gives

δt + t ≥ δ j + δt H⇒ t(1 + δ) ≥ δ(t + j). (38)

Rearranging terms, we arrive at the K∞ relation

t ≥
δ

1 + δ
(t + j). (39)

Replacing t with (δ/(1 + δ))(t + j) in (32) with (s, i) =

(0, 0) gives the desired bound

∥e1(t, j)∥ ≤

√
k2

k1
exp

(
−

k3

2k2
t
)

∥e1(0, 0)∥

≤

√
k2

k1
exp

(
−

k3δ

2k2(1 + δ)
(t + j)

)
∥e1(0, 0)∥. (40)

Hence, (40) satisfies the definition of UGpES in (7) with
c1 = ((k2/k1))

1/2 > 0 and c2 = (k3δ/(2k2(1 + δ))) > 0.

IV. CASE STUDY: DP

The resetting observer of (20)–(26) applies to generic
observable LTV systems. In this section, we show how it can
be applied to a DP system.

A. Mathematical Modeling and Observer Design

The standard control design model for the low-frequency
motion of a marine surface is defined as

η̇ = R(ψ)ν (41a)

ḃ = d(t) (41b)

M ν̇ + Dν = τ + R(ψ)⊤b (41c)
y = η (41d)

where η ∈ R3 is the position and heading, ν ∈ R3 is the body
frame velocity and turn rate, b ∈ R3 is a bias load, d(t) ∈ R3 is
the disturbance, and τ ∈ R3 compiles the body frame thruster
forces. R(ψ) ∈ R3×3 is a three degree of freedom rotation
matrix, M ∈ R3×3 is the mass matrix, including added mass,
and D ∈ R3×3 is the linear damping matrix.

The system of (41) is a highly simplified control design
model which attempts to capture the main dynamics of
the complex hydrodynamic interactions between the vessel,
thrusters, and water. In this model, the bias state is used
as an internal state to estimate unmodeled loads, and in the
observer model it will be assumed that d(t) = 0, as suggested
in Section III-D. Equation (41) is a nonlinear model due to
the rotation matrices. However, since the heading is measured
by a gyrocompass within the compact interval of [−π, π]

and the heading rate (its derivative) is bounded due to vessel
damping and limited thruster forces, we can use the heading
measurement directly in the rotation matrix as an external time
signal and assuming R(t) := R(ψ(t)) to be a time-varying
matrix [15]. The nonlinear system of (41) can then be written
in LTV form as

z =
[
η⊤, b⊤, ν⊤

]⊤
∈ R9, u = τ ∈ R3 (42a)

ż = A(t)z + Bu (42b)
y = Cz (42c)

A(t) =

03×3 03×3 R(t)
03×3 03×3 03×3

03×3 M−1 R(t)⊤ −M−1 D

 (43)
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TABLE I
PARAMETER VALUES USED IN THE SIMULATION STUDY

B =

03×3
03×3
M−1

 (44)

C =
[
I3×3 03×3 03×3

]
. (45)

Luenberger observers for z1 and z2 can then be designed as

żi = A(t)zi + Bu + L i (t)(y − Czi ) (46)

where

L i (t) =

 K1,i
K2,i

M−1 R⊤(t)K3,i

 ∈ R9×3 (47)

such that the origin is UGES for ėi = Ai (t) := A(t)− L i (t)C .
These Luenberger observers can now readily be used in the
resetting observer of (20)–(26).

B. Simulation Study

To evaluate the performance of the proposed observer
design, it was tested in simulation with a high-fidelity sim-
ulation model. The model used is the Supply Vessel from
marine systems simulator [16]. The parameter values used in
the simulation study are given in Table I.

