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A B S T R A C T

The problem under study is based on the challenges faced by the Orthopaedic Clinic at St. Olav’s Hospital in
Trondheim, Norway. Variations in demand and supply cause fluctuating waiting lists, and it is challenging to
level the activities between the clinic’s two units, the outpatient clinic and the operating theater, to obtain
short waiting times for all activities. Based on these challenges, we describe and present a planning problem
referred to as the Long-term Master Scheduling Problem (LMSP), where the objective is to construct an
integrated Long-term Master Schedule (LMS) that facilitates short waiting times in both units. The LMS can
be separated into two schedules, one cyclic high-level schedule, and one non-cyclic low-level schedule. The
demand for outpatient clinic consultations and surgeries is stochastic, as are the waiting lists. To account
for this, we propose a planning framework consisting of an optimization model to solve the LMSP, and a
two-level planning procedure. In the planning procedure, we first solve the LMSP to construct the LMS for the
upcoming planning horizon. Then, to adjust to the fluctuating waiting lists, we periodically refine the low-level
schedule by solving a constrained LMSP. We also develop a simulation-based evaluation procedure to evaluate
the planning framework in a real-life setting and use this to investigate different planning strategies. We find
that imposing flexible, dynamic and agile planning strategies improve waiting time outcomes and patient
throughput. Furthermore, combining the strategies yields additive improvements.
1. Introduction

Due to demographic changes, many Western countries experience
a growing demand for health care, while the number of people in the
working-age stagnates. In 2021, there were slightly more than three Eu-
ropeans of working-age for every European aged 65 and above. This is a
50% higher coverage compared to 2050, when there will be fewer than
two working-age adults for each elderly person (European Commission,
2023). Currently, the disruptions caused by the recent COVID-19 pan-
demic exert pressure on health care systems globally (OECD Publishing,
2022). From 2019 to 2020, the number of elective surgeries performed
in the EU countries decreased by 16.5%, generating backlogs of patients
on waiting lists. Current and future challenges put strain on the health
care sector. If we want to maintain or possibly increase the level of care
in the future, we must utilize the resources more efficiently.

Hulshof et al. (2012) develop a taxonomic classification of planning
decisions in health care along two axes. The vertical axis reflects the
hierarchical nature of decision making, including strategic, tactical
and off- and online operational decisions. On the horizontal axis, the
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authors position major health care services, including ambulatory,
emergency, surgical, inpatient, home care and residential care services.
According to the classification by Hulshof et al. (2012), the decisions
of interest in this work involves tactical planning within ambulatory,
surgical and inpatient care services.

Tactical surgery scheduling is frequently studied in the Operations
Research literature. However, tactical planning that considers the com-
bination of the Outpatient Clinic (OC) and the operating theater (OT)
is sparsely studied. Surgical patients may require services in both units,
as illustrated by the stylized sketch in Fig. 1. Upon referral, all patients
are put on a waiting list for an initial consultation (IC) in the OC.
Depending on the surgeon’s decision, a share of the patients require
further interventions, either a treatment consultation (TC) in the OC or a
surgery in the OT, while some patients do not require further interven-
tions. Inpatients require a stay in a bed after surgery, while outpatients
leave the hospital. Following either of these interventions, all patients
require a series of follow-up (FU) consultations in the OC before being
discharged from the system. Between each activity, patients are put on
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Fig. 1. The flow of patient through the OC (top) and the OT (bottom).
a waiting list (WL) for the upcoming activity, and the time between
entering a waiting list and being served at the corresponding activity
is referred to as the waiting time for that activity. A major objective of
a surgical clinic is to obtain short waiting times across all activities.

The problem under study is based on challenges faced by the
Orthopaedic Clinic at St. Olav’s Hospital in Trondheim, Norway. At St.
Olav’s Hospital, the surgical departments (general surgery, orthopaedic
surgery, neurosurgery, etc.) are decentralized and the OTs and OCs
of different surgical specialties are separated in different centers. This
means that the overall assignments of surgical specialties to centers are
already made, and in this paper, we study the problem of assigning
orthopaedic subspecialties to the orthopaedic operating rooms (ORs)
and OC rooms. Variations in demand and supply cause fluctuating
waiting lists, and it is challenging to level the activities between the
OC and the OT to obtain short waiting times for all activities. With
this as our starting point, we define and present a planning problem
referred to as the Long-term Master Scheduling Problem (LMSP). The
result of solving the LMSP is a Long-term Master Schedule (LMS), which
covers both the OC and the OT, and that is valid for a planning horizon
of typically some months. The demand considered in the LMSP is the
expected activity requirements imposed both by patients already on the
waiting lists and by the expected number of new arrivals. Therefore,
the construction of the LMS is demand-driven, not based on serving
a predefined case mix. In that sense, we take a bottom-up approach
instead of a top-down approach when constructing the LMS.

The LMS can be separated in a high-level and a low-level schedule.
The high-level schedule is a cyclic schedule that covers a planning cycle
of typically one week. In the high-level schedule, surgical specialties are
assigned to rooms in both units (the OC or the OT), on each day of the
planning cycle. The low-level schedule is non-cyclic, and it covers all
days of the planning horizon. Here, a number of surgeons of different
types is assigned to each day, and a number of different activity types
is assigned to one of the units on each day. Each day in the low-
level schedule corresponds to a day in the high-level schedule, and
the assignments made in the low-level schedule are constrained by the
assignments of specialties made in the high-level schedule.

The demand for OC consultations and surgeries in the OT is stochas-
tic, and so are the waiting lists. To account for stochastic waiting
lists, we propose a two-level planning procedure where the low-level
decisions are periodically refined to match the current waiting lists. We
refer to the refined low-level schedule as the Refined Master Schedule
(RMS).

To evaluate the proposed planning procedure in a real-life setting
and under different planning strategies, we develop an evaluation
procedure based on a discrete-event simulation model. In the Flexible
strategy, a number of rooms are assigned as flexible in the high-level
schedule, allowing us to postpone the assignments of specialties to
these rooms until we generate the RMS. In the Dynamic strategy, we
ncrease the frequency with which we construct the RMS, so that we
an make more frequent adjustments according to the present waiting
ists. Finally, in the Agile strategy, we decrease the delay between the
2 
planning and execution of the RMS, allowing us to construct the RMS
with more precise information of the waiting lists.

The main contribution of this paper is a two-level planning frame-
work composed of a formal description and mathematical formulation
of the LMSP and the two-level planning procedure that accounts for
stochastic waiting lists. The mathematical model extends the model
developed by Bovim et al. (2022) by including explicit modeling of the
waiting lists. Furthermore, we provide managerial insights related to
the adoption of the different planning strategies.

In Section 2, we present relevant literature to position our work.
Then, in Section 3, we describe the LMSP along with the mathematical
formulation of the problem, and we introduce the two-level planning
procedure. In Section 4, we describe the evaluation procedure for
evaluating the planning framework, before the computational study is
presented in Section 5. Finally, in Section 6, we conclude the paper.

2. Literature review and contribution

Although there is no clear definition of a Master Surgery Schedule
(MSS) (Cardoen et al., 2010), it is often referred to as a cyclic sched-
ule in which a set of surgical subgroups are assigned to OR blocks
throughout the planning cycle. However, there are variations related
to the decision levels and the granularity with which the subgroups
are considered in the literature. As a consequence, authors also differ
in the planning horizons they consider when constructing the MSS.

Some authors, such as Fügener et al. (2014) and Santos and Marques
(2022), assign surgical specialties to each OR block in the MSS, and link
the demand for each specialty to the case mix settled at the strategic
level. These authors consider relatively long planning horizons, typi-
cally one year. Others, such as Banditori et al. (2013), Cappanera et al.
(2014) and Schneider et al. (2020), propose a more frequent planning
procedure and construct a new MSS every few weeks. Furthermore,
these authors use a finer definition of surgical groups based on resource
consumption. Both Banditori et al. (2013) and Cappanera et al. (2014)
consider the current waiting lists as the demand, weakening the link
to the strategic case mix decisions. Finally, some authors (Agnetis
et al., 2014; Makboul et al., 2022; Mazloumian et al., 2022; Moosavi &
Ebrahimnejad, 2020; Spratt & Kozan, 2016) simultaneously construct
the MSS and schedule individual patients from the waiting lists. By
integrating tactical and operational decisions, these authors solve the
operational problem with relaxed MSS constraints. Furthermore, all
these contributions consider a planning horizon of one week, implying
that they study a highly dynamic and flexible system.

In this paper, we consider a two-level planning framework that
covers a planning horizon of some months. We do not consider individ-
ual patients, but rather activity types based on resource requirements.
First, the master schedule is constructed based on the current waiting
lists and the expected future demand for services. Then, we frequently
update the master schedule assignments to adjust to stochastic waiting
lists.

Several authors state that OR scheduling should not be made in iso-
lation and call for the inclusion of up- and downstream processes (Blake
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& Carter, 1997; Cardoen et al., 2010; Hulshof et al., 2012). Although
there exist contributions that consider the ORs in isolation (Agnetis
et al., 2014; Spratt & Kozan, 2016), the vast majority of authors
consider adjacent processes when constructing the MSS. The most com-
mon processes to include are downstream wards, either the Intensive
Care Unit (ICU) or the medical wards. Fügener et al. (2014) build on
the framework developed by Vanberkel et al. (2011) to calculate the
distribution of patients resting in the downstream ward on each day
of the planning cycle. However, they extend the model formulation
to include an intermediate stay in an ICU before being transferred to
the ward. This framework is adopted by other researchers (Fügener,
2015; Schneider et al., 2020). Although the inclusion of downstream
wards is the most common, some contributions, such as Moosavi and
Ebrahimnejad (2020) and Oliveira et al. (2021), also consider that some
patients require a stay in a ward before surgery.

