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Traditionally, finite element analysis (FEA) has been the go-to method for determining the 

loadbearingcapacity of stiffened plates. However, FEA can be time-consuming and complex, 

which can be a disadvantage, particularly when quick yet precise assessments are needed. 

Fortunately, new technologies such as machine learning (ML) and artificial intelligence (AI) 

may provide a more efficient and speedy way of analyzing structures. 

Researchers and experts are working on using artificial neural networks (ANN) to predict the 

buckling load of stiffened plates. ANNs are computer models that can learn to recognize 

patterns and make predictions based on data input. They have the potential to replace 

traditional FEA methods for some applications, providing a faster and more efficient way of 

analyzing structures without compromising accuracy. 

The goal of this thesis is to assess the applicability of surrogate models that utilize data 

obtained from FEA simulations in order to predict the buckling load of stiffened plates, 

exploring the intersection between AI and structural engineering. However, the accuracy and 

dependability of the surrogate model are heavily reliant on the quality, diversity, and 

comprehensiveness of the data used to train it. Additionally, the current model only deals with 

specific types of stiffened plates, which means it may not apply to all structural elements or 

more complex loading conditions. 

The following items are to be addressed as part of the present master thesis: 

1. Perform a literature survey on methods and procedures for construction of digital twin 

models (also referred to as surrogate models, meta-models or cyber-physical models), for 

structures and structural systems. Both data-based methods and physics-based methods (and 

combinations of these) are to be considered. Examples of methods are: Neural networks, 

Response surfaces, Polynomial Chaos Expansion and Gaussian Process Regression 

2. As an example of application, a stiffened plate panel is to be studied. Relative to the study 

in the project thesis, this example case is to be explored in further details based on the Neural 

Network approach. This could also consist of incorporating alternative and more diversified 

neural network architectures.  

3. As a next step the model of the stiffened plate is to be expanded in term of number of 

parameters that are varied. This could also comprise an expansion of outer dimensions of the 
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panel thereby increasing the number of stiffeners and possibly multi-bay panels with tranverse 

frames forming part of the model. 

4. The same stiffened plate example as in item 2 is also to be analysed by application of the 

combination of a physics based model and a neural network (i.e. a so-called PINN-model).   

5. To the extent that time allows, alternative approaches (according to item 1) for constructing 

a digital twin of the plate example are to be investigated. As part of this, statistical models of 

parameter uncertainties and their propagation to system level can also be addressed.   

The work scope may prove to be larger than initially anticipated. Subject to approval from the 

supervisors, topics may be deleted from the list above or reduced in extent. This is to be notified 

to the reader in the introduction. 

 

In the master report, the candidate shall present his/her personal contribution to the resolution of 

problems within the scope of the master work 
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Telegraphic language should be avoided. The report shall contain the following elements:  A text 

defining the scope (this document to be included), preface, list of contents, summary, main body 

of thesis, conclusions with recommendations for further work, list of symbols and acronyms, 

references and (optional) appendices.  All figures, tables and equations shall be numerated. 

 

The supervisors may require that the candidate, in an early stage of the work, presents a written 

plan for the completion of the work.  

 

The original contribution of the candidate and material taken from other sources shall be clearly 

defined.  Work from other sources shall be properly referenced using an acknowledged 

referencing system. 

 

The report shall be submitted in electronic format (.pdf): 

 - Signed by the candidate 

 - The text defining the scope shall be included (this document) 

 - Drawings and/or computer models that are not suited to be  part of the report in terms of 

appendices shall be provided on separate (.zip) files. 
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advance. 
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ABSTRACT

This master’s thesis investigates the application of surrogate models, especially
artificial neural networks, to the structural analysis of stiffened plate panels, a
common component in marine engineering. Compared to traditional Finite Ele-
ment Analysis, the study aims to reduce computational time and improve predic-
tion accuracy in predicting buckling loads.

The thesis begins with a comprehensive literature review on surrogate modeling
techniques and their applications in structural engineering. A neural network
model is then developed and trained using a dataset generated from FEA simula-
tions. The stiffened plate was modeled in Abaqus and exported to a Python code
by using the Python library abqpy. The model was then simulated for 1944 differ-
ent geometric configurations to create an extensive dataset for the neural network
to train on before being able to predict the buckling load for unseen data.

The results show that the neural network model significantly reduces computa-
tional time while maintaining high accuracy, achieving a mean prediction error of
approximately 2.94% within the training range. While the model performs well
within the trained parameters, its accuracy decreases for data outside the training
range with an average error of 5.41%. These are still decent results but highlight
the need for a more diverse dataset and advanced modeling techniques. The study
demonstrates the potential of neural networks to transform structural analysis by
offering a scalable and flexible approach. However, it also underscores challenges
such as data dependency, model interpretability, and issues with extrapolation.
The thesis concludes with recommendations for future work, including expanding
the dataset, exploring hybrid models that combine machine learning with physics-
based approaches, and validating the models in real-world engineering projects.

Overall, this thesis contributes to the ongoing development of efficient and accurate
predictive models in structural engineering, paving the way for more sophisticated
applications of digital twin technology in engineering design and analysis.

i



SAMMENDRAG

Denne masteroppgaven undersøker anvendelsen av surrogatmodeller, spesielt kun-
stige nevrale nettverk, til strukturanalyse av stive platepaneler, en vanlig kompo-
nent innen marin ingeniørkunst. Sammenlignet med tradisjonell Finite Element
Analysis (FEA), har studien som mål å redusere beregningstiden og forbedre
prediksjonsnøyaktigheten i å forutsi knekkbelastninger.

Oppgaven begynner med en omfattende litteraturgjennomgang om surrogatmod-
elleringsteknikker og deres anvendelser innen strukturingeniørkunst. En nevrale
nettverksmodell utvikles deretter og trenes ved hjelp av et datasett generert fra
FEA-simuleringer. Det stive platepanelet ble modellert i Abaqus og eksportert
til en Python-kode ved å bruke Python-biblioteket abqpy. Modellen ble deretter
simulert for 1944 forskjellige geometriske konfigurasjoner for å skape et omfat-
tende datasett som det nevrale nettverket kunne trene på før det kunne forutsi
knekkbelastningen for ukjente data.

Resultatene viser at den nevrale nettverksmodellen betydelig reduserer beregn-
ingstiden samtidig som den opprettholder høy nøyaktighet, og oppnår en gjen-
nomsnittlig prediksjonsfeil på omtrent 2,94% innenfor treningsområdet. Selv om
modellen presterer godt innenfor de trente parameterne, reduseres nøyaktigheten
for data utenfor treningsområdet med en gjennomsnittlig feil på 5,41%. Dette er
fortsatt gode resultater, men understreker behovet for et mer variert datasett og
avanserte modelleringsteknikker. Studien viser potensialet til nevrale nettverk for
å transformere strukturanalyse ved å tilby en skalerbar og fleksibel tilnærming.
Den fremhever imidlertid også utfordringer som dataavhengighet, modellfortolkn-
ing og problemer med ekstrapolering. Oppgaven avsluttes med anbefalinger for
fremtidig arbeid, inkludert utvidelse av datasettet, utforsking av hybride modeller
som kombinerer maskinlæring med fysikkbaserte tilnærminger, og validering av
modellene i reelle ingeniørprosjekter.

Totalt sett bidrar denne oppgaven til den pågående utviklingen av effektive og
nøyaktige prediktive modeller innen strukturingeniørkunst, og baner vei for mer
sofistikerte anvendelser av digital tvillingteknologi i ingeniørdesign og analyse.

ii
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CHAPTER

ONE

INTRODUCTION

Structural engineering deals with designing and analyzing load-bearing structures,
and analyzing these systems under complex loading conditions often requires ad-
vanced computational methods to ensure safety and performance. While tradi-
tional methods like the Finite Element Method are accurate, they are computa-
tionally intensive and time-consuming, limiting real-time applications and iterative
design processes. An example of this is predicting and managing buckling behav-
ior in stiffened plate panels due to their nonlinear nature, requiring detailed and
computationally expensive simulations.

To overcome these challenges, surrogate models, such as Artificial Neural Networks
and Polynomial Chaos Expansion, offer computationally efficient approximations
of complex models. These models reduce the computational resources required for
structural analysis while maintaining high accuracy. This thesis examines the use
of surrogate models in analyzing the structural behavior of stiffened plate panels.
Specifically, it focuses on the accuracy of predicting buckling loads and attempts
to predict the buckling load of a stiffened plate using an Artificial Neural Network.

The thesis is divided into these chapters:

• Chapter2 - Background

• Chapter3 - Theory

– Chapter 3.1 - Finite Element Method, Stiffened Plates and Buckling
– Chapter 3.2 - Surrogate Modelling and Artificial Neural Networks
– Chapter 3.3 - Polynomial Chaos Expansion

• Chapter4 - Method

– Chapter 4.2 - Building the Stiffened Plate in Abaqus and Python
– Chapter 4.3 - Building the Neural Network

• Chapter5 - Results

• Chapter6 - Discussion and Further Work

• Chapter7 - Conclusion

1
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CHAPTER

TWO

BACKGROUND

2.1 Use of Surrogate Models in Structural Analy-
sis

An established approach to simulation of structural mechanics is the finite ele-
ment method (FEM), which is renowned for its precision in structural mechanics.
However, achieving higher resolution in simulations necessitates increased compu-
tational effort. Surrogate modeling provides a dependable solution to address this
challenge. Nonetheless, selecting the appropriate surrogate model and its hyper-
parameters for a specific use case is complex [1]. This section investigates and
compares different mesh-free surrogate models based on traditional and emerging
machine learning (ML) and deep learning methods.

As given by Wang and Shan [2], there are various roles of surrogate modeling
in support of design process:

• Model approximation. Approximating computation-intensive processes through-
out or just a part of the design space is employed to lower computation
expenses.

• Design space exploration. Surrogates provide insight into the functional
relationship between design parameters and criteria, addressing obstacles in
understanding numerical model behavior.

• Problem formulation. With a deeper comprehension of a design optimization
issue, it is possible to decrease the quantity and scope of design variables;
some ineffective constraints can be eliminated; a single objective optimiza-
tion problem can be transformed into a multi-objective optimization prob-
lem, or vice versa. The use of metamodels can aid in creating an optimization
issue that is either easier to solve or more precise than it would be otherwise.

• Optimization support. The business sector has different optimization re-
quirements, such as global optimization, multi-objective optimization, multi-
disciplinary design optimization, probabilistic optimization, and more. Each
optimization type presents unique challenges. The integration of metamodel-
ing can address varied optimization problems with computationally intensive
functions.

3
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Designing intricate thin-walled structures (e.g., ships) is a large-scale problem
involving multiple design goals, numerous design variables, and thousands of de-
sign constraints. In this study, the focus is on the potential for using surrogate
modeling to predict the structural responses of stiffened plates.

2.1.1 Previous studies using surrogate modeling in struc-
tural analysis

In this section, various machine learning techniques and their applications to top-
ics in structural engineering are to be presented. Among these methods, Neural
Networks, the most widely used method in the field, will be discussed separately.

A widely employed technique for surrogate modeling is response surfaces (RS). Its
popularity in modeling deterministic computer experiments stems from its origins
in classical Design of Experiments theory, where RS was utilized for describing
physical phenomena [3]. Simpson et al. (2001) discusses the statistical challenges
of applying RS to deterministic computer experiments [4]. Some of the engineer-
ing applications of RS include structural optimization, as discussed by Araia and
Shimizu (2001) [5], and in the PhD thesis of Prebeg (2011) [6].

A recent method based on neural networks is physics-informed neural networks
(PINNs). These networks are trained simultaneously on both data and governing
differential equations, and they can be used to solve and invert equations that gov-
ern physical systems. Haghighat and Juanes used PINNs to replace a specific FEM
simulation of a perforated strip under uniaxial extension [7]. In 2021, Haghighat
et al. introduced a surrogate modeling approach using PINNs and a specific ap-
plication [7]. Shin examined results related to PINNs with Poisson’s equation and
the heat equation, focusing on consistency [8]. Yin et al. employed PINNs to
forecast permeability and viscoelastic modulus from thrombus deformation data,
described by the fourth-order Cahn–Hilliard and Navier–Stokes equations [9].

A research study by Bui et al. delves into using Polynomial Chaos Expansion
(PCE) to analyze the stochastic vibration and buckling of functionally graded
materials [10]. The researchers used PCE to assess stochastic responses, such as
natural frequencies and critical buckling loads. Their results illustrate that PCE
offers efficient and precise evaluations, making it a valuable tool for examining
structural behavior under uncertainty.

Another notable contribution on the subject is the research on uncertainty quan-
tification and global sensitivity analysis for structural buckling by Chen et al. [11].
In this study, a data-driven PCE model is developed to quantify uncertainties and
carry out sensitivity analysis on eigenvalue buckling problems. The efficacy of the
PCE model is confirmed using statistical moments and Sobol sensitivity indices,
providing insights into the parameters that have the most significant impact on
buckling behavior. The authors emphasize the effectiveness of PCE in providing
a comprehensive understanding of structural stability under uncertain conditions.



CHAPTER 2. BACKGROUND 5

Gaspar and Soares have investigated the potential use of PCE in the stochastic
analysis of a steel rectangular plate element under lateral pressure, representing
a ship bottom plate element. The results demonstrate that the adopted PCE
technique in the analysis could accurately predict the stochastic plate response
[12].

2.2 Use of Artificial Neural Networks in FEA

Because of the multitude of geometric, material, and load variations in designing
stiffened panels, FEM delivers precise results and clearly defined failure modes.
However, it requires time-consuming modeling and calculations. Therefore, there
is a need for a new approach that can achieve both speed and accuracy. Artificial
Neural Networks show promise in addressing such engineering challenges.

A number of studies that utilize machine learning in structural engineering are
emerging. However, the use of ANNs in marine structures is quite limited. An
effort was made by Wei and Zhang (1999) to apply ANNs to predict the ultimate
strength of stiffened plates [13], and they obtained positive results.

Another study done on marine structures was carried out by Li and colleagues [14].
The study provides a detailed nonlinear investigation of the ultimate compressive
strength properties of ship plates containing several cracks under longitudinal com-
pression using FEM and ANN methods. It was shown in this study that the ANN
effectively predicted the decrease in Ultimate Strength.

Limited research has been conducted regarding steel plates, thin shells, and stiff-
ened panels. However, Yongchang Pu and Ehsan Mesbahi [15] utilized an ANN to
assess the ultimate strength of an unstiffened panel under uniaxial compression.
The results of their study demonstrate the potential of ANN, which generally
yields superior outcomes compared to empirical formulas derived from traditional
regression analysis. This study accurately forecasted compressive strength by
leveraging data from prior experiments. Additionally, ML was utilized to analyze
plates made of non-linear materials such as aluminum and stainless steel alloys
in the research conducted by Cevik and Guzelbey [16], demonstrating that ANNs
outperformed other ML techniques.

Zareei et al. used machine learning methods to predict the ultimate strength of
flat-bar aluminum stiffened panels. They included welding effects in their model to
improve accuracy [17]. Mallela and Upadhyay employed a neural network trained
on a small set of finite element models to forecast the ultimate strength of lami-
nated composite stiffened panels, achieving high accuracy and efficiency [18]. Ku-
mar et al. created a model to determine the ultimate strength of hat-stiffened
composite panels under axial-compressive loading, with most models yielding er-
rors below 2% [19]. ANNs have been utilized in structural engineering to predict
deflection and ultimate buckling strength in beams and columns. For instance,
Tohidi and Sharifi used this approach to predict the buckling strength of steel
I-beams with restrained buckling [20]. Another study by Abambres et al. [21]
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explored the ultimate buckling strength of Cellular I-profiles using ANNs, with
promising results.

The work of Bisagni and Lanzi [22] acknowledges the challenges faced by other
researchers striving for minimum weight optimization for stiffened composite pan-
els. In such optimization tasks, key considerations often include minimum panel
strength and the critical buckling load as output criteria. Input parameters typ-
ically encompass the layup definition, stiffener count, and dimensions involving
discrete and continuous variables. To tackle the complexities arising from these
variables and the potential non-convex nature of the cost function, Bisagni and
Lanzi opted for a genetic algorithm (GA) as the optimization algorithm.

Due to the computational intensity of this GA-based approach, Bisagni and Lanzi
proposed an optimization procedure that employs ANNs to predict the desired
structural response outputs. Initially, these neural networks are trained using a
series of FEM simulations. Once trained, these networks eliminate the need for
time-consuming calculations during optimization. A distinct ANN is trained for
each output variable, covering pre-buckling stiffness, buckling load, collapse load,
and even the load-displacement curve.

It is important to note that many of these studies primarily evaluated the perfor-
mance of ML models within the range of their training data, with limited explo-
ration of their generalizability and scalability.
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THREE

THEORY

3.1 Finite Element Method
The finite element method is utilized in the design of buildings, vessels, aircraft,
and spacecraft. It is a numerical approach used to estimate solutions to differential
equations. The fundamental idea is to address the behavior of each finite element
individually after breaking down a complex problem into smaller, more manage-
able segments known as finite elements, each with its own governing equations. A
set of nodal values, which represent the values of the solution at specific points
within the element, define the behavior of each component. A system of linear
equations can be established by applying boundary conditions and consolidating
the equations for each element in the mesh. This system of equations can then be
numerically solved to approximate the overall solution. It will not provide exact
solutions, but it is precise enough for engineering purposes.

3.1.1 Principles

The finite element method is based on three principles [23]:

• Equilibrium

• Kinematic compatibility

• Stress-strain relationship

The equation for equilibrium is defined by stress, while kinematic compatibility is
defined by strains, and the final principle involves the connection between stresses
and strains. When dealing with small displacements, equilibrium is achieved using
linear strain functions, resulting in a linear stress-strain relationship in line with
Hooke’s Law. However, when calculating the ultimate strength of structures that
buckle and collapse, the linear assumptions often need to be adjusted.

3.1.2 Main Steps

The theory written about in this section is taken from the compendium in TMR4190
- Finite Element Modelling and Analysis of Marine Structures by Torgeir Moen
[23].

7
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3.1.2.1 Discretization

Discretization involves dividing the structure into multiple smaller elements, with
all elements and nodes being numbered. Figure 3.1.1 illustrates the discretization
of a transverse frame beam model. The nodes are positioned along the connec-
tions between the structural elements. In the case of a plane stress problem, the
structure’s geometry is subdivided into smaller elements using a mesh, with each
element being interconnected at the corners and along the edges. The number of
elements typically determines the accuracy of the results.

Figure 3.1.1: Discretization of frame and plane stress problems [23]

3.1.2.2 Element Analysis

Element analysis consists of two primary aspects: expressing the displacements
within the elements and ensuring equilibrium within the elements. It is also cru-
cial to maintain compatibility by utilizing stress-strain relationships.

To derive the stiffness matrix for each element, the element stiffness relation is ac-
quired with respect to a local reference system. The equation utilized is S = kv,
where S represents a vector consisting of nodal forces, k is the element stiffness
matrix in the local reference system, and v is the vector containing the nodal dis-
placements. For beam elements, the relationship between forces, moments, and
corresponding displacements is employed to derive this equation. This relation-
ship can be understood as obtained from the governing differential equation and
boundary condition of the beam elements. However, it is not feasible to employ
the exact solution for a plane stress problem.

Expressions for the shape functions are utilized to represent the displacements
within the element, which are then scaled by the node displacements. By assuming
these shape functions, it becomes feasible to compute the displacement at any
point within the element using the displacement of the nodal points.
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Figure 3.1.2: General Beam Element and Plane Stress Element [23]

The part of the design that the element represents is supported by the forces acting
along the edges. When conducting finite element analysis, it is useful to calcu-
late nodal point forces by ensuring that the element is in integrated equilibrium
through work or energy considerations. This procedure establishes a connection
between the nodal point displacements and forces, which can be expressed as:

S = k · v + S0 (3.1)

Where S0 is the nodal point forces for the external load.

3.1.2.3 System Analysis

The system’s stiffness relations are established using an "address table," which
outlines the connections between the local degrees of freedom of all the elements
and the system’s DOFs. A connection is formed between the load and the nodal
displacements to maintain equilibrium for all nodal points in the structure.

