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Chapter 1

Introduction

This thesis is about problems in motivic and toric homotopy and consists of three
papers. In the first two papers of this thesis, we will do various computations in
motivic homotopy theory using different methods. In the third paper, we will study
a variation of a construction used in the second paper.

Paper I is about [P1,P1]A
1
, the group of A1-homotopy classes of endomor-

phisms of the projective line. The computation of the group [P1,P1]A
1

is a motivic
homotopy theoretic analogue the computation of the fundamental group ⇡1(S1)
of the circle in classical topology. Computing ⇡1(S1) is something a student might
learn in their first algebraic topology class. Computing [P1,P1]A

1
, on the other

hand, requires highly technical abstract mathematical machinery. In Paper I, ti-
tled Making the motivic group structure on the endomorphisms of the projective line

explicit, we describe the group [P1,P1]A
1

using elementary algebraic geometry.
Another way of making it easier to compute things is by decomposing what-

ever you want to study into pieces you already understand. There is a family of
topological spaces called polyhedral products that allow us to do this. Roughly
speaking, a polyhedral product is a collection topological spaces glued together
according to some combinatorial data. Thus, it is not strange to expect that one
can express information about a polyhedral product in terms of its combinatorial
data and collection of topological spaces.

In Paper II we generalize polyhedral products such that they can be consid-
ered in motivic homotopy theory. We focus our attention to a certain family of
motivic polyhedral products and use the good properties of polyhedral products
to do various computations that would otherwise be difficult. The paper is titled
Polyhedral products in abstract and motivic homotopy theory.

In Paper III we dualize the polyhedral product construction and define polyhe-

dral coproducts. We then explore if and how classical theorems about polyhedral
products dualize. The paper is titled Polyhedral coproducts.

In the upcoming sections we will introduce and discuss some mathematics
that play a central role in the thesis. We also aim to prepare the reader for the
more technical summaries of the papers in Section 1.3. In Section 1.1 we discuss
polyhedral products and discuss other relevant information for Paper II and III.

1



2 William Hornslien: Topics in motivic and toric homotopy theory

In Section 1.2 motivic homotopy theory is introduced to prepare the reader for
Paper I and II.

1.1 Polyhedral products

In this section we will present several results from toric topology. Toric topology is
a field centered around studying topological spaces with torus actions and started
with seminal work by Davis and Januskiewicz [11]. Polyhedral products, which
are the main focus of the upcoming sections, are generalizations of certain ob-
jects called moment-angle complexes (see Section 1.1.3) from toric topology. By
toric homotopy theory, we mean the use of homotopy theory to study objects that
appear in toric topology.

1.1.1 The polyhedral product

Let K be a simplicial complex with m vertices and let

(X , A) = ((X1, A1), . . . , (Xm, Am))

be a sequence of m pairs of pointed topological spaces Ai ✓ Xi . We call (X , A) a
family of pairs. We will now define the polyhedral product. The following defini-
tion is due to Bahri, Bedersky, Cohen, and Gitler [5].

Definition 1.1. Let (X , A) be a family of pairs and let K be a simplicial complex.
We define the polyhedral product (X , A)K as the union

(X , A)K =
[

�2K

D(�) ✓
mY

i=1

Xi ,

where

D(�) =
mY

i=1

Yi where Yi =

®
Xi if i 2 �,
Ai if i 62 �.

Remark 1.2. When all pairs (Xi , Ai) are the same pair, we will write (X , A)K for
the polyhedral product (X , A)K .

Example 1.3. Let K be two disjoint points. We wish to compute the polyhedral
product (D1, S

0)K . Then D(;) = S
0⇥S

0, D({1}) = D
1⇥S

0, and D({2}) = S
0⇥D

1.
The illustration below shows process of taking the union of the three pieces and
that (D1, S

0)K ' S
1.

•
D(;)
•

S
•
D({1})

•
S
•
D({2})

•
=

•
(D1, S

1)K
•

• • • • • • • •
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Example 1.4. Let K = @�m�1, then (D1, S
0)K ' S

m�1.

Example 1.5. 1. When K is a full (m� 1)-simplex, the polyhedral product is
the product

Q
m

i=1 Xi .
2. Let K be m disjoint points, and let Ai be the basepoint of Xi for all 1 i  m.

Then (X , A)K =
W

m

i=1 Xi .
3. Let K = @�m�1, and let Ai be the basepoint of Xi for all 1  i  m.

Then (X , A)K is the fat wedge of the spaces Xi . That is, the subset of
Q

m

i=1 Xi .
where at least one coordinate is the basepoint.

The previous example shows that the polyhedral product interpolates between
the wedge

W
m

i=1 Xi and the product
Q

m

i=1 Xi as K ranges from m disjoint points to
a full (m� 1)-simplex.

Example 1.6 ([9, Proposition 4.2.5]). Let K and K
0 be two simplicial complexes

and let K ? K
0 denote their join. Then (X , A)K ⇥ (X , A)K

0
= (X , A)K?K

0
.

Even though the definition of a polyhedral product is fairly recent, it is ev-
ident that several relevant constructions in topology and homotopy theory can
be expressed as polyhedral products. As we have just seen, this includes spheres,
wedges of spaces, and wedge filtrations. Some further examples also include joins
and half-smash products of spaces. Surveys about polyhedral products and their
connections to other fields can be found in [4, 9].

1.1.2 The Stanley–Reisner ring

The following ring associated to a simplical complex plays an important role in
toric topology.

Definition 1.7. Let k be a ring. For a simplicial complex K , we define the Stanley–

Reisner ideal IK as the square-free monomial ideal corresponding to non-faces of K ,
i.e.

IK = (xi1
. . . xir
|{i1, . . . , ir} 62 K).

We define the Stanley–Reisner ring as the quotient

k[K] := k[x1, . . . , xm]/IK .

Example 1.8. Let K = @�m�1 and k be a ring. The simplicial complex K only has
one missing face and its Stanley–Reisner ring is

k[K] =
k[x1, . . . , xm]
(x1 x2 · · · xm)

.

The Stanley–Reisner ring shows up in areas such as toric geometry, polytopes,
and splines [21, Chapter III].
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1.1.3 Moment-angle complexes

We will now present a certain family of polyhedral products named moment-angle
complexes.

Definition 1.9. Let K be a simplicial complex. The moment-angle complex ZK is
the polyhedral product

ZK := (D2, S
1)K .

Example 1.10. Let K be two disjoint points. Then

ZK = D
2 ⇥ S

1
[

S1⇥S1

S
1 ⇥ D

2 ' @ (D2 ⇥ D
2)' S

3.

Example 1.11. Let K = @�m�1, then ZK ' S
2m�1.

Moment-angle complexes in the way we present them here is due to Buch-
staber and Panov [8]. Moment-angle complexes naturally arise as complements of
coordinate subspace arrangements, intersections of quadrics, level sets of moment
maps in symplectic topology, and as complex points of toric varieties (see [4, 9]).
Thus the study of moment-angle complexes is highly interdisciplinary and can be
viewed from many angles. In this thesis we are mostly concerned about moment-
angle complexes from the view of topology, homotopy theory, and combinatorics.
For example, the following theorem gives a nice presentation of the cohomology
ring of a moment-angle complex.

Theorem 1.12 ([6, Theorem 1],[7, Theorem 1]). Let K be a simplicial complex on

the vertex set [m]. Let k be a field or Z. There is an isomorphism of groups

H
i(ZK ;k)⇠=

8
<
:

k i = 0,M

I 62K

eHi�|I |�1(KI ;k) i > 0.

In particular, there is an isomorphism of algebras

H
⇤(ZK ;k)⇠= k�

M

I 62K

eH⇤(KI ;k).

The products in the sum on the right are given as follows: for I , J 62 K, with I\J = ;,
let ↵ 2 eHp(KI ;k) and � 2 eHq(KJ ;k) be nontrivial cohomology classes. Then there

exists a nontrivial cohomology class � 2 eHp+q(KI[J ;k) such that ↵ ^ � = �. All

products of cohomology classes in H
⇤(ZK ;k) arise in this way.

Example 1.13. Let L and L
0 be two disjoint points. Then K = L ? L

0 is a square
and we get

ZK ' S
3 ⇥ S

3.
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The following is an illustration of the simplicial complex K with labeled vertices.

1 3

4 2

The cohomology classes of ZK are generated by non-contractible full subcom-
plexes of K . The full subcomplex K{1,2} = L gives rise to a class ↵ in degree 3,
and similarly for K{3,4} = L

0 we get another degree 3 class ↵0. Lastly, since the
complex K{1,2,3,4} = L ? L

0 is not contractible and is homotopic to S
1 there is a

class � in degree 6. By Theorem 1.12, since {1, 2} [ {3,4} = {1,2, 3,4}, we get
the relation ↵↵0 = � 2 H

6(ZK ,k).

1.1.4 Colimit and homotopy colimit descriptions

Our current definition of polyhedral products is as a union of certain subspaces
of
Q

m

i=1 Xi . We will now describe polyhedral products as colimits of diagrams
indexed by a category related to a simplicial complex.

Definition 1.14. Let K be a simplicial complex. Let cat(K) be the face poset cate-

gory of K . The objects of cat(K) are given by the simplices of K , including an initial
object ; which corresponds to the empty simplex. Let �,⌧ 2 K be two simplices
of K . If � is a subface of ⌧, then there is a unique morphism f�⌧ : �! ⌧.

An alternate description of the polyhedral product is as the colimit of a cat(K)-
shaped diagram

(X , A)K = colim
�2K

D(�),

where D(�) is defined as before. However, colimits are not homotopy invariant,
which is not good if we want to do homotopy theory. Homotopy colimits, on the
other hand, are homotopy invariant. For simplices �  ⌧, the maps D(�)! D(⌧)
are cofibrations, thus by [23, Lemma 3.1] there is a homotopy equivalence

(X , A)K = colim
�2K

D(�)' hocolim
�2K

D(�).

Going forward, we will always think of a polyhedral product as a homotopy col-
imit, since it will allow us to use techniques from homotopy theory to speak about
polyhedral products.

1.1.5 The polyhedral smash product

A variation of the polyhedral product is the polyhedral smash product. It was first
defined in [5].
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Definition 1.15. Let (X , A) be a family of pairs and let K be a simplicial complex
on the vertex set [m]. Let K be the face poset category of K ordered by inclusions.

We define the polyhedral smash product \(X , A)
K

as

\(X , A)
K

:= hocolim
�2K

bD(�),

with bD(�) defined as follows:

bD(�) =
m̂

i=1
Yi where Yi =

®
Xi if i 2 �,
Ai if i 62 �.

For any pair of simplices � ⇢ ⌧ 2 K the map from bD(�) to bD(⌧) is induced by the
maps ◆i and the identity.

Example 1.16. Let K be two disjoint points. Then the polyhedral smash prod-

uct \(D2, S1)
K

is the given by the homotopy pushout

S
1 ^ S

1
D

2 ^ S
1

S
1 ^ D

2 \(D2, S1)
K

.

p

Since D
2 ^ S

1 is contractible, there is an equivalence

\(D2, S1)
K

' ⌃(S1 ^ S
1)' S

3.

1.1.6 Stable splittings

In [5] suspensions of polyhedral products are studied. The following theorem
gives a relation between the suspension of a polyhedral product and the poly-
hedral smash product.

Theorem 1.17 ([5, Theorem 2.10]). Let K be a simplicial complex. There is a ho-

motopy equivalence

⌃(X , A)K ' ⌃
_

I 62K

\(X , A)
KI

.

When all the spaces Xi are contractible, it is possible to say even more. Given m

spaces X1, . . . , Xm and I = {i1, . . . , ik} ⇢ [m], we write X
^I := Xi1

^ . . .^ Xik
.

Theorem 1.18 ([5, Theorem 2.21]). Let K be a simplicial complex. Assume that Xi

is contractible for all i. There is a homotopy equivalence

⌃(X , A)K ' ⌃2
_

I 62K

|KI |^ A
^I .
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For the moment-angle complex, this results in the following equivalence

⌃ZK ' ⌃2
_

I 62K

|KI |^ S
|I | '

_

I 62K

⌃|I |+2|KI |.

Example 1.19. Let K be the boundary of a square as in Example 1.13. Then
the full subcomplexes for both I = {1, 2} and I = {3, 4} yield |KI | ' S

0. The full
subcomplex |KI | is contractible whenever |I | = 3. When I = {1,2, 3,4}, the full
subcomplex is the whole simplicial complex and we get |KI | = |K | ' S

1. Conse-
quently, we have

⌃ZK ' ⌃2
�
(S0 ^ S

2)_ (S0 ^ S
2)_ (S1 ^ S

4)
�
' S

4 _ S
4 _ S

7 ' ⌃(S3 ⇥ S
3).

1.1.7 Porter’s decomposition and the Hilton–Milnor theorem

We have just seen how certain polyhedral products split into a wedge after a sus-
pension. There are cases where the suspension is not needed for the polyhedral
product to have the homotopy type of a wedge. A result of Porter [20, Theorem 1]
identifies the homotopy type of (C⌦X ,⌦X )K in the case that each Xi is simply con-
nected and K is a disjoint union of m points. For a space X and k � 1, let X

_k be
the k-fold wedge of X .

Theorem 1.20. Let X1, . . . , Xm be pointed simply connected CW-complexes, and K

be m disjoint points. There is a homotopy equivalence

(C⌦X ,⌦X )K '
m_

k=2

_

1i1<...<ikm

(⌃⌦Xi1
^. . .^⌦Xik

)_(k�1) '
_

I2[m],|I |�2

⌃((⌦X )^I )_|I |�1.

Moreover, this homotopy equivalence is natural for maps Xi ! Yi.

Example 1.21. Recall that moment-angle complexes are defined as

ZK := (D2, S
1)K = (C⌦CP1,⌦CP1)K .

Let K be three disjoint points. Then there is an equivalence

ZK ' S
3 _ S

3 _ S
3 _ S

4 _ S
4.

Porter’s decomposition allows us to say something about the loop space of a
wedge X1 _ . . . _ Xm of simply connected spaces Xi . Let K be m disjoint points.
By [12], there is a homotopy fibration

(C⌦X ,⌦X )K !
m_

i=1
Xi !

mY

i=1

Xi .

The inclusion of the wedge into the product has a right homotopy inverse after
looping. Hence, the whole sequence splits after looping, which yields the following
theorem.
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Theorem 1.22. Let X1, . . . , Xm be pointed simply connected spaces. There is a ho-

motopy equivalence

⌦(X1 _ . . ._ Xm)'
mY

i=1

⌦Xi ⇥⌦
 

_

I2[m],|I |�2

⌃((⌦X )^I )_|I |�1

!
.

We are once again left with a loop space of a wedge of spaces, but this time
its a wedge of suspension. The Hilton–Milnor theorem, which we will now recall,
allows us to say something more in this situation. Let L be the free (ungraded)
Lie algebra over Z on the elements x1, . . . , xm, and let B be a Hall basis of L. For
a bracket b 2 B, let ki(b) be the number of instances of xi in b. For a space X

and k � 0, denote by X
^k to be the k-fold smash of X . We will define the 0-fold

smash of X to be omission of the corresponding term, rather than a trivial space.

Theorem 1.23. (Hilton–Milnor theorem [13, 17]) Let X1, . . . , Xm be connected topo-

logical spaces. Then there is a homotopy equivalence

⌦

✓
m_

i=1
⌃Xi

◆
'
Y

b2B

⌦⌃(X^k1(b)
1 ^ . . .^ X

^km(b)
m

).

Moreover, this homotopy equivalence is natural for maps Xi ! Yi.

The Hilton–Milnor theorem can be used to further decompose the right hand
side of Theorem 1.22. This will be of use in Paper III.

1.2 Motivic homotopy theory

In this section, we will introduce motivic homotopy theory. Motivic homotopy the-
ory will play a central role of Papers I and II. For the rest of this section, whenever
we speak of a field k we will assume k to have characteristic different from 2. We
define the affine line as the affine variety A1 := Spec(k[T]).

1.2.1 The category of motivic spaces

In this section, we will briefly introduce the motivic homotopy category over a
field. We refer the reader to [1, 14, 18, 24] for further details.

Let Smk be the category of smooth k-schemes of finite type. Morel and Vo-
evodsky defined the motivic homotopy category over a perfect field [19]. To do
this, they constructed a model structure that contained Smk and then considered
the associated homotopy category. The category Smk does not have all small limits
and colimts. To fix this, one first considers simplicial presheaves on Smk, which
we will denote by PShv(Smk). We say that a simplicial presheaf F 2 PShv(Smk)
is A1

-invariant, if the projection X ⇥ A1 ! X induces an equivalence of simpli-
cial sets F(X ⇥A1)! F(X ) for any X 2 Smk. We will write PShvA1(Smk) for the
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full subcategory of PShv(Smk) consisting of A1-invariant presheaves. The inclu-
sion PShvA1(Smk) ,! PShv(Smk) admits a left adjoint

LA1 : PShv(Smk)! PShvA1(Smk),

which we will callA1-localization. WithA1-localization, we makeA1 weakly equiv-
alent to the point. We now need to define a suitable topology on Smk. In this case,
we choose the Nisnevich topology, which is a Grothendieck topology on Smk gen-
erated by the following squares

V Y

U X .
p

p

i

2 Smk

where p : Y ! X is étale, i : U ! X is an open immersion, and p
�1(X \ U)! X \ U

is an isomorphism of reduced induced schemes. One can consider the full subcat-
egory ShvNis(Smk) of Nisnevich sheaves in PShv(Smk). The category of motivic
spaces Spc

k
is the full subcategory of PShv(Smk) spanned by A1-invariant Nis-

nevich sheaves. There is a localization functor

LMot : PShv(Smk)! Spc
k
,

which we will refer to as motivic localization. The objects of Spc
k

are called motivic
spaces. We view an object of X 2 Smk as a motivic space by considering taking
motivic localization of the presheaf HomSmk

(�, X ). A simplicial set S can be viewed
as a motivic space by taking the motivic localization of the constant presheaf with
value S. By inverting weak equivalences, we end up with the motivic homotopy
category H(k). There is also a motivic homotopy category of pointed spaces, which
we will denote by H⇤(k). The terminal and initial object H⇤(k) is Spec(k). For two
motivic spaces X , Y , we will write [X , Y ]A

1
for the set of pointed morphism X ! Y

in H(k), that is [X , Y ]A
1

:= HomH⇤(k)(X , Y ).
In Paper II we consider the category of motivic spaces as n1-category. This

can be done by taking the nerve embedding of Spc
k
, or by doing A1-localization

and Nisnevich localization on the1-category of simplicial presheaves over Smk

equipped with the Nisnevich topology.

1.2.2 Naive motivic homotopy theory

For topological spaces X and Y and morphisms f : X ! Y and g : X ! Y , a
homotopy is a morphism H : X ⇥[0, 1]! Y , such that H(0) = f and H(1) = g. A1

plays the role of the interval in motivic homotopy theory. The following definition
is a motivic analogue of the notion of homotopy in classical topology.

Definition 1.24. Let X , Y 2 Smk be pointed at k-points x and y respectively. A
pointed elementary homotopy between two pointed scheme morphisms f : X ! Y

and g : X ! Y is given by a morphism H(T ): X ⇥ A1 ! Y with the additional
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properties that {x} ⇥ A1 maps to y , and H|X⇥{0} = f and H|X⇥{1} = g. When a
pointed elementary homotopy between f and g exists, we say f and g are pointed

elementary homotopic and write f ⇠ g.

This relation on morphism X to Y is symmetric and reflexive, but not transitive.
Consequently, there exists f , g, h such that f ⇠ g and g ⇠ h, but f 6⇠ h. By taking
the transitive closure of ⇠, we are left with an equivalence relation ' on the
set Smk(X , Y )⇤.

Definition 1.25. Let X , Y 2 Smk be pointed at k-points x and y respectively. A
pointed naive homotopy between two pointed morphisms f : X ! Y and g : X ! Y

is given by a chain of pointed elementary homotopies such that

f ⇠ h1 ⇠ h2 ⇠ . . .⇠ hn ⇠ g.

If such a chain of pointed elementary homotopies exists, we say that f and g are
pointed naively homotopic and write f ' g.

For X , Y 2 Smk, we write [X , Y ]N for the set of pointed naive homotopy classes
of morphisms.

1.2.3 Comparison of homotopy classes

We have just described two different notions of pointed homotopy classes of pointed
smooth k-schemes X , Y : the true homotopy classes [X , Y ]A

1
and the naive homo-

topy classes [X , Y ]N . There is a canonical map

� : [X , Y ]N ! [X , Y ]A
1
,

but this rarely a bijection. Asok, Hoyois, and Wendt [2, 3], studied certain schemes Y ,
such that � is a bijection for all affine X . They call Y A1

-naive if the map � is a
bijection for all affine X . Examples of A1-naive spaces are Pn and SL2. The results
on A1-naive spaces were originally proven for unpointed homotopy classes. In
appendix A of Paper I we verify that these results hold in the category of pointed
motivic spaces.

1.2.4 Motivic spheres

In the motivic homotopy category there are two circles. There is the geometric
circle S

1,1 := Gm = A1 \ 0, also known as the Tate circle, and the simplicial cir-
cle S

1,0 represented by the motivic localization of the constant simplicial presheaf
with value S

1. We may smash these spheres together just like in classical homotopy
theory yielding S

a,b ' S
a�b,0^S

b,b ' (S1)^(a�b)^(Gm)^b. The question concerning
which motivic spheres have smooth scheme representatives is an open question.
However, there are some examples such as P1 ' ⌃Gm ' S

2,1 and An \0' S
2n�1,n.



Chapter 1: Introduction 11

1.2.5 The Grothendieck–Witt ring of quadratic forms

The Grothendieck–Witt ring is an important object in motivic homotopy theory.
Let MW(k) be the semiring of non-degenerate quadratic forms of k-vector spaces.
The addition of MW(k) is given by direct sum � and the product is given by
tensor product ⌦. We call MW(k) the Witt monoid. There is a map MW(k) ! N
given by the rank of the quadratic form and there is a map MW(k) ! k

⇥/k⇥2

given by its discriminant. For any u 2 k
⇥, let hui 2 MW(k) denote the rank one

quadratic form x 7! ux
2. Since we have assumed k to have characteristic 2, any

quadratic form can be diagonalized. This means that MW(k) is generated by the
rank 1 quadratic forms hui under addition. The Grothendieck–Witt ring GW(k) is
the group completion of MW(k)with respect to �. The following lemma describes
the relations of the Witt monoid and the Grothendieck–Witt ring.

Lemma 1.26 ([16, Theorem II.4.1]). The Grothendieck–Witt ring (resp. Witt monoid)

of a field k is generated as a group (resp. monoid) by generators hui, where u 2 k
⇥

,

and the following relations

1. huv
2i= hui, for u, v 2 k

⇥
.

2. hui+ hvi= hu+ vi+ huv(u+ v)i, for u, v, (u+ v) 2 k
⇥

.

3. hui+ h�ui= h1i+ h�1i, for u 2 k
⇥

.

Example 1.27. When k is an algebraically closed field, any unit is a square.
Hence hui= h1i, for all u 2 k

⇥. Thus MW(k) = N and GW(k)⇠= Z.

Example 1.28. Let k be the real numbers. In this case we have the two genera-
tors h1i and h�1i. Thus MW(R) = N⇥N and GW(R)⇠= Z⇥Z.

Example 1.29. Let k be a finite field and let u be a nonsquare unit. The generators
are h1i and hui. Thus MW(k)⇠= N⇥Z2 and GW(k)⇠= Z⇥Z2.

The following result shows why the Grothendieck–Witt ring is important in
motivic homotopy theory.

Theorem 1.30 ([18, Corollary 6.43]). Let a, b be integers such that a � b � 2,

then the set [Sa,b, S
a,b]A

1
can be equipped with a group operation �A1

and there is

an isomorphism

([Sa,b, S
a,b]A

1
,�A1

)⇠= GW(k).

The theorem above shows that the zeroth stable homotopy group of the mo-
tivic spheres is GW(k). The following result, due to Morel, describes the motivic
analogue of the fundamental group of the circle.

Theorem 1.31 ([18, Theorem 7.36]). There is an isomorphism of groups

([P1,P1]A
1
,�A1

)⇠= GW(k)⇥k⇥/k⇥2 k
⇥.

The map from GW (k) to k
⇥/k⇥2 in the theorem above is given by the discrim-

inant map.
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1.2.6 Milnor–Witt K-theory

Another crucial ring that is closely related to GW(k) is Milnor–Witt K-theory. The
following definition is due to Hopkins and Morel.

Definition 1.32 ([18, Definition 3.1]). The Milnor–Witt K-theory of the field k,
denoted K

MW
⇤ (k), is the graded associative ring generated by symbols [u] in de-

gree 1 for u 2 k
⇥ and the symbol ⌘ in degree �1 subject to the following relations:

1. For each u 2 k
⇥ \ {1}, [u].[1� u] = 0.

2. For each pair u, v 2 (k⇥)2, [uv] = [u] + [v] +⌘.[u].[v].
3. For each u 2 k

⇥, ⌘.[u] = [u].⌘.
4. Let h := ⌘.[�1] + 2. Then ⌘.h= 0.

There is an isomorphism K
MW
0 (k) ⇠= GW(k). The following proposition is an

extension of Theorem 1.30

Theorem 1.33 ([18, Corollary 6.43]). Let a, i and j be non-negative integers such

that a� i � 2. There is an isomorphism

([Sa,i , S
a, j],�A1

)⇠= K
MW
j�i
(k).

Morel also proved the following.

Theorem 1.34 ([18, §7.3]). There is an isomorphism of groups

([P1,A2 \ 0]A
1
,�A1

)⇠= K
MW
1 (k).

Note that A2\0' S
3,2, which is outside the range of Theorem 1.33. The result

still holds, but follows from different computations.

Example 1.35. 1. K
MW
1 (C)⇠= C⇥

2. K
MW
1 (R)⇠= Z⇥R⇥+

3. K
MW
1 (Fp)⇠= Zp�1

In Paper I Milnor–Witt K-theory in degree 1 will play an important role. Milnor–
Witt K-theory can be extended to a definition of sheaves of abelian groups on Smk.
Morel does this in [18, §3.2] and defines the unramified Milnor–Witt K-theory
sheaves K

MW
i

.

1.2.7 The Jouanolou–Thompson homotopy lemma

The following result is due to Jouanolou.

Lemma 1.36 ([15, Lemma 1.5]). Let X be a quasi-projective scheme over a field k.

There exists a pair (eX ,⇡), where eX is affine, and the morphism ⇡: eX ! X is a Zariski

locally trivial smooth morphism with fibers isomorphic to affine spaces.
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This lemma is particularly useful in motivic homotopy theory. Since the bundle
is Zariski locally trivial with contractible fibers, the map ⇡: eX ! X is a homotopy
equivalence. The quasi-projective hypothesis of Lemma 1.36 can be weakened to
any smooth scheme due to Thomason [22, Proposition 4.4].

Theorem 1.37. (Jouanolou–Thomason homotopy lemma) Let X 2 Smk, then there

exists and affine scheme eX 2 Smk such that eX ' X in H(k).

We will say that eX is a Jouanolou device for X . We will now look at some
example Jouanolou devices.

Example 1.38. A Jouanolou device for A2 \ 0 is given by the affine variety

SL2 := Spec
Å

k[a, b, c, d]
(ad � bc � 1)

ã
.

Example 1.39. A Jouanolou device for P1 is given by the affine variety

J := Spec
Å

k[x , y, z, w]
(x + w� 1, xw� yz)

ã
.

These two Jouanolou devices and their coordinate rings play a crucial part of
Paper I.

1.2.8 Naive homotopy classes of endomorphisms of the projective

line

In [10], Cazanave computes the pointed naive homotopy classes of endomor-
phisms of the projective line. In other words, Cazanave studies the set [P1,P1]N.
Cazanave shows that the set [P1,P1]N can be equipped with a monoid structure,
which we will denote ([P1,P1]N,�N).

Theorem 1.40 ([10, Corollary 3.10]). There is a canonical isomorphism of graded

monoids:

[P1,P1]N ⇠=MW(k)⇥k⇥/k⇥2 k
⇥.

The surprising thing about Cazanave’s monoid structure is that it is indepen-
dent of motivic homotopy thoery, and relies only on basic algebraic geometry and
knowledge of quadratic forms. As mentioned in Section 1.2.3, there is a map

� : [P1,P1]N! [P1,P1]A
1

from naive to true homotopy classes. Since P1 is not affine, we can not expect this
to be a bijection. Furthermore, ([P1,P1]N,�N) can only be made into a monoid,
but the set right-hand side can be given the structure of a group by Theorem 1.31.
However, Cazanave shows that � is the best thing it can be in this circumstance:
a group completion.

Theorem 1.41 ([10, Theorem 1.2]). The canonical map

⌫P1 : ([P1,P1]N,�N)! ([P1,P1]A
1
,�A1

)

induced by �, is a group completion.
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1.3 Paper summaries

In this section, a short summary of each paper is presented as well as highlighting
the main results.

1.3.1 Summary of Paper I

In this paper, we construct an explicit group structure on the set of naive homotopy
classes of maps from the Jouanolou device of the projective line to the projective
line. By utilizing the fact that P1 is an A1-naive space and that J ' P1, we have a
bijection of sets

� : [J ,P1]N ! [P1,P1]A
1
.

We construct an explicit group structure on the set pointed naive homotopy classes
of maps [J ,P1]N and denote this group by ([J ,P1]N ,�). The group structure uses
basic elementary algebraic geometry and is independent of the construction of the
motivic homotopy category. We prove the following relation between Cazanave’s
monoid structure on [P1,P1]N and our group structure on [J ,P1]N .

Theorem 1.42 (Theorem 95 in Paper I). The map

⇡⇤N : ([P1,P1]N,�N )! ([J ,P1]N,�)
induced by the map ⇡: J ! P1

is a morphism of monoids.

We then study the image of ⇡⇤N in [J ,P1]N. In particular, we find that it lies
within a subgroup G ✓ ([J ,P1]N,�) which is generated by an easy to describe set
of explicit morphisms and inherits the group operation �. In the case where k is
a finite field, we show that G= [J ,P1]N.

Theorem 1.43 (Theorem 8 in Paper I). The monoid morphism ⇡⇤N : [P1,P1]N! G

is a group completion. There is a unique isomorphism � : G! [P1,P1]A
1

such that

the diagram below commutes. Moreover, � and  are mutual inverses to each other.

G �

��

[P1,P1]N

⇡⇤N

OO

⌫P1
// [P1,P1]A

1

 

ff

The group G is a geometric model of the group ([P1,P1]A
1
,�A1

), which is the
motivic analogue of the fundamental group of the circle.

1.3.2 Summary of Paper II

In this paper, we generalize polyhedral products to an1-categorical setting. In
particular, we generalize the stable splitting result from [5] to cartesian closed1-
categories with small colimits. Let C be a cartesian closed1-categories with small
colimits and K a simplicial complex. we write |K | for the geometric realization of K

in C. The following is a generalization of Theorem 1.18.
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Theorem 1.44. Let C be a cartesian closed1-category and fix a morphism i : A! X

of pointed objects where X is contractible. Let K be a simplicial complex. Then there

is an equivalence

⌃(X , A)K ' ⌃2
_

I 62K

|KI |^ A
^|I |.

We then study polyhedral products in the motivic homotopy category, specifi-
cally a motivic refinement of moment-angle complexes.

Definition 1.45. Let K be a simplicial complex, we define the motivic moment-

angle complex Z
A1

K
to be the polyhedral product

Z
A1

K
:= (A1,Gm)K

in the1-category H(k).

Application of Theorem 1.44 yields the following theorem.

Theorem 1.46. Let K be a simplicial complex. Then there is an equivalence in H(k)

⌃Z
A1

K
' ⌃

Ç_

I 62K

|KI | ?G^|I |m

å
'
_

I 62K

|KI |^ S
|I |+2,|I |.

The splitting result is used to compute various invariants of the motivic moment-
angle complexes, such as cellular A1-homology and A1-Euler characteristic.

1.3.3 Summary of Paper III

In this paper, we introduce and study an Eckmann–Hilton dual of polyhedral prod-
ucts, named polyhedral coproducts. Polyhedral products are (homotopy) colimits
of products, and we define polyhedral coproducts to be a homotopy limit of co-
products.

Definition 1.47. Let f = ( f1, . . . , fm) be an m-tuple of maps fi : Xi ! Ai of pointed
spaces. We define the polyhedral coproduct associated to f and a simplicial com-
plex K as the homotopy limit

f
K

co
= holim

�2K

m_

i=1
Yi(�), where Yi(�) =

®
Xi if i 2 �,
Ai if i /2 �.

The paper acts as a survey, we present several classical result about polyhe-
dral products and study their Eckmann–Hilton duals. In particular, we prove dual
versions of Theorem 1.17 and 1.18. In the following theorem B�m�1 is a certain
Hall basis. For b 2 B�m�1 there is an associated subset Ib ⇢ [m] and for 1 i  m

an integer li(b) � 0. See page 14 of Paper III for further details. The following
theorem is the Eckmann–Hilton dual of Theorem 1.18.
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Theorem 1.48 (Theorem 4.5 in Paper I). Let K be a simplicial complex on [m]
and fi : Xi ! Ai where Xi is contractible and Ai is a pointed, simply connected CW-

complex for 1 i  m. Then there is a homotopy equivalence

⌦ f
K

co
'

Y

b2B�m�1 ,Ib 62K

⌦Map⇤(⌃|KIb
|,⌃⌦A

l1(b)
1 ^ . . .^⌦A

lm(b)
m
).

The theorem describes the loop space of a polyhedral coproduct in terms of
mapping spaces of full subcomplexes of K . We also study how joins and pushouts
of simplicial complexes affect polyhedral coproducts.



Bibliography

[1] B. Antieau and E. Elmanto, “A primer for unstable motivic homotopy the-
ory,” in Surveys on recent developments in algebraic geometry, ser. Proc. Sym-
pos. Pure Math. Vol. 95, Amer. Math. Soc., Providence, RI, 2017, pp. 305–
370, ISBN: 978-1-4704-3557-8. DOI: 10.1090/pspum/095/01637. [Online].
Available: https://doi.org/10.1090/pspum/095/01637.

[2] A. Asok, M. Hoyois, and M. Wendt, “Affine representability results in A1 -
homotopy theory, i: Vector bundles,” Duke Math. J., vol. 166, no. 10, pp. 1923–
1953, Jul. 2017. DOI: 10.1215/00127094-0000014X. [Online]. Available:
https://doi.org/10.1215/00127094-0000014X.

[3] A. Asok, M. Hoyois, and M. Wendt, “Affine representability results in A1-
homotopy theory, II: Principal bundles and homogeneous spaces,” Geome-

try & Topology, vol. 22, no. 2, pp. 1181–1225, 2018, ISSN: 1465-3060. DOI:
10.2140/gt.2018.22.1181.

[4] A. Bahri, M. Bendersky, and F. R. Cohen, “Polyhedral products and features
of their homotopy theory,” in Handbook of Homotopy Theory. CRC Press,
2019. DOI: 10.1201/9781351251624-3.

[5] A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, “The polyhedral prod-
uct functor: A method of decomposition for moment-angle complexes, ar-
rangements and related spaces,” Advances in Mathematics, vol. 225, no. 3,
pp. 1634–1668, 2010, ISSN: 0001-8708. DOI: 10.1016/j.aim.2010.03.
026.

[6] I. V. Baskakov, “Cohomology of K-powers of spaces and the combinatorics
of simplicial divisions.,” English, Russ. Math. Surv., vol. 57, no. 5, pp. 989–
990, 2002, ISSN: 0036-0279. DOI: 10.1070/RM2002v057n05ABEH000558.

[7] I. V. Baskakov, V. M. Bukhshtaber, and T. E. Panov, “Algebras of cellular
cochains, and torus actions,” Uspekhi Mat. Nauk, vol. 59, no. 3(357), pp. 159–
160, 2004, ISSN: 0042-1316,2305-2872. DOI: 10.1070/RM2004v059n03ABEH000743.
[Online]. Available: https://doi.org/10.1070/RM2004v059n03ABEH000743.

[8] V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology
and ho- mological algebra,” Uspekhi Mat. Nauk, vol. 55, no. 5(335), pp. 3–
106, 2000, ISSN: 0042-1316,2305-2872. DOI: 10.1070/rm2000v055n05ABEH000320.
[Online]. Available: https://doi.org/10.1070/rm2000v055n05ABEH000320.

17

https://doi.org/10.1090/pspum/095/01637
https://doi.org/10.1090/pspum/095/01637
https://doi.org/10.1215/00127094-0000014X
https://doi.org/10.1215/00127094-0000014X
https://doi.org/10.2140/gt.2018.22.1181
https://doi.org/10.1201/9781351251624-3
https://doi.org/10.1016/j.aim.2010.03.026
https://doi.org/10.1016/j.aim.2010.03.026
https://doi.org/10.1070/RM2002v057n05ABEH000558
https://doi.org/10.1070/RM2004v059n03ABEH000743
https://doi.org/10.1070/RM2004v059n03ABEH000743
https://doi.org/10.1070/rm2000v055n05ABEH000320
https://doi.org/10.1070/rm2000v055n05ABEH000320


18 William Hornslien: Topics in motivic and toric homotopy theory

[9] V. M. Buchstaber and T. E. Panov, Toric topology, ser. Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2015,
vol. 204, pp. xiv+518, ISBN: 978-1-4704-2214-1. DOI: 10.1090/surv/204.
[Online]. Available: https://doi.org/10.1090/surv/204.

[10] C. Cazanave, “Algebraic homotopy classes of rational functions,” Ann. Sci.

Éc. Norm. Supér. (4), vol. 45, no. 4, pp. 511–534, 2012, ISSN: 0012-9593,1873-
2151. DOI: 10.24033/asens.2172. [Online]. Available: https://doi.org/
10.24033/asens.2172.

[11] M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds
and torus actions,” Duke Math. J., vol. 62, no. 2, pp. 417–451, 1991, ISSN:
0012-7094,1547-7398. DOI: 10.1215/S0012-7094-91-06217-4. [Online].
Available: https://doi.org/10.1215/S0012-7094-91-06217-4.

[12] G. Denham and A. I. Suciu, “Moment-angle complexes, monomial ideals
and Massey products,” Pure Appl. Math. Q., vol. 3, no. 1, pp. 25–60, 2007,
ISSN: 1558-8599,1558-8602. DOI: 10.4310/PAMQ.2007.v3.n1.a2. [On-
line]. Available: https://doi.org/10.4310/PAMQ.2007.v3.n1.a2.

[13] P. J. Hilton, “On the homotopy groups of the union of spheres,” J. London

Math. Soc., vol. 30, pp. 154–172, 1955, ISSN: 0024-6107,1469-7750. DOI:
10.1112/jlms/s1-30.2.154. [Online]. Available: https://doi.org/10.
1112/jlms/s1-30.2.154.

[14] M. Hoyois, “The six operations in equivariant motivic homotopy theory,”
Adv. Math., vol. 305, pp. 197–279, 2017, ISSN: 0001-8708,1090-2082. DOI:
10.1016/j.aim.2016.09.031. [Online]. Available: https://doi.org/10.
1016/j.aim.2016.09.031.

[15] J. P. Jouanolou, “Une suite exacte de Mayer-Vietoris en K-théorie algébrique,”
in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial

Inst., Seattle, Wash., 1972), ser. Lecture Notes in Math. Vol. Vol. 341, Springer,
Berlin-New York, 1973, pp. 293–316.

[16] T. Y. Lam, Introduction to quadratic forms over fields, ser. Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 2005,
vol. 67, pp. xxii+550, ISBN: 0-8218-1095-2. DOI: 10.1090/gsm/067. [On-
line]. Available: https://doi.org/10.1090/gsm/067.

[17] J. W. Milnor, J. F. Adams, and G. C. Shepherd, “On the construction fk,”
in Algebraic Topology: A Student’s Guide, ser. London Mathematical Society
Lecture Note Series. Cambridge University Press, 1972, pp. 118–136.

[18] F. Morel, A1
-algebraic topology over a field, ser. Lecture Notes in Mathemat-

ics. Springer, Heidelberg, 2012, vol. 2052, pp. x+259, ISBN: 978-3-642-
29513-3. DOI: 10.1007/978-3-642-29514-0. [Online]. Available: https:
//doi.org/10.1007/978-3-642-29514-0.

https://doi.org/10.1090/surv/204
https://doi.org/10.1090/surv/204
https://doi.org/10.24033/asens.2172
https://doi.org/10.24033/asens.2172
https://doi.org/10.24033/asens.2172
https://doi.org/10.1215/S0012-7094-91-06217-4
https://doi.org/10.1215/S0012-7094-91-06217-4
https://doi.org/10.4310/PAMQ.2007.v3.n1.a2
https://doi.org/10.4310/PAMQ.2007.v3.n1.a2
https://doi.org/10.1112/jlms/s1-30.2.154
https://doi.org/10.1112/jlms/s1-30.2.154
https://doi.org/10.1112/jlms/s1-30.2.154
https://doi.org/10.1016/j.aim.2016.09.031
https://doi.org/10.1016/j.aim.2016.09.031
https://doi.org/10.1016/j.aim.2016.09.031
https://doi.org/10.1090/gsm/067
https://doi.org/10.1090/gsm/067
https://doi.org/10.1007/978-3-642-29514-0
https://doi.org/10.1007/978-3-642-29514-0
https://doi.org/10.1007/978-3-642-29514-0


Bibliography 19

[19] F. Morel and V. Voevodsky, “A1-homotopy theory of schemes,” Inst. Hautes

Études Sci. Publ. Math., no. 90, pp. 45–143, 1999, ISSN: 0073-8301,1618-
1913. [Online]. Available: http://www.numdam.org/item?id=PMIHES_
1999__90__45_0.

[20] G. J. Porter, “On the homotopy groups of the wedge of spheres,” Amer. J.

Math., vol. 87, pp. 297–314, 1965, ISSN: 0002-9327,1080-6377. DOI: 10.
2307/2373007. [Online]. Available: https://doi.org/10.2307/2373007.

[21] R. P. Stanley, Combinatorics and commutative algebra, Second, ser. Progress
in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1996, vol. 41, pp. x+164,
ISBN: 0-8176-3836-9.

[22] C. A. Weibel, “Homotopy algebraic K-theory,” in Algebraic K-theory and

algebraic number theory (Honolulu, HI, 1987), ser. Contemp. Math. Vol. 83,
Amer. Math. Soc., Providence, RI, 1989, pp. 461–488, ISBN: 0-8218-5090-
3. DOI: 10.1090/conm/083/991991. [Online]. Available: https://doi.
org/10.1090/conm/083/991991.

[23] V. Welker, G. M. Ziegler, and R. T. Živaljević, “Homotopy colimits—comparison
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Making the motivic group structure on the endomorphisms
of the projective line explicit

VIKTOR BALCH BARTH

WILLIAM HORNSLIEN

GEREON QUICK

GLEN MATTHEW WILSON

We construct a group structure on the set of pointed naive homotopy classes
of scheme morphisms from the Jouanolou device to the projective line. The
group operation is defined via matrix multiplication on generating sections of line
bundles and only requires basic algebraic geometry. In particular, it is completely
independent of the construction of the motivic homotopy category. We show that
a particular scheme morphism, which exhibits the Jouanolou device as an affine
torsor bundle over the projective line, induces a monoid morphism from Cazanave’s
monoid to this group. Moreover, we show that this monoid morphism is a group
completion to a subgroup of the group of scheme morphisms from the Jouanolou
device to the projective line. This subgroup is generated by a set of morphisms
that are simple to describe.
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1 Introduction

The A1 -homotopy category over a field k introduced by Morel and Voevodsky [23]
makes it possible to define a group structure on the A1 -homotopy classes of pointed
maps P1 ! P1 . This construction plays the role of the fundamental group of the
circle in motivic homotopy theory. Although the group operation mimics the usual
construction in algebraic topology, the set of A1 -homotopy classes of maps P1 ! P1

is not simply the set of morphisms P1 ! P1 modulo an equivalence relation. It is
unsettling that such an important group does not arise easily in some elementary way



Making the motivic group structure on the endomorphisms of the projective line explicit 3

as a set of morphisms up to a homotopy relation with some geometrically defined
group operation. Thankfully, the work of Asok, Hoyois, and Wendt in [6], along with
Cazanave’s investigation in [13] lays a foundation to build off of.

In [13] Cazanave defines an operation �N which turns the set [P1
,P1]N of pointed naive

homotopy classes into a monoid and shows that the canonical map ⌫P1 : [P1
,P1]N !

[P1
,P1]A1 is a group completion. However, this approach cannot yield candidates for

scheme morphisms which represent inverses of A1 -homotopy classes.

In [6] Asok, Hoyois, and Wendt show that the set [P1
,P1]A1 of motivic homotopy

classes is in bijection to an explicit set of maps modulo the naive homotopy relation by
using the larger set of maps Smk(J ,P1) where J denotes the Jouanolou device of P1 ,
which we consider equipped with a morphism ⇡ : J ! P1 that exhibits J as an affine
torsor bundle. This resolves the problem of a lack of candidates of morphisms which
may represent inverses in [P1

,P1]A1 , but it is not clear at all how the group operation
on [P1

,P1]A1 or the operation of [13] may be lifted.

In the present paper we define an explicit group structure on the set [J ,P1]N of pointed
naive homotopy classes. The construction of this group operation is independent of the
general machinery of motivic homotopy theory and only uses basic algebraic geometry.
We then show that the induced map ⇡

⇤

N : [P1
,P1]N ! [J ,P1]N is a morphism of

monoids where [P1
,P1]N has the monoid structure of [13, §3]. Moreover, we show

that ⇡⇤N has image in a concrete subgroup G and that the map ⇡⇤N : [P1
,P1]N ! G is a

group completion. Hence there are canonical isomorphisms between G and [P1
,P1]A1

which are compatible with ⇡⇤N and ⌫P1 . A key feature of the group G is that is defined
by explicit generating scheme morphisms J ! P1 that are defined in terms of very
simple (2⇥ 2)-matrices.

We will now describe our results in more detail. First we recall the conventional group
operation �A1 on [P1

,P1]A1 , the set of maps in the pointed A1 -homotopy category over
a field k . It is a simple exercise to produce an A1 -weak equivalence P1 ' S1^Gm using
the standard covering of P1 by two affine lines with intersection Gm . The simplicial
circle S1 (or some suitable homotopy equivalent model of it, like @�2 ) admits the
structure of an h-cogroup, or just a cogroup in the homotopy category. Explicitly, the
pointed simplicial set @�2 ' S1 admits two maps: a pinch map µ : S1 ! S1 _ S1 and
an inverse map S1 ! S1 . These operations fit into homotopy commutative diagrams
that give the expected algebraic properties, like associativity and the definition of the
inverse [24, Chapter 2]. These two observations together allow us to define a group
operation on [S1 ^Gm,P1]A1 as follows. Given two maps f , g : S1 ^Gm ! P1 in the
A1 -homotopy category, the composition below represents the sum f �A1 g of the maps
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f and g.

(1) S1 ^Gm
µ^1
// (S1 _ S1) ^Gm

⇠=
// (S1 ^Gm) _ (S1 ^Gm)

f_g
// P1

Note that the morphism f _g exists by the universal property of wedge sums. One must
take the time to verify that the operation defined above does indeed make [P1

,P1]A1

into a group, but the pleasant properties of the A1 -homotopy category make this doable.
This operation seems quite explicit, however, it is not evident how to describe maps
S1 ^ Gm ! P1 as the domain is only defined as a simplicial presheaf on Sm/k . This
is where the work of Asok, Hoyois, and Wendt [5–7] can be used to get a geometric
description of the set of maps P1 ! P1 .

The Jouanolou device of P1 over a field k is the smooth affine scheme J = Spec(R)
where

R =
k[x, y, z,w]

(x + w� 1, xw � yz)
.

The ring R is used to represent (2 ⇥ 2)-matrices with trace 1 and determinant 0.
Namely, a ring homomorphism R ! S is equivalent to a (2 ⇥ 2)-matrix over S with
trace 1 and determinant 0. The Jouanolou device of P1 is A1 -homotopy equivalent
to P1 and also an affine scheme. These good properties are exploited by Asok,
Hoyois, and Wendt [6]. Briefly, their work can be used to show that there is a
bijection ⇠ : [J ,P1]N ⇠=�! [P1

,P1]A1 , where [J ,P1]N is the set of naive homotopy
classes of pointed maps J ! P1 . The map ⇠ is the composite of the canonical map
⌫ : [J ,P1]N ! [J ,P1]A1 and the inverse of the map ⇡

⇤

A1 : [P1
,P1]A1 ! [J ,P1]A1

induced by a scheme morphism ⇡ : J ! P1 . The set [J ,P1]N is concrete in the
following sense: it is the set of pointed scheme morphisms J ! P1 modulo an
equivalence relation generated by naive homotopies. A naive homotopy between two
pointed maps f , g : J ! P1 is given by a map H : J ⇥ A1 ! P1 satisfying the
evident restrictions H0 = f and H1 = g. We note that H must be pointed in the sense
that ⇤⇥A1 maps to the basepoint of P1 . We explain in appendix A how the unpointed
results of [5] and [6] imply that the canonical map [J ,P1]N ! [J ,P1]A1 is a bijection.

The bijection ⇠ : [J ,P1]N ⇠=�! [P1
,P1]A1 gets us started on our quest for an elementary

description of the group structure. There are at least two possible approaches: We first
describe the one we did not take in this paper. One can hope to construct a cogroup
structure on J . This is not so easy. However, Asok and Fasel have done much of the
work to make this possible. In [3], Asok and Fasel give an explicit construction of a
smooth scheme Ĵ _ J that is A1 -weak equivalent to the wedge sum J _J . We have
constructed an explicit map µ : J ! Ĵ _ J that conjecturally represents the pinch
map P1 ! P1 _ P1 . We also have a candidate for a map representing the inverse map
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J ! P1 , but unfortunately both of these claims have proven too difficult to verify. We
therefore decided not to include this construction in this paper.

The approach we take is more explicit. Recall that a morphism f : J ! P1 is
determined by an invertible sheaf L over J and a choice of two generating sections
s0, s1 2 �(L,J ). The invertible sheaf L is the pullback f ⇤O(1). We say that a
morphism f : J ! P1 has degree 0 if f ⇤O(1) is the structure sheaf on J . As we
will show in section 2.5, the maps J ! P1 of degree 0 are exactly the maps which
factor through the Hopf map ⌘ : A2 \ {0} ! P1 . A little work revealed that the
set of maps [J ,A2 \ {0}]N has an apparent group structure. Seen one way, a map
J ! A2 \{0} is given by a unimodular row (A,B) in R2 , i.e., there exist U,V 2 R for
which AU +BV = 1. Any such unimodular row can be completed to a (2⇥ 2)-matrix
over R , and the product of these matrices defines a group operation on [J ,A2 \ {0}]N .
Seen another way, the punctured plane A2 \ {0} is A1 -weak equivalent to SL2 , the
scheme representing (2⇥ 2)-matrices with determinant 1. The scheme SL2 is a group
scheme, and so has the structure of a group object in the A1 -homotopy category. It is
standard algebraic topology then to use the structure of SL2 to make the set of maps
[J ,SL2]N into a group [24]. Passing to the A1 -homotopy classes of maps, it follows
that this is the correct group structure, because [J ,SL2]N ⇠= [S1 ^ Gm,SL2]A1 has
the domain space a cogroup object and the codomain space a group object, and the
Eckmann–Hilton argument implies that these two structures define isomorphic group
operations on [S1 ^Gm,SL2]A1 .

What remains then? The subgroup of degree 0 maps J ! P1 is quite large. Once
we have verified that [J ,P1]N is a group, we will show that the quotient group
[J ,P1]N

/[J ,A2 \ {0}]N ⇠= Z is the group of integers. This isomorphism serves as
our guiding principle to determine the group operation on [J ,P1]N . More precisely,
the bijection ⇠ fits into the commutative diagram below in which the bottom row is an
exact sequence of groups by the work of Morel [22].

1 // [J ,A2 \ {0}]N
//

⇠0
✏✏

[J ,P1]N

�

◆◆

⇠

✏✏

deg
// Pic(J )

q
✏✏

// 1

1 // [P1
,A2 \ {0}]A1

// [P1
,P1]A1 deg

// Pic(P1) // 1

(2)

Since we have an explicit group structure on [J ,A2 \ {0}]N , it then suffices to pick
representative lifts for each integer n 2 Z ⇠= Pic(J ) and to understand how the group
[J ,A2 \ {0}]N acts on them. More concretely, for any integer n, let n⇡ denote a
morphism n⇡ : J ! P1 which represents the A1 -homotopy class n[id : P1 ! P1]
under the bijection ⇠ : [J ,P1]N ! [P1

,P1]A1 . Let f : J ! P1 and g : J ! P1 be
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morphisms of degrees n and m respectively. We will show that there are degree 0
maps f0 : J ! A2 \ {0}! P1 and g0 : J ! A2 \ {0}! P1 for which f ' f0 � n⇡
and g ' g0 � m⇡ . We then define the sum of [f ] and [g] to be

[f ]� [g] := ([f0]� [n⇡]) � ([g0]� [m⇡])

= ([f0]� [g0])� [(n + m)⇡].

The term [f0]� [g0] is calculated by matrix multiplication in the group [J ,A2 \{0}]N .
The key idea for how [J ,A2 \ {0}]N acts on the set {[n⇡] : n 2 Z} is that any map
n⇡ is given by the choice of a line bundle together with two generating sections. We
can then let a morphism J ! A2 \ {0} given by a (2 ⇥ 2)-matrix act on the sections
via matrix multiplication. We explain the details of this operation in section 3.2.

In section 4 we prove the following result, see theorem 80:

Theorem 3 The operation � of definition 73, which is described above, makes�
[J ,P1]N

,�
�

an abelian group. There is a group isomorphism

� :
�
[J ,P1]N

,�
� ⇠=�!

⇣
[P1

,P1]A
1
,�A1

⌘

which restricts to ⇠0 on the subgroup [J ,A2 \ {0}]N .

The step we are not able to prove yet is that the bijection ⇠ : [J ,P1]N ! [P1
,P1]A1

is compatible with � on [J ,P1]N and the conventional group structure �A1 on
[P1

,P1]A1 . Nevertheless, we hope to ultimately prove the following conjecture for
which we report on further evidence in appendix C.

Conjecture 4 The bijection ⇠ : [J ,P1]N ! [P1
,P1]A1 is a group isomorphism and

equals � .

The isomorphism � is produced by rather formal arguments and does not yet provide
a concrete description of the group [P1

,P1]A1 . We will therefore now explain how we
do obtain a very explicit expression of the latter group in terms of concrete scheme
morphisms J ! P1 .

Recall that Cazanave shows in [13, Theorem 3.22] that there is an operation �N which
provides [P1

,P1]N with the structure of a commutative monoid and that the canonical
map [P1

,P1]N ! [P1
,P1]A1 is a group completion. We show that the morphism

⇡ : J ! P1 also induces a group completion in the following way. First we prove in
section 5 that the operation � is compatible with �N , see theorem 95:
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Theorem 5 The morphism ⇡ : J ! P1 induces a morphism of commutative monoids

⇡
⇤

N :
�
[P1

,P1]N
,�N�!

�
[J ,P1]N

,�
�

where the left-hand side denotes the monoid of [13, §3].

The proof of theorem 5 is based on the following observation. Let u 2 k⇥ . As in [13]
we identify a rational function X/u in the indeterminate X with the morphism P1 ! P1

defined by [x0 : x1] 7! [x0 : ux1]. For u, v 2 k⇥ , we let gu,v : J ! A2 \ {0} denote
the morphism given by the unimodular row

�
x + v

uw, (u� v)y
�

in R2 . For the rational
functions X/u and X/v we then have the identity

(6) gu,v � ⇡⇤N
�
X/v

�
= ⇡

⇤

N
�
X/u

�

which we emphasize is an identity of morphisms not just homotopy classes. In particu-
lar, for v = 1 and ⇡⇤N

�
X/1

�
= ⇡ , formula (6) reads gu,1� ⇡ = ⇡

⇤

N
�
X/u

�
and reduces

computations for ⇡⇤N
�
X/u

�
to computations for gu,1 and ⇡ . The key technical result

needed to prove theorem 5 is that, for every pointed morphism f : P1 ! P1 , we have
an explicit naive homotopy

⇡
⇤

N
�
X/u�N f

�
' gu,1 �

�
⇡
⇤

N
�
X/1�N f

��
.(7)

The construction of the concrete homotopy in formula (7) is based on computations of
the resultants of certain morphisms which we provide in section 5.1 and appendix B.
Theorem 5 then follows from the fact that the set of homotopy classes [X/u] for all
u 2 k⇥ generates [P1

,P1]N and a successive application of formula (7).

Identity (6) also implies that the image of ⇡⇤N is contained in the subgroup G ✓ [J ,P1]N

generated by the homotopy classes [gu,v] for all u, v 2 k⇥ and [⇡]. Theorem 5 and
the work of Cazanave [13, Theorem 3.22] then imply that there is a unique group
homomorphism  : [P1

,P1]A1 ! G such that  � ⌫P1 = ⇡
⇤

N . In section 6 we show the
following key result, see theorem 111:

Theorem 8 The monoid morphism ⇡
⇤

N : [P1
,P1]N ! G is a group completion. There

is a unique isomorphism � : G ! [P1
,P1]A1 such that the diagram below commutes.

Moreover, � and  are mutual inverses to each other.

G
�

��

[P1
,P1]N

⇡
⇤
N

OO

⌫P1
// [P1

,P1]A1

 

ff

Theorem 8 gives a very concrete description of all pointed endomorphisms of P1 in
the unstable A1 -homotopy category in the following sense: the group G is given by a
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simple set of generating morphisms, and the group operation � in G inherited from
[J ,P1]N is defined in basic algebro-geometric terms. The only thing we are missing
is a concrete morphism J ! P1 that is sent to the homotopy class �[id : P1 ! P1].
We speculate that the map ⇡̃ defined in the beginning of section 2 corresponds with
�[id]. In theorem 103 we prove that the image of the naive homotopy class of ⇡̃ under
the motivic Brouwer degree is the class �h1i in GW(k). This shows that the image
of the class of ⇡̃ represents �[id] in the stable motivic homotopy category. However,
this is not sufficient to determine the class of ⇡̃ unstably. We elaborate on this claim
in section 4 and report on our evidence in section 6.1 and appendix C.

Finally, we note that the isomorphisms G ��! [P1
,P1]A1 � � [J ,P1]N do not imply that

G equals [J ,P1]N . However, we conjecture that the inclusion G ✓ [J ,P1]N is an
equality and we show in section 6.3 that this is true for all finite fields by computing
the first Milnor–Witt K-theory KMW

1 (Fq), which is isomorphic to [P1
,A2 \ {0}]A1 and

to the subgroup generated by all classes [gu,v] in [J ,A2 \ {0}]N .

To conclude this discussion we remark that Cazanave speculates in his thesis [12, page
31] whether [J ,J ]N may be used to give a concrete model to study the motivic
homotopy group [P1

,P1]A1 . Our cursory attempts at equipping this set with a group
operation did not succeed. The obvious choices for an operation on matrices do not
yield the conventional group structure, and we were unable to find a suitable candidate
for an operation. We did not include our findings in this paper. We refer to remark 84
for some additional comments.

We thank Aravind Asok, Christophe Cazanave, Marc Hoyois, Marc Levine, Kirsten
Wickelgren, Ben Williams, and Paul Arne Østvær for helpful comments, suggestions
and clarifications. The first-named author is supported by the RCN grant no. 300814
Young Research Talents of Trung Tuyen Truong. The second-named author has re-
ceived support from the project Pure Mathematics in Norway funded by the Trond
Mohn Foundation. The third- and fourth-named author gratefully acknowledge the
partial support by the RCN Project no. 313472 Equations in Motivic Homotopy. The
authors would like to thank the Centre for Advanced Study in Oslo for its hospitality
where parts of the work on the paper were carried out.

2 The Jouanolou device and morphisms to P1

In this section we work out the details needed about the Jouanolou device J , morphisms
J ! P1 , and the pointed naive homotopy relation. We keep the terminology as
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elementary as possible and hope that the details provided help making our approach
accessible.

Throughout this paper k will always denote a field. All schemes are schemes over
Spec k . The letter R will always denote the following ring.

Definition 9 We let R denote the ring

R =
k[x, y, z,w]

(x + w� 1, xw � yz)
.

We will frequently identify R with the ring k[x, y, z]/(x(1 � x) � yz) where it is
convenient. The Jouanolou device of P1 is the smooth affine k-scheme J = Spec R .
We consider J to be pointed at j = (x� 1, y, z,w).

The Jouanolou device may also be considered as the ring representing (2⇥2)-matrices
with trace 1 and determinant 0.

While we will discuss morphisms J ! P1 in more detail later, we point out that there
are two evident morphisms that exhibit J as an affine torsor bundle over P1 . The
matrices over R

p1 =

✓
x y
z w

◆
and q1 =

✓
x z
y w

◆

are idempotent matrices which thus define projective modules P1 = Im(p1) and
Q1 = Im(q1) as the image of the associated map of R-modules. Both P1 and Q1 have
rank 1, and so they yield invertible sheaves on J . We obtain a map ⇡ : J ! P1 by
selecting the invertible sheaf associated to P1 and the generating sections

s0 =

✓
x
z

◆
and s1 =

✓
y
w

◆
.

We intuitively understand this map as sending a point in J corresponding to a matrix✓
x y
z w

◆
to either the point with homogeneous coordinates [x : y] or [z : w], depending

on which is defined. When both points make sense in P1 , they agree, so the map is
well-defined. Similarly, we obtain a map ⇡̃ : J ! P1 by using Q1 and the choice of
generating sections

s0 =

✓
x
y

◆
and s1 = �

✓
z
w

◆
.

Both ⇡ and ⇡̃ exhibit J as an affine torsor bundle over P1 , hence they are A1 -homotopy
equivalences. It follows that

(10) ⇡
⇤

A1 :
⇥
P1

,P1⇤A1

!
⇥
J ,P1⇤A1
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is a bijection. We show in proposition 128 in appendix A that the canonical map
⌫ : [J ,P1]N ! [J ,P1]A1 is a bijection because J is affine and P1 is A1 -naive. Thus,
the composition of the bijection ⌫ and the inverse of ⇡⇤ is a bijection

(11) ⇠ :
⇥
J ,P1⇤N !

⇥
P1

,P1⇤A1

.

This bijection may be described as follows. A naive pointed homotopy class of maps [f ]
represented by the pointed scheme morphism f : J ! P1 is sent to ⇠([f ]) = [f �⇡�1]A1 ,
the pointed A1 -homotopy class of the zig-zag P1 ⇡ � J f�! P1 .

In the following sections we will investigate the domain of ⇠ , i.e., the set [J ,P1]N of
pointed naive homotopy classes of pointed morphisms J ! P1 .

2.1 Convenient coordinates for J

The map ⇡ : J ! P1 encourages the choice of a convenient set of coordinate charts for
J . For P1 , we use the standard notation U0 = P1 \ {[0 : 1]} and U1 = P1 \ {[1 : 0]}.
It is straightforward to verify that the preimages under ⇡ of U0 and U1 are ⇡�1(U0) =
D(x) [ D(z) and ⇡�1(U1) = D(y) [ D(w). Both of these open sets are isomorphic to
A2 under the following maps.

Lemma 12 The open set D(x) [ D(z) ✓ J is isomorphic to Spec(k[a, b]) under the
map �0 : A2 ! J given by x 7! 1� ab, y 7! a(1� ab), z 7! b, and w 7! ab.

Similarly, the open set D(y) [D(w) ✓ J is isomorphic to Spec(k[s, t]) under the map
�1 : A2 ! J given by x 7! st , y 7! t , z 7! s(1� st), and w 7! 1� st .

Proof The proof proceeds by studying the map locally. For instance, �0 induces an
isomorphism of rings k[a, b][(1�ab)�1]! R[x�1] and also of k[a, b][b�1]! R[z�1].
The open sets D(1 � ab) and D(b) cover A2 , so it follows that �0 maps surjectively
onto D(x) [ D(z). The inverse map is obtained by gluing the maps that are defined on
D(x) and D(z), giving the result. A similar argument works for �1 .

Remark 13 The open affine subschemes D(x) [ D(z) and D(y) [ D(w) of Spec(R)
have the odd property that their ring of global sections is not a localization of R .

2.2 Invertible sheaves on J

By [17, Theorem II.7.1], a morphism J ! P1 is determined by an invertible sheaf
L on J and two generating global sections of L . We now take the time to study the
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invertible sheaves on J to enable our study of the morphisms J ! P1 . We will
assume familiarity with the basic terminology presented in for example [25, Chapter
1] and [8].

Since J = Spec(R) is an irreducible affine scheme, the invertible sheaves on J
correspond to projective R-modules of rank 1. We have already seen the projective
modules P1 and Q1 used to define ⇡ and ⇡̃ above. Since the map ⇡ : J ! P1

is an A1 -weak equivalence and the Picard group functor is homotopy invariant, the
induced map on Picard groups is an isomorphism ⇡

⇤ : Pic(P1) ! Pic(J ). Since
⇡
⇤(O(1)) = P1 and Pic(J ) ⇠= Z , it follows that P1 generates the Picard group of J .

For future reference, we state this as a lemma.

Lemma 14 The Picard group of J is isomorphic to Z and P1 is a generator.

Furthermore, Q1 = �P1 in Pic(J ) as the following proposition shows.

Proposition 15 There is an isomorphism P1 ⌦Q1 ⇠= R .

Proof The R-module P1 ⌦Q1 is generated by
⇢

x
z

�
⌦


x
y

�
,


x
z

�
⌦


z
w

�
,


y
w

�
⌦


x
y

�
,


y
w

�
⌦


z
w

��
.

Consider the module homomorphism µ : R2⌦R2 �! R2 induced by component-wise

multiplication µ

✓
a
b

�
⌦


c
d

�◆
=


ac
bd

�
. We restrict µ to P1 ⌦ Q1 and observe that

the image of P1⌦Q1 under µ is the submodule
⌧

x
w

��
✓ R2 (use x +w = 1). This

is a free R-module of rank 1. As µ : P1 ⌦Q1 !
⌧

x
w

��
is surjective, it follows that

it is locally an isomorphism at all maximal ideals m ✓ R . Hence the map µ itself
restricted to P1 ⌦Q1 is an isomorphism onto its image.

We would like to understand the tensor powers of P1 and Q1 . It turns out they can be
described by the following R-modules that are constructed by open patching data. We
will investigate these modules before returning to the claim that they are indeed tensor
powers of P1 and Q1 .

Definition 16 As in [25, 2.5 on page 14], we define projective R-modules of rank 1
by open patching data for the open sets D(x), D(w) as x + w = 1. For n � 0, we
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define the R-modules

OPn =
n

(fx, fw) 2 R[x�1]⇥ R[w�1] | fw =
⇣ z

x

⌘n
fx
o
,

OQn =
n

(fx, fw) 2 R[x�1]⇥ R[w�1] | fw =
⇣y

x

⌘n
fx
o
.

Definition 17 We denote by Pn and Qn the submodules of R2 generated as follows

Pn =

⌧
xn

zn

�
,


xn�1y
zn�1w

�
, . . . ,


yn

wn

��
, and Qn =

⌧
xn

yn

�
,


xn�1z
yn�1w

�
, . . . ,


zn

wn

��
.

The following lemma is useful for simplifying proofs. It shows that what we prove
about Pn by symmetry holds for Qn .

Lemma 18 We define the involutive automorphism ⌧ : R! R by

⌧ : x 7! x y 7! z

z 7! y w 7! w.

Pulling back along ⌧ gives R-module isomorphisms ⌧⇤Pn ⇠= Qn and ⌧⇤Qn ⇠= Pn .

Proof To more easily distinguish between them, we give the domain and codomain
of ⌧ different names and write ⌧ : R ! R0 . Pulling back the R0 -module Pn , we get
the R-module ⌧⇤Pn , where the multiplication is defined by r ·R p = ⌧ (r) ·R0 p. The
map ⌧⇤Pn ! Qn is defined on basis elements by


xn�iyi

zn�iwi

�
7!


xn�izi

yn�iwi

�
.

It is easily checked that f is bijective and R-linear and hence an R-module isomorphism.

To see that ⌧⇤Qn ⇠= Pn , we pull back the isomorphism Qn ⇠= ⌧
⇤Pn , which we just

proved, along ⌧ on both sides. Since ⌧ � ⌧ = id, this simplifies to ⌧⇤Qn ⇠= ⌧
⇤
⌧
⇤Pn =

Pn .

Proposition 19 The R-modules Pn and Qn are also generated in the following way

Pn =

⌧
xn

zn

�
,


yn

wn

��
and Qn =

⌧
xn

yn

�
,


zn

wn

��
.

Proof We only prove the claim for Pn , as the proof for Qn is analogous by lemma
18. Containment in one direction is clear by definition of Pn . Now fix n and pick a
number 0  i  n. We then have


xn�iyi

zn�iwi

�
= (x + w)n


xn�iyi

zn�iwi

�
=

nX

d=0

✓
n
d

◆
xn�dwd


xn�iyi

zn�iwi

�
.
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For each d , one of the following hold, which completes the proof

xn�dwd


xn�iyi

zn�iwi

�
= xn�i�dyiwd


xn

zn

�
if i + d  n,

xn�dwd


xn�iyi

zn�iwi

�
= xn�dzn�iwd+i�n


yn

wn

�
if i + d > n.

Proposition 20 There are isomorphisms Pn ⇠= OPn and Qn ⇠= OQn for all natural
numbers n. Hence Pn and Qn are algebraic line bundles over R (that is, finitely
generated R-modules of constant rank 1) and determine invertible sheaves on J .

Proof The canonical projections p1 : Pn[x�1]! R[x�1] and p2 : Pn[w�1]! R[w�1]

are isomorphisms. For


f
g

�
2 Pn[x�1

,w�1], one checks that (z/x)nf = g, which is

the same open patching data for OPn . The evident map Pn ! OPn is thus an
isomorphism. In the same way, the evident map Qn ! OQn is an isomorphism.

Remark 21 Proposition 20 shows us how to interpret an element

s0 = a0


xn

zn

�
+ a1


yn

wn

�
, with a0, a1 2 R,

which is a global section of the invertible sheaf associated to Pn . Namely, the global
section s0 restricted to D(x) is described by a0xn + a1yn , while on D(w) the section
is a0zn + a1wn . On the overlap, the two sections agree when compared using the
appropriate transition functions.

Note that proposition 20 also gives a canonical form for the elements (fx, fw) 2 OPn .
Any such element is described as


fx
fw

�
= a0


xn

zn

�
+ a1


yn

wn

�
, for some a0, a1 2 R.

The algebraic line bundles Pn and Qn may also be described as the image of an
idempotent (2 ⇥ 2)-matrix of rank 1. For n � 1, let A =

Pn�1
k=0
�2n�1

k

�
xn�1�kwk and

B =
P2n�1

k=n
�2n�1

k

�
x2n�1�kwk�n . Then xnA + wnB = (x + w)2n�1 = 1. Define

(22) Mn =

✓
xnA ynB
znA wnB

◆
and M0

n =

✓
xnA znB
ynA wnB

◆
.

Proposition 23 For every n � 1, the matrices Mn and M0
n are idempotent of rank 1

and have image Pn and Qn respectively.
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Proof It is straightforward to verify that Mn is idempotent using the relation 1 =
xnA + wnB and that Im(Mn) ⇢ Pn . Note that

xn


xnA
znA

�
+ zn


ynB
wnB

�
= (xnA + wnB)


xn

zn

�
=


xn

zn

�

and similarly,

yn


xnA
znA

�
+ wn


ynB
wnB

�
= (xnA + wnB)


yn

wn

�
=


yn

wn

�
.

So Pn ⇢ Im(Mn), and the image is equal to Pn . The argument for M0
n and Qn is

similar.

Proposition 24 The morphisms µ : P⌦n
1 ! Pn and µ

0 : Q⌦n
1 ! Qn obtained from

component-wise multiplication are isomorphisms.

Proof Consider the R-module map µ : R2 ⌦ R2 ! R2 induced by component-wise
multiplication. By the description of the generators of the modules Pn , it is clear that µ
restricts to a map µ : Pn⌦P1 ! Pn+1 and this map is surjective. As both Pn⌦P1 and
Pn+1 are algebraic line bundles, the map µ is surjective locally at every maximal ideal
m ✓ R and hence an isomorphism. Thus µ : Pn⌦P1 ! Pn+1 is itself an isomorphism
by [8, Proposition 3.9]. The claim now follows by induction.

We now have a complete description of the isomorphism Z ⇠= Pic(J ).

Proposition 25 Under the isomorphism Pic(J ) ⇠= Pic(P1) ⇠= Z arising from the
A1 -homotopy equivalence ⇡ : J ! P1 , the modules Pn and Qn correspond to n and
�n, respectively, while the trivial invertible sheaf O corresponds to 0.

Proof By lemma 14, Pic(J ) = Z , and P1 generates the Picard group. By proposition
15, the inverse of P1 isQ1 . By proposition 24, the modules Pn and Qn correspond to
n and �n in the Picard group.

2.3 Pointed morphisms P1 ! P1 and J ! P1

We will now study morphisms to P1 in more detail. By [17, Theorem II.7.1], for a
smooth k-scheme X , the data needed to give a morphism f : X ! P1 are an invertible
sheaf L over X and the choice of two global sections s0, s1 2 �(X,L) that generate
the invertible sheaf L . That is, at every point p 2 X , the stalks of the sections (s0)p
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and (s1)p generate the local ring Lp . We then write [s0, s1] for the map X ! P1 given
by the data above, where we usually omit the invertible sheaf L from the notation.

The scheme P1 is pointed at 1 = [1 : 0]. A pointed map f : P1 ! P1 by definition is
a map satisfying f (1) =1 . A pointed morphism f : P1 ! P1 given by the invertible
sheaf O(n) on P1 with two generating sections �0,�1 2 k[x0, x1]n has the following
special form by work of Cazanave [13].

Proposition 26 [13, Proposition 2.3] A pointed k-scheme morphism f : P1 ! P1

corresponds uniquely to the data of a natural number n and a choice of two polynomials,
A =

Pn
i=0 aiXi and B =

Pn�1
i=0 biXi in k[X] for which an = 1 and the resultant

resn,n(A,B) is non-zero. The integer n is called the degree of f and is denoted deg(f );
the scalar res(f ) = resn,n(A,B) 2 k⇥ is called the resultant of f .

One easily translates from the morphism given by n, A , and B in proposition 26 to the
morphism given by the invertible sheaf O(n) and the choice of global sections �0 =Pn

i=0 aixi
0xn�i

1 and �1 =
Pn

i=0 bixi
0xn�i

1 where we understand bn = 0. The resultant
condition guarantees that these global sections generate O(n). The condition an = 1
is a normalizing condition to give a bijective correspondence between morphisms and
the data n, A , and B . We will find it more convenient to use the data [�0,�1] : P1 ! P1

and O(n) to describe a pointed map in what follows.

Proposition 27 Consider a pointed map [�0,�1] : P1 ! P1 with invertible sheaf
O(n), �0 =

Pn
i=0 aixi

0xn�i
1 and �1 =

Pn
i=0 bixi

0xn�i
1 . The composition [�0,�1] � ⇡ is

the map [s0, s1] : J ! P1 with invertible sheaf Pn and global sections

s0 =
nX

i=0

ai


xiyn�i

ziwn�i

�
and s1 =

nX

i=0

bi


xnyn�i

ziwn�i

�
.(28)

Proof This is a straightforward calculation. The resultant condition ensures that the
sections s0 and s1 generate Pn .

Remark 29 We note that the difference between a general map [s0, s1] : J ! P1

with invertible sheaf Pn and a map J ! P1 which factors as f � ⇡ with f : P1 ! P1

is that the coefficients ai and bi in the expressions of the sections in equation (28) are
in the field k when the map factors, but in general the coefficients are in R .

For later purposes, we extend the definition of the resultant to homogeneous polyno-
mials in two variables. We collect some further facts about resultants in appendix
B.
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Definition 30 Let R[↵,�] be a polynomial ring over R in two variables and let
R[↵,�]n denote the subgroup of homogeneous polynomials of degree n. For every

n � 1, the map � : R[↵,�]n ! Pn , defined by �(↵i
�

n�i) =


xiyn�i

ziwn�i

�
for all 0  i  n

is a surjective morphism of R-modules. For a pair of homogeneous polynomials
(S0, S1), we write �((S0, S1)) for the pair (�(S0),�(S1)) in (Pn)2 by slight abuse of
notation. For a pair of homogeneous polynomials (S0, S1) = (an↵

n+. . .+a0�
n
, bn↵

n+
. . .+ b0�

n) 2 (R[↵,�]n)2 , we divide by �n to form univariate polynomials (bS0,bS1) =
(
Pn

i=0 aiX i
,
Pn

i=0 biX i) in X := ↵/� . We define the resultant res(S0, S1) of the
pair (S0, S1) to be

res(S0, S1) := res

 
nX

i=0

aiX
i
,

nX

i=0

biX
i

!
= det

⇣
Syl(bS0,bS1)

⌘
,

where Syl(bS0,bS1) is the Sylvester matrix of the pair of polynomials (bS0,bS1) in R[X ].

Lemma 31 Consider a pair of homogeneous polynomials of degree n � 1 in R[↵,�]n ,
denoted by S0 =

Pn
i=0 ai↵

n�i
�

i and S1 =
Pn

i=0 bi↵
n�i
�

i . If res(S0, S1) is a unit, then
the pair of sections (�(S0),�(S1)) generates Pn and defines a morphism [�(S0),�(S1)] :
J ! P1 .

Proof It suffices to show that (s0, s1) generate Pn on the open patches D(x) and D(w).
On D(x), this requires showing that the ideal (anxn + . . . a0yn

, bnxn + . . .+ b0yn) is the
unit ideal in R[x�1]. The ideal is the same as the ideal (an + . . . a0

yn

xn , bn + . . .+ b0
yn

xn )
which corresponds to a pair of polynomials of degree n in the variable y

x . By lemma
130, this pair of polynomials has unit resultant. Since the resultant is a unit, there exists
Ux,Vx 2 R[x�1] by lemma 129 giving a Bézout relation Ux(an+. . . a0

yn

xn )+Vx(bn+. . .+

b0
yn

xn ) = 1. On D(w) we need to prove that the ideal (anzn+ . . . a0wn
, bnzn+ . . .+b0wn)

is the unit ideal in R[w�1]. The ideal is equal to the ideal (an
zn

wn +. . . a0, bn
zn

wn +. . .+b0).
This pair of polynomials has unit resultant by assumption. By lemma 129, unit resultant
implies existence of a Bézout relation Uw(an

zn

wn + . . . a0) + Vx(bn
zn

wn + . . . + b0) = 1
in R[w�1]. This proves that [s0, s1] defines a morphism J ! P1 .

Remark 32 Let [�0,�1] : P1 ! P1 be a pointed map given by invertible sheaf
O(n), and sections �0 =

Pn
i=0 aixi

0xn�i
1 and �1 =

Pn
i=0 bixi

0xn�i
1 . Then the pair

of homogeneous polynomials S0 =
Pn

i=0 ai↵
n�i
�

i and S1 =
Pn

i=0 bi↵
n�i
�

i in
R[↵,�]n has unit resultant. By lemma 31, the pair (�(S0),�(S1)) defines a mor-
phism [�(S0),�(S1)] : J ! P1 . This morphism is equal to the morphism [s0, s1],
constructed from [�0,�1] in proposition 27.
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Remark 33 We note that there exist pairs of polynomials (S0, S1), (S00, S01) such that
�((S0, S1)) = �((S00, S01)), while res(S0, S1) 6= res(S00, S01). An example is given by
(x↵+ z�,�) and (↵,�). We calculate

�((x↵ + z�,�)) =
✓

x


x
z

�
+ z


y
w

�
,


y
w

�◆
=

✓
x
z

�
,


y
w

�◆
= �((↵,�)).

Their resultants are

res(x↵ + z�,�) = x 6= 1 = res(↵,�).

We now look at the data needed to describe a general morphism J ! P1 and also see
what condition pointedness imposes.

Construction 34 A morphism f : J ! P1 is determined by the following data: an
invertible sheaf L on J and the choice of two global sections s0, s1 2 �(J ,L) that
generate L [17, Theorem II.7.1]. Since Pic(J ) ⇠= Z , the invertible sheaf L may be
chosen to be either Pn , Qn , or O . We call the integer corresponding to the class of L
in Pic(J ) ⇠= Z the degree of f .

We will now make the assignment (L, s0, s1) 7! f explicit. We will study only the
case of Pn , as Qn is handled in the same way by proposition 19, and the case of O is
discussed later in section 2.5.

In the case of Pn , two generating sections s0, s1 2 �(J ,Pn) may be chosen to be of
the form

s0 = a0


xn

zn

�
+ a1


yn

wn

�
s1 = b0


xn

zn

�
+ b1


yn

wn

�
.

Define D(si) = {p 2 J | (si)p 62 mp(Pn)p}. The map [s0, s1] is defined on the
open set D(si) to map into Ui = {[x0, x1] | xi 6= 0}. Here U0 ⇠= Spec(k[y1]) and
U1 ⇠= Spec(k[y0]), where y0 = x0/x1 and y1 = x1/x0 . The map D(si) ! Ui is given
by the corresponding map of rings k[yj] ! Pn[s�1

i ] determined by yj 7! sj/si . This
requires some explanation due to the description of the sheaf Pn . Proposition 20 shows
that the components of each section si describe the section on the open sets D(x) and
D(w). Hence there are four cases to consider to get a description of the map in concrete
terms of affine open sets.

(1) D(x) \ D(s0): Here s0 is described by a0xn + a1yn in the ring R[x�1] and s1
is given by b0xn + b1yn in the ring R[x�1]. Hence on D(s0) the corresponding
ring map k[y1]! R[x�1

, (a0xn + a1yn)�1] is given by y1 7! b0xn+b1yn

a0xn+a1yn .

(2) D(x) \ D(s1): Here s0 is described by a0xn + a1yn in the ring R[x�1] and s1
is given by b0xn + b1yn in the ring R[x�1]. Hence on D(s1) the corresponding
ring map k[y0]! R[x�1

, (b0xn + b1yn)�1] is given by y0 7! a0xn+a1yn

b0xn+b1yn .
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(3) D(w) \ D(s0): Here s0 is described by a0zn + a1wn in the ring R[w�1] and s1
is given by b0zn + b1wn in the ring R[w�1]. Hence on D(s0) the corresponding
ring map k[y1]! R[w�1

, (a0zn + a1wn)�1] is given by y1 7! b0zn+b1wn

a0zn+a1wn .

(4) D(w) \ D(s1): Here s0 is described by a0zn + a1wn in the ring R[w�1] and s1
is given by b0zn + b1wn in the ring R[w�1]. Hence on D(s1) the corresponding
ring map k[y0]! R[w�1

, (b0zn + b1wn)�1] is given by y0 7! a0zn+a1wn

b0zn+b1wn .

This information can be consolidated into the two maps D(x) ! P1 and D(w) ! P1

given in terms of the pair of sections [a0xn+a1yn
, b0xn+b1yn] and [a0zn+a1wn

, b0zn+
b1wn] respectively. Written in this form, we see that a map J ! P1 given by the
invertible sheaf Pn with two generating sections s0, s1 should be interpreted as giving
a map to P1 on the open sets D(x) and D(w) according to the first component of the
sections s0, s1 on D(x) and according to the second component of the sections s0, s1
on D(w).

Remark 35 Recall that J is pointed at j = (x � 1, y, z,w) and P1 is pointed at
1 = [1 : 0]. A map f : J ! P1 is pointed if f (j) = 1 . If f = [s0, s1] with line
bundle L and generating sections s0 , s1 , pointedness can be verified by checking that
the stalk s1(j) satisfies s1(j) = 0 in the local ring Lj . For us, it suffices to work on D(x)
where our line bundles are trivial, and verify that modulo j the section s1 vanishes.

We give a concrete criterion for checking pointedness of a map f : J ! P1 with line
bundle Pn . The case of Qn is similar.

Proposition 36 A map [s0, s1] : J ! P1 with invertible sheaf Pn and generating
sections

s0 = a0


xn

zn

�
+ a1


yn

wn

�
, s1 = b0


xn

zn

�
+ b1


yn

wn

�

is pointed if and only if b0 2 j, i.e., b0(j) = 0.

Proof First, assume the map [s0, s1] is pointed. Construction 34 gives a description
of the map in local coordinates. Note that for j to map to 1 2 U0 , it is necessary
that j 2 D(s0). Since j 2 D(x) \ D(s0), the map in local coordinates is obtained by
taking Spec of the ring map � : k[y1] ! R[x�1

, (a0xn + a1yn)�1] which is given by
�(y1) = b0xn+b1yn

a0xn+a1yn . The condition for pointedness is then that the preimage of j under
� is the maximal ideal (y1). This is equivalent to the condition that y1 maps into the
ideal (x�1, y, z,w) ✓ R[x�1

, (a0xn+a1yn)�1]. By the definition of � , the requirement
is that b0xn+b1yn

a0xn+a1yn 2 (x� 1, y, z,w), which is equivalent to b0xn + b1yn 2 (x� 1, y, z,w).
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Since y 2 (x� 1, y, z,w) and x is invertible, this condition is met when b0 2 j. Thus
when [s0, s1] is pointed, j 2 D(s0) and b0 2 j.

Now assume that b0 2 j. This implies j 2 D(s0), since the sections s0, s1 generate
(Pn)j , and b0 2 j implies s1(j) = 0. Here we can use the same construction above,
since j 2 D(x) \ D(s0). The algebra above shows that when b0 2 j the preimage of j
under � is (y1), i.e., the map [s0, s1] is pointed.

Proposition 37 Let f = [s0, s1] : J ! P1 be a pointed map with invertible sheaf Pn .
If ↵ = s0(j), then

⇥ s0
↵
,

s1
↵

⇤
: J ! P1 is a pointed map that is equal to f . Thus any

pointed map with line bundle Pn may be represented by a pair of generating global
sections [s0, s1] where s0(j) = 1 and s1(j) = 0.

Proof Proposition 36 has established that s1(j) = 0 and s0(j) = ↵ is a unit. We verify
that the maps [s0, s1] and

⇥ s0
↵
,

s1
↵

⇤
are equal in local coordinates by construction 34,

where the constants 1
↵

cancel out in every local coordinate chart.

Proposition 38 Let s0 and s1 be the following sections in Pn

s0 = a0


xn

zn

�
+ a1


yn

wn

�
, s1 = b0


xn

zn

�
+ b1


yn

wn

�
.

The sections s0, s1 generate Pn if and only if there exist Ux,Vx,Uw,Vw 2 R such that

Ux(xna0 + yna1) + Vx(xnb0 + ynb1) + Uw(zna0 + wna1) + Vw(znb0 + wnb1) = 1.

Employing similar notation, sections s0, s1 generate Qn if and only if there exist
Ux,Vx,Uw,Vw 2 R such that

Ux(xna0 + zna1) + Vx(xnb0 + znb1) + Uw(yna0 + wna1) + Vw(ynb0 + wnb1) = 1.

Proof By lemma 18, it suffices to prove this for Pn . Assume s0, s1 generate Pn . Then

there exist U,V such that Us0 + Vs1 =


xn

zn

�
. The first component of this identity

gives �
U(xna0 + yna1) + V(xnb0 + ynb1)

�
= xn

.

Similarly, there exist U0
,V 0 such that U0s0 + V 0s1 =


yn

wn

�
. This gives the relation

�
U0(zna0 + wna1) + V 0(znb0 + wnb1)

�
= wn

.

Since the equation 1 = (x + w)2n demonstrates that 1 can be expressed as a linear
combination of xn and wn , we are done. Now we assume that there exist elements
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Ux,Vx,Uw,Vw 2 R such that

Ux(xna0 + yna1) + Vx(xnb0 + ynb1) + Uw(zna0 + wna1) + Vw(znb0 + wnb1) = 1.

A straight forward computation yields (Uxxn + Uwzn)s0 + (Vxxn + Vwzn)s1 =


xn

zn

�
,

and (Uxyn + Uwwn)s0 + (Vxyn + Vwwn)s1 =


yn

wn

�
. These two elements generate Pn ,

thus [s0, s1] do as well.

For brevity, we write maps J ! P1 of nonzero degree using the following notation.

Definition 39 Let n be a positive integer. We write (a0, a1; b0, b1)n , respectively
(a0, a1; b0, b1)�n , for the map J ! P1 with invertible sheaf Pn , respectively Qn , and
generating sections

s0 = a0


xn

zn

�
+ a1


yn

wn

�
, s1 = b0


xn

zn

�
+ b1


yn

wn

�
with a0, a1, b0, b1 2 R,

respectively with invertible sheaf Qn and generating sections

s0 = a0


xn

yn

�
+ a1


zn

wn

�
, s1 = b0


xn

yn

�
+ b1


zn

wn

�
with a0, a1, b0, b1 2 R.

2.4 The pointed naive homotopy relation

Naive homotopy theory for schemes is a generalization of the homotopy theory of rings
in classical algebra, see [16] for a definition. Naive homotopy classes of maps between
schemes do not generally have the good properties one expects from a homotopy theory,
but in our case, thanks to work of Asok, Hoyois, and Wendt, it is sufficiently good [6].

Definition 40 Let X and Y be smooth schemes over the field k . For a 2 k , let
ia = idX ⇥a be the map obtained by taking the Cartesian product of idX and the
inclusion map a : Spec k ! A1 given by the ring map k[t] ! k sending t to a. An
elementary homotopy between two morphisms f : X ! Y and g : X ! Y is given by a
morphism H(T) : X⇥A1 ! Y satisfying H(0) = f and H(1) = g, i.e., H(0) = H(T)�i0
and H(1) = H(T) � i1 . We say that f and g are elementarily homotopic and write
f ⇠ g.

The relation of morphisms being elementarily homotopic is symmetric and reflexive, but
not transitive. To obtain an equivalence relation on the set of morphisms Smk(X,Y), we
take the transitive closure of ⇠ . That is, we define two morphisms f , g 2 Smk(X,Y) to
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be naively homotopic if there is a finite sequence of elementary homotopies Hi(T) : X⇥
A1 ! Y , for 0  i  n with H0(0) = f , Hn(1) = g, and for all 0  i < n
Hi(1) = Hi�1(0). We write f ' g in this case. The relation ' is now an equivalence
relation on Smk(X,Y), so we can study the set of naive homotopy classes of morphisms
from X to Y .

For our constructions, we will work with pointed maps and pointed naive homotopies.

Definition 41 If X and Y are smooth k-schemes, pointed at k-points x and y re-
spectively, we say that an elementary homotopy H(T) : X ⇥ A1 ! Y is pointed if
the generic point of {x} ⇥ A1 maps to y. Said another way, the points x and y cor-
respond to morphisms x : Spec(k) ! X and y : Spec(k) ! Y , and we require that
H(T) � (x⇥ idA1) = y � p1 where p1 : Spec(k)⇥ A1 ! Spec(k) is the projection onto
the first factor.

As in the unpointed case, the relation on the set of pointed morphisms Smk(X,Y)⇤
given by pointed elementary homotopies is not an equivalence relation. We say that
pointed morphisms f , g 2 Smk(X,Y)⇤ are naively homotopic, and write f ' g, if there
is a chain of pointed elementary homotopies from f to g. The naive homotopy relation
is an equivalence relation on pointed morphisms. We write [X,Y]N = Smk(X,Y)⇤/ '
for the set of equivalence classes.

For us, the most important case is when X = J = Spec(R) with basepoint j =
(x� 1, y, z,w). This ideal extends to j0 = (x� 1, y, z,w) ✓ R[T]. The condition that a
homotopy H(T) : J ⇥A1 ! Y be pointed is simply that H(T)(j0) = y, where y is the
basepoint of Y .

2.5 Morphisms J ! A2 \ {0}

We write deg : [J ,P1]N ! Pic(J ) ⇠= Z for the map that sends a map f to f ⇤O(1).
Our choices thus far set deg(⇡) = 1 and deg(⇡̃) = �1. Write [J ,P1]N

n for the set
of naive homotopy classes of maps J ! P1 with degree n. Our goal for this section
is to describe the maps J ! P1 of degree 0. We consider the scheme A2 \ {0} =
Spec (k[s, t]) \ {(s, t)} to be pointed at (s � 1, t) and write ⌘ : A2 \ {0} ! P1 for the
Hopf map given by the trivial algebraic line bundle OA2\{0} with the choice of sections
⌘0 = s, ⌘1 = t . Let SL2 denote the affine scheme Spec k[a, b, c, d]/(ad � bc � 1)
pointed at the ideal (a�1, b, c, d�1). Intuitively, this is the scheme of (2⇥2)-matrices
with determinant 1, pointed at the identity matrix.
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Proposition 42 Consider a map f : J ! P1 . Then we have deg(f ) = 0 if and only if
f factors through the Hopf map ⌘ : A2 \ {0}! P1 .

Proof If f ⇤O(1) = OR , the map is given by sections s0, s1 2 R that generate OR ,
i.e., (s0, s1) = R . Hence there are U,V 2 R for which s0U + s1V = 1. This is
exactly the data needed to construct a scheme morphism J ! A2 \ {0}, as such a
morphism is given by a morphism J ! A2 that does not have {0} in the image. Since
Pic(A2 \ {0}) = 0, it follows that any map that factors as J ! A2 \ {0} ⌘�! P1 has
degree 0.

Corollary 43 Let f : J ! P1 be a pointed map of degree 0. Then there exists a
unique pointed map f 0 : J ! A2 \ {0} such that f = f 0 � ⌘ .

Proof Let (s0, s1) : J ! A2 \ {0} be a factorization of f through the Hopf map.
Note that ↵ = s0(j) need not be 1, although ↵ is a unit of k . Instead, the map
f 0 =

� 1
↵

s0,
1
↵

s1
�

is pointed and satisfies f = f 0 � ⌘ .

To show uniqueness, let (s00, s01) : J ! A2 \ {0} be another pointed map that factors
f through ⌘ . That is, we assume [s0, s1] = [s00, s01]. Note that in this case, D(s0) =
D(s00) = D(f ⇤x0) and D(s1) = D(s01) = D(f ⇤x1). Working locally in D(s1) = D(s01),
we have s0/s1 = s00/s01 in R[s�1

1 ] by construction. We may write s00 = c0s0 for
c0 = s01/s1 2 R[s�1

1 ]. Similarly, in D(s0) = D(s00), we obtain s01 = c1s1 for c1 = s00/s0 .
In the intersection D(s0)\D(s1) we have s00/s01 = s0/s1 , which implies s00/s0 = s01/s1 .
This is exactly the equation c0 = c1 . The elements c1 2 R[s�1

0 ] and c0 2 R[s�1
1 ]

therefore glue together to an element c 2 R . Hence c satisfies s00 = cs0 and s01 = cs1 .
Observe that c(s0u0 + s1v0) = 1, that is, c 2 R⇥ = k⇥ . The pointedness assumption
forces c(j) = 1, hence, c = 1 with which we conclude (s0, s1) = (s00, s01).

Remark 44 The previous proposition says, in other words, that a map J ! A2 \{0}
is equivalent to a unimodular row (A,B) of length two in R . Furthermore, a pointed
map J ! A2 \ {0} is equivalent to a unimodular row (A,B) of length two in R that
also satisfies A(j) = 1 and B(j) = 0.

Pointed elementary homotopies between maps of degree 0 can also be lifted to a
pointed elementary homotopy of maps J ! A2 \ {0}.

Proposition 45 Let H(T) = [s0(T), s1(T)] : J ⇥ A1 ! P1 be a pointed elementary
homotopy between maps H(0) and H(1) which have degree 0. There is a pointed
elementary homotopy H0(T) : J ⇥ A1 ! A2 \ {0} between the lifts H0(0) and H0(1).
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Proof Since H(0) and H(1) have degree 0, the homotopy H(T) is degree 0 too, that is,
the line bundle it determines is the trivial one OJ⇥A1 . We can use the two generating
global sections s0(T), s1(T) 2 R[T] to build a map (s0(T), s1(T)) : J ⇥A1 ! A2 \{0}.
Note that since s0(T) and s1(T) generate R[T], there are u(T), v(T) 2 R[T] for which
s0(T)u(T) + s1(T)v(T) = 1. Since H(T) is pointed, s1(T)(j0) = 0 in R[T]/j0 . This
implies that s0(T)(j0)u(T)(j0) = 1 in R[T]/j0 . The ring R[T]/j0 is easily seen to be
isomorphic to k[T]. Hence ↵ = s0(T)(j0) is a unit of k[T], and the units of k[T] are
exactly the units of k . With this, the map

� 1
↵

s0(T), 1
↵

s1(T)
�

: J ⇥ A1 ! A2 \ {0} is
a pointed homotopy between H0(0) and H0(1).

Let (A,B) be a unimodular row in R . That is, there exist U,V 2 R for which
AU +BV = 1. Thus the data of a map J ! A2 \ {0} can be used to produce a matrix✓

A �V
B U

◆
2 SL2(R), in other words, a map J ! SL2 .

Lemma 46 A pointed map (A,B) : J ! A2 \ {0} can be lifted to a pointed map✓
A �V
B U

◆
: J ! SL2 .

Proof Let
✓

A �V1
B U1

◆
be an arbitrary lift of (A,B). Note that A(j) = 1, B(j) = 0,

and U1(j) = 1, but V1(j) = v for some v 2 k . For any d 2 R , we can construct a
different lift by setting U2 = U1 +Bd and V2 = V1�Ad . Set d = v. Then U2(j) = 1,

and V2(j) = 0, so
✓

A �V2
B U2

◆
is pointed.

Construction 47 The pointed lift is not unique in general. For example, the unimod-
ular row (1, 0) lifts to the pointed maps

✓
1 0
0 1

◆
or

✓
1 y
0 1

◆
.

Generally, any two pointed lifts of a pointed unimodular row (A,B) are naively homo-
topic. Let

f̃i =
✓

A �Vi
B Ui

◆

for i 2 {1, 2} be two pointed lifts of (A,B). A pointed elementary homotopy between
f̃1 and f̃2 is given by

(48) f̃t =
✓

A �(TV1 + (1� T)V2)
B TU1 + (1� T)U2

◆
.
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Proposition 49 Every pointed elementary homotopy

H(T) = (s0(T), s1(T)) : J ⇥ A1 ! A2 \ {0}
can be lifted to a pointed elementary homotopy

✓
s0(T) �V(T)
s1(T) U(T)

◆
: J ⇥ A1 ! SL2.

Proof Recall j0 = (x�1, y, z,w) must map to the basepoint for the homotopy H(T) to
be pointed. The sections s0(T) and s1(T) generate the unit ideal, hence there exist u(T)
and v(T) in R[T] for which s0(T)u(T) + s1(T)v(T) = 1. The pointedness assumption
gives the relation among ideals (s0(T)� 1, s1(T)) ✓ j0 ✓ R[T].

With these data, we construct the matrix
✓

s0(T) �v(T)
s1(T) u(T)

◆
2 SL2(R[T]).

This matrix determines a map J⇥A1 ! SL2 that lifts the unimodular row (s0(T), s1(T))
we started with. This homotopy need not be a pointed homotopy. However, for any
choice of d(T) 2 R[T], the matrix

✓
s0(T) �v(T) + s0(T)d(T)
s1(T) u(T) + s1(T)d(T)

◆

is also a lift of (s0(T), s1(T)). We will now show that, for d(T) = v(T), the map
this matrix determines is a pointed homotopy. Write u2(T) = u(T) + s1(T)v(T) and
v2(T) = v(T) � s0(T)v(T). Our assumption that (s0(T), s1(T)) is pointed gives us
(s0(T)� 1, s1(T)) ✓ j0 ✓ R[T]. We must show that (v2(T), u2(T)� 1) ✓ j0 too. Since
(s0(T)� 1) 2 j0 , we have v2(T) = �v(T)(s0(T)� 1) 2 j0 . Observe that u2(T)� 1 2 j0
if u(T) � 1 2 j0 since s1(T) 2 j0 . Since s0(T)u(T) + s1(T)v(T) = 1, it follows that
s0(T)u(T)�1 2 j0 . This can be rewritten as s0(T)u(T)�1 = (s0(T)�1)u(T)+u(T)�1.
Since s0(T)� 1 2 j0 it follows that u(T)� 1 2 j0 too.

Definition 50 Let � : SL2 ! A2 \ {0} be the morphism determined by the ring map
f : k[s, t] ! k[a, b, c, d]/(ad � bc � 1) given by f (s) = a and f (t) = c. Intuitively,
this is the morphism that extracts the first column from a matrix in SL2 . As given, this
map has codomain A2 , but it is clear from the relation ad � bc = 1 that � maps into
A2 \ {0}.

Proposition 51 The maps � : SL2 ! A2 \ {0} and ⌘ : A2 \ {0} ! P1 induce
bijections of naive homotopy classes of pointed maps

[J ,SL2]N �⇤�! [J ,A2 \ {0}]N ⌘⇤�! [J ,P1]N
0 .
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Proof The map �⇤ is surjective by lemma 46. Construction 47 shows that �⇤ is
injective. Corollary 43 shows that ⌘⇤ is bijective on the level of pointed morphisms.
This shows that ⌘⇤ is surjective. To show that ⌘⇤ is injective, it suffices to show that
a pointed elementary homotopy H(T) : J ⇥ A1 ! P1 between degree 0 maps lifts
to a pointed elementary homotopy H0(T) : J ⇥ A1 ! A2 \ {0}, which is done in
proposition 45.

3 Operations on naive homotopy classes of morphisms

3.1 Group structure on maps of degree 0

We may now define a binary operation on naive homotopy classes of morphisms
J ! A2 \ {0}. This is analogous to Cazanave’s naive sum of pointed rational
functions. The group structure is obtained by lifting maps f , g : J ! A2 \ {0} to
f̃ , g̃ : J ! SL2 , multiplying the two resulting maps using the group structure on SL2 ,
then mapping back down to A2 \ {0} via the map � : SL2 ! A2 \ {0}.

Definition 52 A morphism f : J ! SL2 is equivalent to the data of a matrix
M 2 SL2(R). A matrix M 2 SL2(R) corresponds to a pointed morphism if upon
evaluation at j, the resulting matrix is the identity matrix. The set of pointed maps
corresponds to a subgroup of SL2(R). The operation of matrix multiplication respects
the naive homotopy relation for pointed maps and therefore defines a group operation
on [J ,SL2]N , the set of pointed naive homotopy classes of morphisms. It suffices to
prove the following proposition, given that the naive homotopy relation is the transitive
closure of pointed elementary homotopies.

Proposition 53 Let M(T) 2 SL2(R[T]) be a pointed elementary homotopy between
the matrices M0 = M(0) 2 SL2(R) and M1 = M(1) 2 SL2(R) corresponding to
pointed morphisms. Let N(T) 2 SL2(R[T]) be another elementary homotopy where
similar notation is employed. The pointed morphisms corresponding to M0 · N0 and
M1 · N1 are elementarily homotopic.

Proof All that needs to be verified is that the morphism corresponding to the matrix
product M(T) · N(T) is pointed. Since both M(T) and N(T) are pointed, evaluation at
j0 gives the identity matrix in SL2(k[T]). It’s clear then that the product M(T) · N(T)
will evaluate to the identity matrix at j0 too.
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Definition 54 Consider two pointed naive homotopy classes [(Ai,Bi) : J ! A2\{0}]
for i = 1, 2 represented by the unimodular rows (Ai,Bi) 2 R2 . Pick completions of the
unimodular rows to matrices corresponding to pointed maps, as guaranteed by lemma
46: ✓

A1 �V1
B1 U1

◆
,

✓
A2 �V2
B2 U2

◆
2 SL2(R).

We define [(A1,B1)] � [(A2,B2)] to be the naive homotopy class [(A3,B3)] where
(A3,B3) is the unimodular row obtained from the matrix product

✓
A3 �V3
B3 U3

◆
=

✓
A1 �V1
B1 U1

◆
·
✓

A2 �V2
B2 U2

◆
.

Proposition 55 The operation � of definition 54 is well-defined and gives the set
[J ,A2 \ {0}]N the structure of a group.

Proof We first show that the operation does not depend on the particular completion
to a matrix in SL2(R). Let M1 and M0

1 be two pointed completions of (A1,B1), and
similarly let M2 and M0

2 be two pointed completions of (A2,B2). There are two
representatives for the product [(A1,B1)] � [(A2,B2)] from these choices. They are
(A3,B3), taken from the first column of M1 ·M2 and (A0

3,B0

3), the first column of M0

1 ·M0

2 .
Any two completions of a unimodular row to a matrix in SL2(R) are homotopic by
construction 47, hence [M1] = [M0

1] and [M2] = [M0

2]. By the proof of proposition
49 there is an elementary pointed naive homotopy between M1 · M2 and M0

1 · M0

2 .
Extracting the first column of this homotopy gives a homotopy between the resulting
unimodular rows defining the resulting map.

We now show that the operation does not depend on the representative of the naive
homotopy class chosen. Let (A1(T),B1(T)) and (A2(T),B2(T)) be pointed elementary
homotopies. These can be completed to matrices M1(T) 2 SL2(R[T]) and M2(T) 2
SL2(R[T]) by proposition 49. The first column of the product M1(T) · M2(T) provides
the homotopy between the two possible representations of the product. We conclude
that the operation is well-defined on the set [J ,A2 \ {0}]N of pointed naive homotopy
classes.

The identity for the operation is given by the unimodular row (1, 0) : J ! A2 \ {0}.
Associativity of � follows from the associativity of matrix multiplication. Finally, let
(A,B) : J ! A2 \ {0} be given by the unimodular row (A,B) 2 R2 and complete it

to a matrix
✓

A �V
B U

◆
2 SL2(R) giving a pointed map. The inverse of this matrix
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in SL2(R) is the matrix
✓

U V
�B A

◆
, and the first column of this matrix represents the

inverse of (A,B) in [J ,A2 \ {0}]N for � . That is, �[(A,B)] = [(U,�B)].

Lemma 56 The map � : SL2 ! A2 \ {0} induces an isomorphism of groups

�⇤ : [J ,SL2]N ⇠=�! [J ,A2 \ {0}]N
.

Proof The map �⇤ is a group homomorphism by our definition of � on [J ,A2\{0}]N

in terms of matrix multiplication. We have shown in proposition 51 that �⇤ is bijective,
hence the result.

For the next result, we recall that, as described before equation (1), the cogroup structure
of P1 ⇠= S1^Gm in the pointed A1 -homotopy category endows [P1

,X]A1 with a group
operation for any motivic space X . We refer to this structure as the conventional group
structure.

Definition 57 We let ⇠0 : [J ,A2 \ {0}]N ! [P1
,A2 \ {0}]A1 denote the compo-

sition of the natural map ⌫ : [J ,A2 \ {0}]N ! [J ,A2 \ {0}]A1 and the bijection
(⇡⇤A1)�1 : [J ,A2 \ {0}]A1 ! [P1

,A2 \ {0}]A1 that is given by the inverse of the bi-
jection ⇡

⇤

A1 . We note that ⌫ is a bijection by proposition 125 since A2 \ {0} is
A1 -naive.

Theorem 58 The map ⇠0 is an isomorphism of groups between the group [J ,A2 \
{0}]N with operation � and the group [P1

,A2 \ {0}]A1 with the conventional group
operation.

Proof Let ⇠00 : [J ,SL2]N ! [P1
,SL2]A1 denote the composition of the canonical

map [J ,SL2]N ! [J ,SL2]A1 and the bijection [J ,SL2]A1 ! [P1
,SL2]A1 which

is given by the inverse of the bijection ⇡
⇤

A1 . Since both groups [P1
,SL2]A1 and

[P1
,A2 \{0}]A1 inherit their operation from the cogroup structure of P1 , the A1 -weak

equivalence SL2
��! A2 \ {0} induces an isomorphism of groups �⇤ : [P1

,SL2]A1 !
[P1

,A2 \ {0}]A1 . By lemma 56 the map �⇤ : [J ,SL2]N ! [J ,A2 \ {0}]N is a group
isomorphism. We then have the following commutative diagram.

[J ,A2 \ {0}]N ⇠0
// [P1

,A2 \ {0}]A1

[J ,SL2]N
⇠
0
0

//

⇠=�⇤

OO

[P1
,SL2]A1

⇠= �⇤

OO
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Hence, in order to establish that ⇠0 is a group isomorphism, it suffices to show that ⇠00
is a group isomorphism. Since J is affine and SL2 is A1 -naive by [6, Theorem 4.2.1],
we know that ⇠00 is a bijection by proposition 125. Hence it suffices to show that ⇠00 is
a group homomorphism.

Again, because SL2 is A1 -naive, the canonical map [J ,SL2]N ! [J ,SL2]A1 is
a bijection by proposition 125. This bijection is a group isomorphism because the
operation on both sets is defined using the same construction, that is, the sum of two
maps is given by

J ��! J ⇥ J f⇥g��! SL2 ⇥ SL2
m�! SL2,

where m : SL2 ⇥ SL2 ! SL2 is the multiplication on SL2 . In other words, the group
structure is induced by the group object structure on SL2 .

Similarly, the set [P1
,SL2]A1 also obtains the structure of a group using that SL2 is a

group object in the pointed A1 -homotopy category. The Eckmann–Hilton argument
given in [24, Proposition 2.25] can be applied in this scenario to show that this group
structure coincides with the conventional group structure, see also [2, Proposition
2.2.12]. Hence we may assume that the group operation on [P1

,SL2]A1 is induced
by the group object structure on SL2 . Combining these observations shows that the
composition

[J ,SL2]N ! [J ,SL2]A
1 ! [P1

,SL2]A
1

is a group homomorphism. This is the map ⇠00 which proves the assertion.

Corollary 59 The group [J ,A2 \ {0}]N is abelian.

Proof Since [J ,A2 \ {0}]N is isomorphic to [P1
,SL2]A1 , the Eckmann–Hilton argu-

ment shows that this group is abelian.

Remark 60 Morel shows in [22, §7.3] that the group [P1
,A2\{0}]A1 is isomorphic to

KMW
1 (k), the first Milnor–Witt K -theory group of the field k . In short, the computation

[22, Theorem 7.13] and the A1 -weak equivalence between SL2 and A2 \ {0} gives
⇡
A1

1 (A2 \ {0}) ⇠= KMW
2 . The contraction of this sheaf evaluated at Spec(k) then

computes [P1
,A2 \ {0}]A1 .

[P1
,A2 \ {0}]A

1 ⇠= ⇡
A1

1 (A2 \ {0})�1(Spec(k)) ⇠= (KMW
2 )�1(Spec(k)) ⇠= KMW

1 (k)

Remark 61 For any two pointed matrices M,N 2 SL2(R), which represent pointed
morphisms J ! SL2 , there is a chain of elementary homotopies connecting M ·N and
N · M . We do not know of a general algorithm to construct this chain of homotopies
explicitly.
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The following explicit naive homotopies will be of use in the later sections.

Lemma 62 Consider a matrix M =

✓
A �V
B U

◆
2 SL2(R). Then M and (M�1)T

are naively homotopic. Thus, the unimodular rows (A,B) and (U,V) are naively
homotopic.

Proof Consider the matrix H =

✓
1� T2 �T

T(2� T2) 1� T2

◆
2 SL2(R[T]). The matrix H

defines an unpointed homotopy from the identity matrix to
✓

0 �1
1 0

◆
. It is straightfor-

ward to verify that the product HMH�1 is a pointed homotopy between M and (M�1)T

as claimed.

Lemma 63 Consider a matrix
✓

A �V
B U

◆
2 SL2(R) and let u 2 k⇥ . Then there is an

elementary homotopy

(64)
✓

A �V
B U

◆
'
✓

A � 1
u2 V

u2B U

◆
.

Thus, the unimodular row (A,B) is naively homotopic to the unimodular row (A, u2B).

Proof The matrix on the right-hand side of (64) can be written as the following product
✓

A � 1
u2 V

u2B U

◆
=

✓ 1
u 0
0 u

◆✓
A �V
B U

◆✓
u 0
0 1

u

◆
.

The diagonal matrices can be decomposed to a product of elementary matrices, which
are all homotopic to the identity.

3.2 Action of degree 0 maps on degree n maps

Recall that we write [J ,P1]N
n for the set of naive homotopy classes of maps J ! P1

with degree n. We define a group action of [J ,A2 \ {0}]N ⇠= [J ,SL2]N ⇠= [J ,P1]N
0

on [J ,P1]N
n for all n 6= 0. We start by first defining an operation on actual morphisms,

and then show that the operation respects the naive homotopy equivalence relation.

Definition 65 Let M : J ! SL2 be a morphism with corresponding matrix
✓

A �V
B U

◆
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and consider a map [s0, s1] : J ! P1 determined by n 2 N , the algebraic line bundle
Pn or Qn , and generating global sections s0, s1 .

We define M� [s0, s1] : J ! P1 to be the morphism determined by the same algebraic
line bundle with the generating global sections M � [s0, s1] = [As0 � Vs1,Bs0 + Us1]
which are obtained from the following matrix multiplication

✓
A �V
B U

◆✓
s0
s1

◆
=

✓
As0 � Vs1
Bs0 + Us1

◆
.

Proposition 66 Given a map [s0, s1] : J ! P1 with algebraic line bundle L (either
Pn or Qn ) and a map M : J ! SL2 , the construction M � [s0, s1] is a morphism
from J to P1 . If both maps are pointed, the result is also pointed. Furthermore, the
operation is a left group action.

Proof The morphism M : J ! SL2 is described by a matrix
✓

A �V
B U

◆
2 SL2(R).

We observe that U(As0�Vs1)+V(Bs0+Us1) = s0 , and �B(As0�Vs1)+A(Bs0+Us1) =
s1 . By assumption, the sections s0 , s1 generate the algebraic line bundle L . Hence
the pair of sections As0 � Vs1 , Bs0 + Us1 generate L as well. This proves the first
assertion.

That the map [s0, s1] is pointed means that s1 2 j ✓ R , or equivalently, s1(j) = 0 in
R/j. That M is pointed means M(j) is the identity matrix. To verify M � [s0, s1] is
pointed, we must check that B(j)s0(j)+U(j)s1(j) = 0, but this is clear as B(j) = 0 and
s1(j) = 0 from our assumptions.

The fact that the operation is a left group action follows from the associativity of matrix
multiplication and the definition of the group structure on maps J ! SL2 .

The next theorem employs the notation of definition 39 for morphisms J ! P1 .

Theorem 67 Let f : J ! P1 be a map of degree n. Then there exists a matrix
M 2 SL2(R) such that f = M � (1, 0 : 0, 1)n .

Proof Let f = (a0, a1 : b0, b1)n . For c, c0, d, d0 2 R , we consider the matrix

(68) M =

✓
a0 + ync + wnc0 a1 � xnc� znc0

b0 � ynd � wnd0 b1 + xnd + znd0

◆
.
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Note that for any choice of c, c0, d, d0 2 R we have

M �


xn

zn

�
,


yn

wn

��
= (a0, a1 : b0, b1)n.

We now show that there always exist c, c0, d, d0 such that M 2 SL2(R). The determinant
of M is given by the formula

det(M) = a0b1�a1b0+c(xnb0+ynb1)+c0(znb0+wnb1)+d(xna0+yna1)+d0(zna0+wna1).

Since (a0, a1 : b0, b1)n determines a morphism of schemes, it follows from proposition
38 that the ideal I := (xna0 + yna1, zna0 + wna1, xnb0 + ynb1, znb0 + wnb1) is the unit
ideal. Thus 1 � a0b1 � a1b0 is in I , and there exist elements c, c0, d, d0 such that
det(M) = 1. This shows M 2 SL2(R) and proves the assertion by definition of the
operation � .

Corollary 69 Let f , g : J ! P1 be two morphisms of degree n. Then there exists a
matrix M 2 SL2(R) such that M � f = g.

Proof By theorem 67, there exist M0 and M00 such that M0 � (1, 0 : 0, 1)n = f and
M00 � (1, 0 : 0, 1)n = g. The desired matrix is now given by M = M00 · (M0)�1 .

Remark 70 The SL2(R)-matrix M constructed in the proof of theorem 67 is not
always pointed, even if the map f we started with is pointed. For example, following

the construction for the map f = (1, 1 : 0, 1)1 yields the matrix M =

✓
1 1
0 1

◆
which

is not pointed, since M(j) is not the identity matrix.

Remark 70 shows that we have to improve our argument in order to get an action on
pointed homotopy classes. We will now prove the necessary adjustments.

Proposition 71 Let f : J ! P1 be a pointed map of degree n 6= 0. Then there is a
pointed naive homotopy between f and a map of the form Mf � (1, 0 : 0, 1)n for some
pointed matrix Mf 2 SL2(R).

Proof Let f = (a0, a1 : b0, b1)n , where we may assume a0(j) = 1 by proposition 37.
By theorem 67 we can find a matrix M0 2 SL2(R) such that M0 � (1, 0 : 0, 1)n = f .
However, M0 may not be pointed. We can replace M0 with a pointed map Mf as follows.
Assuming M0 is of the form (68) we get b1(j) + d(j) = 1. Moreover, this implies that

there is an element e 2 k such that M0(j) =
✓

1 e
0 1

◆
and e = a1(j)�c(j). Define Mf to
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be Mf =

✓
1 �e
0 1

◆
M0 . We compute Mf�(1, 0 : 0, 1)n = (a0�eb0, a1�eb1 : b0, b1)n .

The assertion now follows from the fact that the morphism (a0 � Teb0, a1 � Teb1 :
b0, b1)n is a pointed homotopy between Mf � (1, 0 : 0, 1)n and f .

Corollary 72 Let f , g : J ! P1 be two pointed morphisms of degree n. There exists
a pointed map M : J ! SL2 such that M � f is pointed naively homotopic to g.

Definition 73 Let [(A,B)] 2 [J ,A2\{0}]N ⇠= [J ,P1]N
0 be a pointed naive homotopy

class represented by the map with unimodular row (A,B) in R . Let [f ] 2 [J ,P1]N
n

be a pointed naive homotopy class of degree n with n 6= 0 represented by a pointed
morphism f : J ! P1 . We define [(A,B)]� [f ] := [M � f ] where M is a completion
of (A,B) to a matrix in SL2(R) corresponding to a pointed map.

Theorem 74 The operation of definition 73 is well-defined and for each n 2 Z
provides the set [J ,P1]N

n with a left-action by the group [J ,A2 \ {0}]N .

Proof First, consider a pointed map f = [s0, s1]. We show that [(A,B)] � [f ] is
independent of the choice of completion of (A,B) to a matrix in SL2(R). So let

M =

✓
A �V
B U

◆
, M0 =

✓
A �V 0

B U0

◆

be two completions to matrices in SL2(R) which correspond to pointed maps. Then

the naive homotopy H(T) =
✓

A �(TV + (1� T)V 0

B TU + (1� T)U0

◆
is pointed independently of T ,

and H(T)� f is a pointed homotopy between M � f and M0 � f .

Now we show that [(A,B)] � [f ] is independent of the choice of the representing
unimodular row (A,B). Suppose we have a pointed elementary homotopy between two
unimodular rows, (A(T),B(T)). Proposition 49 shows that we can lift it to a pointed

elementary homotopy M(T) =

✓
A(T) �V(T)
B(T) U(T)

◆
2 SL2(R[T]). Then M(T) � f

is a pointed homotopy between (A,B) � f and (A0
,B0) � f . Now we consider a

unimodular row (A,B) and let M =

✓
A �V
B U

◆
be a lift to a matrix in SL2(R). Let

f0, f1 : J ! P1 be two pointed morphisms which are homotopic via a pointed naive
homotopy. Let f (T) : J ⇥A1 ! P1 be a pointed naive homotopy. We define the map
H(T) := M � f (T) : J ⇥A1 ! P1 with the same algebraic line bundle L0 on J ⇥A1

and global sections
✓

A �V
B U

◆
·
✓

s0(T)
s1(T)

◆
=

✓
As0(T)� Vs1(T)
Bs0(T) + Us1(T)

◆
.
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We note that H(T) thus defined is in fact a morphism J ⇥ A1 ! P1 , since we have
U(As0(T) � Vs1(T)) + V(Bs0(T) + Us1(T)) = s0(T), and �B(As0(T) � Vs1(T)) +
A(Bs0(T) + Us1(T)) = s1(T). By assumption, the sections s0(T), s1(T) generate the
line bundle L0 . Hence (As0(T)� Vs1(T),Bs0(T) + Us1(T)) generate L0 as well. This
shows that H(T) defines a morphism. We now verify that H(T) is pointed by showing
Bs0(T) + Us1(T) 2 j0 . Pointedness of [s0(T), s1(T)] means that s1(T)(j0) = 0 in
R[T]/j0 . Pointedness of (A,B) means M(j) is the identity matrix. We calculate

B(j0)s0(T)(j0) + U(j0)s1(T)(j0) = 0 · s0(T)(j0) + 1 · 0 = 0

which completes the verification. This shows that � is independent of the choice of
representatives in both naive homotopy classes and completes the proof of the first
assertion. The second assertion then follows from proposition 66.

Remark 75 There are several variations to the operation given in definition 73 that
produce valid group actions. For M 2 SL2(R), the operation in definition 65 is given
by the matrix multiplication M · (s0 s1)T . We could have taken equally well either
MT · (s0 s1)T or M�1 · (s0 s1)T , although this would give a right-action rather than a
left-action on maps. Up to homotopy, the latter two choices in fact agree, since MT is
homotopic to M�1 by lemma 62. Thus there are two natural choices for this action,
one of which applies the inverse operation to the morphism in SL2(R) before acting.
In appendix C we will use real realization to check which of these operations can
represent the group operation on [J ,P1]A1 induced from Morel’s group structure on
[P1

,P1]A1 via ⇡⇤A1 . In fact, in example 145 we show that only the choice of definitions
65 and 73 can be compatible.

4 The group structure on [J ,P1]N

We now state an explicit group structure on [J ,P1]N .

Definition 76 Let �[id] denote the additive inverse of [id : P1 ! P1] under the
conventional group structure on [P1

,P1]A1 . Define �⇡ : J ! P1 to be a morphism
which represents the A1 -homotopy class �[id : P1 ! P1] 2 [P1

,P1]A1 under the
bijection ⇠ : [J ,P1]N ! [P1

,P1]A1 of equation (11). More generally, for any integer
n, let n⇡ denote a morphism n⇡ : J ! P1 which represents the A1 -homotopy class
n[id : P1 ! P1] under the bijection ⇠ : [J ,P1]N ! [P1

,P1]A1 .

We are now ready to define a group operation on [J ,P1]N .
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Definition 77 Let f : J ! P1 and g : J ! P1 be morphisms of degrees n and m
respectively. By corollary 72 there are degree 0 maps f0 : J ! P1 and g0 : J ! P1

for which f ' f0 � n⇡ and g ' g0 � m⇡ . We define the sum of [f ] and [g] to be

[f ] � [g] = ([f0]� [n⇡]) � ([g0]� [m⇡])

= ([f0]� [g0])� [(n + m)⇡].

The term [f0]� [g0] is calculated by matrix multiplication via definition 54. The group
action of definition 73 is used to compute (f0 � g0)� (n + m)⇡ .

Remark 78 It follows from theorem 74 that the operation � of definition 77 is well-
defined. We also note that, for n > 0, the proofs of theorem 67 and proposition 71
may be used to write down a concrete algorithm to find a map f0 such that f ' f0� n⇡
for any degree n map f .

Remark 79 For n > 0, we may construct morphisms n⇡ by using Cazanave’s group
operation on morphisms [P1

,P1]N and lift it to an element in [J ,P1]N . A recursive
description of the maps n⇡ for n > 0 can be given as follows: We set F0 = 1 and

F1 =


x
z

�
. For n > 0, we define Fn+1 recursively by setting

Fn+1 =


x
z

�
· Fn �


y2

w2

�
· Fn�1.

For n > 0, the morphism n⇡ is given by sections


Fn,


y
w

�
· Fn�1

�
.

Note that [(1, 0 : 0, 1)n] is in general not equal to [n⇡] for n > 1.

We are now ready to prove one of our main results.

Theorem 80 The operation � turns the set [J ,P1]N into an abelian group. Moreover,
there is an isomorphism of groups � :

�
[J ,P1]N

,�
� ⇠=�!

⇣
[P1

,P1]A1
,�A1

⌘
.

Proof We observe that the set {[n⇡] : n 2 Z} inherits the structure of an abelian
group from Z . By definition,

�
[J ,P1]N

,�
�

is isomorphic to the direct product of the
two groups {[n⇡] : n 2 Z} and [J ,A2 \ {0}]N . Both are abelian by corollary 59.
This implies the first assertion.

By definition of the operation � , the group
�
[J ,P1]N

,�
�

fits into the short exact
sequence displayed in the top row of diagram (81) below. By the work of Morel



Making the motivic group structure on the endomorphisms of the projective line explicit 35

in [22, §7.3], the group
⇣

[P1
,P1]A1

,�A1
⌘

fits into the short exact sequence displayed
in the bottom row.

1 // [J ,A2 \ {0}]N
//

⇠=⇠0
✏✏

[J ,P1]N

�

✏✏

deg
// Z
⇠= q

✏✏

// 1

1 // [P1
,A2 \ {0}]A1

// [P1
,P1]A1 deg

// Z // 1

(81)

By theorem 58, the vertical map ⇠0 on the left-hand side is an isomorphism. The
vertical map q on the right-hand side is an isomorphism as well. We define � to be the
unique group homomorphism satisfying �([⇡]) = [id] and �([f0]) = ⇠0([f0]) for all
[f0] 2 [J ,A2 \ {0}]N . The diagram commutes by our definition of � . Since ⇠0 and q
are isomorphisms, � is an isomorphism of groups as well by the five-lemma.

Unfortunately, theorem 80 does not give a satisfactory way to describe an A1 -homotopy
class � 2 [P1

,P1]A1 as a concrete homotopy class of a scheme morphism g : J ! P1 .
However, since ⇠ restricts to an isomorphism on the subgroups [J ,A2 \ {0}]N and
{[n⇡] | n 2 Z}, we do believe that the bijection ⇠ is a group isomorphism, which we
state as a conjecture below.

Conjecture 82 The bijection ⇠ : [J ,P1]N ! [P1
,P1]A1 is a group isomorphism and

equals � .

One obstacle to prove conjecture 82 is that, for n < 0, we do not know which morphism
J ! P1 is sent to n[id] under ⇠ . In particular, we do not know which morphism
J ! P1 is mapped to the motivic homotopy class �[id : P1 ! P1]. A potential
candidate for �⇡ may be the map ⇡̃ = (1, 0 : 0,�1)�1 determined by the line bundle
Q1 and generating sections

s0 =

✓
x
y

◆
and s1 = �

✓
z
w

◆
.

Question 83 Is ⇡̃ the inverse of ⇡ for � , i.e., is ⇡̃ naively homotopic to �⇡?

In appendix C we present further evidence for conjecture 82. We use the real realization
functor for fields k ⇢ R and Morel’s theorem which states that the signature of the
motivic Brouwer degree equals the topological Brouwer degree under real realization.
This provides a potential obstruction to the compatibility of �A1 and the action of
[J ,A2 \ {0}]N on [J ,P1]N . We then compute concrete examples and show that
other choices for the action of [J ,A2 \ {0}]N on [J ,P1]N are not compatible with
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�A1 , while our choice of operation in definition 73 is compatible with �A1 after real
realization in the chosen examples.

In proposition 102 we show that the naive homotopy class of ⇡ is mapped to the class
(h1i, 1) in GW(k) ⇥k⇥/k⇥2 k⇥ as expected if ⇠ is a group homomorphism. Based on
the computations in appendix C we prove in theorem 103 that the image of [⇡̃] under
the motivic Brouwer degree is the class �h1i in GW(k). This brings us very close to
a positive answer to question 83. We are, however, not able to compute the image of ⇡̃
in k⇥ .

We end this section with a comment on a question by Cazanave in [12]:

Remark 84 Since ⇡ is an A1 -weak equivalence, it induces a bijection ⇡⇤ : [J ,J ]N !
[J ,P1]N . Hence there is a bijection between [P1

,P1]A1 and the set of pointed naive
homotopy classes [J ,J ]N . In [12, page 31] Cazanave speculates whether [J ,J ]N can
be used to study the group structure on [P1

,P1]A1 . A morphism J ! J corresponds
to a ring homomorphism R ! R , or equivalently, the data of a (2 ⇥ 2)-matrix with
entries in R and with trace 1 and determinant 0. For every map f : J ! P1 we can
find a map F : J ! J such that f = ⇡ � F . We will refer to such a map F as a lift of
f . There is a particularly nice way to construct a lift in the case f : J ! P1 has degree
0. Assume that f is given by a unimodular row (A,B). Let U,V 2 R be such that✓

A �V
B U

◆
has determinant 1. Then F is given by the matrix

✓
AU BU
AV BV

◆
which has

trace 1 and determinant 0. Composing the map with ⇡ yields the J ! P1 map given
by either [AU : BU] or [AV : BV], whenever they are defined, which coincides with
the map corresponding to the unimodular row (A,B). If f has non-zero degree, there
is also concrete procedure to find a lift of f , which we leave to the reader.

Since morphisms J ! J can be represented by matrices, it may seem plausible
that one can find a suitable operation on [J ,J ]N which may help to describe the
group ([P1

,P1]A1
,�A1). However, neither addition nor multiplication of matrices

equip the set [J ,J ]N with an operation which is compatible with the conventional
group structure on [P1

,P1]A1 . We have verified in examples that composition of maps
in [J ,J ]N descends to the operation � on [P1

,P1]N of [13, Definition 4.5]. As
pointed out in [13, Remark 4.7] the latter does not distribute over the conventional
group structure on [P1

,P1]A1 .

We were not able to make a reasonable guess which other operation on [J ,J ]N might
work. We have therefore not pursued this path further.
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5 Compatibility with Cazanave’s monoid structure

The goal of this section is to show that the map

⇡
⇤

N :
�
[P1

,P1]N
,�N�!

�
[J ,P1]N

,�
�

is a morphism of monoids, where �N denotes the monoid operation defined by
Cazanave in [13]. We will achieve this goal in theorem 95.

5.1 Compatibility with certain degree 0 maps

We first study an important family of degree 0 morphisms and their compatibility with
� , �N , and ⇡⇤N .

Definition 85 For u, v 2 k⇥ , we write gu,v for the pointed morphism J ! A2 \ {0}
given by the unimodular row

�
x + v

uw, (u� v)y
�

in R . This unimodular row can be
completed to the SL2(R)-matrix

mu,v =

✓
x + v

uw u�v
uv z

(u� v)y x + u
v w

◆
.

We now develop some basic properties of the maps gu,v which will be necessary to
prove that ⇡⇤N is a monoid morphism.

Lemma 86 For all u, v, s 2 k⇥ , we have the identity gu,v � gv,s = gu,s . In particular,
we have gu,v � gv,u = (1, 0) and gu,v � gv,1 = gu,1 .

Proof A direct computation, using xw = yz, shows

mu,v · mv,s =

✓
x2 + uv+vs

uv xw + s
uw2 uv�sv

usv xz + �vs+uv
usv zw

(u� s)xy + (u� s)wy x2 + uv+sv
sv xw + u

s w2

◆
,

and since x+w = 1, this simplifies to the matrix mu,s . Then gu,v�gv,u = gu,u = (1, 0)
and gu,v � gv,1 = gu,1 are special cases for respectively s = u and s = 1.

Lemma 87 Let u, v, c 2 k⇥ . Then [gu,v] = [gc2u,c2v].

Proof By lemma 63, we have

gu,v =
⇣

x +
v
u

w, (u� v)y
⌘
'
⇣

x +
v
u

w, c2(u� v)y
⌘
= gc2u,c2v.
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Lemma 88 Let u, v 2 k⇥ and let v be a square. Then we have [gu,1]� [gv,1] = [guv,1].

Proof Using lemma 87 and lemma 86 shows

gu,1 � gv,1 ' gu,1 � g1,1/v = gu,1/v ' guv,1,

and hence the claim.

Next we study the relationship of the maps gu,v with � and ⇡⇤N .

Lemma 89 For every u 2 k⇥ , we have gu,1 � ⇡ = ⇡
⇤

N
�X

u

�
.

Proof A direct computation using the facts that x


y
w

�
= y


x
z

�
and z


y
w

�
= w


x
z

�

shows
✓

x + 1
uw u�1

u z
(u� 1)y x + uw

◆
0

BB@


x
z

�


y
w

�

1

CCA =

0

BB@


x
z

�

u


y
w

�

1

CCA

and hence the result by definition of the maps involved.

Lemma 90 For all u, v 2 k⇥ , we have the identity

gu,v � ⇡⇤N
✓

X
v

◆
= ⇡

⇤

N

✓
X
u

◆
.

Proof Using lemmas 86 and 89 and definition 77 we get

gu,v � ⇡⇤N
✓

X
v

◆
= (gu,v � gv,1)� ⇡ = gu,1 � ⇡ = ⇡

⇤

N

✓
X
u

◆

and hence the result.

We are now ready to prove a key result for the compatibility of ⇡⇤N with the monoid
operations.

Proposition 91 Let u 2 k⇥ and f : P1 ! P1 be a pointed morphism. Then we have

⇡
⇤

N

✓
X
u
�N f

◆
' gu,1 �

✓
⇡
⇤

N

✓
X
1
�N f

◆◆
.
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Proof Let ⇡⇤N(f ) = [f1, f2], and let n denote its degree. The pair of generating sections
of Pn+1 which determines the morphism ⇡

⇤

N
�X

u �
N f
�

is given by the matrix product

⇡
⇤

N

✓
X
u
�N f

◆
=

0

BB@


x
z

�
� 1

u


y
w

�

u


y
w

�
0

1

CCA ·
✓

f1
f2

◆
.

Note that here we use the isomorphism given in Proposition 24 to identify the product
of a pair of column vectors with its image in Pn+1 . The pair of generating sections
which determines the morphism gu,1 �

�
⇡
⇤
�X

1 �
N f
��

is given by the matrix product

gu,1 �
✓
⇡
⇤

N

✓
X
1
�N f

◆◆
=

✓
x + 1

uw u�1
u z

(u� 1)y x + uw

◆
·

0

BB@


x
z

�
�


y
w

�


y
w

�
0

1

CCA ·
✓

f1
f2

◆
.

Note that we have the following equality of matrix products

✓
x + 1

uw u�1
u z

(u� 1)y x + uw

◆
·

0

BB@


x
z

�
�


y
w

�


y
w

�
0

1

CCA =

0

BB@


x
z

�
�(x + 1

u )


y
w

�

u


y
w

�
(1� u)y


y
w

�

1

CCA

=

0

BB@


x
z

�
� 1

u


y
w

�

u


y
w

�
0

1

CCA ·
✓

1 u�1
u y

0 1

◆
.

We claim that the rows of the matrix h(T) defined by the following product

h(T) =

0

BB@


x
z

�
� 1

u


y
w

�

u


y
w

�
0

1

CCA ·
✓

1 u�1
u yT

0 1

◆
·
✓

f1
f2

◆

=

0

BB@
f1


x
z

�
+ u�1

u yTf2


x
z

�
� 1

u f2


y
w

�

uf1


y
w

�
+ (u� 1)yTf2


y
w

�

1

CCA

provide generating sections of Pn+1 and define the desired pointed homotopy from
h(0) = ⇡

⇤

N
�X

u �
N f
�

to h(1) = gu,1 �
�
⇡
⇤

N
�X

1 �
N f
��

.

Now we prove the remaining claim. Since f is a morphism P1 ! P1 , we can write it
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as a rational function Xn+an�1Xn�1+...a0
bn�1Xn�1+...+b0

. We then define

F = (F0,F1) = (↵n + . . .+ a0�
n
, bn�1↵

n�1
� + . . .+ b0�

n) 2 (R[↵,�]n)2
.

Using the construction of definition 30, we observe that �((F0,F1)) = [f0, f1] = ⇡
⇤(f ).

Let H be the following product of R[↵,�,T]-matrices

H(T) =
✓
↵ � 1

u�

u� 0

◆
·
✓

1 u�1
u yT

0 1

◆
·
✓

F1
F2

◆

=

✓
F1↵+ u�1

u yTF2↵� 1
uF2↵

uF1� + (u� 1)yTF2�

◆
.

We have �(H) = h. Since F has unit resultant, lemma 131 implies that the pair
(F1 +

u�1
u yTF2,F2) also has unit resultant. By lemma 132 the resultant of H(T) is a

unit as well. By lemma 31 this implies that h consists of a pair of generating sections
and finishes the proof.

To give a concrete example of the homotopy constructed in the proof of proposition 91,
we look at the special case f = X/1:

Example 92 For every u 2 k⇥ , the morphism H defined by

H =


x2

z2

�
+ T

u� 1
u

y


xy
zw

�
�
✓

x +
1
u

w
◆

y2

w2

�
, u


xy
zw

�
+ (T(u� 1)� (u� 1)y)


y2

w2

��

is a homotopy between H(0) = gu,1 � 2⇡ and H(1) = ⇡
⇤

N
�X

u �
N X

1
�

.

5.2 The map ⇡⇤

N is a monoid morphism

We will now prove that ⇡⇤N is a morphism of monoids.

Lemma 93 We have

⇡
⇤

N

✓
X
1
�N · · ·�N X

1

◆
' ⇡ � · · ·� ⇡,

where there are n summands on both sides.

Proof Since ⌫P1
�X

1
�

= idP1 and ⌫P1 is a morphism of monoids by [13, Propo-
sition 3.23], we have the equality n[id] =

⇥X
1 �

N · · ·�N X
1
⇤

in [P1
,P1]A1 . Thus

⇡
⇤

N
�X

1 �
N · · ·�N X

1
�

is naively homotopic to n⇡ . By definition, [⇡]�· · ·�[⇡] = [n⇡],
hence the result follows.
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Proposition 94 For u1, . . . , un 2 k⇥ we have

⇡
⇤

N

✓
X
u1
�N X

u2
�N · · · �N X

un

◆
' ⇡⇤N

✓
X
u1

◆
� ⇡⇤N

✓
X
u2

◆
� · · ·� ⇡⇤N

✓
X
un

◆
.

Proof We use that �N and � are commutative and that � is associative and apply
proposition 91 and lemma 93 to get

⇡
⇤

N

✓
X
u1
�N · · ·�N X

un

◆
' gu1,1 � ⇡⇤N

✓
X
1
�N X

u2
�N · · · �N X

un

◆

' gu1,1 � gu2,1 � ⇡⇤N
✓

X
1
�N X

1
�N X

u3
�N · · ·�N X

un

◆

' gu1,1 � · · ·� gun,1 � n⇡

' (gu1,1 � ⇡)� (gu2,1 � ⇡)� · · ·� (gun,1 � ⇡)

' ⇡⇤N
✓

X
u1

◆
� · · ·� ⇡⇤N

✓
X
un

◆
.

For the final step we used lemma 89.

Theorem 95 The map ⇡
⇤

N :
�
[P1

,P1]N
,�N� !

�
[J ,P1]N

,�
�

induced by ⇡ is a
morphism of monoids.

Proof Let f , g : P1 ! P1 be two pointed morphisms. By [13, Lemma 3.13], [P1
,P1]N

is generated by elements in degree 1. Hence we can assume f ' X
u1
�N X

u2
�N · · ·�N X

un

and g ' X
v1
�N X

v2
�N · · ·�N X

vm
for some u1, . . . , un, v1, . . . , vm 2 k⇥ . Then proposition

94 implies the identity

⇡
⇤

N
�
[f ]�N [g]

�
=
⇥
⇡
⇤

N(f )
⇤
�
⇥
⇡
⇤

N(g)
⇤

and hence the result.

6 Group completion

The morphism ⇡ : J ! P1 induces the following commutative diagram of solid
arrows.

[J ,P1]N ⌫J
// [J ,P1]A1

(⇡⇤
A1 )�1

↵↵

[P1
,P1]N

⇡
⇤
N

OO

⌫P1
// [P1

,P1]A1

 

ff

⇡
⇤
A1

OO

(96)
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Lemma 97 We have the identity of morphisms ⇠ � ⇡⇤N = ⌫P1 .

Proof Since the outer diagram in (96) commutes, we have (⇡⇤A1)�1 � ⌫J � ⇡⇤N = ⌫P1 .
Since ⇠ = (⇡⇤A1 )�1 � ⌫J by definition, this shows

⇠ � ⇡⇤N = ⌫P1

as desired.

In [13, Theorem 3.22] Cazanave proves that the canonical map ⌫P1 :
�
[P1

,P1]N
,�N�!⇣

[P1
,P1]A1

,�A1
⌘

is a group completion. Hence there exists a unique group homo-
morphism

 :
⇣

[P1
,P1]A

1
,�A1

⌘
!
�
[J ,P1]N

,�
�

making the lower triangle in diagram (96) commute.

We will show in this section that ⇡⇤N has image in a certain subgroup and induces
a group completion. Together with Cazanave’s result this implies that we have a
canonical isomorphism between the two group completions induced by ⇡

⇤

N and ⌫P1 ,
respectively. The main result is proven in theorem 111.

6.1 Motivic Brouwer degree

In [21] Morel describes the analog of the topological Brouwer degree map in A1 -
homotopy theory. For pointed endomorphisms of P1 it defines a homomorphism

degA
1
: [P1

,P1]A
1 ! GW(k).

We recall that by the work of Cazanave [13, Corollary 3.10] and Morel [22, Theorem
7.36] the map given by

f 7!
⇣

degA
1
(f ), res(f )

⌘
,

where res(f ) denotes Cazanave’s resultant of [13] described in proposition 26, induces
an isomorphism of groups

(98) ⇢ : [P1
,P1]A

1 ⇠=�! GW(k)⇥k⇥/k⇥2 k⇥.

Since our definition of deg is compatible with the notion of degree of a rational
function used by Cazanave in [13], the work of Cazanave and Morel implies that, for
every pointed morphism f : P1 ! P1 we have

deg([f ]) = rank
⇣

degA
1
([f ])

⌘
,
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where rank denotes the homomorphism GW(k)! Z induced by the rank of a quadratic
form. For a pointed morphism g : J ! P1 with ⇠([g]) = [f ], we have

deg([g]) = rank
⇣

degA
1
(⇠[g])

⌘
.

Hence we have the commutative diagram

1 // [J ,A2 \ {0}]N

⇠0 ⇠=
✏✏

// [J ,P1]N

bijection⇠

✏✏

deg
// Pic(J )

⇠=
✏✏

// 1

1 // [P1
,A2 \ {0}]A1

⇠=
✏✏

// [P1
,P1]A1 deg

//

⇢ ⇠=
✏✏

Pic(P1)

⇠=

✏✏

// 1

1 // GW(k)0 ⇥k⇥/k⇥2 k⇥ // GW(k)⇥k⇥/k⇥2 k⇥ rank
// Z // 1

(99)

where GW(k)0 ⇥k⇥/k⇥2 k⇥ denotes the kernel of the rank homomorphism.

Proposition 100 The map ⇡⇤N is injective.

Proof By lemma 97 we know ⇠ �⇡⇤N = ⌫P1 . Since ⇠ is a bijection, it suffices to show
that ⌫P1 is injective. The isomorphism ⇢ fits into the commutative diagram

[P1
,P1]N

⇠=
✏✏

⌫P1
// [P1

,P1]A1

⇠= ⇢

✏✏

MWs(k)⇥k⇥/k⇥2 k⇥
ŵ
// GW(k)⇥k⇥/k⇥2 k⇥

where MWs(k) denotes the stable monoid of symmetric bilinear forms as in [13,
Definition 3.8] and ŵ is the group completion induced by the group completion
w : MWs(k) ! GW(k). Since the vertical maps are isomorphisms by [13, Corol-
lary 3.10] and [22, §7.3], ⌫P1 is injective if and only if ŵ is injective. To show that
ŵ is injective, it suffices to show that the group completion w : MWs(k) ! GW(k) is
injective. Since MWs(k) satisfies the cancellation property by the definition of MWs(k)
in [13, Definition 3.8], respectively by Witt’s cancellation theorem, the map w is indeed
injective. This proves the assertion.

Proposition 101 Let u, v 2 k⇥ . If u 6= v, then [gu,1] 6= [gv,1].

Proof Assume that u 6= v 2 k⇥ . By proposition 100 this implies ⇡
⇤

N([X/u]) 6=
⇡
⇤

N([X/v]). By proposition 91 we have ⇡
⇤

N([X/u]) = [gu,1] � ⇡ and ⇡
⇤

N([X/v]) =
[gv,1]� ⇡ . Since [J ,P1]N is a group, this implies [gu,1] 6= [gv,1].
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Proposition 102 For every u 2 k⇥ we have
⇣

degA
1
(⇠[⇡⇤N(X/u)]), res(⇠[⇡⇤N(X/u)])

⌘
=
�
hui, u

�
in GW(k)⇥k⇥/k⇥2 k⇥.

In particular, for ⇡⇤N(X/1) = ⇡ , we get
⇣

degA
1
(⇠[⇡]), res(⇠[⇡])

⌘
=
�
h1i, 1

�
in GW(k)⇥k⇥/k⇥2 k⇥.

Proof By lemma 97 we know ⇠[⇡⇤N(X/u)] = ⌫P1([X/u]). In [13, 3.4] Cazanave
shows that the image of ⌫P1([X/u]) in GW(k) ⇥k⇥/k⇥2 k⇥ is

�
hui, u

�
by assigning it

to the rank 1 symmetric matrix [u], which has determinant u and corresponds to the
quadratic form hui.

In light of question 83 we would like to show that ⇢(⇠[⇡̃]) is the class (�h1i, 1) in
GW(k)⇥k⇥/k⇥2 k⇥ . We are not able to confirm this yet, since we do not know how to
compute the resultant of ⇠[⇡̃]. We can, however, make the following observation based
on computations of topological degrees in appendix C. We thank Kirsten Wickelgren
for mentioning to us the idea to use the arguments of [9] and [10] to reduce the
computation to the Grothendieck–Witt group of the integers.

Theorem 103 For every field k , we have

degA
1

(⇠[⇡̃]) = �h1i in GW(k).

Proof First we assume k = F2 . By [13, Lemma 3.13], [P1
,P1]N is generated by ele-

ments in degree 1, i.e., the class of X/1 generates [P1
,P1]N . Since ⌫P1 : [P1

,P1]N !
[P1

,P1]A1 is a group completion, this implies that degA
1

F2
: [P1

,P1]A1 ⇠=�! GW(F2) = Z
is an isomorphism, where we refer to [20] for the Grothendieck group GW(F2) of sym-
metric bilinear forms over F2 and the isomorphism GW(F2) = Z (see [10, Lemma
B.5], [20, III Remark (3.4)]). Since the right-hand side of diagram (99) commutes, the
fact that we have deg ([⇡̃]) = �1 implies degA

1
(⇠[⇡̃]) = �h1i in GW(k).

Next we let k be a field of characteristic 2. Then the canonical morphism Spec k !
SpecF2 induces a commutative diagram of group homomorphisms

[P1
,P1]A1

F2

degA
1

F2
✏✏

// [P1
,P1]A1

k

degA
1

k
✏✏

GW(F2) // GW(k).

Since ⇡̃ is defined over F2 and degA
1

F2
(⇠[⇡̃]) = �h1i by the first case, this implies

degA
1

k (⇠[⇡̃]) = �h1i in GW(k).
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Now we assume that k is a field of characteristic 6= 2. The proof for this case is
also based on the fact that ⇡̃ is already defined over Z and not just k . To make the
argument work, however, requires a bit more effort. For a ring A , let SH(A) denote
the stable motivic homotopy category over Spec A . Let KOk 2 SH(k) denote the
motivic spectrum over Spec k which represents Hermitian K-theory. It is equipped
with a unit morphism "k : k ! KOk in SH(k). Let s : [P1

,P1]A1 ! 0,0
k (Spec k)

denote the homomorphism defined by stabilisation and note that there is a canonical
isomorphism KO0,0

k (Spec k) ⇠= GW(k). We then define the homomorphism � as the
following composition.

� : [P1
,P1]A

1 s�! 0,0
k (Spec k) "k�! KO0,0

k (Spec k) ⇠= GW(k)

We claim that the homomorphism � can be identified with the motivic Brouwer degree
degA

1

k over k . To prove the claim we follow the argument of Levine and Raksit
in [19, proof of Theorem 8.6, page 1845]. By Morel’s computation [22, Theorem
6.40] the isomorphism GW(k) ⇠= 0,0

k (Spec k) sends hui 2 GW(k), for u 2 k⇥ , to
s(⌫P1[X/u]), the image of the class of X/u : P1

k ! P1
k , [x0 : x1] 7! [x0 : ux1], in

0,0
k (Spec k). Hence the classes s(⌫P1 [X/u]) for all u 2 k⇥ generate 0,0

k (Spec k).
Thus, in order to prove the claim it suffices to show that �(⌫P1 [X/u]) = hui in GW(k),
since degA

1

k ([X/u]) = hui 2 GW(k). That is we need to show "k(s(⌫P1[X/u])) = hui.
This follows from [1, Corollary 6.2] which proves the claim.

In [9, §3.8.3] Bachmann and Hopkins construct a motivic spectrum KO0

Z 2 SH(Z) with
a unit morphism "

0

Z : Z ! KO0

Z , and write KO0

k and "0k for the pullback of KO0

Z and
"
0

Z to SH(k) along the canonical morphism Spec k! SpecZ . Since the characteristic
of k is not 2, there is an equivalence of ring spectra KO0

k ' KOk by [9, Lemma 3.38
(3)], which induces an isomorphism (KO0

k)0,0(Spec k) ⇠= KO0,0
k (Spec k). Thus, there

is an isomorphism (KO0

k)0,0(Spec k) ⇠= KO0,0
k (Spec k) which fits into the following

commutative diagram.

0,0
k (Spec k)

"k
''

PPP
PPP

PPP
PPP

"
0
k
// (KO0

k)0,0(Spec k)

⇠=
✏✏

KO0,0
k (Spec k)

By the above, we may therefore identify degA
1

k over k with the composed homomor-
phism

[P1
,P1]A

1 s�! 0,0
k (Spec k)

"
0
k�! (KO0

k)0,0(Spec k) ⇠= KO0,0
k (Spec k) ⇠= GW(k).

Furthermore, by [9, Lemma 3.38 (2)], there is an isomorphism ⇡0,0(KO0

Z) ⇠= GW(Z),
where GW(Z) denotes the Grothendieck–Witt group over Z defined in [20, Chap-
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ter II]. Let [P1
,P1]A1

Z denote the set of endomorphisms of P1 in the pointed un-
stable A1 -homotopy category over SpecZ . We now define the homomorphism
degA

1

Z : [P1
,P1]A1

Z ! GW(Z) as the composition

degA
1

Z : [P1
,P1]A

1

Z
sZ�! 0,0

Z (SpecZ)
"
0
Z�! (KO0

Z)0,0(SpecZ) ⇠= GW(Z).

The canonical homomorphism Z! k then induces the following commutative square

[P1
,P1]A1

Z

✏✏

degA
1

Z
// GW(Z)

bk

✏✏

[P1
,P1]A1

k
degA

1
k

// GW(k)

where bk : GW(Z) ! GW(k) denotes the change of coefficients homomorphism. As
a consequence we see that if [↵] 2 [P1

,P1]A1

k is in the image of the homomorphism
[P1

,P1]A1

Z ! [P1
,P1]A1

k , then

degA
1

k ([↵]) = bk(degA
1

Z ([↵])).(104)

By [10, Lemma 5.6] (see also [20, Theorem II.4.3]), GW(Z) is generated over Z by
the classes h1i and h�1i. For a class q 2 GW(Z), let qC and qR denote the images
of q in GW(C) and GW(R), respectively. Then q 2 GW(Z) is uniquely determined
by the integers r(q) := rank(qC) and s(q) := sgn(qR), given by the rank and signature
of qC and qR , respectively, via the formula

q =
r(q) + s(q)

2
h1i+ r(q)� s(q)

2
h�1i 2 GW(Z).(105)

Since J and both morphisms ⇡ and ⇡̃ are defined over SpecZ , we can now apply
the above observations to prove the assertion of the proposition. Since ⇡ is an A1 -
weak equivalence over SpecZ as well, we can form the pointed A1 -homotopy class
⇠Z ([⇡̃]) := [⇡̃ � ⇡�1]A1 2 [P1

,P1]A1

Z defined by the zig-zag P1
Z

⇡ � JZ
⇡̃�! P1

Z .
The class ⇠Z ([⇡̃]) is sent to ⇠ ([⇡̃]) under base change. Thus, by the above ar-
guments, to determine degA

1

k (⇠[⇡̃]) in GW(k) it suffices to compute the rank and
signature of degA

1

Z (⇠Z[⇡̃]) after base change to C and R , respectively. Since the right-
hand side of diagram (99) commutes, the fact that we have deg ([⇡̃]) = �1 implies
rank(degA

1

C (⇠[⇡̃])) = �1. In appendix C and example 144 we show that the signature
of degA

1

R (⇠[⇡̃]) over R is �1. Thus, by formula (105), we get degA
1

Z (⇠Z[⇡̃]) = �h1i
in GW(Z). By equation (104) we can therefore conclude that degA

1

k (⇠[⇡̃]) = �h1i in
GW(k).
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6.2 Group completion of naive homotopy classes

We will now describe the homomorphism  :
⇣

[P1
,P1]A1

,�A1
⌘
!
�
[J ,P1]N

,�
�

induced by the universal property of the group completion ⌫P1 in more detail. By [13,
Lemma 3.13], [P1

,P1]N is generated by elements in degree 1, i.e., it is generated
by the set of classes [X/u] for all u 2 k⇥ . Hence, since ⌫P1 is a group completion,
every element in [P1

,P1]A1 of degree 0 can be written as a sum of the differences
�u,v := ⌫P1([X/u]) � ⌫P1([X/v]) for suitable u, v 2 k⇥ . Thus the set of classes �u,v
for all u, v 2 k⇥ generates the subgroup [P1

,P1]A1

0 of degree 0 elements. Because
of this we would like to understand the image of the �u,v under  . Since  is a
group homomorphism, we know  (�u,v) �  (⌫P1([X/v])) =  (⌫P1([X/u])). Since
 � ⌫P1 = ⇡

⇤

N , this implies  (�u,v)� ⇡⇤N([X/v]) = ⇡
⇤

N([X/u]). By lemma 90, the map
gu,v satisfies [gu,v]� ⇡⇤N([X/v])) = ⇡

⇤

N([X/u]). Hence, since [J ,P1]N is a group, we
get

 (�u,v) = [gu,v] in [J ,P1]N
.

This motivates the following definition of the subgroup G ✓ [J ,P1]N .

Definition 106 Let G0 := h[gu,v] | u, v 2 k⇥i ✓ [J ,A2 \ {0}]N denote the subgroup
generated by the homotopy classes of the maps gu,v . Let G ✓ [J ,P1]N be the subgroup
generated by G0 and [⇡].

We note that by lemma 86, we have �[gu,v] = [gv,u], while [gu,u] is the neutral element,
and we therefore have �([gu,v]�±n[⇡]) = [gv,u]�⌥n[⇡] in G .

Remark 107 Let M0 denote the submonoid of [J ,A2 \{0}]N generated by the set of
homotopy classes [gu,1] for all u 2 k⇥ . By lemma 86, we have [gu,v]� [gv,1] = [gu,1]
for all u, v 2 k⇥ . Thus, every element in G0 is a sum of differences of elements in
M0 . The implies that the inclusion M0 ⇢ G0 is a group completion.

Lemma 108 The morphism of monoids ⇡⇤N : [P1
,P1]N ! [J ,P1]N has image in G .

Proof By [13, Lemma 3.13], [P1
,P1]N is generated by elements in degree 1, i.e., it

is generated by the set of classes [X/u] for all u 2 k⇥ . Hence it suffices to show that
⇡
⇤

N([X/u]) is contained in G . This follows from lemma 89.

Proposition 109 The morphism of monoids ⇡⇤N : [P1
,P1]N ! G is a group comple-

tion.
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Proof Let H be an abelian group and µ : [P1
,P1]N ! H be a morphism of monoids.

We will show that there is a unique homomorphism of groups eµ : G ! H such that
eµ � ⇡⇤N = µ .

We set eµ([⇡]) := µ([X/1]). By lemma 90, we have [gu,v] � ⇡⇤N([X/v]) = ⇡
⇤

N([X/u])
in G ✓ [J ,P1]N . Hence compatibility with µ forces the definition

eµ([gu,v]) := µ([X/u]) � µ([X/v]).

By definition of G this induces a unique group homomorphism eµ, once we have shown
that it is well-defined.

Now we show that eµ is well-defined. Because G ⇠= G0�Z , all relations in G amongst
the generators arise from relations of the classes [gu,v]. Consider a relation of the form

(110) [gu1,v1]� . . . � [gus,vs] = 0.

We must then show that
P

i eµ
�
[gui,vi]

�
= 0 in H . Since G is a group and by lemma

90, we have X

i
gui,vi � ⇡⇤N([X/vi]) =

X

i
⇡
⇤

N([X/ui]).

Since G is abelian, this implies
X

i

[gui,vi] =
X

i

⇡
⇤

N([X/ui])� ⇡⇤N([X/vi]) =
X

i

⇡
⇤

N([X/ui])�
X

i

⇡
⇤

N([X/vi]) = 0.

Hence X

i

⇡
⇤

N([X/ui]) =
X

i

⇡
⇤

N([X/vi])

in [P1
,P1]N . Since ⇡⇤N is an injective monoid morphism, in [P1

,P1]N we have the
equation X

i

[X/ui] =
X

i

[X/vi].

It thus follows that

µ

 
X

i

[X/ui]

!
= µ

 
X

i

[X/vi]

!
in H.

We calculate

eµ
 
X

i

[gui,vi ]

!
=
X

i

µ([X/ui])� µ([X/vi]) = 0,

as desired. This shows that eµ is well-defined.

It remains to show eµ � ⇡⇤N = µ . By [13, Lemma 3.13], [P1
,P1]N is generated by

the set of classes [X/u] for all u 2 k⇥ . Hence µ is completely determined by the
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images of [X/u] for all u 2 k⇥ . Thus, in order to show eµ � ⇡⇤N = µ , it suffices to
show eµ

�
⇡
⇤

N([X/u])
�
= µ([X/u]) for every u 2 k⇥ . This is now immediate from the

definition of eµ and lemma 90:

eµ
�
⇡
⇤

N([X/u])
�
= eµ

�
[gu,1]� ⇡⇤N([X/1])

�

= eµ
�
[gu,1]

�
+ eµ ([⇡])

= µ
�
[X/u]

�
� µ

�
[X/1]

�
+ µ

�
[X/1]

�

= µ
�
[X/u]

�
.

This shows that ⇡⇤N : [P1
,P1]N ! G has the universal property of a group completion

and finishes the proof.

Theorem 111 There is a unique isomorphism of groups

� : G! [P1
,P1]A

1

such that � � ⇡⇤N = ⌫P1 .

The homomorphism � sends [gu,v] to the unique element �u,v that satisfies ⌫⇤P1([X/u]) =
�u,v�A1

⌫P1([X/v]) and [⇡] to [id]. Moreover, � and the homomorphism  : [P1
,P1]A1 !

G ✓ [J ,P1]N are mutual inverses to each other.

Proof The existence of � and its definition is a consequence of proposition 109 and its
proof. The assertion that � is the inverse of  follows from the fact that ⌫P1 is a group
completion proven by Cazanave in [13, Theorem 3.22] and the universal property of
group completion.

As a particular consequence of theorem 111 we get the following result.

Proposition 112 The restriction �0 of the homomorphism � to G0 defines an iso-
morphism of groups

�0 : G0
⇠=�! [P1

,A2 \ {0}]A
1
.

Proof The elements �u,v are of degree 0, and hence they lie in the subgroup [P1
,A2 \

{0}]A1 . As a consequence, the homomorphism � and its restriction �0 fit in the
following commutative diagram of abelian groups.

1 // G0

�0
✏✏

// G
� ⇠=
✏✏

// Z
⇠=

✏✏

// 1

1 // [P1
,A2 \ {0}]A1

// [P1
,P1]A1

// Z // 1

Since the middle and right-most maps are isomorphisms, the assertion follows from
the five-lemma.
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The existence of the isomorphisms G ��! [P1
,P1]A1 � � [J ,P1]N does not imply that

G equals [J ,P1]N . However, we make the following conjecture on the a prioiri
subgroups G0 and G .

Conjecture 113 The inclusions G0 ✓ [J ,A2 \ {0}]N and G ✓ [J ,P1]N are equali-
ties.

We will show in theorem 120 in section 6.3 that conjecture 113 is true whenever k = Fq
is a finite field. This follows from an explicit computation of G0 and KMW

1 (Fq), the
first Milnor–Witt K-theory of Fq .

Remark 114 It follows from the structure of the group G as a product of G0 and
{n[⇡] | n 2 Z} that in order to prove conjecture 113 it suffices to show that the inclusion
G0 ✓ [J ,A2 \ {0}]N is an equality, i.e., that the set of homotopy classes [gu,v] for all
u, v 2 k⇥ generates the group [J ,A2 \ {0}]N .

Remark 115 If conjecture 113 is true, then the group homomorphism  : [P1
,P1]A1 !

[J ,P1]N , induced by the fact that ⌫P1 is a group completion, is an isomorphism and
it agrees with ��1 , the inverse of the isomorphism of theorem 80. We note, however,
that this does not yet imply that the bijection ⇠ is a group homomorphism.

6.3 Milnor–Witt K-theory and morphisms in degree 0

Our final goal is to prove conjecture 113 for finite fields. For the proof we use the
Milnor–Witt K-theory of a field which we now recall from [22, Definition 3.1].

Definition 116 The Milnor–Witt K-theory of the field k , denoted KMW
⇤

(k), is the
graded associative ring generated by symbols [u] in degree 1 for u 2 k⇥ and the
symbol ⌘ in degree �1 subject to the following relations:

(1) For each u 2 k⇥ \ {1}, [u].[1 � u] = 0.

(2) For each pair u, v 2 (k⇥)2 , [uv] = [u] + [v] + ⌘.[u].[v].

(3) For each u 2 k⇥ , ⌘.[u] = [u].⌘ .

(4) Let h := ⌘.[�1] + 2. Then ⌘.h = 0.

Remark 117 It follows directly from the defining relations for KMW
⇤

(k) that [1] = 0
and ⌘.[u2] = 0 for each u 2 k⇥ . See [22, §3.1] for a proof and other basic properties
of Milnor–Witt K-theory.
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Recall that G0 := h[gu,v] | u, v 2 k⇥i ✓ [J ,A2\{0}]N denotes the subgroup generated
by the homotopy classes of the maps gu,v . In this subsection we write G0(k) and G(k)
for the groups G0 and G , respectively, to emphasize the dependency of the base field
k .

Proposition 118 For every field k , there is an isomorphism G0(k) ⇠= KMW
1 (k).

Proof By proposition 112, we have an isomorphism �0 : G0(k)
⇠=�! [P1

,A2 \ {0}]A1 .
As recalled in remark 60, the work of Morel in [22, §7.3] implies that there is an isomor-
phism of groups [P1

,A2 \ {0}]A1 ⇠= KMW
1 (k). The composition of these isomorphisms

yields the assertion.

Proposition 119 Let k = Fq be a finite field. Then KMW
1 (Fq) is a finite cyclic group

of order q� 1.

