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Abstract. Balancing the accuracy and interpretability of predictive mod-
els has been a persistent challenge in traditional approaches. In this
study, we advance this field by integrating cutting-edge artificial intelli-
gence (AI) techniques with Explainable AI (XAI) methodologies to sig-
nificantly enhance both the accuracy and interpretability of vineyard
leaf disease predictions. We employ state-of-the-art convolutional neural
networks (CNNs) and introduce a fine-grained model architecture fea-
turing, adept at discerning subtle disease indicators in vineyard leaves.
This innovative approach not only boosts the diagnostic performance of
the models but also provides clear visualizations of the decision-making
processes. This study utilizes a focused dataset strategy, incorporating
one specialized grape disease dataset (Esca) and a subset of the general
PlantVillage dataset, specifically selecting categories relevant to Apple
and Grape diseases. The obtained results have demonstrated our model’s
exceptional capability in accurately identifying and classifying various
leaf diseases, showcasing its practical applicability in real-world vine-
yard management. Furthermore, our approach addresses the vital need
for transparency and trust in AI applications within agriculture, partic-
ularly in viticulture.
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ing, explainable AI (XAI), fine-grained-classification

1 Introduction

Viticulture, the science and practice of grape cultivation, serves as a cornerstone
in the global wine industry, contributing significantly to agricultural economies
worldwide [1]. However, the health and yield of vineyards are constantly threat-
ened by various leaf diseases that pose a particularly pervasive challenge. For
instance, as reported in [2] one of the oldest disease "Esca" has reached upto 80%
in various old vineyards in central Italy and its southern parts. This implies that
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the presence of these diseases, and lack of effective strategies to mitigate them,
could cause a severe loss in production. [3]. Traditional pest and disease detec-
tion methods in vineyards exhibit inefficiencies, potentially leading to delayed
diagnoses and subsequent yield losses [4]. Figure 1, 2, and 3 show the sample
images for both healthy and diseased vineyard leaves. The figures show the dif-
ferent diseases in grape leaves like Esca (Esca dataset), BlackRot (PlantVillage
dataset), and for apple leaves like AppleScab, and CedarAppleRust (PlantVillage
dataset).

Fig. 1. Sample images
from Esca dataset

Fig. 2. Sample images
from PlantVillage dataset
(Grapes)

Fig. 3. Sample images
from PlantVillage dataset
(Apple)

Recognizing these limitations, recent advancements in digital image pro-
cessing, particularly using AI-based techniques, promise to revolutionize vine-
yard management practices [5]. These techniques have the potential to expedite
anomaly detection within grapevine yields, enabling early intervention strate-
gies to mitigate disease spread and associated financial losses for wine produc-
ers [4]. As previously mentioned, the advancements about the use of AI-based
techniques in vineyard disease prediction; most of the state-of-the-art (SOTA)
studies have recently used deep learning based image analysis techniques such as
Convolutional Neural Network (CNN), and its variants like Residual Neural Net-
work (ResNet), and Densely Connected Neural Network (DenseNet) [4]. These
techniques will be further discussed later in the paper in section 2. Addition-
ally, transformer-based technique is becoming more popular these days specially
for image classification tasks. The most common model in this category is the
VisionTransformer (ViT) model [6].

To the best of our knowledge, there exists only single study which used ViT
model for leaf disease classification [7]. Hence, in this study we proposed fine-
grained model that incorporates a swin-transformer architecture as its backbone
to capture detailed image features critical for the accurate classification/predictions
of vineyards disease leaf images. Furthermore, this research is distinct in its ap-
plication, utilizing two public datasets, Esca and PlantVillage as none of the
studies have used them together before. Finally, our approach is further en-
hanced by the integration of XAI techniques, including both Grad-CAM and
LIME. Because, we recognize the importance of not only achieving high predic-
tive accuracy but also showing insights against the decision-making procedure
of our proposed fine-grained model.
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The rest of the paper is organized as follow: Section 2 discusses the relevant
SOTA studies and background information; Section 3 shows and explains our
proposed methodology; Section 4 discusses the experiments performed with our
proposed approach; Section 5 presents our results & findings, and Section 6
shows the conclusion & future work.

2 Related Work

There has been an increasing interest in recent years toward the application
of machine learning and deep learning techniques for the early detection and
classification of grapevine diseases. In general, there are some new achievements
in the early detection and classification of diseases in vineyards. However, most
of these studies have focused on broad classifications or have been limited to
specific types of diseases without a deeper, fine-grained analysis or robust inter-
pretability mechanisms that are crucial for practical applications. For example,
few advancements particularly in the application of CNNs, have facilitated sig-
nificant progress in the analysis of grape leaf diseases. Alessandrini et al. in [8]
proposed a new grapevine image dataset to classify between two classes: healthy
and unhealthy grape images affected by Esca disease. The dataset is suitable
for various machine-learning tasks, including image segmentation and synthe-
sis. Furthermore, Carraro et al. address the significant challenges of detecting
the Esca disease complex in asymptomatic grapevine leaves using CNNs [9].
In their exploration of grapevine diseases, they employ hyperspectral imaging
combined with CNNs to differentiate between symptomatic and asymptomatic
leaves. While this approach marks a significant step forward, it lacks the deep
granularity provided by our proposed model in this study.

Additionally, Zia et al. in [10] further contribute to the enhancement of pre-
diction accuracy and performance in disease diagnosis. They performed using the
AlexNet model on the publicly available PlantVillage dataset. As they demon-
strated high accuracy using CNNs on the PlantVillage dataset, their approach
did not incorporate the critical element of explainability, which is a core com-
ponent of our proposed approach in our study. The integration of XAI into
agricultural AI systems has been in focus of several studies [7, 11, 12]. Bandi et
al. utilized the YOLOv5 model to train two different datasets, PlantDoc and
PlantVillage, for disease detection and employed ViT for disease stage classifica-
tion. Expanding upon previous research on disease detection in grapevine leaves,
another study introduced by Mamba et al [5] discusses the effectiveness of fed-
erated learning in crop disease detection using CNN models and those based
on attention mechanisms. In general, the experiments have shown that the per-
formance of federated learning is highly affected by factors such as the number
of learners involved, communication rounds, total iterations, and data quality.
Among the models tested, ResNet 50 demonstrated the highest performance,
while ViTB16 and ViTB32 were found to be less suitable for federated learning
due to their computational time and cost implications. Hence, while extensive
work has been done on explainable AI, research on interpretable methods in
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the agricultural field remains limited. The authors in [11] focuses on enhanc-
ing the interpretability of deep learning models used in classifying leaf diseases
across various fruit leaf datasets. By utilizing models such as ResNet, VGG,
and GoogLeNet augmented with attention mechanisms, they demonstrate an
improvement in the models’ ability to focus on relevant features of leaf images.

In contrast to these studies, our research adopts a unique dual-dataset ap-
proach, utilizing both the Esca dataset and specifically the Apple and Grape
classes from the PlantVillage dataset. This method is innovative and fills several
gaps in the current research by offering a technique that not only improves the
accuracy of disease diagnostics but also enhances the interpretability of results
across different types of data. By combining the proposed fine-grained model
with advanced XAI techniques, our model meets the high-accuracy demands of
modern agriculture while also providing deeper insights into the decision making
processes. This facilitates greater trust and adaptability in real-world vineyard
management. Table 1 shows the SOTA summary of several AI techniques ap-
plied for vineyard leaf disease detection together with the gap in the techniques
which is covered in our research study.

Table 1. SOTA summary of AI models for vineyard disease prediction

Ref. CNN Dense
Net

Res
Net

Mobile
Net

Efficient
Net VIT Alex

Net
YOLO

v5 VGG Fine
Grained

Paper [8] ✓
Paper [9] ✓ ✓
Paper [10] ✓ ✓ ✓
Paper [7] ✓ ✓ ✓
Paper [11] ✓ ✓ ✓
Paper [12] ✓ ✓ ✓ ✓ ✓
Our study ✓ ✓ ✓ ✓ ✓

3 Proposed Methodology

Figure 4 shows the proposed methodology involving a sequence of steps for pro-
cessing leaf images for healthy vs disease classification and analysis. Initially,
the leaf image undergoes preprocessing steps including resizing, normalization,
and augmentation to enhance the dataset and improve the model’s robustness.
Following this, the fine-grained model combined with Swin-Transformer (Swin
T) is employed for the detailed and accurate classification of the leaf images.
Finally, the methodology uses Grad-CAM (Gradient-weighted Class Activation
Mapping) and LIME (Local Interpretable Model-agnostic Explanations) to in-
terpret and visualize the model’s predictions, highlighting important regions of
the leaf that contribute to the models’ decisions. This approach aims to enhance
both the performance and interpretability of the model.
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Fig. 4. Proposed Methodology

3.1 Dataset

In this study, we used two SOTA datasets; 1) Esca dataset, and 2) PlantVillage
(PV) dataset. From the PV dataset, we selected only two categories grapes and
apples. The datasets comprises of healthy and various disease images related to
vineyards leaves. The overall distribution as well as train, validation, and test
set split is shown in the Table 2.

Table 2. Overall, train, valid, and test set distribution of the datasets

Esca
Dataset

PlantVillage
(Grapes) Dataset

PlantVillage
(Apple) Dataset

Train
set

Valid
set

Test
set Total Train

set
Valid
set

Test
set Total Train

set
Valid
set

Test
set Total

Healthy 529 132 221 882 Healthy 254 423 106 783 Healthy 987 1645 411 3043

Esca 533 133 222 888 Black
Rot 708 1180 295 2183 Apple

Scab 378 630 158 1166

Black
Measles 830 1383 346 2559 Black

Rot 373 621 155 1149

Leaf
Blight 646 1076 269 1991

Cedar
Apple
Rust

165 275 69 509

Total 1062 265 443 1770 Total 2438 4062 1016 7516 Total 1903 3171 793 5867

3.2 Preprocessing

This section outlines the preprocessing steps essential for preparing the data for
subsequent model training and analysis. 1) Image Resizing: In the preprocess-
ing stage, all images from both datasets were initially resized to 1280×720 pixels.
This standardization was crucial for ensuring consistency across all instances,
particularly for the SOTA models such as CNN, DenseNet, and ResNet. For the
fine-grained implementation, however, the images were resized to 384× 384 pix-
els. The reason for choosing this size was to facilitate feature extraction without
compromising consistent information across images.
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2) Data Normalization: Before feeding the data to the model, we have
normalized the data with the mean values 0.4762, 0.3054, 0.2368, and standard
deviation values 0.3345, 0.2407, 0.2164. This normalization process helped center
the data around zero and scale it to a comparable range, facilitating stable
and efficient model training. 3) Data Augmentation: We implemented data
augmentation techniques to increase the diversity and improve the robustness
of the training dataset. The techniques opted for augmenting images include
horizontal and vertical flips, rotation of up to 90 degrees, and scaling.

3.3 Fine-Grained Model

Figure 5 illustrates the basic architecture of fine-grained model used as a part of
the proposed methodology. The proposed model utilizes the Swin-Transformer
as its backbone, due to its effectiveness in capturing fine details through its
hierarchical architecture. The Swin-Transformer is composed of four integral
components, Patch Partitioning, Swin Transformer Blocks, Shifted Window, and
Feature Hierarchy. It first segments the image into non-overlapping patches.
Further, these patches are processed through a series of Swin-Transformer Blocks
with a shifted window framework, which enhances the model to capture local
features with the global context in a flexible and efficient fashion. [13]. This
approach will be very good in complex tasks of image classification for tasks like
vineyard leaf disease prediction.

Fig. 5. Model Architecture for fine-grained model with Swin Transformer as a backend.

3.4 Explainable AI (XAI)

In fact, the increased use of AI in the treatment of healthcare and agricultural
management is leading to increased demand for transparency and understand-
ability in such systems [14]. The subsequent section discusses ways in which
we have implemented XAI techniques, such as Grad-CAM and LIME, in order
to increase the transparency and trustworthiness of our predictive models. 1)
Grad-CAM: In our experiments, we have used the Grad-CAM model to vi-
sualize the explanation of the decisions and predictions from our models. The
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ability to show us the points of focus in an image makes it a great tool for pro-
viding such information [15]. Thus, this serves to highlight parts of the input
that most affect the model’s decision—valuable interpretability [16].