The measurement errors of the GNSS east and north com-
ponents and heading sensor are modeled as Gauss-Markov
processes [17], that is,

v[n + 1] = e−cTsv[n] + ρ[n] (48)

where v[n] is the measurement at discrete time n, (1/c)
is the time constant for the process, Ts is the sampling
time and ρ is zero-mean Gaussian white noise with standard
deviation, σ . The values of c, Ts , and σ are chosen to
match the characteristics of commercially available differential
and dual-band GNSS and heading sensors. To remove wave-
frequency components of the measurements, they are notch
filtered before entering the observer. The notch filter used is
a linear second-order filter with transfer function

H(s) =
s2

+ ω2
0

s2 + ωcs + ω2
0

(49)

where ω0 is the central frequency and ωc is the width of the
rejected band. The injection gain matrices for the Luenberger

Fig. 1. Simulation results for evaluating transient and steady state perfor-
mance.

Fig. 2. Locally enlarged version of Fig. 1 around the transient phase.

observers, L1 and L2, were obtained using optimal gains from
a linear Kalman filter design about zero heading. The L1 gains
were first calculated by tuning the process covariance matrix
Q1 and the measurement covariance matrix, R1. Then, the
more aggressive L2 gains were calculated by keeping R2 =

R1 while setting Q2 to a significantly lower value of 10−7 Q1.
1) Transient and Steady State Performance: As introduced

in Section I, our motivation for this observer design is to
achieve increased reactivity against rapidly changing distur-
bances without compromising the steady-state performance.
To investigate whether the resetting observer accomplishes this
goal, the vessel was excited by an impulsive sway disturbance
with magnitude 5000 kN and duration 10 s at t = 50 s,
followed by a long period of steady-state operation. The sea
state in the simulation was governed by a Joint North Sea
Wave Project (JONSWAP) wave spectrum [18] with significant
wave height 2 m and peak period 6.3 s.
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The results are presented in Figs. 1 and 2. The results
marked “continuous” show state estimates from the NPO of
[2], which is equivalent to the LTV Luenberger observer with
innovation gain L1(t) in the resetting observer. The results
show promising performance. The resetting observer gives a
substantial improvement during the transient phase, without
amplifying measurements noise or introducing wave frequency
components to the state estimates. The vessel is subject to a
severe disturbance, but this is captured well by the resetting
mechanism in the bias estimate, which estimates a constant
value for the bias for each δ interval. It can be seen that
there is a substantial wave-frequency component in the sway
velocity. However, since this measurement is notch-filtered
before entering the observer, this does not trigger unwanted
jumps. There is some delay in the state estimates of the
resetting observer due to the resetting time δ and the phase
lag introduced by the notch filter. When tuning the notch
filter, there must be a trade-off between phase lag and wave
attenuation. This should be adjusted to the prevailing sea
state to ensure that the wave-frequency component of the
measurements can not trigger jumps.

2) Sensitivity Analysis of Observer Parameters: To inves-
tigate the effect of varying the tunable parameters of the
resetting mechanism, a sensitivity analysis was performed on
the interpolation gain, k, reset time δ, and error bounds ϵ.
To obtain an objective and quantitative measure of the observer
performance in a simulation, a key performance indicator
(KPI) was developed based on the estimation error. In order
to combine variables with different physical units in the same
KPI, all variables were nondimensionalized using the BIS
system [18]. The KPI, Jtot is defined by

Jtot =

∫ T

0

∥∥zbis(t)− ẑbis(t)
∥∥dt (50)

where T is the length of the simulation. Estimated state
variables, obtained from z1 of the resetting observer, are
denoted by hatted symbols. Lower values of the KPI indicate
better observer performance.

A total of 100 simulations were run for each of the tuning
parameters k, δ, and ϵ, where their values were varied within a
predefined range. The other parameters were kept unchanged
at the values given in Table I. To investigate the relationship
between measurement noise and tuning parameters, the sen-
sitivity analysis was conducted both with a differential and
a dual-band GNSS model. Each simulation had a duration
T = 1000 s, where the vessel was subject to both impulsive
and slowly varying disturbances in surge, sway, and yaw
followed by a longer period of steady-state operation with only
wave and measurement noise disturbances. The disturbances
induced simultaneous heading and surge/sway motion, thereby
exciting the time-varying (nonlinear) dynamics of the system.

First, the effect of the interpolation gain k is studied for
values in the interval [0, 1], which is the entire allowable range
for k. Using k = 0 is equivalent to a continuous-time NPO
observer, completely disregarding the FTO estimates, while for
k = 1 we use the FTO estimates directly after a reset. The top
plot in Fig. 3 shows the trend that the performance improves
as k is increased, and performance is drastically improved

compared to the NPO score at k = 0. The improvement flattens
out for higher values of k. As we discussed in Section III-D,
having too high values of k may lead to overshoots after a
reset due to inaccuracies caused by measurement noise and
unmodeled disturbances, and it is therefore more advantageous
to do several more gradual jumps by using a lower value of k.
The results of Fig. 3 underpins this theory, as the simulations
with higher measurement noise (dual-band) perform worse for
high-values of k. Our choice of using k = 0.7 appears to find
a good balance.

Next, the effect of varying the reset time δ is studied. The
middle plot of Fig. 3 shows the trend that the performance
decreases as the reset time increases. This is as expected since
a higher reset time means that the resetting mechanism must
wait longer before it can reset to a more correct state estimate.
More surprisingly, the resetting observer produces excellent
state estimates also for very low values of δ. As noted in
Section III-D, the condition number of (I − 828

−1
1 ) in the

jump map grows large when δ is decreased. We have found that
when δ approaches the time step size of the control system,
which in this case was 0.05 s, the observer becomes unstable if
we also disable the check on the condition number in the jump
map. In these cases the condition number of (I −828

−1
1 ) is of

the order of 1016. Since we are using double precision floating
point arithmetic in the simulations, the machine epsilon is
≈10−16, meaning that the matrix is so ill-conditioned that
numerical round-off error will be amplified to the degree that
the results are useless. However, we found that when δ is
greater than about three times the time step size, the observer
works perfectly fine even though the condition number of
(I − 828

−1
1 ) is of the order of 1010. This indicates that the

resetting observer design is highly robust against (I −828
−1
1 )

being ill-conditioned. In all other simulations, δ = 2.5 s is
used. As Fig. 3 shows, there are no significant performance
gains by using a lower δ than this. With δ = 2.5 s the condition
number of (I − 828

−1
1 ) has values around 50, giving large

robustness margins before singularity becomes an issue.
Finally, the effect of varying the error bounds ϵ is investi-

gated. In the other simulations, ϵ = [0.5 m, 0.5 m, 0.05 rad]

was used. In the sensitivity analysis, scaled versions of this
is used, that is, ϵ = cϵ[0.1 m, 0.1 m, 0.01 rad], with cϵ ∈

[0.1, 10]. The bottom plot in Fig. 3 shows that the perfor-
mance is poor for very low values of ϵ. This occurs because
measurement noise constantly triggers unwanted resets. This
effect is more pronounced for the simulations with higher
measurement noise (dual-band). Conversely, for high values
of cϵ the performance is decreasing slightly with increasing
ϵ due to lower reactivity when the error bounds are too big.
The tuning used in the other simulations corresponds to a cϵ
value of 5, which appears to find a good balance based on the
results in Fig. 3.

An important finding from the sensitivity analysis is that the
observer has good performance over a wide range of values
for the tunable parameters of the resetting mechanism. Based
on the results of the sensitivity analysis, we recommend that
k should be reduced if there is high measurement noise. The
value of δ should be chosen significantly larger than the time
step of the control system and can generally be chosen much
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Fig. 3. Sensitivity analysis investigating effect of the tunable parameters k,
δ, and ϵ on the KPI Jtot.

Fig. 4. Cybership III ship model in the MCLab wave tank.

larger than this without negatively impacting performance. The
ϵ bounds should be set larger than the prevailing measurement
noise.

C. Experimental Study

To validate the results from the simulation study, the
resetting observer was tested experimentally in model scale
experiments. The experiments were conducted in the Marine
Cybernetics Laboratory (MC-Lab) wave tank at the Norwegian
University of Science and Technology (NTNU), Trondheim,
Norway. The test vessel used was Cybership III, a 1:30 scale
model of an offshore supply vessel, as shown in Fig. 4. For
more details on the experimental study, the reader is referred
to [19]. This thesis includes more detailed experimental results
and performs a comparison of the resetting observer with the
NPO of [2] and the NPO with time-varying gains of [6]. The
thesis compared the three observers in ten different simulated
scenarios and five different experimental scenarios. The results
were highly convincing of the merits of the resetting observer,
showing that the resetting observer performed better than
the NPO in all simulated and experimental scenarios, and it
performed better than the NPO with time-varying gains in nine
of ten simulated scenarios and all experimental scenarios.

Fig. 5. Experimental results for the resetting observer.

Fig. 6. Locally enlarged version of Fig. 5 around the transient phase.

In this brief, we give the results of one experimen-
tal scenario which is similar to the simulated scenario in
Section IV-B1. This is achieved by giving the ship model
a push in the sway direction, thereby exerting an impulse-
like, unmodeled disturbance. A notable difference is that the
observer was running in closed loop with a DP station-
keeping controller in the experiments, thereby giving lower
displacements than in the simulated scenario. The experiment
was conducted in a moderate sea state, generated from a
JONSWAP spectrum with significant wave height 0.04 m
(1.2 m full-scale) and peak period 0.8 s (4.4 s full-scale).
The results from the experiment are shown in Figs. 5 and 6.
The results validate the findings in the simulation study by
showing similar behavior and performance gain compared to
a continuous-time observer. The results show that the peak of
bias estimate from the resetting observer is higher than the
estimated true bias signal. We believe this is an artifact of the
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filtering used in the estimation of the true bias signal, which
has filtered out the actual peak.

V. DISCUSSION AND FURTHER WORK

Our work does not include conditions to ensure nonsingu-
larity of (I −828

−1
1 ) for all times. Engel and Kreisselmeier

[8] give sufficient, but highly conservative conditions for non-
singularity in the case of LTI systems. However, the extension
of these conditions to the time-varying case is not trivial.
The brief [20] proposes a workaround for this problem for
uniformly observable systems LTV system by transformation
to observer canonical form and separating out and canceling
the time-varying dynamics resulting in time-invariant error
dynamics. The state-transition matrix is thus the matrix expo-
nential and nonsingularity (I − 828

−1
1 ) can therefore be

established up front by inspection. This approach is, however,
not attractive for the DP application because the transformation
to observer canonical form requires signals that are not typi-
cally available in DP systems. In our work, we use a practical
solution to avoid inverting a singular matrix by adding a check
on the condition number of (I − 828

−1
1 ) before doing a

jump, as stated in (22). In our experience, this has worked
very well in practice. Our experience shows that despite the
time-varying dynamics of the observer, the condition number
stays practically constant throughout a simulation. The main
factor influencing the condition number is the reset time δ.
By running some simulations, the relationship between δ and
the condition number of (I − 828

−1
1 ) can be established.

This relationship can be used to find a safe value for δ.
Combining this knowledge with the results showing that the
observer is highly robust against ill-conditioned matrices and
the check of condition number in the jump map, the singularity
of (I − 828

−1
1 ) does not seem to be a likely problem in

practice. Nevertheless, establishing a priori conditions for
nonsingularity would be a valuable addition to the observer
design, and we leave this for future work.

VI. CONCLUSION

We have presented a resetting observer for LTV systems.
A reset is triggered if the output estimation error exceeds
predefined bounds. To calculate corrected state estimates after
a reset, an FTO approach is used. The FTO equations have
been derived for LTV systems. The observer equations have
been formulated in a hybrid dynamical systems framework,
and sufficient conditions for UGpES have been given. The
observer design has applications for DP of marine surface
vessels. A case study for this application was conducted with
numerical simulations and an experimental demonstration. The
results showed promising results, with improved transient
performance without compromising steady-state performance
compared to the state-of-the-art continuous-time observer.

These properties may enable DP operations in more challeng-
ing conditions, as well as better noise filtering properties due to
the low injection gains. The resetting observer may also lower
the requirements for model and parameter accuracy, as it more
rapidly captures and corrects for model errors. The discussion
highlights developing conditions that guarantee nonsingularity
in the resetting mechanism as a topic for future research.
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