R = K · r+R0 (3.2)

K =
∑
j

aT
j kjaj (3.3)

R0 =
∑
j

aT
j S

0
j (3.4)

3.1.2.4 Boundary Conditions

The equation system is adjusted by introducing boundary conditions. Boundary
conditions can be applied either by setting nodal displacements to known values or
by including spring stiffnesses. The equation system is then expressed as Rmod =
Kmodrmod.

3.1.2.5 Finding Global Displacements

The global displacements are found by solving the linear set of equations stated
below.

r = K−1 · (R−R0) (3.5)
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3.1.2.6 Calculation of Stresses

Hooke’s law is used to calculate the stresses based on the strains. Strains are ob-
tained from the displacement functions within the element, which are then com-
bined with Hooke’s law. The following equation provides a general expression for
this process.

σ(x, y, z) = D ·B(x, y, z) · v (3.6)

Here, D is Hooke’s law on matrix form and B is derived from u(x, y, z).

3.1.3 Nonlinearities

When steel structures collapse along with buckling, it typically occurs because
of one or both of two nonlinear behaviors. These include geometric nonlinearity,
which is connected with buckling or significant deflection, and material nonlinear-
ity, which is triggered by yielding or plastic deformation [23].

3.1.3.1 Geometric Nonlinearity

When solving for equilibrium equations and calculating strains from displacement,
Geometrical Nonlinear Behavior is taken into account. In problems involving
geometric nonlinearity, deformations are significant enough to invalidate linear
assumptions. This indicates that the connection between loads and deformations
becomes nonlinear, even when the material’s behavior is linear. The stiffness
relationship in linear theory is represented as shown in Equation (3.7).

R = Kr (3.7)

K, the stiffness matrix, remains constant regardless of the structure’s deformation,
while r represents the displacement vector. This is equal to the external loads R.
When geometric nonlinearities are introduced, the geometric stiffness relation is
altered to:

R = K(r)r (3.8)

K(r) is denoted secant stiffness. Equation (3.8) can be solved analytically for a
given R, but it is normally done using iterative methods. To do this, the equation
is expressed on a differential form.

dR =
d

dr
(K(r)r)dr = KIdr (3.9)

and

KI(r) =
d

dr
(K(r)) (3.10)

where KI(r) is the incremental stiffness.
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3.1.3.2 Material Nonlinearity

Material nonlinearity occurs when the connection between stress and strain in a
material is not linear. In linear materials, stress is directly proportional to strain
(Hooke’s Law). However, in nonlinear materials, this relationship becomes more
intricate. Tests on metal materials demonstrate that linearity no longer holds
true when stress exceeds a certain level, denoted as σP . Dealing with nonlinear
material properties requires the introduction of additional terminology.
From Figure 3.1.3 material properties can be defined.

Figure 3.1.3: Material Properties [23]

The stress at A is calculated from Equation (3.11):

σ = Esϵ (3.11)

Here, Es is the secant modulus which is dependent on the stress level. For loading
and unloading from point A, the change of stress can be described as in Equation
(3.12) and (3.13), respectively. ET is the tangent modulus, while Hookes’s law
applies to the unloading.

∆σ = E∆ϵ (3.12)

∆σ = ET∆ϵ (3.13)

3.1.4 Solution Techniques

3.1.4.1 General

The characteristic features of some types of nonlinear response are illustrated in
Figure 3.1.4 and 3.1.5.
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Figure 3.1.4: [23] Figure 3.1.5: [23]

The cases illustrated are listed from a-g. L and F describe limit points and failure,
while B and T shows bifurcation and turning points.

• Linear until brittle failure

• Stiffening or hardening

• Softening

• Snap-Through

• Snap-Back

• Bifurcation combined with limit points and snap-back (f and g)

For nonlinear analyses, the solutions are no longer unique indicating that the
achieved solution might not align with the intended one. This section will cover
three fundamental methods to address the variety of possible solutions. The three
methods are the Euler-Cauchy method, Newton-Rapshon iterative method, and a
combined method.

3.1.4.2 Euler-Cauchy Method

The increments in displacement from the Euler-Cauchy method are based on ex-
ternal loading increments. By adding together the new displacement increments
the total displacement can be calculated. This is explained mathematically in
Equation (3.14) and illustrated in Figure 3.1.6.

∆Rm+1 = Rm+1 −Rm

∆rm+1 = KI(rm)
−1∆Rm+1

rm+1 = rm +∆rm+1

(3.14)
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Figure 3.1.6: Euler-Cauchy increment [23]

In this approach, the stiffness from the previous step is utilized to calculate the
displacement increment for the subsequent step. The accuracy of this method can
be enhanced by using smaller load increments.

3.1.4.3 Newton-Raphson Method

The most frequently used iterative method for solving non-linear structural prob-
lems is the Newton-Raphson method. In the Newton-Raphson method, the dis-
placement increment at each step is determined by the difference between the
approximate values and the true values at that step and can be written mathe-
matically as described in Equation (3.15).

R−Rint = KI(n)∆rn+1 (3.15)

The basic principle for this iteration is illustrated in Figure 3.1.7 for a single d.o.f.
system. This method requires that KI is established and that ∆rn+1 is solved
in each iterative step. This is time-consuming. By updating KI less frequently
reduced efforts are needed. Since this approach implies only a limited loss of rate
of convergence, such modified Newton-Raphson iteration is beneficial.
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Figure 3.1.7: Newton-Raphson [23]

Figure 3.1.8 illustrates two alternatives for modified Newton-Raphson methods,
one with no updating of KI and one method where KI is updated after the first
iteration. The iteration is stopped when the accuracy is acceptable. The conver-
gence criterion may be based on the change of displacement from one iteration to
the next.

Figure 3.1.8: Modified Newton-Raphson [23]

3.1.4.4 Combined Methods

Incremental and iterative methods can also be combined and can be done by
applying the external load in increments. By doing this, equilibrium in each
increment is achieved by iteration as shown in Figure 3.1.9.
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Figure 3.1.9: Combined Method [23]

The process involves applying loads as specified by Equation (3.14), followed by it-
erations at each load level using Equation (3.15). Typically, the modified Newton-
Raphson method is used keeping the gradient KI constant across several iteration
cycles.

3.1.5 Stiffened Plates

The stiffened panel is crucial to the structural integrity of ship hulls due to its ease
of fabrication and excellent strength-to-weight ratio. Typically, stiffened panels
in ships are subject to combined in-plane and lateral pressure loads. The study
of stiffened plates experiencing compressive loads is important in structural engi-
neering, especially in applications where stability under high compressive stress is
critical, such as in ship hulls, bridge decks, and aerospace structures [24].

The primary framing system for hull girders consists of closely spaced longitudinal
stiffeners, along with more widely spaced, heavier girders in the transverse direc-
tion. Plates play a vital role in transferring hydrostatic loads to the stiffeners,
which then transfer the loads to the transverse girders, forming the transverse
frames of the hull girder. The loads are introduced as membrane stresses in the
side from the vertical girders.

The side also experiences hydrostatic loads. Generally, the bottom plate of a
ship is subjected to biaxial in-plane loads caused by longitudinal bending of the
hull girder and hydrostatic pressure on the sides, as shown in Figure 3.1.10 [24].
Performing a rigorous analysis of such panels subjected to simultaneous action of
lateral pressure as well as in-plane loads is quite challenging. For design purposes,
the problem is often divided so that the critical load is first determined for each
of the loads acting alone.
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Figure 3.1.10: Stiffened Panels in a Bottom Structure [24]

For a stiffened plate under compressive loading, the primary concern is buckling.
The buckling can occur in both the plate itself and in the stiffeners.

3.1.5.1 Failure Modes

The possible failure modes for a stiffened plate is illustrated in Figure 3.1.11.

Figure 3.1.11: Failure Modes [24]

Plate buckling and ultimate collapse refer to when the plate load exceeds the
maximum capacity, followed by unloading, resulting in the collapse of the stiff-
ened panel without significant yield occurring in the stiffeners. Interframe flexural
buckling occurs in the longitudinal stiffeners along with associated plating. This
type of failure involves the yielding of the stiffeners, which is hastened by the loss
of stiffness due to buckling or yielding of the plate. Stiffener-restrained torsional
buckling is caused by the elastic or elasto-plastic loss of stiffness, which depends
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on the slenderness of the stiffeners, the rotational restraint provided by the plat-
ing, and the initial out-of-shape. Overall grillage buckling involves the bending
of transverse girders and longitudinal stiffeners. Most structures are designed to
prevent overall grillage buckling, therefore this failure mode is unlikely except for
lightly stiffened panels found in superstructure decks.
The failure of a stiffened plate can occur in different forms, including local buck-
ling, plate-induced failure, stiffener-induced failure, overall buckling, and tripping.
However, in some cases, the junction of the plate and stiffener may slightly move
out of its usual flat plane. This movement is typically small, only about one-tenth
of the overall movement of the structure. This supports the idea that it generally
doesn’t extend outwards significantly.

When plates buckle overall, the junction between the web and the line goes be-
yond the point that is out of the plane, causing the plate to lose its flatness. This
results in a half-wave projection resembling a half-sine wave. The failure of both
the plate and the stiffener happens simultaneously, which is known as Euler type
buckling. If the stiffener is on the tension side, the overall buckling failure is re-
ferred to as plate-induced overall buckling. If the stiffener is on the compression
side, it is called stiffener-induced overall buckling. Lateral torsional buckling is
a sudden reduction in load-carrying capacity due to the tripping failure of the
stiffened plate around the stiffener to plate junction. The tripping stiffener may
undergo tension or compression due to bending. It is a significant failure due to
the drop in load-carrying capacity [23].

Figure 3.1.12: Failure Modes [24]

3.1.6 Buckling of Plates

Buckling in a structural context can be characterized as the abrupt, unstable de-
flection observed in slender structures when subjected to compression or shear
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loads. This instability phenomenon can manifest itself at loads considerably lower
than the material failure thresholds of the structure’s constituent materials. Once
buckling occurs, the structure loses its stability, leading to unanticipated deforma-
tions and eventual failures. Consequently, it is crucial to account for the impact
of buckling in a structural assembly and to calculate the premature failures re-
sulting from this phenomenon. The approach described here is taken from the
compendium in TMR4205 Buckling and Ultimate Strength of Marine Structures
[24] and also written about in the author’s project thesis [25].

The classical approach to elastic plate buckling problems is either by solving the
differential equation of equilibrium or applying energy methods.

The equilibrium equation for a plate is given by Equation (3.16).

∇4w =
1

D

(
q +Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2

)
(3.16)

With D being the plate stiffness, given as:

D =
Et3

12(1− v2)
(3.17)

The N-quantities, Nx, Ny and Nxy, are the membrane stress resultants. For the
problem with uniaxial compression illustrated in Figure 3.1.13 Equation 3.16 looks
like:

∇4w =
Nx

D

∂2w

∂x2
(3.18)

This leads to a solution for the buckling stress on the form:

σ =
π2E

12(1− v2)
(
t

b
)2 · k (3.19)

Here, k is a factor that depends on the plate aspect ratio, illustrated in Figure
3.1.14.

Figure 3.1.13: Simply Supported Plate Under Uniaxial Compression [24]
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Figure 3.1.14: Buckling Coefficient versus Plate Aspect Ratio [24]

The other approach to solving plate buckling problems is the energy method. The
elastic strain energy at the critical load can be expressed as:

U =
D

2

∫ a

0

∫ b

0

{(
∇2w

)2 − 2(1− v)

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)}

dxdy (3.20)

By setting two conditions along the boundaries to

w = 0
∂w

∂n
= 0 (3.21)

the critical load can be found by applying the principle of minimum potential en-
ergy, leading to the same critical load equation as for the solution of the differential
equation.

3.1.7 Buckling of Stiffened Plates

Most of the theory in this section is taken from the compendium in TMR4205
Buckling and Ultimate Strength of Marine Structures by Professor Jørgen Amdahl
[26].

3.1.7.1 Effective Width Method According to Faulkner

The effective width method was proposed by Faulkner and is based on the elastic
critical load for a strut with pinned ends described in Equation (3.22).

σE =
π2EI ′e

l2(Aw + Ae)
(3.22)

It is modified for plasticity according to the Johnson-Ostenfield formulation:

σe
σy

= 1− λ̄2

4
, λ̄2 ≤ 2 (3.23)

The ultimate strength is reduced to account for loss of plate stiffness,
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σu = σe
Aw + Ae

Aw + Ap

(3.24)

The effective moment of inertia of the stiffener is calculated for a tangent effective
width of the plate given by:

be
b
=

1

b

√
σy
σe

(3.25)

3.1.7.2 Initial Yield Method (DNV Classification Note 30.1)

The buckling check in stiffened plates is based upon a beam-column approach,

σx
σxcr

+
σb

(1− σx

σE
)σY

(3.26)

Where

• σx is the axial stress

• σxcr is the critical stress for the plate/stiffener in pure compression

• σb is the design bending stress

• σY is the yield stress

• σE is the Euler buckling stress for plate/stiffener

The method for finding the critical stress for pure compression is the same as the
one described for columns in Equation(3.27).

σxcr
σY

+
σxcr

1− σxcr

σE

weqA

σYW
= 1 (3.27)

weq is the equivalent imperfection accounting for the true out-of-straightness and
the effect of fabrication stresses, and l is the member length. The critical axial
stress can be calculated by introducing a factor, µ.

µ =
weqA

W
= 0.0015l

z

i2
(3.28)

Now the critical stress can be found from Equation (3.29)

σxcr
σY

=
1 + µ+ λ̄2 −

√
(1 + µ+ λ̄2)− 4λ̄2

2λ̄2
(3.29)

λ̄ =

√
σY
σE

, σE =
π2Ei2e
l2e

(3.30)

ie, the effective radius of gyration, is defined by

ie =

√
Ie

A+ bet
(3.31)

The effective moment of inertia can be written as
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Ie = I + e2A(l +
A

bet
)−1 (3.32)

With

• e being the eccentricity of the stiffener to the plate flange

• I the moment of inertia of the stiffener without the plate flange

• be the effective width of the plating

• t the plate thickness

In the case of plate-induced failure, there is a displacement of the neutral axis
resulting from a reduction in effective width which is illustrated in Figure 3.1.15.
This displacement introduces additional eccentricity for the plate or stiffener,
which must be considered in the analysis.

Figure 3.1.15: Shift of Effective Neutral Axis After Plate Buckling [24]

The shift can be calculated by Equation (3.33). The effective buckling length is
influenced by lateral pressure.

∆z = zp
(b− be)t

A+ bt
= zp(1−

A+ bet

A+ bt
) (3.33)

In the absence of lateral pressure, the effective length is considered to be equivalent
to the frame spacing. However, when lateral pressure is present, two failure modes
must be considered: asymmetric buckling and symmetric buckling relative to the
frame. Generally, the over-pressure may be on either the plate side or the stiffener
side. This gives four potential buckling modes as shown in Figure 3.1.16.
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Figure 3.1.16: Buckling Modes Plate/Stiffener [24]

3.1.8 Buckling of Stiffeners - DNV RPC201

3.1.8.1 Equivalent Load Effects

The equivalent axial force combines the actual axial force with a tension field
action. The tension field concept enables shear stresses to exceed the critical stress
level, τcrl, for plate shear buckling occurring between stiffeners and girders. These
shear stresses are supported by tension forces among the stiffeners, as depicted by
the shaded areas in Figure 3.1.18. The additional shear force that the stiffener
must support through compression is calculated as follows [24]:

Nτ = (τ − τcrg)st (3.34)

Keep in mind that τcrg refers to the critical shear stress between the girders when
the stiffeners are not present. We use τcrg < τcrlr because, in the post-buckled con-
dition, we assume that the plate can only bear the shear force between the girders.

It’s worth noting that the calculation of the axial force is based on the stresses
acting on the entire plate flange, as derived from linear elastic analysis. The axial
capacity, on the other hand, is determined using the effective plate flange.
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Figure 3.1.17: Equivalent beam-column model of stiffened plate [24]

Figure 3.1.18: Tension Field in Stiffened Plate [24]

In addition, the transverse stresses, σy, are considered to have a driving effect on
plate and stiffener buckling. The buckling stress of a transversely stiffened plate
is given by Equation (3.35).

σyE =
π2D

12t

[(
ml

LG

+
LG

ml

)2

+ is

(
LG

ml

)2
]

(3.35)

3.1.9 ABAQUS

Abaqus was used to develop and analyze the stiffened panel. Its vast element
library provides a powerful set of tools for solving a number of different problems.
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Most of the theory that ABAQUS is built on that is presented in this section is
taken from the ABAQUS documentation [27].

Each element in ABAQUS can be characterized by 5 different categories:

• Family

• Degrees of Freedom

• Number of Nodes

• Formulation

• Integration

The most common families in ABAQUS are shown in Figure 3.1.19, where it can
be seen that the main difference between the families is if they are one, two, or
three-dimensional.

Figure 3.1.19: Element Families [27]

The degrees of freedom serve as the essential variables computed during the anal-
ysis. In stress/displacement simulations, they represent the translations and, in
the case of shell and beam elements, the rotations at each node. Displacements
and rotations are determined exclusively at the nodes of the element, and at other
points within the element, the displacements are derived through interpolation
from the nodal displacements. An element’s formulation refers to the mathemati-
cal theory utilized to define the element’s behavior. In ABAQUS/Explicit, in the
absence of adaptive meshing, all deformable elements are based on the Lagrangian
or material description of behavior, where the element deforms with the material.
Alternatively, elements in the Eulerian or spatial description are stationary in
space as the material flows through them. ABAQUS incorporates numerical tech-
niques to integrate various quantities across the volume of each element. Gaussian
quadrature is typically employed by ABAQUS to evaluate the material response
at each integration point in each element [27].

3.1.9.1 Shell Elements

The element family that will be introduced here is shell elements. Shell elements
are used to model structures where one dimension, in this case the thickness, is
significantly smaller than the other dimensions and the stresses in the thickness
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direction are negligible [27].

The ABAQUS Shell Element Library allows for the modeling of curved, inter-
secting shells that can demonstrate nonlinear material response and can undergo
significant translations and rotations. The library can be categorized into three
sections: general-purpose, thin, and thick shell elements. Thick shell elements are
based on Mindlin shell theory, thin shell elements are derived from classical Kir-
choff shell theory, and general-purpose shell elements provide solutions for both
thin and thick shell elements. As a result, general-purpose shell elements are
the preferred choice for most applications and are the category of shell elements
recommended by ABAQUS [28].

3.1.9.2 Buckling in Abaqus

This section is the same as in the author’s project thesis [25].

The determination of the buckling load can be achieved through FEA using soft-
ware like ABAQUS [28]. This analysis has the objective of extracting both the
eigenvalues and the corresponding eigenvectors, where the eigenvalues signify the
buckling load and the eigenvectors represent the associated mode shape. It’s im-
portant to emphasize that the eigenvectors are normalized, indicating that they
express relative displacement values rather than exact displacements. To deter-
mine the buckling load, the initial conditions are scaled by the eigenvalues since
the eigenvalue acts as a load multiplier. This analytical approach relies on a linear
perturbation method to estimate the critical buckling load for a given structure.
The buckling analysis procedure revolves around identifying the load that results
in a singular stiffness matrix, thus requiring the solution of the following eigenvalue
problem:

KNMvM = 0 (3.36)

In this context, KNM denotes the stiffness matrix, while vM stands for nontrivial
displacement solutions. During the eigenvalue-based buckling prediction stage, an
incremental loading pattern, QN , is established. This pattern is then adjusted
by load multipliers λi, rendering its specific magnitude irrelevant. The general
equation for the eigenvalue problem is as follows:

(KNM
0 + λiK

NM
∆ )vMi = 0 (3.37)

The stiffness in the base state is denoted by the symbol KNM
0 , while the differ-

ential stiffness is represented by KNM
∆ . The base state stiffness is the result of a

combination of hypoelastic tangent stiffness, initial stress stiffness, and load stiff-
ness, as described by ABAQUS.

The eigenvalues λi serve as multipliers, providing an estimate of the generalized
buckling load as PN + λiQ

N , while the corresponding eigenvectors vNi illustrate
the associated buckling modes.
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Though the lowest mode is typically the primary concern in most analyses, ABAQUS
is capable of extracting multiple modes simultaneously. Furthermore, it is note-
worthy that ABAQUS can easily handle the common scenario of an antisymmetric
buckling mode on a symmetric base state and buckling load.

If the prediction of the tangent stiffness is inaccurate using KNM
0 + λiK

NM
∆ , a

nonlinear analysis utilizing the Riks method becomes necessary to obtain a reliable
estimate of the structure’s load-carrying capacity.