Proof First we assume that q is even. Then the squaring homomorphism is surjective,
and hence every unit is a square. Fix u to be a multiplicative generator of F⇥

q . It
follows from [22, Lemma 3.6 (1)] that KMW

1 (Fq) is generated by the elements [v] for
v 2 k⇥ , which are subject to the relation [vv0] = [v] + [v0] for all v, v0 2 F⇥

q . The fact
that uq�1 = 1 yields the result that KMW

1 (Fq) is cyclic of order q� 1 generated by the
symbol [u].

Now we assume that q is odd. Then the kernel of the squaring homomorphism has
two elements, �1 and 1, i.e., F⇥

q /F⇥2
q
⇠= Z/2Z . Because 1 is a square, Fq \ {0, 1}

contains more non-squares than squares. Construct pairs (s, 1 � s) from elements
s 2 Fq \ {0, 1}, and observe that there must exist at least one non-square s such that
1� s is also a non-square. For the rest of the proof we fix s to be one such non-square
and pick a multiplicative generator u of F⇥

q .

By relation (1) in KMW
1 (Fq), we have [s].[1 � s] = 0. Let v1, v2 be non-squares in

F⇥
q . Then there exist units c1 and c2 such that c2

1s = v1 and c2
2(1 � s) = v2 since

F⇥
q /F⇥2

q
⇠= Z/2Z . We can then compute

[v1v2] = [v1] + [v2] + ⌘.[v1].[v2]
= [v1] + [v2] + ⌘.[c2

1s].[c2
2(1� s)]

= [v1] + [v2] + ⌘.([c2
1] + [s]).([c2

2] + [1� s])
= [v1] + [v2],

where the last equality follows from the fact ⌘.[c2
i ] = 0 of remark 117 and the relation

[s].[1 � s] = 0. Additionally, for every non-square v and every square c2 , we get
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[vc2
2] = [v] + [c2]. Since F⇥

q is cyclic and [un] = n[u], this shows that KMW
1 (Fq) is

cyclic of order q� 1 generated by the symbol [u].

Theorem 120 Let k = Fq be a finite field. Then conjecture 113 is true, i.e., the
inclusions G0(Fq) ✓ [J ,A2 \ {0}]N and G(Fq) ✓ [J ,P1]N are equalities.

Proof By remark 114 it suffices to prove the assertion for G0(Fq). By propositions
118 and 119, both G0(Fq) and KMW

1 (Fq) are finite groups of the same cardinality.
Since [P1

,A2 \ {0}]A1 and KMW
1 (Fq) are isomorphic and since ⇠0 : [J ,A2 \ {0}]N !

[P1
,A2 \ {0}]A1 is an isomorphism, [J ,A2 \ {0}]N is a finite group of the same

cardinality as G0(Fq) as well. Hence G0(Fq) ✓ [J ,A2 \{0}]N is an inclusion of finite
groups of the same cardinality. This implies that the inclusion G0(Fq) ✓ [J ,A2\{0}]N

is an equality.

We conclude this section with the following observation. While proposition 118 shows
that there is an isomorphism between G0(k) and KMW

1 (k), the proof of proposition 119
suggests that the following map provides a concrete isomorphism. We consider this an
interesting observation about KMW

1 (k) that arises from our work on maps J ! A2\{0}.

Proposition 121 Let k be one of the following fields: a field in which every unit is a
square, a finite field, or R . Then the assignment [u] 7! [gu,1] defines an isomorphism
 : KMW

1 (k)! G0(k).

Proof We will show that KMW
1 (k) and G0(k) are generated by the classes [u] and

[gu,1], respectively, and that these generators satisfy exactly the same type of relations.
This implies that  is both a well-defined homomorphism and an isomorphism. We
will prove the claim by looking at each type of field separately.

First we assume that k is a field where every unit is a square. The group KMW
1 (k) is

generated by the elements [u] and the relation [uv] = [u] + [v] for all u, v 2 k⇥ . To
prove that  is an isomorphism we need to show that G0(k) is generated by the classes
[gu,1] subject to the relation [guv,1] = [gu,1]� [gv,1]. Since every unit in k is a square,
we get [gu,v] = [gu/v,1] by lemma 87. Hence G0(k) is generated by elements [gu,1].
By proposition 101 we know that [gu,1] 6= [gv,1] for u 6= v 2 k⇥ . By lemma 88 we
get the relation [gu,1]� [gv,1] = [guv,1]. Thus, the map sending [u] to [gu,1] induces a
homomorphism which is surjective and injective. Hence  is an isomorphism.

For k = Fq , proposition 119 shows that KMW
1 (Fq) is generated by the symbol [u]

for a multiplicative generator u 2 F⇥
q . When q is even, every unit is a square, and



Making the motivic group structure on the endomorphisms of the projective line explicit 53

in this case  is an isomorphism. So we assume that q is odd, and will now show
that every element in G0(Fq) can be written in the form m[gu,1] � [gu2m0

,1] for some
m,m0 2 Z . We will use that every square in Fq is equal to an even power of the
generator u 2 F⇥

q , and distinguish three cases: Assume first v1, v2 2 F⇥
q are squares.

By lemma 87 we then have [gv1,v2] = [gv1/v2,1] = [gu2m , 1] for some m . Second, if
v1 is not a square and v2 is a square, then v1/v2 = u2m+1 for some m 2 Z . Then
by lemma 87 and 88 we know [gv1 ,v2] = [gu2m+1,1] = [gu,1] � [gu2m,1]. Note that
[gv2,v1] = �[gv1,v2 ] = �[gu,1]� [gu�2m,1]. Third, assume that both v1 and v2 are non-
squares in F⇥

q . Since F⇥
q /F⇥2

q
⇠= Z/2Z , we can find an m 2 Z such that v1/v2 = u2m .

We have [gv1 ,v2] = [gu·u2m,u] by lemma 87 and scaling by the square u/v2 . We can now
apply lemma 86 and then lemma 88 to get

[gu·u2m,u] = [gu·u2m,1]� [g1,u] = [gu,1]� [gu2m,1]� [g1,u] = [gu2m,1].

To conclude the argument we note that, for v1, v2 2 F⇥
q with v1 + v2 6= 1, there is

the relation hv1i + hv2i = hv1 + v2i + h(v1 + v2)v1v2i in GW(Fq). For s and 1 � s
in F⇥

q , this gives hsi + h1 � si = h1i + hs(1 � s)i = h1, 1i. In particular, since u, s,
and 1 � s all differ by squares and hence hui = hsi = h1 � si in GW(Fq), we have
hui+ hui = h1, 1i = hu2

, 1i in GW(Fq). By [13, Corollary 3.10] this relation implies
[X/u] �N [X/u] = [X/u2] �N [X/1] in [P1

,P1]N . By proposition 94 and lemma 90,
this implies the equality [gu,1]� [gu,1] = [gu2,1] in G0(Fq). Iterating this argument, we
get (q � 1)[gu,1] = [guq�1,1] = [g1,1]. Since [gv1 , 1] 6= [gv2 , 1] for v1 6= v2 2 F⇥

q by
proposition 101, this implies that G0(Fq) is cyclic of order q � 1 generated by [gu,1].
Hence the map [u] 7! [gu,1] is a well-defined homomorphism which is surjective and
injective. Thus  is an isomorphism in this case as well.

Finally, we assume k = R . First we determine the generators and relations for KMW
1 (R).

For u > 0, we have [�u] = [�1] + [u] + ⌘.[�1].[u] = [�1] + [u] and �[u] = [1/u].
Thus every element in KMW

1 (R) can be written as n[�1] + [u] with u > 0 for some
n 2 Z subject to the relation (n[�1] + [u]) + (m[�1] + [v]) = (n + m)[�1] + [uv].
Next we show that G0(R) has analogous generators and relations. Assume u, v > 0.
Since v is a square, lemmas 87 and 88 imply the identities

[gu,v] = [gu/v,1], and [g�u,v] = [g�u/v,1] = [g�1,1]� [gu/v,1].

Using that v is a square, lemma 87 yields the following identity

[gu,�v] = [gu/v,�1] = [gu/v,1]� [g1,�1] = �[g�1,1]� [gu/v,1]

where we have [g1,�1] = �[g�1,1] by lemma 86. Finally, using lemma 87 and 88 we
get

[g�u,�v] = [g�u/v,�1] = [g�u/v,1]� [g1,�1] = [g�1,1]� [gu/v,1]� [g1,�1] = [gu/v,1].
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This implies every element of G0(R) can be written as a sum n[g�1,1] � [gu,1] with
u > 0 and n 2 Z . By proposition 101 we know that [gu,1] 6= [gv,1] for u 6= v 2 R⇥ .
By lemma 88 we get the relation

�
n[g�1,1]� [gu,1]

�
�
�
m[g�1,1]� [gv,1]

�
= (n +

m)[g�1,1] � [guv,1] when u, v > 0. Hence the map [u] 7! [gu,1] is a well-defined
homomorphism which is surjective and injective. Thus  is an isomorphism in this
case. This finishes the proof.

A Affine representability for pointed spaces and homotopies

In this section, we discuss the results of Asok, Hoyois, and Wendt in [5], [6], and how
we apply them. While the definition of our proposed group operation on [J ,P1]N

in definition 77 is independent of motivic homotopy theory and the results of [6], we
use the affine representability results of [6] to compare our group operation with the
conventional group structure on [P1

,P1]A1 . A minor technical point to overcome is that
Asok, Hoyois, and Wendt work in the unpointed motivic homotopy category, whereas
we need the analogous results in the pointed setting. The purpose of this appendix is
to explain how the pointed analogs can be deduced. To keep the presentation brief, we
use the conventions and notation of the papers [5] and [6]. We thank Marc Hoyois for
helpful comments.

Let Spc(k) denote the category of simplicial presheaves on Smk . Let Spc
⇤
(k) denote

the category of pointed simplicial presheaves on Smk . We refer to an object in Spc(k)
(respectively in Spc

⇤
(k)) as a (pointed) motivic space. For a motivic space Y , let

SingA
1Y denote the singular functor defined in [5, §4.1], see also [23, page 88]. If Y

is pointed by a morphism y : Spec k ! Y , then the pointed singular functor SingA
1

⇤
Y

is defined as the fiber over y. More precisely, let X be a pointed smooth k-scheme
pointed by the morphism x : Spec k! X , then SingA

1

⇤
Y is determined by the pullback

square of simplicial sets

(122) (SingA
1

⇤
Y)(X) //

✏✏

(SingA
1Y)(X)

x⇤
✏✏

point = (SingA
1

Spec k)(Spec k)
y⇤
// (SingA

1Y)(Spec k).

We note that, on 0-simplices, x induces induces a map of sets x⇤ : Spc(k)(X,Y) !
Spc(k)(Spec k,Y). Hence, (SingA

1

⇤
Y)(X)0 is the set Spc

⇤
(k)(X,Y) of pointed mor-

phisms X ! Y . On 1-simplices, x induces a map of sets x⇤ : Spc(k)(X ⇥ A1
,Y) !

Spc(k)(A1
,Y). Hence, (SingA

1

⇤
Y)(X)1 is the set of pointed naive A1 -homotopies of

pointed morphisms X ! Y .
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Remark 123 In particular, if Y = Y is represented by a pointed smooth k-scheme
Y , the set ⇡0((SingA

1

⇤
Y)(X)) is the set of pointed naive homotopy classes of pointed

morphisms X ! Y described in section 2.4, that is,

⇡0((SingA
1

⇤
Y)(X)) = [X,Y]N

.

We recall the following definition from [6]:

Definition 124 [6, Definition 2.1.1] Let F 2 Spc(k) and let F ! eF be a fi-
brant replacement in the A1 -model structure on Spc(k). There is a canonical map
SingA

1F ! eF that is well-defined up to simplicial homotopy equivalence. Then
F 2 Spc(k) is called A1 -naive if the map (SingA

1F)(X) ! eF(X) is a weak equiva-
lence of simplicial sets for every affine smooth k-scheme X .

We will now show how the unpointed notion of A1 -naivity of definition 124 translates
to the pointed setting.

Proposition 125 Let Y 2 Spc
⇤
(k) be a pointed motivic space. Assume that the

underlying unpointed motivic space Y is A1 -naive. Then, for every affine pointed
smooth k-scheme X , the canonical map ⇡0((SingA

1

⇤
Y)(X))

⇠=�! [X,Y]A1 is a bijection.

Proof Let (X, x) be a pointed smooth k-scheme, and let p : X ! Spec k denote the
canonical morphism. Then p induces a map p⇤ : (SingA

1Y)(Spec k) ! (SingA
1Y)(X)

of simplicial sets such that x⇤ � p⇤ is the identity on (SingA
1Y)(Spec k). This shows

that the map x⇤ is a Kan fibration. Since the Kan–Quillen model structure on simplicial
sets is right proper, this implies that (SingA

1

⇤
Y)(X) is the homotopy fiber of x⇤ .

Let Y ! RA1Y be a fibrant replacement of Y in the A1 -model structure on Spc
⇤
(k).

After forgetting the basepoint, RA1Y is fibrant in the A1 -model structure on the category
Spc(k) of unpointed motivic spaces. Since the singular functor preserves A1 -fibrations,
SingA

1
RA1Y is fibrant and we may assume eY = SingA

1
RA1Y . Moreover, we get the

following commutative diagram of simplicial sets which, by the above argument, is a
morphism of homotopy fiber sequences for every pointed smooth k-scheme (X, x).

(126) (SingA
1

⇤
Y)(X) //

✏✏

(SingA
1

⇤
RA1Y)(X)

✏✏

(SingA
1Y)(X) //

x⇤
✏✏

(SingA
1
RA1Y)(X)

x⇤
✏✏

(SingA
1Y)(Spec k) // (SingA

1
RA1Y)(Spec k)
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Now we assume that the underlying simplicial presheaf of Y is A1 -naive and that X
is affine. Since Y is A1 -naive and both X and Spec k are affine, the horizontal maps
in the middle and at the bottom are weak equivalences of simplicial sets. Thus, since
diagram (126) is a morphism of homotopy fiber sequences, the top horizontal map
is a weak equivalence of simplicial sets. Hence it induces a bijection on ⇡0 . Since
⇡0((SingA

1

⇤
RA1Y)(X)) = [X,Y]A1 , this proves the assertion.

Lemma 127 The smooth k-schemes J and P1 are A1 -naive.

Proof Let Q2 be the smooth affine quadric over Z defined by xy = z(z + 1). By [6,
Theorem 4.2.2], Q2 is A1 -naive. The scheme endomorphism of SpecZ[x, y, z] given
by the ring homomorphism defined by sending x 7! z, y 7! �y, z 7! �x induces an
isomorphism Q2 ⇠= J . Hence J is A1 -naive. By [6, Lemma 4.2.4] an affine torsor
bundle over a base space is A1 -naive if and only if the base space is A1 -naive. Since
J is A1 -naive and an affine torsor bundle over P1 , it follows that P1 is A1 -naive.

Proposition 128 The canonical map ⌫ : [X,P1]N ⇠=�! [X,P1]A1 is a bijection for every
affine pointed smooth k-scheme X .

Proof The proposition follows from remark 123 and proposition 125, since lemma
127 shows P1 is A1 -naive.

For X = J , the previous proposition yields the comparison of the sets [J ,P1]N and
[J ,P1]A1 of pointed homotopy classes that we wanted.

B Facts about the resultant

In sections 2.3 and 5.1 we used the following facts about the resultant for which we
now provide references or proofs.

Throughout this section we let S be an integral domain and let A = anXn +an�1Xn�1 +
. . .+a0 and B = bnXn+bn�1Xn�1+. . .+b0 be polynomials over S in the indeterminate
X .

Lemma 129 (Remark 4 on page IV.76 in [11]) Assume res(A,B) 2 S⇥ . Then there
exist polynomials U,V 2 S[X] such that AU + BV = 1.



Making the motivic group structure on the endomorphisms of the projective line explicit 57

Lemma 130 (Remark 1 on page IV.76 in [11]) Let Ã = an + an�1X + . . . + a0Xn

and B̃ = bn + bn�1X + . . . + b0Xn be the reversed polynomials of A and B . If
res(A,B) 2 S⇥ , then res(Ã, B̃) = (�1)nres(A,B) 2 S⇥ .

Lemma 131 (Remark 5 on page IV.77 in [11]) Assume res(A,B) 2 S⇥ . Let C 2
S[X] be a polynomial such that deg(A) � deg(BC). Then we have res(A + BC,B) =
res(A,B).

Lemma 132 Assume res(A,B) 2 S⇥ and that A is monic. Then we have

res
✓

AX � 1
u

B, uA
◆

= �ures(A,B) for all u 2 S⇥.

Proof The strategy of the proof is as follows: We determine the Sylvester matrix for
the pair

�
AX � 1

uB, uA
�

and will then use elementary row and column operations to
confirm that it has the determinant claimed.

First note that res
�
AX � 1

uB, uA
�
= un+1res

�
AX � 1

uB,A
�

. Let A =
Pn

i=0 aiXi , and
B =

Pn
i=0 biXi . Let ci = ai�1 � 1

ubi for 0  i  n + 1 and set a�1 = bn+1 = 0.
Then AX � 1

u B =
Pn+1

i=0 ciXi . The Sylvester matrix for the pair
�
AX � 1

uB,A
�

is
0

BBBBBBBBBBBBB@

cn+1 0 . . . 0 0 0 . . . 0

cn cn+1
... an 0

...
...

...
. . .

...
...

. . .
c1 c2 . . . cn+1 a1 . . . an 0
c0 c1 . . . cn a0 . . . an�1 an

0 c0 . . . cn�1 0 a0 . . . an�1
...

. . .
...

...
. . .

...
0 0 . . . c0 0 0 . . . a0

1

CCCCCCCCCCCCCA

.

Since cn+1 = 1, we can remove the first row and first column to obtain a submatrix
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with the same determinant, namely
0

BBBBBBBBBBBBBBBB@

cn+1 0 . . . 0 an 0 . . . 0 0

cn cn+1
... an�1 an

. . .
...

...
...

. . .
...

...
. . . . . .

...
c2 c3 . . . cn+1 a1 a2 . . . an 0
c1 c2 . . . cn a0 a1 . . . an�1 an
c0 c1 . . . cn�1 0 a0 . . . an�2 an�1
... c0

. . .
...

...
. . .

...
...

0 0
. . . c1 0 0 . . . a0 a1

0 0 . . . c0 0 0 . . . 0 a0

1

CCCCCCCCCCCCCCCCA

.

Subtracting column 1 from column n + 1 yields
0

BBBBBBBBBBBBBBBB@

cn+1 0 . . . 0 0 0 . . . 0 0

cn cn+1
... 1

ubn an
. . . . . . 0

...
...

. . .
...

...
...

. . .
c2 c3 . . . cn+1

1
ub2 a2 . . . an 0

c1 c2 . . . cn
1
ub1 a1 . . . an�1 an

c0 c1 . . . cn�1
1
ub0 a0 . . . an�2 an�1

... c0
. . .

...
...

. . .
...

...

0 0
. . . c1 0 0 . . . a0 a1

0 0 . . . c0 0 0 . . . 0 a0

1

CCCCCCCCCCCCCCCCA

.

Once again, the determinant of this matrix is the same as that of the submatrix where
the first row and first and column removed. We remove them and obtain0

BBBBBBBBBBBBBBBBBBB@

cn+1 0 . . . 0 1
ubn an 0 . . . 0 0

cn cn+1
... 1

ubn�1 an�1 an
. . .

...
...

...
. . .

...
...

...
. . . . . .

...
c3 c4 . . . cn+1

1
ub2 a2 a3 . . . an 0

c2 c3 . . . cn
1
ub1 a1 a2 . . . an�1 an

c1 c2 . . . cn�1
1
ub0 a0 a1 . . . an�2 an�1

c0 c1 . . . cn�2 0 0 a0 . . . an�3 an�2
... c0

. . .
...

...
. . .

...
...

0 0
. . . c1 0 0 0 . . . a0 a1

0 0 . . . c0 0 0 0 . . . 0 a0

1

CCCCCCCCCCCCCCCCCCCA

.
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We subtract column n + i from column i for each i < n, and the result is that at each
entry ci , we get instead ci � ai�1 = � 1

ubi .
0

BBBBBBBBBBBBBBBBBBB@

� 1
ubn+1 0 . . . 0 1

ubn an 0 . . . 0 0

� 1
ubn � 1

ubn+1
... 1

ubn�1 an�1 an
. . .

...
...

...
. . .

...
...

...
. . . . . .

...
� 1

ub3 � 1
ub4 . . . � 1

ubn+1
1
ub2 a2 a3 . . . an 0

� 1
ub2 � 1

ub3 . . . � 1
ubn

1
ub1 a1 a2 . . . an�1 an

� 1
ub1 � 1

ub2 . . . � 1
ubn�1

1
ub0 a0 a1 . . . an�2 an�1

� 1
ub0 � 1

ub1 . . . � 1
ubn�2 0 0 a0 . . . an�3 an�2

... � 1
ub0

. . .
...

...
. . .

...
...

0 0
. . . � 1

ub1 0 0 0 . . . a0 a1
0 0 . . . � 1

ub0 0 0 0 . . . 0 a0

1

CCCCCCCCCCCCCCCCCCCA

Then multiplying the first n columns by u and applying a cyclic permutation of the n
first columns yields the Sylvester matrix of the pair (B,A). The sign of the permutation
is (�1)n�1 . Interchanging column i with n + i for all i  n yields (A,B), and this
needed another permutation of sign (�1)n�1 , so the signs cancel out.

C Testing compatibility via real realization and signatures

Now we provide the additional evidence for conjecture 82 and a positive answer to
question 83 referred to in section 4.

We assume that k is a subfield of R . Let H⇤(k) denote the homotopy category of
pointed smooth k-schemes and let H⇤ be the homotopy category of pointed topological
spaces. By [23] sending a smooth k-scheme X to the topological space X(R) equipped
with its usual structure of a real manifold extends to a functor < : H⇤(k) ! H⇤ , see
also [4, page 14] and [14, Section 5.3].

For a smooth map f between oriented compact smooth manifolds of the same di-
mension, let degtop(f ) 2 Z denote the topological Brouwer degree of f . In [21]
Morel describes the analog of the topological degree map in A1 -homotopy theory. For
endomorphisms of P1 it defines a homomorphism

degA
1
: [P1

,P1]A
1 ! GW(k).

Let f : P1 ! P1 be a morphism. Since we assume that k is a subfield of R , we
can form the real realization <(f ) : P1(R) ! P1(R). Following Morel, the signature,
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denoted sgn, of the quadratic form given by the A1 -Brouwer degree of f equals the
topological Brouwer degree of <(f ), i.e.,

sgn
⇣

degA
1
(f )
⌘
= degtop(<(f )).(133)

We note that, in some form, this was also shown by Eisenbud, Levine, and Teissier
in [15, Theorem 1.2] for the local degree of maps between real affine spaces. The latter
approach has been incorporated into the motivic theory by Kass and Wickelgren [18].

The motivic Brouwer degree map degA
1

is a homomorphism for the conventional group
structure �A1 on [P1

,P1]A1 , and the signature is additive. Hence, for morphisms
f , g : P1 ! P1 and their sum f �A1 g in [P1

,P1]A1 , (133) implies

degtop
⇣
<
⇣

f �A1
g
⌘⌘

= sgn
⇣

degA
1
⇣

f �A1
g
⌘⌘

(134)

= degtop(<(f )) + degtop(<(g)).

We will now use this fact to test the compatibility of the action of definition 73 and
thereby of definition 77 with the conventional group structure in the following way.

The real points J (R) of J form a surface in R3 given by the equation x(1�x)�yz = 0.
The intersection with the plane defined by y = z is the circle given by the set of points
satisfying x(1� x)� y2 = 0. Its center is the point (1/2, 0, 0) 2 R3 . We parameterize
this circle via the map � : S1 ! J (R) given by

� : ✓ 7!
⇣

1/2 + cos(✓)/2, sin(✓)/2, sin(✓)/2
⌘
.

The real realization of P1 is the topological real projective line RP1 . Hence, for a
morphism f : J ! P1 , we may form the composition <(f ) � � which is a smooth map
S1 ! RP1 . We can then apply the topological Brouwer degree to the composition
<(f ) � � . Since the real realization of a naive homotopy induces a homotopy of maps
between topological spaces, this induces a well-defined map

degtop(<(�) � �) : [J ,P1]N �! Z
f 7�! degtop(<(f ) � �).
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Lemma 135 The following diagram commutes.

[J ,P1]N

⇠

  

⌫

✏✏

degtop(<(�)��)

��

[J ,P1]A1

(⇡⇤)�1

✏✏

degtop(<(�)��)
// Z

[P1
,P1]A1

⇡
⇤

II

degtop(<(�))

BB

(136)

Proof To prove the assertion it suffices to show that both parts of the diagram commute.
The functor < commutes with the canonical map ⌫ : [J ,P1]N ! [J ,P1]A1 . This
implies that the upper part commutes. We verify in example 142 that for ⇡ : J ! P1

the composite map <(⇡) � � : S1 ! RP1 is an orientation preserving diffeomorphism.
Now let f : P1 ! P1 be a morphism. Since the composition with <(⇡) � � preserves
degrees, we obtain the identity

degtop(<(f � ⇡) � �) = degtop(<(f ) � <(⇡) � �) = degtop(<(f )).

This implies that the lower part of diagram (136) commutes and finishes the proof.

This implies the following necessary condition for the compatibility of the operations
� and �A1 :

Proposition 137 Assume that ⇠ is a group homomorphism. Then we have

degtop(<(⇠(f � g))) = degtop(<(f ) � �) + degtop(<(g) � �).

Proof The assumption that ⇠ is a group homomorphism implies

degtop(<(⇠(f � g))) = degtop(<(⇠(f )�A1
⇠(g))).

Identity (134) implies

degtop(<(⇠(f ) �A1
⇠(g))) = degtop(<(⇠(f ))) + degtop(<(⇠(g))).

Commutativity of diagram (136) implies

degtop(<(⇠(f ))) + degtop(<(⇠(g))) = degtop(<(f ) � �) + degtop(<(g) � �).

Putting these identities together yields the assertion.

As a special case, we get the following necessary condition for the compatibility of �
with the conventional group structure:
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Corollary 138 Let F : J ! P1 be a pointed morphism. Then, if ⇠ is a group
homomorphism, we must have

degtop(<(F � ⇡) � �) = degtop(<(F) � �) + 1.

In the following section we will apply corollary 138 in a concrete case in example 143.

Moreover, we exclude a potential alternative to the operation � of definition 73 in
example 146.

Remark 139 Let F : J ! P1 again be a pointed morphism. Assume that question 83
has a positive answer, i.e., assume that ⇡̃ is naively homotopic to �⇡ . Then proposition
137 shows that, if ⇠ is a group homomorphism, then we must expect to get

degtop(<(F � ⇡̃) � �) = degtop(<(F) � �)� 1.(140)

Note that, since we do not know whether ⇡̃ is naively homotopic to �⇡ , (140) may
fail to hold for some F even though ⇠ is a group homomorphism.

However, we confirm formula (140) in a concrete case in example 145.

We will now compute the topological degrees and thereby the signatures of several
maps and apply the previous observations.

Example 141 Consider the morphism g1,�1 : J ! P1 defined by the unimodular
row (2x � 1, 2y). Its real realization is the map <(g1,�1) : <(J )! <(P1) defined by

<(g1,�1) : (x, y, z) 7! [2x� 1 : 2y].

Precomposing with � gives

<(g1,�1) � � : ✓ 7! [cos(✓) : sin(✓)] ,

which is the usual double cover of RP1 by S1 and has topological Brouwer degree 2.

As explained in section 2.3, a morphism f : J ! P1 may be described by gluing
together partially defined maps on open subsets. In the following examples we will
define a morphism <(f )�� : S1 ! RP1 by gluing <(f |D(x))�� : ��1(<(D(x)))! RP1

and <(f |D(1�x)) � � : ��1(<(D(1 � x))) ! RP1 on their overlaps in the respective
domains.

Example 142 The real realization of ⇡ : J ! P1 is defined on <(D(x)) by

<(⇡|D(x)) : (x, y, z) 7! [x : y],
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and on <(D(1� x)) by

<(⇡|D(1�x)) : (x, y, z) 7! [z : 1� x].

Precomposing with � gives

<(⇡|D(x)) � � : ✓ 7! [1/2 + cos(✓)/2 : sin(✓)/2],
<(⇡|D(1�x)) � � : ✓ 7! [sin(✓)/2 : 1/2 � cos(✓)/2],

which glue together to give a map of degree 1:

(<(⇡) � �)(✓) =

(
[1 + cos(✓) : sin(✓)] ✓ 6= ⇡,

[0 : 1] ✓ = ⇡.

This shows that <(⇡) � � is an orientation preserving diffeomorphism and has topolog-
ical Brouwer degree 1.

In the following example we test the necessary condition of corollary 138 in a concrete
case.

Example 143 Recall that the unimodular row g1,�1 = (2x� 1, 2y) can be augmented
to the following matrix with determinant 1:

m1,�1 =

✓
2x � 1 �2z

2y 2x� 1

◆
.

The group action of definition 73 yields the map F := g1,�1 � ⇡ = (2x � 1,�2z :
2y, 2x � 1)1 .

Taking real realization and precomposing with � yields the map the map <(F)�� : S1 !
RP1 given by

(<(F) � �)(✓) =

(
[cos(✓) + cos(2✓) : sin(✓) + sin(2✓)] ✓ 6= ⇡,

[0 : 1] ✓ = ⇡.

The topological degree of this map is 3.

Hence our computation confirms that

degtop(<(F) � �) = 3 = 2 + 1 = degtop(<(g�1,1) � �) + degtop(<(⇡) � �),

as required for the compatibility of � with �A1 .

The next example confirms that the signature of the motivic Brouwer degree of ⇡̃ has
the value �1 as expected if question 83 has a positive answer.
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Example 144 The real realization of the morphism ⇡̃ = (1, 0 : 0,�1)�1 : J ! P1 is
defined on <(D(x)) and <(D(1� x)) respectively by <(D(x)) by

<(⇡̃|D(x)) : (x, y, z) 7! [x : �z],
<(⇡̃|D(1�x)) : (x, y, z) 7! [y : �1 + x].

Precomposing with � gives

<(⇡̃|D(x)) � � : ✓ 7! [1/2 + cos(✓)/2 : � sin(✓)/2],
<(⇡̃|D(1�x)) � � : ✓ 7! [sin(✓)/2 : �1/2 + cos(✓)/2],

which glue together to give a map of topological Brouwer degree �1.

Now we confirm that identity (140) of remark 139 does hold in an example.

Example 145 Consider the unimodular row F = (2x�1, 2z) which can be augmented
to the following matrix

M =

✓
2x� 1 �2y

2z 2x� 1

◆

with determinant 1. Note that F is homotopic to g1,�1 by lemma 62. We let F act
on ⇡̃ via the action of definition 73. This yields the map L := F � ⇡̃ = (2x � 1, 2y :
2z,�2x + 1)�1 . Precomposing its real realization with � yields the same map as in
example 142 where we showed it has topological Brouwer degree 1.

Hence our computation confirms

degtop(<(L) � �) = 1 = 2� 1 = degtop(<(F) � �) + degtop(<(⇡̃) � �),

as required in remark 139.

Example 146 Consider now an alternative action � of [J ,P1]N
0 on [J ,P1]N de-

fined as follows. For [(A,B)] 2 [J ,A2 \ {0}]N and [s0, s1] 2 [J ,P1]N
n , extend the

unimodular row (A,B) to a matrix M in SL2(R) and define

[(A,B)] � [s0, s1] := [MT · (s0, s1)T].

Again we look at the unimodular row F = (A,B) = (2x � 1, 2z) and the matrix M of
example 145. The action � of F on ⇡ yields the morphism H := F�⇡ = (2x�1, 2z :
�2y, 2x � 1)1 = (1, 0 : 0,�1)1 . Taking real realization and precomposing with �

yields the map <(H) � � : S1 ! RP1 given by

(<(H) � �)(✓) =

(
[1 + cos(✓) : � sin(✓)] ✓ 6= ⇡,

[0 : 1] ✓ = ⇡.
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This map has topological Brouwer degree �1. Hence our computation shows

degtop(<(F � ⇡) � �) = �1 6= 3 = degtop(<(F) � �) + degtop(<(⇡) � �).

Thus, by the analogous statement of corollary 138 for � , we see that � cannot be used
to define an operation compatible with the conventional group structure.
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Polyhedral products in abstract and motivic homotopy
theory

William Hornslien
∗

Abstract

We introduce polyhedral products in an 1-categorical setting. We generalize a
splitting result by Bahri, Bendersky, Cohen, and Gitler that determines the stable
homotopy type of the a polyhedral product. We also introduce a motivic refinement
of moment-angle complexes and use the splitting result to compute cellular A1-
homology, and A1-Euler characteristics.

1 Introduction

Toric geometry is an important part of algebraic geometry. Since its inception in the 70s,
it has grown substantially and proven its usefulness in other fields such as combinatorics,
commutative algebra, and algebraic statistics. Toric geometry is the study of a certain
class of algebraic varieties called toric varieties. These algebraic varieties are defined
particularly nice and combinatorially, which makes it easier to do computations and
prove theorems. In algebraic geometry, toric varieties are great for testing theories
before proving results for larger classes of algebraic varieties. In the past decades, ways
of studying toric geometry through the lens of topology have been developed. One way
is by using methods from the field of toric topology, which in short, looks at the real and
complex points of toric varieties as manifolds and studies their topological properties.
Toric topology only considers toric varieties over the real and complex numbers, but
what about di↵erent bases? Morel and Voevodsky’s motivic homotopy category has
made it possible to do homotopy theory with smooth algebraic varieties over any base
field. In this paper we unite the two topological viewpoints and use methods from toric
topology in motivic homotopy theory to study toric geometry over any field.

The field of toric topology started with work by Davis and Januszkiewicz [15]. They
wanted to study a family of manifolds called quasi-toric manifolds. The quasi-toric
manifolds were defined by simple polytopes and were homotopic to the complex points
of a smooth projective toric varieties. Along with each quasi-toric manifold, they defined
an auxiliary space, which we will call ZK , and showed that the quasi-toric manifold could
be realized as orbit space of a torus (a product of n circles) acting on ZK . This is a

∗william.hornslien@ntnu.no
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topological version of what is known as Cox’s construction in algebraic geometry [13].
The space ZK turned out to be an interesting object in its own right, and was named the
moment-angle complex by Buchstaber and Panov [9]. They found out that ZK could
be described as a union of disks and circles according to the combinatorial data of a
simplicial complex (see Section 2.2 and 2.3). The quasi-toric manifolds were quotients
of moment-angle complexes associated to the case where the simplicial complex was a
triangulation of a sphere. In [6] Bahri, Bendersky, Cohen, and Gitler introduce what
they call polyhedral products (X,A)K for a pair of spaces A ⇢ X (see Section 2.2 for
a precise definition). Moment-angle complexes were unions of disks and circles and
coincided with the polyhedral product (D2

, S
1)K . There is also a closely related real

moment-angle complex RZK , which is the polyhedral product (D1
, S

0)K . Results dating
all the way back to the 60s, such as a paper by Porter [36] could be put into the
framework of polyhedral products. Depending on the choice of pairs of spaces A ⇢ X,
polyhedral products have connections to surprisingly many fields such as commutative
algebra, geometric group theory, and robotics. A survey covering the vast applications
and properties of polyhedral products can be found in [5].

Motivic homotopy theory takes place in Morel and Voevodsky’s category of motivic
spaces H(k) over a field k [35]. The category of motivic spaces is a homotopy theory for
smooth schemes (algebraic varieties) over a field. See Section 5.3 for a more in-depth
explanation. In motivic homotopy theory, the a�ne line A1 takes the role of the interval
in classical homotopy theory, and is in particular contractible inH(k). Motivic homotopy
theory allows for using methods from algebraic topology for algebraic varieties, but it
usually comes with some complications. One disadvantage with motivic homotopy theory
is that it is in general di�cult to do explicit computations. For example, the motivic
cohomology of a point is only known in special cases [38].

We introduce a motivic moment-angle complex Z
A1

K
, which is a motivic refinement

of its classical counterpart. The motivic moment-angle complex is roughly speaking a
union of A1’s and Gm’s, which act like disks and circles in H(k). One could define
polyhedral products directly in H(k), but we have chosen to generalize the construction
to an abstract homotopical setting. That is, in Definition 3.7 we define polyhedral
products in a cartesian closed 1-category with small colimits in the sense of Lurie [30].
In the 1-category of topological spaces, this definition recovers the original definition.
We then prove an abstract homotopical version of splitting result of Bahri, Bendersky,
Cohen, and Gitler [6] concerning how certain polyhedral products split into a wedge
of simpler pieces after a suspension (see Theorem 4.5). Before stating our results, we
will need to introduce some notation. Fix a cartesian closed 1-category C with small
colimits and let K be a simplicial complex. We write |K| for the geometric realization K

in C (see Definition 4.1 and 4.3). By I 62 K, we mean a set I of vertices in K such that
they do not span a face in K. For a set of vertices I, we let KI be the full subcomplex
of K corresponding to the vertex set I. The cardinality of the set I is denoted by |I|.
We denote suspension functor by ⌃, and the smash product of two pointed objects X,Y

in C by X ^ Y . The following theorem is a special case of Theorem 4.5.

Theorem A. Let C be a cartesian closed 1-category with small colimits and fix a
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morphism i : A ! X of pointed objects where X is contractible. Let K be a simplicial
complex. Then there is an equivalence

⌃(X,A)K ' ⌃2
_

I 62K

|KI | ^A
^|I|

.

The statement above for topological spaces was applied in [6] to describe the stable
homotopy type of moment-angle complexes.

The motivic moment-angle complex is defined as the polyhedral product (A1
,Gm)K ,

and since A1 is contractible in H(k), we can apply Theorem A to Z
A1

K
.

Theorem B (Theorem 5.3). Let K be a simplicial complex. Then there is an equivalence
in H(k)

⌃ZA1

K ' ⌃2

0

@
_

I 62K

|KI | ^G^|I|

m

1

A '
_

I 62K

|KI | ^ S
|I|+2,|I|

.

We are now able to compute various motivic invariants of ZA1

K
. In [34] Morel and

Sawant introduced cellular A1-homology which is valued in strictly A1-invariant sheaves
of abelian groups. They compute the cellular A1-homology of punctured a�ne spaces,
projective spaces, and also low dimensional homology groups of some flag varieties.
We use the stable splitting to describe the cellular A1-homology of ZA1

K
in terms of K.

LetKMW
i

denote the ith unramified Milnor–Witt K-theory sheaf. Let eHi(|K|) be the ith
reduced singular homology singular homology group of |K| viewed as a sheaf of abelian
groups.

Theorem C (Theorem 7.11). Let K be a simplicial complex. Then Hcell
0 (ZA1

K
) = Z and

for i > 0

Hcell
i (ZA1

K ) ⇠=
M

I 62K

eHi�1(|KI |)⌦KMW
|I|

.

To prove the theorem above, one actually needs to apply Theorem A to the derived
category of chain complexes of A1-invariant sheaves. Note that this theorem also gives
examples of varieties with integral torsion in their cellular A1-homology groups, e.g.
when K is a triangulation of RP2 (see Example 7.13).

There is a motivic version of the Euler characteristic called the A1-Euler character-
istic. By using the stable splitting we compute the A1-Euler characteristic for Z

A1

K
in

terms of K. The A1-Euler characteristic is valued in GW(k) i.e. the Grothendieck–Witt
ring of quadratic forms over k.

Theorem D (Theorem 7.25). The A1-Euler characteristic of the motivic moment-angle
complex is

�A1(ZA1

K
) = h1i �

X

I 62K

(�1)|I|(�(KI)� 1) · h�1i|I|.
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The theorem above allows us to describe the A1-Euler characteristic of ZA1

K
in terms

of the topological Euler characteristic of full subcomplexes of K. In classical topology,
knowing the (co)homology of a space is su�cient for determining the Euler characteristic,
but this is not the case in motivic homotopy theory. When we view �A1(ZA1

K
) as a

quadratic form over R, the rank of �A1(ZA1

K
) is �(ZK) and the signature of �A1(ZA1

K
)

is �(RZK). This result examplifies why Z
A1

K
is a motivic refinement of ZK and RZK .

The paper is structured as follows. In Section 2 the classical definition of a polyhedral
product and various classical results are recalled. In Section 3, we define polyhedral
products in 1-categories. Theorem A is then proven in Section 4. In Section 5, we
review polyhedral products in equivariant and motivic homotopy theory. We also define
motivic moment-angle complexes. In Section 6, we give various smooth models of motivic
moment-angle complexes, and briefly study their connection to toric varieties. Section 7
is dedicated to computing various invariants of the motivic moment-angle complexes.
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Conventions

By a topological space we mean a CW -complex. Starting in Section 2, we will use
the language of 1-categories as developed by Lurie in [30]. By 1-category, we mean
an (1, 1)-category. When necessary, we will implicitly view 1-categories as1-categories
through the nerve embedding. From Section 5, we will assume k to be a perfect field of
characteristic not equal to 2.

2 Polyhedral products

In this section we give a brief overview of some core properties of the polyhedral product
functor and review some classical results.