2) LIME: LIME helps in understanding complex model decisions by chang-
ing the input data and looking at how those changes affect the output. This ap-
proach adds another perspective by showing what features contribute to bringing
about a prediction. In disease detection from vineyards, for example, LIME can
show how features of the image of leaves, such as spots or color gradations, lead
to the identification of a specific disease. Thus, with LIME, we can embellish
the interpretability of our model, ensuring that the decisions are precise and
comprehensible at a granular level.

4 Experiments

This section discusses the experimental detail which we performed to evaluate
the performance of SOTA models vs our proposed fine-grained model on the
task of leaf disease prediction. Our approach employed a series of pre-trained
models that includes DenseNet121, DenseNet169, ResNet50, MobileNetV2, and
the proposed FineGrained model across two distinct datasets: Esca, which is
specific to grapevine leaves, and selected classes from the PlantVillage dataset,
namely Apple and Grapes.

We selected several SOTA models such as DenseNet121, DenseNet169, ResNet50,
MobileNetV2 to compare their performance with our proposed fine-grained model
using swin-transformer. We trained, validated, and tested all the SOTA as well
as our proposed model on the respective selected datasets’ using the distribution
shown in the Table 2 with the following hyperparameters shown in the Table 3.

Table 3. Hyperparameters for models’ training

Batch
size 8 to 32

Learning
rate 0.0001

Epochs 30

To evaluate the performance of our predictive models, we used a comprehen-
sive set of key metrics that include accuracy, precision, recall, and f1-score. The
below four equations show how all of these metrics are calculated.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2 ×
P × R
P + R

(4)

*TP = True Positive; TN = True Negative; FP = False Positive;

*FN = False Negative; P = Precision; R = Recall
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5 Results and Discussion

This section discusses the results obtained using the experiments performed
based on experimental settings explained in the section 4.

5.1 Fine-Grained model results

The results shown in Tables 4, and 5 clearly show the proposed fine-grained
models’ improved performance compared to other SOTA models. The proposed
model in this study achieved 100% scores for all the evaluation metrics discussed
in the section 4. The use of the fine-grained model with swin-transformer back-
bone significantly enhanced its capability to discriminate between closely related
disease states, providing high precision and recall.

Table 4. Performance Metrics for Esca Dataset

Model Accuracy Precision Recall F1 Score Support
DenseNet121 1.00 1.00 1.00 1.00 444

ResNet50 0.99 0.99 0.99 0.99 443
DenseNet169 1.00 1.00 1.00 1.00 444
MobileNetV2 0.99 0.99 0.99 0.99 443
FineGrained 1.00 1.00 1.00 1.00 444

Table 5. Performance Metrics for PlantVillage Dataset

Model Apples Grapes
Acc. Prec. Recall F1 Acc. Prec. Recall F1

DenseNet121 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ResNet50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DenseNet169 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MobileNetV2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
FineGrained 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Furthermore, Figure 6, 7, and 8 shows the confusion matrices of the proposed
fine-grained models’ performance on the test set of the datasets shown in the
Table 2. Figure 6 shows the performance of fine-grained model for predicting
the test dataset images either as "Healthy" or affected by "Esca". The confusion
matrix shows perfect classification performance, with no false positives or false
negatives. The fine-grained model correctly identified all 221 healthy samples
and all 222 Esca-affected samples. This indicates a highly accurate model for
this dataset, as every prediction made was correct.

Figure 7 shows the performance of fine-grained model, specifically for pre-
dicting various diseases of grapes leaves from PlantVillage dataset. The diseases
being predicted are "Black rot," "Esca black measles, "Leaf blight isariopsis leaf
spot", and "Healthy". The confusion matrix indicates that the model has per-
fectly classified all samples across all the target classes. The model demonstrates
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perfect accuracy for the given dataset, correctly classifying all samples into their
respective classes without any errors. This suggests highly effective performance
of the model for predicting these specific grapes leaves diseases from the PlantVil-
lage dataset. Figure 8 shows the fine-grained models’ performance specifically
for predicting various diseases of apple leaves from PlantVillage dataset. The
diseases being predicted are "Apple scab", "Black rot", and "Cedar apple rust".
The confusion matrix indicates that the model has perfectly classified all samples
across all the target disease classes together with "Healthy" class. This demon-
strates the model’s high effectiveness and accuracy in distinguishing between
Apple scab, Black rot, Cedar apple rust, and Healthy classes.

Fig. 6. Confusion matrix
for Esca dataset using
fine-grained model

Fig. 7. Confusion matrix
for grape leaves from
PlantVillage dataset us-
ing fine-grained model

Fig. 8. Confusion matrix
for apple leaves from
PlantVillage dataset us-
ing fine-grained model

5.2 XAI results

Figure 9 illustrates the application of XAI techniques, specifically LIME and
Grad-CAM, to various datasets of leaf images affected by different diseases. The
image is structured in a tabular format with three main columns: "Original Im-
age", "LIME", and "Grad-CAM". In this visual representation, we observe how
two prominent XAI techniques, LIME and Grad-CAM, explain the decision-
making process of the proposed fine-grained model tasked with classifying vine-
yard leaf diseases. The Original Image column shows the raw images of leaves,
each exhibiting distinct disease symptoms. In the LIME column, the model’s
predictions are explained by highlighting regions of the leaves that significantly
influence its decision. LIME, on the other hand, uses a colorised overlay, with
light green areas highlighting the sections that agree with the result and dark
red areas highlighting those which disagree with it, making it easier to trace out
which parts of a leaf contributed most towards predicting whether or not it was
disease.

The Grad-CAM column, on the other hand, is a more comprehensive one
which involves overlaying heatmaps on the images. These heatmaps typically
show the areas where the model pays more attention, with the warmer colors
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implying that something is far much important than the others. For the ESCA
dataset, both LIME and Grad-CAM point out discolored parts that are affected
by disease on the leaf, thereby affirming these areas as essential for predicting by
the model. Like LIME, Grad-CAM emphasizes the spotted areas in the images
in line with the exhibited symptoms. Both methods clearly show the damage
patterns in the images which the model is interested in when diagnosing a disease.
This side-by-side visualization is centered on the potential uses of LIME and
Grad-CAM in the process of understanding and verifying the outcomes of models
as well as shedding light on what the model takes into account and why it makes
decisions. In this regard, implementing these XAI techniques helps make AI
models that aid in agricultural diagnostics more understandable and trustworthy
because their main focus can be broken down into simple words while showing
how some regions in the pictures contribute towards identifying diseases.

Fig. 9. XAI results for fine-grained model performance

6 Conclusion & Future Work

The study has managed to bridge the gap between high prediction accuracy
attainment and model interpretation within vineyard leaf disease prediction. The
detection of leaf disease has been greatly improved through the application of
fine-grained models as well as interpretability techniques like LIME and Grad-
CAM. We did not only improve the accuracy of detection but also conveyed
actionable knowledge to vineyard owners through our findings, who can use
it for disease management strategies that form basis for decision making. Our
research progress is of great significance for AI application in farming especially
in connection with growing grapes. Users grasp and rely on system predictions
better hence increasing their use in vineyard operations. This research helps in
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developing AI models that are beneficial in cultivating vineyards sustainably
through provision of in-depth interpretations for model predictions, important
in ascertaining onset symptoms of diseases for prompt remediation.

In future work, we are planning to further improve the proposed approach by
applying it to real-world dataset by collecting leaf images directly from vineyards.
Further, we would also like to use federated learning to retain data privacy
and security. This method can be used to train federated models across a good
number of decentralized devices or servers, holding local data samples, without
the need for data sharing—thereby keeping sensitive information at source. This
approach will enhance not only the strength and generalization of our model but
also meet regulations and industry standards for data privacy, making it more
suitable for field practice within agricultural settings.
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