3.2 Machine Learning by Artificial Neural Net-
work

According to the textbook "Machine Learning" by Zhi-Hua Zhou, Machine Learn-
ing can be described as "The technique that improves system performance by
learning from experience via computational methods" [29]. It is a broad term
which is including all algorithms that can extract patterns from a data set.

This chapter will mainly focus on Machine Learning (ML), surrogate models, Arti-
ficial Neural Networks (ANN) and an introduction to Polynomial Chaos Expansion
(PCE). The a goal is to establish a high-level overview and the most important
aspects of surrogate modelling, in addition to an introduction to machine learning.

3.2.1 Machine Learning

In the following section, the aim is to provide an intuitive definition of a machine
learning problem, which forms the core concept behind self-learning computational
units like ANN. The problems can be broken into three essential components: the
task, the performance measure, and the experience [30]. Parts of the following
section are extracted and rewritten from the author’s project thesis [25].

3.2.1.1 Task

When designing projects and solving problems in machine learning, it is important
to define the task, which refers to the object the model is set to accomplish [30].

Regression is the foundational method for establishing a trendline from a dataset.
It aims to predict a continuous numerical output by identifying a relationship be-
tween input variables and the target variable. The algorithm generates a function
to predict the output value based on the input values. This function can be linear
or non-linear, with several trainable parameters to represent complex problems.
Thus, regression is not only the most basic but also one of the most versatile tasks
an algorithm can perform.

On the other hand, classification is another widely used method that shares sim-
ilarities with regression. However, instead of producing a continuous range of
values, it predicts the class to which an input example belongs. In classification
tasks, a machine learning model assigns a label or class to each input data point
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based on patterns learned from the training data. For instance, in an ANN, classi-
fication can be used to categorize input images of animals, such as distinguishing
between dogs and cats.

3.2.1.2 Performance

The performance measure is a crucial aspect of a machine learning problem, defin-
ing how the success or quality of the model’s predictions or outcomes will be
evaluated. It quantifies the effectiveness of the machine learning algorithm in per-
forming the specified task. This measure is related to the task at hand and is a
function of the discrepancy between the predicted and actual values in the dataset.

For problems that yield continuous outputs, performance measures typically in-
clude cost functions such as mean squared error (MSE), R-squared (R²), and mean
absolute error (MAE), which will be discussed in more detail later. These metrics
assess the accuracy and goodness of fit between the predicted values and the ac-
tual observed values.

Selecting the appropriate performance metric is essential in machine learning be-
cause it influences how the model is trained and evaluated. It allows for the
comparison of different models, adjustment of parameters, and determination of
the model’s suitability for a particular application. The choice of performance
measure depends on the nature of the problem, as well as the specific objectives
and requirements of the task [30].

3.2.1.3 Experience

Experience in machine learning refers to the set of variables that characterize a
computational unit, derived from the data points it has been trained on and the
training process itself. This experience enables the model to improve its perfor-
mance on a specified task over time.

Machine learning models learn from experience by analyzing and processing a
dataset containing relevant examples or instances. This dataset includes input
data and corresponding target values, which inform the model about relationships
and patterns in the data. The learning process involves iteratively adjusting the
model’s internal parameters or structure to better fit the observed patterns in the
training data, allowing the model to make more accurate predictions or classifica-
tions when presented with new, unseen data.

There are two primary approaches to gaining experience: supervised learning and
unsupervised learning. In supervised learning, the model learns from labeled ex-
amples, where the correct answers are provided alongside the input data during
training. The model’s goal is to generalize from these labeled examples to make ac-
curate predictions for unseen data. In contrast, unsupervised learning involves the
model learning from unlabeled data, seeking to identify hidden patterns or struc-
tures within the data. For ANNs, supervised learning is the preferred method
[31].
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3.2.2 Surrogate Models

Surrogate/approximation/metamodeling, is the key to surrogate assisted opti-
mization. Surrogate models are typically created as an affordable alternative to
a costly-to-evaluate function M. A surrogate model, denoted as M̂, is usually
configured using a specific set of N evaluation points, called the training set or
experimental design as described by Thomas Sauder in his PhD thesis [32]. When
discussing surrogate models, the two parameters ε and F are defined as

ε := (x(1), x(2), ..., x(N))T (3.38)

F := [M(x(1)),M(x(2)), ...,M(x(N))]T (3.39)

From the values of (ε,F), M̂ can be used to predict the value of M(x) at points
x that are not included in ε. An important point to emphasize in this chapter is
that suitable surrogate models can also be utilized to study specific properties of
M.

The simplest example of a surrogate model is the linear interpolator between the
evaluation points. In this case, M̂ is exactly equal to M at the evaluation points.
A linear regressor provides an alternative type of surrogate model. In this case, an
assumption is made regarding the overall behavior of M (that it is linear across
the entire range of evaluation points), which goes beyond the requirement for
M̂ to be exactly equal to M at the evaluation points. There are a number of
different surrogate modeling techniques; however, a common aspect is that they
are all parameterized functions, and their parameters are optimized in some way
to ensure that M̂ mimics the original function M.

3.2.3 Artificial Neural Networks

ANNs have become a powerful tool in various fields in recent years, used for
tasks such as data categorization, pattern recognition, and prediction. ANNs
have proven to be as effective as traditional statistical models [29].

The main advantage of ANNs is their ability to handle data quickly, efficiently, and
reliably. They excel in accuracy, processing speed, latency, overall performance,
fault tolerance, large data handling, scalability, and problem-solving. This makes
them especially suitable for complex tasks like image recognition and natural lan-
guage processing. What makes ANNs unique is their capacity for independent
learning, adaptation, fault tolerance, processing non-linear information, and effec-
tive input-to-output mapping. Their widespread use in various numerical fields
today highlights these outstanding characteristics [31].

Based on the human brain, ANNs have acquired many favorable traits over time
[29]. While most computers now outperform humans in most numerical simula-
tions, the human brain still excels in other areas. Humans can rapidly recognize
faces even in challenging conditions such as poor lighting, comprehend speech in
noisy environments, and most importantly, the human brain has the ability to
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learn. This is the foundation of ANNs, inspired by early models of sensory pro-
cessing by the brain, specifically the neural structure of the central nervous system.

The brain’s calculations take place through a highly intricate and interconnected
network of neurons. These neurons communicate by sending electrical signals
along neural pathways, which consist of axons, synapses, and dendrites. Artificial
neurons seek to mimic this process, as shown in Figure 3.2.1. While a biological
neuron has dendrites to receive signals, a cell body to process signals, and an
axon to transmit signals to other neurons, an artificial neuron has multiple input
channels, a processing stage, and a single output that can connect with multiple
other artificial neurons [31].

Figure 3.2.1: Brain Neuron vs Artificial Neuron [31]

3.2.3.1 The Neuron

The concept of the artificial neuron originates from the work of McCulloch and
Pitts in 1943 [33] and is shown in Figure 3.2.2. This concept can be divided into
three parts: weighting, summing, and activation. McCulloch and Pitts modeled a
neuron as a switch that receives inputs from other neurons and, based on the total
weighted input, either activates or remains inactive. Inspired by Hebb’s design of
the single-layer neuron, Rosenblatt later developed the multi-layer neuron shown
in the Figure [34].

Figure 3.2.2: Inside an artificial neuron

When a signal enters the neuron, it is assigned a weight value and then multi-
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plied by it. In this example, the neuron has three inputs, each assigned a distinct
weight. These weights are adjusted based on the errors observed during the learn-
ing phase. Next, the weighted input signals are summed into a single value, to
which an offset known as bias is added [31]. This can be formulated as Equation
(3.40).

z = w1x1 + w2x2 + ...+ wnxn + b1 (3.40)

3.2.3.2 The Network

To recognize and analyze intricate patterns within a dataset, multi-layer neurons
play a crucial role. An ANN is formed by combining multiple artificial neurons.
For complex problems, the network can be structured with numerous parallel nodes
per layer, potentially integrating multiple layers based on the issue’s complexity.

Effectively training an ANN begins with establishing the correct outputs for a
series of inputs from a sizable and representative dataset. Following this, appro-
priate values are assigned to the weight matrices and biases, and the inputs are
passed through the network. An error function is then employed to evaluate the
network’s performance for single or multiple inputs, and adjustments to the weight
matrices and bias vectors are made accordingly. Once trained, the network can
forecast outcomes for inputs similar to those in the training data. A fundamental
comprehension of these principles is essential for setting up and efficiently training
an ANN, as detailed in the subsequent section.

3.2.4 Modelling the Network

This section will explain the key concepts and elements behind modeling Artificial
Neural Networks.

3.2.4.1 Training and Test Data

In order for an ANN to perform effectively, it needs to be trained using a com-
prehensive dataset. The engineer’s decisions regarding the data are pivotal in
constructing a capable ANN. By adjusting the offsets and weights for each node,
the network is trained, and prediction errors are minimized.

Training an ANN successfully necessitates a dataset that is both sufficiently large
and representative. This dataset should be labeled, indicating that the output
for each data point is known. Typically, the available data is split into two sub-
sets: the training set and the testing set. The training set, usually the largest,
is utilized to train the network, while the test set assesses the effectiveness of the
trained network. This evaluation is carried out by computing the error of the test
data outputs from the trained network. The process of choosing and dividing the
data into sets is not fixed but relies on experience and experimentation. A com-
mon approach is to use an 80%/20% or 90%/10% split for training and testing [35].

The size of the dataset needs to be sufficiently large to accurately represent the
behavior of the task. Insufficient volume will result in significantly higher testing
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errors compared to training errors. Furthermore, the domain of the data is critical
for the optimal performance of an ANN. It needs to be broad and diverse enough
to prevent predictions outside of the training domain.

3.2.4.2 Activation Function

An activation function applies a function to the combined output and passes the
resulting value, aiming to imitate the activation/deactivation process. The state
of a neuron is determined by the activation function, which computes the com-
bined input [36].

After the signals are weighted and summed, the weighted sum is compared to a
threshold or bias to decide whether the neuron is activated, as shown in Figure
3.2.2 [29].

The activation function is nonlinear, which allows the ANN to capture non-linear
patterns in the data. This ability enables it to recognize trends such as parabolic
or tangential patterns in the dataset. According to Cybenko’s Universal Approx-
imation Theorem, an ANN with a single hidden layer and a nonlinear activation
function can approximate any non-linear relationship [37].

The range is an essential factor when choosing the activation function. Depending
on the function, the range of the function may be in the interval [0, 1], [−1, 1],
or [0,∞ >. Activation functions with a small range are not ideal for the hidden
layers as they can slow down the learning rate. However, they have advantageous
properties for the output layer, contributing to improved stability. This section
will introduce some of the most commonly used neuron activation functions.

The step function is the most basic type of activation function in neural networks,
generating a binary output based on the input. If the input exceeds a specific
threshold, the output is ’1’; otherwise, it is ’0’. This function serves as an on/off
switch and does not support partial activation, which can be limiting when a neu-
ron needs to capture complex, non-binary relationships in the data. Initially used
in early neural network models like the perceptron for binary classification due
to its simplicity, the step function is not suitable for modern, advanced networks.
The step function is shown in Equation (3.41) and Figure 3.2.3 [38].

H(z) =

{
1, for z ≥ 0

0, for z < 0
(3.41)

The logistic function, also known as the sigmoid function, generates an S-shaped
curve that converts any real-valued input into a value ranging from 0 to 1. This
property is particularly valuable for evaluating probabilities or levels of confidence.
Unlike the step function, the sigmoid function offers a smooth transition in its out-
put, which can be understood as the likelihood of a neuron being activated. This
is especially beneficial for binary classification tasks, such as determining whether
an email is spam. The smooth gradient of the sigmoid function also simplifies the
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backpropagation process, improving the effectiveness of neural network training.
However, the sigmoid function has a tendency to become saturated for very high
or very low input values, leading to extremely small gradients. This saturation
can significantly slow down the learning process, as adjustments to weights and
biases become minimal. Additionally, the output of the sigmoid function is not
centered around zero, which can result in zig-zagging of gradient updates during
training [38].

Figure 3.2.3: Step function and Sigmoid function [31]

The hyperbolic tangent function, often referred to as the tanh function and shown
in Figure (3.42), yields a result within the -1 to 1 range. An important character-
istic of the tanh function is its centering at zero, resulting in an output spanning
from -1 to 1 with zero as the midpoint. This property helps mitigate the vanishing
gradient problem that may arise during deep neural network training. The zero-
centered nature of the tanh function promotes more reliable and effective training.
The shape of the tanh function is reminiscent of the sigmoid function, exhibiting
an S-shaped curve. However, unlike the sigmoid function, the tanh function pro-
vides an output range of [-1, 1] rather than [0, 1]. This zero-centered range can
be advantageous for specific neural network architectures, as shown in Figure 3.2.4.

The tanh function’s output range makes it particularly valuable in situations where
a neuron’s output must encompass both positive and negative values [38].

tanh(z) =
ez − e−z

ez + e−z
(3.42)

The last activation function presented here is The Rectified Linear Unit (ReLu),
which can be written mathematically as in Equation (3.43) [38].

ReLu(z) =Max(0, x) (3.43)

The ReLU function, portrayed in Figure 3.2.4, is a commonly utilized activation
function in neural networks. It functions by producing the input value if it is
positive, and zero if it is negative or zero. This results in a linear function for all
positive values and introduces non-linearity at x=0, making it suitable for complex
tasks.

In comparison to other non-linear functions like sigmoid or tanh, ReLU is com-
putationally efficient because of its straightforward thresholding at zero. This
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results in sparse activation, where only a subset of neurons is activated at any
given time. Sparse activation improves model efficiency and reduces the risk of
overfitting. Additionally, ReLU helps tackle the vanishing gradient problem, which
arises when gradients are too small for effective learning during backpropagation.
This problem is more pronounced with functions like sigmoid or tanh, but ReLU
helps mitigate it.

Figure 3.2.4: tanh and ReLu function [39]

3.2.4.3 Cost Functions

The metric Mean Squared Error (MSE) is commonly used in regression tasks. It
involves calculating the average of the squared differences between predicted and
actual values. The equation for MSE is provided in Equation (3.44). MSE is bene-
ficial because it gives more weight to larger errors, making it useful for minimizing
large errors. In neural networks for regression tasks, MSE is often utilized as the
loss function, and during training, the network’s weights are adjusted to minimize
it [40].

Nevertheless, MSE does have a drawback, which is its susceptibility to outliers.
If the data contains outliers, the presence of large errors can dominate the MSE,
potentially resulting in overfitting or a model that overly focuses on the outliers.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.44)

R-Squared quantifies the proportion of the variance in the dependent variable that
is predictable from the independent variables and is expressed as Equation 3.45.
It is a relative evaluation of fit and offers insight into how much better the model
performs compared to a simple average. An R-squared value of 1 signifies perfect
prediction, while 0 indicates that the model performs no better than a model
that consistently predicts the mean value. While R-squared is commonly used
to evaluate regression models, it should be approached with caution. A high R-
squared does not always indicate a good model, particularly if the model is overly
complex and overfits the data. Additionally, R-squared does not consider the
number of predictors in the model and can sometimes lead to misinterpretations
when irrelevant predictors are included [40].
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R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(3.45)

The Mean Absolute Error (MAE) is a measurement used to calculate the average
of the absolute variances between the predicted and actual values and is expressed
as shown in Equation (3.46). This metric offers a straightforward indication of
the average error made by the model in the units of the variable being predicted.
Unlike MSE, MAE treats all errors equally and is not overly influenced by outliers.
This characteristic makes it a dependable measure of model performance, partic-
ularly when working with datasets containing anomalies or outliers. Furthermore,
MAE is commonly employed as a loss function when training regression models
[40].

MAE =
1

n

n∑
i=1

(yi − ŷi) (3.46)

3.2.4.4 Topology

The structure of an ANN is illustrated in Figure 3.2.5. The network’s nodes can
be interconnected in various ways, resulting in complex behavior. The most basic
topology is the feed-forward network, which typically consists of input layers, out-
put layers, and potentially one or more hidden layers. In a feed-forward network,
signals move in only one direction without loops. Determining the network’s ar-
chitecture involves establishing the node count within each layer, the number of
layers in the network, and the connections between nodes. Initially, these param-
eters are often set based on intuition and then refined through multiple rounds of
experimentation [29].

The first layer in a neural network is the input layer, which receives the input
data. Each neuron in the input layer represents a feature of the input data. The
input layer typically does not perform any computations or transformations on
the data; it simply passes the data to the next layer in its raw form.

The layers between the input and output layers are known as the hidden layers.
Neurons in the hidden layers carry out various computations and transformations
on the input data. Each neuron in a hidden layer receives input from multiple
neurons of the previous layer, applies a weighted sum followed by an activation
function, and passes the result to the next layer. The term "hidden" is used be-
cause these layers are not directly exposed to the input or output, but they are
where the network learns to interpret the input data, extracting features and pat-
terns necessary for accurate predictions. The number and size of the hidden layers
determine the network’s complexity and capability [29].

The final layer in a neural network is the output layer. It receives input from the
previous layer and converts it into a format suitable for the network’s intended
output. The number of neurons in this layer usually corresponds to the number
of classes or outputs the network is designed to predict.
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Figure 3.2.5: General layout of ANN

3.2.4.5 Fitting

Fitting a model is a crucial step in machine learning, involving training the model
with a dataset to determine the best possible mapping of inputs to outputs. This
process entails adjusting the model’s parameters to accurately capture the un-
derlying patterns and relationships in the data. Model fitting aims to calibrate
the model to produce precise predictions for new, unseen data. The quality of
model fitting significantly impacts the success of any machine learning algorithm.
Well-fitted models can effectively achieve the objectives of machine learning tasks
by accurately predicting outcomes.

Model fitting goes beyond just minimizing errors on the training data; it also in-
volves finding the right trade-off between simplicity and complexity. Striking this
balance is vital to ensure that the model performs well not only on seen data but
also on new data. The primary challenges in this process are underfitting and
overfitting.

Underfitting occurs when the model is too simplistic to capture the underlying
data patterns, often observed in linear models dealing with complex or nonlinear
data. An underfitted model performs poorly on both training and testing data,
resulting from insufficient parameters or layers to learn the data’s structure. Un-
derfitting can also result from inadequate training, which can be addressed by
adding extra neurons and layers and extending the training time by increasing the
number of epochs.

Overfitting happens when the model learns the training data too well, leading
to a model that captures patterns specific only to the training set and does not
generalize well to unseen data. Overfitting is often caused by insufficient data,
overtraining, or an excessive number of parameters relative to the number of ob-
servations. Figure 3.2.6 illustrates the concepts of underfitting and overfitting in
a model.
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Figure 3.2.6: Underfitting and Overfitting [41]

3.3 Polynomial Chaos Expansion
In modern engineering, uncertainty quantification is becoming increasingly im-
portant. Instead of using deterministic scenario-based predictive modeling, there
is a gradual shift towards stochastic modeling to accommodate the inherent un-
certainty in physical phenomena and measurements. However, this transition
requires dealing with significantly larger amounts of information, such as when
using Monte-Carlo simulation, leading to the need for repetitive and costly com-
putational model evaluations.

Polynomial chaos expansions (PCE) represent a potent metamodelling technique
that seeks to provide a functional approximation of a computational model by
using its spectral representation on a suitably constructed basis of polynomial
functions.

Most of the theory described in this section is taken from the documentation of the
PCE-program UQLab [42] and the Article "Application of polynomial chaos ex-
pansions in stochastic analysis of plate elements under lateral pressure" by Gaspar
and Guedes Soares [12].

3.3.1 General About PCE

Consider a structural system for which the response is obtained as the solution of
a deterministic numerical model M, which can be

Y = M(x) (3.47)

of a n-dimensional vector x = {x1, ..., XM}T of input variables, and vector of quan-
tities of interest provided by the model y = {y1, ..., xM}T , which is referred to as
the model response in the sequel.