2.1 Preliminaries on simplicial complexes

Definition 2.1. Let m be a positive integer. An abstract simplicial complex K is a fam-
ily of subsets of [m] := {1, . . . ,m} that is closed under taking subsets. In more geometric
terms, K is a simplicial complex with m vertices labeled by the set [m] = {1, . . . ,m}.
A (n � 1)-face � of K is given by a subset � = {i1, . . . , in} with 1  i1 < . . . < in  m.
All subsets ⌧ ⇢ � define faces in K as well. In particular, K includes the empty face ;.
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Whenever we say simplicial complex, we mean an abstract simplicial complex. We
will now define an important family of subcomplexes.

Definition 2.2. Let K be a simplicial complex and I ⇢ [m]. The full subcomplex KI

consists of all faces of K that have their vertex set as a subset of I, i.e.

KI := {� \ I|� 2 K}.

Simplicial complexes can be seen as topological spaces, this is done by geometric
realization.

Definition 2.3. Denote the geometric realization of K as a topological space by |K|.

A simplicial complex comes with the natural structure of a poset. That is, the face
poset ordered by inclusion. Each face represents an object and if � is a subface of ⌧ ,
then � < ⌧ in the poset. To this poset is an associated category, which will be essential
going forward.

Definition 2.4. Let K be a simplicial complex. The face poset category K is defined as
follows. The objects of K are given by the simplices of K, including an initial object ;
which corresponds to the empty face. Let �, ⌧ 2 K be two simplices of K. If � is a
subface of ⌧ , then there is a unique morphism f�⌧ : � ! ⌧ . Let I ⇢ [m], we denote the
face poset category of KI by KI .

The following two constructions are central in combinatorics.

Definition 2.5. Let k be a ring. For a simplicial complex K, we define the Stanley–
Reisner ideal IK as the square-free monomial ideal corresponding to non-faces of K,
i.e.

IK = (xi1 . . . xir |{i1, . . . , ir} 62 K).

We define the Stanley–Reisner ring as the quotient

k[K] := k[x1, . . . , xm]/IK .

The Stanley–Reisner ring has connections to fields such as toric geometry, polytopes,
and splines [37, Chapter III].

Definition 2.6. To a simplicial complex K, the Alexander dual K
_ is the simplicial

complex whose faces are complements of non-faces of K, i.e.

K
_ := {� 2 [m]|[m] \ � 62 K}.

See [10, Example 2.26 and Corollary 2.28] for further results on Alexander duality
of simplicial complexes.
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Example 2.7. Let K be the boundary of a square, i.e.

K = {;, {1}, {2}, {3}, {4}, {1, 3}, {2, 3}, {2, 4}, {1, 4}}.

1 3

4 2

Then
k[K] = k[x1, x2, x3, x4]/(x1x2, x3x4)

and the Alexander dual is the simplicial complex

K
_ = {;, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}.

1 3

2 4

Note the swap of position of vertices 2 and 4 in the picture.

2.2 The classical construction

Polyhedral products were first defined by Bahri, Bendersky, Cohen, and Gitler in [6]. A
good survey of the work done and its connections to other fields can be found in [5]. Let

(X,A) = ((X1, A1), . . . , (Xm, Am))

be a sequence of m pairs of pointed topological spaces Ai ⇢ Xi. Let K be a simplicial
complex on the vertex set [m] = {1, . . . ,m}. The polyhedral product (X,A)K is defined
as the following union

(X,A)K =
[

�2K

D(�) ⇢
mY

i=1

Xi,

where

D(�) =
mY

i=1

Yi where Yi =

(
Xi if i 2 �,

Ai if i 62 �.

Remark 2.8. When all pairs (Xi, Ai) are the same pair and K is a simplicial complex,
we will write (X,A)K for the associated polyhedral product.

A wide array of spaces can be created as polyhedral products.

Example 2.9. Let K be a simplicial complex with two disjoint vertices.

1. (D1
, S

0)K = D
1 ⇥ S

0 [ S
0 ⇥D

1 ' S
1
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2. (D2
, S

1)K = D
2 ⇥ S

1 [ S
1 ⇥D

2 ' S
3

3. (S1
, ⇤)K = S

1 ⇥ ⇤ [ ⇤ ⇥ S
1 ' S

1 _ S
1

Example 2.10. Let K be a disjoint union of m points. Then there is a homotopy
equivalence (X, ⇤)K = X1 _ . . . _Xm.

In this case, one can observe how (X, ⇤)K interpolates between X1 ⇥ . . . ⇥ Xm

and X1 _ . . . _ Xm when K ranges from a full (m � 1)-simplex to m disjoint points.
The following proposition tells us how certain operations with simplicial complexes af-
fect the polyhedral products.

Proposition 2.11 ([11, Proposition 4.2.5]). Let K and K
0 be two simplicial complexes

and let K ?K
0 denote their join. Then (X,A)K ⇥ (X,A)K

0 ' (X,A)K?K
0
.

Example 2.12. Let K1 = {;, {1}, {2}}, K2 = {;, {3}, {4}} be simplicial complexes. In
this case K1 and K2 are complexes consisting of two disjoint points. Let K = K1 ?K2,
then K is a complex shaped like the boundary of a square as in Example 2.7.

1. (D1
, S

0)K ' S
1 ⇥ S

1

2. (D2
, S

1)K ' S
3 ⇥ S

3

Example 2.13. Let K = @�n.

1. (D1
, S

0)K ' S
n

2. (D2
, S

1)K ' S
2n+1

Example 2.14 ([20, Corollary 9.7]). Let K be the disjoint union of m points. Then

there is a homotopy equivalence (D2
, S

1)K '
W

m

l=2(S
l+1)_(l�1)(ml ).

The following two results are due to Bahri, Bendersky, Cohen, and Gitler. In partic-
ular, they show how certain polyhedral products split into a wedge of nice pieces after
suspending. Let ⌃ denote the reduced suspension functor. When I = {i1, . . . , in} ⇢ [m]
and Y1, . . . , Ym are pointed topological spaces, we will write bY I := Yi1 ^ . . . ^ Yik .

Theorem 2.15 ([6, Theorem 2.15]). Let K be a simplicial complex on the vertex set [m]
and let (X,A) be a family of pairs. If Ai is contractible for each 1  i  m, then

⌃(X,A)K ' ⌃
_

I2K

bXI
.

There is also a version of the splitting when all the Xi’s are contractible.

Theorem 2.16 ([6, Theorem 2.21]). Let K be a simplicial complex on the vertex set [m]
and let (X,A) be a family of pairs. If Xi is contractible for each 1  i  m, then

⌃(X,A)K ' ⌃
_

I 62K

|KI | ? bAI
.
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In particular, the two splitting results above are special cases of a theorem that
requires the map Ai ! Xi to be null-homotopic for all i [6, Theorem 2.13].

In [14] Davis finds a general formula for the Euler characteristic of the polyhedral
product.

Theorem 2.17 ([14]). Let K be a simplicial complex on the vertex set [m] and A ⇢ X

be two finite CW-complexes. Then

�((X,A)K ) =
X

�2K

(�(X) � �(A))|�|�(A)m�|�|
.

Example 2.18. Let K be a simplicial complex and X a finite CW -complex.

1. �((D2
, S

1)K) = 0

2. �((D1
, S

0)K) = ⌃�2K(�1)|�| · 2m�|�|

3. �((X, ⇤)K ) = ⌃�2K(�(X) � 1)

2.3 Moment-angle complexes

A particularly well studied family of polyhedral products are the moment-angle com-
plexes. For a simplicial complex K, the associated moment-angle complex is defined as
the polyhedral product ZK := (D2

, S
1)K . In fact, moment-angle complexes were studied

long before polyhedral products were defined. The original construction goes back to
Davis and Januskiewicz in [15, §4.1], but only for a family of moment-angle complexes
known as moment-angle manifolds. However, the definition that inspired polyhedral
products, i.e. moment-angle complexes viewed as a union of products, is due to Buch-
staber and Panov [10, Definition 6.10]. Since Buchstaber and Panov’s reinterpretation
of moment-angle complexes, a lot of progress has been made. We will now present some
results that both will be of use later, and emphasise how moment-angle complexes are
studied.

Since D
2 is contractible, we can use Theorem 2.16 to describe ⌃ZK . There is a

homotopy equivalence

⌃ZK '
_

I 62K

⌃|I|+2|KI |.

This decomposition makes it possible to describe the homology of ZK in terms of full
subcomplexes of K for any homology theory. In particular, it describes the singular
cohomology groups of ZK . The cohomological ring structure can also be described.
In [10], the cohomology of ZK is computed using the Eilenberg–Moore spectral sequence.
For a ring k, recall that k[K] is the Stanley–Reisner ring as defined in Definition 2.5.

Theorem 2.19 ([10, Theorem 7.6]). Let K be a simplicial complex on the vertex set [m].
Let k be a field or Z. There is an isomorphism of algebras

H
2j�i(ZK ;k) ⇠= Tor�i,2j

k[x1,...,xm](k,k[K]).
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The isomorphism of Theorem 2.19 gives a natural bigrading on the cohomology
ring of ZK . The wedge decomposition of ⌃ZK splits the cohomology of ZK into nice
subgroups given by the cohomology of full subcomplexes of K. A result by Baskakov
makes it possible to describe the ring structure with respect to the full subcomplexes KI .

Theorem 2.20 ([7, Theorem 1], [8, Theorem 1]). Let K be a simplicial complex on m

vertices. Let k be a field or Z. There is an isomorphism of groups

H
i(ZK ;k) ⇠=

8
><

>:

k i = 0,M

I 62K

eH i�|I|�1(KI ;k) i > 0.

In particular, there is an isomorphism of algebras

H
⇤(ZK ;k) ⇠= k�

M

I 62K

eH⇤(KI ;k).

The products in the sum on the right are given as follows: for I, J 62 K, with I \ J = ;,
let ↵ 2 eHp(KI ;k) and � 2 eHq(KJ ;k) be nontrivial cohomology classes. Then there
exists a nontrivial cohomology class � 2 eHp+q(KI[J ;k) such that ↵ ^ � = �. All
products of cohomology classes in H

⇤(ZK ;k) arise in this way.

It is also possible to describe Massey products [21] and Steenrod operations [1] in
terms of full subcomplexes of K.

Moment-angle complexes also share a deep connection to toric geometry, since the
complex points of any smooth projective toric variety can be realized as the orbits of
a torus acting on the polyhedral product (C,C⇥)K . Note that we have a homotopy
equivalence ZK ' (C,C⇥)K . This is a topological version of something known as Cox
construction [13, Theorem 2.1] of smooth projective algebraic varieties in algebraic ge-
ometry. See [11, §5.4] for a description of the Cox construction from a toric topological
viewpoint.

There is also related polyhedral product called the real moment-angle complexes
defined as RZK := (D1

, S
0)K . The real moment-angle complex can be seen as the fixed

points of a C2-action on ZK . Theorem 2.16 also makes it possible to describe RZK ,

⌃RZK '
_

I 62K

⌃2|KI |.

This makes it straightforward to describe the cohomology groups of RZK . The ring
structure has been computed [12], but is far more complicated than the case of the
moment-angle complex.

3 1-categorical setup

We will now consider an 1-categorical version of polyhedral products. From now on we
freely use the language of1-categories as developed by Lurie in [30]. Let C be a cartesian
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closed1-category with finite colimits. That is, for each X 2 C the product functorX⇥�
has a right adjoint, and thus preserves all colimits. Denote the terminal object of C by ⇤.
A pointed object in C is an object X together with a map x : ⇤ ! X. From now on,
when we talk about colimits, we mean in the 1-categorical sense. Whenever C is the
nerve of a model category, computing the homotopy colimit in the underlying model
category su�ces.

Definition 3.1. The suspension of an object X 2 C is the pushout

X ⇤

⇤ ⌃X.

p

Definition 3.2. The wedge of two pointed objects X,Y 2 C is the pushout

⇤ X

Y X _ Y.

p

Definition 3.3. The smash product of two pointed objects X,Y 2 C is the pushout

X _ Y X ⇥ Y

⇤ X ^ Y.

p

Definition 3.4. The join of two pointed objects X,Y 2 C is the pushout

X ⇥ Y X

Y X ? Y.

p

Lemma 3.5 ([26, Lemma 3.5]). Let X,Y 2 C be pointed. There is an equivalence

X ? Y ' ⌃X ^ Y.

Definition 3.6. Let C be an 1-category and let

(X,A) = ((X1, A1), . . . , (Xm, Am))

be a sequence of pairs of pointed objects in C equipped with a map ◆i : Ai ! Xi. We
call (X,A) a family of pairs.
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Definition 3.7. Let (X,A) be a family of pairs and let K be a simplicial complex on
the vertex set [m]. Let K be the face poset category of K ordered by inclusions, that
is � > ⌧ if � ( ⌧ . We define the polyhedral product (X,A)K as

(X,A)K := colim
�2K

D(�),

with D(�) defined as follows:

D(�) =
mY

i=1

Yi where Yi =

(
Xi if i 2 �,

Ai if i 62 �.

For any pair of simplices � ⇢ ⌧ 2 K the map from D(�) to D(⌧) is induced by the
products of the maps ◆i and the identity. In other words, (X,A)K is the colimit of the
diagram

D : K! C.

Example 3.8. 1. Suppose that each Ai is the terminal object ⇤. If K is the disjoint
union of m points then (X, ⇤)K is X1 _X2 _ . . . _Xm.

2. Suppose that K is the (m� 1)-simplex then (X,A)K is X1 ⇥X2 ⇥ . . .⇥Xm.

3. Suppose that K is the complex of two disjoint vertices and that each Xi ' ⇤ then
(X,A)K ' ⌃A1 ^A2 ' A1 ?A2, the join of A1 and A2.

The following proposition is an 1-version of Proposition 3.9 does.

Proposition 3.9. Suppose K and K
0 are two simplicial complexes, and denote their

join by K ?K
0, then (X,A)K ⇥ (X,A)K

0
= (X,A)K?K

0
.

Proof. Since C is cartesian closed, cartesian products preserve colimits. Thus there is
there is a chain of equivalences

(X,A)K ⇥ (X,A)K
0 ' colim

�02K 0

�
(X,A)K ⇥D(�0)

�
' colim

�02K 0

✓
colim
�2K

�
D(�)⇥D(�0)

�◆
.

The iterated colimits can be rewritten as one colimit iterating over � 2 K and �
0 2 K

0.
This yields the equivalences

colim
�02K 0

✓
colim
�2K

�
D(�)⇥D(�0)

�◆
' colim

�2K,�02K 0

�
D(�)⇥D(�0)

�
' (X,A)K⇤K

0
.

We will also need a space called the polyhedral smash product. It was first defined
for topological spaces in [6].

Definition 3.10. Let (X,A) be a family of pairs and let K be a simplicial complex on
the vertex set [m]. Let K be the face poset category of K ordered by inclusions. We

define the polyhedral smash product \(X,A)
K

as

\(X,A)
K

:= colim
�2K

bD(�),
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with bD(�) defined as follows:

bD(�) =
m^

i=1

Yi where Yi =

(
Xi if i 2 �,

Ai if i 62 �.

For any pair of simplices � ⇢ ⌧ 2 K the map from bD(�) to bD(⌧) is induced by the
maps ◆i and the identity.

Definition 3.11. Let (X,A) be a family of pairs, K a simplicial complex, and I ⇢ [m].
Define

(XI , AI) = ((Xij , Aij ))
|I|

j=1

as the subfamily of (X,A) determined by I. We define (X,A)KI := (X
I
, A

I
)KI and

similarly for the polyhedral smash product \(X,A)
KI

.

We will now see how pushouts of simplicial complexes induce pushouts of polyhedral
products. Let K be a simplicial complex, and suppose there exists subcomplexes K1,K2,
and L such that K = K1 [L K2. To be able to relate the various polyhedral products,
it is important that K,K1,K2, and L are all on the same vertex set. If K is a simplicial
complex on the vertex set [m] we write K1,K2, L for the simplicial complexes K1,K2,
and L regarded as simplicial complexes on the vertex set [m].

Proposition 3.12. Let K be a simplical complex on the vertex set [m] with subcom-
plexes K1,K2, and L such that K = K1[LK2. Let (X,A) be a family of m pairs. Then
there is a pushout of polyhedral products

(X,A)L (X,A)K1

(X,A)K2 (X,A)K .

p

Proof. Denote the face categories of K1,K2, and L by K1,K2, and L. Let D1,D2

and DL be the diagram D restricted to K1,K2, and L respectively. Hence, the colimits
of D1,D2, and DL are (X,A)K1 , (X,A)K2 , and (X,A)L respectively. Let D

0 be the
following diagram of diagrams

D1  DL ! D2.

This diagram is a left Kan extension the diagram D, and hence has the same colimit
as D, which is (X,A)K . By [30, Proposition 4.4.2.2], we may compute the colimits
termwise in the diagram, which yields the desired pushout square.

Let K,L be simplicial complexes. We denote the disjoint union by K t L.

Corollary 3.13. Let K1,K2 be simplicial complexes on the vertex sets [m] and [n].
Let (X, ⇤) be a family of m+ n pairs.

(X, ⇤)K1tK2 ' (X{1,...,m}, ⇤)K1 _ (X{m+1,...,m+n}, ⇤)K2 .
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Remark 3.14. A version of Proposition 3.12 in the 1-category of spaces was used
by Grbić and Theriault in [20] to determine that moment-angle complexes have the
homotopy type of a wedge of spheres when K is a shifted simplicial complex.

4 Stable splitting of polyhedral products

In this section we will prove some stable splitting results for polyhedral products. The
results are1-categorical generalizations of work by Bahri, Bendersky, Cohen, and Gitler
in [6]. For the rest of this section, unless stated otherwise, fix C to be a cartesian
closed 1-category.

Definition 4.1. For a poset category D, let |D| be the realization of D in C. That is,
the colimit over the D-shaped diagram, with constant value ⇤ 2 C.

Definition 4.2. Let D be a poset category. For an object a 2 D let Da be the
undercategory of a. Let D<a be the category of objects in D) that are strictly smaller
than a.

Definition 4.3. When K is a simplicial complex and K is its face category, we will
write |K| := |K<;|.

Remark 4.4. When C is the 1-category of spaces, the realization |K| of Definition 4.3
and the geometric realization of K as a topological space from Definition 2.3 agrees.

The main result of this section is the following theorem.

Theorem 4.5. Let K be a simplicial complex with m vertices and let (X,A) have the
property that each map ◆i : Ai ! Xi is null. Then there is an equivalence

⌃(X,A)K ' ⌃

0

@
_

I⇢[m]

0

@
_

�2KI

|(KI)<�| ? bD(�)

1

A

1

A .

We will postpone the proof of the theorem until the end of the section. When each Xi

is contractible Theorem 4.5 simplifies to the following.

Corollary 4.6. Let K be a simplicial complex with m vertices and let (X,A) be a family
of pairs where each Xi is contractible. Then there is an equivalence

⌃(X,A)K ' ⌃
_

I 62K

|KI | ? bAI
.

Remark 4.7. Proposition 4.10 and Theorem 4.5 are 1-categorical versions of Theo-
rem 2.10 and 2.13 in [6].

To prove Theorem 4.5 and Corollary 4.6 a collection of results will be needed. We
will follow the proof strategy of [6]. The following result is known as the Ganea splitting.
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Lemma 4.8 ([16, Corollary 2.24.2]). Let C be an 1-category with finite limits and
pushouts. Then, for every pair of pointed objects X,Y 2 C, there is a natural equiva-
lence ⌃(X ⇥ Y ) ' ⌃X _ ⌃Y _ ⌃(X ^ Y ).

The stable splitting of a product gives a nice description of the stable splitting of
larger products. Consecutive applications of the Ganea splitting yields the following
result.

Corollary 4.9. Let Yi be pointed objects in C. There is an equivalence

⌃(Y1 ⇥ . . .⇥ Ym) ' ⌃
_

I⇢[m]

bY I
.

Recall that \(X,A)
K

denotes the polyhedral smash product from Definition 3.10.

Proposition 4.10. Given a simplicial complex K with m vertices and a family of
pairs (X,A), we have the following natural equivalence

⌃(X,A)K ' ⌃

0

@
_

I⇢[m]

\(X,A)
KI

1

A .

Proof. For I 2 [m] and � 2 K, define

bDI(�) :=
^

i2I

Yi where Yi =

(
Xi if i 2 �,

Ai if i 62 �.

Since suspending commutes with colimits, there is an equivalence

⌃(X,A)K ' ⌃ colim
�2K

D(�) ' colim
�2K

⌃D(�).

By Corollary 4.9 we can describe ⌃D(�) for � 2 K. For each � 2 K, there is an
equivalence

⌃D(�) = ⌃
_

I⇢[m]

bDI(�).

Since the equivalence of Corollary 4.9 was natural and colimits commute, there is an
equivalence

⌃(X,A)K ' colim
�2K

0

@⌃
_

I⇢[m]

bDI(�)

1

A ' ⌃

0

@
_

I⇢[m]

colim
�2K

bDI(�)

1

A .

Now fix some I ⇢ [m] and consider the colimit colim
�2K

bDI(�). For each i 62 I, the maps

induced by ⌧ ⇢ � where ⌧ is obtained from � by removing vertex i are identity maps.
Let K \ {i} denote the full subcomplex K{1,...,i�1,i+1,...,m}. There is an equivalence

colim
�2K

bDI(�) ' colim
�2K\{i}

bD(�).

14



Iterating this process for each i 62 I yields,

colim
�2K

bDI(�) ' colim
�2K\{i}

bD(�) ' colim
�2KI

bD(�) ' \(X,A)
KI

.

The previous proposition reduces the question about the stable homotopy type of a

polyhedral product to understanding the homotopy type of \(X,A)
K

.

Proposition 4.11. Let K be a simplicial complex and consider a family of pairs (X,A)
where the map ◆i : Ai ! Xi is null for all i. Then there is an equivalence

\(X,A)
K

'
_

�2K

|K<�| ? bD(�).

We will postpone the proof of Proposition 4.11 until Section 4.1. We can now prove
Theorem 4.5 and Corollary 4.6.

Proof of Theorem 4.5. The assertion follows by applying the result of Proposition 4.11
to the right-hand side of

⌃(X,A)K ' ⌃

0

@
_

I⇢[m]

\(X,A)
KI

1

A .

from Proposition 4.10.

Proof of Corollary 4.6. Fix I ⇢ [m]. Since Xi is contractible, it follows that bD(�) is
contractible for all � 2 K where � 6= ;. Consequently, there is an equivalence

⌃(X,A)K ' ⌃

0

@
_

I⇢[m]

⇣
|(KI)<;| ? bD(;)

⌘
1

A ' ⌃
_

I2K

|KI | ? bAI
.

The space |KI | is contractible whenever I 2 K, so we only need to consider I 62 K.

The rest of this section is dedicated to proving Proposition 4.11.

4.1 The proof of Proposition 4.11

We need to introduce some notation before we can get to the technical lemmas.

Definition 4.12. Let D be a poset category. A diagram X : D ! C is called a
diagram with constant maps if for all objects a, b 2 D and any nonidentity mor-
phism f : a! b, f 6= ida the map X(f) : X(a)! X(b) is a constant map. In other words,
the morphism f can be factored as a composition of maps X(a)! ⇤ ! X(b).

Definition 4.13. Let D be a poset category. For an object c 2 C let Dc be the diagram
with the shape of D, but every object is mapped to the object c. Note that there is an
equivalence colimD⇤ ' |D| by Definition 4.1. Because C is cartesian closed, there is an
equivalence colimDc ' c⇥ |D|.

15



The following is an 1-categorical version of the initial diagram lemma found in [39,
Lemma 3.4].

Lemma 4.14. Let X be an initial diagram with constant maps over a poset category D

with initial object a. If X(b) = ⇤ for each b 6= a then there is the following equivalence

colim
D

X ' X(a) ? |D<a|.

Proof. The diagram category D is the category D<a, but with an initial object. Let {a}
denote the single object category. We have an equivalence of categorties D ' {a}?D<a,
where ? denotes the join of categories as in [30, §1.2.8]. To model the join, we have have
following pushout of categories

{a} � D<a ⇥ {a} �! D<a ⇥�1
.

The diagram X is induced by the maps

D<a ⇥ {a} D<a ⇥�1

{a} C.

constX(a)
const⇤

X(a)

The colimit of X is equivalent to the colimit of the diagram of diagrams

X(a) � (D<a)X(a) �! ((D<a)⇥�1)⇤.

We have written it as a pushout of diagrams to ease notation. By [30, Proposition 4.4.2.2]
we may first compute the colimits termwise in the pushout diagram. Thus, we are left
we with a diagram

X(a) � X(a)⇥ |D<a| �! |D<a|,

which by definition has colimit equal to the join X(a) ? |D<a|.

Lemma 4.15. Suppose that X is a diagram where each morphism is null over an indexing
poset category D with initial object a. The colimit of the diagram X has the wedge
decomposition

colimX '
_

a2Obj(D)

(|D<a| ? X(a)) .

Proof. We will start by defining a couple of necessary diagrams. For each object a 2 D,
let X[a] : D! C be the diagram such that a 7! X(a) and b 7! ⇤ for each b 2 D

where b 6' a. Similarly, for each object a 2 D, let X[a]0 : Da ! C be the diagram
such that a 7! X(a) and b 7! ⇤ for each b 2 Da where b 6' a. Since each morphism
in the diagram X is null, it can be decomposed as a wedge of diagrams X[a] for each
object a 2 D. Thus, we have an equivalence

colimX '
_

a2Obj(D)

colimX[a].
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For each object a 2 D the diagram X[a] is a left Kan extension the functors

X[a]0 : Da ! C and i : Da ! D.

Since left Kan extensions preserve colimits, there is an equivalence colimX[a] ' colimX[a]0.
The diagram X[a]0 satisfies the conditions of Lemma 4.14. Hence there is an equivalence

colimX[a]0 ' |D<a| ?X(a).

We can now prove Proposition 4.11.

Proof of Proposition 4.11. Define the diagram bE : K ! C to be given by bE(�) = bD(�)
for all � 2 K, and for all � ( ⌧ the maps be�,⌧ : bE(�) ! bE(⌧) to be the constant
map to the basepoint. Since the maps fi : Ai ! Xi are null by assumption, the maps
between bD(�) and bD(⌧) for � ( ⌧ will also be null-homotopic. We get the following
equivalences

\(X,A)
K

' colim bD ' colim bE '
_

�2K

|K<�| ? bD(�)

since bE satisfies the conditions of Lemma 4.15.

5 Example categories

In this section we discuss polyhedral products in several categories. In particular in
Section 5.3, we will introduce the category of motivic spaces and motivic moment-angle
complexes, which will be our main focus for the rest of the paper.

5.1 The category of spaces

Let S be the 1-category of spaces. In Section 2.2 we defined polyhedral products in
topological spaces as a union of topological spaces. As long as the map Ai ! Xi is a
cofibration, for each pair of spaces (Xi, Ai) 2 (X,A), then by [39, Lemma 3.1] there is a
homotopy equivalence

(X,A)K := colim
�2K

D(�) '
[

�2K

D(�).

It is important to emphasise that the colimit in S is a higher categorical colimit, and
thus corresponds to a homotopy colimit in classical homotopy theory. Thus, the results
of Section 2.2 all follow from Section 3 and 4 by letting C = S.

5.2 The category of G-equivariant spaces

For a discrete group G, one can define the category S
G of G-equivariant topological

spaces. For a G-space X, denote the fixed points by X
G. A map f : X ! Y is a weak

equivalence of G-spaces if for every subgroup H  G the restricted map f
H : XH ! Y

H
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is a weak equivalence of spaces. Due to Elmendorf’s theorem [18], the category of G-
spaces can be seen as a presheaf category, and is in particular an1-topos. This makes it
possible to define G-equivariant polyhedral products coming from families of pairs (X,A)
of G-spaces. The stable splitting results from Section 4 also hold.

The moment-angle complex ZK = (D2
, S

1)K can be endowed with both a C2-action
(reflection) and a S

1-action (rotation). Similarly, the pair RZK = (D1
, S

0)K can be
endowed with a C2-action (reflection). There is a relation between ZK and RZK through
the fixed points of ZK under the reflection.

Z
C2
K

= ((D2
, S

1)K)C2 ' ((D2)C2 , (S1)C2)K ' (D1
, S

0)K = RZK .

WhenK is a simplicial complex withm vertices, there is an action of the torus T = (S1)⇥m

on Z
A1

K
induced by the S

1-action on each pair (D2
, S

1). For a freely acting subtorus L
of T , one can define the partial quotient as the quotient ZK/L. The partial quotients
are topological versions of smooth not necessarily projective toric varieties.

Actions of a group G on the simplicial complex K can also product interesting
equivariant examples. This approach does not require the pairs of spaces (X,A) to
be G-spaces. However, this case does not allow for use of the results developed in
Section 4. Some of the results do still hold, but with modifications. Fu and Grbić
showed [19, Theorem 3.3] that if K is a simplicial complex with a G-action, then there
is a homotopy G-equivalence

⌃2(X,A)K ' ⌃2
_

I2K

\(X,A)
K

.

This is a similar result as Proposition 4.11, but with an extra suspension.

5.3 The category of motivic spaces

The category of motivic spaces over a base field k was introduced by Morel and Voevod-
sky in [35]. Roughly speaking, the category of motivic spaces, also known as the A1-
homotopy theory of k, is a homotopy theory for smooth schemes. Methods and concepts
from algebraic topology had been in use in algebraic geometry for a long time before mo-
tivic homotopy theory, but the category of motivic spaces allowed for a framework where
techniques from algebraic topology could systematically be lifted to algebraic geometry.

Let k be a perfect field of characteristic di↵erent from 2. Let Smk be the category
of smooth schemes of finite type over k. We denote by PreSh(Smk), the category of
simplicial presheaves on Smk. We denote by ShNis(Smk), the category of simplicial
Nisnevich sheaves on Smk. In motivic homotopy theory the a�ne line A1 takes on the
role of the interval. We say that a presheaf F 2 PreSh(Smk) is A1-invariant if there
is an equivalence F(X) ' F(X ⇥ A1). The category of motivic spaces H(k) is the full
subcategory of ShNis(Smk) spanned by A1-invariant Nisnevich sheaves F. In particular,
there is a localization functor LMot : PrSh(Smk) ! H(k), which is a left adjoint of the
inclusion H(k) ⇢ PrSh(Smk). Small colimits are universal in the H(k) [24, Proposition

18



3.15], which shows that it is cartesian closed. A more detailed explanation of the 1-
categorical construction of the category of motivic spaces can be found in [23, Appendix
C] or [24, §3]. A model categorical survey and introduction of unstable motivic homotopy
theory can be found in [2].

We will now survey some results about the motivic homotopy theory which can be
found in Chapter 3 of [35]. The category of motivic spaces contains both geometric
objects (schemes) and topological objects (simplicial sets). A scheme X 2 Smk can be
seen as an element of H(k) in the following way. For any Y 2 Smk, the scheme X

can be viewed as a simplicial presheaf by letting X(Y ) := Homk(Y,X), the scheme
morphisms of Y to X. By motivic localization the presheaf represented by X can be
considered an object of H(k). Let S be a simplicial set. One can consider the constant
simplicial presheaf constS . When it is clear that we are working with motivic spaces,
we will abuse notation and write X for LMotHomk(�,X) 2 H(k) and S for the motivic
localization LMotconstS .

We will now look at a some motivic spaces. Recall that the a�ne line A1 plays the role
of the interval in H(k) and is contractible. That is, there is an equivalence A1 ' Spec(k)
in H(k). A prominent feature of motivic homotopy theory is that the spheres are bi-
graded. There is the simplicial circle, which is given by the constant simplicial presheaf
to a simplicial set model of S1. There is also a geometric circle, the punctured a�ne
line Gm, which is given by the scheme Gm := A1 \ 0. The motivic spheres are created
by smashing copies of the geometric and simplicial circles. Let S

1,0 be the simplicial
circle, and S

1,1 := Gm. Thus for a � b � 0, we have S
a,b = (S1)^(a�b) ^ G^b

m . Some of
the higher dimensional spheres can be represented by schemes as well. A standard way
of constructing the projective line P1 in algebraic geometry is by gluing two a�ne lines
along a common Gm. Thus P1 is the colimit of the following diagram

A1  � Gm �! A1
.

Since A1 is contractible in H(k), P1 is equivalent to the colimit of the diagram

Spec(k) � Gm �! Spec(k),

which is ⌃Gm ' S
1,0 ^ Gm. In other words, P1 is equivalent to S

2,1. Higher di-
mensional punctured a�ne spaces are also models for motivic spheres. Let n > 0,
then An \ 0 ' S

2n�1,n.
There are also ways of relating motivic homotopy theory to classical homotopy theory.

When k is a subfield of C (resp. R) and X 2 Smk , we will write X(C) (resp. X(R)) for
its complex (resp. real) points as a topological space. This yields a realization functor
from H(C)! S. Furthermore, there is a second realization functor when k is a subfield
of R. Whenever X is a smooth scheme over R, then X(C) is a C2-space with the action
of complex conjugation and we have the relation X(C)C2 ' X(R) as topological spaces.
Thus we can describe the two realization functors as

ReC : H(C)! S and ReR : H(R)! S
C2 .
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Let S be a simplicial set, then both its complex and real realization of its associated
object in H(k) is the realization S as a topological space, with trivial C2-action under
real realization. A reader not familiar with algebraic geometry might not understand
why Gm could be an algebraic sphere at first glance. Consider the real number line,
when we remove the origin we get a topological space which has the homotopy type
of S0. Now consider the complex numbers, the space C\0 has the homotopy type of S1.
So Gm(C) ' S

1 and Gm(R) ' S
0. For an arbitrary motivic sphere Sa,b, with a � b � 0,

we have ReC(Sa,b) ' S
a and (ReR(Sa,b))C2 ' S

a�b.
As described in Section 2.3, the moment-angle complex (D2

, S
1)K and the real

moment-angle complex (D1
, S

0)K have both been extensively studied in the category
of spaces. We will now introduce the motivic moment-angle complex.

Definition 5.1. Let K be a simplicial complex, we define the motivic moment-angle
complex Z

A1

K
to be the polyhedral product

Z
A1

K := (A1
,Gm)

K

in the 1-category H(k).

Remark 5.2. When k is a subfield of C, using complex realization yields the equiv-
alence Z

A1

K
(C) ' (C,C⇥)K which deformation retracts onto ZK [11, Theorem 4.7.5].

Furthermore, if k is a subfield of R, there is a deformation retraction Z
A1

K
(R) ' RZK .

As noted earlier, the H(k) is cartesian closed and has all small colimits. This makes
it possible to apply Theorem 4.5. Since A1 is contractible, the following result an appli-
cation of Corollary 4.6.

Theorem 5.3. Let K be a simplicial complex. Then there is an equivalence in H(k)

⌃ZA1

K ' ⌃

0

@
_

I 62K

|KI | ?G^|I|

m

1

A '
_

I 62K

|KI | ^ S
|I|+2,|I|

.

Remark 5.4. All of the results from Section 4 can be proven for C = H(k) using
Morel and Voevodsky’s model structure and proving it locally on the value of simplicial
presheaves using the results for topological spaces.

6 A�ne models for motivic moment-angle complexes and
toric varieties

In this section we will provide various models of ZA1

K
in Smk. We will also use a�ne

models of ZA1

K
to give a�ne models of smooth projective toric varieties. We begin with

identifying Z
A1

K
with a smooth scheme.
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Proposition 6.1. Let K be a simplicial complex, and let �1, . . . ,�n be the maximal
simplices of K. There is an equivalence

Z
A1

K
' Am \ L,

where L is the variety cut out by the monomial ideal

(
Y

i 62�1

xi, . . . ,

Y

i 62�n

xi) ⇢ k[x1, . . . , xm].

Proof. The colimit presentation of ZA1

K
gives a Zariski cover of an algebraic variety. For

each simplex � 2 K, we have an equivalence D(�) = Am \ (
Q

i 62�
xi). The algebraic

variety Z
A1

K
can be described as the union

[

�2K

D(�) =
[

�2K

Am \ (
Y

i 62�

xi) = Am \ L.

We may enumerate the maximal simplices of K as �1, . . . ,�n. The variety L is cut out
by the ideal \

1jn

(
Y

i 62�j

xi) = (
Y

i 62�1

xi, . . . ,

Y

i 62�n

xi).

Remark 6.2. The ideal cutting out L is the Stanley–Reisner ideal IK_ of Alexander
dual K_.

Remark 6.3. From now on, whenever we speak about ZA1

K
as a scheme, we will always

mean Am \ L.

The scheme Am \ L can be identified with a toric variety generated by the fol-
lowing fan. Let ei denote the ith coordinate unit vector of Rm. For each � 2 K,
let C� := Cone(ei1 , . . . , ein) with ij 2 �. The fan for ZA1

K
is the collection of the cones C�

for each � 2 K. Motivic moment-angle complexes have been studied before as toric va-
rieties. In [40] Wendt computes the A1-fundamental group of smooth toric varieties, this
includes motivic-moment-angle complexes.

Our goal is to identify Z
A1

K
with an a�ne scheme. To do this we will need the

following family of a�ne schemes.

Definition 6.4. Let L ⇢ Am be a closed subvariety cut out by the ideal I = (f1, . . . , fn).
We define

QI := Spec

✓
k[x1, . . . xm, y1, . . . yn]

(f1y1 + . . . + fnyn � 1)

◆

and a morphism
⇡ : QI ! Am \ L

given by projection onto (x1, . . . , xm) 2 Am.

Lemma 6.5. Let L ⇢ Am be a closed subvariety cut out by the ideal I = (f1, . . . , fn).
The map ⇡ : QI ! Am \ L is an A1-equivalence.
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Proof. The variety Am \ L is covered by the opens Ui, where fi 6= 0. Thus, locally for
each Ui,

Ui
⇠= Spec(k[x1, . . . , xm][f�1

i
]).

Computing the preimage of Ui yields

⇡
�1(Ui) ⇠= Spec

✓
k[x1, . . . xm, y1, . . . yn][f

�1
i

]

(f1y1 + . . .+ fnyn � 1)

◆
.

We see that ⇡ trivializes, and we get ⇡�1(Ui) ⇠= Ui⇥An�1. The opens ⇡�1(Ui) cover QI

as well since the ideal I is a unit ideal in the coordinate ring of QI . The fibers of ⇡ are
trivial and the morphism is smooth, which implies that QI is a Zariski locally trivial
bundle over Am \ L and ⇡ is an A1-equivalence.

Proposition 6.1 shows that Z
A1

K
is homotopy equivalent to Am \ L where L is some

intersection of coordinate hyperplanes. As noted in Remark 6.2, the variety L is cut out
by a monomial ideal IK_ = (f1, . . . , fn) ⇢ k[x1, . . . , xm].

Corollary 6.6. Let K be a simplicial complex. Then there is an A1-equivalence

Z
A1

K ' QIK_ .

We will also give a di↵erent a�ne model of Z
A1

K
that uses the Stanley–Reisner

ideal IK = (f1, . . . , fn). For simplicity, we will write i 2 fj when xi is a factor of fj.

Proposition 6.7. Let K be a simplicial complex on the vertex set [m] and IK = (f1, . . . , fn)
its Stanley–Reisner ideal. There is an equivalence

Z
A1

K ' Spec

 
k[x1, . . . , xm, yij ]

(
P

i2f1
xiyi1 � 1, . . . ,

P
i2fn

xiyil � 1)

!

.

Proof. One can cover Am \L by the a�ne opens corresponding to the maximal simplices
of K, i.e. D(�) (as in Definition 3.7) where � is maximal in K. Using the same strategy
as the proof as Lemma 6.5 with this open cover yields the result.

Remark 6.8. For any n > 0, the two a�ne representatives for ZA1

K
from Corollary 6.6

and Proposition 6.7 are equal when K = @�n.

In some special cases, it is possible to give an a�ne model of ⌃ZA1

K
. In the special

case where K = @�n�1 we have Z
A1

@�n�1 ' S
2n�1,n, and there is an equivalence due to

Asok, Doran, and Fasel [3, Theorem 2.2.5]

⌃ZA1

@�n�1 ' S
2n,n ' Spec

✓
k[x1, . . . , xn, y1, . . . , yn, z]

(x1y1 + . . . xnyn � z(1� z))

◆
.

However, we are able to say more about ⌃P1Z
A1

K
. By [4, Corollary 4.16], the motivic

space ⌃P1Z
A1

K
admits an a�ne model because Z

A1

K
has the homotopy type of an a�ne

scheme. The following remark shows how the P1-suspension of ZA1

K
is a motivic moment-

angle complex.
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Remark 6.9. Let K and �m�1 be a simplicial complex on the vertex set [m]. We
define M = K ? {m + 1} on the vertex set [m + 1] Consider the pushout of simplicial
complexes

K M

�m�1 K
0
.

p

By Proposition 3.12, this induces a pushout of motivic moment-angle complexes

Z
A1

K
Z

A1

M

Z
A1

�m�1
Z

A1

K 0 .

p

We can express the motivic moment-angle complexes in the diagram in terms of ZA1

K
,

and this gives

Z
A1

K
⇥Gm Z

A1

K
⇥ A1

Am ⇥Gm Z
A1

K 0 .
p

Since A1 is contractible, we get an equivalence

Z
A1

K 0 ' Z
A1

K
?Gm ' ⌃P1Z

A1

K
.

