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The Effect of Sampling Rate on Resting 
State Functional MRI 

 

Abstrakt 
 

Det har nylig blitt vist at variabiliteten i rs-fMRI (BOLD-variabilitet) kan være en sensitiv 

indikator på cerebral helse, hvor det er spekulert i om variabiliteten kan være relatert til 

arteriestivhet. En stor andel av variabiliteten i rs-fMRI signalet er fysiologisk variasjon som 

følge av hjerte og respirasjonsbevegelser. Denne høyfrekvente fysiologiske variabiliteten fører 

til foldingsfeil ved tradisjonelle rs-fMRI protokoller hvor repetisjonstider på 2 – 3 sekunder 

benyttes. Det er derfor ikke klart om variabiliteten i rs-fMRI kan beskrives tilstrekkelig ved 

tradisjonell temporal oppløsning (2 – 3 sekunder), eller om høyere temporal oppløsning, som 

unngår foldingsfeil av fysiologisk variabilitet, er nødvendig.  

Målet ved denne studien var todelt: først en sammenligning mellom en BOLD-sekvens med lav 

temporal oppløsning (TR = 2500 ms) og en med høy temporal oppløsning (TR = 356 ms) for å 

vurdere om sekvensen med lav temporal oppløsning er tilstrekkelig for å beskrive variabiliteten, 

eller om høy temporal oppløsning, som unngår foldingsfeil av fysiologisk variabilitet, er 

nødvendig. Det andre målet var å teste om variabiliteten kan assosieres med fysiologiske 

målinger, spesielt arteriestivhet. Dette ble gjort ved å estimere pulsbølge-hastigheten i a. Carotis 

ved bruk av fasekontrast-angio.   

En BOLD-sekvens med høy (TR = 356 ms) og en med lav (TR = 2500 ms) temporal oppløsning 

gjennomgikk en standard temporal filtrering (>0.01 Hz), og BOLD-variabiliteten ble beregnet 

i ufiltrerte datasett, standardfiltrerte datasett (>0.01 Hz) og lave frekvenser (VLF) (0.008 – 0.1 

Hz) for begge fMRI-sekvensene. I tillegg ble BOLD-variabiliteten i respiratorisk (0.1 – 0.6 Hz) 

og hjertefrekvensområdet (>0.6 Hz) beregnet for BOLD-sekvensen med høy temporal 

oppløsning.  

Resultatene viser at forskjellen mellom BOLD-sekvensen med høy temporal oppløsning og lav 

temporal oppløsning øker ved økende variabilitet. Det er derfor rimelig å anta at BOLD-

sekvensen med lav temporal oppløsning ikke vil være tilstrekkelig til vurdering av høyfrekvent 

variabilitet. I tillegg er det fysiologiske bidraget til BOLD-variabiliteten bedre detektert ved 
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høy temporal oppløsning. Det ble imidlertid ikke funnet noen assosiasjon mellom BOLD-

variabilitet og pulsbølge-hastighet som et mål på arteriestivhet.  

 

Abstract 
 

It has recently been shown that the variability in rs-fMRI (BOLD variability) may be a sensitive 

marker of cerebrovascular health, where it is speculated that the variability may be related to 

cerebrovascular compliance. However, a large part of the variability in the rs-fMRI signal is 

due to cardiorespiratory motion, which will be under sampled using traditional rs-fMRI 

protocols with repetition times of 2 – 3 seconds. It is, therefore, not clear whether the variability 

in the rs-fMRI signal will be adequately determined using traditional rs-fMRI scans or if it is 

necessary to scan with sufficiently high temporal resolution to avoid aliasing of the signal 

components related to cardiorespiratory motion.  

The aim of the current study was twofold: First to compare the BOLD variability from a low 

temporal resolution rs-fMRI sequence (TR = 2500 ms) to that of a high temporal resolution rs-

fMRI sequence (TR = 356 ms) in a sample of 28 healthy participants (22 – 50 years) to 

determine whether the low temporal resolution sequence can adequately describe BOLD 

variability or if it is necessary to scan with a temporal resolution that avoids aliasing of the 

cardiorespiratory components of the signal. Second, to test whether the variability can be 

associated with physiological measures, particularly with cerebrovascular compliance. This 

was done by estimating the pulse wave velocity (a proxy for arterial compliance) in the carotid 

artery using a phase contrast flow sequence.  

A high (TR = 356 ms) and a low (TR = 2500 ms) temporal resolution BOLD sequence 

underwent temporal filtering (cutoff 0.01 Hz), and the BOLD variability was calculated in 

unfiltered datasets, standard filtered datasets (cutoff 0.01 Hz) and very low-frequency bands 

(0.008 — 0.1 Hz) for both fMRI sequences. Additionally, the BOLD variability in respiratory 

(0.1 — 0.6 Hz) and cardiac bands (> 0.6 Hz) were calculated for the high temporal resolution 

sequence.  

The main findings were that the difference between the high and the low temporal resolution 

sequence increases as the variability increases. Therefore, it is reasonable to assume that the 

low temporal resolution sequence will be insufficient to detect higher variability accurately. In 
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addition, physiological contributions to BOLD variability are better detected in the high 

temporal resolution sequence. However, the study failed to find an association between BOLD 

variability and cerebrovascular compliance as measured by pulse wave velocity.  

 

Introduction 
 

Resting state functional magnetic resonance imaging (rs-fMRI) is a non-invasive method for 

assessment of low frequency changes in the brain during rest. However, there is a large variance 

in the rs-fMRI signal that is not caused by neuronal activity. As much as 20%-60% of the 

‘’blood oxygen level dependent’’ (BOLD)-signal is due to physiological factors, where inflow 

effects and respiration are the primary contributors (Triantafyllou et al., 2005). 

 

Blood flow in the cerebral microvasculature affects the BOLD-signal through pulsation, T1 

inflow effects, changes in the intravascular oxygenation concentration and local modulation of 

the B0-field (Verstynen & Deshpande, 2011). The intravascular oxygen concentration may 

further lead to individual differences in the signal variance, where individuals with lower 

venous oxygen concentration have higher signal amplitude in the BOLD-signal and vice-versa 

(Lu et al., 2008). Body Mass Index (BMI), hemoglobin levels and blood pressure also affect 

the signal variance (Sjuls & Specht, 2022). Individual differences in blood pressure and BMI 

give small global differences in signal amplitude and duration of the BOLD-signal, respectively. 