In analyzing the randomness of structural systems, the input variables of the
numerical model are treated as random variables, representing the uncertainties in
the essential properties of the structure (such as dimensions, material properties,
and loads). A joint probability density function (PDF) fX is linked to the set
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of input random variables. It is also assumed that the elements of this set are
independent, allowing fX to be defined as the product of the individual marginal
PDFs fXi (where i = 1, ..., n) [12]. The uncertainty or randomness in the input
variables will propagate through the deterministic numerical model in Equation
(3.47), resulting in an output response variable that is a scalar random variable
with PDF fY describing the structural system’s response (such as displacements
and stress components). The output random variable of the numerical model can
be expressed in a suitable space spanned by a PCE basis. This basis is a series
of multivariate orthogonal polynomials concerning the joint PDF of the input
random variables [43]. This PCE representation can be formulated as:

Y = M(X) =
∑
α∈NM

aαΨa(X) (3.48)

where aa : aϵNM are coefficients of the multivariate orthonormal polynomials ψa to
be determined and a = a1, ..., an are vectors with ordered lists of integers defining
the indices of the expansion.

3.3.2 Orthonormal Polynomials

The core idea behind polynomial chaos expansion is to represent a random vari-
able or a stochastic process as a series expansion over a set of polynomial basis
functions. These polynomials are chosen to be orthonormal with respect to the
probability density function of the input random variables. This orthonormality
ensures that the polynomials are uncorrelated, which simplifies the computation
of the coefficients in the series expansion.

Different families of orthonormal polynomials exist and are used as the basis for
PCE and are dependent on the distribution of the input variables [42].

• Hermite polynomials for Gaussian distributions, X ∼ N (0, 1)

• Legendre polynomials for uniform distributions, X ∼ U(−1, 1)

• Laguerre polynomials for exponential distributions, X ∼ Γ(1, k)

• Jacobi polynomials for beta distributions, X ∼ B(r, s,−1, 1)

3.3.3 Multivariate Orthonormal Polynomials

The multivariate polynomials from Equation (3.48) are then assembled as the ten-
sor product of their univariate counterparts. This set of multivariate polynomials
forms a basis where other functions can be represented [44]. Given n independent
input variables, creating the multivariate polynomial basis by tensor product of
the univariate polynomials is a possibility according to:

Ψα(x) =
n∏

i=1

ϕ(i)
αi

(xi) (3.49)
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where ϕαi
is an univariate polynomial of degree αi in the input variable xi(i =

1, ..., n).

Due to the orthonormality relations in the polynomials, it follows that also the
multivariate polynomials thus constructed are orthonormal:

⟨Ψα(x),Ψβ(x)⟩ = δαβ (3.50)

with δαβ being the Kronecker symbol to the multi-dimensional case [42].

3.3.4 Truncated PCE

The explicit representation of the numerical model output random variable can be
used as a surrogate for the true deterministic numerical model M, allowing the
solution of the underlying uncertainty quantification problem at reduced compu-
tational cost. The exact PCE representation of the true numerical model response
requires an infinite series expansion of polynomials. However, an infinite series
representation cannot be implemented in practice and therefore a truncated se-
ries has to be considered. Different truncation schemes can be adopted for this
purpose.

3.3.4.1 Basis truncation schemes

Given the polynomials listed above, it is straightforward to define a “standard
truncation scheme”, which corresponds to all polynomials in the M input variables
of total degree less than or equal to p:

AM,p = {α ∈ NM : |α| ≤ p}

AM,p ≡ P =

(
M + p
p

) (3.51)

Several additional truncation schemes can be built that are better suited to various
types of applications.

3.3.4.2 Maximum interaction truncation scheme

This truncation scheme is based on choosing a subset of the terms defined in
Equation (3.51), such that the α’s have at most r non-zero elements (low-rank α):

AM,p,r = {α ∈ AM,p : ||α||0 ≤ r} (3.52)

where ||α||0 =
∑M

i=1 1αi>0 is the rank of the multi-index α. This truncation scheme
can be used to significantly reduce the cardinality of the polynomial basis by
limiting the number of interaction terms, which is particularly effective in high
dimension.
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3.3.4.3 Hyperbolic truncation scheme

A modification of the standard scheme, the hyperbolic (or q-norm) truncation
scheme was proposed by Blatman and Sudret (2010) [44]:

AM,p,q = {α ∈ AM,p : ||α||q ≤ p} (3.53)

where:

||α|| = (
M∑
i=1

αq
i )

1/q (3.54)

Note that for q = 1 hyperbolic truncation corresponds exactly to the standard
truncation scheme in Equation (3.51). For q < 1, hyperbolic truncation includes
all the high-degree terms in each single variable, but discourages equivalently high
order interaction terms. An example of the behaviour of the hyperbolic norm in
two dimensions for different values of p and q is shown in Figure 3.3.1.

Figure 3.3.1: Behaviour of the hyperbolic norm [42]

3.3.5 Coefficients

In the truncated PCE representation in Equation (3.48) the coefficients {aα : α ∈ A ⊂ Nn}
related with Ψα(X) can be determined using intrusive and non-intrusive tech-
niques.

3.3.5.1 Projection Approach

By exploiting the orthonormality of the PC basis the coefficients can be calculated
by using the projection approach. By taking the expectation of Equation (3.48)
multiplied by ψa(X) one gets the expression of each coefficient aa [44].

aa = ⟨M(X),Ψa(X)⟩L2 = E[M(X)Ψα(X)]

=

∫
DX

M(x)Ψα(x)fX(x)dx
(3.55)

The resulting multidimensional integral can be computed by utilizing quadra-
ture schemes. This can be schemes based on random sampling like Monte Carlo,
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or multivariate Gauss quadrature techniques like full tensor product quadrature.
However, the projection approach is computationally expensive due to it often re-
quiring a large set of realizations of the input random variables to provide sufficient
accuracy in addition to the cost of the quadrature techniques heavily increasing
with the number of input parameters [44].

3.3.5.2 Regression Approach

The regression approach consists of minimizing the mean square error, and was
proposed by Berveiller et al. (2006) [45]. These regression methods are more
efficient, and have the upper hand over other techniques due to not needing im-
plementations at the level of the numerical model formulation.

The approach starts by considering the PC expansion described in Equation (3.56),
ordered degree p.

Mp(X) =
∑

0≤|a|≤p

aaΨa(X) (3.56)

When rewritten, it becomes:

Mp(X) = a⊤Ψ(X) (3.57)

The coefficients of the truncated PCE representations are then determined as the
solution of the underlying least squares minimization problem:

â = argminE
[(
a⊤Ψ(X)−M(X)

)2] (3.58)

with,

(Ψ⊤Ψ)âα = Ψ⊤Y (3.59)

Ψ is the data matrix which assembles the values of all the orthonormal polynomials
in X, and is given by:

Ψij = Ψj(x
(i)) (3.60)

3.3.6 Polynomial chaos approximation

Both the projection approach and the regression approach provide a stochastic
response surface with assessments of the performance that must be done. The
approximation accuracy of the PCE can be evaluated based on different error
measures.

3.3.6.1 Generalization Error

The notion of generalization error is a basic concept of statistical learning theory.
It refers to the discrepancy between a model’s performance on the training dataset
and its performance on an unseen dataset. The generalization error is defined as
its mathematical expectation [44]:
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I[MX ] = E[(M(X)−MX(X))2] =

∫
(M(X)−MX(X))2fX(x)dx (3.61)

where (M(X)−MX(X))2 being that loss function measuring the prediction error
for a given x.

3.3.6.2 Leave-one-out Cross-validation

An accurate and efficient estimator for the generalization error is Leave-one-out
(LOO) Cross-validation [12]. It is a technique where the data sample is divided
into two subsamples. ples. A metamodel is built from one subsample, i.e. the
training set, and its performance is assessed by comparing its predictions to the
other subset, similar to the technique used for neural networks. In ANN LOO helps
in verifying the model’s ability to generalize beyond the training data, whereas
for PCE it provides an estimate of the generalization error, guiding the choice of
model parameters like polynomial degree and selection of basis functions. The
error is formulated as the following:

εLOO =

∑m
k=1

(
M
(
x(k)
)
−MA(k)k

(
x(k)
))2∑m

k=1 (M (x(k))− µ̂Y )
2 (3.62)
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CHAPTER

FOUR

METHODS

4.1 Method

The approach for this thesis can be summarized as the flowchart in Figure 4.1.1.
It is split into two parts, where the first part is modeling the plate in Abaqus
before generating different configurations of the plate in Python. The second part
of the process was to model the neural network. Both parts will be explained in
depth in this chapter.

Figure 4.1.1: Flow Chart of Method

43
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4.2 Abaqus Model

The first part of the problem was to model the stiffened plate in Abaqus and then
generate enough variants of the model to train the neural network.

Figure 4.2.1: Stiffened Steel Panel modelled in ABAQUS

4.2.1 Assembly and Geometry

The model that was analyzed consists of a plate, a number of longitudinal stiff-
eners, and a transverse stiffener. The web height and length of the plate were
kept consistent for every iteration, while the thickness of the plate and stiffeners,
the width of the flange, and the number of stiffeners were the parts of the tested
geometry. The values used for the iterations are listed in Table 4.2.1. In addition,
the number of stiffeners also varied. This led to 1944 different configurations after
material properties were taken into account.

Parameter Values
Plate Thickness 2, 3, 4
Flange Width 30, 40

Number of Stiffeners 2, 3, 4, 5
Plate Width 220, 260, 300

Stiffener Thickness 3.50, 4.00, 4.50

Table 4.2.1: Model Parameters

In addition to this, analysis of buckling loads for parameters outside of the original
range was also done. This was done to test the ANN on input parameters it was
not originally trained on. Table 4.3.1 lists the geometry for those iterations, a
dataset of 864 configurations.
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Parameter Values
Thickness of Plate 2, 3, 4

Thickness of Stiffeners 2.5, 3.5
Number of Stiffeners 2, 3, 4, 5

Flange Width 30, 32, 37
Plate Width 220, 300, 340

Table 4.2.2: Test Outside

4.2.2 Element Types

The shell is meshed with S4R elements, which are 4-node, quadrilateral, stress/dis-
placement shell elements with reduced integration and a large-strain formulation.
ABAQUS recommends using the S4R element type for modeling general purpose
shells. When dealing with thin shells, S4R elements utilize discrete Kirchhoff thin
shell theory, while thick shell theory is employed for thick shells [46]. ABAQUS
documentation specifies that the theory used depends on the thickness of the el-
ement in calculations involving S4R elements. Furthermore, changes in thickness
during calculations can lead to a change in the selected theory [46].

The reason for choosing the conventional S4R element is its ability to accurately
model both thin and thick elements. In practice, S4R elements generally gives
reasonable and accurate results in most scenarios.

4.2.3 Mesh Convergence

A convergence test decided the mesh size, and the results are presented in Table
4.2.3 and Figure 4.2.2. The model used for the convergence testing is the model
seen in Figure 4.2.1. From the results, it can be seen that the only major change
in buckling load when changing mesh size is from 20 to 17.5, and for the rest of
the decrease in mesh size, the change in buckling load is insignificant. Still, the
mesh chosen for the model was 10mm to ensure that the results were correct and
with an acceptable computational time.

Mesh Size Buckling Load [kN] Change [%]
20 200.56 -

17.5 190.34 5.37
15 188.81 0.82

12.5 188.18 0.33
10 187.52 0.35
7.5 187.49 0.016
5 187.00 0.26

Table 4.2.3: Mesh Convergence
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Figure 4.2.2: Mesh Convergence

In addition, with a mesh size of 10mm for the entire model, both the longitu-
dinal and transverse stiffeners got a satisfactory mesh without needing to have a
separate mesh size. The full mesh and a closer look at the mesh are illustrated in
Figure 4.2.3 and 4.2.4.

Figure 4.2.3: Full Model Mesh
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Figure 4.2.4: Close-up of Mesh

4.2.4 Material Properties

The material chosen for the model was steel. The Youngs Modulus was set to
210 GPa for every iteration, with varying yield strengths. The types of steel
assumed tested were Mild Steel, High-Tensile Steel, and High Strength Steel. The
yield strength tested for each type of steel is listed in Table 4.2.4 [47], with some
of them being used for the dataset within the training range and some for the
simulations outside of it. The rest of the material properties were kept the same
in every simulation and are listed in Table 4.2.5.

Steel Type Yield Strength [MPa]
Mild Steel 190, 235, 245

High-Tensile Steel 315, 355
High Strength Steel 400, 450

Table 4.2.4: Yield Strengths

Parameter Value Unit
E 210 GPa
v 0.3 -
ρ 7850 kg/m3

Table 4.2.5: Material Parameters

4.2.5 Boundary Conditions and Constraints

The boundary conditions on the two ends were coupled to two reference points,
R1 and R2, as seen in Figure 4.2.5, and the "tie"-constraint is used for this. The
reference points, the constraints, and the implementation of Boundary Conditions
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in the Python Code were made after inspiration by code by PhD candidate Xin-
tong Wang.

The boundary conditions applied in Abaqus are listed in Table 4.2.6. The end
under load is fixed in all directions except for the load direction, while the opposite
end is fixed for all six degrees of freedom to making it a clamped end.

Degree of Freedom Clamped End End Under Load Sides
U1 x
U2 x x
U3 x x x

UR1 x
UR2 x x
UR3 x x x

Table 4.2.6: Boundary Conditions

Figure 4.2.5: Constraints

4.2.6 Loads

The loads were shell edge loads applied on the edge of the shell elements, as
seen in Figure 4.2.6. Shell Edge Load was used to induce compression. I was
chosen because it accurately represents real-world loading conditions where plates
are subjected to compressive forces along their edges and it ensures a uniform
distribution of compressive stress along the edge.

Figure 4.2.6: Load
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4.2.6.1 Step and Solution Technique

The step chosen for this analysis was the dynamic implicit step with nonlinear
geometry turned on. This was chosen due to the simplicity of this step type in
running and coding the model in Python. The solution technique is Newton-
Raphson, as seen in Figure 4.2.7 and described in Section 3.1.4.3.

Figure 4.2.7: Step and Solution Method

4.2.7 ABAQUS in Python

4.2.7.1 Generating Models

To generate enough models for the neural network to work, the process had to
be automated in Python. To do this the Python extension abqpy was used. It
is a Python package providing type hints for Python scripting of Abaqus, you
can use it to write your Python script of Abaqus fluently, even without doing
anything in Abaqus. It also provides some simple APIs to execute the Abaqus
commands so that you can run your Python script to build the model, submit the
job and extract the output data in just one Python script, even without opening
the Abaqus/CAE [48]. The model generator code is in Appendix A1.

The loop to generate the different models is shown in the code below.

1 for no in no_stiffeners_gen:
2 nosti = no
3 for y_p in yld_plate_gen:
4 yieldp = y_p
5 for y_s in yld_stiffener_gen:
6 yields = y_s
7 for fw in flange_width_gen:
8 flangew = fw
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9 for t in plate_thickness_gen:
10 thick = t
11 for sd in plate_width_gen:
12 platew = sd
13 for st in stiff_thickness_gen:
14 stithi = st
15 jname = JOBNAME

4.2.7.2 Post-Processing

The post-processing was done in Python; the code is attached in the Appendix
A2. The buckling load was found by extracting reaction forces and displacement
and plotting them against each other. Then, a code was written to identify where
the gradient of the curve seen in Figure 4.2.8 changed sign. The figure shows when
the buckling happens, and two of the buckling modes are shown in Figure 4.2.9
and 4.2.10.

Figure 4.2.8: Post-Processing
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Figure 4.2.9: Post-Processing

Figure 4.2.10: Post-Processing
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4.3 Neural Network Code

The ANN was coded in Python, with the help of the Python libraries TensorFlow
and Keras [49]. The overall structure of a ANN is developed using the model
object in Keras, which provides a simple way to create a stack of layers by adding
new layers one after the other. Most of the description of how Keras is built is
from "Learn Keras for Deep Neural Networks" by Jojo Moolayil [36]. Parts of the
code will be presented here, the full code is in Appendix B1.

The type of neural network used for this thesis is a feedforward neural network,
often referred to as a multilayer perceptron. This type of network consists of
multiple layers of neurons, each fully connected to all neurons in the previous
layer. It is suitable for a wide range of problems and especially complex regression
tasks like predicting buckling loads.

4.3.1 Software

Originally, Keras was developed as an independent project, but it has since been
integrated into TensorFlow, and serves as TensorFlow’s high-level API. Keras
enables the construction and training of neural networks. Neural network archi-
tectures in Keras are defined by stacking layers, and these can range from fully
connected layers to convolutional layers and recurrent layers.

Tensorflow is an open-source software library, and was developed Google in 2015
[50]. The core concept of TensorFlow is the computation graph. TensorFlow is a
mathematical library which is used for Machine Learning.

4.3.2 Description of Code

The results from the analysis in Abaqus were transferred to a CSV file. The
was structured as seen below, with 1944 combinations of input parameters and
buckling loads structured as seen below.

PlateStrength StiffStrength Thickness FlangeWidth Stiffeners BucklingLoad PlateWidth BucklingLoad
235.000000 235.00 2.00 30.00 2.00 220 3.50 180512.95
235.000000 235.00 2.00 40.00 2.00 220 4.00 202128.06
235.000000 235.00 2.00 30.00 2.00 220 4.50 179438.84

: : : : : : : :
: : : : : : : :

Table 4.3.1: Test Outside

4.3.3 Preprocessing of Data

After importing the dataset, it was split into training, validation and test sets by
using the built-in train_test_split()-function. After trying different variations of
splitting the data, 75% of the data sets were used for training, 15% for validation
and 10% for testing. The shapes of the different split data were tested to validate
the sets, with the results listed in Table 4.3.2.
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Set Type Shape
Training, Input (1485, 7)

Validation, Input (263, 7)
Testing, Input (195, 7)

Training, Output (1485, 1)
Validation, Output (263, 1)
Testing, Output (195, 1)

Table 4.3.2: Set Shapes

This was followed up by scaling the data. Given the variability in the mag-
nitude of the input features, for instance, the thickness is small while the plate
strength is large, the data must be normalized to ensure that no single feature
disproportionately influences the model’s learning process. To combat this Stan-
dardScaler from Scikit-learn was used as seen in the code snippet below. It sub-
tracts the mean and divides it by the standard deviation for each feature, ensuring
that each feature contributes equally to the prediction.

1 scaler = StandardScaler().fit(X_train)
2 X_train_scaled = scaler.transform(X_train)
3 X_val_scaled = scaler.transform(X_val)
4 X_test_scaled = scaler.transform(X_test)

4.3.4 Layers and Neurons

After the data was split, the model could be built. The model chosen was Se-
quential. It is the easiest way to define a model, allowing easy creation of a linear
stack of layers [36].

The layers used for this network was the ’Dense’-layer in Keras. A dense layer is
a regular layer that connects every neuron in the current layer to every neuron
in the previous layer. Due to the layer accommodating every possible connection
between the layers, it is called a dense layer.

Testing of different combinations of the number of layers and amount of neurons
was done, and some of the configurations tested are listed in Table 4.3.3. Each
number represents the number of neurons in each layer. The input layer (the
number of input parameters) and output layer (predicted buckling load) are not
included in the test table. The full list of tests for configurations is in Appendix C2.
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Layer R2 Inside R2 Outside MAPE Inside MAPE Outside
4-8 0.9668 0.8602 7.19 16.71
4-32 0.9792 0.9320 5.39 11.46
16-8 0.9794 0.9096 5.52 10.57
16-16 0.9828 0.9166 4.90 13.18
4-4-2 0.9840 0.9646 4.56 10.15
16-8-4 0.9865 0.9640 4.07 8.91
16-8-8 0.9883 0.9612 3.90 9.04
16-16-8 0.9887 0.9521 3.67 9.04
32-16-8 0.9893 0.9723 3.37 8.63

128-64-32 0.9998 0.8634 1.28 17.42

Table 4.3.3: Joint Dataset

The final definition of the model and layers is shown in the code snippet attached
below. The best results for testing for the data the model was trained on is as
low as an average error of 1.28 %, but this results in a mean error of 17.42 % for
the outside range. This happens due to overfitting and not being able to adjust
well to new data. For this reason, the configuration chosen was the one that gave
reasonably good results both inside and outside of the training range. The re-
sults from both the best test within the training range and the best combination
of inside and outside the range will b represented in the results section of the thesis.

Furthermore, L2 regularization is utilized. L2 regularization involves adding the
squared weights to the loss function. This process aims to reduce the weights to
values close to 0 (but not exactly 0) in order to enhance the model’s generalization
- hence it is also referred to as the "weight decay" technique. In most scenarios,
L2 regularization is preferred over L1 to mitigate overfitting. The formula for it
is shown in Equation (4.1) [36].

Cost Function = Loss (as defined)
λ

2m
∗ ||Weights||2 (4.1)

1 model = tf.keras.Sequential([
2 Dense(32, activation='relu', input_shape=(7,)),
3 Dense(16, activation='relu', #kernel_regularizer=regularizers.l2(0.001)),
4 Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.001)),
5 Dense(1)
6 ])

4.3.5 Weighting of Neurons

In Keras, the weights of neurons are managed through layers, with each type of
layer handling weights according to its specific function and architecture. Two
neurons of successive layers have a connection with an associated weight, where
the weight would define the influence of the input for the output to the next neuron
and in the end its influence on the final output. The weights start at random in
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the training phase, before they are improving and updated iteratively until they
can predict the correct output [36].

4.3.6 Activation Function

The ReLU activation function was chosen for this model, due to its effectiveness
in tasks involving regression with neural networks. ReLU is a factor in helping
the network train faster because its derivative is 1 for all positive inputs which
leads to a simplification of the computation of the gradient. This can be useful in
networks with many layers where training can become computationally expensive.

ReLU introduces non-linearity into the model, enabling it to capture complex
relationships between the input features and the target value such as non-linear
patterns that occur in the data for buckling loads. It also helps minimizing the
vanishing gradient problem, which means that for positive inputs, the gradient
of ReLU is constant, a problem that can occur during backpropagation in neural
networks. This leads to effective learning in all layers of the network.

4.3.7 Optimization and Cost/Loss Function

The compile method in Keras is used to configure the learning process of the neu-
ral network. Each component specified in the compile method plays a role in how
the model learns from the data. For the optimizer, ADAM (Adaptive Moment
Estimation) was chosen. ADAM is efficient in terms of computation and memory
requirements, and it’s suitable for a wide range of optimization problems [36].

The reason ADAM was chosen over other optimizers is because of a study done
by Kingma and Ba in 2014 on optimizers for multi-layer neural networks. As seen
from Figure 4.3.1, ADAM proved to have better convergence than other methods
[51].

The gradient of the loss defines the momentum and variance, which leads to up-
dated weight parameters. The combination of momentum and variance is an
effective improvement of the learning process, and it helps smooth the learn-
ing curve. The optimizer can be described like this in math terms: Weights =
Weights− (Momentum+ V ariance).
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Figure 4.3.1: Convergence for different optimizers

The reason for using MSE as the cost function is because squaring heavily pe-
nalizes larger errors, making it particularly suitable for cases where large errors
are more detrimental than smaller ones. Throughout training, the model aims
to minimize MSE to reduce the average squared difference between the estimated
values and the actual values. Additionally, MAE is incorporated in the metrics
to monitor the model’s performance. While the model focuses on minimizing the
loss function (MSE), other metrics can be specified for monitoring. MAE provides
an easily interpretable average absolute error between the model’s predictions and
the actual values and is not biased towards any particular type of error. It is
less sensitive to outliers than MSE, making it a great choice for gaining a more
intuitive understanding of the model’s prediction error. The neural network is
designed to handle regression tasks and is specifically focused on efficiently mini-
mizing prediction errors while providing a clear metric for evaluating the model’s
performance.

4.3.8 Training the Model

The fit()-function provided by Keras trains the model on the provided training
data. The fit function is for the model object to train with the provided training
data.

The different x-values feature the training data which have been scaled, while the
y-values are the target values corresponding to the scaled x-values. The validation
data is used to evaluate the model after each epoch of training, providing a mea-
sure of performance on data not used in training. The fit()-function captures the
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model’s performance metrics at each epoch during training. It includes parame-
ters like training loss, validation loss, and any other additional metrics specified
during model compilation.

To evaluate the model’s performance, evaluate() is used. This is done on a dataset
that the model has never seen during training and it returns the loss value and
metrics values for the evaluation.

Lastly, the predictions are made. This is done by the predict()-function, and it is
used to generate predictions from the input data. Here, it’s being used to predict
outcomes based on the unseen input parameters from the test set.

4.3.9 Validation of Model

In an ideal training situation for a neural network, it’s expected that both the
training loss and the validation loss will decrease as the model learns from the
data. In addition, the model’s accuracy should increase. However, the specific
shapes and features of these curves may differ, providing important insights into
the model’s learning behavior and possible issues such as overfitting or underfit-
ting.

Ideally, the training and validation loss and accuracy should either converge or
exhibit a similar trend, indicating that the model is effectively generalizing to
unseen data. If the training loss continues to decrease while the validation loss
starts to increase or remains constant, it’s a clear indication of overfitting. This
occurs when the model learns the training data too well, incorporating its noise
and specifics, at the cost of its ability to generalize to new data. If both the
training and validation loss remain high and remain constant, the model might be
underfitting. This implies that the model is too simplistic to capture the under-
lying patterns in the data.

A rapid decrease in loss followed by a plateau could suggest that the learning
rate is appropriately set - initially large enough to show rapid progress, but sub-
sequently small enough to allow fine-tuning as the model converges.

In order to prevent underfitting and overfitting, careful examination of the graphs
for Training Loss and Validation is necessary. As shown in Figure 4.3.2, both the
training and validation loss/error decrease rapidly initially before overfitting leads
to increased error in validation. The selected number of epochs for this project
is 1200 because, as seen in Figure 4.3.3, this is where the perfect fit from Figure
4.3.2 is.
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Figure 4.3.2: Underfitting vs Overfitting [52]

Figure 4.3.3: Training Loss vs Validation Loss
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FIVE

RESULTS

5.1 Comparing Computational Time

Before presenting the results from the neural network, the difference in compu-
tational time between the FEM analysis and ANN will be shown. Table 5.1.1
illustrates the clear improvement in computational time and proves that using an
ANN is vastly faster than running simulations in FEM programs like Abaqus.

Analysis Type Computational Time
FEM 27h32m15s
ANN 3m11s

Table 5.1.1: Computational Time

5.2 Testing Within The Training Range

For the first part of the testing, the network was tested with a dataset consisting
of input parameters the network was already trained on. The testing was split
into two parts; testing for the whole dataset and testing where the data sets were
split for each number of stiffeners.

5.2.1 One Dataset

For the testing with one dataset, the network was trained on all variations of
stiffeners. As seen in table 5.3.1, the mean error is 3.67% with a maximum error
of 10.74%. The comparison between the true buckling load and the predicted
buckling load is illustrated in figure 5.2.1.

Number of Stiffeners Mean Error [%] Max Error [%]
All Stiffeners 3.67 10.74

Table 5.2.1: Error results for split dataset
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Figure 5.2.1: Training Loss vs Validation Loss

The histogram in Figure 5.2.2 shows the distribution of percentage errors be-
tween predicted values and actual values. From the histogram, multiple observa-
tions can be made. Most of the data is clustered around 0% suggesting that for
most of the predictions the error small. This indicates that the model predictions
are often close to the actual values. The same can be seen from Table 5.2.2. The
errors spread out from around -9% to around +10.74%. The distribution is close
to symmetrical around the center, which is an indication that the model does not
have a systematic bias and therefore is neither underfitting nor overfitting.

As from Table 5.2.2, the most common error range is between 0% and 3%, with
almost half the predictions being under 3% away from the FEM results. There are
fewer instances as the error percentage moves away from 0%, which is typical in
well-performing models. Around a third of the errors are over 5% of the analytical
results.

There are a few bars at the tails of the distribution, showing that there are a few
cases with high error percentages. These could be outliers or cases that are more
difficult for the model to predict accurately. The presence of errors across a wide
range of percentages suggests that while the model generally performs well, there
could be room for improvement, especially in reducing the occurrence of those
larger errors.

Error <3% 3%-5% >5%
All Stiffeners 96 37 62

Table 5.2.2: Error results for joint dataset
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Figure 5.2.2: Training Loss vs Validation Loss

A code was also written to see the input parameters of the largest errors in the
predictions. Table 5.3.3 describes the largest errors for each number of stiffen-
ers. It can be seen that the maximum error for each combination of stiffeners
decreases with increasing stiffeners. This shows that the model predicts higher
buckling loads better than low buckling loads.

Number of Stiffeners Max Error [%]
2 11.68
3 9.58
4 8.13
5 6.47

Table 5.2.3: Error results for each stiffener for joint dataset

5.2.2 Split Dataset

To avoid the effect of different mode shapes for different numbers of stiffeners in-
fluencing the prediction of buckling load, the dataset was split after the number
of stiffeners.

The results for when the network was trained on a split dataset is noticeably better
than for the joint dataset. The average error for the new testing is 2.94%, which
is a little better than for the previous test, while the maximum error is 7.90%.
When looking at the individual stiffeners, all of them have significant improve-
ments, apart from the instance with 4 stiffeners. The maximum error is almost
half the size with 2 stiffeners for the split dataset compared to the joint dataset.

From the error distribution in Table 5.3.5 and a major improvement can be seen
from the testing with one dataset. Whereas over 30% of the predictions were
missed with more than 5% in the first test only 6% of the predictions fell within
that range.
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Number of Stiffeners Mean Error [%] Max Error (ME)[%] ME Change [%]
2 3.11 5.91 49.4
3 2.72 5.09 46.9
4 2.99 7.90 2.8
5 2.86 5.76 11.0

Total 2.94 7.90

Table 5.2.4: Error results for split dataset

Error <3% 3%-5% >5%
2 Stiffeners 19 22 6
3 Stiffeners 26 21 1
4 Stiffeners 24 22 3
5 Stiffeners 25 22 2

Total 94 87 12

Table 5.2.5: Error results for split dataset

Figure 5.2.3: Correct vs Predicted
Buckling load for 2 stiffeners

Figure 5.2.4: Correct vs Predicted
Buckling load for 3 stiffeners

Figure 5.2.5: Correct vs Predicted
Buckling load for 4 stiffeners

Figure 5.2.6: Correct vs Predicted
Buckling load for 5 stiffeners
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Figure 5.2.7: Error Distribution 2
Stiffeners

Figure 5.2.8: Error Distribution 3
Stiffeners

Figure 5.2.9: Error Distribution 4
Stiffeners

Figure 5.2.10: Error Distribution 5
Stiffeners

5.3 Testing Outside the Training Range

After testing the model on data it was trained on, the model was tested on data
outside of the training range

5.3.1 One Dataset

When testing with one dataset, it can be seen from Figure 5.3.1 that the errors
here are visibly larger than when testing within the training range. From the
error results listed in Appendix C1, the the most common input parameters for
the largest errors are for the combination of a yield strength of 190 MPa for the
stiffener strength and a configuration of 2 stiffeners. Even with larger errors, the
error distribution is still looking good with regards to over- and underfitting. It
is mostly centered around 0% and symmetrical on each side but with a small bias
towards overpredicting the buckling load. It ranges from overpredicting by a little
over 30% to underpredicting by 20%. When testing which parameters are affecting
the buckling load the most, the number of stiffeners is the most important followed
by the yield strength of the stiffeners and flangewidth.
When compared to the testing within the training range with one dataset, the
results are significantly worse. Both the mean error and max error are almost
three times as large for this test.
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Figure 5.3.1: Training Loss vs Validation Loss

Figure 5.3.2: Training Loss vs Validation Loss

Number of Stiffeners Mean Error [%] Max Error [%]
All Stiffeners 8.68 31.55

Table 5.3.1: Error results for split dataset

Error <5% 5%-10% >10%
All Stiffeners 293 216 355

Table 5.3.2: Error results for joint dataset

When looking at the results from the joint dataset for each stiffener, it is again
clear that the model has a problem with predicting buckling for two stiffeners.
The error for two stiffeners is around three times as large for testing outside of the
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training range as it was for training inside, while the error is only twice as large
for three and four stiffeners.

Number of Stiffeners Max Error [%]
2 31.62
3 18.37
4 17.42
5 20.69

Table 5.3.3: Error results for each stiffener for joint dataset

5.3.2 Split Dataset

Then, the model was trained only on one configuration of stiffeners. For 2 out of
the 4 stiffener configurations there is a significant improvement in the maximum
error while there is a increase in maximum error for 4 stiffeners. However, when
looking at Figure 5.3.5 this is only one outlier. When looking at the average mean
error, it has notably improved from training on the entire dataset. It has reduced
from 8.68% to 5.41%.

Number of Stiffeners Mean Error [%] Max Error (ME) [%] ME Change [%]
2 5.85 20.75 34.38
3 5.83 18.02 1.91
4 5.17 19.79 -13.67
5 4.80 16.73 19.14

Total 5.41 20.75 34.38

Table 5.3.4: Error results for split dataset outside range

From Table 5.3.5 there is also a noticeable difference that can be seen in how the
errors are distributed. From only 33.9% of the errors being under 5% and 58.9%
under 10% for the joint dataset, the results are now 56.1% of the predictions are
within 5% of the FEA result, and 85.3% of the predictions under 10% away from
the correct result.

Error <5% 5%-10% >10%
2 Stiffeners 107 73 36
3 Stiffeners 115 66 35
4 Stiffeners 126 68 22
5 Stiffeners 137 45 34

Total 485 252 144

Table 5.3.5: Error results for split dataset

However, there is a clear tendency where the model overpredicts, and this is espe-
cially the case for 3, 4, and 5 stiffeners as seen in Figures 5.3.4-5.3.6. For all these
tests there are a substantial group of errors standing out from the others. When
looking at Figures 5.3.7-5.3.10 the model overpredicts the buckling load for a yield
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strength of 190MPA for the stiffeners, which shows that the model struggles to
predict input parameters outside of the training range.

Figure 5.3.3: Error Distribution 2
Stiffeners

Figure 5.3.4: Error Distribution 3
Stiffeners

Figure 5.3.5: Error Distribution 4
Stiffeners

Figure 5.3.6: Error Distribution 5
Stiffeners

Figure 5.3.7: Error Distribution 2
Stiffeners

Figure 5.3.8: Error Distribution 3
Stiffeners
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Figure 5.3.9: Error Distribution 4
Stiffeners Figure 5.3.10: Error Distribution 5

Stiffeners

5.3.3 Example Overfitting

When testing with significantly more neurons in each layer than for the rest of
the testing, much better results when testing within the range of the dataset the
model was trained on. An average error of 1.28% was achieved, and as seen in
Figure 5.3.11 the model predicts the buckling load remarkably well. However, as
seen from the model loss plot in Figure 5.3.12, something is not right. The model
has been too used to the data it was trained on and fails to generalize to unseen
data. This results in the plot in Figure 5.3.13. The model does not predict well
to new input parameters and gives an average error of 17.42%, with a maximum
error of 95.42%. This proves that the model can predict data it is trained on really
well, but this results in a model that does not adjust well to new data.

Figure 5.3.11: Overfitted prediction Figure 5.3.12: Overfitted Validation
Plot
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Figure 5.3.13: Overfitted R2 score
Figure 5.3.14: Overfitted Outside
Range Prediction
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SIX

DISCUSSION

6.1 Discussion and Future work
The exploration of surrogate models, particularly neural networks, in the struc-
tural analysis of stiffened plate panels has yielded significant insights and identified
several key areas for future research and development. This discussion will delve
into the implications of the findings, the limitations encountered, and potential
directions for further investigation.

The successful application of neural networks to predict buckling loads in stiffened
plate panels underscores the potential of machine learning techniques to transform
traditional engineering analysis. The primary benefits observed include:

• One of the most notable advantages of using neural networks is the substan-
tial decrease in computational time. This efficiency enables faster iterations
in the design process, allowing engineers to explore a wider range of design
variables and scenarios without the prohibitive time costs associated with
full-scale FEA.

• The neural network models demonstrated high accuracy in predicting buck-
ling loads within the training range. This indicates that, with adequate and
representative training data, machine learning models can serve as reliable
surrogates for complex computational methods.

• Neural networks offer scalability and flexibility, adapting to different prob-
lem sizes and configurations. This characteristic is particularly valuable in
structural engineering, where the complexity and scale of problems can vary
widely.

Despite the promising results, several limitations and challenges were encountered
during the study:

• The neural network models exhibited reduced accuracy when predicting val-
ues outside the training range. This limitation highlights the challenge of
generalizing machine learning models to unseen data, particularly in the
context of highly nonlinear and complex structural behavior.
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• The performance of neural networks is heavily dependent on the quality
and quantity of the training data. Inadequate or unrepresentative data can
lead to poor model performance and limit the applicability of the model to
real-world scenarios.

• Neural networks, especially deep learning models, often function as "black
boxes," providing little insight into the underlying mechanics of their pre-
dictions. This lack of interpretability can be a drawback in engineering
applications where understanding the rationale behind predictions is essen-
tial.

6.1.1 Future Work

To overcome these limitations and expand on the discoveries of this study, fu-
ture research can explore several possibilities. The improvement of the model’s
resilience and generalization abilities can be achieved by gathering and integrat-
ing a wider variety of training data, including diverse setups, material charac-
teristics, and loading conditions. This extension could encompass both empir-
ical data and high-fidelity simulations. Hybrid approaches that meld machine
learning with physics-based models can capitalize on the strengths of both tech-
niques. For example, the incorporation of physical laws into the training process
through Physics-Informed Neural Networks (PINNs) could potentially enhance
extrapolation and interoperability. The exploration of more sophisticated neu-
ral network structures, such as convolutional neural networks or recurrent neural
networks, may yield enhanced performance for specific types of structural anal-
ysis issues. Furthermore, the combination of multiple models through ensemble
methods might produce more precise and resilient forecasts. The incorporation of
techniques for quantifying uncertainty into neural network models could furnish
more dependable predictions and aid engineers in assessing the confidence level in
the model’s results. In addition, applying and validating neural network models in
real-world engineering projects would offer practical insights and help bridge the
gap between theoretical research and practical application. Collaboration with
industry partners can facilitate this process and ensure that the models meet the
demands of actual engineering workflows.
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CONCLUSIONS

7.1 Conclusion

This study has explored the construction and application of surrogate models in
the structural analysis of stiffened plate panels. The primary focus was on the
integration of neural networks to predict buckling loads, examining their effective-
ness in reducing computational time and enhancing prediction accuracy.

The research commenced with a comprehensive literature review on surrogate
modeling and the utilization of neural networks in structural analysis, finite el-
ement analysis and buckling of plates. This foundational knowledge was crucial
for understanding the theoretical underpinnings and practical applications of the
methods employed.

The experimental work involved creating a neural network model trained on a
dataset derived from FEA results from ABAQUS and Python. An extensive
dataset was created, with 1944 different combinations of the input parameters
such as number of stiffeners, plate thickness and yield strength for the stiffened
plate. In addition, a dataset of 864 new variations of input parameters was created
to test the Neural Network on data it was not trained on.

Several different neural network designs were experimented with, and their ef-
fectiveness was assessed using metrics such as Mean Absolute Error and Mean
Squared Error. The performance of the ANN was tested using two different sets
of data. The first evaluation was carried out using the same dataset that was used
to train the ANN. Discrepancies between the results produced by the ANN and
those from the FEA were calculated, revealing that the deviation was minimal for
the data points in the training set, indicating that the ANN results are in line
with the analysis results. When the ANN was tested on the full dataset within
the training range it achieved an average error of 3.37%, with a maximum error
of 11.68%. When the data was split for each combination of stiffener to avoid the
effects of buckling modes the average error decreased to 2.94% with a maximum
error of 7.90%. This proves that the ANN can be utilized for nonlinear structural
analysis of a stiffened plate as long as the input parameters remain within the
limits of the input parameter set.
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When testing outside of the data the model was trained on, the mean error was
8.68% and max error 31.55% for the full dataset. After the data was split, the
mean error decreased to 5.41% with a maximum error of 20.75%. This shows
promise of also being able to predict the buckling load for structures outside of
the input parameters the ANN is trained on, but the model still needs improve-
ments to make more accurate predictions, with the maximum errors still being
quite large.

This thesis shows the potential of using machine learning and surrogate modeling
in the world of structural engineering, while still proving that there is a need and
room for improvement in the field.
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A - ABQPY

A1 - Abaqus Model Generator

import numpy as np
from abaqus import *
from abaqusConstants import *
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from WorkingInputGen import *

def generate_jobs(jname, yld_plate, yld_stiffener, plate_thickness,
flange_width, no_stiffeners, plate_width, web_thickness):↪→

# Use coordinates instead of GUI notations
session.journalOptions.setValues(replayGeometry=COORDINATE,

recoverGeometry=COORDINATE)↪→

web_height_ctc = web_height-web_thickness/2-plate_thickness/2
plate_half_width = plate_width/2

mdb.models['Model-1'].ConstrainedSketch(name='__profile__',
sheetSize=200.0)↪→

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0,
0.0),↪→

point2=(plate_width, 0.0))
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mdb.models['Model-1'].sketches['__profile__'].Line(point1=
(plate_half_width, 0.0), point2=(
plate_half_width, web_height_ctc))

mdb.models['Model-1'].sketches['__profile__'].Line(point1=
(plate_half_width-flange_width/2, web_height_ctc),

point2=(plate_half_width+flange_width/2, web_height_ctc))↪→

mdb.models['Model-1'].Part(dimensionality=THREE_D,
name='Part-1', type=↪→

DEFORMABLE_BODY)
mdb.models['Model-1'].parts['Part-1'].BaseShellExtrude

(depth=unit_length, sketch=
mdb.models['Model-1'].sketches['__profile__'])

del mdb.models['Model-1'].sketches['__profile__']
mdb.models['Model-1'].ConstrainedSketch(name='__profile__',

sheetSize=200.0)↪→

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0,
0.0), point2=(↪→

plate_width*no_stiffeners, 0.0))
mdb.models['Model-1'].Part(dimensionality=THREE_D,

name='Part-2', type=↪→

DEFORMABLE_BODY)
mdb.models['Model-1'].parts['Part-2'].BaseWire(sketch=

mdb.models['Model-1'].sketches['__profile__'])
del mdb.models['Model-1'].sketches['__profile__']
mdb.models['Model-1'].ConstrainedSketch(name='__profile__',

sheetSize=200.0)↪→

mdb.models['Model-1'].sketches['__profile__'].rectangle(
point1=(0.0, 0.0), point2=(plate_width*no_stiffeners,

trans_height))↪→

mdb.models['Model-1'].Part(dimensionality=THREE_D,
name='Part-4', type=↪→

DEFORMABLE_BODY)
mdb.models['Model-1'].parts['Part-4'].BaseSolidExtrude(depth=5,

sketch=↪→

mdb.models['Model-1'].sketches['__profile__'])
del mdb.models['Model-1'].sketches['__profile__']

# Material building
mdb.models['Model-1'].Material(name='rigid_beam')

mdb.models['Model-1'].materials['rigid_beam'].Density(table=((7.85,
), ))

↪→

↪→
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mdb.models['Model-1'].materials['rigid_beam'].
DeformationPlasticity(table=((E_modulus,
poison_ratio, yld_plate, n_plate, offset_plate), ))

mdb.models['Model-1'].Material(name='alu_plate')

mdb.models['Model-1'].materials['alu_plate'].Density(table=((density,
), ))

↪→

↪→

mdb.models['Model-1'].materials['alu_plate'].
DeformationPlasticity(table=((E_modulus,
poison_ratio, yld_plate, n_plate, offset_plate), ))

mdb.models['Model-1'].Material(name='alu_stiffener')

mdb.models['Model-1'].materials['alu_stiffener'].Density(table=((density,
), ))

↪→

↪→

mdb.models['Model-1'].materials['alu_stiffener'].
DeformationPlasticity(table=((E_modulus,
poison_ratio, yld_stiffener, n_stiffener,

offset_stiffener), ))↪→

mdb.models['Model-1'].Material(name='trav_stiffener')

mdb.models['Model-1'].materials['trav_stiffener'].Density(table=((density,
), ))

↪→

↪→

mdb.models['Model-1'].materials['trav_stiffener'].
DeformationPlasticity(table=((E_modulus,
poison_ratio, yld_stiffener, n_stiffener,

offset_stiffener), ))↪→

# Section building

mdb.models['Model-1'].HomogeneousShellSection(idealization=NO_IDEALIZATION,↪→

integrationRule=SIMPSON, material='alu_plate',
name='plate', nodalThicknessField=↪→

'', numIntPts=5, poissonDefinition=DEFAULT,
preIntegrate=OFF, temperature=↪→

GRADIENT, thickness=plate_thickness, thicknessField='',
thicknessModulus=None,↪→

thicknessType=UNIFORM, useDensity=OFF)

mdb.models['Model-1'].HomogeneousShellSection(idealization=NO_IDEALIZATION,↪→

integrationRule=SIMPSON, material='alu_stiffener',
name='web', nodalThicknessField=''↪→

, numIntPts=5, poissonDefinition=DEFAULT, preIntegrate=OFF,
temperature=↪→
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GRADIENT, thickness=web_thickness, thicknessField='',
thicknessModulus=None,↪→

thicknessType=UNIFORM, useDensity=OFF)
mdb.models['Model-1'].HomogeneousShellSection(

idealization=NO_IDEALIZATION,
integrationRule=SIMPSON, material='alu_stiffener',

name='flange',↪→

nodalThicknessField='', numIntPts=5,
poissonDefinition=DEFAULT,↪→

preIntegrate=OFF, temperature=GRADIENT,
thickness=web_thickness, thicknessField='',↪→

thicknessModulus=None, thicknessType=UNIFORM,
useDensity=OFF)↪→

mdb.models['Model-1'].HomogeneousSolidSection(
material='TRAV_STIFFENER', name='travstiff',

thickness=None)↪→

mdb.models['Model-1'].CircularProfile(name='beam', r=5.0)
mdb.models['Model-1'].BeamSection(consistentMassMatrix=False,

integration=↪→

DURING_ANALYSIS, material='rigid_beam', name='beam',
poissonRatio=0.0,↪→

profile='beam', temperatureVar=LINEAR)

# Mesh

mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1,↪→

minSizeFactor=0.1, size=mesh_size)
mdb.models['Model-1'].parts['Part-1'].setElementType(elemTypes=

(ElemType(
elemCode=S4R, elemLibrary=STANDARD,

secondOrderAccuracy=OFF,↪→

hourglassControl=DEFAULT), ElemType(elemCode=S3,
elemLibrary=STANDARD)),↪→

regions=(mdb.models['Model-1'].parts['Part-1'].faces.
getSequenceFromMask((
'[#f ]', ), ), ))

mdb.models['Model-1'].parts['Part-1'].setMeshControls(elemShape=QUAD,
regions=

↪→

↪→

mdb.models['Model-1'].parts['Part-1'].faces.
getSequenceFromMask(('[#f ]',
), ), technique=STRUCTURED)

mdb.models['Model-1'].parts['Part-1'].generateMesh()

mdb.models['Model-1'].parts['Part-2'].seedPart(deviationFactor=0.1,↪→

minSizeFactor=0.1, size=10)

mdb.models['Model-1'].parts['Part-2'].setElementType(elemTypes=(ElemType(↪→
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elemCode=B31, elemLibrary=STANDARD), ), regions=(

mdb.models['Model-1'].parts['Part-2'].edges.getSequenceFromMask(('[#f
]', ),

↪→

↪→

), ))
mdb.models['Model-1'].parts['Part-2'].generateMesh()

mdb.models['Model-1'].parts['Part-4'].seedPart(deviationFactor=0.1,↪→

minSizeFactor=0.1, size=mesh_size)

mdb.models['Model-1'].parts['Part-4'].setElementType(elemTypes=(ElemType(↪→

elemCode=S4R, elemLibrary=STANDARD,
secondOrderAccuracy=OFF,↪→

hourglassControl=DEFAULT), ElemType(elemCode=S3,
elemLibrary=STANDARD)),↪→

regions=(mdb.models['Model-1'].parts['Part-4'].faces.
getSequenceFromMask(('[#f ]', ), ), ))

mdb.models['Model-1'].parts['Part-4'].generateMesh()

# Set assignment
mdb.models['Model-1'].parts['Part-1'].Set(faces=

mdb.models['Model-1'].parts['Part-1'].faces.findAt(((plate_half_width-↪→

flange_width/2, web_height_ctc,
0.0), (plate_half_width, web_height_ctc, 1.0)),

((plate_half_width+1, web_height_ctc, 0.0),
(plate_half_width+flange_width/2, web_height_ctc,
1.0)),

↪→

↪→

↪→

), name='flange')

mdb.models['Model-1'].parts['Part-1'].Set(faces=

mdb.models['Model-1'].parts['Part-1'].faces.findAt(((plate_half_width,
0,

↪→

↪→

0), (plate_half_width, web_height_ctc, 1)), ),
name='web')

mdb.models['Model-1'].parts['Part-4'].Set(faces=
mdb.models['Model-1'].parts['Part-4'].faces.findAt(((0, 0,
0), (plate_width*no_stiffeners, trans_height, 0)), ),

name='travstiff')

mdb.models['Model-1'].parts['Part-1'].Set(faces=
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mdb.models['Model-1'].parts['Part-1'].faces.findAt(((0.0,
0.0,↪→

0.0), (plate_half_width, 0.0, 1.0)), ((plate_half_width+1,
0.0, 0.0), (plate_width, 0.0, 1.0)),↪→

), name='plate')

mdb.models['Model-1'].parts['Part-2'].Set(edges=
mdb.models['Model-1'].parts['Part-2'].edges.findAt(((0, 0,

0), )),↪→

name='beam')

# Section assignment

mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,↪→

offsetField='',
offsetType=MIDDLE_SURFACE, region=↪→

mdb.models['Model-1'].parts['Part-1'].sets[↪→

'web'],
sectionName='web',

thicknessAssignment=FROM_SECTION)↪→

mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,↪→

offsetField='', offsetType=MIDDLE_SURFACE, region=
mdb.models['Model-1'].parts['Part-1'].sets['flange'],
sectionName='flange', thicknessAssignment=FROM_SECTION)

mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,↪→

offsetField='',
offsetType=MIDDLE_SURFACE, region=↪→

mdb.models['Model-1'].parts['Part-1'].sets[↪→

'plate'],
sectionName='plate',
thicknessAssignment=FROM_SECTION)

mdb.models['Model-1'].parts['Part-4'].SectionAssignment(offset=0.0,↪→

offsetField='',
offsetType=MIDDLE_SURFACE, region=↪→

mdb.models['Model-1'].parts['Part-4'].sets[↪→

'travstiff'],
sectionName='travstiff',
thicknessAssignment=FROM_SECTION)
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# Assembly into structures
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON,

name='Part-1-1',↪→

part=mdb.models['Model-1'].parts['Part-1'])
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON,

name='Part-4-1',↪→

part=mdb.models['Model-1'].parts['Part-4'])

mdb.models['Model-1'].rootAssembly.LinearInstancePattern(direction1=(1.0,
0.0,

↪→

↪→

0.0), direction2=(0.0, 1.0, 0.0), instanceList=('Part-1-1',
), number1=no_stiffeners,↪→

number2=1, spacing1=plate_width, spacing2=73.5)
if (no_stiffeners == 3):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(domain=MESH,↪→

instances=(mdb.models['Model-1'].rootAssembly.instances['Part-1-1'],↪→

mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-2-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-3-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-4-1']),

↪→

↪→

↪→

mergeNodes=BOUNDARY_ONLY, name='Part-3',
nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
elif (no_stiffeners == 4):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(domain=MESH,↪→

instances=(mdb.models['Model-1'].rootAssembly.instances['Part-1-1'],↪→

mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-2-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-3-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-4-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-4-1']),

↪→

↪→

↪→

↪→

mergeNodes=BOUNDARY_ONLY, name='Part-3',
nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
elif (no_stiffeners == 2):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(domain=MESH,↪→

instances=(mdb.models['Model-1'].rootAssembly.instances['Part-1-1'],↪→

mdb.models['Model-1'].rootAssembly.instances['Part-1-1-lin-2-1'],
mdb.models['Model-1'].rootAssembly.instances['Part-4-1']),

↪→

↪→
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mergeNodes=BOUNDARY_ONLY, name='Part-3',
nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
elif (no_stiffeners == 5):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(↪→

domain=MESH,
instances=(mdb.models['Model-1'].rootAssembly.
instances['Part-1-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-1-1-lin-2-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-1-1-lin-3-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-1-1-lin-4-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-1-1-lin-5-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-4-1']),
mergeNodes=BOUNDARY_ONLY, name='Part-3',

nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
elif (no_stiffeners == 1):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge
(domain=MESH,
instances=(mdb.models['Model-1'].rootAssembly.
instances['Part-1-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-4-1']),
mergeNodes=BOUNDARY_ONLY, name='Part-3',

nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
elif (no_stiffeners == 6):

mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(domain=↪→

MESH,instances=(mdb.models['Model-1'].rootAssembly.
instances['Part-1-1'],
mdb.models['Model-1'].rootAssembly.
instances['Part-1-1-lin-2-1'],

mdb.models['Model-1'].rootAssembly.↪→

instances['Part-1-1-lin-3-1'],
mdb.models['Model-1'].rootAssembly.↪→

instances['Part-1-1-lin-4-1'],
mdb.models['Model-1'].rootAssembly.↪→

instances['Part-1-1-lin-5-1'],
mdb.models['Model-1'].rootAssembly.↪→

instances['Part-1-1-lin-6-1'],
mdb.models['Model-1'].rootAssembly.↪→
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instances['Part-4-1']),
mergeNodes=BOUNDARY_ONLY, name='Part-3',

nodeMergingTolerance=1e-06,↪→

originalInstances=DELETE)
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON,

name='Part-2-1',↪→

part=mdb.models['Model-1'].parts['Part-2'])

mdb.models['Model-1'].rootAssembly.translate(instanceList=('Part-2-1',
), vector=

↪→

↪→

(0.0, e_c, -bearing_width))
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON,

name='Part-2-2',↪→

part=mdb.models['Model-1'].parts['Part-2'])

mdb.models['Model-1'].rootAssembly.translate(instanceList=('Part-2-2',
), vector=

↪→

↪→

(0.0, e_c, bearing_width+unit_length))

# Create steps
mdb.models['Model-1'].ImplicitDynamicsStep(name='Step-1',

nlgeom=ON, previous=↪→

'Initial',alpha=DEFAULT, amplitude=RAMP,
application=QUASI_STATIC, initialConditions=OFF,
nohaf=OFF, maxInc=1,

↪→

↪→

maxNumInc=100,
initialInc=0.0001,
minInc=1e-15,
timePeriod=75.0)

↪→

↪→

↪→

# Amplitude assignment
mdb.models['Model-1'].TabularAmplitude(data=((0.0, 0.0),

(200.0, 10.0)),↪→

name='disp_amp', smooth=SOLVER_DEFAULT, timeSpan=STEP)

# BC assignment
longitudinal_BC1 =

mdb.models['Model-1'].rootAssembly.Set(name='longitudinal_BC1',
nodes=

↪→

↪→

mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].nodes.↪→

getByBoundingBox(0, 0, 0, 0+mesh_size/2, 0, unit_length))
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longitudinal_BC2 =
mdb.models['Model-1'].rootAssembly.Set(name='longitudinal_BC2',
nodes=

↪→

↪→

mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].nodes.↪→

getByBoundingBox(no_stiffeners*plate_width-mesh_size/2, 0,
0,↪→

no_stiffeners*plate_width+mesh_size, 0,
unit_length))↪→

transverse_BC1 =
mdb.models['Model-1'].rootAssembly.Set(name='transverse_BC1',
nodes=

↪→

↪→

mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].nodes.↪→

getByBoundingBox(-plate_half_width, 0, 0,
no_stiffeners*plate_width+mesh_size,

web_height_ctc+1, 0))↪→

transverse_BC2 =
mdb.models['Model-1'].rootAssembly.Set(name='transverse_BC2',
nodes=

↪→

↪→

mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].nodes.↪→

getByBoundingBox(-plate_half_width, 0, unit_length,
no_stiffeners*plate_width+mesh_size,

web_height_ctc+1, unit_length))↪→

mdb.models['Model-1'].DisplacementBC(amplitude=UNSET,
createStepName='Initial',↪→

distributionType=UNIFORM,
fieldName='', localCsys=None,↪→

name=loading_direction + '_BC1',

region=mdb.models['Model-1'].rootAssembly.↪→

sets[loading_direction + '_BC1'],
u1=SET, u2=UNSET, u3=UNSET,

ur1=UNSET, ur2=UNSET,
ur3=UNSET)

↪→

↪→

mdb.models['Model-1'].DisplacementBC(amplitude=UNSET,
createStepName='Initial',↪→

distributionType=UNIFORM,
fieldName='', localCsys=None,↪→

name=loading_direction + '_BC2',

region=mdb.models['Model-1'].rootAssembly.↪→

sets[loading_direction + '_BC2'],
u1=SET, u2=UNSET, u3=UNSET,

ur1=UNSET, ur2=UNSET,
ur3=UNSET)

↪→

↪→
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mdb.models['Model-1'].ConcentratedForce(cf3=-100.0,
createStepName='Step-1',↪→

distributionType=UNIFORM, field='', localCsys=None,
name='Load-1', region=↪→

mdb.models['Model-1'].rootAssembly.sets['transverse_BC1'])

mdb.models['Model-1'].rootAssembly.Set(edges=

mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].edges.↪→

getSequenceFromMask(
('[#f ]', ), ), name='moving_beam')

mdb.models['Model-1'].rootAssembly.Set(edges=

mdb.models['Model-1'].rootAssembly.instances['Part-2-2'].edges.↪→

getSequenceFromMask(
('[#f ]', ), ), name='fixed_beam')

mdb.models['Model-1'].DisplacementBC(amplitude='disp_amp',
createStepName='Step-1',↪→

distributionType=UNIFORM,
fieldName='',
localCsys=None,

↪→

↪→

name='moving_beam',

region=mdb.models['Model-1'].rootAssembly↪→

.sets['moving_beam'],
u1=SET, u2=SET, u3=UNSET,

ur1=SET, ur2=SET,
ur3=UNSET)

↪→

↪→

mdb.models['Model-1'].DisplacementBC(amplitude=UNSET,
createStepName='Initial',↪→

distributionType=UNIFORM,
fieldName='',
localCsys=None,

↪→

↪→

name='fixed_beam',

region=mdb.models['Model-1'].rootAssembly↪→

.sets['fixed_beam'],
u1=SET, u2=SET, u3=SET,

ur1=UNSET, ur2=SET,
ur3=SET)

↪→

↪→

# Assign beam property
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mdb.models['Model-1'].parts['Part-2'].SectionAssignment(offset=0.0,
offsetField=

↪→

↪→

'', offsetType=MIDDLE_SURFACE,
region=mdb.models['Model-1'].parts['Part-2'].sets['beam']↪→

, sectionName='beam', thicknessAssignment=FROM_SECTION)

mdb.models['Model-1'].parts['Part-2'].assignBeamSectionOrientation↪→

(method=
N1_COSINES, n1=(0.0, 0.0, -1.0), region=
mdb.models['Model-1'].parts['Part-2'].sets['beam'])

# Rigid beam assignments
mdb.models['Model-1'].rootAssembly.ReferencePoint(point=

mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].
InterestingPoint(

mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].edges[0],
MIDDLE))

↪→

↪→

mdb.models['Model-1'].RigidBody(bodyRegion=
mdb.models['Model-1'].rootAssembly.sets['moving_beam'],

name='moving_beam',↪→

refPointRegion=Region(referencePoints=(
mdb.models['Model-1'].rootAssembly.referencePoints.findAt
((plate_width*no_stiffeners/2, e_c, -bearing_width)), )))

mdb.models['Model-1'].rootAssembly.ReferencePoint(point=
mdb.models['Model-1'].rootAssembly.instances['Part-2-2'].
InterestingPoint(

mdb.models['Model-1'].rootAssembly.instances['Part-2-2'].edges[0],
MIDDLE))

↪→

↪→

mdb.models['Model-1'].RigidBody(bodyRegion=
mdb.models['Model-1'].rootAssembly.sets['fixed_beam'],

name='fixed_beam',↪→

refPointRegion=Region(referencePoints=(
mdb.models['Model-1'].rootAssembly.referencePoints.
findAt((plate_width*no_stiffeners/2, e_c,
bearing_width+unit_length)), )))

# Constraints assignment
mdb.models['Model-1'].rootAssembly.Set(name='master_nodes_1',

nodes=↪→

mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].nodes.↪→

getByBoundingBox(
plate_width*no_stiffeners/2-mesh_size/2, e_c,

-bearing_width,↪→
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plate_width*no_stiffeners/2+1, e_c, -bearing_width))

mdb.models['Model-1'].MultipointConstraint(controlPoint=mdb.models['Model-1'].rootAssembly.sets['master_nodes_1'],↪→

csys=None, mpcType=BEAM_MPC,
name='Constraint-1', surface=↪→

mdb.models['Model-1'].rootAssembly.sets[unloading_direction
+ '_BC1'],

↪→

↪→

userMode=DOF_MODE_MPC,
userType=0)

mdb.models['Model-1'].rootAssembly.Set(name='master_nodes_2',
nodes=↪→

mdb.models['Model-1'].rootAssembly.instances['Part-2-2'].nodes.↪→

getByBoundingBox(
plate_width*no_stiffeners/2-mesh_size/2, e_c,

bearing_width+unit_length,↪→

plate_width*no_stiffeners/2+1, e_c,
bearing_width+unit_length))↪→

mdb.models['Model-1'].MultipointConstraint(controlPoint=mdb.models['Model-1'].rootAssembly.sets['master_nodes_2'],↪→

csys=None, mpcType=BEAM_MPC,
name='Constraint-2', surface=↪→

mdb.models['Model-1'].rootAssembly.sets[unloading_direction
+ '_BC2'],

↪→

↪→

userMode=DOF_MODE_MPC,
userType=0)

# Output setups

mdb.models['Model-1'].HistoryOutputRequest(createStepName='Step-1',
name=

↪→

↪→

'H-Output-1', rebar=EXCLUDE, frequency=1, region=
mdb.models['Model-1'].rootAssembly.sets['fixed_beam'],

sectionPoints=DEFAULT↪→

, variables=('CF1', 'CF2', 'CF3', 'CM1', 'CM2', 'CM3'))

mdb.models['Model-1'].HistoryOutputRequest(createStepName='Step-1',
name=

↪→

↪→

'H-Output-2', rebar=EXCLUDE, frequency=1, region=
mdb.models['Model-1'].rootAssembly.sets['moving_beam'],

sectionPoints=↪→

DEFAULT, variables=('U1', 'U2', 'U3', 'UR1', 'UR2', 'UR3'))

# Job creation
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mdb.Job(atTime=None, contactPrint=OFF, description='',
echoPrint=OFF,↪→

explicitPrecision=SINGLE, getMemoryFromAnalysis=True,
historyPrint=OFF,↪→

memory=90, memoryUnits=PERCENTAGE, model='Model-1',
modelPrint=ON,↪→

multiprocessingMode=DEFAULT, name=jname,
nodalOutputPrecision=FULL,↪→

numCpus=4, numDomains=4, numGPUs=0, queue=None,
resultsFormat=ODB, scratch=↪→

'', type=ANALYSIS, userSubroutine='', waitHours=0,
waitMinutes=0)↪→

# Input file write
mdb.jobs[jname].writeInput(consistencyChecking=OFF)
mdb.jobs[jname].submit()
mdb.close()

jnamelist = []
for no in no_stiffeners_gen:

nosti = no
for y_p in yld_plate_gen:

yieldp = y_p
for y_s in yld_stiffener_gen:

yields = y_s
for fw in flange_width_gen:

flangew = fw
for t in plate_thickness_gen:

thick = t
for sd in plate_width_gen:

platew = sd
for st in stiff_thickness_gen:

stithi = st
jname =

'Testing'+str(no_stiffeners_gen.index(no))+'_yp_'+str(yld_plate_gen.index(y_p))+'_ys_'+str(yld_stiffener_gen.index(y_s))+'_fw_'+str(flange_width_gen.index(fw))+'_nosti_'+str(plate_thickness_gen.index(t))+'_platew_'+str(plate_width_gen.index(sd))+'stth'+str(stiff_thickness_gen.index(st))↪→

#jnamelist.append('t_'+str(plate_thickness_gen.index(t))+'_yp_'+str(yld_plate_gen.index(y_p))+'_ys_'+str(yld_stiffener_gen.index(y_s))+'_fw_'+str(flange_width_gen.index(fw)))↪→

#jnamelist.append('_t_'+str(plate_thickness_gen.index(t))+'_w_'+str(plate_width_gen.index(w))+'_ml_'+str(mid_lines_large_gen.index(ml)))↪→

generate_jobs(jname, yieldp, yields,
thick, flangew, nosti, platew,
stithi)

↪→

↪→
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A2 - Code for Testing Model Outside of Training Range

from abaqus import *
from abaqusConstants import *
from caeModules import *
import visualization
#from viewerModules import *
from driverUtils import executeOnCaeStartup
import odbAccess
import time
import csv
from WorkingInputGen import *

start = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
import regionToolset
import os

def extractor(jname, yld_plate, yld_stiffener, plate_thickness,
flange_width, no_stiffeners, plate_width, web_thickness,
mesh_size):

↪→

↪→

executeOnCaeStartup()
#session.reset()
o2 = session.openOdb(name=jname+'.odb')
session.viewports['Viewport: 1'].setValues(displayedObject=o2)
session.viewports['Viewport: 1'].makeCurrent()
odb = session.openOdb(jname+'.odb')

path = ''

for xyData in session.xyDataObjects.keys():
del session.xyDataObjects[xyData]

session.xyDataListFromField(odb=odb, outputPosition=NODAL,
variable=(('RF',↪→

NODAL, ((COMPONENT, 'RF3'), )), ), nodePick=(('ASSEMBLY',
1, ('[#2 ]', )),↪→

), )

session.xyDataListFromField(odb=odb, outputPosition=NODAL,
variable=(('U',↪→

NODAL, ((COMPONENT, 'U3'), )), ), nodePick=(('ASSEMBLY', 1,
('[#1 ]', )),↪→

), )
u_val = session.xyDataObjects['U:U3 PI: ASSEMBLY N: 1']
rf_val = session.xyDataObjects['RF:RF3 PI: ASSEMBLY N: 2']
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#xy3 = combine(xy1, -xy2/1000)

file = open(jname+"rfpost.csv", "w")
for i in range(len(rf_val)):

file.write(str(rf_val[i]).replace('(', '').replace(')', '')
+"\n")↪→

file.close()

file = open(jname+"upost.csv", "w")
for i in range(len(u_val)):

file.write(str(u_val[i]).replace('(', '').replace(')', '')
+"\n")↪→

file.close()

input_file = jname+'upost.csv'
output_file = jname+'output.csv'

right_values_u = jname+'right_values_u'
right_values_u = []

with open(input_file, 'r') as infile:
reader = csv.reader(infile, delimiter = ',')
for row in reader:

right_values_u.append(float(row[1]))#

with open(output_file, 'w') as outfile:
writer = csv.writer(outfile)
for value in right_values_u:

writer.writerow([value])

input_file_rf = jname+'rfpost.csv'
output_file_rf = jname+'outputrf.csv'

right_values_rf = jname+'right_values_rf'
right_values_rf = []

with open(input_file_rf, 'r') as infile:
reader = csv.reader(infile, delimiter = ',')
for row in reader:

right_values_rf.append(float(row[1]))#

with open(output_file_rf, 'w') as outfile:
writer = csv.writer(outfile)
for value in right_values_rf:

writer.writerow([value])
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#Create a output file and write the obtained data
text = open(jname + ".csv", "w")
text.write("%60s" % (jname))
text.write("\n")
text.write('%8s%4s%17s%2s%17s%5s%12s%10s' % (
" ", "Disp", " ", "RF", " ", "Slope", " ", "Slope Rate"))
text.write("\n")
#Calculate the buckling load from the slope change
#of the force-displacement data
slope = 0.0
slope_list = [0.0]
slope_rate_list = [0.0, 0.0]
buckle_found = False
buckle_load = 0.0
for i in range(0, len(rf_val)):

if i > 0:
slope = (right_values_rf[i] - right_values_rf[i - 1]) /

(right_values_u[i] - right_values_u[i - 1])↪→

slope_list.append(slope)
if i > 1:

slope_rate = abs(slope_list[i] - slope_list[i - 1]) /
slope_list[i]↪→

slope_rate_list.append(slope_rate)
if slope_rate > 0.1 and buckle_found == False:

buckle_load = right_values_rf[i]
buckle_found = True

text.write('%20.6f%20.2f%20.2f%20.2f' % (right_values_u[i],
right_values_rf[i], slope, slope_rate_list[i]))↪→

text.write("\n")

slope_list = slope_list[:-1]
slope_rate_list = slope_rate_list[:-1]
text.write("\n")
text.write("%20s%20.2f" % ("Buckle Load :", abs(buckle_load)))
text.write("\n")
text.close()
process = open(path + jname + ".pro", "a")
process.write("Output file is created.\n")
end = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
process.write(end)
process.close()

resultfile = open("results.csv", "a")
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resultfile.write('%20.6f%20.2f%20.2f%20.2f%20.2f%20.2f%20.2f%20.2f%20.2f'
% (yld_plate, yld_stiffener, plate_thickness, flange_width,
no_stiffeners, plate_width, web_thickness, mesh_size,
abs(buckle_load)))

↪→

↪→

↪→

↪→

resultfile.write("\n")
resultfile.close()

mdb.close()

jnamelist = []

for no in no_stiffeners_gen:
nosti = no
for y_p in yld_plate_gen:

yieldp = y_p
for y_s in yld_stiffener_gen:

yields = y_s
for fw in flange_width_gen:

flangew = fw
for t in plate_thickness_gen:

thick = t
for sd in plate_width_gen:

platew = sd
for st in stiff_thickness_gen:

stithi = st
for ms in mesh_size_gen:

mesi = ms
jname =

'ConvTest'+str(mesh_size_gen.index(ms))+'_ms_'+str(no_stiffeners_gen.index(no))+'_yp_'+str(yld_plate_gen.index(y_p))+'_ys_'+str(yld_stiffener_gen.index(y_s))+'_fw_'+str(flange_width_gen.index(fw))+'_nosti_'+str(plate_thickness_gen.index(t))+'_platew_'+str(plate_width_gen.index(sd))+'stth'+str(stiff_thickness_gen.index(st))↪→

extractor(jname, yieldp, yields,
thick, flangew, nosti, platew,
stithi, mesi)

↪→

↪→
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A3 - Input File

# Geometry of L-bar unit
unit_length = 750
no_stiffeners_gen = [3]
#no_stiffeners_gen = [1, 2, 3, 4, 5, 6]

plate_width_gen = [260]
#plate_width_gen = [240, 260, 320]
web_height = 40
mid_lines_large = 118
#flange_width_gen = [30, 35, 42]
flange_width_gen = [40]
#flange_width_gen = [30, 40]
#web_thickness = 5
#stiff_thickness_gen = [3.5, 4, 4.5]
stiff_thickness_gen = [3]
#flange_thickness = 5
plate_thickness_gen = [3]
#plate_thickness_gen = [2, 3, 4]
e_c = 20
bearing_width = 10
trans_thickness = 5
trans_height = web_height+20

# Material property
density = 7.85e-9
E_modulus = 210000
poison_ratio = 0.3

#yld_plate_gen = [190, 245, 355]
yld_plate_gen = [245]
#yld_plate_gen = [280]
n_plate = 35.6
offset_plate = 0.438

yld_stiffener_gen = [235]
#yld_stiffener_gen = [235, 355, 400]
n_stiffener = 23.6
offset_stiffener = 0.452

# Mesh

mesh_size = 10
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# Load

loading_direction = 'longitudinal'
unloading_direction = 'transverse'
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B - NEURAL NETWORK CODE

B1 - ANN Model Generator

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Dense, Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

# Load data
data = pd.read_csv('resultsinside.csv')
X = data[['PlateStrength', 'StiffStrength', 'Thickness',

'FlangeWidth', 'Stiffeners', 'PlateWidth', 'StiffThick']]↪→

y = data['BucklingLoad']

#Splitting data into testing and validation sets
X_temp, X_test, y_temp, y_test = train_test_split(X, y,

test_size=0.1, random_state=42)↪→

X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp,
test_size=0.15, random_state=42)↪→

print("Shape of x_train:",X_train.shape)
print("Shape of x_val:",X_val.shape)
print("Shape of x_test:",X_test.shape)
print("Shape of y_train:",y_train.shape)
print("Shape of y_val:",y_val.shape)
print("Shape of y_test:",y_test.shape)

#Scaling the data
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scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_val_scaled = scaler.transform(X_val)
X_test_scaled = scaler.transform(X_test)

# Define and compile the model
model = tf.keras.Sequential([

Dense(128, activation='relu', input_shape=(7,)),
#Dropout(0.2),
Dense(64, activation='relu',

kernel_regularizer=regularizers.l2(0.001)),↪→

#Dropout(0.2),
Dense(32, activation='relu'),

#kernel_regularizer=regularizers.l2(0.001)),↪→

#Dense(32, activation='relu'),
#Dropout(0.2),
Dense(16, activation='relu'),
Dense(1)

])

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

# Train the model
history = model.fit(X_train_scaled, y_train,

validation_data=(X_val_scaled, y_val), epochs=1200)↪→

loss, mae = model.evaluate(X_test_scaled, y_test)
print(f"Mean Absolute Error on test data: {mae}")

predicted_loads = model.predict(X_test_scaled)

# Plots

plt.figure(figsize=(10, 6))

#Scatter plot of true vs. predicted values
plt.scatter(y_test, predicted_loads, alpha=0.6, edgecolors="w",

linewidth=0.5)↪→

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],
'r') # red line for perfect fit↪→

plt.xlabel('True Buckling Loads')
plt.ylabel('Predicted Buckling Loads')
plt.title('True vs. Predicted Buckling Loads Joint Dataset')
plt.grid(True)
plt.tight_layout()
plt.show()
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plt.figure(figsize=(10, 6))

# Plot training & validation loss values
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss over Epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.yscale('log')
plt.legend(loc='upper right')
plt.grid(True)
plt.tight_layout()
plt.show()

def plot_percentage_error_distribution(y_true, y_pred):
# Calculate percentage errors
percentage_errors = ((y_pred.flatten() - y_true) / y_true) *

100↪→

plt.figure(figsize=(10, 6))
plt.hist(percentage_errors, bins=50, edgecolor='black',

color='skyblue')↪→

plt.xlabel('Percentage Error (%)')
plt.ylabel('Frequency')
plt.title('Error Distribution Joint Dataset')
plt.grid(True)
plt.tight_layout()
plt.show()

plot_percentage_error_distribution(y_test, predicted_loads)

# Convert pandas Series to NumPy arrays (if they are Series)
predicted_loads_array = predicted_loads.values if

isinstance(predicted_loads, pd.Series) else
predicted_loads.flatten()

↪→

↪→

y_test_array = y_test.values if isinstance(y_test, pd.Series) else
y_test.flatten()↪→

# Calculate MAPE
mape = np.mean(np.abs((y_test_array - predicted_loads_array) /

y_test_array)) * 100↪→

print(f"Mean Absolute Percentage Error (MAPE): {mape:.2f}%")

# Calculate percentage differences
percentage_differences = np.abs((y_test_array -

predicted_loads_array) / y_test_array) * 100↪→
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# Find the maximum percentage difference
max_percentage_difference = np.max(percentage_differences)

print(f"Maximum Percentage Difference:
{max_percentage_difference:.2f}%")↪→

model.save('newnewnewattempt.keras')

def calculate_permutation_importance(model, X_val_scaled, y_val,
feature_names):↪→

# Calculate the baseline performance with the unpermuted data
baseline_mse = mean_squared_error(y_val,

model.predict(X_val_scaled))↪→

importance_scores = {} # Corrected variable name

# Iterate over each feature by index
for i, feature in enumerate(feature_names):

# Save a copy of the original feature column
saved_column = X_val_scaled[:, i].copy()

# Permute the feature column values
X_val_scaled[:, i] = np.random.permutation(X_val_scaled[:,

i])↪→

# Calculate new performance with the permuted data
new_mse = mean_squared_error(y_val,

model.predict(X_val_scaled))↪→

# Calculate the importance score as the difference in
performance↪→

importance_score = new_mse - baseline_mse

# Store the importance score in the dictionary
importance_scores[feature] = importance_score

# Restore the original feature column
X_val_scaled[:, i] = saved_column

return importance_scores

# Assume you have a list of feature names corresponding to the
columns in your original DataFrame↪→
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feature_names = ['PlateStrength', 'StiffStrength', 'Thickness',
'FlangeWidth', 'Stiffeners', 'PlateWidth', 'StiffThick'] #
Replace with your actual feature names

↪→

↪→

importance_scores = calculate_permutation_importance(model,
X_val_scaled, y_val, feature_names)↪→

# Sort and display the feature importance
#sorted_importance_scores = sorted(importance_scores.items(),

key=lambda x: x[1], reverse=True)↪→

#for feature, importance in sorted_importance_scores:
# print(f"{feature}: {importance}")

# Calculate the absolute errors between the predictions and the
actual values↪→

errors = np.abs(predicted_loads.flatten() - y_test.to_numpy())

# Find the indices of the 5 largest errors
largest_errors_indices = np.argsort(percentage_differences)[-40:]

# Extract the rows from X_test corresponding to these indices
largest_errors_rows = X_test.iloc[largest_errors_indices]

# Add the corresponding error values as a new column to the
DataFrame↪→

largest_errors_rows['Error'] =
percentage_differences[largest_errors_indices]↪→

# Display the specific values for the input parameters that
resulted in the largest errors↪→

print("Input parameters for the 40 largest errors:")
print(largest_errors_rows)

errors_0_3 = np.sum((percentage_differences > 0) &
(percentage_differences <= 3))↪→

errors_3_5 = np.sum((percentage_differences > 3) &
(percentage_differences <= 5))↪→

errors_over_5 = np.sum(percentage_differences > 5)

print(f"Number of errors between 0% and 3%: {errors_0_3}")
print(f"Number of errors between 3% and 5%: {errors_3_5}")
print(f"Number of errors over 5%: {errors_over_5}")
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def scale_importance_scores(importance_scores):
# Extract scores from the dictionary and convert to a numpy

array↪→

scores_array = np.array(list(importance_scores.values()))

# Compute the minimum and maximum values from the array
min_score = np.min(scores_array)
max_score = np.max(scores_array)

# Avoid division by zero if all scores are the same
if min_score == max_score:

return {key: 1 for key in importance_scores} # All scores
set to 1↪→

# Perform min-max scaling to transform scores to the range 1 to
100↪→

scaled_scores = 1 + 99 * (scores_array - min_score) /
(max_score - min_score)↪→

# Return scaled scores in the same dictionary format
return dict(zip(importance_scores.keys(), scaled_scores))

# Scale the importance scores
scaled_importance_scores =

scale_importance_scores(importance_scores)↪→

# Print the scaled scores
for feature, score in scaled_importance_scores.items():

print(f"{feature}: {score:.2f}")

r_squared = r2_score(y_test, predicted_loads)

print("R^2 Score:", r_squared)
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B2 - Code for Testing Model Outside of Training Range

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow import keras
from NNstart import scaler
from sklearn.metrics import mean_squared_error
import pandas as pd
from tensorflow import keras
from sklearn.metrics import r2_score
# from sklearn.preprocessing import StandardScaler # Uncomment if

you need to import StandardScaler↪→

# Load and preprocess new data
data_path = 'NewResultsOutside.csv'
new_data = pd.read_csv(data_path)
x_new = new_data[['PlateStrength', 'StiffStrength', 'Thickness',

'FlangeWidth', 'Stiffeners', 'PlateWidth', 'StiffThick']]↪→

x_new_scaled = scaler.transform(x_new) # Use the same scaler as
you used in training↪→

y = new_data['BucklingLoad']

# Load the trained model
model = keras.models.load_model('newnewnewattempt.keras')

# Make predictions
predictions = model.predict(x_new_scaled)
#print(predictions)

# Create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(y, predictions, alpha=0.5)
plt.xlabel('True Load')
plt.ylabel('Predicted Load')
plt.title('True Load vs. Predicted Load Joint Dataset (Outside

Range)')↪→

plt.grid(True)

# Add a perfect fit line (y = x)
x = np.linspace(min(y), max(y), 100)
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plt.plot(x, x, color='red', linestyle='--', label='Perfect Fit')

plt.legend()
# Show the plot
plt.show()

# Convert pandas Series to NumPy arrays (if they are Series)
predicted_loads_array = predictions.values if

isinstance(predictions, pd.Series) else predictions.flatten()↪→

true_load_array = y.values if isinstance(y, pd.Series) else
y.flatten()↪→

# Calculate MAPE
mape = np.mean(np.abs((true_load_array - predicted_loads_array) /

true_load_array)) * 100↪→

print(f"Mean Absolute Percentage Error (MAPE): {mape:.2f}%")

# Calculate percentage differences
percentage_differences = np.abs((true_load_array -

predicted_loads_array) / true_load_array) * 100↪→

# Find the maximum percentage difference
max_percentage_difference = np.max(percentage_differences)

print(f"Maximum Percentage Difference:
{max_percentage_difference:.2f}%")↪→

def plot_percentage_error_distribution(y_true, y_pred):
# Calculate percentage errors
percentage_errors = ((y_pred.flatten() - y_true) / y_true) *

100↪→

plt.figure(figsize=(10, 6))
plt.hist(percentage_errors, bins=50, edgecolor='black',

color='skyblue')↪→

plt.xlabel('Percentage Error (%)')
plt.ylabel('Frequency')
plt.title('Error Distribution Joint Dataset (Outside Range)')
plt.grid(True)
plt.tight_layout()
plt.show()

plot_percentage_error_distribution(true_load_array,
predicted_loads_array)↪→
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def calculate_permutation_importance(model, X_val_scaled, y_val,
feature_names):↪→

# Calculate the baseline performance with the unpermuted data
baseline_mse = mean_squared_error(y_val,

model.predict(X_val_scaled))↪→

importance_scores = {} # Corrected variable name

# Iterate over each feature by index
for i, feature in enumerate(feature_names):

# Save a copy of the original feature column
saved_column = X_val_scaled[:, i].copy()

# Permute the feature column values
X_val_scaled[:, i] = np.random.permutation(X_val_scaled[:,

i])↪→

# Calculate new performance with the permuted data
new_mse = mean_squared_error(y_val,

model.predict(X_val_scaled))↪→

# Calculate the importance score as the difference in
performance↪→

importance_score = new_mse - baseline_mse

# Store the importance score in the dictionary
importance_scores[feature] = importance_score

# Restore the original feature column
X_val_scaled[:, i] = saved_column

return importance_scores

# Assume you have a list of feature names corresponding to the
columns in your original DataFrame↪→

feature_names = ['PlateStrength', 'StiffStrength', 'Thickness',
'FlangeWidth', 'Stiffeners', 'PlateWidth', 'StiffThick'] #
Replace with your actual feature names

↪→

↪→

importance_scores = calculate_permutation_importance(model,
x_new_scaled, y, feature_names)↪→

# Sort and display the feature importance
sorted_importance_scores = sorted(importance_scores.items(),

key=lambda x: x[1], reverse=True)↪→

for feature, importance in sorted_importance_scores:
print(f"{feature}: {importance}")
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# Calculate the absolute errors between the predictions and the
actual values↪→

errors = np.abs(predictions.flatten() - y.to_numpy())

# Find the indices of the 5 largest errors
largest_errors_indices = np.argsort(percentage_differences)[-200:]

# Extract the rows from X_test corresponding to these indices
largest_errors_rows = x_new.iloc[largest_errors_indices]

largest_errors_rows['Error'] =
percentage_differences[largest_errors_indices]↪→

# Display the specific values for the input parameters that
resulted in the largest errors↪→

print("Input parameters for the 40 largest errors:")
print(largest_errors_rows)

largest_errors_rows.to_csv('filename.csv')
#def get_largest_error_per_stiffener(group):
# return group.loc[group['Error'].idxmax()]

# Group by the number of stiffeners and apply the function
#largest_error_per_stiffener =

largest_errors_rows.groupby('Stiffeners').apply(get_largest_error_per_stiffener)↪→

#print(largest_error_per_stiffener[['Stiffeners', 'Error']])

errors_0_5 = np.sum((percentage_differences > 0) &
(percentage_differences <= 5))↪→

errors_5_10 = np.sum((percentage_differences > 5) &
(percentage_differences <= 10))↪→

errors_over_10 = np.sum(percentage_differences > 10)

print(f"Number of errors between 0% and 5%: {errors_0_5}")
print(f"Number of errors between 5% and 10%: {errors_5_10}")
print(f"Number of errors over 10%: {errors_over_10}")

r_squared = r2_score(y, predictions)

print("R^2 Score:", r_squared)
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C - SIDENOTE STATISTICS

C1 - Error results outside training range

PlateStrength,StiffStrength,Thickness,FlangeWidth,Stiffeners,PlateWidth,StiffThick,Error
450.0,355.0,2.5,37.0,3.0,220.0,3.5,12.868063 450.0,190.0,3.5,30.0,3.0,300.0,3.5,12.894570
245.0,190.0,2.5,30.0,4.0,300.0,3.5,12.927531 245.0,355.0,3.5,32.0,2.0,220.0,4.25,13.02270
245.0,190.0,3.5,37.0,2.0,220.0,3.5,13.100294 450.0,355.0,3.5,37.0,3.0,340.0,3.5,13.111837
450.0,355.0,2.5,37.0,2.0,220.0,4.25,13.11353 450.0,355.0,2.5,37.0,2.0,300.0,4.25,13.13664
245.0,355.0,2.5,32.0,3.0,220.0,4.25,13.13666 190.0,355.0,2.5,37.0,3.0,340.0,3.5,13.208420
450.0,190.0,2.5,30.0,3.0,300.0,3.5,13.227354 190.0,355.0,3.5,37.0,2.0,340.0,4.25,13.26042
245.0,355.0,3.5,32.0,3.0,220.0,4.25,13.29192 450.0,190.0,3.5,30.0,3.0,340.0,4.25,13.32084
245.0,190.0,2.5,30.0,4.0,340.0,4.25,13.34422 245.0,190.0,2.5,30.0,4.0,220.0,3.5,13.346059
245.0,190.0,2.5,37.0,2.0,220.0,3.5,13.375014 450.0,355.0,2.5,37.0,3.0,300.0,3.5,13.429726
245.0,190.0,3.5,30.0,3.0,340.0,3.5,13.449367 245.0,190.0,3.5,30.0,4.0,340.0,3.5,13.570898
450.0,355.0,3.5,37.0,3.0,220.0,3.5,13.610148 190.0,355.0,2.5,32.0,3.0,340.0,3.5,13.627604
245.0,355.0,2.5,37.0,2.0,340.0,4.25,13.65823 450.0,190.0,2.5,30.0,4.0,300.0,4.25,13.66278
190.0,190.0,3.5,30.0,4.0,300.0,3.5,13.678762 190.0,355.0,3.5,32.0,3.0,340.0,3.5,13.752939
245.0,190.0,3.5,30.0,2.0,220.0,4.25,13.76864 245.0,190.0,2.5,30.0,3.0,220.0,3.5,13.776400
450.0,190.0,3.5,37.0,2.0,220.0,3.5,13.779919 190.0,190.0,3.5,30.0,4.0,340.0,4.25,13.82621
190.0,190.0,3.5,30.0,4.0,220.0,3.5,13.828193 190.0,355.0,3.5,37.0,3.0,340.0,3.5,13.901605
450.0,190.0,3.5,37.0,2.0,300.0,3.5,13.953764 450.0,355.0,3.5,37.0,2.0,220.0,4.25,13.96462
450.0,190.0,2.5,37.0,2.0,340.0,3.5,13.972668 245.0,355.0,2.5,37.0,3.0,340.0,3.5,13.995229
190.0,355.0,2.5,32.0,3.0,220.0,3.5,14.119405 190.0,190.0,3.5,30.0,4.0,340.0,3.5,14.176127
450.0,355.0,3.5,37.0,2.0,300.0,4.25,14.22813 450.0,355.0,3.5,37.0,2.0,340.0,3.5,14.254505
450.0,190.0,2.5,30.0,2.0,300.0,4.25,14.27743 450.0,190.0,2.5,37.0,2.0,220.0,3.5,14.279019
450.0,190.0,2.5,30.0,3.0,340.0,4.25,14.29998 450.0,355.0,3.5,37.0,3.0,300.0,3.5,14.315070
190.0,190.0,3.5,30.0,2.0,300.0,4.25,14.32443 190.0,190.0,2.5,30.0,3.0,300.0,3.5,14.338598
190.0,355.0,2.5,37.0,2.0,220.0,4.25,14.40525 190.0,355.0,2.5,37.0,3.0,220.0,3.5,14.438549
245.0,355.0,2.5,32.0,3.0,340.0,3.5,14.487386 190.0,190.0,2.5,30.0,4.0,340.0,4.25,14.49424
245.0,355.0,3.5,32.0,3.0,340.0,3.5,14.525939 450.0,190.0,3.5,30.0,4.0,300.0,3.5,14.570992
190.0,190.0,2.5,30.0,4.0,300.0,3.5,14.586462 450.0,190.0,3.5,30.0,4.0,220.0,4.25,14.64897
450.0,355.0,3.5,37.0,2.0,220.0,3.5,14.652067 190.0,355.0,3.5,32.0,3.0,220.0,3.5,14.692511
245.0,190.0,2.5,30.0,2.0,220.0,4.25,14.70801 245.0,355.0,3.5,37.0,2.0,340.0,4.25,14.73442
450.0,190.0,2.5,30.0,4.0,220.0,4.25,14.74317 190.0,190.0,3.5,37.0,2.0,340.0,3.5,14.904668
245.0,355.0,3.5,37.0,3.0,340.0,3.5,14.939742 190.0,190.0,3.5,30.0,3.0,220.0,3.5,15.010683
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450.0,190.0,2.5,30.0,4.0,300.0,3.5,15.029635 450.0,190.0,3.5,30.0,2.0,300.0,4.25,15.04723
245.0,190.0,2.5,30.0,4.0,340.0,3.5,15.072021 245.0,355.0,2.5,37.0,2.0,220.0,4.25,15.08971
450.0,355.0,2.5,37.0,2.0,340.0,3.5,15.160128 245.0,355.0,2.5,37.0,3.0,220.0,3.5,15.186011
190.0,190.0,2.5,30.0,4.0,220.0,3.5,15.204658 450.0,355.0,2.5,37.0,2.0,220.0,3.5,15.214054
190.0,190.0,3.5,37.0,2.0,220.0,3.5,15.315788 190.0,190.0,3.5,30.0,3.0,340.0,3.5,15.336356
245.0,190.0,2.5,32.0,2.0,340.0,3.5,15.370502 245.0,190.0,2.5,30.0,3.0,340.0,3.5,15.411852
450.0,190.0,3.5,30.0,3.0,220.0,3.5,15.413038 190.0,190.0,2.5,30.0,2.0,300.0,4.25,15.41971
190.0,355.0,2.5,37.0,3.0,300.0,3.5,15.433411 450.0,190.0,3.5,37.0,2.0,340.0,3.5,15.480868
190.0,355.0,2.5,32.0,3.0,300.0,3.5,15.546658 190.0,355.0,3.5,32.0,3.0,300.0,3.5,15.580227
190.0,355.0,2.5,37.0,2.0,300.0,4.25,15.59189 450.0,190.0,3.5,30.0,4.0,340.0,4.25,15.63750
190.0,190.0,2.5,30.0,4.0,340.0,3.5,15.663474 245.0,190.0,2.5,32.0,2.0,220.0,3.5,15.687944
190.0,190.0,2.5,37.0,2.0,220.0,3.5,15.694088 450.0,190.0,3.5,30.0,4.0,220.0,3.5,15.705370
190.0,355.0,3.5,37.0,3.0,220.0,3.5,15.738169 245.0,190.0,3.5,30.0,2.0,340.0,4.25,15.79880
245.0,355.0,2.5,37.0,3.0,300.0,3.5,15.827424 190.0,190.0,2.5,37.0,2.0,340.0,3.5,15.832457
245.0,190.0,3.5,30.0,5.0,220.0,4.25,15.83461 245.0,355.0,2.5,32.0,3.0,220.0,3.5,15.852228
245.0,190.0,3.5,30.0,5.0,300.0,4.25,15.90099 245.0,355.0,2.5,37.0,2.0,300.0,4.25,15.95229
450.0,190.0,2.5,30.0,3.0,220.0,3.5,16.101884 190.0,355.0,3.5,37.0,3.0,300.0,3.5,16.141013
245.0,190.0,2.5,30.0,5.0,220.0,4.25,16.14439 190.0,355.0,3.5,37.0,2.0,220.0,4.25,16.26766
450.0,190.0,2.5,30.0,4.0,340.0,4.25,16.29814 245.0,355.0,3.5,32.0,3.0,300.0,3.5,16.349899
190.0,355.0,3.5,37.0,2.0,300.0,4.25,16.37775 245.0,355.0,2.5,32.0,3.0,300.0,3.5,16.409944
450.0,190.0,2.5,30.0,4.0,220.0,3.5,16.416164 245.0,355.0,3.5,37.0,3.0,300.0,3.5,16.471885
450.0,190.0,3.5,30.0,5.0,300.0,4.25,16.54206 245.0,190.0,3.5,32.0,2.0,220.0,3.5,16.544922
190.0,190.0,2.5,30.0,3.0,220.0,3.5,16.568124 245.0,355.0,3.5,37.0,3.0,220.0,3.5,16.588408
245.0,190.0,2.5,30.0,5.0,300.0,4.25,16.60435 245.0,355.0,3.5,32.0,3.0,220.0,3.5,16.655700
245.0,355.0,3.5,37.0,2.0,300.0,4.25,16.74463 450.0,190.0,2.5,32.0,2.0,220.0,3.5,16.807110
245.0,355.0,3.5,37.0,2.0,220.0,4.25,16.96665 450.0,355.0,3.5,37.0,2.0,300.0,3.5,17.231917
190.0,190.0,2.5,30.0,3.0,340.0,3.5,17.302568 245.0,190.0,3.5,32.0,2.0,340.0,3.5,17.313668
450.0,190.0,3.5,30.0,4.0,340.0,3.5,17.316300 450.0,190.0,3.5,30.0,5.0,340.0,4.25,17.42370
190.0,190.0,3.5,30.0,5.0,300.0,4.25,17.46163 245.0,190.0,3.5,30.0,5.0,300.0,3.5,17.496346
450.0,190.0,2.5,30.0,5.0,300.0,4.25,17.60723 190.0,190.0,3.5,32.0,2.0,300.0,3.5,17.681918
190.0,190.0,3.5,30.0,5.0,220.0,4.25,17.70665 450.0,190.0,3.5,30.0,5.0,220.0,4.25,17.71259
450.0,190.0,3.5,30.0,2.0,220.0,4.25,17.72340 450.0,190.0,2.5,30.0,2.0,220.0,4.25,17.81140
190.0,190.0,3.5,30.0,2.0,220.0,4.25,17.81427 190.0,190.0,2.5,32.0,2.0,300.0,3.5,17.843446
245.0,190.0,2.5,30.0,2.0,340.0,4.25,17.85185 245.0,190.0,3.5,30.0,5.0,220.0,3.5,17.858464
450.0,190.0,2.5,32.0,2.0,340.0,3.5,17.923767 245.0,190.0,2.5,30.0,5.0,220.0,3.5,17.987086
190.0,190.0,2.5,30.0,5.0,220.0,4.25,17.99970 450.0,355.0,2.5,37.0,2.0,300.0,3.5,18.052019
190.0,190.0,2.5,30.0,5.0,300.0,4.25,18.15915 450.0,190.0,2.5,30.0,5.0,220.0,4.25,18.16877
450.0,190.0,3.5,30.0,3.0,340.0,3.5,18.181907 245.0,190.0,2.5,30.0,5.0,300.0,3.5,18.185331
245.0,190.0,3.5,30.0,5.0,340.0,4.25,18.28433 190.0,190.0,3.5,30.0,5.0,300.0,3.5,18.306486
450.0,190.0,2.5,30.0,5.0,340.0,4.25,18.34327 190.0,190.0,3.5,30.0,2.0,340.0,4.25,18.44473
450.0,190.0,2.5,30.0,4.0,340.0,3.5,18.519084 450.0,190.0,3.5,32.0,2.0,220.0,3.5,18.536490
190.0,190.0,2.5,30.0,2.0,220.0,4.25,18.62992 190.0,190.0,3.5,30.0,5.0,220.0,3.5,18.704359
190.0,190.0,2.5,30.0,5.0,300.0,3.5,19.036296 190.0,190.0,2.5,30.0,5.0,220.0,3.5,19.190277
245.0,190.0,2.5,30.0,5.0,340.0,4.25,19.19692 450.0,190.0,3.5,32.0,2.0,340.0,3.5,19.226384
190.0,355.0,3.5,37.0,2.0,340.0,3.5,19.358178 190.0,190.0,3.5,30.0,5.0,340.0,4.25,19.45806
450.0,190.0,2.5,30.0,3.0,340.0,3.5,19.464093 190.0,190.0,2.5,32.0,2.0,340.0,3.5,19.554937
190.0,190.0,3.5,30.0,5.0,340.0,3.5,19.578527 245.0,190.0,3.5,30.0,5.0,340.0,3.5,19.627770
190.0,355.0,2.5,37.0,2.0,340.0,3.5,19.730174 190.0,355.0,2.5,37.0,2.0,220.0,3.5,19.870329
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450.0,190.0,3.5,30.0,5.0,300.0,3.5,19.873524 190.0,355.0,3.5,37.0,2.0,220.0,3.5,19.972042
190.0,190.0,3.5,32.0,2.0,340.0,3.5,20.199873 190.0,190.0,2.5,30.0,2.0,340.0,4.25,20.26253
190.0,190.0,2.5,30.0,5.0,340.0,4.25,20.36719 190.0,190.0,2.5,32.0,2.0,220.0,3.5,20.449358
245.0,190.0,2.5,30.0,5.0,340.0,3.5,20.573025 190.0,190.0,2.5,30.0,5.0,340.0,3.5,20.575218
245.0,190.0,3.5,30.0,2.0,300.0,3.5,20.621132 245.0,355.0,3.5,37.0,2.0,340.0,3.5,20.721992
450.0,190.0,2.5,30.0,5.0,300.0,3.5,20.783300 245.0,355.0,2.5,37.0,2.0,340.0,3.5,21.043668
190.0,190.0,3.5,32.0,2.0,220.0,3.5,21.349096 245.0,355.0,2.5,37.0,2.0,220.0,3.5,21.802937
450.0,190.0,3.5,30.0,5.0,340.0,3.5,22.090855 245.0,355.0,3.5,37.0,2.0,220.0,3.5,22.273726
450.0,190.0,3.5,30.0,5.0,220.0,3.5,22.378139 450.0,190.0,3.5,30.0,2.0,300.0,3.5,22.632625
450.0,190.0,2.5,30.0,5.0,220.0,3.5,22.680443 245.0,190.0,2.5,30.0,2.0,300.0,3.5,22.727434
450.0,190.0,2.5,30.0,5.0,340.0,3.5,22.808638 450.0,190.0,3.5,30.0,2.0,340.0,4.25,23.24471
190.0,355.0,2.5,37.0,2.0,300.0,3.5,23.665662 450.0,190.0,2.5,30.0,2.0,340.0,4.25,23.78866
190.0,355.0,3.5,37.0,2.0,300.0,3.5,24.129039 450.0,190.0,2.5,30.0,2.0,300.0,3.5,24.151233
245.0,355.0,3.5,37.0,2.0,300.0,3.5,24.535685 245.0,355.0,2.5,37.0,2.0,300.0,3.5,24.761456
190.0,190.0,3.5,30.0,2.0,300.0,3.5,25.234834 245.0,190.0,3.5,30.0,2.0,340.0,3.5,25.258165
245.0,190.0,3.5,30.0,2.0,220.0,3.5,25.754294 450.0,190.0,3.5,30.0,2.0,220.0,3.5,26.317654
245.0,190.0,2.5,30.0,2.0,340.0,3.5,27.111447 450.0,190.0,2.5,30.0,2.0,220.0,3.5,27.868489
190.0,190.0,3.5,30.0,2.0,340.0,3.5,28.418724 245.0,190.0,2.5,30.0,2.0,220.0,3.5,28.462968
190.0,190.0,2.5,30.0,2.0,300.0,3.5,28.928398 190.0,190.0,2.5,30.0,2.0,340.0,3.5,30.838319
190.0,190.0,3.5,30.0,2.0,220.0,3.5,31.036074 450.0,190.0,3.5,30.0,2.0,340.0,3.5,31.176898
450.0,190.0,2.5,30.0,2.0,340.0,3.5,32.486952 190.0,190.0,2.5,30.0,2.0,220.0,3.5,33.708223
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C2 - Testing Network Configurations

Figure B.1: Network Configurations
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