Thus ⌃P1Z
A1

K
is a motivic moment-angle complex and has the homotopy type of a smooth

a�ne scheme.

Recall that any smooth projective toric variety X can be realized as a quotient of a
motivic-moment-angle complex under the action of a torus [13]. The torus action induces
an action on QK . By computing the ring of invariants of the coordinate ring of QK under
the torus action, we can find an explicit smooth a�ne description of X. Concretely,
if X = Z

A1

K
/T is a smooth projective toric variety for some simplicial complex K and

torus T , then QK/T is an a�ne bundle over X with trivial fibers.

Example 6.10. Let K be two disjoint points, then Z
A1

K
' A2 \ 0. We make Gm act

on A2\0 by scalar multiplication. That is, for � 2 Gm, we define �·(x1, x2) = (�x1,�x2).
By Corollary 6.6, there is an equivalence

Z
A1

K
' A2 \ 0 ' Spec

✓
k[x1, x2, f1, f2]

(x1f1 + x2f2 � 1)

◆
= SL2.

The action of Gm on A2 \ 0 extends to an action on SL2 as follows

� · (x1, x2, f1, f2) = (�x1,�x2,
f1

�
,
f2

�
).
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Computing the ring of invariants of yields the generators x1f1, x2f2, x1f2, and x2f1.
There are also relations x1f1 + x2f2 = 1 and x1f1 · x2f2 = x1f2 · x2f1. Thus the ring of
invariants is isomorphic to the ring

R =
k[a, b, c, d]

(a+ d� 1, ad� bc)
.

Thus P1 ' Spec(R). One can view R as a (2⇥2)-matrix with trace 1 and determinant 0.
This is equivalent to a rank 1 idempotent matrix. Similar techniques can be applied to
identify Pn�1 with an idempotent (n⇥ n) matrices of rank 1.

Let K be a square, then Z
A1

K
' A2 \ 0 ⇥ A2 \ 0. We can consider a 2-dimensional

torus acting on Z
A1

K
in the following way. Let � = (�1,�2) 2 G⇥2

m , we let G⇥2
m act on Z

A1

K

in the following way

� · (x1, x2, x3, x4) = (�1x1,�1x2,�2x3,�2x4).

The GIT quotient of the action is P1 ⇥ P1. The following two examples show how the
two di↵erent a�ne models for ZA1

K
yield di↵erent a�ne models for a toric variety.

Example 6.11. By Corollary 6.6, there is an equivalence Z
A1

K
' QIK_ . In the case

where K is a square, this yields

Z
A1

K ' Spec

✓
k[x1, x2, x3, x4, f13, f14, f23, f24]

(x1x3f13 + x1x4f14 + x2x3f23 + x2x4f24 � 1)

◆
.

The action of G⇥2
m on Z

A1

K
by G⇥2

m as previously described extends to an action on QIK_

as follows

� · (x1, x2, x3, x4, f13, f14, f23, f24) = (�1x1,�1x2,�2x3,�2x4,
f13

�1�2
,
f14

�1�2
,
f23

�1�2
,
f24

�1�2
).

The 16 generators of the ring of invariants under the action of the torus are xixjfpq

for i = 1, 2, j = 3, 4, p = 1, 2, and q = 3, 4. The ring of invariants has the relation

x1x3f13 + x1x4f14 + x2x3f23 + x2x4f24 = 1

as well as
xixjfpq · xi0xj0fp0q0 = xixjfp0q0 · xi0xj0fpq.

The variety QIK_/T can be seen as the pullback of the Segre embedding of P1⇥P1 in P3

and the morphism ⇡ : P̃3 ! P1, where P̃3 is the a�ne replacement for P3.

Example 6.12. When K is a square, there is an equivalence by Proposition 6.7

Z
A1

K ' Spec

✓
k[x1, x2, x3, x4, f1, f2, f3, f4]

(x1f1 + x2f2 � 1, x3f3 + x4f4 � 1)

◆
.
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In this case, the action of G⇥2
m on Z

A1

K
by G⇥2

m extends as follows

� · (x1, x2, x3, x4, f13, f14, f23, f24) = (�1x1,�1x2,�2x3,�2x4,
f1

�1
,
f2

�1
,
f3

�2
,
f4

�2
).

The eight generators of the ring of invariants are

xifj, xpfq for i = 1, 2, j = 1, 2, p = 3, 4, q = 3, 4.

We have relations x1f1+x2f2 = 1 and x3f3+x4f4 = 1, as well as xifi · xjfj = xifj · xjfi
for (i, j) = (1, 2) and (i, j) = (3, 4). The ring of invariants is isomorphic to the tensor
product of two copies of the coordinate ring of the a�ne replacement of P1 from Exam-
ple 6.10.

7 Invariants of motivic polyhedral products

In this section we will consider various invariants for objects in the motivic homotopy
category and apply them to motivic moment-angle complexes.

7.1 Cellular A1-homology

In [34] Morel and Sawant define cellular A1-homology for cellular varieties. Cellu-
lar varieties are smooth schemes that admits a nice stratification. The cellular A1-
homology takes values in the derived category of strictly A1-invariant Nisnevich sheaves
of abelian groups on Smk, which we will denote by D(AbA1(k)). Morel and Sawant
define a scheme X to be cohomologically trivial if HNis

n (X,M) = 0, for every n � 1
and M 2 AbA1(k) [34, Definition 2.9]. Examples of cohomologically trivial schemes
are A1

,Gm, and products of cohomologically trivial schemes [34, Remark 2.10].

Definition 7.1 ([34, Definition 2.11]). Let X 2 Smk be a smooth k-scheme. A cellular
structure on X consists of an increasing filtration

; = ⌦�1 ( ⌦0 ( ⌦1 ( . . . ( ⌦n = X

by open subschemes of X such that for each 0  i  n, the reduced induced sub-
scheme Xi := ⌦i \ ⌦i�1 of ⌦i is smooth, a�ne, everywhere of codimension i, and coho-
mologically trivial. We say that X is a cellular scheme if X admits a cellular structure.

This definition is meant to imitate the CW -structure of a topological space. See [34,
Remark 2.12.(2)] for further details.

Proposition 7.2. Let K be a simplicial complex, and let Ki denote the i-skeleton of K.
Let s be the smallest integer such that Ks = K. Then

; ⇢ G⇥m

m ( Z
A1

K0
( Z

A1

K1
( . . . ( Z

A1

Ks
= Z

A1

K

is a cellular structure on Z
A1

K
.
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Proof. By Proposition 6.1, for each 0  i  s the variety Z
A1

Ki
is the open complement

of the variety V (IK_
i
) cut out by a monomial ideal IK_

i
in Am. Thus,

Xi+1 = Z
A1

Ki
\ ZA1

Ki�1
= V (IK_

i
) \ V (IK_

i�1
) =

G

�2K,|�|=i

G⇥(m�i)
m .

Since Gm is cohomologically trivial, ZA1

K
admits a cellular structure.

Using the cellular structure of cellular varieties, Morel and Sawant define an A1-chain
complex. From the cellular structure on Z

A1

K
, one can create a cellular A1-chain complex

in the fashion of Morel and Sawant. However, if we want to exploit the homotopical
properties of polyhedral products, we are going to need a di↵erent cellular A1-chain
complex. This is no problem since [34, Corollary 2.42] shows that any two cellular A1-
chain complexes of a Z

A1

K
will be homotopy equivalent in D(AbA1(k)). We will now

show that the functor C
cell
⇤

(�) sends motivic moment-angle complexes to a polyhedral
product in D(AbA1(k)).

Proposition 7.3. The functor C
cell
⇤ (�) preserves colimits of cohomologically trivial ob-

jects.

Proof. The functor Ccell
⇤

(�) is a pro-left adjoint to the category pro-D(AbA1(k)). When
the objects are cohomologically trivial, their image in pro-D(AbA1(k)) are constant, and
can be represented as elements of D(AbA1(k)). See [34, Corollary 2.38 and Remark 2.39]
for further details.

By [34, Lemma 2.31], for X,Y smooth cellular schemes, there is an isomorphism of
chain complexes

C
cell
⇤ (X ⇥ Y ) ⇠= C

cell
⇤ (X)⌦ C

cell
⇤ (Y ).

We say that a chain complex C⇤ of strictly A1-invariant sheaves is pointed, if C0 admits Z
as a direct summand. We denote the reduced chain complex of C by eC and there are
isomorphisms C0

⇠= Z� eC0 and Ci
⇠= eCi for i > 0. In the case where C⇤ and D⇤ are two

pointed chain complexes concentrated in degree 0, we get the following splitting

C⇤ ⌦D⇤ ' Z� eC0 � eD0 � ( eC0 ⌦ eD0).

When X is a pointed space that admits a cellular structure then C
cell
⇤ (X) is a pointed

chain complex. Because motivic moment-angle complexes are built out of products
of A1’s and Gm’s, it is important to understand the cellular structure of those pieces.
Denote the n-th unramified Milnor–Witt K-theory sheaf by KMW

n
(see [33, §3.2] for a

definition). Going forward, we will need the following property of the Milnor–Witt K-
theory sheaves. For i, j � 0 there is an isomorphism KMW

i
⌦ KMW

j
⇠= KMW

i+j
. The

following result is due to Morel and Sawant.

Proposition 7.4. The cellular A1-chain complex for A1 and Gm are given by

C
cell
i (A1) =

(
Z i = 0,

0 i > 0,
and C

cell
i (Gm) =

(
Z�KMW

1 i = 0,

0 i > 0.
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When S 2 AbA1(k), we will abuse notation and write S for the chain complex con-
centrated in degree 0 with value S. Since C

cell(�) preserves products and colimits, it
sends the motivic moment-angle complex to a polyhedral product in DA1(Ab(k)). We
can now define a second A1-chain complex for ZA1

K
as a polyhedral product

C
cell
⇤ (ZA1

K ) ' (Ccell
⇤ (A1), Ccell

⇤ (Gm))
K = (Z,Z�KMW

1 )K .

Recall that for a simplical complex K, we denote the geometric realization of K by |K|
as in Definition 4.3. In DA1(Ab(k)), the geometric realization |K| is represented by any
singular chain complex that computes the singular homology of K as a topological space.

Proposition 7.5. There the following is an equivalence of of chain complexes in D(AbA1(k))

(Ccell
⇤

(A1), Ccell
⇤

(Gm))
K '

_

I 62K

⌃|KI | ^ (Z�KMW
|I|

).

Proof. We saw earlier how tensor products of pointed complexes concentrated in degree
zero splits into a wedge of complexes. Since (Ccell

⇤
(A1), Ccell

⇤
(Gm))K is a colimit of tensor

products of complexes concentrated in degree 0, we get the following chain of equivalences

(Ccell
⇤

(A1), Ccell
⇤

(Gm))
K ' colim

�2K

D(�) ' colim
�2K

(Z�KMW
1 )⌦(m�|�|)

.

We can now split the diagram into a wedge of diagrams. For each I ✓ [m] and � 2 K

define

EI(�) =

(
Z�KMW

|I|
� 6✓ I,

Z � ✓ I.

There is an equivalence

colim
�2K

(Z �KMW
1 )⌦(m�|�|) '

_

I✓[m]

colim
�2K

EI(�).

We are now in a similar situation as in the proof of Proposition 4.11. Fix I ⇢ [m] and
look at the colimit

colim
�2K

EI(�).

For each i 62 I, the maps induced by ⌧ ⇢ � obtained by removing vertex i are identity
maps. We get an equivalence of colimits

colim
�2K

EI(�) ' colim
�2KI

E
0

I
(�),

where E
0

I
(�) = Z �KMW

|I|
if � = ; and E

0

I
(�) = Z otherwise. This is a diagram that

satisfies Lemma 4.14, and we get an equivalence

colim
�2K

EI(�) ' ⌃|KI | ^ (Z�KMW
|I|

).
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With the colimit of each wedge summand computed, we get

(Ccell
⇤ (A1), Ccell

⇤ (Gm))
K '

_

I✓[m]

colim
�2K

EI(�) '
_

I✓[m]

⌃|KI | ^ (Z�KMW
|I|

).

Since |KI | is contractible if I 2 K, we only need to consider K 62 I. This proves the
claim.

This splitting result can be seen as an unstable version of Theorem 4.5. Computing
the homology of the chain complex from Proposition 7.5 yields the following.

Corollary 7.6. Let K be a simplicial complex. There is an isomorphism

eHcell
⇤ (ZA1

K ) ⇠=
M

I 62K

eH⇤(⌃|KI | ^ (Z �KMW
|I|

).

We wish to describe the cellular A1-homology of Z
A1

K
in terms of K, so the next

natural step is to understand what smashing with (Z�KMW
|I|

) and suspending |KI | does
to the homology.

Definition 7.7. For a chain complex C with di↵erential d, the cone of C is defined as
the chain complex Cone(C)n := Cn � Cn�1 � Cn, with di↵erential

�n(a, b, c) = (da+ b,�db, dc � b).

For a diagram (Y  � X �! Z) of chain complexes X, Y , and Z, with chain
maps i : X ! Y and j : X ! Z, we can create the following chain complex modeling the
homotopy pushout in a category of chain complexes

Cn = Yn �Xn�1 �Xn �Xn�1 � Zn

with di↵erential

@(y, xn�1, xn, x
0

n�1, zn) =
�
dy + i(xn�1),�dxn�1, dxn � xn�1 + x

0

n�1,�dx0n�1, dz + j(x0
n�1)

�
.

A visualization of the complex can be seen below. The complex C is the homotopy
pushout (Y  � X �! Z).

Y0 X0 Z0

Y1 X0 X1 X0 Z1

Y2 X1 X2 X1 Z2

...
...

...
...

...

d

d

�1 1

�1 1

d

d d

di j

ji �d �d
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In the category of pointed chain complexes of strictly A1-invariant sheaves, the con-
stant sheaf Z is the terminal object. We can now compute the wedge of two pointed
complexes.

Proposition 7.8. Let C,D 2 D(AbA1(k)) be pointed chain complexes with C0 = Z� eC0

and D0 = Z� eD0. Then the wedge C _D is the chain complex

(C _D)n =

(
Z� eC0 � eD0 n = 0,

Cn �Dn n > 0.

Proof. Compute the homotopy pushout as in Definition 3.2 using a cone on the chain
complex of the point.

We can now compute the smash product of C ^D 2 D(AbA1(k)) as the homotopy
pushout of the square

⇤  C _D ! C ⌦D.

Lemma 7.9. Let C be a pointed chain complex of strictly A1-invariant sheaves and
let n > 0, then there is an isomorphism

Hi(C ^ (Z �KMW
n )) ⇠=

(
Z� ( eH0(C)⌦KMW

n
) i = 0,

Hi(C)⌦KMW
n i > 0.

Proof. To prove the quasi-isomorphism, we will compute the homology. We have the
equivalence

C ^ (Z �KMW
n

) ' colim(⇤  � C _ (Z�KMW
n

) �! C ⌦ (Z�KMW
n

).

The chain complex for C ^ (Z �KMW
n

) can be modeled as the following homotopy
pushout:

Z eC0 � Z�KMW
n

eC0 ⌦KMW
n
� eC0 �KMW

n
� Z

eC0 � Z�KMW
n

C1
eC0 � Z�KMW

n
C1 ⌦KMW

n
� C1

C1 C2 C1 C2 ⌦KMW
n
� C2

C2 C3 C2 C3 ⌦KMW
n
� C3

...
...

...
...

�1✏ 1

�1

�1 1

1

i

i

i
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All vertical arrows except ✏ are inherited from the di↵erential d on C. The map ✏ is
projection onto Z. The map i is the inclusion. We may restrict @1 to the factors Z,KMW

n
,

and eC0.

@
Z
1 =

✓
IdZ �IdZ 0
0 IdZ IdZ

◆
@
MW
1 =

✓
�IdKMW

n
0

IdKMW
n

�IdKMW
n

◆
@

eC0
1 =

 
�Id eC0

0

Id eC0
�Id eC0

!

It is straightforward to check that all of the three restricted di↵erentials above are
surjective. The map d

MW
1 : C1 ⌦KMW

n ! eC0 ⌦KMW
n has image Im(d1)⌦KMW

n . Thus

H0(C ^ (Z�KMW
n )) ⇠= Z� ( eH0(C)⌦KMW

n ).

To compute ker @1, we first note that ker @Z
1 , ker @

MW
1 , and ker @

eC0
1 are all trivial. We

get ker dMW
1 = ker(d1)⌦KMW

n
. The map onto eC0 � eC0 is given by the matrix

@
C

1 =

0

BB@

�Id eC0
0

Id eC0
Id eC0

d1 0
0 d1

1

CCA : eC0 � eC0 � C1 � C1 ! eC0 � eC0.

Since Im d1 ⇢ eC0, the kernel is ker @C

1 = C1 � C1. Thus ker @1 = ker @C

1 � ker dMW
1 .

This result also extends to ker @i = Ci�Ci� (ker di⌦KMW
n ). Computing image of @i+1

yields Im @i = Ci�Ci�(Im di+1⌦KMW
n

). The homology of the complex is Hi(C)⌦KMW
n

for i � 1.

A similar proof strategy yields the following result.

Lemma 7.10. Let C be a pointed chain complex of strictly A1-invariant sheaves, then
there is an isomorphism

Hi(⌃C) ⇠=

(
Z i = 0,
eHi�1(C) i > 0.

Applying Lemmas 7.9 and 7.10 to Corollary 7.6 yields the following theorem.

Theorem 7.11. Let K be a simplicial complex. Then Hcell
0 (ZA1

K
) = Z and for i > 0

Hcell
i

(ZA1

K
) ⇠=

M

I 62K

eHi�1(|KI |)⌦KMW
|I|

.

Example 7.12. Let K = @�m�1, then

Hcell
i

(ZA1

K
) ⇠=

8
><

>:

Z i = 0,

KMW
m

i = m� 1,

0 i 6= 0,m� 1.
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Example 7.13. Let K be the following triangulation of RP2. Vertices with the same
labels are identified, and all triangles are filled in.

1

2 4 3

3 5 6 2

1

By Theorem 7.11, we get the following decomposition of the cellular A1-homology of ZA1

K
.

Hcell
i

(ZA1

K
) =

8
>>>><

>>>>:

Z i = 0,

0 i = 1,

(KMW
3 )�10 � (KMW

4 )�15 � (KMW
5 )�6 � (Z2 ⌦KMW

6 ) i = 2,

0 i � 3.

This is an example of a space with integral torsion in its cellular A1-homology.

Remark 7.14. Theorem 7.11 could be computed using Corollary 4.6 as follows. By
Corollary 4.6 there is an equivalence

⌃(Ccell
⇤ (A1), Ccell

⇤ (Gm))
K '

_

I 62K

⌃2|KI | ^C
cell
⇤ (Gm)

^|I|
.

Since Lemma 7.10 tells us how the homology changes after suspending and Lemma 7.9 in
the case of n = 1 tells us what smashing with C

cell
⇤ (Gm) does to the homology of a chain

complex. Computing the homology and accounting for the extra suspension recovers
Theorem 7.11.

7.2 Cohomology

Motivic cohomology is a bigraded cohomology theory for H(k). For a motivic space X

and a commutative ring k, write H
i,j

Mot(X;k) for the motivic cohomology of X with
coe�cients in k. We denote the cohomology of the point by A = H

⇤,⇤

Mot(Spec(k);k), thus
for p, q 2 Z we have A

p,q = H
p,q

Mot(Spec(k);k). For a bigraded A-module M , and two
integers i, j 2 Z we define M [i, j] to be M , but with the grading shifted to by (i, j), that
is M [i, j]p,q = M

p�i,q�j. With this, the cohomology of motivic spheres can be described
as an A-module

H
⇤,⇤

Mot(S
p,q;k) ⇠= A�A[p, q].

We may use the stable splitting of ZA1

K
to describe the cohomology groups of ZA1

K
for

certain simplicial complexes K. We denote the reduced motivic cohomology of a motivic
space X by eH i,j

Mot(X;k).
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Theorem 7.15. Let K be a simplicial complex. The reduced motivic cohomology groups
of ZA1

K
are given by the isomorphism

eHp,q

Mot(Z
A1

K
;k) ⇠=

M

I 62K,|I|=j

eHp�j�1,q�j

Mot (|KI |;k).

Proof. For a motivic space X, there is the relation eHp,q

Mot(X;k) = eHp+i,q+j

Mot (X ^ Si,j;k).
Combining this with the stable splitting from Theorem 5.3 yields the desired result.

In the case where ⌃|KI | (as a topological space) is a wedge of spheres, we can express
the cohomology of ZA1

K
just in terms of shifted copies of A.

Proposition 7.16. Let K be a simplicial complex on the vertex set [m] such that ⌃|KI |
is a wedge of spheres for all I 62 K. Then there is an isomorphism of A-modules

eH⇤,⇤

Mot(Z
A1

K ;k) ⇠=
M

I 62K,|I|=j,

0im�2

A[i+ j + 1, j]�rank eHi�j�1(KI ;Z).

Proof. Fix I 2 K. If ⌃|KI | splits into a wedge of spheres, then its homotopy type is
solely determined by the rank of its singular homology groups. This allows us to express
the motivic cohomology of |KI | in terms of A.

eH⇤,⇤

Mot(|KI |;k) =
m�2M

i=0

A[i, 0]�rank eHi(KI ;Z)

By summing over each I 62 K and shifting according to suspensions by Gm, we recover
the result. The reason the sum is not infinite is because K is a simplicial complex is
finite dimensional.

Remark 7.17. Simplicial complexes such as flag complexes and triangulations of spheres
satisfy the conditions of Proposition 7.16.

Classically, figuring out the ring structure of the cohomology of the moment-angle
complex can be done with the Eilenberg–Moore spectral sequence. Unfortunately, we
run into some problems when using the same approach motivically as there is no suitable
Eilenberg–Moore spectral sequence available for us to use.

Remark 7.18. There is a version of the Eilenberg-Moore spectral sequence due to
Krishna [25], but it only computes cohomology groups. In particular, Krishna provides
for each integer j, a spectral sequences converging to H

⇤,j

Mot.

When the base field k = C we are able to say some things due to complex realization.
Work by Levine [27] shows that complex realization is a symmetric monoidal functor from
the stable motivic homotopy category to the stable homotopy category (of topological
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spaces). It follows that complex realization induces for any commutative ring k a k-
algebra homomorphism

� :
M

i,j

H
i,j

Mot(X;k)!
M

i

H
i(X(C);k).

Since � is a k-algebra morphism lets us pull back cup products from H
i(X(C);k)

to H
i,j

Mot(X;k). That is, if there exists ↵,� 2 H
⇤,⇤

Mot(Z
A1

K
;k) such that �(↵) ^ �(�) 6= 0,

then there exists � 2 H
⇤,⇤

Mot(Z
A1

K
;k) such that ↵ ^ � = �.

7.3 Betti numbers

A much coarser invariant than (co)homology are Betti numbers. By Theorem 2.19 the
cohomology of the moment-angle complex ZK = (D2

, S
1)K is isomorphic to a bigraded

Tor-algebra
H

2j�i(ZK) ⇠= Tori,jZ[v1,...,vn](Z,Z[K]).

The bigraded Betti numbers b
i,j of ZK are defined as follows

b
i,j(ZK) := rank Tori,jZ[v1,...,vn](Z,Z[K]).

When K is a simplicial complex where ⌃|KI | is a wedge of spheres for all I, the descrip-
tion of the cohomology of ZA1

K
from Proposition 7.16 allows us to define Betti numbers.

Definition 7.19. The (i, j)th A1-Betti number of ZA1

K
is defined as follows

b
i,j

A1(Z
A1

K ) :=

(P
I 62K,|I|=j

rank eH i�j�1(KI ;Z) (i, j) 6= (0, 0),

1 (i, j) = (0, 0).

The following example highlights the choice of definition.

Example 7.20. Let K = @�n, then Z
A1

K
' S

2n,n�1 and

b
i,j

A1(Z
A1

K
) =

(
1 (i, j) = (0, 0) or (i, j) = (2n, n � 1),

0 otherwise.

We now have two di↵erent bigraded Betti numbers related to (motivic) moment-angle
complexes. The next step is to compare the two notions.

Theorem 7.21. Let K be a simplicial complex. Then there is an equality

b
i,j

A1(Z
A1

K
) = b

�j,2i(ZK).

Proof. In the classical case, we have the following well known isomorphism of groups
due to Hochster [22, Theorem 5.1],

Tor�j,2i
Z[v1,...,vn](Z,Z[K]) ⇠=

M

I⇢[m]:|I|=i

eH i�j�1(KI).

Thus the bigraded Betti numbers of ZK can be expressed as

b
�j,2i(ZK) =

X

I⇢[m]:|I|=i

rank eH i�j�1(KI ;Z) = b
i,j

A1(Z
A1

K ).
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7.4 Euler characteristics

For any symmetric monoidal category C, there is a notion of categorical Euler charac-
teristic of a dualizable object [17]. Let 1C be the unit of C. If X is a dualizable object
in C, then there exists a dual object X

_, an evaluation map ✏ : X ⌦ X
_ ! 1C, and a

coevaluation map ⌘ : 1C ! X ⌦X
_. The categorical Euler characteristic of a dualizable

object X is the composition

1C
⌘�! X ⌦X

_
idX⌦idX_������! X ⌦X

_ ✏�! 1C.

We denote the categorical Euler characteristic by is written as �C(X). We see that the
categorical Euler characteristic takes values in End(1C) endomorphism of the unit object
of C.

We denote the stable motivic homotopy category over a field k by SH(k). In the case
of the stable motivic homotopy category End(1SH(k)) = GW(k) [32, Theorem 6.4.1],
where GW(k) denotes the Grothendieck–Witt ring of quadratic forms over k. The
elements of GW(k) are formal di↵erences of k-valued, non-degenerate, quadratic forms
on finite dimensional k-vector spaces. For a unit u 2 k

⇥, we let hui 2 GW(k) denote
the rank one quadratic form x 7! ux

2. In addition, GW(k) is generated by the rank one
forms as a group. For units u, v 2 k

⇥, we have hui · hvi = huvi. For any u 2 k
⇥, there

is an equivalence hu2i = h1i. Thus GW(C) ⇠= Z and GW(R) ⇠= Z ⇥ Z. Examples of
computations of categorical Euler characteristics in the stable homotopy category can
be found in [27, 29, 23].

In motivic homotopy theory, there is an A1-Euler characteristic closely related to �SH(k).
We say that a motivic spaceX 2 H(k) is dualizable if the P1-suspension spectrum ⌃1

P1X+

is dualizable in SH(k). Let X be a dualizable object in H(k), then the A1-Euler charac-
teristic �A1(X) is defined as follows

�A1(X) := �SH(k)(⌃
1

P1X+).

For a finite CW -space X, let �(X) denote its Euler characteristic. Real and complex
realization allows us to relate the A1-Euler characteristic to its classical counterpart.
When k is a subfield of R, we have the following relation between the A1-Euler charac-
teristic and the Euler characteristic of the real and complex points of X [28, Remark 1.3].

�(X(C)) = rank �A1(X) and �(X(R)) = sign �A1(X).

If k is just a subfield of C, we only have the first relation for the complex points.

Example 7.22. Recall that Gm(C) ' S
1 and Gm(R) ' S

0. Let k be a field of character-
istic di↵erent from 2. Then �A1(Gm) = h1i � h�1i. When k = C, all units are squares.
Thus h�1i = h1i, and �A1(Gm) = 0 = �(S1). When k = R, the signature of h1i � h�1i
is 2 which coincides with �(S0).

The Euler characteristic of a moment-angle complex is not an interesting invariant,
because by Example 2.18 �(ZK) = 0 for any K. However, the real moment-angle
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complex can have nonzero Euler characteristic. The realization result above thus suggests
that the motivic moment-angle complex does not have trivial Euler characteristic when k

is a subfield of the real numbers.
The first thing we need is to show that ZA1

K
admits an A1-Euler characteristic.

Lemma 7.23. Let K be a simplicial complex. Then Z
A1

K
is dualizable in H(k).

Proof. Using Theorem 5.3, the P1-suspension spectrum of ZA1

K
can be written as

⌃1

P1Z
A1

K + = ⌃1

P1(S0,0) _ ⌃�1,0
_

I 62K

⌃|I|+2,|I|⌃1

P1|KI |.

Let SH be the stable homotopy category of topological spaces. There is a symmetric
monoidal functor SH ! SH(k), which in particular preserves dualizable objects. Since
the spaces ⌃1

P1 |KI | are images of finite CW -spectra under this map, they are also dualiz-

able. Since spheres and wedges of dualizable spaces are dualizable, ZA1

K
is dualizable.

Earlier, we saw that Davis had computed the Euler characteristic of polyhedral prod-
ucts (Theorem 2.17). We can recover the result for motivic moment-angle complexes.

Theorem 7.24. The A1-Euler characteristic of the motivic moment-angle complex is

�A1(ZA1

K ) =
X

�2K

h�1i|�|(h1i � h�1i)m�|�| =
X

�2K

(�1)|�|2m�|�|�1(h1i � h�1i).

Proof. By using [28, Lemma 1.4(3)], we can express the A1-Euler characteristic of a
smooth scheme in terms of an open subscheme and its complement. By applying this to
the cellular structure of ZA1

K
from Proposition 7.2, we recover the theorem.

We will also give a computation of �A1(ZA1

K
) that uses the stable splitting, and

hence describes the A1-Euler characteristic in terms of the Euler characteristic of full
subcomplexes of K. For a simplicial complex K, we write �(K) for it classical Euler
characteristic.

Theorem 7.25. Let K be a simplicial complex. The A1-Euler characteristic of the
motivic moment-angle complex is

�A1(ZA1

K
) = h1i �

X

I 62K

(�1)|I|(�(KI)� 1) · h�1i|I|.

We postpone the proof of the theorem until the end of the section.

Example 7.26. Let K be a square, as in Example 2.7. Then K has four vertices and
four edges. Theorem 7.24, we compute

�A1(ZA1

K
) = (23 � 4 · 22 + 4 · 2) · (h1i � h�1i) = 0.

Using Theorem 7.25, we have three full subcomplexes of K corresponding to the cases
where I = {1, 2}, {3, 4} or {1, 2, 3, 4}.

�A1(ZA1

K ) = h1i � 2(�(S0)� 1) · h1i � (�(S1)� 1) · h1i = (1� 2 + 1)h1i = 0.
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The A1-Euler characteristic also exhibits some nice properties like the classical Euler
characteristic.

Lemma 7.27. �A1(X _ Y ) = �A1(X) + �A1(Y )� h1i.

Proof. The wedge X _ Y may be written as the homotopy pushout

⇤ X

Y X _ Y.

p

In [31] May proved that the following holds for the categorical Euler characteristic.

�SH(k)(⌃
1

P1X _ Y ) = �SH(k)(⌃
1

P1X) + �SH(k)(⌃
1

P1Y )� �SH(k)(⌃
1

P1Spec(k))

The diagram above is still a homotopy pushout after adding a disjoint basepoint, thus
we get

�A1(X _ Y ) = �A1(X) + �A1(Y )� h1i.

In classical topology we have the following relation between the Euler characteristic
of a space X and its suspension ⌃X

�(⌃X) = 2� �(X).

Similar to the classical relation, we have the following relation of A1-Euler characteristics.

Lemma 7.28. �A1(X ^ S
p,q) = h1i + (�1)ph�1iq(�A1(X)� h1i).

Proof. We have
�A1(X ^ S

p,q) = �SH(k)(⌃
1

P1(X ^ S
p,q)) + h1i.

For the categorical Euler characteristic, May [31] proved that

�SH(k)(⌃
1

P1X ^ S
p,q) = �SH(k)(⌃

1

P1X) · �SH(k)(⌃
1

P1S
p,q).

We may rewrite �SH(k)(⌃
1

P1X) = �A1(X)�h1i and use the �SH(k)(⌃
1

P1S
p,q) = (�1)ph�1iq

by [28, Lemma 1.2] to get the claimed result.

We can now prove Theorem 7.25.

Proof of Theorem 7.25. By Lemma 7.28, the A1-Euler characteristic of ZA1

K
can be ex-

pressed in the following way

�A1(ZA1

K
) = 2h1i � �A1(⌃ZA1

K
).
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Since ⌃ZA1

K
splits into a wedge sum by Theorem 5.3, we get

�A1(ZA1

K ) = 2h1i � �A1(
_

I 62K

⌃2|KI | ^G^|I|

m )

= 2h1i � �A1(
_

I 62K

|KI | ^ S
|I|+2,|I|).

We continue by applying Lemma 7.27 to the wedge sum resulting in

�A1(ZA1

K
) = h1i �

X

I 62K

⇣
�A1(|KI | ^ S

|I|+2,|I|)� h1i
⌘
.

We then apply Lemma 7.28 to get

�A1(ZA1

K
) = h1i �

X

I 62K

(�1)|I|h�1i|I|(�A1(|KI |)� h1i).

For any simplicial complex K, we have �A1(|K|) = �(K) · h1i. This allows us to rewrite
the result above to

�A1(ZA1

K
) = h1i �

X

I 62K

(�1)|I|(�(KI)� 1) · h�1i|I|.
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[20] J. Grbić and S. Theriault. The homotopy type of the complement of a coordinate
subspace arrangement. Topology, 46(4):357–396, 2007.
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POLYHEDRAL COPRODUCTS

STEVEN AMELOTTE, WILLIAM HORNSLIEN, AND LEWIS STANTON

Abstract. Dualising the construction of a polyhedral product, we introduce the notion of a

polyhedral coproduct as a certain homotopy limit over the face poset of a simplicial complex. We

begin a study of the basic properties of polyhedral coproducts, surveying the Eckmann–Hilton

duals of various familiar examples and properties of polyhedral products. In particular, we show

that polyhedral coproducts give a functorial interpolation between the wedge and cartesian product

of spaces which di↵ers from the one given by polyhedral products, and we establish a general loop

space decomposition for these spaces which is dual to the suspension splitting of a polyhedral

product due to Bahri, Bendersky, Cohen and Gitler.
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1. Introduction

Polyhedral products are natural subspaces of cartesian products defined as certain colimits over

the face poset of a finite simplicial complex K. This construction generalises and unifies into a com-

mon combinatorial framework many familiar methods of constructing new topological spaces from

given ones—for example, products, wedge sums, joins, half-smash products and the fat wedge con-

struction are all special cases. Since their introduction by Bahri, Bendersky, Cohen and Gitler [BBCG1],

the topology of polyhedral products has become a growing topic of investigation within homotopy

theory and has made fruitful contact with many other areas of mathematics. Notable examples

include toric topology, following Buchstaber–Panov’s [BP] formulation of moment-angle complexes

as polyhedral products; commutative algebra, where polyhedral products give geometric realisa-

tions of Stanley–Reisner rings and their Tor algebras; and geometric group theory, where polyhedral

products model the classifying spaces of right-angled Artin and Coxeter groups. Other examples

include robotics [HCK, KT] and topological data analysis [BLPSS]. For more on the history and

far-reaching applications of polyhedral products, we recommend the excellent survey [BBC] and

references therein.

Motivated by the ubiquity and utility of polyhedral products, the purpose of this paper is to

propose a definition for the dual notion of a polyhedral coproduct and begin a study of its basic

properties. Before describing the main results, we first review the construction of polyhedral products

more precisely.

Let pX,Aq “ tpXi, Aiqumi“1 be anm-tuple of pointed CW-pairs. The polyhedral product associated

to pX,Aq is the functor

pX,Aqp´q : SCpxm Ñ Top˚

which associates to each simplicial complex K on the vertex set rms “ t1, . . . ,mu the (homotopy)

colimit

pX,AqK “ hocolim
�PK

mπ

i“1

Yip�q,

where Yi : catpKq Ñ Top˚ is the diagram defined for each i P rms by

Yip�q “

$
’&

’%

Xi if i P �

Ai if i R �.

Here catpKq denotes the face poset of K, regarded as a small category with objects given by faces

� P K and morphisms given by face inclusions ⌧ Ä �. We denote the initial object of catpKq by ?,

which corresponds to the empty face of K.

As has been pointed out in [KL, NR, WZZ], for example, the homotopy colimit above agrees

up to homotopy with the usual colimit
î

�PK
±m

i“1 Yip�q since each pXi, Aiq is an NDR-pair. In

particular, the polyhedral product pX,AqK is a cellular subcomplex of
±m

i“1 Xi for all K. In the
2



case that Ai “ ˚ for all i P rms, this subcomplex pX, ˚qK naturally interpolates between the wedge
öm

i“1 Xi (when K consists of m disjoint vertices) and the product
±m

i“1 Xi (when K “ �m´1 is the

simplex on m vertices).

Dualising the definition of a polyhedral product as a homotopy colimit of products, we define a

polyhedral coproduct as a homotopy limit of coproducts, as follows.

Definition 1.1. Let f “ pf1, . . . , fmq be an m-tuple of maps fi : Xi Ñ Ai of pointed spaces. We

define the polyhedral coproduct associated to f as the functor

f
p´q
co

: SCpxm Ñ Top˚

which associates to each simplicial complex K on rms the homotopy limit

f
K
co

“ holim
�PK

m™

i“1

Yip�q,

where Yi : catpKqop Ñ Top˚ is the diagram defined for each i P rms by

Yip�q “

$
’&

’%

Xi if i P �

Ai if i R �.

Note that for a face inclusion ⌧ Ä � P K, there are maps Yip�q Ñ Yip⌧q defined for each i P rms
by fi, if i P �z⌧ and by the identity map otherwise, and hence there is an induced map

m™

i“1

Yip�q Ñ
m™

i“1

Yip⌧q.

For a family pX,Aq of pairs of spaces, if the maps fi : Xi Ñ Ai are clear from context, we will

sometimes denote f
K
co

by pX,AqKco. One example is the case that Ai “ ˚ is a point, and fi is the

constant map for all i P rms. In this case, as we show in Section 2, the polyhedral coproduct pX, ˚qKco
naturally interpolates between

öm
i“1 Xi (when K “ �m´1) and

±m
i“1 Xi (when K is m disjoint

vertices).

Although we restrict our attention to constructions in Top˚ in this paper, note that polyhedral

(co)products could be defined more generally in any model category C, for example, by replacing the

category of pointed spaces with C in the definitions above. Since any (closed) model category has

an initial object and a terminal object, the polyhedral products and coproducts of the form pX, ˚qK

and pX, ˚qKco can be defined in this setting to yield functorial interpolations between the categorical

product and coproduct in C.

For polyhedral products, the relationship between the combinatorics of K and the homotopy type

of the space pX, ˚qK interpolating between the m-fold wedge and m-fold product is made clear after

suspending. By [BBCG2, Theorem 2.15], there is a natural homotopy equivalence

(1) ⌃pX, ˚qK »
™

�PK
⌃X^�

,

3



where X
^� “ Xi1 ^ ¨ ¨ ¨ ^ Xik for each face � “ ti1, . . . , iku P K. Notice that this generalises the

well-known splitting of ⌃
` ±m

i“1 Xi

˘
when K “ �m´1, in which case the wedge above is indexed over

all subsets of the vertex set rms. For polyhedral coproducts, we dualise the suspension splitting (1)

by establishing a loop space decomposition for pX, ˚qKco involving a product indexed by the faces of

the simplicial complex K (see Theorem 4.3). This similarly generalises a product decomposition due

to Porter for ⌦
` öm

i“1 Xi

˘
when K “ �m´1.

The equivalence (1) is a special case of the more general Bahri–Bendersky–Cohen–Gitler splitting

(henceforth, BBCG splitting) which identifies the homotopy type of any polyhedral product pX,AqK

as a certain wedge after suspending once. In [BBCG2], the authors describe the BBCG splitting as

a generalisation of a lemma regarding homotopy colimits of certain diagrams due to Welker, Ziegler,

and Živaljević [WZZ]. We first dualise the Welker–Ziegler–Živaljević lemma (see Lemma 3.7), and

then use this to dualise the BBCG splitting. This gives a general loop space decomposition for an

arbitrary polyhedral coproduct f
K
co

(see Theorem 4.2). We investigate special cases analogous to

important examples of the BBCG splitting, and speculate on potential deloopings in Section 4.

Definition 1.1 is alternate to Theriault’s definition of a dual polyhedral product, which was in-

troduced in [T] and used to identify the Lusternik–Schnirelmann cocategory of a simply connected

space X with the homotopy nilpotency of its loop space ⌦X . Although the two notions coincide in

some special cases (see Remark 2.2), the diagrams defining polyhedral coproducts and dual poly-

hedral products are very di↵erent in general, and our definition is more suitable for dualising the

BBCG splitting of ⌃pX,AqK (see Section 4).

Acknowledgements. The authors would like to thank the International Centre for Mathematical

Sciences (ICMS), Edinburgh, for support and hospitality during the workshop “Polyhedral Products:

a Path Between Homotopy Theory and Geometric Group Theory”, where work on this paper began.

We are grateful to the workshop organisers and especially to Martin Bendersky, Mark Grant and

Sarah Whitehouse for helpful and encouraging conversations at the beginning of this project. The

second author would like to thank Louis Martini for helpful discussions regarding Lemma 3.7 and

the wedge lemma of Welker–Ziegler–Živaljević [WZZ]. The authors would also like to thank Stephen

Theriault for reading a draft of this work.

2. Basic properties

2.1. Basic examples. We begin by computing some basic examples of polyhedral coproducts, in

each case illustrating the Eckmann–Hilton duality between these constructions and their correspond-

ing polyhedral products.

Example 2.1 (The A “ ˚ case).
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(1) Let K be m disjoint vertices. In this case, the polyhedral product associated to the m-tuple

of pairs pX, ˚q “ tpXi, ˚qumi“1 is the wedge

pX, ˚qK » X1 _ ¨ ¨ ¨ _ Xm.

Dually, if fi : Xi Ñ ˚ is the constant map for each i “ 1, . . . ,m, then by definition the

corresponding polyhedral coproduct is given by

pX, ˚qKco » X1 ˆ ¨ ¨ ¨ ˆ Xm.

(2) On the other extreme, let K “ �m´1. The polyhedral product associated to pX, ˚q in this

case is

pX, ˚qK » X1 ˆ ¨ ¨ ¨ ˆ Xm.

Since the diagram defining pX, ˚qKco has an initial object corresponding to the maximal face

of the simplex �m´1,

pX, ˚qKco » X1 _ ¨ ¨ ¨ _ Xm.

(3) Let K “ B�m´1. The polyhedral product pX, ˚qK in this case is precisely the fat wedge of

the spaces X1, . . . , Xm, which is defined as

FW pX1, . . . , Xmq “ tpx1, . . . , xmq | xi “ ˚ for at least one iu.

Dual to the fat wedge is the thin product of X1, . . . , Xm, as defined by Hovey in [Ho]. This

construction is realised by the polyhedral coproduct pX, ˚qKco.

Remark 2.2. The dual polyhedral product, denoted pX,AqKD , defined by Theriault [T] also models

some of the spaces in Example 2.1. In particular, when K is m disjoint points, pX, ˚qKD is equal to

the thin product of X1, . . . , Xm. When K “ B�m´1, pX, ˚qKD » X1 ˆ ¨ ¨ ¨ ˆ Xm. Outside of these

cases, it is not clear whether there is any correspondence between the dual polyhedral product, and

the polyhedral coproduct. Theriault also used the dual polyhedral product to give a loop space

decomposition of the thin product. An alternate loop space decomposition of the thin product can

be recovered in the context of polyhedral coproducts by Theorem 4.3.

Just like the polyhedral product pX, ˚qK , the polyhedral coproduct pX, ˚qKco interpolates between

the categorical product X1 ˆ ¨ ¨ ¨ ˆ Xm and coproduct X1 _ ¨ ¨ ¨ _ Xm as K interpolates between

a discrete set of vertices and a full simplex. Next, we compute two further examples of fK
co

where

the m-tuple f involves maps other than the constant map Xi Ñ ˚. An important class of polyhe-

dral products (which includes generalised moment-angle complexes pDn
, S

n´1qK) is given by those

associated to CW-pairs pCX,Xq “ tpCXi, Xiqumi“1 consisting of cones and their bases. The first

example below dualises this case by replacing the cofibrations Xi ãÑ CXi with path space fibrations

PXi Ñ Xi.
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Example 2.3 (Dual of the join). Let K “ B�1 be two disjoint vertices so that the only faces of

K are ?, t1u and t2u, and its face poset is given by t1u – ? Ñ t2u. In this case the polyhedral

product pCX,XqK recovers the join of X1 and X2 as a pushout:

pCX,XqK “ CX1 ˆ X2 YX1ˆX2 X1 ˆ CX2 » X1 ‹ X2.

For i P t1, 2u, let fi : PXi Ñ Xi be the path space fibration over Xi. The polyhedral coproduct

f
K
co

“ pPX,XqKco is then the homotopy limit of the middle column of the commutative diagram

˚ X1 X1

F X1 _ X2 X1 ˆ X2

˚ X2 X2,

where the vertical maps are inclusions and the rows are homotopy fibrations. The homotopy limit of

the right column is contractible, so by taking homotopy limits of the columns we obtain a homotopy

equivalence pPX,XqKco » ⌦F . By [G], there is a homotopy equivalence F » ⌃p⌦X1 ^⌦X2q, and so

there is a homotopy equivalence pPX,XqKco » ⌦⌃p⌦X1 ^ ⌦X2q. The space pPX,XqKco is known as

the cojoin of X1 and X2.

Example 2.4 (Dual of the half-smash). Let K “ B�1 be two disjoint vertices and consider the

CW-pairs pX,Aq “ tpCX,Xq, pY, ˚qu. As in the previous example, the polyhedral product is a

pushout pX,AqK “ CX ˆ ˚ YXˆ˚ X ˆ Y . Since CX ˆ ˚ is contractible, this is simply the cofibre

of the inclusion X ˆ ˚ ãÑ X ˆ Y , which by definition is the half-smash product

pX,AqK » X ˙ Y.

To dualise this example, let f “ pf1, f2q where f1 : PX Ñ X is the path space fibration and

f2 : Y Ñ ˚ is the constant map. Then by definition, the polyhedral coproduct is given by

f
K
co

“ holimpPX _ ˚ Ñ X _ ˚ – X _ Y q

» hofibpX _ Y
⇡X››Ñ Xq,

the expected Eckmann–Hilton dual of the cofibre pX,AqK “ hocofibpX iX››Ñ X ˆ Y q above. The

homotopy fibre of the projection onto a wedge summand can be identified using Mather’s Cube

Lemma [Ma], and we therefore obtain that the dual of the half-smash is given by

f
K
co

» ⌦X ˙ Y.

Moreover, by Mather’s Cube Lemma or [G, Theorem 1.1], there is a homotopy fibration

⌃⌦X ^ ⌦Y Ñ ⌦X ˙ Y Ñ Y,
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where the right map is the projection map. The projection has a right homotopy inverse, implying

there is a homotopy equivalence

⌦p⌦X ˙ Y q » ⌦Y ˆ ⌦p⌃⌦X ^ ⌦Y q.

This result can be recovered in the context of polyhedral coproducts by Theorem 4.2.

2.2. Functorial properties. The polyhedral product is a bifunctor (see [BBCG2, Remark 2.3]).

Namely, it defines a functor from the category of (m-tuples of) CW-pairs to the category of CW-

complexes, and it also defines a functor from the category of simplicial complexes to the category

of CW-complexes. In this section, we prove that the polyhedral coproduct enjoys similar functorial

properties. First, we show naturality with respect to maps of spaces.

Theorem 2.5. Let K be a simplicial complex on rms. For 1 § i § m, let fi : Xi Ñ Ai and

f
1
i : X

1
i Ñ A

1
i be maps. If there are maps gi : Xi Ñ X

1
i and hi : Ai Ñ A

1
i such that the diagram

(2)

Xi X
1
i

Ai A
1
i

hi

fi f 1
i

gi

homotopy commutes, then there is an induced map f
K
co

Ñ f
1K
co
.

Proof. Let DK and D
1
K be the diagrams defining f

K
co

and f
1K
co

respectively. For a face � P K, define

a map F� : DKp�q Ñ D
1
Kp�q, defined by

F� : DKp�q “
m™

i“1

Yi

mö
i“1

�i

››››Ñ
m™

i“1

Y
1
i “ D

1
Kp�q,

where �i “ gi if i P �, and �i “ hi if i R �. By (2), F� induces a natural transformation DK Ñ D
1
K ,

which in turn induces a map f
K
co

Ñ f
1K
co
. ⇤

The definition of fK
co

is also natural with respect to simplicial inclusions.

Theorem 2.6. Let K be a simplicial complex on rms, and let L be a subcomplex of K on rns with

n § m. Then the simplicial inclusion L Ñ K induces a map f
K
co

Ñ f
L
co
.

Proof. Let DK and DL be the diagrams defining f
K
co

and f
L
co

respectively. Let DK
L be the diagram

indexed by catpLq which is defined by D
K
L p�q “

mö
i“1

Yi, where Yi “ Xi if i P �, and Yi “ Ai if i R �.

By definition of fK
co

as a homotopy limit, there are canonical maps fK
co

Ñ D
K
L p�q for all � P L, and

so the inclusion catpLq Ñ catpKq induces a map f
K
co

Ñ holimD
K
L .

Now define a natural transformation of diagrams DK
L Ñ DL by the pinch map

D
K
L p�q “

m™

i“1

Yi Ñ
n™

i“1

Yi “ DLp�q.
7



This induces a map holimD
K
L Ñ f

L
co
. Therefore, the simplicial inclusion induces the composite

f
K
co

Ñ holimD
K
L Ñ f

L
co
. ⇤

Remark 2.7. The map f
K
co

Ñ f
L
co

can be represented as the homotopy limit of a map of diagrams

DK Ñ DL. For each � P L, we have a pinch map DKp�q Ñ DLp�q. By computing holimDK , one

can see that the maps fK
co

Ñ DLp�q for � P L are the maps described in the proof of Theorem 2.6.

2.3. Retractions. Let K be a simplicial complex and L a full subcomplex of K. For polyhedral

products, by [DS, Lemma 2.2.3], there is a map pX,AqK Ñ pX,AqL which is a left inverse for the

map pX,AqL Ñ pX,AqK . In the case of polyhedral coproducts, there is an analogous statement.

Theorem 2.8. Let K be a simplicial complex on rms and L be a full subcomplex of K on rns, with
n † m. Then there is a right homotopy inverse for the map f

K
co

Ñ f
L
co

induced by the simplicial

inclusion L Ñ K.

Proof. Let DK and DL be the diagrams defining f
K
co

and f
L
co

respectively. Recall from the proof of

Theorem 2.6 the diagramD
K
L indexed by catpLq, which is defined by D

K
L p�q “

mö
i“1

Yi, where Yi “ Xi

if i P �, and Yi “ Ai if i R �. Define a natural transformation DL Ñ D
K
L by the inclusion

DLp�q “
n™

i“1

Yi ãÑ
m™

i“1

Yi “ D
K
L p�q

This induces a map f
L
co

f›Ñ holimD
K
L . Define a functor F : catpKq Ñ catpLq by sending � P K to

the face ⌧ P L, where ⌧ is obtained from � by removing any instances of the vertices tn` 1, . . . ,mu.
Since L is a full subcomplex, F is well defined. The functor F induces a map holimD

K
L

g›Ñ f
K
co
.

Therefore, we obtain a composite

f
L
co

f›Ñ holimD
K
L

g›Ñ f
K
co
.

Now consider the composite

� : fL f›Ñ holimD
K
L

g›Ñ f
K
co

h›Ñ holimD
K
L

k›Ñ f
L
co
,

where the composite f
K
co

h›Ñ holimD
K
L

k›Ñ f
L
co

is defined as in Theorem 2.6. By definition of the

functor F , the composite catpLq ãÑ catpKq F›Ñ catpLq is the identity, and so the composite h ˝ g is

the identity. For a face �, the natural transformation inducing the composite k ˝ f is the identity

on D
K
L p�q, and so k ˝ f is the identity. Hence, � is the identity map, and so the composite g ˝ f is

a right homotopy inverse for the map induced by L Ñ K. ⇤
8



2.4. Homotopy cofibrations. For polyhedral products, it was shown in [DS, Lemma 2.3.1] that

there exists a homotopy fibration

pC⌦X,⌦XqK Ñ pX, ˚qK Ñ
mπ

i“1

Xi,

which splits after looping. More generally, it was shown in [HST, Theorem 2.1] that there is a

homotopy fibration

pCY , Y qK Ñ pX,AqK Ñ
mπ

i“1

Xi,

where Yi is the homotopy fibre of the inclusion Ai Ñ Xi. Moreover, this homotopy fibration also

splits after looping, giving a homotopy equivalence

⌦pX,AqK »
mπ

i“1

⌦Xi ˆ ⌦pCY , Y qK .

This implies that to understand the loop spaces of polyhedral products, and therefore their homotopy

groups, it su�ces to study polyhedral products of the form ⌦pCY , Y qK . Loop space decompositions

of certain polyhedral products of this form have been studied in [PT, S]. For polyhedral coproducts,

one might hope there is a homotopy cofibration

m™

i“1

Xi Ñ pX, ˚qKco Ñ pP⌃X,⌃XqK ,

or more generally,
m™

i“1

Xi Ñ pX,AqKco Ñ pPY , Y qK ,

where Yi is the homotopy cofibre of fi : Xi Ñ Ai. This would allow us to understand the suspension

of polyhedral coproducts, and therefore their homology. However, we show that in general, these

homotopy cofibrations do not exist. This is reminiscent of how Ganea’s theorem [G, Theorem 1.1]

does not dualise canonically; see [G, Remark 3.5].

Let pX,XqKco be the polyhedral coproduct defined via the identity map on Xi, and denote by Did

the corresponding diagram. Observe that pX,XqKco “ öm
i“1 Xi. By Theorem 2.5, there is a map

öm
i“1 Xi Ñ f

K
co

defined by the commutative diagram

Xi Xi

Xi Ai.

fi

fi

Consider the case where K is two disjoint points. Then by part p1q of Example 2.1, the map

X1 _ X2 Ñ f
K
co

is the inclusion X1 _ X2 Ñ X1 ˆ X2, which has cofibre X1 ^ X2. Now consider the

polyhedral coproduct pP⌃X,⌃XqK . By definition, this is the homotopy limit of the diagram

P⌃X1 _ ⌃X2

⌃X1 _ P⌃X2 ⌃X1 _ ⌃X2.
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Since P⌃X1 and P⌃X2 are contractible, this can be written, up to homotopy, as the homotopy

pullback

⌃X2

⌃X1 ⌃X1 _ ⌃X2.

By Example 2.3, the homotopy type of this pullback is ⌦⌃p⌦⌃X1 ^ ⌦⌃X2q. Hence, there is not a

homotopy cofibration dual to the homotopy fibration for polyhedral products. This gives rise to the

following problem.

Problem 2.9. For certain classes of polyhedral coproduct, determine a decomposition for its sus-

pension.

3. Preliminary Results

3.1. Preliminary decompositions. To decompose the loop space of a polyhedral coproduct,

we will use a result known as the Porter decomposition. Let K be m disjoint points. By [DS,

Lemma 2.3.1], there is a homotopy fibration

pC⌦X,⌦XqK Ñ
m™

i“1

Xi Ñ
mπ

i“1

Xi.

A result of Porter [P, Theorem 1] identifies the homotopy type of pC⌦X,⌦XqK in the case that

each Xi is simply connected. For a space X and k • 1, let X_k be the k-fold wedge of X .

Theorem 3.1. Let X1, . . . , Xm be pointed, simply connected CW-complexes, and let K be m disjoint

points. There is a homotopy equivalence

pC⌦X,⌦XqK »
m™

k“2

™

1§i1†¨¨¨†ik§m

p⌃⌦Xi1 ^ ¨ ¨ ¨ ^ ⌦Xikq_pk´1q
.

Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. ⇤

There is a special case of the naturality in Theorem 3.1 which will be important. Let n † m and

let Yi “ Xi for 1 § i § n, and let Yi “ CXi for n` 1 § i § m. In this case, we obtain the following.

Proposition 3.2. Let n † m, and let X1, . . . , Xm be pointed, simply connected CW-complexes.

There is a homotopy commutative diagram

mö
k“2

ö
1§i1†¨¨¨†ik§m

⌃p⌦Xi1 ^ ¨ ¨ ¨ ^ ⌦Xikq_pk´1q mö
i“1

Xi

m±
i“1

Xi

nö
k“2

ö
1§i1†¨¨¨†ik§n

⌃p⌦Xi1 ^ ¨ ¨ ¨ ^ ⌦Xikq_pk´1q nö
i“1

Xi

n±
i“1

Xi,

p ⇡p1

where p and p
1 are pinch maps and ⇡ is the projection. ⇤
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Recall that K is m disjoint points and there is a homotopy fibration

pC⌦X,⌦XqK Ñ
m™

i“1

Xi
i›Ñ

mπ

i“1

Xi,

where i is the inclusion. After looping, there is a natural right homotopy inverse s for i, given

by multiplying the inclusions Xi Ñ ±m
i“1 Xi. The naturality of s and the homotopy fibration in

Theorem 3.1 imply the following.

Theorem 3.3. Let X1, . . . , Xm be pointed, simply connected spaces. There is a homotopy equivalence

⌦

˜
m™

i“1

Xi

¸
»

mπ

i“1

⌦Xi ˆ ⌦

˜
m™

k“2

™

1§i1†¨¨¨†ik§m

p⌃⌦Xi1 ^ ¨ ¨ ¨ ^ ⌦Xikq_pk´1q
¸
.

Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. ⇤

Let K be a simplicial complex on rms, and let X1, . . . , Xm be spaces. For a face � P K, denote

by X
^� “ Xi1 ^ ¨ ¨ ¨ ^ Xik , where � “ ti1, . . . , iku.

Remark 3.4. Observe that in Theorem 3.3, the wedge summand in the right hand product term

can be indexed as

™

�P�m´1,|�|•2

p⌃p⌦Xq^�q_p|�|´1q
.

Now we recall the Hilton–Milnor theorem. Let L be the free (ungraded) Lie algebra over Z on

the elements x1, . . . , xm, and let B be a Hall basis of L. For a bracket b P B, let kipbq be the number

of instances of xi in b. For a space X and k • 0, denote by X
^k to be the k-fold smash of X . The

following is from [Hi, Mi]. We will define the 0-fold smash of X to be omission of the corresponding

term, rather than a trivial space.

Theorem 3.5. Let X1, . . . , Xm be connected topological spaces. Then there is a homotopy equiva-

lence

⌦

˜
m™

i“1

⌃Xi

¸
»

π

bPB
⌦⌃pX^k1pbq

1 ^ ¨ ¨ ¨ ^ X
^kmpbq
m q.

Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. ⇤

As in the case of the Porter decomposition, there is a special case which will be important. Let

n † m and let Yi “ Xi for 1 § i § n, and let Yi “ CXi for n ` 1 § i § m. By contracting out the

CXi terms, we obtain the following.
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Corollary 3.6. Let n † m, let Bn be a Hall basis on the free Lie algebra generated by x1, . . . , xn,

and let Bm be a Hall basis on the free Lie algebra generated by x1, . . . , xm. Then the diagram

⌦⌃

ˆ
mö
i“1

Xi

˙ ±
bPBm

⌦⌃pX^k1pbq
1 ^ ¨ ¨ ¨ ^ X

^kmpbq
m q

⌦⌃

ˆ
nö

i“1
Xi

˙ ±
bPBn

⌦⌃pX^k1pbq
1 ^ ¨ ¨ ¨ ^ X

^knpbq
n q.

»

⇡⌦p

»

homotopy commutes. ⇤

3.2. Preliminary homotopy limit decompositions. In this section, we prove some decomposi-

tions of certain homotopy limits indexed by the opposite of the face category of a simplicial complex.

The first lemma is the dual statement of the “Wedge Lemma” from [WZZ, Proposition 3.5].

Lemma 3.7. Let K be a simplicial complex. Let X be a space and let D be a diagram with the

shape of catpKqop with Dp?q “ X and Dp�q “ ˚ for all � ‰ ?. Then

holim
�PK

D » Map˚p⌃|K|, Xq.

Proof. Let X be the diagram with the shape of catpKqop with X p?q “ ˚ and X p�q “ X for all

� ‰ ?. Let catpKqop°? denote the over category (slice category) over ?. For a topological space

A and an indexing category C, let CA be the C-shaped diagram with Cpcq “ A for all c P C. The

diagram D can be written as the homotopy pullback of the diagram

(3) catpKqop˚ ›Ñ X –› catpKqopX ,

where the right hand map is the constant map to the basepoint for � “ ?, and the identity on

X for � ‰ ?, and for each � P K, the lefthand map is the inclusion of the basepoint. By [WZZ,

Proposition 4.1], there is a homotopy equivalence |K| » hocolimpcatpKqop°?q˚, and so there are ho-

motopy equivalences Mapp|K|, Xq » MapphocolimpcatpKqop°?q˚, Xq » holim
`
pcatpKqop°?qX

˘
. The

diagram X is equivalent to the diagram pcatpKqop°?qX Ñ ˚. There is a homotopy equivalence

˚ » Mapp|K|, ˚q, thus the diagram X can be written as the homotopy limit of the diagram

pcatpKqop°?qX Ñ pcatpKqop°?q˚. This is in fact an iterated homotopy limit, and we obtain homotopy

equivalences

holimX » holim pMapp|K|, Xq Ñ Mapp|K|, ˚qq » Mapp|K|, holimpX Ñ ˚qq » Mapp|K|, Xq.

Recall that the diagram D was equivalent to the diagram (3). Using that catpKqop˚ is contractible

and the previous observations about X yields the homotopy equvalence

(4) holimD » holim p˚ ›Ñ Mapp|K|, Xq –› Xq .
12



Consider the composition of squares

Map˚p⌃|K|, Xq Mapp⌃|K|, Xq Mapp˚, Xq

˚ Mapp˚, Xq Mapp|K|, Xq.

We wish to show that the outer square is a pullback. The right square is a pullback because

MapphocolimiAi, Y q » holimiMappAi, Y q in the category of spaces. The left square is a pullback,

and is the definition of Map˚p⌃|K|, Xq. By the pasting law for pullbacks, this implies that the outer

square is a pullback. Note that the outer pullback square coincides with (4), and so we obtain a

homotopy equivalence

holimD » Map˚p⌃|K|, Xq. ⇤

Lemma 3.8. Let K be a simplicial complex on rms. Let I Ñ rms, and let D be a diagram with the

shape of catpKqop. Suppose that all maps induced by � Ä ⌧ , where � is obtained from ⌧ by removing

a single vertex not contained in I, are identity maps. Then the homotopy limit of D is equivalent to

a diagram D1 with the shape of catpKIq, where D1p�Iq “ Dp�q.

Proof. For any i R I, consider all pairs of simplices ⌧ Ä � where � is obtained from ⌧ by removing

vertex i. We may contract all those arrows in the diagram simultaneously without changing the

homotopy limit of D. We do this for all i R I. Thus we are left with a diagram D1 with shape of

catpKIq with D
1p?q “ X and for � P K, we have D1p�Iq “ Dp�q. ⇤

4. Loop spaces of polyhedral coproducts

4.1. A general loop space decomposition. In [BBCG2, Definition 2.2], for a simplicial complex

K, a construction known as the polyhedral smash product is defined and denoted by {pX,Aq
K
. By

[BBCG2, Theorem 2.10], there is a homotopy equivalence

⌃pX,AqK »
™

IÑrms
⌃ {pX,Aq

KI

.

In this subsection, we show a dual statement for polyhedral coproducts.

Definition 4.1. The polyhedral smash coproduct is defined as the homotopy limit

f̂
K

co
“ holim

�PK
⌃D̂p�q, where D̂p�q “

m©

i“1

⌦Yi and Yi “

$
’&

’%

Xi if i P �,

Ai if i R �.

For a set of positive integers N “ tk1pNq, . . . , kmpNqu, we define the weighted polyhedral smash

coproduct as

f̂
K

N,co
“ holim

�PK
⌃D̂N p�q, where D̂

N p�q “
m©

i“1

p⌦Yiq^kipNq and Yi “

$
’&

’%

Xi if i P �,

Ai if i R �.
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Before stating the result, we set up some notation which will be used throughout the rest of

Section 4. Let K be a simplicial complex on rms, and let �pi1, . . . , ikq denote a simplex on the

vertices i1, . . . , ik. For a face � “ ti1, . . . , iku P K, let J� be the set

ta ¨ I | I Ñ �pi1, . . . , ikq, |I| • 2, 1 § a § |I| ´ 1u.

Denote by B� a Hall basis of the free ungraded Lie algebra on the set J�. For a bracket b P B� and

I Ñ �, let bpIq be the sum of the number of instances of a ¨ I in b for each 1 § a § |I| ´ 1. For

1 § i § m and a bracket b P B�m´1 , we define

lipbq :“
ÿ

IÑrms,iPI
bpIq,

which counts the number of instances of each vertex i in the faces in b. Let Lb “ pl1pbq, . . . , lmpbqq.
For any I Ñ rms and b P B�m´1 , define

Ib :“ I X tj | 1 § j § m, ljpbq ‰ 0u.

This set contains the vertices which appear in the faces in b. To ensure that ⌦Xi is connected in

order to apply Theorem 3.5, we need the hypothesis that each Xi is simply connected.

Theorem 4.2. Let fi : Xi Ñ Ai be a map of pointed, simply connected CW-complexes for all

1 § i § m. There is a homotopy equivalence

⌦fK
co

»
mπ

i“1

⌦Xi ˆ
π

bPB�m´1

⌦f̂
KIb

Lb,co
.

Proof. Since taking loops commutes with homotopy limits, we first consider ⌦Dp�q for each � P K.

By Theorem 3.3 and Remark 3.4, there is a homotopy equivalence

⌦Dp�q »
mπ

i“1

⌦Yi ˆ ⌦⌃

¨

˝
™

�P�m´1,|�|•2

pp⌦Y q^�q_p|�|´1q

˛

‚.

We can apply the Hilton–Milnor theorem (Theorem 3.5) to the right hand product term to obtain

the natural homotopy equivalence

⌦

¨

˝
™

�P�m´1,|�|•2

⌃pp⌦Y q^�q_p|�|´1q

˛

‚»
π

bPB�m´1

⌦⌃

¨

˝
©

�P�m´1,|�|•2

pp⌦Y q^�q^bp�q

˛

‚.

Note that for any b P B�m´1 , by definition

⌃

¨

˝
©

�P�m´1,|�|•2

pp⌦Y q^�q^bp�q

˛

‚“ ⌃D̂Lbp�q.

The diagram defining ⌦fK
co

may now be described as the homotopy limit

⌦fK
co

» holim
�PK

⌦Dp�q » holim
�PK

¨

˝
mπ

i“1

⌦Yi ˆ
π

bPB�m´1

⌦⌃D̂Lbp�q
˛

‚.

14



Due to the naturality in Theorem 3.5, we can consider the homotopy limit termwise and there is a

homotopy equivalence

⌦fK
co

»
mπ

i“1

ˆ
holim
�PK

⌦Yi

˙
ˆ

π

bPB�m´1

ˆ
holim
�PK

⌦⌃D̂Lbp�q
˙
.

Fix i P rms and consider the diagram for the term ⌦Yi. The maps induced by � Ä ⌧ , � ‰ ? are

the identity. Contracting these arrows, we are left with the diagram ⌦Xi Ñ ⌦Ai, whose homotopy

limit is ⌦Xi. For any b P B�m´1 , the maps induced by � Ä ⌧ where � is obtained from ⌧ by removing

a vertex not in Ib in the diagram

holim
�PK

⌃D̂Lbp�q

are identity maps. Therefore, Lemma 3.8 implies that

holim
�PK

⌃D̂Lbp�q » holim
⌧PKIb

⌃D̂Lbp⌧q » f̂
KIb

Lb,co
. ⇤

4.2. Loop space decompositions of pX, ˚qKco. For polyhedral products of the form pX, ˚qK , by

[BBCG2, Theorem 2.15], there is a homotopy equivalence

⌃pX, ˚qK »
™

�PK
⌃X^�

.

In this subsection, we prove a dual statement for polyhedral coproducts of the form pX, ˚qKco. Let F
and M be the set of faces and maximal faces of K on 2 or more vertices respectively. The following

result could be shown using Theorem 4.2 by showing that certain polyhedral smash coproducts are

contractible in this case. However, this would then involve a technical argument involving choices

of vector space bases for free Lie algebras. To avoid these technicalities, and make clearer the

connection to Hall bases, we provide a proof using Corollary 3.6.

Theorem 4.3. Let X1, . . . , Xm be pointed, simply connected CW-complexes. There is a homotopy

equivalence

⌦pX, ˚qKco »
mπ

i“1

⌦Xi ˆ
π

bP î
�PM

B�

⌦⌃

˜
©

⌧PF
pp⌦Xq^⌧ q^bp⌧q

¸
.

Proof. By definition of the polyhedral coproduct, pX, ˚qKco “ holim�PK Dp�q, where, if � “ ti1, . . . , iku,
Dp�q “ ök

j“1 Xij , and for each ⌧ Ä �, the map Dp�q Ñ Dp⌧q is the pinch map. Since looping com-

mutes with homotopy limits, we obtain a homotopy equivalence ⌦ holim�PK Dp�q » holim�PK ⌦Dp�q.
By Theorem 3.3 and Remark 3.4, there is a natural homotopy equivalence

(5) ⌦

˜
k™

j“1

Xij

¸
»

kπ

j“1

⌦Xik ˆ ⌦

¨

˝
™

⌧P�pi1,...,ikq,|⌧ |•2

p⌃p⌦Xq^⌧ q_|⌧ |´1

˛

‚.

Under this equivalence, it follows from Proposition 3.2 that the maps ⌦Dp�q Ñ ⌦Dp⌧q are given by

⇡ ˆ ⌦p up to homotopy, where ⇡ is the projection, and p is the pinch map.
15



Applying the Hilton–Milnor theorem to the right hand product in (5), we obtain a natural ho-

motopy equivalence

⌦

¨

˝
™

⌧P�pi1,...,ikq,|⌧ |•2

p⌃p⌦Xq^⌧ q_|⌧ |´1

˛

‚»
π

bPB�

⌦⌃

¨

˝
©

⌧P�pi1,...,ikq,|⌧ |•2

pp⌦Xq⌧ q^bp⌧q

˛

‚.

By Theorem 3.6, the map ⌦p becomes the projection onto the respective terms. Therefore, we obtain

a diagram where each object is a product of spaces, and each of the maps is a projection. Hence

⌦pX, ˚qKco is the product of each of the distinct factors that appear in the diagram. For ⌧ Ñ �, the

product terms appearing in the decomposition for ⌦Dp�q strictly contains the product terms in the

decomposition for ⌦Dp⌧q. Therefore, enumerating the distinct factors that appear for the maximal

faces, we obtain a homotopy equivalence

⌦pX, ˚qKco »
mπ

i“1

⌦Xi ˆ
π

bP î
�PM

B�

⌦⌃

˜
©

⌧PF
pp⌦Xq^⌧ q^bp⌧q

¸
.

⇤

Example 4.4. Let K be a 1-dimensional simplicial complex on rms. In this case, the set M consists

of all the 1-simplices in K. For each � “ ti, ju P M, B� “ t�u. Therefore, Theorem 4.3 implies

there is a homotopy equivalence

⌦pX, ˚qKco »
mπ

i“1

⌦Xi ˆ
π

�PM
⌦⌃p⌦Xi ^ ⌦Xjq.

4.3. Loop space decompositions when the domain is contractible. For a simplicial complex

K, let |K| be the geometric realisation of K as a topological space. For polyhedral products of the

form pCX,XqK , by [BBCG2, Theorem 2.21], there is a homotopy equivalence

(6) ⌃pCX,XqK »
™

IRK
⌃p|KI | ^ X

^Iq.

In this subsection, we prove a dual statement for polyhedral coproducts of the form f
K
co

where the

domain of each fi is contractible.

Theorem 4.5. Let K be a simplicial complex on rms and fi : Xi Ñ Ai where Xi is contractible and

Ai is a pointed, simply connected CW -complex for 1 § i § m. Then there is a homotopy equivalence

⌦fK
co

»
π

bPB�m´1 ,IbRK
⌦Map˚p⌃|KIb |,⌃⌦A^l1pbq

1 ^ ¨ ¨ ¨ ^ ⌦A^lmpbq
m q.

To prove Theorem 4.5, we will use the following consequence of Theorem 4.2.

Lemma 4.6. Assume that Xi is contractible and Ai is a pointed, simply connected CW -complex

for all i and N P Nm. There is a homotopy equivalence

f̂
KIb

N,co
» Map˚p⌃|K|,⌃⌦A^k1pNq

1 ^ ¨ ¨ ¨ ^ ⌦A^kmpNq
m q.
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Proof. Since all the Xi are contractible, D̂N p�q » ˚ for all � ‰ ?. Thus, the diagram defining f̂
KIb

N,co

satisfies the conditions of Lemma 3.7. ⇤

With the lemma above, it is straightforward to prove Theorem 4.5

Proof of Theorem 4.5. By Lemma 4.6, if Ib P K, then f̂
KIb

Lb,co
is contractible. One can then apply

Lemma 4.6 to the decomposition in Theorem 4.2 to prove the statement. ⇤

Example 4.7. Let K “ B�m´1. In this case, the only missing face of K is t1, ¨ ¨ ¨ ,mu. By

Theorem 4.5, there is a homotopy equivalence

⌦fK
co

»
π

bPB�m´1 ,Ib“t1,¨¨¨ ,mu
⌦Map˚p⌃|KIb |,⌃⌦A^l1pbq

1 ^ ¨ ¨ ¨ ^ ⌦A^lmpbq
m q,

where the indexing set of the product consists of brackets b such that for each i P rms, there is a

face � P K in b which contains i.

In the case of polyhedral products, it is known that the decomposition in (6) desuspends in certain

cases. For example, when K is a shifted complex [GT1, IK1], a flag complex with chordal 1-skeleton

[PT, Theorem 6.4], or more generally, a totally fillable simplicial complex [IK2, Corollary 7.3].

Specialising, polyhedral products of the form pD2
, S

1qK are known as moment-angle complexes,

which are denoted ZK . In the aforementioned cases, ZK is homotopy equivalent to a wedge of

spheres.

Consider the case where K is a simplicial complex on rms, and is either a shifted complex, or a flag

complex with chordal 1-skeleton. The dual of the polyhedral product pCX,XqK is the polyhedral

coproduct pPX,XqKco. In the first case, |KI | is homotopy equivalent to a wedge of spheres for all

I Ñ rms, and in the second case, |KI | is homotopy equivalent to a set of disjoint points for all

I Ñ rms. Therefore, in the case where each Xi is a simply connected sphere, Theorem 4.5 implies

that ⌦pPX,XqKco is homotopy equivalent to a product of iterated loop spaces of spheres. Dual to

the polyhedral product case, we give the following conjecture.

Conjecture 4.8. Let K be a shifted complex or a flag complex with chordal 1-skeleton. Then the

decomposition in Theorem 4.5 deloops.

5. Polyhedral coproducts under operations on simplicial complexes

5.1. Joins of simplicial complexes. For any polyhedral product, if K “ K1 ‹K2 is the join of K1

and K2, then pX,AqK – pX,AqK1 ˆ pX,AqK2 . Therefore, we may expect a homotopy equivalence

pX,AqKco » pX,AqK1
co _ pX,AqK2

co . However, this does not hold in general for polyhedral coproducts.

For 1 § i § 4, let Xi “ CP8, and let K “ t1, 2u ‹ t3, 4u be the boundary of a square. Since

pCP8
, ˚qt1,2u

co and pCP8
, ˚qt3,4u

co are homotopy equivalent to CP8 ˆ CP8 by Example 2.1, suppose
17



that pCP8
, ˚qKco » pCP8ˆCP8q_pCP8ˆCP8q. Since CP8 is simply connected, and ⌦CP8 » S

1,

by Theorem 4.3, there is a homotopy equivalence

⌦pCP8
, ˚qKco »

4π

i“1

pS1 ˆ ⌦S3q.

Now by Theorem 3.3 applied to pCP8 ˆCP8q _ pCP8 ˆCP8q, there is a homotopy equivalence

⌦ppCP8 ˆ CP8q _ pCP8 ˆ CP8qq »
4π

i“1

S
1 ˆ ⌦⌃

`
pS1 ˆ S

1q ^ pS1 ˆ S
1q

˘
.

For spaces X and Y , there is a well-known homotopy equivalence ⌃pXˆY q » ⌃X_⌃Y _⌃pX^Y q.
By shifting the suspension coordinate, we obtain homotopy equivalences

4π

i“1

S
1 ˆ ⌦⌃

`
pS1 _ S

1 _ S
2q ^ pS1 _ S

1 _ S
2q

˘
»

4π

i“1

S
1 ˆ ⌦⌃

˜
4™

i“1

S
2 _

4™

i“1

S
3 _ S

4

¸
.

By Theorem 3.5, ⌦⌃
´ö4

i“1 S
2 _ ö4

i“1 S
3 _ S

4
¯
decomposes as an infinite, finite type product of

spheres and loops on spheres. However, since ⌦pCP8
, ˚qKco is homotopy equivalent to a finite product

of spheres and loops on spheres,

⌦pCP8
, ˚qKco fi ⌦ppCP8 ˆ CP8q _ pCP8 ˆ CP8qq,

which implies that

pCP8
, ˚qKco fi pCP8 ˆ CP8q _ pCP8 ˆ CP8q.

However, it is possible to say something about certain joins.

Proposition 5.1. Let K be a simplicial complex on the vertex set rms and let fK
co

be any polyhedral

coproduct. Let K 1 “ K ‹ tm ` 1u where fm`1 : ˚ Ñ Y for some space Y . Then f
K1

co
» f

K
co
.

Proof. Let D denote the diagram defining f
K
co

and let D _ Y (resp. D ˆ Y ) be the diagram where

for each � P K, pD _Y qp�q “ Dp�q _ Y (resp. Dp�q ˆ Y ). Let D˚ (resp. DY ) be the diagram with

the shape of D and D˚p�q “ ˚ (resp. DY p�q “ Y ) for all � P K. Let F be the D-shaped diagram

with F p�q “ hofibpDp�q _ Y Ñ Dp�q ˆ Y q for each � P K. For each � P K, there exists a simplex

�
1 P K

1 that is the join of � and the vertex tm ` 1u. Thus the diagram for f
K1

co
can be written as

the iterated homotopy limit holimpD _Y – Dq, where the maps Dp�q Ñ pD_Y qp�q are inclusions

for all � P K. We have the following homotopy fibration

holim pF – D˚q Ñ holim pD _ Y – Dq Ñ holim pD ˆ Y – Dq .

The space holim pF – D˚q is contractible since

holim pF – D˚q » holim pholimpF q – ˚q » ˚.
18



Since the fibre is contractible, there is a homotopy equivalence f
K1

co
» holim pD ˆ Y – Dq. The

right-hand side decomposes as a product of diagrams, and so we obtain,

holim pD ˆ Y – Dq » holim pD – Dq ˆ holim pDY – D˚q

» holim pDq ˆ holim pY – ˚q

» f
K
co
. ⇤

5.2. Pullbacks of polyhedral coproducts. Let K1 be a simplicial complex on t1, . . . , nu and K2

be a simplicial complex on tl, . . . ,mu with n † m and l § m, and let L be a subcomplex (possibly

empty) of K1 and K2 on tl, . . . , nu. Define K “ K1 YLK2, and for M one of K1, K2 or L, let M be

the simplicial complex considered on the vertex set t1, . . . ,mu. For polyhedral products, by [GT1,

Proposition 3.1], there is a pushout

pX,AqL pX,AqK1

pX,AqK2 pX,AqK .

For polyhedral coproducts, we can prove a dual statement.

Proposition 5.2. Let K1 be a simplicial complex on t1, . . . , nu and K2 be a simplicial complex on

tl, . . . ,mu with n † m and l § m, and let L be a subcomplex (possibly empty) of K1 and K2 on

tl, . . . , nu. Define K “ K1 YL K2. Then there is a homotopy pullback of polyhedral coproducts

f
K
co

f
K2

co

f
K1

co
f
L
co

where the maps f
K1

co
Ñ f

L
co
, and f

K2

co
Ñ f

L
co

are induced by the simplicial inclusions.

Proof. By Remark 2.7, one may write the elements of the pullback

f
K2

co

f
K1

co
f
L
co

as diagrams and we are left with a diagram D that almost has the shape of catpMq, but with each

� P L showing up thrice. For each � P L, let �K1 (resp. �K2q denote the copy in D in f
K1

co
(resp.

f
K2

co
). For each �, the maps Dp�K1q Ñ Dp�q and Dp�K2q Ñ Dp�q are the identity map. Therefore,

for all � P L, we may contract these edges in the diagram without changing the homotopy limit.

The resulting diagram D1 has the shape of catpKq and is the diagram with homotopy limit fK
co

by

definition. ⇤
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Let K1 and K2 be simplicial complexes and let K “ K1 \ K2. By definition of the polyhedral

product, pX, ˚qK “ pX, ˚qK1 _ pX, ˚qK2 . In the case of a polyhedral coproduct pX, ˚qKco, using

Proposition 5.2, we show that the dual holds in this case.

Theorem 5.3. Let K1 and K2 be simplicial complexes, and let K “ K1 \K2. There is a homotopy

equivalence

pX, ˚qKco » pX, ˚qK1
co ˆ pX, ˚qK2

co .

Proof. By definition, since each Ai “ ˚, pX, ˚q? “ ˚, and pX, ˚qKi “ pX, ˚qKi for i P t1, 2u.
Therefore, Proposition 5.2 implies there is a homotopy pullback

pX, ˚qKco pX, ˚qK2
co

pX, ˚qK1
co ˚.

Hence, there is a homotopy equivalence

pX, ˚qKco » pX, ˚qK1
co ˆ pX, ˚qK2

co . ⇤
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