In addition, the susceptibility changes related to respiratory motion give rise to distortions that 

vary across space and time (Liu, 2016). Respiration may also influence the signal indirectly 

through modulation of carbon dioxide (CO2) levels. CO2 is a vasodilator, so that blood flow 

effects can be time varying as a result of dynamic changes in CO2 concentration. The signal 

from these physiological factors will overlap in an unpredictable manner with the very low 

frequency (VLF) band that is usually of interest in fMRI studies if the TR is not sufficiently 

short (Huotari et al., 2019; Tong et al., 2019). If the TR is sufficiently short to sample the high-

frequency cardiac signal, removing the signal via high-pass filtering is possible, but it requires 

a TR < 300 ms, which is challenging on most MR scanners. 
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It has also been found that the physiological component of the signal contains relevant clinical 

information. Patients with Alzheimer’s disease have a significant increase in BOLD variability 

compared to healthy controls (Makedonov et al., 2016; Scarapicchia et al., 2018; Tuovinen et 

al., 2020). This increase in variance of the BOLD signal in elderly, Alzheimer patients and 

patients with cerebrovascular disease is assumed to be due to increased arterial stiffness in the 

cerebral microvasculature (Makedonov et al., 2013; Scheel et al., 2022). The observation that 

the physiological variability in Alzheimer patients is dominated by cardiac pulsatility, supports 

the idea that arterial stiffness is the main source of differences in BOLD variability (Tuovinen 

et al., 2020). These findings suggest that the physiological variability in the BOLD signal can 

be a useful indicator of cerebrovascular health. 

 

Given a heart rate between 50-100 beats per minute (bpm) the frequency of the cardiac-related 

variability in the BOLD signal is in the range of 0.8 – 1.6 Hz (Tuovinen et al., 2020), it is 

necessary to scan with high temporal resolution to avoid aliasing of the cardiac related signal. 

This can be achieved by scanning with a low repetition time (TR). The sequence magnetic 

resonance encephalography (MREG) allows for TR down to 100 ms (Hennig et al., 2021). This 

technique is, however, hampered by complicated image reconstruction and low image quality. 

An alternative approach is to limit the number of slices acquired to achieve lower repetition 

times, but will result in images that only includes limited parts of the brain. A way around these 

obstacles could be the use of simultaneous multi slice (SMS) in combination with EPI-BOLD. 

This technique, which is sometimes called multiband fMRI, can drastically reduce the TR of 

acquisitions by reading the signal from several slices at once (Setsompop et al., 2012). This 

combination will allow for a low TR and inclusion of the entire brain in the imaging volume, 

and is also a more available option than MREG. The combination of SMS and EPI-BOLD to 

study the physiological variability in the BOLD-signal is to our knowledge not previously 

studied.  

 

The primary goal of this study is to investigate if the BOLD-variability can be described 

adequately with a low temporal resolution BOLD sequence (TR = 2500 ms), or if a higher 

temporal resolution BOLD sequence that does not under sample physiological variance (mainly 

from cardiac and respiratory motion) is necessary. The secondary goal is to investigate how 

physiological differences impact the measured variability in a low and a high temporal 
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resolution BOLD-sequence. And lastly, to investigate whether the BOLD variability can be 

linked to arterial stiffness assessed by the pulse wave velocity (PWV). 

It is hypothesized that: 

1: High temporal resolution BOLD imaging will give more correct variability 

measurements compared to low temporal resolution BOLD imaging.  

2: The association between BOLD variability and physiological measurements is more 

profound in high temporal resolution BOLD imaging.  

3: Pulse wave velocity is associated with BOLD variability.   

 

Materials and methods 
 

Participants 
 

A total of 28 participants between 22 and 50 years of age were included in this study. All 

participants were healthy volunteers with no relevant medical history. The study was approved 

by the regional ethics committee (REK #543087) and carried out in accordance with relevant 

guidelines and regulations at the University Hospital North Norway. All participants gave 

written informed consent before participating in the study.  

 

Physiological measurements 
 

The participant’s blood pressure and pulse were measured on the left arm while seated 

immediately before the MRI was taken. The Body Mass Index (BMI) was calculated with the 

height and weight given by the participant. Table 1 gives key characteristics of the participants. 
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Table 1. Key characteristics of the participants. Values reported as median (interquartile 
range). 

Characteristic Overall, N = 28 female, N = 15 male, N = 13 

Age (years) 33 (29, 38) 32 (29, 36) 33 (27, 39) 

Diastolic blood pressure (mmHg) 82 (75, 90) 76 (74, 88) 88 (80, 92) 

Systolic blood pressure (mmHg) 132 (119, 145) 122 (117, 132) 144 (131, 153) 

Pulse rate (bpm*) 74 (67, 87) 72 (67, 82) 80 (71, 88) 

Body mass index (kg/m2) 24.8 (22.1, 28.1) 22.6 (21.4, 25.8) 26.6 (24.1, 29.4) 

*bpm = beats per minute 

 

MRI acquisition 
 

The MRI scanning was carried out on a Siemens Magnetom Skyra 3-Tesla scanner (Siemens 

AG, Germany) equipped with a 64-channel head/neck coil.  

 

The high temporal resolution rs-fMRI sequence was optimized and tested on a healthy volunteer 

prior to the acquisition of data included in this study. Because multiple slices are acquired at 

once, images that are acquired with SMS are prone to slice leakage artifacts where signal from 

the simultaneous acquired slices spread across the respective slices (McNabb et al., 2020). The 

volunteer was given a finger tapping task with 20 seconds active and 20 seconds rest alternating 

for 5 minutes while the fMRI sequence was running. In the resulting activation map there were 

activation in the hand knob and no visual signs of slice leakage (see Appendix Figure 1).  

 

The protocol included a quick survey of the brain, a sagittal T1 3D MPRAGE for anatomical 

reference (FOV=240mm, matrix=256, slice thickness=0.9 mm, AP phase encoding direction, 

TR/TE=2300 ms/2.32 ms, TI=900 ms, FA=8°, GRAPPA acceleration factor 2). A transverse 3D 
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Time of Flight (TOF) were obtained to plan the phase contrast image (FOV=200 mm, 

matrix=384, slice thickness=0.50 mm, RL phase encoding direction, TR/TE=21 ms/3.43 ms, 

FA=22°, GRAPPA acceleration factor 3).  

 

To assess the BOLD-variance two T2* weighted rs-fMRI sequences were obtained. A high 

temporal resolution sequence (TR=356 ms), that avoids undersampling of the physiological 

components of the signal (FOV=225 mm, matrix=76, slice thickness=3 mm, RL phase encoding 

direction, TR/TE=356 ms/32 ms, FA=60°, GRAPPA acceleration factor 2 and Simultaneous 

Multi Slice (SMS) with acceleration factor 6, measurements=900), and a ‘‘standard’’ sequence 

with a commonly used temporal resolution of 2500 ms, which under samples the physiological 

components of the signal (FOV=225 mm, matrix=90, slice thickness=3 mm, AP phase encoding 

direction, TR/TE=2500 ms/30 ms, FA=90°, GRAPPA acceleration factor 2, 

measurements=120).  

 

For measurement of blood flow velocity, a single slice sagittal phase contrast image (PCA) was 

taken over the left carotid artery (FOV=200 mm, matrix=224, slice thickness=6 mm, AP phase 

encoding direction, TR/TE=23.20 ms/3.35 ms, FA=10°, GRAPPA acceleration factor 2, and 

velocity encoding individually adjusted between 80 and 120 cm/s). 

Table 2. Overview of the sequences and parameters used in the MRI protocol. 
Scan 3D T1 MPRAGE 3D TOF rs-fMRI rs-fMRI PCA 
Sequence GRE  SMS EPI BOLD EPI BOLD  
Orientation* sag tra tra tra sag 
TR (ms) 2300 21 356 2500 23.2 
TE (ms) 2.32 3.43 32 30 3.35 
TI (ms) 900     
Phase direction AP RL RL AP AP 
FA (degrees) 8° 22° 60° 90° 10° 
Matrix 256 384 76 90 224 
Slice thickness (mm) 0.9 0.5 3 3 6 
FOV (mm) 240 200 225 225 200 
Grappa 2 3 2 2 2 
SMS   6   
VENC (cm/s)     80-120 
Volumes   900 120  

*) sag = sagittal slice orientation, tra = transversal slice orientation 
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Calculation of the pulse wave velocity  

 

The pulse wave velocity (PWV) was calculated using the middle upstroke area (MUSA) method 

(Dogui et al., 2011; Pahlavian et al., 2021). The phase images were first converted to flow 

velocities using the following formula:  

                                𝑣 =  
𝜑

𝜋
∙ venc      (1) 

 

Where v is the velocity,  is the phase (ranging from - to ) and venc is the velocity sensitivity. 

 

PWV was estimated from the flow measurements using software from our lab.  First a program 

created a mask of the arteries by calculating the temporal standard deviation in the magnitude 

flow images (Figure 1A) and thresholding at two standard deviations above the mean (Figure 

1B). The mask was manually edited using itk-SNAP v. 4.2.0 

(http://www.itksnap.org/pmwiki/pmwiki.php) (Yushkevich et al., 2006) so it only contained a 

single arterial segment starting at the common carotid artery and ending in the internal carotid 

artery (Figure 1C).  

 

Figure 1. Masking of the carotid artery. The temporal standard deviation of the magnitude flow images was 

calculated to get a clear image of the arteries (A). A mask was created from the standard deviation image by 

thresholding it at > 2 (B). The mask was manually edited so that it only contained a single continuous segment of 

the common and internal carotid artery (C).  

 

The edited mask was fed into another program that skeletonized the mask and sampled the 

velocity data from the points along the centerline. This data was used to calculate the PWV with 

http://www.itksnap.org/pmwiki/pmwiki.php
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the MUSA method. The temporal signal profile along each point on the centerline (Figure 2A), 

starting with the most upstream point in the mask was extracted from the phase flow images 

and normalized to unity as illustrated in Figure 2B. The time difference between the bolus 

passage at a given point px and the mean signal profile (the transit time), where the mean were 

obtained by calculating the signal profile along all measured points along the centerline, were 

estimated as the aera of the trapezoid spanning the four points defined by where the signal 

intensity at point px have 20% and 80% intensity and similarly where the mean curve has 20% 

and 80% intensity divided by the height on the y-axis (Pahlavian et al., 2021). This simplifies 

to calculating the average of the time difference between the signal profile at px and the mean 

profile at 20% and 80% as illustrated in Figure 2C. The distance of each point along the artery 

was then plotted against the transit time and the PWV is the inverse slope of least-squares fit to 

the points (Figure 2D). 

 

 

Figure 2. Illustration of how the pulse wave velocity were estimated by the MUSA method. The temporal signal 

evolution were sampled along points on the artery centerline (A). This was plotted in (B) where we see an 

idealized signal curve, illustrating the bolus passage, for each point. We see that upstream points reach a peak 

before downstream points. The green line represents the mean signal curve for all points. The time delay for the 

pulse wave at a given point px is estimated as the average of the delay at 20% and 80% signal intensity to the 

mean signal (C). The time lag is plotted against the distance for each point along the artery and the PWV is given 

as the slope of the least-squares fit (D).  
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BOLD variability maps 
 

The BOLD variability maps for the low and high temporal resolution fMRI sequences were 

calculated similarly as in (Tuovinen et al., 2020). See Figure 3 and 4 for a flow chart of the 

processing pipelines. Briefly, the pipeline does the following. 

 

 

Figure 3. Image processing pipeline for the low temporal resolution fMRI data. The original BOLD images 

(upper left) were corrected for spatial intensity variations using a bias field correction algorithm, corrected for 

scan-to-scan motion and smoothed. An average image was calculated from the motion corrected images (middle 

left) and segmented into cortex and white matter, which was further used to construct a cortex, white matter and 

basal ganglia masks (bottom gray box). The temporal standard deviation was calculated from the smoothed 

images (top row), and low-pass filtered images (middle row). The average bold variability in cortex and white 

matter was calculated using the respective masks, from the temporal standard deviation of the unfiltered and 

low-pass filtered images (rightmost column).  
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Figure 4. Image processing pipeline for the high temporal resolution fMRI data. The original BOLD images 

(upper left) were corrected for spatial intensity variations using a bias field correction algorithm, corrected for 

scan-to-scan motion and smoothed. An average image was calculated from the motion corrected images (middle 

left) and warped to the average BOLD image from the low temporal resolution fMRI sequence. The computed 

warp is used to transform the tissue masks from the low temporal resolution to the high temporal resolution 

fMRI image space. The temporal standard deviation was calculated from the smoothed images (top row), and 

low-pass filtered images (middle row). The average bold variability in cortex and white matter was calculated 

using the respective masks, from the temporal standard deviation of the unfiltered and low-pass filtered images 

(rightmost column). 

 

Spatial variations in image intensities were corrected with the N4 bias correction algorithm in 

ANTS (version 2.4.3) (Tustison et al., 2010). Next, scan-to-scan motion in the fMRI series was 

corrected by registering the fMRI time series to the 1st volume using the antsMotionCorrection 

script in ANTS. Then, the fMRI images were smoothed with a 3 mm full-width-half maximum 

(FWHM) Gaussian kernel and temporal filtered (cutoff 0.01 Hz) using niimath 

(https://github.com/rordenlab/niimath, version 1.0). The BOLD variability maps were then 

calculated as the standard deviation of the BOLD time series. To probe whether the BOLD 

variability in specific frequency bands was differently associated with the physiological 

measurements, BOLD variability maps were calculated from the unfiltered datasets, standard 

filtered (cutoff 0.01 Hz), i.e., the filter commonly applied in rs-fMRI analyses, and very low-

frequency bands (VLF), believed to primary reflect neuronal activity, (0.008 — 0.1 Hz) for both 

fMRI sequences. Additionally, the BOLD-variability in respiratory (0.1 — 0.6 Hz) and cardiac 

bands (> 0.6 Hz) were calculated for the high temporal resolution sequence. See Figure 5 and 

6 for BOLD time series, and Figure 7 for illustration of BOLD variability maps. 
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A 

 

B 

 

C 

 

D 

 

Figure 5. BOLD time series for the high temporal resolution BOLD sequence derived from cortex. A: unfiltered 

dataset, B: standard temporal filtered dataset (Cutoff 0.01 Hz), C: very low frequency (VLF) band (0.008 — 0.1 

Hz) and D: cardiac band (>0.6 Hz) 
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A 

 

B 

 

C 

 

Figure 6. BOLD time series for the low temporal resolution BOLD sequence derived from cortex. A: unfiltered 

dataset, B: standard temporal filtered dataset (Cutoff 0.01 Hz), and C: very low frequency (VLF) band (0.008 — 

0.1 Hz).  

 

The average BOLD-variability was extracted from cortical gray matter and cerebral white 

matter. The anatomical regions were derived by segmenting the average fMRI image from the 

low temporal resolution sequence after bias and motion correction using mri_synthseg version 

2.0 (Billot et al., 2023). The segmentation from the low temporal resolution sequence was then 

warped to the high temporal resolution sequence using ANTS with a symmetric diffeomorphic 

mapping since direct segmentation of the high temporal resolution sequence with mri_synthseg 

was unreliable due to the lower contrast in these images.  
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Figure 7. Illustration of BOLD variability (Bv) maps for the low (top row) and the high (bottom row) temporal 

resolution BOLD sequence. The left vertical column display raw images, followed by BOLD variability maps 

for the unfiltered images, standard filtered images (cutoff 0.01 Hz), very low frequency band images (0.008 — 

0.1 Hz) and cardiac band images (>0.6 Hz) for the high temporal resolution sequence only.  

 

Statistical analysis 
 

BOLD variability has previously been associated with age (Makedonov et al., 2013) and several 

physiological measures: blood pressure, BMI (Sjuls & Specht, 2022), and heart rate (Shmueli 

et al., 2007). To understand the potential relationship between BOLD variability and the 

physiological measurements, Pearson correlation coefficients were calculated between the 

physiological variables (age, diastolic and systolic blood pressure, BMI, and pulse rate) and the 

BOLD variability maps (unfiltered, standard filtered, and VLF band for both the high and the 

low temporal resolution sequences, and a respiratory and cardiac filtered frequency band for 

the high temporal resolution sequence only). Significant correlations (p < 0.05) were assessed 

by a two-tailed Pearson correlation test. This analysis was carried out for both white matter and 

cortex. Subsequently, a linear regression analysis was conducted on the physiological variables, 

showing a significant correlation with the variability.  

 

Bland-Altman plots were used to assess agreement between the BOLD variability maps 

obtained from the high (TR 356 ms) and low (TR 2500 ms) temporal resolution sequences. 

Additionally, linear regression analyses were separately conducted on the unfiltered, standard 

filtered and VLF band datasets, as well as between white matter and cortex, with the difference 
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between the two methods as the dependent variable and the mean between them as the 

independent variable.  

 

To assess whether BOLD variability was associated with arterial stiffness as hypothesized 

(Tuovinen et al., 2020), a Pearson correlation were calculated between the BOLD variability 

maps and the estimated PWV from the Carotid artery.  

 

All the statistical analyses were conducted in IBM SPSS (28.0.1.0 (142)), and the significance 

level was set to 0.05.  

 

Results 

 

Comparing high and low temporal resolution BOLD variability maps 
 

Figure 8 shows the agreement between the unfiltered dataset (A), the standard filtered dataset 

(B) and the VLF band (C). There is agreement between the high and the low temporal resolution 

sequence in all the datasets with more than 95% of the difference being within the limits of 

agreement.  
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A 

 
 

 

B 

  

C 

  
 

Figure 8. Bland-Altman plots of the agreement between the high and the low temporal resolution sequences. A: 

Unfiltered datasets. B: Standard filtered datasets and C: VLF band. A regression line is plotted for each dataset 

and for both white matter and cortex. The difference in variability between the two methods is calculated by 

subtracting the variability from the high temporal resolution sequence from the low temporal resolution sequence 

for the respective datasets. Mean variability is given by the mean between the two methods.  

 

 

Table 3 shows the linear regression results for the difference between the high and the low 

temporal resolution sequence and the mean variability between the datasets. The linear 

relationship is positive and significant across all the frequency bands (unfiltered, standard 

filtered and VLF band). 
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Table 3. Regression table for the difference between high and low temporal resolution data. 
  Model r R2 B p value 

 Difference     
 White matter     

 Unfiltered 0.902 0.813 0.934 <0.001 

 Standard filtered 0.759 0.576 0.699 <0.001 

 VLF band 0.807 0.652 0.751 <0.001 

 Cortex     
 Unfiltered 0.950 0.903 1.055 <0.001 

 Standard filtered 0.915 0.837 0.991 <0.001 
  VLF band 0.877 0.769 0.900 <0.001 

 

 

Figure 9 show the mean variability for the low (A) and the high (B) temporal resolution 

sequence, for both white matter and cortex. The mean variability is shown for the unfiltered, 

standard filtered and VLF band for both sequences.  

 

 

A 

 

B 

 
Figure 9. Mean variability with adjacent 95% confidence interval for the low (A) and the high (B) temporal 

resolution sequence. The mean variability is in general larger for cortex compared to white matter. This is the 

case for all the frequency bands included in the analysis (unfiltered, standard filtered and VLF band), and for 

both the high and the low temporal resolution sequence. 

 

 

Physiological measurements and BOLD-variability  
 

No significant relationship was observed between age, diastolic blood pressure, pulse rate, and 

BOLD variability (See Appendix Table 1). In contrast, a significant correlation was found 

between systolic blood pressure, BMI and variability across all frequency bands included in the 

analysis (Table 4 and 5).  
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BMI and BOLD variability 
 

Table 4 shows the linear regression results for BMI and BOLD variability for the high and the 

low temporal resolution sequences. The table is divided into low temporal resolution (A) and 

high temporal resolution (B), and subdivided into white matter (A1 and B1) and cortex (A2 and 

B2).  

 

The linear association is positive and significant across all frequency bands for both the high 

and the low temporal resolution sequence. The correlations range from r = 0.448 to r = 0.731 

where the least correlated relationship is seen for the low temporal resolution sequence in the 

VLF band for cortex, and the highest correlation is seen for the high temporal resolution 

sequence in the standard filtered dataset for white matter.  

 

Table 4. Estimates from the linear regression between BOLD variability measurements and BMI. 
  Model r R2 B p value 

A. Low temporal resolution and BMI     

A.1 White matter     

 Unfiltered 0.620 0.384 0.194 <0.001 

 Standard filtered 0.500 0.250 0.115    0.007 

 VLF band 0.517 0.267 0.063    0.005 
A.2 Cortex     

 Unfiltered 0.600 0.360 0.266 <0.001 

 Standard filtered 0.471 0.222 0.186    0.011 

 VLF band 0.448 0.201 0.096    0.017 
B. High temporal resolution and BMI    

B.1 White matter     

 Unfiltered 0.651 0.424 0.079 <0.001 

 Standard filtered 0.731 0.535 0.087 <0.001 

 VLF band 0.654 0.427 0.039 <0.001 

 Cardiac band 0.720 0.518 0.032 <0.001 

 Respiratory band 0.716 0.512 0.061 <0.001 
B.2 Cortex     

 Unfiltered 0.587 0.344 0.085    0.001 

 Standard filtered 0.664 0.441 0.096 <0.001 

 VLF band 0.532 0.283 0.047    0.004 

 Cardiac band 0.718 0.515 0.031 <0.001 
  Respiratory band 0.678 0.460 0.068 <0.001 
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Systolic blood pressure and BOLD variability 
 

Table 5 shows the linear regression results for systolic blood pressure and BOLD variability for 

the high and the low temporal resolution sequences. The table is divided into low temporal 

resolution (A) and high temporal resolution (B), and subdivided into white matter (A1 and B1) 

and cortex (A2 and B2).  

 

Table 5.  Estimates from the linear regression between BOLD variability measurements and systolic blood 
pressure (SBP). 
  Model r R2 B p value 

A. Low temporal resolution and SBP    

A.1 White matter     

 Unfiltered 0.443 0.196 0.039    0.018 

 Standard filtered 0.407 0.166 0.027    0.032 

 VLF band 0.503 0.253 0.017    0.006 
A.2 Cortex     

 Unfiltered 0.456 0.208 0.057    0.015 

 Standard filtered 0.369 0.136 0.041    0.053 

 VLF band 0.421 0.177 0.025    0.026 
B. High temporal resolution and SBP    
B.1 White matter     

 Unfiltered 0.609 0.370 0.021 <0.001 

 Standard filtered 0.547 0.300 0.018    0.003 

 VLF band 0.559 0.313 0.009    0.002 

 Cardiac band 0.529 0.279 0.007    0.004 

 Respiratory band 0.520 0.270 0.013    0.005 
B.2 Cortex     

 Unfiltered 0.576 0.332 0.024    0.001 

 Standard filtered 0.505 0.255 0.021    0.006 

 VLF band 0.468 0.219 0.012    0.012 

 Cardiac band 0.536 0.287 0.006    0.003 
  Respiratory band 0.491 0.241 0.014    0.008 

 

 

Pulse wave velocity 
 

Table 6 shows the correlation results for pulse wave velocity and BOLD variability for the high 

and the low temporal resolution sequences. Due to noise in some of the PCA images, five of 

the pulse wave velocity results were discarded. No significant relationship was found between 
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the measured pulse wave velocity and BOLD variability. The closest association is seen in the 

unfiltered dataset for the low temporal resolution sequence with r = 0.18 and p = 0.41. 

 

Table 6. Correlation table for pulse wave velocity and variability. 
  Model r p value     

A. Low temporal resolution and variability    

A.1 White matter     

 Unfiltered  0.180 0.410   

 Standard filtered -0.106 0.632   

 VLF band  0.033 0.881   

A.2 Cortex     

 Unfiltered  0.133 0.545   

 Standard filtered -0.111 0.613   

 VLF band -0.021 0.926   

B. High temporal resolution and variability    
B.1 White matter     

 Unfiltered  0.071 0.749   

 Standard filtered  0.000 0.999   

 VLF band -0.062 0.779   

 Cardiac band  0.008 0.971   

 Respiratory band  0.052 0.815   
B.2 Cortex     

 Unfiltered  0.044 0.841   

 Standard filtered -0.037 0.865   

 VLF band -0.127 0.563   

 Cardiac band  0.025 0.909   

  Respiratory band  0.045 0.839     
 

Discussion 
 

The two main findings in this study were that it is necessary to use a temporal sampling rate 

that avoids aliasing the cardiac- and respiratory-induced fluctuations in the rs-fMRI signal to 

adequately measure the BOLD variability, and that systolic blood pressure and BMI 

significantly affect BOLD variability. The findings have implication for the understanding of 

which cardiovascular factors affect the BOLD variability. It is also likely that individual 

differences in BOLD variability may affect the strength in rs-fMRI networks, and as such this 

study also highlights the necessity of correcting for physiological noise in rs-fMRI studies.  
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Comparing high and low temporal resolution BOLD variability maps 
 

The Bland-Altman plots in Figure 8 illustrate the agreement between the high and the low 

temporal resolution sequences with more than 95% of the difference being within the limits of 

agreement. The two methods are comparable for the lower variability, but it is evident that the 

disparity between the two methods increases as the variability increases. The relationship is 

linear, and as the variability increases, the low temporal resolution sequence’s ability to describe 

rapidly fluctuating signal decreases. Previous research has shown a significant increase in 

variability in Alzheimer patients over a range of different temporal resolution imaging methods 

(ranging from TR=100 ms (MREG) to 3000 ms). However, the association between BOLD 

variability and Alzheimer’s disease was strengthened with higher temporal resolutions 

(Tuovinen et al., 2020). The findings in this study are, therefore, consistent with previous 

findings in that there is a discrepancy between BOLD variability calculated from high and low 

temporal resolution data. 

 

Table 3 indicates a strong positive relationship between the difference and the mean between 

the high and low temporal resolution scans. This relationship is seen for all the frequency bands 

included in this analysis (unfiltered, standard filtered and VLF band). The relationship is also 

seen for both white matter and cortex.  

 

For white matter the unfiltered dataset exhibits a strong positive correlation (r = 0.902) and 

coefficient of determination value (R2 = 0.813) between the difference and the mean variability. 

This indicates a high level of association between the variability and the difference between the 

methods, where 81.3% of the increasing difference can be explained by an increase in 

variability. Similarly, both the standard filtered and the VLF band datasets show a positive 

correlation (r = 0.759 and r = 0.807, respectively) between the difference and the mean 

variability. All the variability datasets show strong coefficient of determination values and 

significant regression coefficients (p = <0.001).   

 

For cortex the correlation is slightly stronger for all the frequency bands (unfiltered, standard 

filtered and VLF band) compared to white matter (r = 0.950, r = 0.915 and r = 0.877, 

respectively). The coefficient of determination values is also stronger for cortex compared to 
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white matter, with the unfiltered dataset showing the strongest coefficient of determination (R2 

= 0.903). The regression coefficients are also larger compared to white matter. This could be 

explained by a larger variability in cortex in general (see Figure 9), and that the density of 

arteries and blood volume is larger in cortex than in white matter (Smirnov et al., 2021). 

 

 

The standard filtered datasets are more centered around the mean compared to VLF band and 

unfiltered datasets (Figure 8B). This is expected as the high-pass filter (cutoff 0.01 Hz) removes 

portions of the aliased variance because of cardiac motion in the low temporal resolution 

sequence. This makes the high and the low temporal resolution sequences more comparable for 

lower variability. This is particularly seen in white matter, and is reflected in the regression 

analysis with the weakest coefficient of determination value (R2 = 0.576).  

 

 

In summary the linear relationship between the high and the low temporal resolution sequence 

is highly significant (p = <0.001) for both white matter and cortex, and for all the frequency 

bands examined in this analysis. These associations provide strong evidence that the high and 

low temporal resolution sequences do not give equal information regarding the BOLD 

variability as the variability increases. For potential clinical or research use of BOLD 

variability, where cases with high BOLD variability may be of primary interest, this suggests 

that high temporal resolution scans are necessary. The agreement in the lower spectrum of 

variability also suggests that the SMS EPI BOLD-sequence is of sufficient quality for the 

assessment of BOLD variability.  

 

 

Physiological measurements and BOLD variability 
 

There was no significant relationship between age, diastolic blood pressure, pulse rate, and the 

observed variability (See Appendix Table 1). These findings suggest that these physiological 

factors do not play a significant role in influencing the variability observed in the datasets. 

However, a correlation between age and BOLD variability has previously been found, where 

the variability tends to decrease in the older population compared to the younger population 

(Grady & Garrett, 2014). The age span included in this study (age 22 - 50) might not be 

sufficient to detect the same relationship. The association between variability and age also tend 



23 
 

to be spatially distinct, where the variability is increased in given areas of the brain, and 

decreased in others (Grady & Garrett, 2014; Tsvetanov et al., 2021). The segmentation in this 

study only included variability maps of cortex and white matter as a whole which will occlude 

potential spatial differences within these regions. 

 

There is also an previous report of an association between diastolic blood pressure and global 

BOLD-signal where diastolic blood pressure is positively correlated with the strength of the 

BOLD signal (Sjuls & Specht, 2022). However, no significant association between diastolic 

blood pressure and BOLD variability was found in this study.  

 

In contrast, a significant correlation was found between systolic blood pressure, BMI and 

BOLD variability across all frequency bands included in the analysis (Table 4 and 5). Notably, 

an exception was observed regarding the correlation between systolic blood pressure and the 

standard filtered dataset for cortex, where the relationship approached significance (r = 0.369, 

p = 0.053).  

 

BMI and BOLD variability 
 

For the low temporal resolution sequence there was a significant positive correlation between 

BMI and all the frequency bands included in this analysis (unfiltered, standard filtered and VLF 

band). Specifically, as BMI increases, variability tends to increase as well. This is the case for 

both white matter and cortex, whereas the strongest correlations were seen in white matter with 

correlations ranging from r = 0.500 (standard filtered) to r = 0.620 (unfiltered). In cortex, the 

correlations are slightly weaker compared to white matter, with correlations ranging from r = 

0.448 (VLF band) to r = 600 (unfiltered). The strongest correlation is seen for the unfiltered 

dataset for both white matter and cortex. However, the linear relationship is significant for all 

the frequency bands and both anatomical regions.  

 

Similarly to the low temporal resolution sequence, the high temporal resolution sequence has a 

significant positive correlation between BMI and variability across all frequency bands, 

including the cardiac and respiratory bands. Again, this is the case for both white matter and 
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cortex, whereas the strongest correlations were seen in white matter with correlations ranging 

from r = 0.651 (unfiltered) to r = 0.731 (standard filtered). The correlations in cortex are slightly 

weaker compared to white matter with correlations ranging from r = 0.532 (VLF band) to r = 

0.718 (cardiac band). The linear relationship is significant for all the frequency bands and for 

both white matter and cortex.  

 

It is not clear why BMI is associated with BOLD variability, but a higher BMI is believed to 

reduce cerebral blood volume (CBV) (Lemmens et al., 2006). The decreased CBV is thought 

to shorten the duration of the BOLD-signal (Sjuls & Specht, 2022). This mechanism could 

partially account for the observed association between BMI and BOLD variability. 

Additionally, BMI is positively correlated with systolic blood pressure (r = 0.511, p = 0.005), 

indicating that individuals with higher BMI tend to have elevated blood pressure levels. Given 

that systolic blood pressure is also linked to BOLD variability (Table 5), this relationship might 

further contribute to explaining the association between BMI and BOLD variability. 

 

The results from the regression analysis between BMI and BOLD variability suggest that BMI 

is positively associated with the variability, regardless of the temporal resolution of the 

sequences and the brain regions examined. This indicates that higher BMI values are linked to 

increased variability in both white matter and cortex. However, the strength of the association 

varies slightly depending on the temporal resolution, frequency band and anatomical region. 

Overall, the high temporal resolution sequence correlates closer to BMI compared to the low 

temporal resolution sequence, and the strongest correlation is seen in the cardiac bands with r 

= 0.720 and r = 0.718 for white matter and cortex, respectively. The correlations in the 

respiratory bands follow the cardiac bands closely with r = 0.716 and r = 0.678 for white matter 

and cortex, respectively. Generally, the lowest correlations are seen for the VLF bands with the 

lowest observed correlation in cortex for the low temporal resolution sequence (r = 0.448). The 

correlations are also generally stronger in white matter compared to cortex. 
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Systolic blood pressure and BOLD variability 
 

A similar trend is seen for the correlation between SBP and variability. For the low temporal 

resolution sequence, there is a significant but relatively weak positive correlation between SBP 

and variability across all frequency bands and anatomic regions. As mentioned, the only 

exception is a near significant regression coefficient between SBP and cortex in the standard 

filtered dataset for the low temporal resolution sequence (p = 0.053). For white matter the 

correlations range from r = 0.407 (standard filtered) to r = 0.503 (VLF band). Similar to the 

regression analysis between BMI and variability, the strongest correlation is seen for white 

matter. For cortex the correlations range from r = 0.369 (standard filtered) to r = 0.503 

(unfiltered). The regression coefficients are all positive, indicating that an increase in SBP leads 

to an increase in variability.  

 

For the high temporal resolution sequence, the correlation between SBP and variability is 

stronger than that of the low temporal resolution sequence. This is the case for both white matter 

and cortex, with white matter showing the strongest correlations (ranging from r = 0.520 to r = 

0.609). Interestingly, the respiratory and the cardiac bands for white matter are the least 

correlated compared to the other frequency bands, with r = 0.520 and r = 0.529, respectively. 

The strongest correlation is seen in the unfiltered dataset. For cortex, the correlations are 

generally lower compared to white matter, with correlations ranging from r = 0.468 (VLF band) 

to r = 0.576 (unfiltered). The only exception is the correlations in the cardiac bands, where 

cortex has a slightly stronger correlation compared to white matter with r = 0.536 and r = 0.529, 

respectively. Similar to the low temporal resolution sequence, all the regression coefficients are 

positive.  

 

BOLD-variance as a result of cardiac motion is reported to be dominant around major arteries 

and veins (Huotari et al., 2019), where higher blood pressure is believed to represent higher 

vascular resistance (Sjuls & Specht, 2022). The stronger correlation between systolic blood 

pressure and variability in white matter compared to gray matter could therefore be explained 

by the presence of larger vessels. Interestingly, the correlation is also stronger for white matter 

in the VLF-band. A possible explanation for this could be systemic low frequency oscillations 

(sLFO) (Tong et al., 2019), which is suggested to account for about 30% of the VLF-signal. 
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The sLFO’s overlap the VLF signal one would expect as a result of neuronal activity, but since 

this in in white matter the sources are believed to be related to blood flow and possible 

fluctuations in CO2 concentrations. 

 

Pulse wave velocity 
 

No significant relationship was found between pulse wave velocity and BOLD variability 

(Table 6). The correlation coefficients vary from negative to positive values between the 

frequency bands and are r = 0.000 for the standard filtered dataset in white matter from the high 

temporal resolution sequence (Table 6, section B1). This suggests that variations in pulse wave 

velocity do not significantly impact the observed variability. However, a previous study 

observed a negative association between aortic pulse wave velocity and BOLD variance in 

spatially distinct gray matter areas (Hussein et al., 2020). In the same study, there was no 

significant association when the mean variability across all cortex and white matter was 

analyzed. In addition, Hussein et al (2020) found no significant relationship between PWV and 

variability in the younger population studied.   

 

In Alzheimer patients the variability is increased compared to healthy controls (Tuovinen et al., 

2020). The variability in the cardiac and the respiratory frequency bands is spatially distinct and 

are the main contributor to variability in this patient group. These changes are believed to be 

caused by arterial stiffness. However, the results of this study are unable to find evidence of this 

relationship. Overall, these findings underscore the complex interplay between vascular 

physiology and BOLD variability characteristics.  

 

Limitations 
 

The spatial resolution of the fMRI sequences is quite poor compared to anatomical imaging. 

Hence, it is therefore reasonable to assume that the variability maps are susceptible to partial 

volume effects. This is likely of most importance in cortex, where the anatomical structure is 

less spatially distinct.  
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There was no significant correlation between blood flow velocity and variability. This might be 

due to low SNR in the phase contrast images. Also, the TR was likely set too high for precise 

measurements depending on the heart rate. In addition, the acquisition was only a single slice 

of 6 mm which made it difficult to include both a. Carotis and a. Carotis interna equally for all 

the participants. This could have biased the measured pulse wave velocity between subjects. 

More reliable results could have been achieved with a 4D flow sequence, but this option was 

discarded due to the long acquisition time (~10 min) and complex post-processing.  

 

Voxel-wise analysis might have been a better approach regarding correlation analysis between 

physiological measurements and BOLD variability. Particularly for analyzing the relationship 

between pulse wave velocity and variability, since previous studies have implied a spatially 

distinct relationship between these factors (Hussein et al., 2020; Tuovinen et al., 2020). 

However, voxel-wise analysis requires complex spatial normalization and statistical analysis of 

the data. In addition to this, the age span included in this study might not have been large enough 

to find any association between age and/or pulse wave velocity.  

 

Conclusion 
 

The results of this study imply that there is an agreement between the high and the low temporal 

resolution sequence for lower variability. However, the difference between the two methods 

increases as the variability increases. It is therefore reasonable to assume that the low temporal 

resolution sequence will be insufficient to detect higher variability accurately.  

 

BMI is positively associated with variability across all frequency bands included in this 

analysis. However, the association is slightly stronger in the high temporal resolution sequence 

compared to the low temporal resolution sequence. As expected, the associations were also 

generally stronger in the cardiac and respiratory frequency bands. In addition, the association 

was stronger in white matter compared to cortex. 
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Similarly, SBP is positively associated with variability, with higher SBP being linked to 

increased variability. This association is also more pronounced in the high temporal resolution 

sequence compared to the low temporal resolution sequence, and the associations are generally 

stronger in white matter compared to cortex. These observations confirm the hypothesis that 

physiological contributions to BOLD variability are better detected in the high temporal 

resolution sequence.  

 

No evidence of any association between pulse wave velocity and mean variability across cortex 

and white matter in relatively young and healthy adults could be found. Therefore, the findings 

do not lend support to our hypothesis that BOLD variability is associated with arterial stiffness. 

 

In summary, the study shows that BOLD variability is sensitive to BMI and systolic blood 

pressure, providing further evidence that BOLD variability is sensitive to cerebrovascular 

health. However, as the potential mechanisms behind these associations are unclear, more 

research into the complex relationship between vascular physiology and pathology and BOLD 

variability is needed.  
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Appendix  
 

A 

 
B 

 
Figure 1. Quality test for the high temporal resolution fMRI sequence acquired prior to the data included in this 

study. The fMRI data was modelled with a block design with 20 seconds of rest and 20 seconds of active finger-

tapping. Motion correction and a smoothing filter (8 mm FWHM kernel) were applied, and the analysis was 

done with SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  A: Results from the finger-tapping 

paradigm with activation in the hand knob and no visual signs of slice leakage (false discovery rate corrected p < 

0.05). B: Residual map generated from the finger-tapping paradigm, with noise around the ventricles and large 

vessels. There are no visual signs of systematic noise or artifacts in the brain parenchyma.  
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Table 1. Correlation table for physiological measurements and variability. 
    pulse rate DBP* age   

A. 
Low temporal 
resolution     

A.1 White matter     

 Unfiltered r=0.361 (p=0.059) r=0.257 (p=0.187) r=-0.025 (p=0.901) 

 Standard filtered r=0.049 (p=0.803 r=0.068 (p=0.731) r=0.077 (p=0.699) 

 VLF band r=0.159 (p=0.419) r=0.268 (p=0.168) r=0.139 (p=0.481) 
A.2 Cortex     

 Unfiltered r=0.304 (p=0.115) r=0.208 (p=0.287) r=-0.037 (p=0.852) 

 Standard filtered r=0.008 (p=0.966) r=0.032 (p=0.872) r=0.054 (p=0.785) 

 VLF band r=0.045 (p=0.819) r=0.183 (p=0.352) r=0.092 (p=0.643) 

B. 
High temporal 
resolution     

B.1 White matter     

 Unfiltered r=0.341 (p=0.076) r=0.369 (p=0.053) r=0.037 (p=0.851) 

 Standard filtered r=0.134 (p=0.498) r=0.264 (p=0.175) r=0.030 (p=0.878) 

 VLF band r=0.117 (p=0.553) r=0.328 (p=0.088) r=0.128 (p=0.518) 

 Cardiac band r=0.196 (p=0.318) r=0.337 (p=0.079) r=-0.049 (p=0.806) 

 Respiratory band r=0.136 (p=0.489) r=0.202 (p=0.302) r=0.023 (p=0.908) 
B.2 Cortex     

 Unfiltered r=0.326 (p=0.090) r=0.340 (p=0.077) r=0.071 (p=0.721) 

 Standard filtered r=0.078 (p=0.694) r=0.215 (p=0.273) r=0.067 (p=0.736) 

 VLF band r=0.039 (p=0.842) r=0.272 (p=0.162) r=0.124 (p=0.528) 

 Cardiac band r=0.171 (p=0.383) r=0.302 (p=0.119) r=-0.001 (p=0.997) 
  Respiratory band r=0.117 (p=0.553) r=0.157 (p=0.424) r=0.038 (p=0.848) 

*) DPB= diastolic blood pressure. 