As a direction for future research, Schneider et al. (2020) propose
to integrate the planning of the OC and the OT, and construct an
integrated master schedule. To our knowledge, there exists only one
paper that studies the integrated master scheduling of the OC and
the OT (Bovim et al., 2022), and the current paper is an extension
of this. First, the mathematical formulation proposed herein includes
explicit modeling of waiting lists. Furthermore, the planning framework
developed in this paper allows us to frequently update the schedule to
account for fluctuating waiting lists.

Creating more planning flexibility in decision making demonstrates
great potential (Hulshof et al., 2012). The topic of planning stability
and flexibility is highly relevant in the context of designing an MSS.
Here, stability refers to an MSS where all assignments are identical in
each planning cycle, and thus offers predictability for the staff. Further-
more, a stable schedule allows for a more predictable pattern in terms
of resource consumption. Flexibility concerns the ability to dynamically
adapt the plan to the evolution of the waiting list, allowing for shorter
patient waiting times. Stability and flexibility are conflicting, since the
former pushes towards having a constant MSS, while the latter seeks
variation if necessary. Different organizations may have different capa-
bilities of adjusting to a changing MSS, however, they should strive to
find the right trade-off between stability and flexibility (Agnetis et al.,
2012). Several authors investigate the value of introducing flexibility in
tactical scheduling, both related to surgery scheduling (Agnetis et al.,
2012; Oliveira et al., 2021) and OC scheduling (Laan et al., 2018). They
all find that introducing a very limited degree of flexibility in the master
schedule will improve resource efficiency and patient waiting times.
Furthermore, Agnetis et al. (2012) conclude that small but frequent
changes perform better than large but infrequent changes, and Oliveira
et al. (2021) find that a static, non-cyclic MSS outperforms a cyclic MSS.

In this paper, we study different planning strategies related to flexi-
bility and dynamics. In addition, we propose an agile planning strategy,
related to decreasing the delay between planning and execution of the
schedule. To our knowledge, this has not been studied in the surgery
scheduling literature.

3. Problem formulation

In the following, we present the Long-term Master Scheduling Prob-
lem (LMSP) along with the mathematical model. The complete mathe-
matical model and all the notation are provided in Appendix A.

In the LMSP, we consider a surgical clinic composed of a set of units
U, with two elements in our case: the OC and the OT. The clinic serves
patients from a set of surgical subspecialties (referred to as specialties in
the following) J, and the clinic’s surgeons can perform a set of activity
types, A. The subset A𝐽

𝑗 includes activity types relevant for specialty
𝑗, and the activity types are either surgery types performed in the ORs
in the OT, A𝑂𝑅, or consultation types conducted in the OC, A𝑂𝐶 . The
urgeons are of different types P, and the subsets P𝐶

𝑗 and P𝑅
𝑗 refer to

the surgeon types that are either consultants or residents, respectively,
and that can serve patients of specialty 𝑗. Note that a surgeon type
3 
can serve several specialties. Consultants are more experienced than
the residents, and can perform surgery types alone. Residents however,
can only accompany consultants in surgeries.

A central part of the problem is to create a long-term master
schedule (LMS) that covers both units for a set of days D𝑇 . The LMS
can be separated in a high- and low-level schedule. The high-level
schedule is a cyclic schedule that covers a set of cycle days, D𝐶 , and
the main decision at this level is to assign a number of ORs and OC
rooms to specialties on each cycle day. The low-level schedule is non-
cyclic, covering all days of the planning horizon. Each cycle day 𝑑′

corresponds to a set of days in the planning horizon, D𝑇
𝑑′ . With a

planning cycle of one week and a planning horizon of twelve weeks,
each Monday in the planning horizon corresponds to the first cycle day.
The main decisions at this level are to assign a number of surgeons
and a number of activities of different types to each day. In Fig. 2, we
illustrate an LMS covering two planning cycles for a system with two
OC rooms and two ORs. The upper schedule is the cyclic high-level
schedule, while the lower is the non-cyclic low-level schedule.

3.1. The high-level schedule

The opening hours of a room are referred to as a room-day, and
in this problem, we only consider full-day assignments of rooms to
specialties. For simplicity, we refer to the assignments of room-days
as the assignments of rooms. There are two decision variables that
constitute the high-level schedule of the LMS: the number of rooms
assigned to specialty 𝑗 in unit 𝑢 on cycle day 𝑑, 𝛽𝑢𝑗𝑑 , and the number
of rooms in unit 𝑢 assigned as flexible on cycle day 𝑑, 𝑦𝑢𝑑 . By assigning
a room as flexible, we postpone the assignment of a specialty to this
room until constructing the low-level schedule.

Constraints (1) make sure that we do not assign more rooms on cycle
day 𝑑 in unit 𝑢 than the number of rooms available, 𝑅𝑢, in the unit.

he number of flexible room-days are specified upfront, and constraints
2) ensure that a given number of rooms, 𝐵𝐹

𝑢 , are assigned as flexible
in each unit. Furthermore, to account for the availability of adjacent
resources, such as anesthetists, the total number of rooms that can
be assigned to unit 𝑢 during a cycle is limited by 𝐶𝑁

𝑢 , as imposed by
constraints (3).
∑

𝑗∈J
𝛽𝑢𝑗𝑑 + 𝑦𝑢𝑑 ≤ 𝑅𝑢 𝑢 ∈ U, 𝑑 ∈ D𝐶 (1)

∑

𝑑∈D𝐶

𝑦𝑢𝑑 = 𝐵𝐹
𝑢 𝑢 ∈ U (2)

∑

𝑗∈J

∑

𝑑∈D𝐶

𝛽𝑢𝑗𝑑 +
∑

𝑑∈D𝐶

𝑦𝑢𝑑 ≤ 𝐶𝑁
𝑢 𝑢 ∈ U (3)

The number of ORs assigned to a specialty on day 𝑑 cannot exceed
the number of consultants available for that specialty on that day. The
number of surgeons of type 𝑝 available on cycle day 𝑑 is given by 𝐶𝑝𝑑 ,
while variable 𝜇𝑂𝑅

𝑗𝑑 represents the remaining capacity of consultants of
specialty 𝑗 on day 𝑑 after assigning ORs to that specialty and day. The
remaining capacity can be used to access flexible ORs. Accordingly, a
specialty cannot access more flexible ORs on a day than the difference
between the number of consultants covering the specialty and the
number of ORs assigned to that specialty on that day, which is ensured
by constraints (4). Despite that some surgeon types can cover more than
one specialty, a consultant cannot cover more than one specialty per
day. Therefore, the total remaining capacity of consultants on day 𝑑
equals the total capacity of consultants minus the total number of ORs
assigned to specialties on that day. This is enforced by constraints (5).
We require each flexible OR assigned on cycle day 𝑑 to be flexible in
the sense that more than one specialty should have the capacity to use
it. If, for each specialty 𝑗′, we sum the remaining capacity of all other
specialties, this is an upper bound on the number of ORs that can be
assigned as flexible on a day. If more ORs than the upper bound are
assigned as flexible on day 𝑑, the specialty with the most remaining
capacity (𝜇𝑂𝑅) will be assigned to at least one flexible OR on that day.
𝑗𝑑
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Fig. 2. An LMS covering two planning cycles for a system with two OC rooms and two ORs. Each cell represents a room-day. Top: The high-level cyclic schedule. Bottom: The
ow-level non-cyclic schedule. In this example, the surgery types are named according to the corresponding specialty: HS-1 refers to Hand surgery type 1, PS-3 is Plastic surgery
ype 3, and so on. There are three consultation activity types that can be performed in the OC: Initial consultations (IC), treatment consultations (TC) and follow-up consultations
FU).
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hen, the surplus number of flexible ORs might as well be assigned
o this specialty permanently. By introducing constraints (6), we make
ure that each flexible OR is indeed flexible.
𝑂𝑅
𝑗𝑑 ≤

∑

𝑝∈P𝐶
𝑗

𝐶𝑝𝑑 − 𝛽𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝐶 (4)

∑

𝑗∈J
𝜇𝑂𝑅
𝑗𝑑 =

∑

𝑝∈P𝐶

𝐶𝑝𝑑 −
∑

𝑗∈J
𝛽𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑑 ∈ D𝐶 (5)

∑

𝑗′∈J|𝑗′≠𝑗
𝜇𝑂𝑅
𝑗′𝑑 ≥ 𝑦𝑢𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝐶 (6)

.2. The low-level schedule

There are four main decision variables that constitute the low-level
chedule: the number of surgeons of type 𝑝 assigned to specialty 𝑗 on
ycle day 𝑑, 𝑔𝑝𝑗𝑑 , the number of rooms accessed by specialty 𝑗 in unit
on day 𝑑, 𝜆𝑢𝑗𝑑 , the number of flexible rooms assigned to specialty 𝑗

n unit 𝑢 on day 𝑑, 𝑦𝑢𝑗𝑑 , and the number of activities of type 𝑎 assigned
o specialty 𝑗 on day 𝑑, 𝑥𝑗𝑎𝑑 .

.2.1. Room constraints
Specialty 𝑗 cannot access more rooms in unit 𝑢 on day 𝑑 than the

umber of rooms assigned to that specialty in that unit on the corre-
ponding cycle day, which is ensured by constraints (7). Furthermore,
e cannot access more flexible rooms in unit 𝑢 on day 𝑑 than the
umber of flexible rooms assigned to that unit on the corresponding
ycle day, as stated in constraints (8).

𝑢𝑗𝑑 ≤ 𝛽𝑢𝑗𝑑′ + 𝑦𝑢𝑗𝑑 𝑢 ∈ U, 𝑗 ∈ J, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′ (7)

∑

𝑗∈J
𝑦𝑢𝑗𝑑 ≤ 𝑦𝑢𝑑′ 𝑢 ∈ U, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇

𝑑′ (8)

.2.2. Surgeon constraints
We introduce a set of OR activity blocks B, and each element 𝑏

epresents a combination of a number of different surgery types of a

iven specialty that can fit within the opening hours of the ORs. The

4 
et B𝐽
𝑗 contains the blocks that are relevant to specialty 𝑗. Parameter

𝐵
𝑏 is the number of surgeons required to conduct block 𝑏, and it equals

he number of surgeons required in the surgery type with the highest
emand for surgeons in the block. The reason for modeling blocks of
urgeries is that most combinations of surgery types do not add up to
ne OR-day, resulting in slack in a conventional formulation. The block
ormulation is tighter, and we obtain a stronger bound from solving the
inear relaxation of this compared to the conventional formulation. It
lso handles the packing of activity types, which is a challenge. Unlike
he surgery types, we assume that the durations of all OC activity types
re the same, and that an integer number of each OC activity type adds
p to one OC room-day. As a consequence, a block formulation does not
rovide a tighter formulation for these activity types.

The variable 𝑥𝑂𝑅
𝑏𝑑 represents the number of blocks 𝑏 assigned to day

. While some surgeries only require the presence of one surgeon, sev-
ral surgeries require two surgeons. In contrast to the surgery types, all
C activity types require the presence of only one surgeon. Constraints

9) limit the mix of activity types that can be performed by specialty 𝑗
n the OC and the OT on day 𝑑 by limiting the surgeon requirements
o the number of surgeons assigned for that specialty on that day. A
onsultant is required to perform surgery types, and constraints (10)
imit the number of ORs that can be accessed by specialty 𝑗 on day

to the number of consultants assigned to that specialty on that day.
ccording to constraints (11), we cannot assign more surgeons of type
on day 𝑑 than the number of surgeons available of that type on the

orresponding cycle day. Finally, constraints (12) limit the number of
ays that surgeons of type 𝑝 can cover during the planning horizon to
𝑀𝐴𝑋
𝑝 .

𝑢𝑗𝑑 +
∑

𝑏∈B𝐽
𝑗

𝑁𝐵
𝑏 𝑥

𝑂𝑅
𝑏𝑑 ≤

∑

𝑝∈P𝐶
𝑗 ∪P

𝑅
𝑗

𝑔𝑝𝑗𝑑 𝑢 = 𝑂𝐶, 𝑗 ∈ J, 𝑑 ∈ D𝑇 (9)

∑

𝑏∈B𝐽
𝑗

𝑥𝑂𝑅
𝑏𝑑 ≤

∑

𝑝∈P𝐶
𝑗

𝑔𝑝𝑗𝑑 𝑗 ∈ J, 𝑑 ∈ D𝑇 (10)

∑

𝑔𝑝𝑗𝑑 ≤ 𝐶𝑝𝑑′ 𝑝 ∈ P, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′ (11)
𝑗∈J
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∑

𝑗∈J

∑

𝑑∈D𝑇

𝑔𝑝𝑗𝑑 ≤ 𝐶𝑀𝐴𝑋
𝑝 𝑝 ∈ P (12)

.2.3. Activity constraints
During the care process, the patients undergo a set of different

ctivity types. After receiving an activity, patients must wait for a
umber of days, referred to as the activity delay, before they can
eceive the next activity.

The set D covers all days in the planning horizon and the days
panning the maximum activity delay before the planning horizon.
he set A𝑂𝑇

𝑗 contains all surgery types of specialty 𝑗, and the number
f surgeries of type 𝑎 and specialty 𝑗 included in OR activity block
is given by parameter 𝐴𝐵

𝑏𝑗𝑎. Furthermore, parameter 𝐷𝑂𝐶
𝑗𝑎 gives the

uration of OC activity type 𝑎 of specialty 𝑗, while 𝑇𝑂𝐶 is the number of
ours available in an OC room-day. The variable 𝑥𝑗𝑎𝑑 gives the number
f activities of type 𝑎 and specialty 𝑗 assigned to day 𝑑. Constraints
13) ensure that we do not assign more activity blocks to specialty 𝑗
n day 𝑑 than the number of ORs used by that specialty on that day.
he parameter 𝑋𝑗𝑎𝑑 is the number of activities of type 𝑎 and specialty
planned on day 𝑑, leading up to the planning horizon. As stated in

onstraints (14), we must consider the activities assigned prior to the
urrent planning horizon as these are expected to impose downstream
emand in the current planning horizon. By summing over the assigned
R activity blocks, constraints (15) allow us to calculate the number
f OR activities assigned for each specialty on a day. As stated by
onstraints (16), the duration of OC activities that can be performed
y specialty 𝑗 on day 𝑑 cannot exceed the time staffed in the OC for
hat specialty on that day.
∑

𝑏∈B𝐽
𝑗

𝑥𝑂𝑅
𝑏𝑑 = 𝜆𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝑇 (13)

𝑗𝑎𝑑 = 𝑋𝑗𝑎𝑑 𝑗 ∈ J, 𝑎 ∈ A, 𝑑 ∈ D|𝑑 < 1 (14)

𝑗𝑎𝑑 =
∑

𝑏∈B𝐽
𝑗

𝐴𝐵
𝑏𝑗𝑎𝑥

𝑂𝑅
𝑏𝑑 𝑗 ∈ J, 𝑎 ∈ A𝑂𝑇

𝑗 , 𝑑 ∈ D𝑇 (15)

∑

𝑎∈A𝑂𝐶

𝐷𝑂𝐶
𝑗𝑎 𝑥𝑗𝑎𝑑 ≤ 𝑇𝑂𝐶𝜆𝑢𝑗𝑑 𝑢 = 𝑂𝐶, 𝑗 ∈ J, 𝑑 ∈ D𝑇 (16)

.2.4. Ward constraints
Some surgical interventions require patients to rest in a bed for

ome days following surgery. There is a set of wards W available in the
linic, and the subset W𝐴

𝑎 specifies which wards can serve patients that
eceived surgery of type 𝑎. Similarly, A𝑊

𝑤 is the set of activity types that
can be accommodated by ward 𝑤. The scheduling of surgeries is limited
by the number of beds staffed in ward 𝑤 on each cycle day 𝑑, denoted
𝐴𝑤𝑑 . Our modeling of ward capacity is based on using the expected
length of stay (LOS) after the different types of surgeries. We define
D𝐿𝑂𝑆

𝑗𝑎𝑑 as the set of days on which a patient that is resting at a ward on
day 𝑑 can have undergone a surgery of specialty 𝑗 and surgery type 𝑎.
Furthermore, we use variables 𝑢𝑗𝑎𝑤𝑑 to represent the number of beds
ccupied in ward 𝑤 on day 𝑑 by patients of specialty 𝑗 who received
urgery type 𝑎. In constraints (17), we count the number of patients
f surgery type 𝑎 still present at the wards on day 𝑑. Constraints (18)
nsure that the number of beds occupied in ward 𝑤, on day 𝑑, does not
xceed the number of beds available in that ward on the corresponding
ycle day.
∑

𝑑′∈D𝐿𝑂𝑆
𝑗𝑎𝑑

𝑥𝑗𝑎𝑑′ =
∑

𝑤∈W𝐴
𝑎

𝑢𝑗𝑎𝑤𝑑 𝑗 ∈ J, 𝑎 ∈ A𝑂𝑇 ∩A𝐽
𝑗 , 𝑑 ∈ D𝑇 (17)

∑

𝑗∈J

∑

𝑊 𝐽

𝑢𝑗𝑎𝑤𝑑 ≤ 𝐴𝑤𝑑′ 𝑤 ∈ W, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′ (18)
𝑎∈A𝑤 ∩A𝑗
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.2.5. Patient flow constraints
For specialty 𝑗 and activity type 𝑎, there is an expected number of

xternal patients 𝐿𝑗𝑎 entering the system each day of the planning hori-
on, which drives the demand for downstream activity types covered by
he specialty. While we do not know beforehand what activity types a
atient will require, the parameter 𝐹𝑗𝑎𝑎′ represents the probability that
patient of specialty 𝑗 requires activity type 𝑎′ following activity type

. The parameter 𝐷𝐴
𝑗𝑎 represents the duration of the activity delay of

ctivity type 𝑎 and specialty 𝑗, while the expected number of patients of
pecialty 𝑗 waiting for activity type 𝑎 at the start of the planning horizon
s given by parameter 𝑄0

𝑗𝑎. The variable 𝑞𝑗𝑎𝑑 represents the expected
number of patients of specialty 𝑗 waiting for activity type 𝑎 on day 𝑑.
Constraints (19) are valid for the first day of the planning horizon and
state that the expected number of patients of specialty 𝑗 waiting for
activity type 𝑎, on day 𝑑, is equal to the number of patients waiting
for that activity when entering the day, minus the expected number of
activities of that type served on the day, and plus the expected number
of activities of that type arriving on the day, either from outside the
system or from the upstream activities performed one activity delay
ago. Constraints (20) follow the same logic as constraints (19), but are
applied to all subsequent days of the planning horizon.

𝑞𝑗𝑎𝑑 = 𝑄0
𝑗𝑎 − 𝑥𝑗𝑎𝑑 + 𝐿𝑗𝑎

+
∑

𝑎′∈A𝐽
𝑗

𝐹𝑗𝑎′𝑎𝑥𝑗𝑎′ ,(𝑑−𝐷𝐴
𝑗𝑎)

𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 = 1 (19)

𝑞𝑗𝑎𝑑 = 𝑞𝑗𝑎,(𝑑−1) − 𝑥𝑗𝑎𝑑 + 𝐿𝑗𝑎

+
∑

𝑎′∈A𝐽
𝑗

𝐹𝑗𝑎′𝑎𝑥𝑗𝑎′ ,(𝑑−𝐷𝐴
𝑗𝑎)

𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑇

|𝑑 > 1 (20)

.2.6. Waiting list constraints
When waiting for an activity, patients are put on a waiting list

or the corresponding specialty and activity type, and variable 𝑞𝑗𝑎𝑑
epresents its size. The time between entering a waiting list and the
ime of service is referred to as the waiting time. We do not explicitly
onsider waiting time in our model, but rather use the size of the
aiting lists as a means to control the waiting times. In doing this, we
ssume that the number of patients entering each waiting list equals
he number of patients served from the waiting list over time, that is,
hat the queuing system is stationary.

First, we define a number of threshold waiting times for each list,
eparated by waiting time intervals, K. The first interval, 𝑘 = 1 is
efined from zero days to the first threshold value, while the second
nterval, 𝑘 = 2 is defined from the first to the second threshold value,
nd so on. The threshold values for specialty 𝑗 and activity type 𝑎 are
enoted by 𝑊𝑗𝑎𝑘. For specialty 𝑗, activity type 𝑎, and waiting time
nterval 𝑘, we can calculate the average number of patients on the
aiting list, 𝑄𝑗𝑎𝑘, that corresponds to the threshold waiting time, 𝑊𝑗𝑎𝑘,
iven the average arrival rate to the waiting list 𝜆𝑗𝑎:

𝑄𝑗𝑎𝑘 = 𝑊𝑗𝑎𝑘 ⋅ 𝜆𝑗𝑎 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑘 ∈ K (21)

Eq. (21) is referred to as Little’s formula, and it applies to stationary
systems. We can calculate 𝜆𝑗𝑎 for all waiting lists by summing over the
external and internal flow of patients entering each waiting list. Hence,
for a specified system with given external arrival rates and expected
flows between waiting lists, we can derive the threshold waiting lists for
given threshold waiting times. Since we consider a stationary system,
the waiting times and derived waiting lists (𝑞𝑗𝑎𝑑) represent average

aiting times and waiting lists. Therefore, the waiting time thresholds
hould be set such that the waiting times can be controlled.

The waiting lists are monitored at specific days of the planning
orizon, and the set D𝑄 specifies what days the waiting lists are

measured. The variable 𝑞𝑗𝑎𝑑𝑘 represents the number of patients on the
waiting list for activity type 𝑎 and specialty 𝑗 that is assigned to interval
𝑘 on day 𝑑. According to constraints (22), all patients on the waiting list
for specialty 𝑗 and activity type 𝑎 are assigned to one of the intervals.



T.R. Bovim et al.

h
A

F
p
b

𝑞

3

a
o
d
a

d
w

m

3

l
p
t
R

i
t
w
t
f
p
w
a
t
s
i

l
h
w
a
e

European Journal of Operational Research xxx (xxxx) xxx 
Fig. 3. Overview of a planning horizon of 84 days, consisting of three planning periods (28 days) and twelve planning cycles (7 days). The LMS is generated before the planning
orizon, while the RMS is constructed before each planning period. There is a planning delay that separates the times of planning and execution of the corresponding schedules.
t each time of planning, we must consider both the planning delay and the activity delay leading up to the time of planning.
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urthermore, constraints (23) make sure that we limit the number of
atients on the waiting list for specialty 𝑗 and activity type 𝑎 that can
e assigned to interval 𝑘.

𝑗𝑎𝑑 =
∑

𝑘∈K
𝑞𝑗𝑎𝑑𝑘 𝑗 ∈ J, 𝑎 ∈ A𝐽

𝑗 , 𝑑 ∈ D𝑄 (22)

𝑞𝑗𝑎𝑑𝑘 ≤ 𝑄𝑗𝑎𝑘 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑄, 𝑘 ∈ K (23)

.2.7. Objective function
The objective of the LMSP is to obtain short waiting times for all

ctivity types, and to facilitate a high throughput of patients. In the
bjective function, we minimize the penalty of having patients in the
ifferent intervals in all waiting lists. 𝐶𝑗𝑎𝑘 is the penalty coefficient
ssociated with each patient of specialty 𝑗 waiting for activity type

𝑎 in interval 𝑘. To achieve short waiting times, 𝐶𝑗𝑎𝑘 increases with
increasing intervals, and to push patients through the system, 𝐶𝑗𝑎𝑘
ecreases for downstream activities. The set D𝑄 includes the days over
hich we measure the waiting lists.

in 1
|D𝑄

|

∑

𝑗∈J

∑

𝑎∈A𝐽
𝑗

∑

𝑑∈D𝑄

∑

𝑘∈K
𝐶𝑗𝑎𝑘𝑞𝑗𝑎𝑑𝑘 (24)

.3. The two-level planning procedure

The demand for activity types is stochastic, and so are the waiting
ists. To handle the uncertain demand, we propose a two-level planning
rocedure in which low-level decisions are frequently updated to adjust
o the current waiting lists. We refer to the refined schedule as the
efined Master Schedule (RMS).

Fig. 3 illustrates a planning horizon of 84 days that is divided
nto three planning periods and 12 planning cycles. There are two red
riangles included. The leftmost triangle represents the point in time
hen we construct the LMS for the current planning horizon, while

he rightmost represents the point in time when we construct the LMS
or the next planning horizon. The RMS is constructed once for each
lanning period, and the yellow triangles represent the points in time
hen the RMS is made. As we see from the figure, the LMS and RMS
re both planned some days before they are executed, and we refer to
he period between planning and execution as the planning delay. The
et of days that cover the planning delay is DP, and there are 𝐷𝑃 days
n the planning delay.

At the points of planning, we must calculate the expected waiting
ist for specialty 𝑗 and activity type 𝑎 at the beginning of the planning
orizon (or planning period for the RMS), 𝑄0

𝑗𝑎, based on the current
aiting list, 𝑄𝑃

𝑗𝑎. We do this by considering the current waiting list, the
ctivities already planned for in the planning delay and the expected
xternal and internal arrivals to the waiting list. Since the current
 a

6 
aiting list may be shorter than expected in the previous planning
eriod, there may be less activities performed in the planning delay
han we planned for, as we cannot have negative waiting lists. Eqs. (25)
efine how we calculate 𝑄0

𝑗𝑎:

0
𝑗𝑎 = max{0, 𝑄𝑃

𝑗𝑎 −
∑

𝑑∈D𝑃

𝑋𝑗𝑎𝑑 + 𝐿𝑗𝑎𝐷
𝑃

+
∑

𝑎′∈A𝐽
𝑗

∑

𝑑∈D𝑃

𝐹𝑗𝑎′𝑎𝑋𝑗𝑎′ ,(𝑑−𝐷𝐴
𝑗𝑎)
} 𝑗 ∈ J, 𝑎 ∈ A𝐽

𝑗 (25)

We specify three planning strategies, based on the planning frame-
ork. In the Flexible strategy we allow for the assignment of flexible

ooms in the cyclic high-level schedule. Then, in the Dynamic strategy,
e decrease the length of the planning periods, allowing us to construct

he RMS more frequently. Finally, by implementing the Agile planning
trategy, we decrease the planning delay, which allows us to construct
chedules with more precise information about the waiting lists.

When generating the Refined Master Schedule (RMS) in the two-
evel planning procedure, we solve the LMSP with the variables 𝛽𝑢𝑗𝑑 , 𝑦𝑢𝑑
nd 𝜇𝑂𝑅

𝑗𝑑 fixed. We refer to the LMSP with fixed high-level variables as
he Refined Master Scheduling Problem (RMSP).

. Evaluating the planning framework

In this section, we describe how we evaluate the two-level planning
ramework in a real-life setting. Then, we present a heuristic solution
pproach for solving the RMSP, allowing us to speed up the evaluation
rocedure.

.1. The evaluation procedure

Before presenting the evaluation procedure, we briefly describe a
iscrete-event simulation (DES) model, which is an essential part of the
rocedure. The DES model is developed to represent the operational
cheduling of patients from the waiting lists. The entities of the model
re the patients, and the state is the number of patients on each waiting
ist. The state is updated with fixed time increments of one day. In
ach time increment, new referrals are generated, patients are added
o the waiting lists (if the activity delay has passed) and removed
ccording to the activities assigned (the variables 𝑥𝑗𝑎𝑑 in the RMS)
sing a FIFO scheduling policy. We assume that patient referrals arrive
ndependently of each other, and model the daily arrivals to each
pecialty as Poisson processes. Upon arrival, we sample the activities
hat each patient will require, but this information is only used to
ransfer patients to the waiting lists in a given sequence. We assume
hat all patients who are scheduled will be served, and if no patients

re present to be scheduled, the capacity is lost.
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Fig. 4. The procedure for evaluating the planning framework.

The procedure for evaluating the planning framework is illustrated
in Fig. 4. The planning framework is evaluated for a given planning
horizon and a given number of planning periods, and we have an
arbitrary LMS that covers the planning horizon. The LMS does not have
to be generated by the LMSP, and it is sufficient to only have the high-
level variables available. The high-level variables and a set of initial
conditions are fed to the RMSP, generating an RMS for the upcoming
planning period. Then, the same initial conditions and the activity type
assignments of the RMS are fed to the DES model, which evaluates the
performance of the RMS and returns an updated set of initial conditions
for the next planning period. The iterations between the RMSP and the
DES model continue until all planning periods are simulated and the
procedure terminates.

At the time of planning, we must calculate the expected waiting
lists for the upcoming planning period in accordance with Eqs. (25),
and therefore we require two sets of initial conditions. First, we require
the number of patients on each waiting list at the time of planning, 𝑄𝑃

𝑗𝑎.
This is an external input when considering the first planning period and
is generated by the DES model for the subsequent planning periods. The
second set of initial conditions is a predefined schedule of activities for
the days covering the maximum activity delay leading up to the time
of planning and the planning delay. This set is represented by the 𝑋𝑗𝑎𝑑
parameters and is an external input when considering the first planning
period. For later planning periods, it is obtained from the DES model
and the previous RMS.

To evaluate the system performance obtained with the LMS, we
gather output data from the DES model. This allows us to replicate the
objective function value as defined in the LMSP, but we can also extract
waiting time distributions for all waiting lists.

4.2. Rolling horizon heuristic

To obtain a precise evaluation of the planning framework, the
evaluation procedure must be run multiple times for a given LMS. In
each run, the RMSP is solved multiple times, and to obtain an efficient
evaluation, we require a method that can find high-quality solutions to
the RMSP fast.

To speed up the RMSP, we propose a rolling-horizon heuristic
(RHH). Fig. 5 illustrates the RHH for solving the RMSP with a planning
horizon of 12 weeks. The procedure iterates through each week of
the planning horizon and solves the RMSP once in each iteration.
In each iteration, the RMSP considers the remaining weeks of the
planning horizon, including the current week, which is indicated in
blue. The low-level integer variables for all but the current week are
relaxed, as illustrated in green. Before iterating to the next week, we

fix all variables for the current week, indicated in gray. The procedure
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Table 1
The three cases included in the computational study. The number of room-days
available in the planning cycle varies to provide 20 instances for each case.

Case # of rooms # of room-days

𝑅𝑂𝐶 𝑅𝑂𝑇 𝐶𝑁
𝑂𝐶 𝐶𝑁

𝑂𝑇 |J| |A|

Small 4 3 [14–17] [4–8] 3 10
Medium 4 4 [17–20] [7–11] 3 15
Large 8 5 [34–37] [16–20] 7 22

terminates when we have fixed the variables for all weeks in the
planning horizon. Note that even if we are able to solve each week in
the RHH to optimality, we cannot guarantee that we obtain the optimal
solution to the RMSP.

5. Computational study

In this section, we first perform a technical study of the optimization
model. Then, we apply the DES model to validate the optimization
model results, before we evaluate the performance of the two-level
planning framework, including the flexible, dynamic and agile planning
strategies. Throughout this section, we consider a planning horizon of
84 days (12 weeks), a one-week planning cycle, and, except for the
agile planning strategy, a planning delay of 28 days. All rooms in the
OC and the OT are considered homogeneous, which means that they
can accommodate all relevant activity types. Furthermore, we include
a set of heterogeneous wards, where each ward can host patients form
a subset of the surgery types. We consider three OC activity types for
each specialty, including initial (IC), treatment (TC) and follow-up (FU)
consultations, and each new referral requires one IC. In contrast to
the OC activity types, each surgery type is subordinate to a specific
specialty and can only be performed by surgeons that master that
specialty. Furthermore, the waiting lists at the time of planning are
equal to the target waiting lists, and the waiting lists are measured at
the end of each week. The input data are based on real data from the
Orthopaedic Clinic at St. Olav’s Hospital.

5.1. Technical study of the optimization model

To evaluate the performance of the optimization model, we run it
across three cases and 20 instances for each case, presented in Table 1.
We study a setting of decentralized surgical departments, and the cases
represent the rooms assigned to a specific surgical specialty, in this case
the orthopaedic specialty. In the Small case, we have access to four and
three rooms in the OC and the OT, respectively. Furthermore, there
are three specialties and ten activity types. In the Medium case, there
are four rooms available in both units, and there are 15 activity types
spread across three specialties. In the Large case, there are eight rooms
available in the OC, and five in the OT. Furthermore, there are seven
specialties and 22 activity types. The instances within a case are equal,
except for the number of room-days available through the planning
cycle. To label an instance, we refer to the case, the number of OC-days
and the number of OR-days. As an example, the instance L_34_18 refers
to the Large case with 34 OC room-days and 18 OR-days. The input data
applied in the instances is based on data from the Orthopaedic Clinic.

In the following, we first evaluate the performance of the RHH for
solving the RMSP. Then, we introduce a two-level procedure for solving
the LMSP, and we evaluate the performance of this procedure.

5.1.1. Performance of the RHH
In the following analysis, we solve the RMSP for the entire planning

horizon and evaluate the RHH against solving the full RMSP. For
each instance, we run the LMSP for three hours and use the solution
obtained as the starting point for solving the RMSP. When solving
the full RMSP, we let the model run for one minute, five minutes

and one hour. When running the RHH, we terminate each iteration



T.R. Bovim et al.

t
o

European Journal of Operational Research xxx (xxxx) xxx 
Fig. 5. The RHH for solving the RMSP. We iterate over all weeks in the planning horizon, solving the RMSP for the current (blue) and remaining (green) weeks. In each iteration,
he low-level variables are relaxed for all but the current week, and we fix the low-level variables for the current week before going to the next iteration (gray). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Comparing the RHH with solving the full RMSP. Each bar represents the
distribution of gaps between the primal solutions found when solving the RMSP at
the current running time and the lower bound obtained from solving the RMSP for
one hour.

after 30 s for the first five iterations and after 10 s for the remaining
seven iterations. However, many iterations are solved to optimality
before reaching termination. For the Small case instances, the iterations
are solved quickly to optimality, and the procedure terminates after
seconds. For the Large case instances, some iterations are solved quickly
to optimality, and most of the runs terminate within two minutes. In
Fig. 6, we display the distribution of gaps across the 20 instances for
all three cases and four running times (one min, five min, one hour
and RHH). To have a common benchmark for each case and instance,
we use the lower bound obtained from solving the full RMSP for one
hour, and we calculate the gaps between the lower bound and the
primal solution obtained at the current running time. For the Large and
Medium cases, the RHH performs well compared to solving the RMSP
for one or five minutes. For the Medium case, it even performs well
compared to the one hour solution. For the Small case, solving the full
RMSP provides narrow gaps fast, leaving little use of the RHH. Based on
the findings, we use the RHH when solving the RMSP in all subsequent
analyses.

5.1.2. A two-level procedure for solving the LMSP
When solving the LMSP, we exploit the two-level structure of the

model and apply a two-level solution procedure. First, we solve the
full LMSP. For real-life instances, we cannot solve this problem to
optimality, and we terminate the search after a given time. Then, we
fix the high-level variables obtained after solving the full LMSP, and
we use the RHH to reoptimize the remaining LMSP.

Fig. 7 illustrates, for the L_34_18 instance, the objective values
obtained for the LMSP with different times spent in the first level. The
red line represents the objective values from solving the full LMSP in
the first level, while the blue line is the objective values obtained after

reoptimizing the LMSP with the RHH in the second level. When running
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Fig. 7. Objective values obtained from solving the LMSP with the two-level procedure
for the L_34_18 instance. The time spent in the first level is increased along the 𝑥-axis.
Note that the 𝑥-axis is non-linear.

the RHH, we apply the same time limits as in Section 5.1.1. The purple
line is the lower bound obtained in the first level. Not surprisingly, the
objective value from solving the full LMSP decreases, while the lower
bound increases as we extend the time spent in the first level. However,
this monotonous behavior is not reflected after reoptimizing the LMSP
in the second level. As a consequence, solutions found early in the
search may prove to be better than solutions found later. Furthermore,
we seem to obtain good solutions fast, while tightening the LP bound
is tedious.

In Fig. 8, we display the distribution of gaps across the 20 instances
for all three cases and a set of running times applied when solving
the full LMSP. The primal solutions are obtained from reoptimizing
the LMSP with the RHH in the second level for each run. To have a
common benchmark for each case and instance, we use the lower bound
obtained from solving the full LMSP for three hours (Small case) and six
hours (Medium and Large cases), and we calculate the gaps between the
lower bound and the primal solution obtained at the current running
time. In accordance with the results displayed in Fig. 7, we obtain good
primal solutions fast, especially for the Small and Medium cases, while
for the Large case there is a gain in increasing the running time. For
the remaining analysis, we run the LMSP for one hour.

5.2. Validating the optimization model and the objective function

In this section, we validate that LMSs that correspond to good
objective values in the optimization model also obtain good objective
values when they are simulated in the evaluation procedure. Then, we
investigate how well the objective function represents the waiting times
and throughput of patients. Finally, we evaluate all 20 Medium case
instances obtained from the optimization model results to analyze how

the room-day capacities impact on the performance of the system.
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Fig. 8. Comparing the optimality gaps for the LMSP, obtained with the two-level
olution procedure. Each box represents a given time by which we allow the first
evel to run before it is terminated.

Fig. 9. The accumulated average and 95% confidence interval of the simulated
objective value for the M_20_8 instance.

To obtain a precise evaluation of an LMS, the evaluation procedure
must be run multiple times. There is a trade-off between the running
time required to evaluate an LMS and the precision of the evaluation.
By testing the evaluation procedure on multiple instances, we conclude
that 200 runs is sufficient. In Fig. 9, we illustrate the accumulated av-
erage of the simulated objective value and the 95% confidence interval
as we increase the number of simulations for the M_20_8-instance.

To verify the fit between the optimization and simulation model
results, we evaluate whether the rank between a set of solutions is
consistent in the two models. First, we run the M_20_8 instance with the
LMSP and register every 10th solution obtained, with its corresponding
objective value. Then, for each solution, we evaluate the corresponding
LMS with the evaluation framework and obtain a simulated objective
value. In Fig. 10(a), we compare the objective values obtained from
optimization and simulation. It is evident that the rank is consistent
in the two models, but the values are higher in the simulated results.
The reason for this is the stochastic processes introduced in the simula-
tion model, causing the waiting lists to randomly fluctuate. For many
waiting lists, this means repeatedly crossing the threshold levels, which
shifts the penalty coefficients in the objective function.

Next, we investigate how well the objective function value reflects
patient waiting times and throughput obtained from the simulation
model. In Fig. 10(b), we display the share of patients that wait for
more than 21 days to receive a consultation or surgery (corresponding
to the upper threshold) and the number of patients that have received
all requested activities. It is clear from the results that the objective
function well represents a combination of both measures. Based on

these analysis, we argue that the results from the optimization model
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can be used to predict the real-life performance of the LMS and that
the objective function is a good measure for the overall performance of
the system.

5.3. Evaluating the planning framework

In this section, we study the Medium case to demonstrate how the
proposed planning framework can be used in a real-life setting. First,
we run the evaluation procedure for all 20 instances, presenting how
this evaluation can be used to provide strategic decision support. Then,
we proceed with the five instances with 20 OC room-days, and use
these as the base cases for evaluating the performance of the different
planning strategies. As our baseline strategy, we optimize with no
flexible rooms, planning periods of 28 days, and a planning delay of
28 days. The baseline strategy serves as a basis for comparison, and is
marked with a thick black line in Figs. 12 and 14.

Strategic decision support can be obtained from evaluating the
planning framework over a set of different instances. As an example,
a relevant question can be whether to access one more OC room-day
or one additional OR-day to obtain the best performance. In Fig. 11,
we display the simulated objective values obtained from the evaluation
procedure, across all 20 instances for the Medium case. In general,
the objective values decrease if we increase the room-day capacities,
as expected. However, given an instance, it is not indifferent whether
we should access one more OC room-day or one additional OR-day
to obtain the best performance. In this situation, such an analysis can
prove to be valuable.

To evaluate the flexible strategy, we assign one or two flexible
rooms to each of the units when constructing the LMS. This lets us
postpone the assignment of specialties to these rooms to the points in
time when we construct the RMS. Flexibility allows for more freedom
when adjusting the resource assignments to the current waiting lists.
The results are displayed in Fig. 12(a), and we see that adding flexibility
has a value. However, there is a diminishing marginal value of adding
flexibility, and adding a limited number of flexible rooms is sufficient.
Note also that the value of flexibility is not constant across the different
resource instances.

In the dynamic strategy, we decrease the planning period, allowing
us to increase the frequency with which we construct the RMS. Here, we
evaluate the effects of decreasing the planning periods to 14 and seven
days. The results of dynamic planning are illustrated in Fig. 12(b). We
see that decreasing the planning period yields better results; however,
this is not the case when going from 14 to seven days. The reason
for this is that our modeling approach tends to be myopic for short
planning periods.

The agile planning strategy refers to decreasing the planning de-
lay. A more agile system will have more accurate information when
planning the upcoming planning period. To evaluate the agile planning
strategy, we apply a 14- and zero-day planning delay. The results of an
agile planning strategy are shown in Fig. 12(c). We see that reducing
the planning delay yields increased value across all instances. Having
a zero-day planning delay is unrealistic, but we choose to include it to
show the potential of agility.

The strategies described above can be combined to obtain additive,
or even amplified effects. In Fig. 13, we display the average objective
function values across the five base instances for different values of
dynamics, agility and flexibility. The red, yellow and green surfaces
represent zero, one and two flexible rooms in each unit, respectively.
The value of decreasing the planning delay (imposing agility) is more
pronounced for a highly dynamic strategy than for a completely static
strategy (84-day planning period). Likewise, the value of increasing
dynamics is higher for an agile than for a non-agile planning strategy.
These results indicate amplified effects of dynamics and agility. Fur-
thermore, the value of going from zero to one flexible room in each
unit adds value across all combinations of planning delays and planning

periods. However, increasing from one to two flexible rooms does not
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have any additional effects in any of the combinations. In Fig. 14, we
illustrate a combined planning strategy with one flexible room in both
units, two-week planning periods and a two-week planning delay. It is
evident that combining the planning strategies yields an additive value
for the system. In fact, the combined strategy performs better with 9
OR-days than the base strategy with 11 OR-days.

6. Conclusion

In this paper, we develop a framework for integrated resource
planning in surgical clinics. The framework considers the integrated
planning of the OC and the OT, and is composed of an optimization
model for solving the LMSP, and a two-level planning procedure to
handle stochastic waiting lists. Furthermore, we develop a simulation-
based evaluation procedure and use this to evaluate three planning
strategies that can be adopted in the planning framework.

Compared to a baseline strategy, the adoption of any of the three
planning strategies improves the outcomes of the system. By imple-
menting a combination of agility and dynamics, we obtain additive
effects, and the strategies amplify each other. Furthermore, impos-
ing a little flexibility improves the outcomes of the system in all
combinations of agility and dynamics.

While the mathematical model in this paper is deterministic, the
planning framework is designed to handle fluctuating waiting lists by
frequently updating the RMS. When simulating, we only introduce
stochastic arrivals and patient requirements, while keeping the activity
durations and patient LOS deterministic. By introducing more sources
of uncertainty we believe that the waiting lists will fluctuate more,
strengthening the value of flexibility, dynamics and agility.

The planning strategies proposed are based on flexible and dynamic
planning procedures and challenge conventional ways of planning in
hospitals. We believe that the agile planning strategy is the most
challenging strategy. Our impression is that both flexible and dynamic
strategies can be adopted if the staff is noticed about the adjustments
some time before they are executed. However, the value of such ad-
justments has less impact in the case of an excessive planning delay.
Therefore, we propose that hospital clinics establish procedures that
enable agility.

There is clearly a trade-off between complexity and efficiency when
it comes to planning. A more sophisticated procedure can yield higher
performance, but the adoption threshold may be too high. Studying
this trade-off can prove valuable for hospitals that want to improve
their planning procedures and is a topic for future research. Adopting
a short planning delay has practical issues. Interestingly, the planning
structure with a delay between planning and execution is well suited
for stochastic programming. Can stochastic programming be used to
obtain efficient schedules with longer planning delays? Furthermore,
an interesting avenue for future research is to test the framework under
10 
different conditions to identify how the value of the planning strate-
gies depends on the system characteristics. Finally, the development
of efficient solution procedures for the LMSP is relevant for future
research. The model formulation is generic and can be applied to study
larger cases where the rooms are not yet assigned to surgical specialties,
which is the case for a centralized surgical clinic. However, our analyses
show that scalability is an issue when striving for optimal solutions.
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ppendix A. The notation related to the LMSP

The notation used in the LMSP is presented in Tables A.2 to A.5.

.1. The mathematical model

𝑖𝑛 1
|D𝑄

|

∑

𝑗∈J

∑

𝑎∈A𝐽
𝑗

∑

𝑑∈D𝑄

∑

𝑘∈K
𝐶𝑗𝑎𝑘𝑞𝑗𝑎𝑑𝑘 (A.1)

∑

𝑗∈J
𝛽𝑢𝑗𝑑 + 𝑦𝑢𝑑 ≤ 𝑅𝑢 𝑢 ∈ U, 𝑑 ∈ D𝐶 (A.2)

∑

𝑑∈D𝐶

𝑦𝑢𝑑 = 𝐵𝐹
𝑢 𝑢 ∈ U (A.3)

∑

𝑗∈J

∑

𝑑∈D𝐶

𝛽𝑢𝑗𝑑 +
∑

𝑑∈D𝐶

𝑦𝑢𝑑 ≤ 𝐶𝑁
𝑢 𝑢 ∈ U (A.4)

𝑂𝑅
𝑗𝑑 ≤

∑

𝑝∈P𝐶
𝑗

𝐶𝑝𝑑 − 𝛽𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.5)

∑

𝜇𝑂𝑅
𝑗𝑑 =

∑

𝐶𝑝𝑑 −
∑

𝛽𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑑 ∈ D𝐶 (A.6)

𝑗∈J 𝑝∈P𝐶 𝑗∈J
Fig. 10. Validating the optimization model and the objective function.
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Table A.2
Sets.
Symbol Description

D Days covering the maximum activity delay and the
planning horizon

𝑑 ∈ D

D𝑇 Days in the planning horizon 𝑑 ∈ D𝑇 ⊆ D

D𝐶 Days in a planning cycle 𝑑 ∈ D𝐶

D𝑃 Days in the planning delay 𝑑 ∈ D𝑃

D𝑇
𝑑′ Days in the planning horizon that correspond to

cycle day 𝑑′
𝑑 ∈ D𝑇

|𝑑 mod |𝐷𝐶
| = 𝑑′

D𝑄 Days when we measure the waiting lists 𝑑 ∈ D𝑄 ⊆ D𝑇

D𝐿𝑂𝑆
𝑗𝑎𝑑 Days that a patient who stays in a ward on day 𝑑

can have had a surgery of specialty 𝑗 and surgery
type 𝑎

𝑑′ ∈ D𝐿𝑂𝑆
𝑗𝑎𝑑

U Units 𝑢 ∈ U

J Surgical specialties 𝑗 ∈ J

P Surgeon types 𝑝 ∈ P

W Wards 𝑤 ∈ W

B OR activity blocks 𝑏 ∈ B

A Activity types 𝑎 ∈ A

A𝑂𝐶 OC activity types 𝑎 ∈ A𝑂𝐶 ⊆ A

A𝑂𝑇 Surgery activity types 𝑎 ∈ A𝑂𝑇 ⊆ A

K Waiting list intervals 𝑘 ∈ K

P𝐶 Consultant types 𝑝 ∈ P𝐶 ⊆ P

P𝐶
𝑗 Consultant types that can cover specialty j 𝑝 ∈ P𝐶

𝑗 ⊆ P

P𝑅
𝑗 Resident types that can cover specialty j 𝑝 ∈ P𝑅

𝑗 ⊆ P

W𝐴
𝑎 Wards that can house patients who received

activity type 𝑎
𝑤 ∈ W𝐴

𝑎 ⊆ W

B𝐽
𝑗 OR activity blocks available for specialty 𝑗 𝑏 ∈ B𝐽

𝑗 ⊆ B

A𝐽
𝑗 Activity types that can be handled by specialty j 𝑎 ∈ A𝐽

𝑗 ⊆ A

A𝑂𝑇
𝑗 Surgery activity types that can be handled by

specialty j
𝑎 ∈ A𝑂𝑇

𝑗 ⊆ A𝐽
𝑗

A𝑊
𝑤 Surgery activity types that can rest in ward 𝑤

following surgery
𝑎 ∈ A𝑊

𝑤 ⊆ A𝑂𝑇
Table A.3
Parameters.
Symbol Description

𝑅𝑢 Number of rooms available in unit u
𝑉𝑢𝑗𝑑 Number of rooms that can be accessed in unit 𝑢 by specialty 𝑗 on cycle day 𝑑
𝐶𝑁
𝑢 Number of room-days that can be accessed in unit u during the planning cycle

𝐵𝐹
𝑢 Number of room-days that must be assigned as flexible in unit u through the

planning cycle
𝑇 𝑂𝐶 Time available in an OC room-day
𝐶𝑝𝑑 Number of surgeons available of surgeon type p on cycle day d
𝐶𝑀𝐴𝑋
𝑝 Maximum number of days available for surgeon type 𝑝 during the planning

horizon
𝑁𝐵

𝑏 Number of surgeons that must be present to assign OR activity block 𝑏
𝐴𝑤𝑑 Number of staffed beds available in ward 𝑤 on day 𝑑 in the planning cycle
𝑋𝑗𝑎𝑑 Number of activities of type 𝑎 and specialty 𝑗 (expected to be) performed on day

𝑑, before the planning horizon
𝐿𝑗𝑎 Expected external arrival rate of activity type 𝑎 and specialty 𝑗
𝐹𝑗𝑎𝑎′ Fraction of activity of type a that yields a downstream demand for activity of

type a’ for specialty j
𝐷𝑂𝐶

𝑗𝑎 Duration of OC activity type a, specialty j
𝐴𝐵

𝑏𝑗𝑎 Number of patients from specialty 𝑗 and activity type 𝑎 that are assigned to OR
activity block 𝑏

𝐷𝑃 Number of days in the planning delay
𝐷𝐴

𝑗𝑎 Number of days in the activity delay after activity type 𝑎, specialty 𝑗
𝑄0

𝑗𝑎 Number of patients on the waiting lists for specialty 𝑗 and activity type 𝑎 when
entering the planning horizon

𝑄𝑗𝑎𝑘 Maximum number of patients that can be assigned to the waiting list of specialty
𝑗, activity type 𝑎 and waiting list interval 𝑘

𝑊𝑗𝑎𝑘 Threshold waiting time of specialty 𝑗, activity type 𝑎 and waiting list interval 𝑘
𝜆𝑗𝑎 Average arrival rate to waiting list of specialty 𝑗 and activity type 𝑎
𝐶𝑗𝑎𝑘 Penalty coefficient associated with the waiting list of specialty 𝑗, activity type 𝑎

and waiting list interval 𝑘
Table A.4
The high-level variables.
Symbol Description

𝛽𝑢𝑗𝑑 Number of rooms assigned to unit u and specialty j on cycle day d
𝑦𝑢𝑑 Number of rooms in unit u assigned as flexible on cycle day d
𝜇𝑂𝑅
𝑗𝑑 Maximum number of ORs that can be assigned as flexible for specialty 𝑗 on cycle day 𝑑
11 
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Table A.5
The low-level variables.
Symbol Description

𝜆𝑢𝑗𝑑 Number of rooms in unit u used by specialty j on day d
𝑦𝑢𝑗𝑑 Number of flexible rooms in unit u assigned for specialty 𝑗 on day d
𝑔𝑝𝑗𝑑 Number of surgeons from surgeon type p assigned to specialty 𝑗 on day d
𝑥𝑂𝑅
𝑏𝑑 Number of OR blocks of type 𝑏 assigned to day 𝑑

𝑥𝑗𝑎𝑑 Number of activities of type 𝑎 assigned to specialty 𝑗 on day 𝑑
𝑢𝑗𝑎𝑤𝑑 Number of beds occupied in ward 𝑤 on day 𝑑, by patients of specialty 𝑗 who received surgery type 𝑎
𝑞𝑗𝑎𝑑 Number of patients on the waiting list of specialty 𝑗 and activity type 𝑎 on day 𝑑
𝑞𝑗𝑎𝑑𝑘 Number of patients on the waiting list of specialty 𝑗 and activity type 𝑎 on day 𝑑, within interval 𝑘
𝑄

m
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i
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𝑉

𝑉

𝛽

𝑦

𝜇

𝜆
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Fig. 11. The simulated objective values across all instances for the Medium case.

Table B.6
The main sets.

Set Symbol # of elements

Small Medium Large

Days in planning horizon D𝑇 84 84 84
Days in planning cycle D𝐶 7 7 7
Days when we measure the waiting lists D𝑄 12 12 12
Surgical specialties J 3 3 7
OC activity types A𝑂𝐶 3 3 3
Surgery activity types A𝑂𝑇 7 12 19
Wards W 3 3 4
Surgeon types P 6 6 14
Waiting list intervals K 3 3 3

∑

𝑗′∈J|𝑗′≠𝑗
𝜇𝑂𝑅
𝑗′𝑑 ≥ 𝑦𝑢𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.7)

𝜆𝑢𝑗𝑑 ≤ 𝛽𝑢𝑗𝑑′ + 𝑦𝑢𝑗𝑑 𝑢 ∈ U, 𝑗 ∈ J, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′

(A.8)
∑

𝑗∈J
𝑦𝑢𝑗𝑑 ≤ 𝑦𝑢𝑑′ 𝑢 ∈ U, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇

𝑑′ (A.9)

𝜆𝑢𝑗𝑑 +
∑

𝑏∈B𝐽
𝑗

𝑁𝐵
𝑏 𝑥

𝑂𝑅
𝑏𝑑 ≤

∑

𝑝∈P𝐶
𝑗 ∪P

𝑅
𝑗

𝑔𝑝𝑗𝑑 𝑢 = 𝑂𝐶, 𝑗 ∈ J, 𝑑 ∈ D𝑇 (A.10)

∑

𝑏∈B𝐽
𝑗

𝑥𝑂𝑅
𝑏𝑑 ≤

∑

𝑝∈P𝐶
𝑗

𝑔𝑝𝑗𝑑 𝑗 ∈ J, 𝑑 ∈ D𝑇 (A.11)

∑

𝑗∈J
𝑔𝑝𝑗𝑑 ≤ 𝐶𝑝𝑑′ 𝑝 ∈ P, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇

𝑑′ (A.12)

∑

𝑗∈J

∑

𝑑∈D𝑇

𝑔𝑝𝑗𝑑 ≤ 𝐶𝑀𝐴𝑋
𝑝 𝑝 ∈ P (A.13)

∑

𝑏∈B𝐽
𝑗

𝑥𝑂𝑅
𝑏𝑑 = 𝜆𝑢𝑗𝑑 𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝑇 (A.14)
12 
𝑥𝑗𝑎𝑑 = 𝑋𝑗𝑎𝑑 𝑗 ∈ J, 𝑎 ∈ A, 𝑑 ∈ D|𝑑 < 1 (A.15)

𝑥𝑗𝑎𝑑 =
∑

𝑏∈B𝐽
𝑗

𝐴𝐵
𝑏𝑗𝑎𝑥

𝑂𝑅
𝑏𝑑 𝑗 ∈ J, 𝑎 ∈ A𝑂𝑇

𝑗 , 𝑑 ∈ D𝑇 (A.16)

∑

𝑎∈A𝑂𝐶

𝐷𝑂𝐶
𝑗𝑎 𝑥𝑗𝑎𝑑 ≤ 𝑇𝑂𝐶𝜆𝑢𝑗𝑑 𝑢 = 𝑂𝐶, 𝑗 ∈ J, 𝑑 ∈ D𝑇 (A.17)

∑

𝑑′∈D𝐿𝑂𝑆
𝑗𝑎𝑑

𝑥𝑗𝑎𝑑′ =
∑

𝑤∈W𝐴
𝑎

𝑢𝑗𝑎𝑤𝑑 𝑗 ∈ J, 𝑎 ∈ A𝑂𝑇 ∩A𝐽
𝑗 , 𝑑 ∈ D𝑇 (A.18)

∑

𝑗∈J

∑

𝑎∈A𝑊
𝑤 ∩A𝐽

𝑗

𝑢𝑗𝑎𝑤𝑑 ≤ 𝐴𝑤𝑑′ 𝑤 ∈ W, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′ (A.19)

𝑞𝑗𝑎𝑑 ≥ 𝑄0
𝑗𝑎 − 𝑥𝑗𝑎𝑑 + 𝐿𝑗𝑎

+
∑

𝑎′∈A𝐽
𝑗

𝐹𝑗𝑎′𝑎𝑥𝑗𝑎′ ,(𝑑−𝐷𝐴
𝑗𝑎)

𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 = 1 (A.20)

𝑞𝑗𝑎𝑑 ≥ 𝑞𝑗𝑎,(𝑑−1) − 𝑥𝑗𝑎𝑑 + 𝐿𝑗𝑎

+
∑

𝑎′∈A𝐽
𝑗

𝐹𝑗𝑎′𝑎𝑥𝑗𝑎′ ,(𝑑−𝐷𝐴
𝑗𝑎)

𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑇

|𝑑 > 1 (A.21)

𝑗𝑎𝑘 = 𝑊𝑗𝑎𝑘 ⋅ 𝜆𝑗𝑎 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑘 ∈ K (A.22)

𝑞𝑗𝑎𝑑 =
∑

𝑘∈K
𝑞𝑗𝑎𝑑𝑘 𝑗 ∈ J, 𝑎 ∈ A𝐽

𝑗 , 𝑑 ∈ D𝑄 (A.23)

𝑞𝑗𝑎𝑑𝑘 ≤ 𝑄𝑗𝑎𝑘 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑄, 𝑘 ∈ K (A.24)

Parameter 𝑉𝑢𝑗𝑑 represents the maximum number of rooms that can
be assigned to specialty 𝑗 in unit 𝑢 on cycle day 𝑑, and it is an
upper bound for the variables 𝛽𝑢𝑗𝑑 , 𝜆𝑢𝑗𝑑 and 𝑥𝑂𝑅

𝑏𝑑 . For the OC, it is the
inimum of the number of surgeons that can cover specialty 𝑗 available

n cycle day 𝑑, and the number of OC rooms available, 𝑅𝑂𝐶 . For the OT,
t is the minimum of the number of consultants that can cover specialty
available on cycle day 𝑑, and the number of ORs available, 𝑅𝑂𝑇 .

𝑢𝑗𝑑 = min

⎧

⎪

⎨

⎪

⎩

∑

𝑝∈P𝐶
𝑗 ∪P

𝑅
𝑗

𝐶𝑝𝑑 , 𝑅𝑢

⎫

⎪

⎬

⎪

⎭

𝑢 = 𝑂𝐶, 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.25)

𝑢𝑗𝑑 = min

⎧

⎪

⎨

⎪

⎩

∑

𝑝∈P𝐶
𝑗

𝐶𝑝𝑑 , 𝑅𝑢

⎫

⎪

⎬

⎪

⎭

𝑢 = 𝑂𝑇 , 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.26)

𝑢𝑗𝑑 ∈ {0, 1,… , 𝑉𝑢𝑗𝑑} 𝑢 ∈ U, 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.27)

𝑢𝑑 ∈ {0, 1, 2,…} 𝑢 ∈ U, 𝑑 ∈ D𝐶 (A.28)

𝑂𝑅
𝑗𝑑 ≥ 0 𝑗 ∈ J, 𝑑 ∈ D𝐶 (A.29)

𝑢𝑗𝑑 ∈ {0, 1,… , 𝑉𝑢𝑗𝑑′} 𝑢 ∈ U, 𝑗 ∈ J, 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇
𝑑′ (A.30)

𝑢𝑗𝑑 ∈ {0, 1, 2,…} 𝑢 ∈ U, 𝑗 ∈ J, 𝑑 ∈ D𝑇 (A.31)

𝑔𝑝𝑗𝑑 ∈ {0, 1,… , 𝐶𝑝𝑑} 𝑗 ∈ J, 𝑝 ∈ P𝐶
𝑗 ∪ P𝑅

𝑗 , 𝑑 ∈ D𝑇 (A.32)

𝑥𝑂𝑅 ∈ {0, 1,… , 𝑉 } 𝑗 ∈ J, 𝑏 ∈ B , 𝑑′ ∈ D𝐶 , 𝑑 ∈ D𝑇 (A.33)
𝑏𝑑 𝑂𝑇 ,𝑗𝑑′ 𝑗 𝑑′
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Fig. 12. Evaluating the three different planning strategies.
Fig. 13. Combined affects of dynamics and agility for different number of flexible rooms. The values on the 𝑧-axis are the average objective values from simulating the five base
instances over a set of different planning strategies. The red, yellow and green surfaces represent zero, one and two flexible rooms in each unit, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table B.7
The availability of surgeons on weekdays, and the maximum number of days available for clinical work in a planning period. C refers to
consultants, while R is residents.
Surgeon type Mon Tue Wed Thu Fri Days in planning period

Small Medium Large

Arthroscopy C 2 2 1 3 2 30 30 20
Arthroscopy R 2 1 2 1 2 15 15 15
Hand C 2 1 3 1 1 30 30 24
Hand R 1 2 1 2 1 16 16 16
Plastic C 2 2 2 1 3 35 30
Plastic R 3 1 2 2 2 34 34
Arthroplasty C 2 2 2 1 0 24
Arthroplasty R 2 2 1 1 0 24
Reconstructive C 2 2 0 1 1 20 20
Reconstructive R 0 1 1 1 0 16 26
Back C 1 2 1 2 1 24
Back R 2 1 2 1 1 16
Tumor C 1 0 1 0 1 15
Tumor R 0 1 0 1 1 12
13 
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Table B.8
The number of beds available.
Ward Small Medium Large

M T W T F S S M T W T F S S M T W T F S S

Trauma 4 4 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 4 4 2 2
Reconstructive 5 5 5 5 5 3 3 4 4 4 4 4 3 3 5 5 5 5 5 3 3
Elective 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FT 16 16 16 16 16 0 0
Table B.9
The rooms.
Location Availability

[min]
Number of rooms Number of room-days

Small Medium Large Small Medium Large

Outpatient clinic 240 4 4 8 14–17 17–20 34-37
Operating theater 480 3 4 5 4–8 7–11 16-20
Table B.10
OC activity types.
Activity type Specialty Duration [min] 𝑄𝑗𝑎1 𝑄𝑗𝑎2 𝑄𝑗𝑎3 𝐶𝑗𝑎1 𝐶𝑗𝑎2 𝐶𝑗𝑎3

IC Arthroscopy 30 34.0 17.0 ∞ 5 15 100
TC Arthroscopy 30 1.7 0.9 ∞ 2 5 50
FU Arthroscopy 30 26.6 13.3 ∞ 0 1 30
IC Hand 30 38.0 19.0 ∞ 5 15 100
TC Hand 30 20.1 10.1 ∞ 2 5 50
FU Hand 30 78.8 39.4 ∞ 0 1 30
IC Plastic 30 58.0 29.0 ∞ 5 15 100
TC Plastic 30 11.6 5.8 ∞ 2 5 50
FU Plastic 30 90.1 45.0 ∞ 0 1 30
IC Arthroplasty 30 38.0 19.0 ∞ 5 15 100
TC Arthroplasty 30 1.9 1.0 ∞ 2 5 50
FU Arthroplasty 30 29.3 14.6 ∞ 0 1 30
IC Reconstructive 30 36.0 18.0 ∞ 5 15 100
TC Reconstructive 30 2.2 1.0 ∞ 2 5 50
FU Reconstructive 30 41.0 20.6 ∞ 0 1 30
IC Back 30 10.0 5.0 ∞ 5 15 100
TC Back 30 0.5 0.3 ∞ 2 5 50
FU Back 30 13.8 6.9 ∞ 0 1 30
IC Tumor 30 10.0 5.0 ∞ 5 15 100
TC Tumor 30 5.3 2.7 ∞ 2 5 50
FU Tumor 30 40.2 20.1 ∞ 0 1 30
Table B.11
Surgery types.

Surg. type Specialty Dur. [min] # surgeons Ward LOS [days] 𝑄𝑗𝑎1 𝑄𝑗𝑎2 𝑄𝑗𝑎3 𝐶𝑗𝑎1 𝐶𝑗𝑎2 𝐶𝑗𝑎3

Arthro. (agg.) Arthroscopy 174 2 El. 2 5.1 7.7 ∞ 2 5 50
ACL Arthroscopy 173 1 El. 2 4.1 6.1 ∞ 2 5 50
Meniscus Arthroscopy 103 2 – 0 3.7 5.6 ∞ 2 5 50
Patellae Arthroscopy 176 2 El. 1 3.4 5.1 ∞ 2 5 50
Hand (agg.) Hand 107 2 – 0 11.4 17.1 ∞ 2 5 50
CTS Hand 54 2 Tr. 1 3.8 5.7 ∞ 2 5 50
Plastic (agg.) Plastic 108 2 Tr., Recon. 2 17.4 26.1 ∞ 2 5 50
Carsinoma Plastic 52 1 Recon. 1 5.8 8.7 ∞ 2 5 50
BCC Plastic 59 2 Tr., Recon. 1 2.9 4.4 ∞ 2 5 50
Mal. mel. Plastic 85 1 – 0 8.7 13.1 ∞ 2 5 50
Cancer m. Plastic 146 1 Recon. 1 5.8 8.7 ∞ 2 5 50
SCC Plastic 65 2 Recon., El. 1 2.9 4.4 ∞ 2 5 50
Hip (primary) Arthroplasty 110 2 FT 4 14.1 21.1 ∞ 2 5 50
Hip (revision) Arthroplasty 152 2 FT 4 3.4 5.3 ∞ 2 5 50
Knee (primary) Arthroplasty 122 2 FT 4 8.0 12.0 ∞ 2 5 50
Knee (revision) Arthroplasty 165 2 FT 4 1.9 2.9 ∞ 2 5 50
Recon. (agg.) Reconstructive 145 2 Recon. 2 5.8 8.6 ∞ 2 5 50
Back (agg.) Back 309 2 El. 6 1.8 2.7 ∞ 2 5 50
Tumor (agg.) Tumor 93 1 Recon. 1 1.4 2.1 ∞ 2 5 50
𝑥𝑗𝑎𝑑 ∈ {0, 1,…} 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D (A.34)

𝑗𝑎𝑤𝑑 ∈ {0, 1, 2,…} 𝑗 ∈ J, 𝑎 ∈ A𝑂𝑇 ∩A𝐽
𝑗 , 𝑤 ∈ W, 𝑑 ∈ D𝑇

(A.35)

𝑗𝑎𝑑 ≥ 0 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑇 (A.36)
14 
𝑞𝑗𝑎𝑑𝑘 ≥ 0 𝑗 ∈ J, 𝑎 ∈ A𝐽
𝑗 , 𝑑 ∈ D𝑄, 𝑘 ∈ K (A.37)

Appendix B. Input data for the LMSP

In Tables B.6 to B.13, we provide the data applied to define the

Small, Medium and Large cases in the LMSP.
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Fig. 14. The value added by combining the planning strategies. Here, we compare the
baseline strategy to a strategy with one flexible room in both units, planning periods
of two weeks, and a two-week planning delay.

Table B.12
The flow of patients at the OC. A share of 2 in the final column means that we expect
two FUs after a TC.

Specialty Expected # of
new IC per day

Share to TC
after IC

Share to FU
after TC

Arthroscopy 2.43 0.05 1
Hand 2.71 0.53 2
Plastic 4.14 0.20 1
Arthroplasty 2.71 0.05 1
Reconstructive 2.57 0.06 2
Back 1.43 0.05 2
Tumor 1.43 0.53 2

Table B.13
The flow of patients at the operating theater.

Surgery category Share to surgery
after IC

Share to FU
after surgery

Arthroscopy (aggregated) 0.15 1
ACL 0.12 1
Meniscus 0.11 1
Patellae 0.10 1
Hand (aggregated) 0.30 1
CTS 0.10 1
Plastic (aggregated) 0.30 1
Carsinoma 0.10 2
BCC 0.05 1
Malignant melanoma 0.15 1
Cancer mammae 0.10 2
SCC 0.05 2
Hip (primary) 0.37 1
Hip (revision) 0.09 1
Knee (primary) 0.21 1
Knee (revision) 0.05 1
Reconstructive (aggregated) 0.32 2
Back (aggregated) 0.18 2
Tumor (aggregated) 0.14 2
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