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Abstract
The Internet of Things (IoT) is characterised by diverse, dynamic and distributed
deployments of sensors, actuators, tools and gadgets. These devices often have
limited resources like energy, memory, and processing power. Moreover, they are
frequently located in unstable environments where conditions change over time.

The limitations of IoT nodes often require them to delegate resource-intensive
tasks to a device management platform that can act on their behalf and ensure
optimal performance. However, in addition to the limited resources of the devices
and the context in which they operate, these platforms also have to deal with
challenges related to the scale of the deployment, the network topology, and the
type of management that is performed. The size and complexity of IoT deployments
often require device management platforms to operate autonomously.

In this thesis, we study and explore how to autonomously manage a multitude
of distinct and constrained IoT equipment that operate in ever-changing contexts.
To solve this problem, we synthesised a generalised conceptual architecture for
autonomous management of IoT devices deployed in non-stationary environments.
The conceptual architecture is based on the theoretical foundation of two distinct
research fields: IoT device management and cognitive architectures.

The research was guided by the design science research methodology and followed
both a bottom-up and top-down approach. Initially, we conducted six case studies,
where we focused on designing specific parts of the proposed model. Following
that, we carried out a structured literature review, where we analysed architectural
models from 32 case studies in the field of autonomous IoT device management.

Based on the insights that we gathered through the work of this thesis, we
synthesised a conceptual architecture for cognitive IoT device management that
fulfilled our research goal. The model describes adaptive behaviour on three levels.
On the highest level, there are three system components: The device, the device
manager and the system manager. On the second level, we have five distinct
adaptation components that are contained within the system components. They
are responsible for handling perception, action, adaptation process, declarative
knowledge and procedural knowledge, respectively. The adaptation process
component is further detailed in five types of adaption processes, namely, monitor,
analyse, learn, predict and plan. On the lowest levels, we find adaptation mechanisms
and triggers, which describe the data flow between the components.

Apart from the conceptual architecture for cognitive IoT device management,
this thesis has three additional contributions. First, we present a comprehensive
taxonomy of adaptation mechanisms for cognitive IoT device management. Second,
we describe a model of cognitive planning. Third, we provide a list of best practices to
guide the design and implementation of cognitive IoT device management platforms,
along with recommendations for when and how to apply them. These contributions
will be useful for those who aim to develop such solutions.
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Chapter 1

Introduction and Motivation

The Internet of Things (IoT) is characterised by diverse, dynamic and distributed
deployments of devices. This means that IoT systems must be able to handle
a myriad of distinct sensors, actuators, tools and gadgets that are connected in
different ways and are located in a large variety of environments. As shown by
Siddiqui et al. [1], this raises concerns on an architectural level since traditional
monolithic software architectures are not designed to cope with this variance of
scalability, deployability, adaptability, and maintainability.

For constrained IoT devices, which typically have limited resources like energy,
memory and processing power, this challenge is even greater. Nikoui et al. [2]
stress the importance of taking these constraints into account on an architectural
level when developing wireless technologies aimed at the IoT. To complicate things
even further, such equipment is often located in environments where conditions are
unstable and change over time. This makes it hard to predict future events, which
in turn complicates how to plan for perpetual operation.

The constraints often require IoT devices to delegate resource-intensive tasks
to a device management platform located either on the edge or in the cloud that
can act on their behalf and ensure performance requirements. The purpose of such
platforms is twofold: To collect, aggregate and filter the data from these gadgets, and
to monitor and control their operation. The latter is critical since it allows remote
upgrades and operational adjustments. This can increase functionality, reliability
and dependability, and even prevent waste of system resources, as demonstrated
by Jantunen et al. [3]. However, the size and complexity of IoT deployments often
require device management platforms to operate autonomously. This raises a series
of challenges related to the architecture, that is, the overall system behaviour that
emerges from the organisation of the components in the system.

In traditional management theory, autonomy is defined as “the degree to which
one may make significant decisions without the consent of others” [4]. When
transferred to the IoT, autonomous management implies the use of independent
equipment that has the capability and authority to act on an unexpected event or a
change in context, i.e., they can govern themselves. Through the work of this thesis,
we have found that autonomous IoT device management (AIDM) can be categorised
into three levels of autonomous behaviour which reflect the architectural complexity.
These are autonomic, context-aware and cognitive IoT device management. We will
discuss this distinction in detail in Chapter 2.

In many device management platforms the actual hardware is represented by
agents, also known as digital twins. These agents are usually guided by a common
strategy, objective or policy enacted by a central manager. In those cases, AIDM
implies a division of tasks, where a central manager controls the strategic direction
of the system as a whole, and an agent decides how to reach the goals of the system,
given the individual context and constraints of a particular device [5].

The goal of autonomous IoT device management is to achieve maintenance-
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1. Introduction and Motivation

free systems, as explained by Sifakis et al. [6]. Interest in this research field has
increased in recent years. Although some aspects have been extensively researched,
such as automatically connecting different types of equipment [7] and supporting
communication between them [8], other areas still lack research. For instance, how
to guarantee a stable and reliable operation of devices that run in a heterogeneous
and unstable environment once they are deployed and connected

We have also found that current research in this domain often is sporadic
and rather unstructured with proposed solutions typically being specialised toward
solving a single use case, with few attempts at discussing the architectural challenges
of device management in general terms. In particular, the architecture of the
employed components and mechanisms that allow cognitive behaviour is rarely
discussed, and alternative approaches are seldom considered. This implies that
cognitive IoT device management is still a maturing field in need of a standardised
and unified architecture that can support researchers and practitioners in their
work.

1.1 Challenges

Through the work of this thesis, we have found that autonomous IoT device
management is a composite problem that consists of challenges related to the
resources that the gadgets possess, the scale of the deployment, the network topology,
the operational context, and the type of management that is employed. In the
following, we will examine these five challenges in more detail, from an architectural
point of view.

The challenge of constrained resources. Constrained devices are limited in terms
of available energy, memory, processing capability or communication [9, 10]. They
also lack contextual information, such as weather forecasts or local traffic patterns.
Because of these limitations, they are unable to analyse the current situation, learn
from experience, predict future events, or plan corrective actions effectively. To
ensure optimal performance, tasks that require significant resources are often moved
to nodes that have better access to these resources [11, 12, 13]. This raises the
following question: How can devices with limited resources offload tasks,
such as learning, predicting, and planning, to equipment that has better
access to those resources?

The challenge of large-scale deployments. Traditional sensing applications
typically employ high-quality components to measure a specific effect within a
limited area. However, the IoT infrastructure enables the deployment of numerous
low-cost sensors that can provide high-density coverage over a much larger area,
such as an entire city [14]. The sheer number of gadgets means that maintaining
them throughout their full lifecycle, i.e., the processes of planning, configuring,
deploying, running, repairing, and finally recycling them, is a major challenge [15,
16]. For obvious reasons, maintaining such deployments manually is not a feasible
option. Another question is then: How can large-scale deployments of IoT
devices operate autonomously with a minimum of human intervention?

The challenge of network topologies. When deploying a wireless sensor network
(WSN) that consists of wireless devices, deciding which topology to implement
is a key design decision, as this defines how the devices are connected, how they

2



Challenges

communicate and how they collaborate [17]. This decision will in turn influence
the robustness of the system [18]. During the work of this thesis, we have found
that there are in essence three types of topologies employed in IoT: The distributed
topology, where each node is responsible for all operative and adaptive actions;
the clustered topology, where two or more parent nodes share the responsibility
for managing adaptive behaviour for separate subgroups of devices; and the star
topology, where a single central node manages the adaptive processes for all devices.
Each of these topologies comes with different strategies when it comes to how the
nodes handles their operation.

Topology requirements for WSNs depend on both technical, environmental and
contextual conditions. For instance, the topology of a few nodes placed in proximity
of each other in a stable or homogeneous environment might differ a great deal
from that of a system consisting of many nodes distributed over a large area that
operates in a volatile or heterogeneous environment. If we look at how devices
in a wireless sensor network collaborate, the latter case is of particular interest.
Nodes that are operating under different conditions might benefit from sharing
this knowledge. This is a concept in IoT that is known as ‘edge knowledge’ [19].
From this challenge, we ask: How can constrained devices share relevant
knowledge?

The challenges of operational context. As shown in the examples above, IoT
equipment can be deployed in different settings. Many devices operate in an
environment where conditions are different from node to node or change over time,
i.e., a context that is dynamic in the spatial or temporal dimension. This can be
especially challenging for energy-harvesting equipment. Thus, when operating in a
context of high variance and volatility each device must have the ability to adapt
its operation individually, as demonstrated by Zheng et al. [20].

We identified two distinct types of dynamic environments through the work of
this thesis. In stationary environments, we deal with variables where the values
follow a specific distribution, known or unknown to us. This means we can usually
predict any changes in variation stochastically. Non-stationary environments are on
the other hand characterised by unstable conditions and distributions that change
over time. This means that an action applied to devices under different conditions
can yield completely different outcomes. In turn, this makes it challenging for
a device manager to plan and execute proper corrective actions to a previously
unseen event [21]. From this challenge, we identify another question: How can
constrained devices adapt to varying conditions that they experience in
their environment?

The challenge of resource management. The purpose of a system is often closely
connected to the type of management that is performed. In this thesis, we have
identified three management tasks that are commonly employed by autonomous
device managers, namely network management, application management and
resource management. In short, network management handles the infrastructure
of a wireless sensor network, application management oversees the applications
that run on the nodes and resource management is concerned with maintaining
the operation itself. We will go into more detail about these three types of device
management in Chapter 3.

Through our research, we have discovered that managing resources to ensure
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high data quality and perpetual operation of constrained devices can be particularly
challenging. This problem is interconnected with the challenges we have previously
discussed. For example, constrained devices operating in a non-stationary
environment often lack the resources needed to make necessary plans for preserving
or conserving their energy [22, 23]. Additionally, the chosen network topology and
deployment scale are linked to factors such as network orchestration and internal
complexity, which can impact how resources are managed and allocated among
the nodes in the network [24]. The challenges related to resource management in
this context lead to yet another question: How can constrained IoT devices
handle their resource management, given the limited resources they have
at their disposal?

1.2 Use Case: Solar Energy Harvesting Devices

To explore and investigate the challenges identified above on an architectural level,
we have performed six case studies related to the use of solar energy harvesting and
energy planning for constrained IoT devices.

We selected this particular use case for three main reasons: Firstly, while
working on Paper A, we discovered that when deploying solar-powered IoT devices in
environments where the amount of energy available for harvesting varies significantly,
they must be able to plan their energy budget. By doing so, they can determine how
much energy they can safely consume given the amount of energy that is available
to harvest from the environment. Secondly, due to the location of the nodes and
the environmental variance between them, each device must have the ability to
plan according to its context. For instance, the direction of the solar panels will
significantly impact the amount of energy that can be harvested. Thirdly, the
volatile and non-stationary weather patterns in the northwestern part of Norway
are a good use case for exploring how a cognitive device manager copes with events
that are hard to predict.

Together, these factors introduce the necessity of individual learning in addition
to reasoning and planning. An architecture aimed at solving the problem of
cognitive and perpetual management for constrained IoT devices operating under
these conditions is thus a good candidate for realising the research goal, which is
further described in Section 1.3.

1.3 Research goal

As explained in the introduction, describing a general architecture for ensuring
perpetual operation for large-scale deployments of constrained IoT devices placed
in non-stationary environments is still an open challenge. This thesis aims to study
how a central manager can assist constrained devices in adapting to new situations
that they may face at run-time, independently and based on their context, from an
architectural perspective.
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Thus we formulate the following research goal:

Research goal

Synthesise and describe a generalised architectural model for autonomous
and perpetual management of IoT devices deployed in a non-stationary
environment.

We solve the research goal by following the design science research methodology
detailed in Chapter 5 and answer the research questions described in Section 1.4.

1.4 Research questions

To realise the research goal and guide the research, we formulate a set of research
questions (RQs), based on the questions raised in Section 1.1. RQ 1 addresses the
investigation of the artefact design goal, in the context of the problem space, while
RQ 2 to 5 address the artefact design goal in the context of the knowledge space.

• RQ 1: Identify challenges
What are the contextual and architectural challenges that must be addressed
to realise the research goal?

• RQ 2: Identify system components and adaptation components
Which system components and adaptation components are required to reach
the research goal?

• RQ 3: Identify adaptation mechanisms
Which adaptation mechanisms can be used to achieve the research goal?

• RQ 4: Identify patterns
Which patterns can we identify in existing autonomous architectural models,
in industry or recent research, that can guide us toward the research goal?

• RQ 5: Identify best practices
Which best practices can we identify by analysing existing implementations
of autonomous architectures, in industry or recent research, that can help us
reach the research goal?

We examine RQ 1 in the six case studies in Papers A through F and in the
structured literature review in Paper G. For RQ 2 and RQ 3, we adopt both a
bottom-up and top-down approach. Firstly, we analyze the architectural models
explained in our six case studies. Secondly, we scrutinize the existing architectural
models and descriptions in the recent literature of self-adaptable architectures and
platforms, which can tackle the challenges identified by RQ 1. We answer RQ 4
and RQ 5 through the structured literature review, taking into account the insights
gathered by answering RQ 1, RQ 2 and RQ 3.
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1.5 Design Problems

Answering knowledge questions requires data. To produce this data, we defined a
set of design problems (DPs) which in turn resulted in a set of corresponding design
artefacts. These were aimed at helping us explore and analyse architectural aspects
and challenges raised by the research questions. The insights gathered through the
analysis then helped us synthesise knowledge that was put to use when designing
the generalised architecture for cognitive IoT management.

In the following, we briefly describe the design problems, the corresponding
design artefacts and how the insights contributed towards the research questions and
the research goal. Note that all case studies are based on constrained, solar-powered
IoT devices located in a non-stationary environment.

• DP 1: Design a platform that supports data collection and analysis.
This artefact, detailed in Paper A, was used to study the operation of collecting
and analysing CO2 measurements from a wireless sensor network. This study
gave valuable insights into the architectural challenges on a contextual level.

• DP 2: Design a platform that supports resource offloading. This
artefact was the focus of Paper B. In this study, we described the setup for a
platform that collects both environmental and contextual data from a set of
IoT nodes. Further, we explored the case of outsourcing planning to a central
manager located in the cloud, which could remotely override the sensing cycles
of the devices. This validated the concept of architectural resource offloading.

• DP 3: Design a mechanism that supports resource optimisation.
This artefact is described in Paper C, and is a continuation of Paper B. Here
we created a pipeline for exploring how different machine-learning models
can support energy buffer predictions for solar-powered devices. The use
case validated the underlying mechanisms for learning and prediction that
need to be in place to design an architectural model for cognitive IoT device
management.

• DP 4: Design a mechanism that supports self-tuning of learning
processes. In this case study, found in Paper D, we implemented algorithms
that helped us explore different mechanisms that can support the autonomous
tuning of machine-learning models for predicting future energy intake. This
artefact helped us to understand the mechanisms needed for self-tuning on an
architectural level.

• DP 5: Design a mechanism that supports self-management when
deploying a new system. In paper E, we designed an algorithm that
could autonomously switch between different prediction models, to increase
prediction accuracy in the first days after deployment. This case study explored
an architectural pattern that can provide self-management for agents that
mirror IoT equipment deployed in a new WSN and validated the architectural
concept.
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• DP 6: Design a mechanism that supports self-management when
deploying new devices into an existing IoT deployment. The case
study detailed in Paper F demonstrates an autonomous learning data selection
algorithm, which improves prediction accuracy by using the principle of
transfer learning. The case study provided knowledge about how to organise
system components in an IoT architecture and validated an architectural
pattern that can provide self-management capabilities for agents when new
nodes are introduced into a deployment of existing IoT devices.

1.6 Scope

The main focus of this thesis is on the general architectural challenges that are
associated with the implementation of cognitive IoT device management platforms,
as explained in Section 1.3. These challenges were explored both from a bottom-up
approach through a series of case studies where we simulated isolated parts of
the architecture, and from a top-down approach through a structured literature
review where we analysed the architecture of 32 case studies found in research. This
resulted in the design of a generalised conceptual architectural model of cognitive
IoT device management. Building or deploying an actual implementation of the
complete architecture is therefore out of the scope of the thesis.

A key topic in IoT is the edge-cloud continuum, which refers to managing
distributed computing and network infrastructures at the edge of the cloud. This
involves optimizing performance, resource usage, energy consumption, security and
financial costs [25]. We acknowledge that these attributes are highly relevant to
the topic of this thesis. Nevertheless, since we aim to design a technology-agnostic
generalised architectural model that in theory can be applied at any level in an
ecosystem of edge devices, we did not study this type of system further.

End-of-life commissioning is a crucial aspect in the overall management process
of an IoT system [26]. IoT devices powered by batteries contain chemicals and
toxins that can become a hazard if not properly recycled when they reach the end
of their lifecycle [27]. This is particularly true for outdoor equipment placed in
volatile conditions. However, since this is mostly a manual task and we focus on
the autonomous part of IoT operation and management in this thesis, we chose to
not include this phase in the study.

Research within autonomous IoT device management overlaps with Industry
4.0 in several aspects, both concerning theory and terminology. However, there is
an important distinction between the two areas of research. While AIDM aims
to achieve maintenance-free perpetual operation for the sensor nodes themselves,
Industry 4.0 usually employs sensory instruments in conjunction with artificial
intelligence to avoid interruptions in the production lines and optimise the production
run time [28]. In Industry 4.0 this is known by the term ‘predictive maintenance’.
Thus, even though these domains share many similarities, the findings in this thesis
may not be generalisable into the field of Industry 4.0.
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1.7 Contributions

Through the work of six case studies and one structured literature review, this
thesis provides insights that can guide the design and implementation of platforms
for cognitive IoT device management. In particular, the thesis contributes to this
field on the following accounts:

• A generalised architectural model for cognitive management of
IoT devices. The proposed model is essentially a blueprint of a cognitive,
service-oriented architecture that describes the interaction between the stored
knowledge in a system and the adaptation processes that are needed to
provide cognitive behaviour, i.e., reasoning, learning and planning. The
model consists of three different system components, namely device, device
manager and system manager. Within these containers, we have identified
five adaptation components. These are ‘Perception’, ‘Action’, ‘Adaptation
process’, ‘Declarative knowledge’ and ‘Procedural knowledge’. The adaptation
process is again divided into five categories: ‘Monitor’, ‘Analyse’, ‘Learn’,
‘Predict’ and ‘Plan’.
Since the notation is general, it has the potential to progress the implementa-
tion of any platform that requires cognitive and autonomous decision-making.
Energy budgeting for solar-powered IoT devices is just one of many possible
use cases.

• A taxonomy of adaptation mechanisms for autonomous IoT device
management. This taxonomy describes the full range of adaptation
mechanisms that are used to support autonomous device management in
IoT and how they relate to each other, on three levels. First, it shows
that cognitive device management incorporates components that include
adaptation mechanisms to observe an event, analyse the situation, reason
about the implications, predict an outcome and plan a corrective action, if
necessary. Second, it categorises the different types of reasoning mechanisms
into model-driven, semantic and data-driven mechanisms, which reflect the
underlying principles that are used to infer situational awareness. Third,
within those categories, it identifies eight different types of implementation.
Our taxonomy can help information architects and developers decide what
type of mechanism to include and where to place it in their architecture, based
on their particular challenges.

• A model of cognitive planning. This model is a refinement of Vernon’s
Cognitive Cycle, first presented in [29]. In the model, we introduce the
planning component and place it in the centre. It consists of an autonomic
and a situation-aware subsystem, which are executed through two separate
control loops. The autonomic loop registers an event and initiates a response
per its active policy, which ensures that the device can operate even if the
connection to the rest of the system is lost or broken. The adaptive loop
analyses the event and changes the policy if the situation calls for adaptation.
It also supports continuous learning from experience, based on the stimuli
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provided by the autonomic loop. The distinction between the two sub-systems
increases both the autonomy and the robustness of the system.

This model can help information architects and developers to get a better
understanding of the planning process when designing top-level architectures
of cognitive systems.

• A list of best practices to guide the design and implementation of
cognitive IoT device management platforms. This is a description of
five best practices for designing cognitive IoT device management systems
coupled with recommendations for when and how to apply them. These
practices can help information architects and developers when they need to
make architectural decisions regarding such systems.

In addition to the main contributions listed above, the case studies have made
individual advances towards the studied domain.

• In Paper A, we demonstrated a quick and flexible way to prototype a platform
for data management and data analytics from wireless sensor nodes.

• In Paper B, we demonstrated that constrained devices can outsource research-
intensive machine learning to a manager located in the cloud and that it is
possible to estimate the energy consumption of applications running on a
constrained device with high precision.

• In Paper C, we ran a simulation which showed that predicting solar energy
is possible even with limited access to data, progressively improving as the
system runs.

• In Paper D, we ran a simulation that showed how individual sensor nodes can
be trained autonomously by employing automatic tuning of learning models.
Our results showed that this approach can improve the median prediction
scores by more than 20% compared to state-of-the-art predictors for IoT
energy prediction.

• In Paper E, we developed a mechanism for autonomous prediction model
selection which can mitigate the bootstrapping problem for constrained devices
and help them stay in operation in periods when training data is missing.

• In Paper F, we developed a mechanism that uses a correlation algorithm to
select appropriate training data for a given node. Our results showed that
this approach can improve the accuracy of the predictions of a new node by
14%.

The novelty of each contribution is further detailed and discussed in Chapter 6
and in the respective papers.
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1.8 Thesis structure

This thesis is divided into two parts. The first part includes seven chapters that
detail the main results of the thesis. In Chapter 1, we introduce the problem domain,
explain the motivation behind conducting the study and present the research goal.
Chapter 2 provides background information, and Chapter 3 shows related work
within IoT management from an evolutionary perspective. We then proceed to an
overview of each of the publications that are part of the thesis in Chapter 4 before
offering a description of the research methodology in Chapter 5. In Chapter 6, we
present the results and show the contributions in each paper. Finally, we conclude
the thesis in Chapter 7 with an overview of the main achievements and future
directions.

Part two contains the seven main papers published as part of the thesis work
and one auxiliary journal paper.
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Chapter 2

Background

This thesis delves into the topic of autonomous IoT device management (AIDM),
from an architectural viewpoint. The goal is to advance research on cognitive
management of IoT devices by designing a model that depicts the interaction between
adaptation components in an architectural component model, later presented in
Chapter 6.

The conceptual architectural model proposed in this thesis is based on the
theoretical foundation of two distinct research fields: IoT device management and
cognitive architectures. Research on cognitive architectures is in turn rooted in the
study of autonomic computing, cognitive science and big data analytics. However,
it is also possible to see this domain as a blend of context-aware computing and
cognitive computing. Figure 2.1 shows how cognitive IoT device management can
be found in the cross-section of these research fields.
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Figure 2.1: Venn-diagram showing how cognitive IoT device management can be
found in the cross-section of IoT device management and cognitive architectures.

In the following sections, we will first briefly describe the relevant research fields.
Next, we will present the characteristics of an autonomous system. Lastly, we will
look at AIDM, on autonomic, context-aware and cognitive levels.

2.1 A Brief Description of Related Research Fields

As explained in Chapter 1, IoT device management aims to ensure optimal
performance and perpetual operation of the managed IoT devices. Deployed IoT
devices are usually managed by device management platforms, which provide various
functionalities such as status monitoring, fault detection, system configuration,
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collection of performance data and operation control [8, 30]. They also enable data
exchanges between the manager and managed devices [31].

Autonomic computing is the study of self-adaptive systems. These are systems
that can adjust their behaviour through adaptation processes to reach a goal,
without human intervention, even if they encounter unexpected events or changes
in conditions [32, 33]. Adaptation processes, triggered by some internal or external
stimuli, are responsible for deciding if there is a need for adaptation, which
adaptation strategy to follow, and the best course of action [34].

Context-aware computing expands autonomic computing by also considering
and analysing contextual data like time, identity, history, location and environment
when making decisions [35]. Having access to such knowledge means they are usually
better equipped to reason about the best way to adapt to the effect of the observed
event. This can help the system to solve more complex tasks [36].

Cognitive computing builds on cognitive science and big data analytics [37].
According to Modha et al. [38], cognitive computing is concerned with the
mechanisms that define cognitive behaviour in computer systems in general. Such
behaviour can be modelled as reasoning, learning and planning mechanisms [39],
which in turn can drive the adaptation processes.

Research on cognitive architectures is guided by theories and practices found in
cognitive science and neuroscience [40]. In contrast to cognitive computing, the focus
is on modelling how specific agents imbued with artificial intelligence can display
intelligent behaviour [41]. Thus, it combines elements from autonomic, context-
aware and cognitive computing. In this thesis, we adopt the cognitivist perspective
within this field of research, which aims to capture the underlying functions of human
cognition, such as reasoning, control, learning, memory, adaptivity, perception, and
action at the computational level [42].

2.2 Autonomous Behaviour in IT Systems

Sifakis et al. [43] list five factors that are required to achieve full autonomy: 1)
perception; 2) reflection; 3) goal management; 4) planning; and 5) self-adaptation.
The characteristics of each factor are listed in Table 2.1.

Table 2.1

Factor Ability
Perception Interpret a stimuli from the environment
Reflection Reason about the stimuli in the environmental context
Goal management Decide if the current goal is still valid
Planning Decide which action(s) to take to achieve the goal
Self-adaptation Adjust the behaviour through learning and reasoning

The spectrum of possible solutions between no autonomy and full autonomy
is quite wide, and most autonomous systems are located somewhere in between.
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Often, the adaptive behaviour is a reflection of the complexity of the challenges
that they encounter or the kind of problems they solve.

As mentioned in Chapter 1, we have found that AIDM can be categorised into
autonomic, context-aware and cognitive IoT device management, based on the level
of autonomous behaviour and architectural complexity. In the next three sections,
we will look at the characteristics of each of these categories, from an architectural
perspective.

2.3 Autonomic IoT Device Management

In neuroscience, an autonomic system is characterised by an automatic response
to stimuli [44]. An example from nature is a dandelion that grows shorter and
smaller buds as a response to mowing [45]. By this definition, autonomic IoT device
management is the planning and executing a pre-defined or designated response of
an IoT device that adapts to or mitigates the effect of an observed event.

Most autonomic device management systems are concerned with the internal
state of the device. They are typically based on the feedback control loop
principle [46] and perform basic dynamic adaptation based on high-level policies
and pre-defined adaptive actions [47, 48].

Within IoT, many device management architectures employ the MAPE-
K (Monitor, Analyze, Plan, Execute, Knowledge) pattern, described by IBM
Corporation in their 2006 white paper [49]. A general model of this adaptive
feedback control loop is shown in Figure 2.2. This model enables self-adaptation
through four steps: first, data is collected and monitored; second, the collected data
is analyzed, which may trigger a need for adaptation; third, a plan is made, based
on a set of adaptation rules; fourth, a corrective action is executed, if necessary.
New knowledge can be integrated into the control loop by feeding the newly adapted
state back into the system or by manipulating and expanding data sets and rules.

For systems that outsource device management to a central manager, it is
possible to expand the model by applying two separate control loops: one for the
managed subsystem (the device) and one for the managing subsystem (the device
manager) as discussed by Arcaini et al. [50].

Monitor Execute 

Plan Analyse 

Knowledge 

Sensor Actuator 

Figure 2.2: Model of the basic MAPE-K autonomic control loop. Adapted from [49]

During the work conducted for Paper G, we observed that 1) autonomic
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architectures are typically used to solve tasks that can be predicted either statistically
or stochastically, i.e., changes that occur within known distributions; 2) a common
strategy is to employ basic feedback control loops in combination with probabilistic
methods, dynamic programming, knowledge graphs, semantic rules or fuzzy logic
to adapt to changes in the environment; and 3) goal management, planning and
adaptation are usually also automated processes.

An example of the autonomic pattern can be seen in the work of Romero-Garces
et al. [51], where MAKE-K loops in combination with fuzzy logic are used to give a
service robot in a warehouse self-adaptive properties. In fuzzy logic, pre-defined
fuzzy sets and fuzzy rules stored in linguistics variables define the behaviour of the
system. These rules are then used on the sets to infer a decision from the model,
which again might cause the system to adapt to a new state. In systems that employ
fuzzy logic, it is possible to expand the knowledge base by manipulating fuzzy sets
or by applying new fuzzy rules. However, fuzzy systems usually lack the capability
of recognising complex patterns that change over time.

2.4 Context-aware IoT Device Management

A common goal in autonomous IoT device management is to help systems adapt to
new situations autonomously through self-management [32]. According to Kephart
et al. [52] such systems are characterised by the ability to configure, optimise,
heal and protect themselves. The response of an anthill that is damaged by an
animal looking for food can be used as an analogy for this type of autonomous
behaviour [53]. The ants will typically respond to this event by repairing the
damage, often in a different pattern to reflect new conditions.

Self-adaptation is often a necessity for systems that operate under changing
conditions. This requires that the system can reflect on how the environment
affects the devices [54]. Self-management relies on two features. Firstly, the
system must have context awareness, which means it can understand its status
within the environmental situation. Sheth et al. [55] argue that this requires an
intelligent mechanism that can interpret data and make it meaningful in the context
of the current conditions. Secondly, the system should be capable of performing
adaptive actions, such as self-configuration, self-optimisation, self-healing and self-
protection [7, 56], in response to internal or external events or changes.

Context-aware systems commonly adapt to changes in their conditions by
adjusting their environmental model, expanding their policies or changing their
goals. Such adaptation is driven by situation-based reasoning, that is, a system
will adjust its behaviour based on past experiences. This implies that a system
can recognise an event it has previously encountered and choose its next action
accordingly. Learning is based on storing data about new experiences, that is,
situations that have not been previously encountered, for future reference.

Gonzales et al. [58], illustrate the context-aware pattern when they employ case-
based reasoning (CBR) as a subsystem in their architecture to adjust the energy
consumption in an office building. CBR systems typically analyse the current
situation and compare it with data stored in a set of cases to decide the next course
of action. A model of the CBR cycle is shown in Figure 2.3.
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Figure 2.3: Model of the CBR cycle. Adapted from [57]

Aamodt et al. [57] have described how a context-aware system can follow the
CBR cycle to solve problems. Firstly, it retrieves the case that is most similar
to the current situation. Secondly, it reuses the knowledge in that case to solve
the problem. Thirdly, it revises the solution that was chosen. Lastly, it retains
important parts of the current experience to use for future reference. If the current
situation resembles a known case, the next action will depend on what the system
previously experienced and the outcome of the action it performed. If it cannot find
a similar case, the system will store the current situation, the responsive action,
and the outcome of that action as a new case. This way, the system will gradually
expand its knowledge base as it encounters new situations, and hence learn from
experience.

2.5 Cognitive IoT Device Management

The concept of cognition is closely connected to self-reflection, which in cognitive
science is the active evaluation of one’s thoughts, feelings, and behaviours [59].
Transferring this concept to autonomous IoT device management implies that to
achieve self-reflection a device needs to be able to see itself in the context of the
environment, in its past, present and future states.

Cognitive IoT device management combines elements from autonomic, context-
aware and cognitive computing. Information is represented by structured or
unstructured data and adaptive behaviour is achieved by combining meta-knowledge
with advanced decision-making policies [60, 61]. This way, management systems
can adapt to dynamic changes through situation awareness, iterative self-learning
and predictions [32]. This means that cognitive device managers can predict future
behaviour and consequences based on previous experience even in situations that
they have not encountered before. In the wild, an example of such behaviour is the
way a herd of reindeer will alter their migration pattern as a reaction to a change
in the environment, like a newly constructed human infrastructure or local effects
due to climate change [62].

Cognitive IoT device management systems commonly combine statistical learning
with reasoning mechanisms. This allows them to predict the effect of new stimuli,
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events or situations through statistical inference. Based on the result of the
prediction, the system can then decide on its next action. To achieve this,
machine learning mechanisms are often employed in the system’s architecture.
These mechanisms enable the system to go beyond simple data analysis and
perform complementary tasks such as testing correlations, identifying anomalies and
searching for patterns in the data [55, 63]. The learning process involves comparing
predictions to actual observations and feeding this data back to the statistical
prediction model through model training mechanisms.

The adaptation process is usually triggered by an event that has been observed, a
change in the situation or a forecast. In Paper G, we proposed a classification system
for the mechanisms that drive these processes. We identified reasoning, learning,
and planning as the three fundamental mechanisms that enable cognitive behaviour.
Reasoning mechanisms analyze the situation, reflect on the context, control the
data flow, and determine if there is a need for adaptation or adjustments. Learning
mechanisms ensure that the knowledge base is up to date and that the prediction
models are properly trained. Planning mechanisms are responsible for deciding on
corrective actions, producing action plans, and synchronizing the device manager
with the device. On an architectural level, cognitive behaviour thus emerges from
the interaction between the adaptation components and adaptation mechanisms
(detailed in Section 6.2.2 and Section 6.2.3).

Analyser

Planner
(adapt)

Classifier
(assimilate)

Monitor
(perception)

Execute
(action)

Predictor
(anticipate)

Knowledge 
base 

Figure 2.4: Adapted model of the cognitive pattern in the framework proposed by
Faraji-Mehmandar et al. [64].

Faraji-Mehmandar et al. [64] propose a framework for optimising workload
balance in an edge computing scenario that demonstrates the cognitive pattern.
The framework is based on the MAPE-K loop and uses machine-learning mechanisms
coupled with active planning policies based on fuzzy logic to obtain an optimal
state in workload balance. An adapted model of their framework can be seen in
Figure 2.4. The framework is centred around two adaptive components: An analyser
component which uses machine learning to predict future workload for the system
and handle any violations of the service-level agreement, and a planner component
that allows dynamic resource provisioning using fuzzy logic.

The organisation of components in their architecture resembles the model for
a cognitive planner pattern that we proposed in Paper G. This is in line with two
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of the core observations we made in our analysis of the 32 reviewed architectural
models in this paper. Firstly, many architectures handle complexity with multiple,
independent control loops, which often extend the autonomic MAPE-K pattern.
Secondly, a common strategy for cognitive IoT device management systems is
to combine several adaptation mechanisms. A possible reason for this is that
distributed processes, microservice architectures and modularisation help break the
problem down into smaller chunks, which are easier to solve [65].
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Chapter 3

State of the Art
This chapter provides an overview of the state-of-the-art research in autonomous IoT
device management (AIDM). We will evaluate the research in this domain from two
perspectives. The first perspective is the gradual shift in focus from basic autonomic
solutions to context-aware platforms and advanced cognitive architectures. The
second perspective is the three primary areas of research within this domain: network
management, which deals with the infrastructure of wireless sensor networks [66],
application management, which oversees the maintenance of applications running on
the devices [67], and resource management, which ensures perpetual operation [68].

In the following sections, we examine the history of AIDM from an evolutionary
perspective and provide examples of research in each of the three management areas.
We have chosen to divide the research into four periods, based on complexity level.
These periods are named the autonomic period, the early context-aware period,
the late context-aware period, and the early cognitive period. Additionally, we
briefly touch upon the current status of AIDM in commercial and open-source IoT
platforms towards the end of this chapter.

3.1 The Autonomic Period (2001-2009)

When Petr Jan Horn introduced the concept of autonomic computing in an IBM
white paper [69] back in 2001, it was soon picked up by researchers in various
fields. Among early practitioners, we find Kepart et al. [52], who published a
groundbreaking paper in 2003 where they depicted their vision on this topic in
general terms.

In the field of AIDM we have found some examples from this research period that
were inspired by these papers. In 2003, Milenkovic et al. [70] wrote about autonomic
network management for wireless sensor networks (WSNs). They showed how self-
configuration and self-optimising can improve networking properties like scalability
and resiliency for nodes and resources in distributed computing. The year after,
Marsh et al. [71] demonstrated autonomic application management for distributed
and computationally challenged devices connected through WSNs. They proposed
using multi-agent systems to apply autonomic mechanisms for self-configuration
and self-optimising to improve scalability and resiliency. In 2006, Kang et al. [72]
described a platform for centralised and autonomous resource management on the
device level. In a simulation, the authors demonstrated how a power-aware cluster
of self-managed devices can employ activation mechanisms based on a feedback
control loop to help balance the energy consumption in a network of sensor nodes.

Upon reviewing surveys and case studies from the autonomic period, we see
that the majority of the discussion focuses on using autonomic mechanisms to
solve isolated problems. Examples of such mechanisms within networking include
device discovery [73], service discovery [74], network resiliency [75], and connectivity
restoration [76].

19



3. State of the Art

On the application level, we observe that many researchers focus on compu-
tational optimisation, energy consumption modelling, and sensing capabilities of
the devices, as demonstrated in the survey by Vieira et al [77]. Another topic was
architectural challenges for wireless sensor networks concerning clustering and task
orientation on the architectural level for wireless sensor networks, as shown by
Duan et al. [78]. We also find security issues related to autonomic mechanisms,
like securing communication channels [79], intrusion detection [80] and software
updates [81].

For autonomic resource management, we see an early example of autonomic
mechanisms in the work of Kansal et al. [82] from 2007, where they demonstrated a
duty-cycling algorithm for energy-neutral power management in energy harvesting
sensor networks. Another example from the same year is Shah et al. [83], who
employed Q-learning and probabilistic actions on the devices for adaptive and
autonomous resource and task management by optimising global system-wide
parameters like total energy usage and network lifetime.

3.2 The Early Context-aware Period (2010 - 2013)

In the early context-aware period we see that the term “Internet of Things” is
increasingly used to describe networks of inter-connected wireless sensor nodes.
Researchers also discuss architectural aspects on a more complex level and stress
that devices need to be managed in a context. For instance,Tan et al. [84], defined
in 2010 the IoT as “things [that] have identities and virtual personalities operating
in smart spaces using intelligent interfaces to connect and communicate within
social, environment, and user context”.

A year later, Bandyopadhyay et al. [85], discussed how smart devices with
inter-device communication capabilities lead to smart systems with a high degree
of autonomy, which in turn enables new applications and services. Using dynamic
network discovery mechanisms and energy harvesting methods as examples of
enabling technology, they described a vision where independent constrained devices
in federated edge networks are capable of adapting to changes in the environment
and performing tasks like run-time configurations, data capture, event transfer and
network connectivity autonomously.

Also in 2011, Lopez et al. [86] published a paper concerning the benefits of context-
aware clustering. They proposed that it could enhance the lifetime, scalability,
and robustness of autonomous intelligent objects. These objects were based on
the concepts of intelligent and adaptive agents, respectively. There is a distinction
between these types of agents: While intelligent agents can perceive dynamic
changes, use reasoning to interpret data and decide on actions [87], adaptive agents
can sense and act autonomously in complex environments and adapt to situations
to achieve a set of goals [88].

Another pattern for the early context-aware period is that research diverges
into different aspects of self-management. Atzori et al. [89] wrote in their survey
from 2010 that a central issue for IoT architectures is to enable adaptation and
autonomous behaviour without compromising on networking, application or resource
aspects, like scalability, security, or computation and energy capacity, respectively. In
2011, Horre [90] made a clear distinction between the different types of management
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in his PhD. Here, he stated that due to 1) resource constraints of wireless sensor
nodes; 2) the need to avoid manual intervention; 3) the need to facilitate multi-
purpose usage; and 4) the need for flexible reconfiguration, architectures for
device management solutions must take resource efficiency, reconfigurability, multi-
application support and autonomy into account. In 2013, Vlacheas et. al. [91]
showed that the context of the physical environment in which the device is located
has a strong influence on the autonomous management framework they proposed.
This framework could select behaviour dynamically through self-management and
self-configuration, based on domain knowledge and knowledge about the context of
the operation itself. However, their paper had a strong focus on addressing service
provisioning in a setup of heterogeneous devices and did not look at operational
management beyond this topic.

Examples of context-aware AIDM can also be seen within network management.
In 2011, Tsagkaris et al. [92] discussed architectural challenges in the field of
autonomous wireless networking related to context awareness, decision-making
and learning, while one year later Movahedi et al. [93] described how to support
self-management to reduce the cost and the complexity of managing network
infrastructures by employing MAPE-K control-loops in their architecture.

Within application management, Rajan et al. [94] employed context awareness
in their paper from 2011, which showed a simplified architecture that takes
environmental parameters, network state and application context measurements
into consideration to run auto-configurations of WSNs. The architecture made use
of a control loop, an optimisation engine and policies to achieve the goals of the
system. In 2013, Liu et al. [95] presented an autonomous, context-aware solution
for application management that used ontology models to represent and facilitate
context sharing between WSN nodes, while Brown et al. [96] worked on how to
enable autonomous over-the-air software updates for resource-constrained WSNs.

As for resource management, we observe that research from the early context-
aware period still was mostly focused on autonomic mechanisms, usually located
in the devices themselves. For instance, Ferry et al. [97] described in 2011
an architecture that employed a dynamic power management policy that takes
environmental factors like weather forecasts into account, to identify hotspots for
energy consumption. Nonetheless, their simulation was aimed at decision support
during system design, like where to place devices and how to scale the capacity
of energy harvesting and energy buffering of the individual sensor nodes. The
authors did not consider using such mechanisms for actual autonomous resource
management. Another example from this period is the discussion on energy
harvesting for autonomous WSNs [98, 99, 100]. The same pattern is evident
in broader research on resource management for IoT, for instance in the survey by
Wan et al. [101] from 2011. Here, they presented a review where energy harvesting
and energy management technologies were explored to enable dynamic power
management for wireless sensor networks. However, their focus was on enabling
technologies, not how to manage the energy budget for the devices autonomously.

The examples from the early context-aware period show that researchers to
a larger extent are combining perspectives to promote autonomous behaviour in
the field of IoT management. Even so, there are still few discussions about truly
cognitive features such as predicting future states of wireless networks or devices
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and devising strategies to meet predicted changes.

3.3 The Late Context-aware Period (2014-2017)

In the late context-aware period the discussion turns towards adding knowledge and
intelligence to AIDM systems.

An example from 2014 is a paper by Wu et al. [61], which discussed the challenge
of giving objects connected to IoT the capability to learn, think, and understand
their physical and social environments independently. The authors proposed a
theoretical framework for supporting semantic derivation and knowledge discovery,
by employing cognitive mechanisms like perception-action cycles, massive data
analytics, intelligent decision-making and on-demand service provisioning. In their
framework, interconnected physical and virtual objects behave as intelligent agents.
This allows for adaptation to changes with a minimum of human intervention
or interaction through context-awareness mechanisms and automated learning
processes. Although their work shared many of the same ideas that are presented in
this thesis, their component models studied knowledge discovery, decision-making
and learning in isolation. They did not provide a complete architecture showing
interaction between the components.

The same theme was also present in the work of Kibria et al. [102] from 2015.
Here, they proposed a context-aware architecture based on virtual objects, using a
context-matching algorithm to provide user-centric features in IoT. In addition, the
authors showed how new knowledge can be added to the system by using semantic
ontology. However, this study only addressed the management of services, not the
actual devices in the network.

In this period, we also see signs that researchers incorporate cognitive patterns
for IoT device management. For instance, in 2016 Sheth et al. [55] used the term
‘cognitive IoT’ to connect the field of IoT with the field of cognitive computing.
They proposed to use perceptual computing to add context awareness, cognitive
computing to discover patterns in data, hypothesise about correlations and quantify
uncertainty, and semantic computing to provide meaning. However, their paper only
discussed this idea in general and theoretical terms and did not mention autonomous
management explicitly, which shows that the research field was still maturing.

Research that explored the relationship between IoT and cyber-physical systems
was another trend in the late context-aware period. A common practice was to
employ digital twins, that is, virtual copies of physical devices, where self-awareness
was combined with reasoning mechanisms to provide recommendation engines. For
instance, Alam et al. [103] described in their paper from 2017 an architecture that
used digital twins, bayesian networks and rules derived from fuzzy logic to analyse
the current context of the system and recommend control actions for adaptation,
if necessary. A year later, in 2018, Boschert et al. [104] argued that digital twins,
embedded in the devices themselves, on the edge or in the cloud, represented a loop
between the physical and virtual worlds.

Researchers also start recognising the challenges concerning architectural
complexity. In 2015, Derhamy et al. identified in their survey [105] different
approaches that were used by commercial platforms. One identified approach was
data-centric and utilised the cloud for collection, analysis and visualisation of data.
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These platforms were typically used for asset tracking, logistics and predictive
maintenance. Another approach made use of smart objects that enable processing
at the endpoints. The focus for these platforms was often to support distributed
automation tasks either on the edge or in the cloud for devices that required a
high level of device independence. As a consequence, these architectures required
adaptation mechanisms on different levels of complexity. However, the paper did
not go into detail about how management platforms can support such devices
autonomously.

In this period, autonomous network management research made significant
progress, and we see several examples of researchers adding cognitive elements to
their architecture. For instance, Meriem et al. [106] published a white paper in
2016 proposing a reference model for cognitive networking and self-management of
networks and services. The paper outlined requirements for autonomic management
and control, using decision-making elements that employ cognitive control loops to
enable autonomous behaviour. They argued that reasoning, learning and decision-
making control mechanisms can dynamically assign network resources to adapt
to changes in network policies, context, or events that may affect the availability,
reliability, or quality of network services. However, this generic white paper only
covered the design principles of autonomous network management without describing
the interaction between components or the required adaptation mechanisms at an
architectural level.

Another trend in the late context-aware period was to apply software-defined
networking (SDN) to achieve self-organising networks. This can for instance be
seen in the works of Tsagkaris et al. [107], who employed control-loops to control
autonomous functions in each network layer, and Neves [108], that used data mining
and stochastic algorithms to provide intelligence to diagnose problems, decide
actions and enforce adaptation. In 2017, Zhao et al. [109] argued that SDN in
combination with machine learning applied to large data sets has great potential for
self-management and automatic adaptation. Even so, their paper did not explore
that topic any further. We also see the SDN theme in broader research. One
example is a survey from 2017, where Ndiaye et al. [110] looked at SDN in light
of management aspects regarding network configuration, topology, QoS, energy,
security and maintenance. However, they did not touch upon the autonomous
aspects of management. So, although SDN could be a promising mechanism for
enhancing AIDM, we see few examples of research exploring this topic in any depth.

We also see that the term ‘cognitive IoT’ was sometimes used when discussing
purely autonomic networking aspects. An example from 2015 is the paper from Afzal
et al. [111], where the authors described an architecture that aimed at improving
connectivity for large-scale deployments of solar-powered IoT devices by using
probabilistic methods. However, their connection to context-aware or cognitive
computing was limited. This line of research is thus of little relevance to this thesis.

For autonomous application management, we can see that middleware was
sometimes introduced to connect back-end systems to the devices and provide
context awareness, knowledge management and intelligent decision support. In a
survey from 2014, for example, Pererera et al. [36] showed that middleware can
provide solutions to technical challenges related to heterogeneity, interoperability,
security and dependability. The same year, Fortino et al. [112] analysed and
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discussed the requirements for a general middleware platform. They argued that
adaptation at run-time is crucial to obtain effective management for the system,
due to heterogeneity related to devices, interfaces, data streams and context. This
requires the middleware to do knowledge management. Middleware frameworks
were also used to enable the different application components to communicate and
exchange data about themselves and their sensed environment to other agents in
the system. In 2015, Venkatesh et al. [113] addressed the challenge of scalability for
context-aware applications and provided a middleware architecture based on context
engines that use general statistical learning to translate heterogeneous sensor data
into high-level context data. This enabled the system to take contextual information
about the devices in the system into account for reasoning. In 2017, Nascimento et
al. [114] presented a framework where adaptive agents worked in collaboration with
observer agents. The main task of the observer agents was to monitor the adaptive
agents and decide when the actions deviated from what was expected. This would
trigger a learning method that generated new configurations for the adaptive agents
and test how this affected their operational behaviour.

Within autonomous resource management, we see that the field matured
significantly compared to just a few years earlier. In 2017, Delicato et al. [68]
discussed context-aware resource management concerning the IoT-edge-cloud
ecosystem. They argued that resource monitoring and adaptive resource allocation
are prerequisites for providing high-quality services, due to the dynamic nature of
the IoT and variations related to the users, the network, the physical environments
and the devices themselves. This implies that resource managers must have access
to adaptive decision-making mechanisms. However, even if the authors discussed
the challenges related to adaptive resource management in depth, they did not
address how to solve this autonomously on an architectural level. The same year,
Khazaei et al. [115] proposed an autonomic IoT platform that used a MAPE-K loop
and micro-service architecture to support edge data processing and an autonomic
manager that optimised QoS and utilisation of resources at run time. Still, in 2017,
Bacciu et al. [116] proposed a conceptual architecture for an IoT learning service.
Their architecture included an adaptive task component centred around a resource
scheduling mechanism which was based on machine learning. However, Khan et
al. did not go into detail about how to implement the actual mechanisms that are
needed for adaptation, or how to predict future states of the system.

To conclude this section, we found many examples of AIDM architectures, plat-
forms and frameworks in the late context-aware period that showed improvements
regarding combining context-awareness with knowledge management and intelligent
decision-making. However, we did not find significant evidence of cognitive features,
like adaptive learning or prediction mechanisms.

3.4 The Early Cognitive Period (2018-2023)

Since 2018 we have seen rapid evolvement in research on cognitive IoT device
management. In the last years, an increasing number of researchers have published
papers showcasing frameworks, platforms and architectures that use reasoning,
learning and planning mechanisms to provide cognitive behaviour. We will now look
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at some recent examples of IoT platforms that employ cognitive features within
network, application and resource management, respectively.

3.4.1 Cognitive Network Management for the IoT

In 2018, Khan et al. [117] published a paper where they traced the history of
autonomous network management from policy-based management, via ontological
reasoning, agent-based networking and self-organised networks to control-loop-
driven management. The authors looked at three different ways to apply artificial
intelligence for reasoning and learning, namely probabilistic models, game-theoretic
models and machine learning. They concluded that while traditional autonomic
networking aims at achieving self-management by the use of automated control
loops, the future lies with cognitive networking that can perceive its environment,
adapt to new situations, and learn from experience using artificial intelligence. This
is in line with the categorisation of AIDM that we use in this thesis, as described in
Chapter 2. However, their paper did not show any actual architectural models that
describe the adaptation components that are needed to realise such systems or the
interaction between them.

Also in 2018, Hernandez [66] addressed in his thesis the challenge of gathering
insights about events manually in a heterogeneous IoT network. He proposed the
use of machine-learning models on big data sets and autonomic computing based on
a MAPE-K loop to analyse incoming network data and increase the performance
and reliability of data analytics for network monitoring. Nevertheless, his work
focused mostly on autonomous monitoring, analysis and diagnostics of system data
to provide decision support for human operators. The challenge of autonomous
management of the network resources was only described superficially.

In 2021, Arzo et al. [118] conducted a review of autonomic network management
since 2004. Here, they proposed a multi-agent-based network automation system
using cognitive agents organised in a micro-service architecture to handle the
challenges associated with software-defined networking. Their architecture was
based on the reference model published by Meriem et al. in 2016 [106], which we
mentioned in Section 3.3. The authors used a stochastic approach based on Markov
processes for the analysis and mathematical formulation of the multi-agent system
behaviour but stated that the intelligence could be realised by other mechanisms,
like machine learning, deep learning or computational intelligence. However, their
validation was based on a simplified case, and although their preliminary analysis
was promising, they concluded that further research would be needed to validate
that autonomous network management using multi-agents can provide scalable,
flexible, dynamic, and resource-efficient systems.

The following year, Abbas et al. [119] presented an autonomous network
management platform. Their architecture was built around a closed-loop
model based on an intent-based networking mechanism for autonomous control,
orchestration and management of edge-to-edge network slicing, and a mechanism for
data analysis that employed ensemble learning to detect and predict anomalies and
activate and execute mitigation policies. However, the proposed architecture was
specialised towards network slicing management and can thus not be generalised to
other use cases.
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3.4.2 Cognitive Application Management for the IoT

In 2018, Suh et al. [120] proposed an autonomous agent-based IoT middleware
framework that supports dynamic adaptation and learning, to manage applications
for ambient intelligence. Here, they presented an architecture that models individual
agents and the collaboration between them, and a software framework to support the
development of ambient intelligent applications based on the proposed architecture.
However, their work mostly focused on the interaction between agents, not the
resources needed to support them.

In their 2021 paper, Dzeparoska et al. [121] described the architecture of a
self-driving intent-based WSN that can predict changes and adapt autonomously.
Their model demonstrates how a network receives high-level goals in the form of
intents and then uses intelligent mechanisms to convert these intents into policies
that can execute MAPE-K control loops to achieve these goals. The pipeline is
controlled by an autonomous policy-based manager that can employ techniques like
device programmability, massive scale monitoring, big data analytics, and machine
learning. Their work is in line with the ideas outlined in this thesis but does not
consider how to perform resource management on the devices.

Agyemang et al. [122] proposed in 2022 a general distributed software-defined
management framework for IoT devices that employed autonomic computing and
embedded knowledge engines to adapt autonomously to dynamic changes. The
knowledge engines ran lightweight machine learning, fuzzy rule-based systems, and
control functions to enable adaptation processes, like starting learning processes,
initiating machine-to-machine communication, performing self-management or
executing event-driven tasks. This architecture shares many of the core concepts
that we propose. That said, their architecture is aimed at running on the devices
themselves. Thus, it might not be usable for constrained devices. Also, their
architectural model is not described on a component level, nor does it explain the
interaction between them through concrete mechanisms.

In 2023, Alfonso et al. [123] presented a multi-layered architecture for the
execution of self-adaptive rules to improve the Quality of Service of IoT applications.
Their runtime framework was built around a MAPE-K loop, where pre-defined
monitoring, analyzing, and planning operations are used for the deployment,
configuration and execution of the adaptation engine and other software components.
However, none of the included platforms include a dedicated learning mechanism.
Thus, their architecture lacks a key component for cognitive management.

3.4.3 Cognitive Resource Management for the IoT

Resource management has matured more slowly compared to network and
application management, but it has been catching up in the later years. This
is evident from the increasing number of reviews being published in this field since
2018. For instance, in their review from 2019, Chatterjee et al. [124] argued that IoT
devices require platforms that support resource-aware operation and autonomous
adaptation, owing to their heterogeneity, resource constraints, context-variability,
and security. Similarly, Wang et al. [125] reviewed in their 2021 paper 30 case studies
where they concluded that energy management mechanisms based on techniques
like deep reinforcement learning, artificial neural networks and machine learning
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are well suited to support cognition and learning. The authors also observed that
autonomous power management mechanisms combined with energy harvesting
techniques are often employed to maximize energy efficiency. The same year, Li
et al. [126] carried out a review which focused on the use of decision support
systems (DSS) for energy management in the IoT. They identified five predominant
decision-making models in use, namely supervised machine learning algorithms,
unsupervised recommender algorithms, fuzzy logic and methods, natural-inspired
and evolutionary algorithms, and deep learning. Their analysis concluded that
DSS can improve energy efficiency, reduce energy consumption, faults, and errors,
and enhance performance and accuracy in smart applications. These findings are
consistent with the results from our research, as outlined in Section 6.2.

We have found some examples of cognitive architectures and frameworks that are
used for resource management in the IoT. One example is from 2020, when Bharti et
al. [127] demonstrated a framework for IoT resource discovery and selection. In their
framework, knowledge is represented by using a shared virtual composite ontology,
while resource discovery is achieved using fuzzy control rules on the knowledge base.
Then, in 2022, Liao et al. [128] proposed a cognitive balancing architecture for IoT
resources, centred around knowledge acquisition and sharing. Their architecture
included separate components for cognitive monitoring, processing and storage.
In 2023, Kumar et al. [129] presented a framework based on a MAPE-K loop for
autonomic workload prediction and allocation of resources. Their architecture
employed an auto-encoded deep-learning model for cognitive analysis and prediction
of workload, and a meta-heuristic crow search algorithm for resource allocation.
However, none of these case studies detailed the interactions between components
or the specific mechanisms that drive the cognitive processes.

3.5 Commercial and Open-source Platforms for Autonomous
IoT Device Management

As we have seen, there are multiple case studies and reviews that discuss AIDM
from a specialised perspective in recently published research. However, we have not
seen any evidence of research on comprehensive platforms for cognitive management
of IoT devices yet. To determine whether this is also true for open-source and
commercial actors, we conducted a brief market review of commercial platforms to
examine the autonomous services which are offered for IoT device management.

We found three recent studies that look at the general traits of commercial IoT
platforms. These studies were analysed to find information regarding the provided
device management services. The first study is from 2019. Here, Asemani et al. [130]
surveyed 13 commercial platforms and 11 open-source platforms. In the review they
looked at several factors, device management and service management being two
of them. While their definition of device management includes both network and
application management, their description of service management maps well to our
definition of resource management. Their results showed that while all the reviewed
commercial platforms supported basic network and application management, only
six of thirteen platforms were able to deliver services for resource management. For
open-source platforms, nine out of eleven platforms included services for network and
application management, while none provided any kind of resource management.
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The second study is from 2020, when Mijuskovic et al. [131] made a
comprehensive survey on how five IoT platforms scored for a variety of factors and
functional requirements. The authors stated that a typical commercial IoT platform
enables provisioning, management and automation for devices connected via the
IoT. Here, network, platform, and resource management were among the included
perspectives. The results showed that all the reviewed platforms used a centralised
approach and provided services in the cloud to manage the devices. Mijuskovic et
al. also found that for resource management, three of the five reviewed platforms
supported energy awareness on the device level. However, none of them included
automated services for balancing the energy budget.

In the third study, published in 2021, Babun et al. [132] surveyed eight IoT
platforms to study their support toward topology, programming languages, event
handling, third-party support, security, and privacy. Although the authors did not
look into the management aspect specifically, they stated that many platforms allow
third-party support that can extend the functionality in that direction. Also, some
platforms, e.g., the Watson IoT Platform from IBM, have built-in cloud service
integrations that make it possible to connect management services to for instance
machine-learning environments via an API or SDK. In theory, that makes it possible
to achieve some level of autonomous management. However, such integrations, to
either third-party applications or built-in services in the platform itself, must still
be implemented manually.

We did not find indications that any of the surveyed platforms provided
autonomous services for network, application or resource management above
autonomic level. To validate this observation, we looked at the descriptions, feature
listings and documentation of some commercial and open-source IoT platforms.
These were Microsoft Azure IoT Central [133], AWS IoT Device Management [134],
SAS IoT Analytics Solution [135], IBM Watson IoT Platform [136], Particle [137],
Kaa Enterprise IoT Platform [138] and Friendly One-IoT Device Management [139].

Our analysis showed that the focus is still mostly on providing basic features, like
deployment, discovery, monitoring, remote configuration and updating of devices.
SAS seems to be the sole exception to this rule. Their documentation state that
the concept of ‘artificial intelligence of things’ (AIoT) will become more prominent,
that learning, collective intelligence and value of information will drive the future
IoT, and that future systems will have the capability to optimise themselves for
any scenario. However, it did not provide any examples to prove that this platform
can provide cognitive device management as an out-of-the-box service.
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Chapter 4

Overview of publications

This chapter provides an overview of the publications that are part of this thesis,
plus one auxiliary paper. Papers A to F are case studies. Each of these papers
includes an architectural model that describes the components and mechanisms in
the implemented system. Paper G is a structured literature review. It contains
a generalised architectural model based partly on the six case studies, and partly
on patterns and best practices identified in that paper. The auxiliary paper is a
review of fog computing in healthcare. Although it did not contribute directly to
this thesis, it helped identify the direction and scope of the research.

To visualize the evolution of our proposed cognitive architectural model, we
describe the architecture in each paper using the notation developed in Paper
G. The notation used in the model is based on the principles of service-oriented
architectures (SoA), where each container represents a component that either
provides or consumes a discrete service. There are two types of components: System
components and process components. We have identified four system components
in our examples: ‘Device,’ ