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Abstract

In recent decades, lithium-ion batteries (LIB) have become the leading technology in energy

storage. Due to their many advantageous properties, they are widely implemented in various

applications. However, these batteries are not everlasting, nor are they the easiest to control

safely. States such as State of Charge (SOC) and State of Health (SOH) are two critical condi-

tions that are important to monitor for the safe and efficient use of the battery.

Various solutions exist for estimating these states, ranging from Coulomb-counting-based meth-

ods to more advanced Kalman filters and particle filters. Kalman filters, in particular, are a

common method for estimating SOC. Different forms of SOH, such as capacity and resistance

changes due to aging, can also be estimated using Kalman filters.

In this thesis, three variations of the Kalman filter are implemented. Because of the non-linear

behavior of the battery, the extended type of Kalman filter is chosen, since this filter linearizes

the non-linear system. The first implemented filter is the Extended Kalman Filter (EKF), which

estimates SOC. The second filter is the Joint Extended Kalman Filter (JEKF), which is an ex-

panded version of the EKF. In addition to estimating SOC, it also estimates SOH in terms of

changes in capacity and internal resistance. The third implemented filter is the Dual Extended

Kalman Filter (DEKF), an advanced type of JEKF that estimates the same states. All three fil-

ters, EKF, JEKF, and DEKF, are implemented in two versions using two different battery models:

the Rint model and the Thevenin model. To assess their precision, the resulting implemented

filters are evaluated against a reference capacity test performed on battery data.

Simulations and test cases performed on publicly available long-term battery data show good

capacity estimation from the JEKF and DEKF with a margin of error of less than 5%. The tests

also indicate a much better SOC estimation by JEKF and DEKF compared to EKF when the

battery is aged. However, for a new battery, this difference is not present. The thesis concludes

that DEKF, and especially JEKF, are useful filters for SOH estimation of LIB, not only because

of the SOH estimation but also due to their SOC estimation capabilities when the battery ages.
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Sammendrag

I de siste tiårene har litium-ion-batterier (LIB) blitt den ledende teknologien innen energila-

gring. På grunn av dens mange gode egenskaper blir de implementert i en rekke ulike app-

likasjoner. Dessverre er ikke batteriene evigvarende, og de er heller ikke de enkleste å kon-

trollere trygt. Derfor er det kritisk å overvåke tilstander som State of Charge (SOC) og State

of Health (SOH) for å sikre trygg og effektiv bruk av batteriet.

Det finnes ulike metoder for estimering av disse tilstandene, fra Coulombmeter til mer avanserte

Kalman-filtre og partikkelfiltre. Kalman-filtre er spesielt vanlige for estimering av SOC. I tillegg

kan Kalman-filtre brukes til å estimere ulike aspekter av SOH, som endringer i kapasitet og

intern motstand i batteriet.

I denne oppgaven er tre varianter av Kalman-filteret implementert. På grunn av batteriets

ikke-lineære oppførsel er ’Extended’ Kalman-filter valgt, siden dette filteret lineariserer det

ikke-lineære systemet. Det første implementerte filteret er Extended Kalman Filter (EKF), som

kun estimerer SOC. Det andre filteret er Joint Extended Kalman Filter (JEKF), som er en utvidet

versjon av EKF. I tillegg til å estimere SOC, estimerer dette filteret også SOH i form av endringer

i kapasitet og intern motstand. Det tredje implementerte filteret er Dual Extended Kalman Fil-

ter (DEKF), en avansert type JEKF som estimerer de samme tilstandene. Alle tre filtrene, EKF,

JEKF, og DEKF, er laget i to versjoner ved bruk av ulike batterimodeller: Rint-modellen og

Thevenin-modellen. Presisjonen til filtrene blir evaluert ved å sammenligne dem med resul-

tatene fra en referansekapasitetstest utført på batteridata.

Utførte simuleringer på offentlig tilgjengelige langtids-batteridata viser at de implementerte

filtrene estimerer kapasiteten godt, med en feilmargin på under 5%. Testene viser også til en

mye bedre SOC-estimering fra JEKF og DEKF sammenlignet med EKF når batteriet er aldret.

For et nytt batteri er denne forskjellen derimot ikke like mye til stede. Oppgaven konkluderer

med at DEKF, og spesielt JEKF, er nyttige filtre for SOH-estimering av LIB, ikke bare på grunn

av SOH-estimeringen, men også på grunn av deres forbedrede SOC-estimeringer når batteriet

aldres.
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Chapter 1
Introduction

1.1 Background

In recent years, lithium-ion batteries (LIBs) have become a critical and essential component

across a broad spectrum of technologies. They are foundational in powering everything from

vehicles and vessels to smaller devices such as flashlights and mobile phones. The constantly

improving efficiency and increased capacity of these batteries have paved the way for expanded

uses, such as energy storage systems for various applications. For example, storing energy from

renewable sources in large battery packs allows for the supply of electricity during periods of

high demand, effectively balancing the energy grid and enhancing the reliability of renewable

energy systems.

The demand for efficient energy storage is escalating, especially as reliance on renewable en-

ergy sources like wind and solar power continues to grow. These sources provide fresh energy

that must be consumed or stored immediately. This need is captured in the assertion that "The

Renewable-Energy Revolution Will Need Renewable Storage" [3], highlighting the critical role

of storage solutions in maximizing the benefits of renewable energy.

The use of LIBs to store energy from renewable sources directly supports the United Nations

Sustainable Development Goals, particularly Goal 7: ’Affordable and Clean Energy’, and Goal

13: ’Climate Action’. The LIBs enable the storage of energy generated from renewables, such as

solar and wind energy, reducing reliance on fossil fuels. This promotes environmental sustain-

ability by lowering greenhouse gas emissions and enhancing energy access, making it more

reliable and affordable globally. Therefore, the development of large-scale, well-functioning

LIB systems plays a crucial role in transitioning to a more sustainable energy infrastructure.

LIBs have become the preferred choice for rechargeable batteries in a wide range of applica-

1



CHAPTER 1. INTRODUCTION 1.2. Previous work

tions. This preference is largely due to their high energy density, which allows them to store

more energy in a compact size. Additionally, they have a low self-discharge rate, meaning they

retain their charge well over time [4].

When working with LIBs, it is crucial to monitor certain key states to ensure their effective and

safe operation. One such state is the State of Charge (SOC), which indicates the remaining en-

ergy stored in the battery. Understanding the SOC helps in managing the energy supply and

preventing over-discharge, which can damage the battery. Another vital parameter to monitor

is the State of Health (SOH). The SOH provides insight into the condition of the battery, indi-

cating how much the battery’s capacity has diminished over time and how much its internal

resistance has increased. Monitoring the SOH is essential for predicting the battery’s lifespan

and ensuring its reliability [5].

1.2 Previous work

Over the past decades, significant research has focused on state estimation techniques for LIBs.

Various methods have been developed to accurately estimate the SOC and the SOH of these

batteries, which are critical for their efficient and safe operation.

One of the most extensively studied techniques is the Kalman filter. Different variations of

Kalman filters, such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),

and Sigma Point Kalman Filter, have been applied to estimate the SOC with success. Particle

filters have also demonstrated strong performance in SOC estimation due to their ability to

handle non-linearities and non-Gaussian noise [6].

In the work by Dreyer Svendsen [2], the precision of the EKF is highlighted. This study com-

pares the EKF to a Sigma Point Kalman Filter and a Moving Horizon Estimator, demonstrating

the advantages and limitations of each method in different scenarios.

Research by [7] investigates the changes in battery model parameters over time. The study

finds that the capacitance in a modeled RC element generally decreases, and the internal resis-

tance increases as the battery ages. Furthermore, it is shown that lower temperatures increases

internal resistance and decrease capacitance, which can significantly impact the performance

and lifespan of the battery.
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1.3 Problem description

The accurate estimation of the SOC and SOH in LIBs is a critical challenge in battery manage-

ment systems (BMS). As the battery ages, the inconsistency of an estimator becomes apparent,

potentially leading to safety risks.

Most existing estimators either focus solely on SOC or do not account for the gradual changes

in battery capacity and internal resistance, which are key parameters for SOH estimation. The

challenge is further compounded when trying to maintain accuracy across a wide range of

operating conditions and over the entire lifespan of the battery.

This thesis addresses these challenges by implementing and evaluating online estimators that

can simultaneously estimate SOC and SOH. By utilizing the capabilities of the Joint Extended

Kalman Filter (JEKF) and the Dual Extended Kalman Filter (DEKF), this work aims to provide

a solution that maintains consistent accuracy in both health and charge estimation simulta-

neously for new and aged batteries, ensuring reliable performance throughout the battery’s

operational life. The performance of these estimators will be compared with a standard Ex-

tended Kalman Filter (EKF) that estimates only SOC and not SOH, serving as a benchmark.

1.4 Contributions

This thesis provides insights into the effectiveness of an online estimator, specifically using

different versions of the EKF, in simultaneously estimating the SOC and SOH of LIBs. By using

datasets for LIBs under various load conditions and temperatures over their entire lifespan, this

research offers a comprehensive evaluation of the EKF’s performance in real-world scenarios.

1.5 Structure of the report

The thesis is structured as follows. In Chapter 2, the theory surrounding LIB will be presented,

including how to model these batteries. Chapter 3 introduces estimation techniques, focusing

on different Kalman filters for state and parameter estimation. Chapter 4 walks through the

methods used, from the implementation of the SOC and SOH estimators to the preparation of

a battery dataset. In Chapter 5, results from different test cases will be presented, followed by

a discussion in Chapter 6. The final chapter, Chapter 7, concludes the main findings from the

work.
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Chapter 2
Lithium Ion Batteries

This chapter covers the fundamental and essential theories related to lithium-ion batteries

(LIBs) that are crucial for understanding the subsequent material in this report. It will explain

how LIBs store energy and how the voltage varies in different modes such as charging, dis-

charging, and in open-circuit conditions. The chapter will then delve into battery modeling

techniques, from the basic Rint model to the more advanced Thevenin model. Note that parts

of this chapter are similar to the theory chapter from the specialization project [1], written by

the same author.

The first section will explain the basics of LIB theory, including the construction of the cell and

definitions such as capacity, State of Charge (SOC), State of Health (SOH), and how the cell

voltage depends on the SOC. The next section will describe some aging mechanisms in the

cell, followed by a section in battery modeling.

2.1 Basics on lithium-ion battery

The reason for the widely adopted use of LIBs is their exceptional space and weight efficiency

compared to other types of rechargeable battery cells on the market, such as Nickel-Cadmium

(NiCd) or Nickel-Metal Hydride (NiMH) cells. LIBs also have a superior low self-discharge

rate, which indicates how much the battery drains when not in use. Additionally, LIBs can

be manufactured in a wide range of sizes and shapes, making them suitable for a variety of

applications, from powering electric vessels to flashlights.

The LIBs are created by connecting one or more lithium-ion cells in series or parallel, de-

pending on the desired current or voltage for the application. Multiple batteries can then be

connected in series or parallel to create a battery module. For instance, if one has a 3.3V bat-
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tery cell, it can be assembled into a≈100V module by connecting 30 cells in series. The current

specification for the module with cells in series is the same as for a single cell. To accommo-

date higher current demands, multiple modules can be connected in parallel, allowing the

total current to be the sum of the currents from all the modules. For example, if each module

provides a maximum current of 10A, connecting 10 modules in parallel would result in a total

maximum current of 100A.

A LIB consists of a positive electrode called the "cathode," made of "LiMO2," where M rep-

resents a type of metal, and a negative electrode called the "anode," often made of graphite

(C, carbon) due to its low potential and safety [8]. Different cathodes have varying proper-

ties. Three commonly used cells are Nickel Manganese Cobalt (NMC), Lithium Iron Phosphate

(LFP), and Lithium-Cobalt Oxide (LCO). The LFP cell uses LiFePO4 as the cathode, the NMC

cell has a cathode made of LiN iMnCoO2, and the LCO cell features a cathode made of Lithium

Cobalt Oxide(LiCoO2). The cells used in the dataset later in this thesis are LCO cells.

Each of these cell types has different characteristics regarding performance and degradation.

LFP cells are known for their excellent thermal stability and long cycle life, making them highly

resistant to degradation. However, they typically have a lower energy density compared to

NMC and LCO cells. NMC cells strike a balance between energy density, safety, and longevity,

offering higher capacity than LFP cells but with slightly faster degradation over time. LCO cells

have high energy density and are commonly used in consumer electronics. However, they tend

to degrade faster than LFP and NMC cells, especially under high load conditions and elevated

temperatures [9].

Inside the cell, the two electrodes are separated by a separator that allows lithium ions to flow

freely while blocking the flow of electrons. This setup forces the electrons to travel through

an external circuit, creating an electric current. Additionally, there is an electrolyte through

which the lithium ions move (see Figure 2.1 for visualization).
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Figure 2.1: Visualization showing the discharge of a Lithium-Ion Battery cell [10].

Charge Discharge

Anode (-) C6 + Li+ + e−→ LiC6 LiC6→ C6 + Li+ + e−

Cathode (+) LiMO2→ Li+ +MO2 + e− Li+ +MO2 + e−→ LiMO2

Total LiMO2 + C6→ LiC6 +MO2 LiC6 +MO2→ LiMO2 + C6

Table 2.1: Charging and discharging reactions in a Li-Ion Battery for general cell chemistries.
M is a metal, often CO, Fe, Ni, or Mn.

During the charging process of the cell, a current is pushed through the positive terminal,

causing electrons to flow toward the negative terminal. Within the cell, the following occurs:

at the cathode, Li+ ions are liberated, accompanied by the release of electrons. These electrons

travel through the external circuit to the anode, while the Li+ ions pass through the separator

to reach the anode. At the anode, these ions react and form LiC6. The chemical equation

illustrating this process is shown in Table 2.1.

Conversely, during the discharging process, connecting a load between the terminals allows

current to flow, and the reaction essentially reverses the charging process. To sum up, during

discharging, Li+ ions flow inside the cell, and electrons flow outside the cell through a con-

ducting material (wire) when the battery is in use. The direction of the current depends on

the load, determining whether the cell is charging or discharging.
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2.1.1 Capacity

The capacity of a battery describes its ability to store and deliver energy, typically measured

in ampere-hours (Ah). It indicates how much charge a fully charged battery can deliver. For

example, a fully charged battery with a capacity of 10 Ah can deliver a current of 10 Amperes

for one hour, at a discharge rate of 1C. At a discharge rate of 2C, it delivers 20 Amperes for

30 minutes. The C rate denotes the speed of battery charging or discharging. For instance, 1C

signifies a charging or discharging time of one hour, while 0.5C corresponds to a duration of

two hours ( 1
0.5C = 2h).

Determining the charging time is not always straightforward, as the actual capacity changes

over time and is influenced by factors such as temperature, charging/discharging rate, State

of Health (SOH), and other variables. The capacity of the battery is denoted as q(t), while the

total capacity is denoted as Q.

2.1.2 State of Charge

The State of Charge (SOC) of a battery is closely related to its capacity and is expressed as a

scalar value ranging from 0 to 1 (0% to 100%), given by:

SOC(t) = z(t) =
q(t)
Q

(2.1)

The SOC describes how much energy is currently available in a battery as a percentage of

its full capacity. It is a crucial state to monitor and control to ensure the battery is used and

managed most efficiently.

2.1.3 State of Health

The State of Health (SOH) of a battery describes its condition compared to when it was new.

The definition of SOH can vary, but it is commonly expressed as a percentage, where 100%

indicates that the current capacity is equal to the nominal capacity (a new, fully functional

battery).

SOH=
QAh, current

Qnominal
· 100% (2.2)

Here, QAh, current is the current capacity of the battery, and Qnominal is the nominal capacity of

the battery when new.
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SOH can also be calculated based on the internal resistance of the battery. As the battery ages,

its internal resistance tends to increase, which affects its performance.

2.1.4 Open Circuit Voltage

The open circuit voltage (OCV) is defined as the voltage of the LIB when it is at rest. At rest

refers to the state when there is no load connected, meaning there is no current flow through

the cell. The OCV of the battery is mainly a function of SOC, where typically a higher SOC leads

to a higher OCV. This means that if the function OCV(SOC) is known, and the cell is at rest, it is

possible to get an approximation of the SOC by measuring the OCV. When a load is connected

to the cell, the voltage will change immediately because of the internal resistance, and other

chemical effects. This effect makes it challenging to measure the SOC when the cell is in use.

The OCV is also influenced by temperature, SOH, and other factors [11], which again makes

it harder to estimate the SOC. Figure 2.2 shows the approximated OCV-SOC relationship from

three different types of cell chemistries. It can be seen that not all cells are straightforward to

estimate SOC from the OCV since the curve is flat in the middle area.

0 0.2 0.4 0.6 0.8 1
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]

OCV-SOC Curves for Various Cell Types
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Figure 2.2: Relationship between OCV and SOC for three types of cell chemistries. NMC[2]
and LFP[2], LCO (Section 5.2, this work).

There are several ways to determine the OCV(SOC) function. One way is to do a low current

test [6]. A normal approach for this type of test is to discharge a fully charged cell at a very slow

rate, for example at the rate of C/25 (25 hours). When the current is this low the terminal

voltage will be very close to the actual OCV at this SOC. It is also advantageous to do the

same test, but in reverse, meaning charge the cell from 0% to 100 % at the same rate and

find the average OCV. Another way to find the function is to do an incremental OCV-SOC test,

which charges the cell for a certain amount of charge, and then lets the cell rest for a while,

measures the voltage, and does this until the cell is fully charged. Then the measured points
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can interpolate to get the approximated OCV for the whole SOC span 0 - 100 %. The OCV - SOC

relationship does change both with temperature and aging, but these changes are generally

very small [7].

2.1.5 Hysteresis

In LIBs, hysteresis is a phenomenon resulting from internal chemical dynamics, causing the

voltage response to depend on previous states. For example, if a battery is being discharged

and then switches to charging, the voltage will differ compared to a scenario where it has been

charged, paused, and then charged again. This behavior indicates that the voltage is not solely

a function of the current SOC but also of the battery’s charging and discharging history.

2.1.6 Polarization voltages

Polarization voltage in a LIB occurs when there is a flow of electrons. It is described as the

deviation of the cell’s terminal voltage from its OCV due to current flow through the battery

[12].

The polarization voltage in the battery is expressed as:

Vpolarization = Vterminal − Vocv (2.3)

This is the difference between the OCV of the battery and the measured voltage at the ter-

minals. After a long rest period for the battery, the polarization voltages drop to zero [13],
allowing the OCV to be measurable at the terminals.

This polarization voltage can be divided into multiple components:

Vpolarization = Vohmic + Vconcentration + Velectrochemical (2.4)

Ohmic polarization is instantaneous and disappears when the current is zero. In contrast,

concentration and electrochemical polarization can persist for some time before they return to

zero [14]. Understanding the behavior of these voltage components and incorporating them

into the battery model will improve the performance of prediction filters. Accurately modeling

these voltages allows for more precise estimation.
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2.2 Aging mechanism

As batteries are used, their capabilities and specifications change, leading to performance

degradation until they no longer meet the required standards. The two main measures of

aging are capacity fade and power fade. LIBs are complex chemical systems, and their aging

process is even more intricate. The fade in capacity and power results from various processes

and interactions, rather than a single cause [15]. Aging occurs primarily in the anode and the

cathode, although the LIB electrolyte also ages, particularly where it contacts the electrodes.

2.2.1 Capacity fade

Capacity fade in batteries is understood as the gradual reduction in the battery’s ability to store

charge, leading the total capacity the battery can hold to decrease. This phenomenon results

from complex electrochemical processes within the battery. A few aspects that lead to this fade

are cyclic aging, which occurs due to the repeated charge and discharge cycles that a battery

undergoes. Calendric aging, which is when the batteries degrade over time. Other factors such

as depth of discharge (DOD) and temperature influence how fast the degradation and capacity

fade happen.

DOD is a measure of how much of the battery’s capacity is used relative to its total capacity, ex-

pressed as a percentage. Higher DOD values indicate deeper discharges, which can accelerate

the aging process and contribute to capacity fade.

2.2.2 Power fade - internal resistance

Power fade in batteries is characterized by a decreased ability to deliver power. Since resistance

and power in the cell are tightly coupled, increased internal resistance is often referred to as

power fade [16]. The primary degradation leading to power fade is the increasing internal

resistance within the battery. As batteries age and undergo repeated charge and discharge

cycles, their power capability declines. This decline occurs due to various processes affecting

different parts of the battery, including the active materials, electrolytes, and separators, all of

which deteriorate over time.

2.2.3 More specific aging

Aging in LIB involves complex processes at both the positive and negative electrodes. In the

negative electrode, aging is predominantly characterized by the formation of a solid-electrolyte

interphase (SEI) layer, which forms during initial charging and continues to grow over time,
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causing a decrease in cell capacity and an increase in resistance. At the positive electrode,

aging typically results from the dissolution of metal ions such as manganese or cobalt, leading

to a loss of active material and, consequently, reduced battery capacity. Additionally, both

electrodes experience structural changes and degradation due to cycling stresses, such as phase

transitions and electrolyte decomposition, which further diminish the battery’s performance

and lifespan.

2.3 Battery modelling

To help predict and estimate the SOC, SOH, and other internal states of a battery, appropriate

models of the battery cells are beneficial. In this section, the two most commonly used models

will be presented. There are many types of models, and their complexity, performance, and

accuracy vary. Therefore, it is essential to choose the best-fitting model for the given applica-

tion.

The primary goal of an Equivalent Circuit Model (ECM) is to replicate a battery’s characteristics

as accurately as possible. This includes predicting how the terminal voltage will respond to

changes in SOC and various operating conditions. Consequently, the model should account

for the polarization voltages present within the battery to ensure that it provides an accurate

representation of the terminal voltage.

Common for all the models is the state z(t), which is the SOC at time t. The current, i(t), acts

as the known input to the system. The OCV(z(t)) is a nonlinear function (pre-modeled) that

provides the OCV of the battery at a given SOC (see Section 2.1.4).

All the models are based on the Coulomb counting method, a straightforward equation that

integrates the current over time [17].

∆Q =

∫

η(t)i(t) d t (2.5)

The above equation 2.5 can further be formulated in relation to SOC as follows:

z(t) = SOC(t) = SOC(0)−
1
Q
·
∫ t

0

η(t) · i(t) d t (2.6)

Here, η is the charge/discharge efficiency, which depends on temperature and the C-rate. η is

a number in the range [0, 1], often close to 1. While it is possible to calculate the SOC solely

from this model, it is not recommended. This model is open-loop, relying on the initialization

and current measurements. Current sensors are not known for their high precision, leading to
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potential deviations in the calculations. Additionally, the capacity Q must be known and accu-

rate for the calculations to be reliable. The accuracy of Coulomb counting is heavily dependent

on the initial value SOC(0) and the precise knowledge of Q, as indicated in Equation 2.6.

2.3.1 Rint model

The most simple ECM is the Rint model (R model), for internal resistance [18]. The Rint model

consists of a non-linear voltage source VS and a resistor R0. The internal resistance (R0), models

the voltage drop within the battery when current flows through it, namely the ohmic polar-

ization (2.1.6). This model does not have very high accuracy and does not have any way to

describe the other polarization voltages inside the LIB [18], but it offers simplicity in return.

-

+
-

R0

OCV(z(t)) v(t)

+

Figure 2.3: ECM of the Rint model.

The dynamic equations of this model are as follows:

ż(t) = −
i(t)
Q

(2.7)

v(t) = OCV(z(t))− R0i(t) (2.8)

where z is the SOC, Q is the total capacity [Ah], i(t) is the current flowing through the battery,

and v(t) is the voltage across the battery terminals.

To use this model in an online discrete estimator, the equations need to be discretized:

zk+1 = zk −
∆t
Q

ik (2.9)

vk = OCV(zk)− R0ik (2.10)
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2.3.2 Thevenin model - RC1

The Thevenin model (1RC / RC1) builds upon the Rint model by adding an RC network in

series with R0. The purpose of the RC network is to simulate the other polarization voltages, as

mentioned in Section 2.1.6. There are also ECMs that incorporate multiple RC circuits in series

to model the different polarization effects. However, a significant drawback of this approach

is the increasing complexity in model parametrization, which becomes more cumbersome as

additional RC circuits are added.

+
-

v(t)

+

-

R0

OCV(z(t))

Figure 2.4: ECM of the RC1/Thevenin model.

The dynamic equations of this model are as follows:

ż(t) = −
i(t)
Q

(2.11)

i̇R1
(t) = −

1
R1C1

iR1
(t) +

1
R1C1

i(t) (2.12)

v(t) = OCV(z(t))− R0i(t)− R1iR1
(t) (2.13)

Compared to the Rint model, the Thevenin model introduces the state iR1
(t), representing the

current through R1 in the RC network, which captures the transient response of the battery

due to polarization effects.

Discretizing this system leads to the following dynamics [19]:

zk+1 = zk −
∆t
Q
· ik (2.14)

iR1,k+1 = e
�

−∆t
R1 ·C1

�

iR1,k +
�

1− e
�

−∆t
R1 ·C1

�

�

ik (2.15)

vk = OCV(zk)− R1iR1,k − R0ik (2.16)
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2.3.3 Other battery models

Advanced battery models have been developed to capture a more comprehensive range of be-

haviors within LIBs, including all polarization voltages and hysteresis effects. Examples include

the n-RC model, which consists of multiple RC circuits, each representing different polarization

phenomena, and the enhanced self-correcting model, which incorporates a nonlinear hystere-

sis component. While these models offer more detailed insights into battery dynamics, they

also introduce greater complexity and substantially increase computational demands.

2.3.4 Model the battery aging

As the battery ages, the parameters in the models will change. Using model-based estimators

without updating these parameters as the cell ages will result in increasingly poor estimation

performance due to larger deviations in the model parameters.

From Section 2.2, some aging mechanisms are explained. From a battery model perspective,

aging mechanisms are stated as slow changes in capacity and internal resistance. Compared

to SOC, these parameters change very slowly. When applied to filtering methods, they are

therefore assumed to stay constant but with added noise to account for their gradual changes

over time.
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Chapter 3
State Estimations

This chapter will go through basics of state estimations. First, the principle of sequential proba-

bilistic inference and observability analysis. Thereafter, it presents a general Extended Kalman

filter (EKF). Then, two more advanced versions of the EKF for parameter estimation are ex-

plained, before error calculations and the nonlinear least squares algorithm is mentioned.

3.1 Sequential probabilistic inference and the Kalman filter

Sequential probabilistic inference is used to find a state estimate that minimizes the error

between the true and estimated state [20]. This concept involves calculating a new estimate

at each timestep by using all previous estimations and new information (measurements). The

estimate is based on process and sensor noise, making the solution probabilistic.

The Kalman Filter is, in short, the optimal minimum mean squared error state estimator

(MMSE) for linear systems where all noises are Gaussian. However, since the Rint and RC1

models include a nonlinear measurement model, this linear filter cannot be applied directly.

The problem can be represented using two probability distributions: p(xk | xk−1), which repre-

sents the process model, and p(zk | xk), known as the measurement model. Here, xk represents

the current state, and zk represents the current measurement. Based on these distributions and

an assessment of the uncertainties, a Bayesian problem is formed, which can be solved using

a Kalman filter [21]. The properties of the Markov model must be maintained for this model

to hold:

p(xk | x1, ..., xk−2, xk−1, z1, ..., zk−2, zk−1) = p(xk | xk−1) (3.1)

p(zk | x1, ..., xk−2, xk−1, xk, z1, ..., zk−2, zk−1) = p(zk | xk) (3.2)
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3.2 Observability analysis for state estimation

An essential aspect of being able to estimate the state and parameters of a system is that the

system is observable.

For linear systems, where the state space system is defined as:

ẋ = Ax + Bu (3.3)

y = C x + Du (3.4)

the observability matrix is given by:

O =
�

C CA CA2... CAn−1

�T

(3.5)

A system is considered observable if the observability matrix O has full rank, meaning that the

rank of O is equal to the number of states n in the system [22]. This ensures that it is possible

to determine the state of the system from the output measurements.

In contrast to linear systems where observability is considered as a binary property, either

observable or not, nonlinear systems may have many degrees of observability. This means that

the strength of observability and whether the system is observable can vary significantly based

on the state of the system. This is critical when analyzing a nonlinear system [23].

Observability analysis of a nonlinear system can be done in many ways. The simplest method

is to linearize the system. The disadvantage of this method is that it often leads to incorrect

results under different conditions or states the system might be in. The more precise method

is based on using the Lie-derivatives.

Considering the nonlinear state dynamics and measurement functions of a system:

f (x , u) = [ f1(x , u) ... fn(x , u)]T and h(x , u) = [h1(x , u) ... hm(x , u)]T then the Lie deriva-

tive is defind as follows [22]:

L f h=
∂ h
∂ x

f =
n
∑

i=1

∂ h
∂ x i

fi (3.6)

where the zeroth order Lie derivative is defined as h itself.

The observability matrix is then defined below in Equation 3.7 :
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O(xk) =
∂ l(x)
∂ x

where l(xk) =































L0
f h1(xk)

...

L0
f hm(xk)

L1
f h1(xk)

...

Ln−1
f hm(xk)































(3.7)

The theorem states the following: The system is locally observable at xk if the matrix O(xk)
has n linearly independent rows, where n is the number of states in the system. This means

that the matrix must have full row rank.

3.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) is used to estimate the states of a nonlinear dynamical

system. It starts with the general nonlinear dynamical system:

ẋ = f (x , u, w) (3.8)

y = h(x , u, v) (3.9)

where w and v are model and measurement noises, respectively. The EKF operates similarly

to the Linear Kalman Filter but requires linearization at each timestep due to the nonlinear

functions. Sequential probabilistic inference is valid for nonlinear systems if all the random

variables are assumed to be Gaussian.

The algorithm used for the EKF, based on [24], [25], and [16], is outlined below:

Given the dicrete nonlinear model:

xk+1 = f (xk, uk, wk) wk ∼N (0,σ2
w) (3.10)

yk = h(xk, uk, vk) vk ∼N (0,σ2
V ) (3.11)
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Defines first-order linearization:

Âk =
∂ f (xk,uk,wk)

∂ xk

�

�

�

�

xk=x̂k

B̂k =
∂ f (xk,uk,wk)

∂wk

�

�

�

�

wk=w̄

Ĉk =
∂ h(xk,uk,vk)

∂ xk

�

�

�

�

xk=x̂k

D̂k =
∂ h(xk,uk,vk)

∂ vk

�

�

�

�

vk=v̄

Initialize the state estimate x̂+0 and covariance Σ+x ,0 for k = 0.

x̂+0 = E[x0], Σ+x ,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ].

Computation and estimation for k > 0:

Prediction step:

x̂−k = f ( x̂+k−1, uk−1, w̄)

Σ−x ,k = Ak−1Σ
+
x ,k−1AT

k−1 + Bk−1Σw̄BT
k−1

Update step:

Σy,k = CkΣ
−
x ,k(Ck)

T + DkΣv̄(Dk)
T

Lk = Σ
−
x ,k(Ck)

TΣ−1
y,k

x̂+k = x̂−k + Lk

�

yk − h( x̂−k , uk, v̄)
�

Σ+x ,k = Σ
−
x ,k − LkΣy,k(Lk)

T

End Algorithm

3.4 Combined state and parameter estimation

The EKF is an efficient filter for predicting maximum-likelihood estimates of the states for

nonlinear systems. It can also be used to estimate the parameters of a model. This strategy is

named the dual estimation problem. This means that both the states and the parameters of a

dynamical system are estimated, online and simultaneously [25]. The dual estimation problem

is a method that switches between using the model to estimate the state and using the state

to estimate the model.

A state space model can be expanded to include the slowly time-varying parameters in the
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model, named θ . The new extended nonlinear state space system is then given:

xk+1 = f (xk,θk, uk, wk) wk ∼N (0,σ2
w) (3.12)

θk+1 = θk + rk rk ∼N (0,σ2
r ) (3.13)

yk = h(xk,θk, uk, vk) vk ∼N (0,σ2
V ) (3.14)

In this model, the states are dependent on the varying parameters in the model, and the pa-

rameters itself is designed as constant, with added gaussian noise.

The online state and parameter estimation methods can be divided into two different ap-

proaches: Joint EKF and Dual EKF. The Joint EKF solves the state and parameter systems in

parallel by augmenting a new state vector, [x T ,θ T ]T , and treating the problem as an expanded

EKF. In contrast, the Dual EKF updates and solves the state and parameter vectors sequentially

in two separate EKFs [26].

3.4.1 Joint Extended Kalman Filter

The Joint Extended Kalman Filter (JEKF) is an expanded version of the EKF. In addition to the

normal states, it includes parameters in the state vector. This inclusion is feasible when the

measurement model depends on both the state and the parameters. By augmenting the state

vector to include these parameters, the JEKF can simultaneously estimate both the states and

the parameters [27].

Figure 3.1 shows the flow of the EKF and JEKF.

Prediction Step
EKF

Innovation
EKF

Figure 3.1: Schematic of the EKF and JEKF.
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The augmented state space model for the JEKF can be formulated as follows [16]:





xk

θk



=





f (xk−1, uk−1, wk−1,θk−1)

θk−1 + rk−1



 (3.15)

yk = h(xk, uk, vk,θk) (3.16)

, where wk, rk and vk are assumed independent Gaussian white noise, with covariance matrices

defined as Σw,Σr and Σv . It can be expressed in a more comprehensive state space model,

defining X= [x,θ]T and W = [w, r]T :

Xk = F(Xk−1,uk−1,Wk−1), Wk ∼N (0,ΣW ) (3.17)

yk = h(Xk,uk,vk), vk ∼N (0,Σv) (3.18)

The definitions for the Jacobian matrices used in the JEKF are similar to the EKF. However,

the inclusion of additional parameters in the state vector results in larger and more complex

matrix calculations, increasing the computational load and computation time. Despite these

differences, the algorithm used to run the JEKF follows the same steps as the EKF.

3.4.2 Dual Extended Kalman Filter

The Dual Extended Kalman Filter (DEKF) is a more advanced method compared to the JEKF,

as it combines two EKFs. The calculations for the Jacobian matrices become tricky, requiring

the use of the chain rule and recursive calculations. The first EKF is for state estimation, and

the second EKF is for parameter estimation.

Since the DEKF splits the state and parameter vector, it loses some information that the JEKF

stores in the covariance matrices. However, this approach simplifies the computation demands

during each update step, even though it introduces additional complexity in the overall imple-

mentation and the recursive calculation of the Jacobian matrices.

The algorithm for the DEKF from [16] is given below.

Given the two discrete nonlinear models:

xk+1 = f (xk, uk,θk, wk) θk+1 = θk + rk,

yk = h(xk, uk,θk, vk) dk = g(xk, uk,θk, ek).

where wk, vk, rk, and ek are independent Gaussian noise processes with means w̄, v̄, zero, and

ē and covariance matrices Σw̄, Σv̄ , Σr , and Σe, respectively.
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Defines first order linearization: Defines first order linearization:

Âk =
∂ f (xk,uk, θ̂

−
k ,wk)

∂ xk

�

�

�

�

�

xk=x̂k

B̂k =
∂ f (xk,uk, θ̂

−
k ,wk)

∂wk

�

�

�

�

�

wk=w̄

Ĉx
k =

∂ h(xk,uk, θ̂
−
k ,vk)

∂ xk

�

�

�

�

�

xk=x̂k

D̂x
k =

∂ h(xk,uk, θ̂
−
k ,vk)

∂ vk

�

�

�

�

�

vk=v̄

Ĉθk =
∂ g(x̂k,uk,θ ,ek)

∂ θ

�

�

�

�

θ=θ k

D̂θk =
∂ g(x̂k,uk,θ ,ek)

∂ ek

�

�

�

�

ek=ē
.

Initialize the state and parameter estimate and covariance for k = 0, including the recur-

sive variables β and Ĉθ0 .

θ̂+0 = E[θ0], Σ+θ ,0 = E[(θ0 − θ̂+0 )(θ0 − θ̂+0 )
T ],

x̂+0 = E[x0], Σ+x ,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ]

β0 = 0 Ĉθ0 = 0

Computation and estimation for k > 0:

Parameter prediction:

θ̂−k = θ̂
+
k−1

Σ−θ ,k = Σ
+
θ ,k−1 +Σr

State prediction:

x̂−k = f ( x̂+k−1, uk−1, θ̂−k , w̄)

Σ−x ,k = Ak−1Σ
+
x ,k−1AT

k−1 + Bk−1Σw̄BT
k−1

State update:

Σy,k = C x
kΣ
−
x ,k(C

x
k )

T + Dx
kΣv̄(D

x
k )

T

L x
k = Σ

−
x ,k(C

x
k )

TΣ−1
y,k

x̂+k = x̂−k + L x
k

�

yk − h( x̂−k , uk, θ̂−k , v̄)
�

Σ+x ,k = Σ
−
x ,k − L x

kΣy,k(L
x
k )

T
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Parameter update:

Σd,k = Cθk Σ
−
θ ,k(C

θ
k )

T + Dθk Σe(D
θ
k )

T

Lθk = Σ
−
θ ,k(C

θ
k )

TΣ−1
d,k

θ̂+k = θ̂
−
k + Lθk
�

yk − g( x̂−k , uk, θ̂−k , e)
�

Σ+θ ,k = Σ
−
θ ,k − LθkΣd,k(L

θ
k )

T

End Algorithm

The tricky part of this algorithm, in comparison to the JEKF, is the computation of Ĉθk , done

in the parameter update step. This involves defining the Jacobian matrix Ĉθk and computing it

using a recursive calculation, as outlined below [28].

Ĉθk =
∂ g(x̂k,uk,ek)

∂ θ

�

�

�

�

θ=θ k

(3.19)

∂ g(x̂k,uk,ek)
∂ θ

=
∂ g(x̂k,uk,θ )

∂ θ
+
∂ g(x̂k,uk,θ )

∂ x̂k

dx̂−k
dθ

(3.20)

Here,
dx̂−k
dθ is defined as β k, which needs to be computed recursively.

β k =
∂ f (x̂+k−1,uk−1,θ )

∂ θ
+
∂ f (x̂+k−1,uk−1,θ )

∂ x̂+k−1

dx̂+k−1

dθ
(3.21)

dx̂+k−1

dθ
= β k−1 − Lx

k−1Ĉx
k−1 (3.22)

From Equations 3.21 and 3.22, it is evident that the computation of β k requires a recursive up-

date, where each step depends on the previous state and measurement update. The schematic

of theDEKF is shown in Figure 3.2, illustrating the dual estimation process for states and pa-

rameters.
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Prediction Step
EKF - state

Innovation
EKF - state

Prediction Step
EKF - parameter

Innovation
EKF - parameter

Figure 3.2: Schematic of the Dual Extended Kalman filter.

3.5 Root mean square and mean absolute error

Two widely used metrics for error evaluation are the Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE). For a number of n measurements y , and a number of n estimates

ŷ , this metrics is given as:

RMSE=

√

√

√1
n

n
∑

i=1

( ŷi − yi)2 (3.23)

MAE=
1
n

n
∑

i=1

| ŷi − yi| (3.24)

The RMSE calculates the square root of the average of the squared differences between es-

timated values and true values. This means RMSE gives more weight to larger errors than

smaller ones. The MAE measures the average magnitude of the errors between estimates and

true values, simply averaging the absolute errors.

The difference in their applications is that RMSE is particularly useful when large deviations

are undesirable. RMSE will never be lower than MAE, but they will be equal if all errors are

the same. Comparing RMSE with MAE is helpful for assessing the variance in errors. If RMSE

and MAE are significantly different, it indicates a lot about the variance of the errors [29].

23



CHAPTER 3. STATE ESTIMATIONS 3.6. Nonlinear least squares estimation

3.6 Nonlinear least squares estimation

Non-linear least squares estimation is a method for parameter estimation in statistical mod-

els characterized by nonlinear relationships between dependent and independent variables.

This technique is used to identify parameter values that optimally describe data through a

predetermined model structure, for instance, a given battery model [30].

The general principle of nonlinear least squares estimation involves minimizing the sum of

the squared deviations between observed values and the predicted values by the model. For a

dataset containing n points, where yi are the observed values and f (x i ,θ ) is the model func-

tion dependent on parameters θ , the objective is to solve the following optimization problem:

S(θ ) =
n
∑

i=1

[yi − f (x i ,θ )]
2

where S(θ ) represents the total sum of squared residuals to be minimized in an objective

function. Different solvers, such as the Gauss-Newton are commonly used.
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Chapter 4
Method

In this chapter, the methodology used for the implementation of the filters is summarized. The

first part, Section 4.1, presents the implementation of the various filters. Following this, Section

4.2 summarizes an observability analysis of the system. Then, in Section 4.3, the battery dataset

is presented and assumptions are explained. Finally, Section 4.4 describes the simulation setup.

4.1 State and parameter estimation implementation

In this project, seven variations of Kalman filters have been implemented. These include two

versions of the EKF, three versions of the JEKF, and two versions of the DEKF. To clearly dis-

tinguish among these in the results and discussions, the filters are named as follows: EKF-R,

EKF-RC1, JEKF-R, JEKF-RC1, JEKF-RC1-Ext (extended), DEKF-R, and DEKF-RC1. The designa-

tions ’R’ and ’RC1’ indicate the battery model employed in each filter (Section 2.3).

EKF-R and EKF-RC1 maintain a constant battery model throughout the estimations. All varia-

tions of JEKF and DEKF include the parameter estimation of capacity (Q) and internal resis-

tance (R0). In addition, JEKF-RC1-Ext, which is based on the RC1/Thevenin battery model,

also estimates R1 and C1. In contrast, JEKF-RC1 and DEKF-RC1 have constant parameters for

R1 and C1, set to the initially identified values.

These filters, along with their respective algorithms explained in Chapter 3, have been imple-

mented as functions in MATLAB. Note that SOC is mentioned as z in this chapter.
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4.1.1 Extended Kalman Filter

The implementation of EKF-R and EKF-RC1 is straightforward. Using the discretized battery

models (Rint and RC1 from Section 2.3), the state-space model is defined as follows. Since

the states in EKF-R are explicitly mentioned in EKF-RC1, only the model for EKF-RC1 is shown

here.

xk+1 = f (xk, uk, wk) =





zk+1

iR1,k+1



=





zk −
∆t
Q (ik +wk)

e−
∆t

R1C1 iR1,k +
�

1− e−
∆t

R1C1

�

(ik +wk)



 (4.1)

yk = h(xk, uk, vk) = OCV(zk)− R0ik − R1iR1,k + vk (4.2)

From the model above the noises (vk and wk) can strongly be related to the current and voltage-

sensor noise. The estimator for this system is implemented using the EKF algorithm from Sec-

tion 3.3, which is based on [16] and [31]. The linearization step needed for this algorithm to

work is as follows:

Âk =
∂ f (xk, uk, wk)

∂ xk

�

�

�

�

xk= x̂+k

=





1 0

0 e−
∆t

R1C1



 (4.3)

B̂k =
∂ f (xk, uk, wk)

∂ wk

�

�

�

�

wk=w̄
=





−∆t
Q

1− e−
∆t

R1C1



 (4.4)

Ĉk =
∂ h(xk, uk, vk)

∂ xk

�

�

�

�

xk= x̂−k

=
�

∂OCV(zk)
∂ zk

−R1

�

(4.5)

D̂k =
∂ h(xk, uk, vk)

∂ vk

�

�

�

�

vk=v̄
= 1 (4.6)

The tuning parameter used in this filter is summarized in Section 4.1.4.
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4.1.2 Joint Extended Kalman Filter

The JEKF is implemented in three versions. This is done to be able compare the performance

and accuracy as the complexity and number of states increase. The first filter JEKF-R is based

on the Rint model, adding estimation of two parameters: internal resistance and capacity. The

second filter, JEKF-RC1 uses the RC1 model as its basis and estimates the same parameters as

the JEKF-R. Additionally, a third and most advanced filter JEKF-RC1-Ext is implemented, still

using the RC1 model. This model adds two new parameters in the state vector, namely R1 and

C1, from the RC1 circuit (Figure 2.4).

Since the states of the JEKF-R and JEKF-RC1 include all the states used in the JEKF-RC1-Ext,

the matrices for the JEKF-RC1-Ext are shown below. The implementation details of JEKF-R and

JEKF-RC1 are explicitly defined in the following matrices and will therefore not be mentioned

further.

For the implemented JEKF-RC1-Ext, the state vector X is defined as

Xk =
�

zk iR1,k R0,k Qk R1,k C1,k

�T

and the noise vector is defined as

Wk =
�

wi
k wR0

k wQ
k wR1

k wC1
k

�T

.

The resulting discrete state space system is then defined as:

Xk+1 = F(Xk, uk, Wk) =

































zk −
∆t
Qk
(ik +wi

k)

e−
∆t

(R1C1) k iR1,k +
�

1− e−
∆t

(R1C1) k

�

(ik +wi
k)

R0,k +wR0
k

Qk +wQ
k

R1,k +wR1
k

C1,k +wC1
k

































(4.7)

yk = h(Xk, uk, vk) = OCV (zk)− R0,k ik − R1,k iR1,k + vk (4.8)
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The linearization step done in the JEKF following the EKF algorithm is done as follows:

Âk =
∂ F
∂ X

�

�

�

�

xk= x̂+k

=

































1 0 0 ∆t
Q2 ik

0 0

0 e−
∆t

R1C1 0 0
∆t iR1

e
− ∆t

C1R1 −∆t ie
− ∆t

C1R1

C1R2
1

∆t iR1
e
− ∆t

C1R1 −∆t ie
− ∆t

C1R1

C2
1 R1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































(4.9)

B̂k =
∂ F
∂W

�

�

�

�

wk=w̄k

=































−∆t
Q 0 0 0 0

1− e−
∆t

R1C1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1































(4.10)

Ĉk =
∂ h
∂ X

�

�

�

�

xk= x̂−k

=
�

∂OCV(zk)
∂ zk

−R0,k −ik 0 −iR1,k 0

�

(4.11)

D̂k =
∂ h
∂ vk

�

�

�

�

vk=v̄k

= 1 (4.12)
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4.1.3 Dual Extended Kalman Filter

The DEKF is implemented in two versions, one with the Rint model as a basis, and the other

one with the RC1 model. Since the DEKF-RC1 contains all the states used in the DEKF-R,

the matrices for the DEKF-RC1 are shown below. The implementation details of DEKF-R are

explicitly defined in the following matrices and will therefore not be mentioned further.

State filter:

xk =





zk

iR1



=





zk−1 −
∆t
Q (ik−1 +wi

k)

exp
�

−∆t
R1C1

�

iR1,k−1 +
�

1− exp
�

−∆t
R1C1

��

(ik−1 +wi
k)



 (4.13)

yk = OCV (zk)− R0ik + v x
k (4.14)

Parameter filter:

θk =





R0,k

Qk



=





R0,k−1

Qk−1



+W θ
k (4.15)

yk = OCV (zk)− R0ik + vθk (4.16)

Linearization of the systems:

Âk =
∂ f
∂ xk
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xk= x̂+k
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1 0
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R1C1
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1− e−
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 (4.17)

Ĉ x
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∂ xk
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�
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−R1
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D̂x
k =

∂ h
∂ v x

k

�

�

�

�

vx
k=v̄x

k

= 1 (4.18)

Ĉθk =
∂ h
∂ θ

�

�

�

�

θk=θ̂−k

=
�

−i 0

�

+
�

∂OCV(zk)
∂ zk

−R1

�

βk D̂θk =
∂ f

∂ vθk

�

�

�

�

�

vθk =v̄θk

= 1 (4.19)

where βk is computed recurcively as (Section 3.4.2 for detailed explanation).:

βk =





0 ∆t
Q2 i

0 0



+





1 0

0 e−
∆t

R1C1



 · (βk−1 − L x
k−1 · Ĉ

θ
k−1) (4.20)

The DEKF algorithm is then implemented as shown in Section 3.4.2.
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4.1.4 Tuning parameters

The final tuning parameters, including the initial state, initial state covariances, and noise

covariances, are set equal across all filters, except for the measurement noise ΣV,EKF, which is

set lower for EKF-R and EKF-RC1 to ensure greater robustness against capacity changes.

The initial state values and their covariances are initialized as follows:

State Initial Value [x0] Variance [Σx0
]

z 0.6 0.12

iR1
0 A 0.012

R0 86mΩ (0.015 · 86 mΩ)2

Q 2.1 Ah (0.015 · 2.1 Ah)2

R1 56mΩ (0.015 · 56 mΩ)2

C1 500 F (0.2 · 500 F)2

Table 4.1: Initial tuning state and covariances.

Define τ as the number of seconds in a month:

τ= 3600× 24× 30

Then tuned the process noise parameters as follows:

Parameter Variance [Noise] Description

Σwi
k

0.12 Noise for current sensor.

Σw
R0
k

�50R0,k=0
τ

�2
Noise R0

ΣwQ
k

�

50Qk=0
τ

�2
Noise Capacity

Σw
R1
k

�50R1,k=0
τ

�2
Noise R1

Σw
C1
k

�50C1,k=0
τ

�2
Noise C1

Table 4.2: Tuned process noise parameters.
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The measurement noise covariance matrix Σv is tuned differently for the EKF compared to

the JEKF and the DEKF:

Filter Variance [Noise] Description

Σv,JEKF and DEKF 0.12 Measurement noise for JEKF and DEKF

Σv,EKF 0.052 Measurement noise for EKF

Table 4.3: Tuned measurement noise parameters.

The difference in this tuning is due to the fact that, since the EKF does not account for pa-

rameter changes, it is more vulnerable to inaccuracies. By decreasing Σv , the confidence in

the voltage measurement (and the OCV(SOC) function) is increased. This adjustment allows

the EKF to converge more quickly to the correct SOC by relying more heavily on the voltage

measurement.
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4.2 Observability analysis for the JEKF-RC1

An observability analysis has been conducted for the system using the JEKF-RC1 model. Below,

the dynamic state space system is presented, followed by the computation of the observability

matrix using the Lie derivative method explained in Section 4.2.

Ẋ = F(X , u) =



















ż

i̇R1

Ṙ0

Q̇



















=



















− i
Q

− 1
R1C1

iR1
+ 1

R1C1
i

0

0



















(4.21)

y = h(X , u) = OCV(z)− R0i − R1iR1
(4.22)

Computing the first four Lie derivatives as described in Section 3.2, the observability matrix is

constructed as follows:

O(x) =
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dz2
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0 i
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(−Q)3
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dz4
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0 3·i3

(−Q)4
d3OCV (z)

dz3



















(4.23)

By mathematical induction, the k-th Lie derivative can be generalized as follows:

∇Lk
f h=

�

�

− i
Q

�k dk+1OCV(z)
dzk+1

R1
(R1C1)k

(−1)k+1
(

−i if k = 0

0 otherwise

kik

(−Q)k+1
dkOCV(z)

dzk

�

(4.24)

By the analysis done above, it can be concluded that the system is observable (O full rank)

when there exists at least two integers k ∈ Z+ such that:

dkOCV
dzk

̸= 0 and i ̸= 0 (4.25)

This means that if the battery being estimated has the current i = 0, the observability matrix

does not have full rank. This makes sense, since from the measurement function it can be seen

that there is no way to estimate the internal resistance if the current is zero. An interesting note

to this conclusion of the observability analysis is that the observability relies on the nonlinearity

of the OCV(z) function [32].
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4.3 Preparation of battery dataset

The dataset used in this thesis is from the Prognostics Data Repository at NASA, furthermore

dataset 11: "Randomized Battery Usage" [33] [34]. This dataset consists of 7 different tests,

where each test is performed on four Lithium Cobalt-Oxide (LCO) cells, resulting in a total of

28 cells. This cell has the lower cut-off voltage set to 3.2V and the upper cut-off voltage set

to 4.2V , and the nominal capacity at 2.1 Ah. Table 4.4 shows the different test performed by

NASA.

Test Number Cells Nr Description

1 9, 10, 11, 12 Charge Discharge Room Temperature

2 3, 4, 5, 6 Uniform Distributed Discharge

3 1, 2, 7, 8 Room Temperature Variable Recharging Periods

4 25, 26, 27, 28 Skewed High 40 ◦C

5 17, 18, 19, 20 Skewed High Room Temperatur

6 21, 22, 23, 24 Skewed Low 40 ◦C

7 13, 14, 15, 16 Skewed Low Room Temperature

Table 4.4: Summary of the seven battery test procedures from NASA Randomized Battery Usage
[34].

In the simulations conducted in this thesis, it is chosen to use data from test numbers 4 to 7

(Table 4.4) from NASA Randomized Battery Usage [34]. These tests involve continuous charge

and discharge cycles with variable discharge currents, ranging from 0.5A to 5A. The discharge

process is referred to as a "random walk." A predetermined probability distribution of discharge

currents is selected for each minute. The distinction between ’Skewed High’ and ’Skewed Low’

lies in the likelihood of discharging at high currents. ’Skewed High’ tests have a higher proba-

bility of discharging at higher currents, leading to a quicker discharge of the battery, whereas

’Skewed Low’ tests are more likely to discharge at lower currents. Once the cells reach the

lower cutoff voltage, they are charged at a constant current of 2A until reaching the upper

cutoff voltage, at which point the charging switches to constant voltage until the current falls

below the threshold of 20mA. This charging type is known as the CC-CV charging method.

These tests are conducted at different ambient temperatures, including room temperature and

40 ◦C, resulting in four datasets labeled as Skewed High and Skewed Low, each with two tem-

perature variations.
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4.3.1 Modification to dataset

The dataset primarily contains measurements of voltage, current, and temperature. However,

during certain cycles, there have been charging sessions that were not recorded. This can lead

to instabilities in the estimator, causing incorrect estimations. In this test, no provisions were

made to account for such circumstances. In real scenarios, a straightforward solution could be

to restart the estimator if such errors are detected. Areas from the data where this occurs have

been removed, and the battery data has been spliced together when the cell is fully charged.

This ensures a continuous data stream from start to finish, which makes physical sense for a

battery cell. Additionally, the data has been interpolated to a time step of dt = 1s to make the

simulations more consistent.

4.3.2 Battery reference capacity

A reference capacity check is performed on the cells periodically, after every 50 random walk

discharge cycles. This means that the batteries have been discharged 50 times between each

capacity check. The results from this test provide a benchmark for the nominal capacity of the

batteries and can be compared with the estimates from the filters.

In this capacity check, batteries are first charged to a voltage of 4.2V. Following this, they are

discharged at a rate of 1A until the voltage falls to the lower threshold of 3.2V. After discharg-

ing, the batteries are recharged at a constant current of 2A. When the voltage reaches 4.2V,

the charging method switches to constant voltage mode, which continues until the charging

current drops below 0.01A.

Figure 4.1 and 4.2 shows the available reference capacity checks from all 28 cells in dataset

[34].
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Figure 4.1: Reference capacity test for all 28 cells in dataset [34].
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First and Last Measured Capacities for All Battery Cells
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Figure 4.2: Bar plot showing first and last measured capacity for all the 28 cells.

4.3.3 OCV - SOC curve

The data also contains a slow discharge-charge test, and it is reasonable to use this test to

approximate the OCV - SOC relationship for the LCO cell. In this test, the current was set to

0.04A, which refers to the current rate of ≈ C/53. Figure 4.3 shows the measured voltage

during this test.

0 10 20 30 40 50 60 70 80 90 100

Time (h)

3.2

3.4

3.6

3.8

4

4.2

O
C
V

[V
]

Voltage Pro-le during Discharge and Charge

Discharge

Charge

Figure 4.3: Measured voltage during slow discharge - charge test.
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It should be noted that since there is a current flowing through the cell, there may be some

ohmic polarization and hysteresis present in the cell. Especially the hysteresis causes the charge

and discharge curves to be slightly different. Therefore, an average of these two curves (see

Figure 4.4) is calculated to get the closest approximation of the relationship.
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Figure 4.4: Low current approximation OCV curve of the cell.

4.3.4 Parameter identification

The inital battery parameters used in this thesis are identified using the least squares approach

described in Section 3.6. This approach allows us to estimate the best-fitting parameters from

the dataset and is advantageous because it enables the use of data from any point in the

dataset where the capacity and initial SOC is known. The method utilized in MATLAB in its

integrated nlinfit function is the Levenberg–Marquardt nonlinear least squares algorithm,

which combines the concepts of gradient descent and Gauss-Newton [35].

Although a pulsed discharge response can be used to estimate the internal resistance and the

parameters for the RC circuit in the RC1 model, this specific test is not available for all the

data in the dataset. The following figure show a pulsed discharge test from an LCO cell, which

could be used to initialize the parameters:
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Figure 4.5: Pulsed discharge test.

From this data, the RC1 parameters could be stated using the rough parameter approach de-

scribed by Plett [12]. This approach consists of the following steps:

R0 =
∆V0

∆i
, R1 =

∆V∞
∆i
− R0, C1 =

∆tstable

4R1
(4.26)

From using Equation 4.26 and Figure 4.5 the parameters can be estimated:

R0 = 95mΩ, R1 = 50mΩ, C1 = 1800F

However, since the pulsed discharge test is not available for all data, the least squares algorithm

is employed to regularly determine initial values for the dataset. This allows for continuous

parameter estimation, providing comparisons with the estimates generated by the filters.
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4.4 Test cases

The simulations of the test cases were conducted using MATLAB R2022b on a stationary Win-

dows PC provided by NTNU, equipped with an i7-10700 CPU @ 2.90GHz processor and 32GB

of RAM. Since a total of 7 individual filters are tested, the Parallel Computing Toolbox in Matlab

is utilized to efficiently run all the filters simultaneously.

4.4.1 Ground truth

To quantify the accuracy and compare estimators to each other, the ground truth for the SOC

has been determined using the Coulomb counting method from the current measurement.

Since the accuracy of the Coulomb counting method and the SOC relies on precise current

measurements and the correct battery capacity, the true SOC incorporates results from "ref-

erence capacity" tests conducted on the cell. Additionally, the SOC is maintained within the

range of 0 to 100%. It should be noted that potential biases from the current sensor have not

been addressed in this analysis. However, a reset to 100% SOC is systematically applied after

each complete recharge to ensure consistency.

The ground truth for the battery capacity is established based on the reference capacity checks

performed on the battery (Section 4.3.2). Linear interpolations between these tests are done,

assuming that the cell degrades linearly over time in between.In addition, the least squares

algorithm is periodically used to estimate parameters, which can be compared to the parameter

estimations made by the filters. This applies to the parameters R0, R1, and C1.

The estimations are then compared to the ground truth using the estimator performance metric

RMSE and MAE (section 3.5).

4.4.2 Test case 1 - EKF versus Joint and Dual EKF

This test case utilizes the data for cell 21. In this data, the LCO cell is operated with skewed high

currents under an ambient temperature of 40◦C (Table 4.4). From this data, two sections from

the dataset of around 200 hours each have been selected. The first part is from the initial 200

operational hours, and the second part is from the hours around 2000+. This test is designed

to compare the performance of EKF with the Joint and Dual EKF. It is especially interesting to

compare a new battery with accurate model parameters against an old battery with outdated

initial parameters.

The next figures show excerpts of how the voltage, current, and temperature vary when the

cell is new versus aged.
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Figure 4.6: Extract from current, voltage and temperature measurements for new cell 21.
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Figure 4.7: Extract from current, voltage and temperature measurements for aged cell 21.
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4.4.3 Test case 2 - SOH estimation

In this test case, data from four cells that have undergone different tests are used. The four

cells are numbered 13, 20, 21, and 25 from [34]. Cell number 13 was subjected to the "Skewed

Low Room Temperature" test (Section 4.4). The next cell, number 20, underwent the "Skewed

High Room Temperature" test. The following two cells (21 and 25) performed the same tests

but at an ambient temperature of 40◦C instead of room temperature.

The simulation from the battery data is performed continuously over a period of more than

2200 hours (over 90 days). The purpose of this test is to observe how the implemented filters

function over a longer period. This includes examining how they estimate capacity and in-

ternal resistance. The capacity estimates will be compared with the reference capacity checks

performed on the respective cells, allowing us to assess the performance of the estimators.

The estimates for internal resistance and capacitance are also compared with estimates made

using a least squares algorithm (Section 3.6). This comparison is for reference purposes only

and should not necessarily be considered as the ground truth.

4.4.4 Test case 3 - Convergence of estimator

In this test case, the initial values of SOC are adjusted far from the true initial SOC. The

purpose of the simulation is to assess how the estimators handle this in terms of convergence,

stability, and correction of the initial error. This approach also aims to reveal any differences

between JEKF and DEKF. It is important to note that since DEKF is divided into two parts, some

covariance between SOC and battery parameters is lost.

These simulations will be conducted on cell 21 - Skewed High 40◦C . Both for the new and aged

states, in other words, the same data as for test case 1. The true initial SOC for this data is 1

(100%). Instead of initializing the filter at 0.6 like the other test, this simulation will initialize

the SOC at 0%. Additionally, the initialization covariance for ΣSOC0
will be increased from 10%

to 50%. To increase robustness around the capacity estimate, ΣQ will be decreased from 1%

to 0.1% to state how confident we are in this initial value, compared to SOC.
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Chapter 5
Results

In this chapter, the results of the parameter and OCV(SOC) function are presented, in ad-

dition to the results of test cases 1-3. The results aim to compare the performance of the

seven implemented estimators: EKF-R, EKF-RC1, JEKF-R, JEKF-RC1, JEKF-RC1-Ext, DEKF-R,

and DEKF-RC1. The designation R/RC1 indicates the battery model the estimator is based on.

The EKF estimators are used solely for SOC estimation, while the JEKF and DEKF estimators

also estimate the SOH alongside SOC.

5.1 Identified initial parameters

With the use of nonlinear least squares, the initial parameters for the LCO cell are found [2].
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Figure 5.1: Least square algorithm solving parameter fitting to R and RC1 model.
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From the least square algorithm (Section 3.6) used on cell 21 and its output shown in Figure

5.1, the initial battery parameters for the RC1 model are identified as follows:

R0 = 86 mΩ, R1 = 56mΩ, C1 = 500 F

For the Rint model, the initial parameter identified using the least square algorithm:

R0 = 135 mΩ

Since the dataset used contains 28 cells of the same type, the parameters are initiated the same

for all tests conducted, even though the cells were not operated under the same conditions.

5.2 Identified OCV - SOC curve

As shown in Section 4.3.3 (Figure 4.4) a slow-dicharge charge cycle is performed on the LCO

cell. The average voltage between these two curves is found, and by using the MATLAB poly-

fit function the approximation of this curve is created as a polynomial, where the degree is

set to 12 to ensure good precision. Since all versions of the implemented filters involve differ-

entiation at each timestep, the derivative of this function is derived using the polyder function

in MATLAB. The resulting polynomial is listed below in Table 5.1.

Coefficient OCV (×105) dOCV (×106)

1 0.124775 0.137253

2 -0.729941 -0.729941

3 1.871935 1.684741

4 -2.765696 -2.212557

5 2.601213 1.820849

6 -1.623382 -0.974029

7 0.679167 0.339583

8 -0.187854 -0.075142

9 0.033048 0.009914

10 -0.003449 -0.000690

11 0.000193 0.000019

12 0.000032

Table 5.1: Identified coefficients for the OCV and dOCV curves.
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5.3 Test case 1 - EKF versus Joint and Dual EKF

This test case aims to compare a constant EKF against Joint and Dual EKF approaches on

a battery cell, assessing estimator performance differences between the cell’s new and aged

condition. The tested cell, number 25 from the dataset, underwent the ’Skewed High 40◦C ’

test. The simulation features several plots: SOC and voltage estimations for the Rint and RC1

models. Deviations between true and estimated values are calculated and displayed in tables

and bar charts for both the new and aged conditions of the cell. The last part of this section

includes figures of the parameter estimations done by the JEKF and DEKF.

5.3.1 New cell

The following plots are from test case 1 on cell number 25 when it was new, covering opera-

tional hours from 20 to 220.
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Figure 5.2: Comparison of SOC estimation using EKF-R, JEKF-R, and DEKF-R for new cell num-
ber 25, operated at an ambient temperature of 40°C.
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Figure 5.3: Comparison of SOC estimation using EKF-RC1, JEKF-RC1, JEKF-RC1-Ext, and DEKF-
RC1 for new cell number 25, operated at an ambient temperature of 40°C. See Table 5.2 for
estimation errors.

Estimator RMSE MAE

EKF R 0.84 % 0.72 %

EKF RC1 0.86 % 0.72 %

JEKF R 1.22 % 1.00 %

JEKF RC1 0.72 % 0.58 %

DEKF R 1.26 % 1.04 %

DEKF RC1 0.76 % 0.61 %

JEKF RC1 Ext 0.74 % 0.59 %

Table 5.2: Calculated RMSE and
MAE SOC estimation errors for
new cell number 25.
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Figure 5.4: SOC estimation error bar chart
for new cell number 25.
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Figure 5.5: Comparison of output voltage estimation using EKF-R, JEKF-R, and DEKF-R for new
cell number 25, operated at an ambient temperature of 40°C.
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Figure 5.6: Comparison of output voltage estimation using EKF-RC1, JEKF-RC1, JEKF-RC1-Ext
and DEKF-RC1 for new cell number 25, operated at an ambient temperature of 40°C.

45



CHAPTER 5. RESULTS 5.3. Test case 1 - EKF versus Joint and Dual EKF

Estimator RMSE MAE

EKF R 32.8 mV 13.4 mV

EKF RC1 22.4 mV 11.4 mV

JEKF R 32.8 mV 14.0 mV

JEKF RC1 22.5 mV 11.8 mV

DEKF R 32.8 mV 14.1 mV

DEKF RC1 22.5 mV 11.9 mV

JEKF RC1 Ext 22.5 mV 11.9 mV

Table 5.3: Calculated RMSE and
MAE output estimation errors for
new cell number 25.
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Figure 5.7: Output voltage estimation bar
chart for new cell number 25.
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5.3.2 Aged cell

The following figures are from test case 1 on cell number 25 when it was aged, covering

operational hours from 1820 to 1980 after the test was initiated.

1820 1840 1860 1880 1900 1920 1940 1960 1980
Time [h]

0

20

40

60

80

100

S
O

C
[%

]

SOC Estimation - Rint Model (Cell 25)

True SOC
EKF
JEKF
DEKF

1838.8 1838.9 1839 1839.1 1839.2
40

60

80

100

Figure 5.8: Comparison of SOC estimation using EKF-R, JEKF-R, and DEKF-R for aged cell
number 25, operated at an ambient temperature of 40°C.
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Figure 5.9: Comparison of SOC estimation using EKF-RC1, JEKF-RC1, JEKF-RC1-Ext and DEKF-
RC1 for aged cell number 25, operated at an ambient temperature of 40°C.
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Estimator RMSE MAE

EKF R 3.56 % 2.44 %

EKF RC1 3.43 % 2.33 %

JEKF R 0.92 % 0.74 %

JEKF RC1 1.06 % 0.93 %

DEKF R 0.93 % 0.72 %

DEKF RC1 1.04 % 0.92 %

JEKF RC1 Ext 1.11 % 0.98 %

Table 5.4: Calcultated RMSE
and MAE SOC estimation errors
for aged cell number 25.
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Figure 5.10: SOC estimation error bar
chart for aged cell number 25.
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Figure 5.11: Comparison of Output Voltage Estimation using EKF-RC1, JEKF-RC1, JEKF-RC1-
Ext and DEKF-RC1 for aged cell number 25, operated at an ambient temperature of 40°C.
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Figure 5.12: Comparison of output voltage estimation using EKF-RC1, JEKF-RC1, JEKF-RC1-
Ext and DEKF-RC1 for aged cell number 25, operated at an ambient temperature of 40°C.

Estimator RMSE MAE

EKF R 45.4 mV 26.7 mV

EKF RC1 38.5 mV 25.2 mV

JEKF R 33.7 mV 15.4 mV

JEKF RC1 22.7 mV 12.2 mV

DEKF R 33.7 mV 15.6 mV

DEKF RC1 22.7 mV 12.3 mV

JEKF RC1 Ext 21.9 mV 12.4 mV

Table 5.5: Calcultated RMSE
and MAE output estimation er-
rors for aged cell number 25.
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Figure 5.13: Output voltage estimation bar
chart for aged cell number 25.
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5.3.3 Capacity estimation error for new and aged cell

The following figures (Figure 5.14 and 5.15) and tables (Table 5.6 and 5.7) displays the pre-

dictions of battery capacity made by the dual estimators, along with the associated errors, for

test case 1 conducted on new and aged cells. The convergence of the filter shows its good

ability to quickly find the "true" value, in only a few hours of estimation.
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Figure 5.14: Capacity estimation for new
cell.
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Figure 5.15: Capacity estimation for
aged cell.

Estimator RMSE MAE

JEKF R 0.96 % 0.68 %

JEKF RC1 0.54 % 0.39 %

DEKF R 1.14 % 0.67 %

DEKF RC1 0.60 % 0.39 %

JEKF RC1 Ext 0.52 % 0.37 %

Table 5.6: Capacity estimation error for
new cell.

Estimator RMSE MAE

JEKF R 2.62 % 2.03 %

JEKF RC1 3.65 % 3.20 %

DEKF R 2.19 % 1.64 %

DEKF RC1 3.33 % 2.91 %

JEKF RC1 Ext 4.06 % 3.71 %

Table 5.7: Capacity estimation error for
aged cell.

Figure 5.14 and 5.15 shows how the dual filters estimated the capacity during test case 1.
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5.3.4 Internal resistance estimation new versus aged

The following plots shows the estimated parameters for JEKF-R, JEKF-RC1, DEKF-R and DEKF-

RC1 during the tests conducted in test case 1. The initial parameters and tuning variables for

all the filters are the same for both the simulation for new and aged cell. The estimated values

are here compared to the Least Squared Estimates done separately.
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Figure 5.16: Estimated R0 for new cell
test case 1 for JEKF-R and DEKF-R.
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Figure 5.17: Estimated R0 for new cell
test case 1 for JEKF-RC1 and DEKF-RC1.
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Figure 5.18: Estimated R0 for aged cell
test case 1 for JEKF-R and DEKF-R.
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Figure 5.19: Estimated R0 for aged cell
test case 1 for JEKF-RC1 and DEKF-RC1.
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5.4 Test case 2 - SOH estimation

The following results are from test case 2. Unlike test case 1, the estimators in this test were

run on data spanning over 2000 hours. As this test was conducted on four different cells, the

plots are organized cell by cell. For each cell, a plot of the capacity estimate is included, which

includes all implemented SOH estimators, translated from estimated capacity to SOH [%].
This is followed by an estimation error table that calculates the deviation in terms of RMSE

and MAE for the estimation, where the reference capacity tests performed on the battery are

assumed to be ground truth.

Subsequent plots show the estimated internal resistance for JEKF-R and DEKF-R, compared

with least square estimates performed periodically on the battery set. The following plot is the

estimated resistance, R0, for JEKF-RC1 and DEKF-RC1. The resistance estimated here will be

lower than for models based on the Rint battery model, as in the RC1 model for these two

filters includes a constant RC element. The estimation for this also includes a least square

estimate where the RC element in the battery model is set constant.

The next plot is the estimated R0 and R1 for JEKF-RC1-Ext. This filter estimates capacity,

R0, R1 and C1 in addition to SOC. The results for this are compared with least square estimates

where all parameters are calculated. This is followed by the last plot for estimated capacitance

in the RC1 circuit, C1, for JEKF-RC1-Ext, compared against the same least square estimate.
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5.4.1 Cell 13 - Skewed low room temperature

Cell tested in room temperature, with current skewed towards lower values (Section 4.3).
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Figure 5.20: Comparison of capacity estimates from JEKF and DEKF against reference capacity
test for cell number 13.

Estimator RMSE MAE

JEKF R 2.80 % 2.44 %

JEKF RC1 3.59 % 3.18 %

DEKF R 2.74 % 2.37 %

DEKF RC1 3.56 % 3.13 %

JEKF RC1 Ext 4.23 % 3.74 %

Table 5.8: Capacity estimation errors cell 13 (RMSE and MAE).
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Figure 5.21: Simulation results for estimated R0 using JEKF-R and DEKF-R filter of cell number
13, compared to least square estimates.
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Figure 5.22: Simulation results for estimated R0 using JEKF-RC1 and DEKF-RC1 filter of cell
number 13, compared to least square estimates.
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Figure 5.23: Simulation results for estimated R0 and R1 using JEKF-RC1-Ext filter of cell num-
ber 13, compared to least square estimates.
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Figure 5.24: Simulation results for estimated C1 using JEKF-RC1-Ext filter of cell number 13,
compared to least square estimates.
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5.4.2 Cell 20 - Skewed high room temperature

Cell 20 tested in room temperature, with current skewed towards higher values (Section 4.3).
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Figure 5.25: Comparison of capacity estimates from JEKF and DEKF against reference capacity
test for cell number 20.

Estimator RMSE MAE

JEKF R 4.48 % 3.87 %

JEKF RC1 5.79 % 5.18 %

DEKF R 4.51 % 3.89 %

DEKF RC1 5.98 % 5.32 %

JEKF RC1 Ext 6.88 % 6.12 %

Table 5.9: Capacity estimation errors cell 20 (RMSE and MAE).
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Figure 5.26: Simulation results for estimated R0 using JEKF-R and DEKF-R filter of cell number
20, compared to least square estimates.
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Figure 5.27: Simulation results for estimated R0 using JEKF-RC1 and DEKF-RC1 filter of cell
number 20, compared to least square estimates.
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Figure 5.28: Simulation results for estimated R0 and R1 using JEKF-RC1-Ext filter of cell num-
ber 20, compared to least square estimates.
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Figure 5.29: Simulation results for estimated C1 using JEKF-RC1-Ext filter of cell number 20,
compared to least square estimates.
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5.4.3 Cell 21 - Skewed low 40◦C

Cell tested in 40◦C , with current skewed towards lower values (Section 4.3).
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Figure 5.30: Comparison of capacity estimates from JEKF and DEKF against reference capacity
test for cell number 21.

Estimator RMSE MAE

JEKF R 0.65 % 0.49 %

JEKF RC1 1.03 % 0.82 %

DEKF R 0.68 % 0.50 %

DEKF RC1 1.02 % 0.81 %

JEKF RC1 Ext 1.33 % 1.06 %

Table 5.10: Capacity estimation errors cell 21 (RMSE and MAE).
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Figure 5.31: Simulation results for estimated R0 using JEKF-R and DEKF-R filter of cell number
21, compared to least square estimates.
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Figure 5.32: Simulation results for estimated R0 using JEKF-RC1 and DEKF-RC1 filter of cell
number 21, compared to least square estimates.
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Figure 5.33: Simulation results for estimated R0 and R1 using JEKF-RC1-Ext filter of cell num-
ber 21, compared to least square estimates.
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Figure 5.34: Simulation results for estimated C1 using JEKF-RC1-Ext filter of cell number 21,
compared to least square estimates.
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5.4.4 Cell 25 - Skewed high 40◦C

Cell tested in 40◦C , with current skewed towards higher values (Section 4.3).
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Figure 5.35: Comparison of capacity estimates from JEKF and DEKF against reference capacity
test for cell number 25.

Estimator RMSE MAE

JEKF R 1.17 % 1.06 %

JEKF RC1 2.02 % 1.94 %

DEKF R 1.18 % 1.04 %

DEKF RC1 1.91 % 1.83 %

JEKF RC1 Ext 2.23 % 2.13 %

Table 5.11: Capacity estimation errors cell 25 (RMSE and MAE).
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Figure 5.36: Simulation results for estimated R0 using JEKF-R and DEKF-R filter of cell number
25, compared to least square estimates.
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Figure 5.37: Simulation results for estimated R0 using JEKF-RC1 and DEKF-RC1 filter of cell
number 25, compared to least square estimates.
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Figure 5.38: Simulation results for estimated R0 and R1 using JEKF-RC1-Ext filter of cell num-
ber 25, compared to least square estimates.
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Figure 5.39: Simulation results for estimated C1 using JEKF-RC1-Ext filter of cell number 25,
compared to least square estimates.
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5.5 Test case 3 - Convergence of estimator

In this test case, the SOC is initialized at 0%, aiming to evaluate the robustness of the DEKF

and JEKF estimators when the initialization is not accurate. The following figures show how

parameter estimation performs under such circumstances. Since the actual SOC is equivalent

to 100%, deviations and convergence times are expected.

5.5.1 Capacity estimates

Plots showing capacity estimates from new and aged cell for test case 3.
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Figure 5.40: Estimated capacity for new
cell in test case 3.
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Figure 5.41: Estimated capacity for aged
cell in test case 3.

5.5.2 Internal resistance Rint model

Plots showing resitance estimates from new and aged cell for test case 3, from Rint model for

JEKF-R and DEKF-R.
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Figure 5.42: Estimated R0 for new cell in
test case 3 for JEKF-R and DEKF-R.
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Figure 5.43: Estimated R0 for aged cell in
test case 3 for JEKF-R and DEKF-R.
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5.5.3 Internal resistance RC1 model

Plots showing resitance estimates from new and aged cell for test case 3, from RC1 model for

JEKF-R and DEKF-R.
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Figure 5.44: Estimated R0 for new cell in
test case 3 for JEKF-RC1 and DEKF-RC1.
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Figure 5.45: Estimated R0 for aged cell in
test case 3 for JEKF-RC1 and DEKF-RC1.

5.6 Computation time

Table 5.12 shows the results of average computation time per iteration using the setup de-

scribed in Section 4.4. The most efficient filter for Matlab is the EKF-R, with JEKF-R closely

following. EKF-RC1, JEKF-RC1, and JEKF-RC1-Ext also perform well, though they take slightly

longer. Surprisingly, the DEKF, which theoretically involves simpler matrix operations than the

JEKF, takes about twice as long as the JEKF.

Filter Avg. Time per Iteration

EKF-R 5.26 · 10−6 s

EKF-RC1 8.06 · 10−6 s

JEKF-R 6.59 · 10−6 s

JEKF-RC1 8.31 · 10−6 s

JEKF-RC1-Ext 7.96 · 10−6 s

DEKF-R 14.4 · 10−6 s

DEKF-RC1 18.1 · 10−6 s

Table 5.12: Average computation time per iteration for the implemented Kalman filters using
Matlab, and simulation setup from 4.4.
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Chapter 6
Discussion

The discussion chapter is structured in the same order as the results are presented in the

results chapter. First, the comparison of SOC estimates from primarily test case 1 is discussed

in Section 6.1. Next, the results from the SOH estimators in test case 2 are discussed in Section

6.2. The discussion on the convergence of these estimators based on the results from test case

3 follows in Section 6.3. Finally, the computation time of the estimators is discussed before

suggestions for further work are presented.

6.1 Comparison of SOC estimates - Test case 1

From test case 1 (Section 5.3), two parts of battery data from the same cell were simulated: one

when the cell was new and the other when the cell was aged. A remarkable, yet expected, result

was that with a new cell, where the battery parameters for all filters were correctly initialized,

the performance of all filters, except for JEKF-R and DEKF-R, was within a 1% error margin

for SOC estimation. It is noteworthy that both JEKF-RC1 and DEKF-RC1 performed better than

EKF-RC1. One reason for this can be that the cell was continuously cycled for 200 hours,

leading to significant changes in capacity and internal resistance during this timespan. These

parameter changes are shown in Figure 5.14, where the estimated capacity and reference are

plotted. From this figure, it is evident that the calculated capacity closely follows the reference

capacity during the test phase.

However, it can be said that with updated battery parameters, a standard EKF solely for SOC

estimation would be sufficient to obtain good SOC estimates. When it comes to voltage esti-

mates from the different EKFs, there is a clear pattern as to which estimators perform best.

Looking at the RMSE, estimators based on the RC1 model are the best. This is expected as they

take the dynamic behavior of the battery into account.
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The most notable results, however, come from the simulation on the aged cell. Figures 5.8 and

5.9 show the estimated SOC from this cell. It can be seen that there is a clear distinction in the

precision of EKF compared to JEKF and DEKF. According to Table 5.4, the error for EKF-R and

EKF-RC1 is at 3.56% RMSE, compared to JEKF and DEKF which still maintains around a 1%

error margin RMSE. In other words, they remain much more stable in SOC estimation over

time than EKF, which estimates SOC increasingly poorly as the cell parameters change due to

aging.

For the voltage estimate on the aged cell, the trend is similar to SOC. EKF output estimates

become worse, from 32.8 mV and 22.4 mV in RMSE in new condition to 38.5 mV and 54.4

mV RMSE in aged condition for EKF-R and EKF-RC1, respectively. This can be seen in Figure

5.7 and 5.13. The voltage estimate particularly depends on the parameters R0 and R1 and the

SOC. Since the EKF-R and EKF-RC1 do not update these parameters, this leads to decreased

accuracy in the SOC estimation.

6.2 Comparison of SOH estimators - Test case 2

The estimations performed in test case 2 (Section 5.4) show good results and precision. These

tests were conducted on four different cells under varying ambient temperatures, meaning

the cells underwent different test case scenarios. Therefore, variations between the cells, in

capacity and internal resistance are expected. Since the voltage drop across a cell depends on

Ohm’s law, U = R · I , cells experiencing higher currents will have a greater voltage drop and

reach the 3.2V threshold sooner than cells with lower currents. The same applies if the internal

resistance is high versus low. This means that cells with high current and high resistance will

reach 3.2V early, resulting in a lower DOD, compared to cells with low current and low resis-

tance which can discharge longer and thus achieve a higher DOD. This is further influenced by

the fact that internal resistance is generally higher at lower temperatures, resulting in an even

higher voltage drop. Consequently, in these test scenarios, the 3.2V threshold will be reached

at different DOD levels. The cell with a high current and low temperature will have the low-

est DOD, while the cell with the least current and higher ambient temperature will have the

highest DOD. By this evaluation, cell 21 has the highest DOD and cell 20 will have the lowest

DOD.

The results for the capacity estimation (SOH) show that the estimation for cell 21 is the best,

with an RMSE error margin of around 1%. The estimation for cell 25 is also good, but with

around a 2% error margin. These two cells operated at ambient temperatures of 40◦C . Consid-

ering that cell 21 also experienced lower current flow and therefore operated more across the

entire SOC, this would increase the precision of the estimation in terms of observability. Based

on the results around the observability analysis (Section 4.2), which concludes that the more
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nonlinear the OCV(SOC) relationship is, the greater the observability. When the cell operates

within the entire OCV-SOC range, this property is maximized, and observability is increased.

On the opposite end, the capacity estimation for cell 20, which experienced the Skewed High

current test at room temperature, has a lower DOD. As discussed in the previous paragraph,

this smaller DOD can lead to decreased observability, which can be confirmed by the bad SOH

estimation, which is at 4% - 7% for this cell, compared to the 1% RMSE for cell 21.

For all cells, it can be seen that for each capacity check performed (the dots on the reference

capacity curve), the capacity estimation approaches the true value (reference capacity). This

can be compared to the fact that the DOD is 100% for these tests, and observability is greatly

increased during these periods. It is also worth noting that all estimators tend to overestimate

capacity.

Regarding resistance estimates, typically higher temperatures lead to lower internal resistance.

The results from the test case do not show this effect. While all cells show a gradual increase

in internal resistance over time, the increase is more pronounced for cells operated at 40◦C

compared to those at room temperature. This faster increase in resistance at higher temper-

atures is consistent with the theory for LIBs. The estimations from the various Kalman filters

appear to be very similar to the individual estimates made by the least square estimator, both

for the Rint model and the RC1 model.

The capacitance estimates show a significant difference for the cells operated at room tem-

perature versus those operated at 40◦C . As the cell ages, changes in the internal structure can

affect this capacitance, resulting in variations in the time constants of the RC circuit. The trend

for the cells at room temperature (Figure 5.39 and 5.34) is clear; it first stabilizes at 800 F and

then gradually decreases. The capacitance for the two cells at 40◦C has a slightly different

tendency, with a gradual increase in the first 1000 hours followed by a gradual decrease in

the next 1000 hours (Figure 5.24 and 5.29) . This indicates that temperature has a significant

impact on the behavior of the RC circuit parameters, potentially due to changes in the elec-

trolyte conductivity and other temperature-dependent factors affecting the internal resistance

and capacitance of the cells.

6.3 Convergence of estimation - Test case 3

From test case 3 (Section 5.5), where the SOC is initialized poorly in the filter, a clear difference

between JEKF and DEKF can be observed. Since JEKF integrates all states and parameters into

one system, it always maintains updated covariances among all the states. In contrast, DEKF

divides states and parameters into a system consisting of two separate filters. Especially from

the capacity estimates in Figure 5.40 and Figure 5.41, it is evident that the filters based on DEKF

perform significantly worse, even though the capacity is correctly initiated. The reason for this
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overestimation and overshoot could be that the filter is initiated to believe that SOC = 0%,

when in reality it is 100%. The estimator will then assume there is even more available charge

in the cell, leading to an overestimation in capacity. Since DEKF lacks the critical covariances

to recognize this error, it takes over 100 hours to find the correct capacity (5.41). JEKF, on the

other hand, oscillates a bit at the start but is quite stable around the correct capacity after less

than 10 hours.

For the resistance estimates during this test case, the differences are not as big, though there

is a difference, where JEKF performs solidly better than DEKF. The convergence time is not as

significant here as for capacity and is around 20 hours, as seen from Figure 5.42 and Figure

5.43. DEKF also performs slightly worse on the aged cell than when the cell is new. Both show

an overestimation of resistance at the beginning of the simulation. The estimation of resistance

for the RC1 models is approximately the same as for the Rint model (Figure 5.44 and Figure

5.45). This shows the importance of correct initialization to maintain good estimates.

When estimators become this complex, it is crucial to consider whether it is necessary to es-

timate all parameters simultaneously. Estimating a larger number of parameters increases the

overall uncertainty in the system. A key principle to keep in mind is to avoid estimating pa-

rameters that are already known or not essential.

6.4 Estimator computation time comparison

The computation time of the different estimators varies significantly. The tests conducted in

this project were performed on a stationary PC with windows i7-10700 CPU @ 2.90GHz (Sec-

tion 4.4 for setup), using Matlab, which is an advanced computation programming language

optimized for matrix calculations among other tasks. An interesting result regarding computa-

tion time (Section 5.6, Table 5.12) is that DEKF takes about twice as long as JEKF. According

to the theory [16], this method was recommended over JEKF because it increases the number

of matrix operations while reducing the dimensions of the matrices involved, which should

lead to a less time-consuming process overall. It would therefore be interesting to test the

estimators on a less powerful computer or microcontroller for comparison.

The results for the computation time test show EKF-R as the fastest by far. JEKF-R is not far

behind, taking up to 1.3 ·10−6 seconds longer per iteration. It is worth noting that the increase

in computation time is more affected by switching from the Rint model to the RC1 model

(which adds 1 state) than by switching from EKF to JEKF (which adds 2 states). The reason

for this is the more complex calculations required by the RC1 discretization compared to the

random walk estimations introduced by JEKF.
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6.5 Further work

Further work could involve testing nonlinear filters, such as Joint and Dual Unscented Kalman

filters, to improve the accuracy of the estimations. Additionally, implementing and modeling

temperature effects could be beneficial. This includes considering the impact of temperature on

R0 and the open-circuit voltage (OCV). Estimating sensor bias for current measurements using

a random walk model can also enhance the system’s robustness by accounting for potential

drift in sensor readings over time, thereby ensuring more reliable long-term performance.

Implementing fault detection mechanisms for periods of missing data could involve resetting

the filter and reinitializing with larger covariances to account for the increased uncertainty.

Assessing the robustness of the initialization process and developing strategies for handling

scenarios where the estimator does not converge could also be beneficial.

Testing the computation time on a smaller controller or a more dedicated battery management

system would provide insights into computational performance and potential issues in practical

applications.

Testing the estimators on other cell chemistries, such as LFP or NMC cells, is recommended to

evaluate how changes in the OCV-SOC relationship and other factors affect the convergence

and overall performance of the SOH estimators.

Additionally, testing the estimators on various current profiles, where the SOC varies more

significantly as it would in real-world applications, could be valuable. For instance, testing

between 30% and 80% SOC, or using entirely different profiles that represent actual battery

usage scenarios, would provide a more comprehensive evaluation of the estimator’s perfor-

mance.
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Chapter 7
Conclusion

This thesis has examined the implementation of three types of Kalman filters for battery health

(SOH) and SOC estimation. The first filter implemented was the EKF, which focuses solely on

SOC estimation. The second is the JEKF, an expanded version of the EKF that simultaneously

estimates SOC and SOH by accounting for changes in capacity and internal resistance. The

third filter is the DEKF, an advanced type of JEKF that also estimates both SOC and SOH.

The primary goal was to determine if incorporating SOH estimation improves the accuracy of

SOC estimates compared to estimators that only focus on SOC without considering parameter

changes in the battery. Additionally, the thesis aimed to evaluate the precision and reliability

of the SOH estimates provided by the estimators.

The key findings from the test cases indicate that for new LCO cells, the difference in SOC

estimation accuracy between the EKF and the more advanced JEKF and DEKF is minimal. In

these cases, the EKF has a slight advantage. In this scenario where the cell is new, all estimators

achieved a SOC RMSE of approximately 1%. However, for aged cells, the JEKF and DEKF

demonstrated superior performance, maintaining an error margin of around 1%, while the

error margin for the EKF increased significantly to nearly 4%. This highlights the effectiveness

of JEKF and DEKF in providing accurate SOC and SOH estimates for batteries as they age.

SOH estimates from JEKF and DEKF are accurate and stable, with fast convergence times,

from a couple of hours to 50 hours. It is important to note that JEKF and DEKF require longer

computation time than the EKF. Poor initialization also leads to more unstable SOH estimates

and increased convergence times, particularly for DEKF, which was found to be less robust

than JEKF.

This work indicates that DEKF, and especially JEKF, are effective estimators for the simultane-

ous estimation of SOC and SOH for LCO cells, providing reliable and efficient performance.
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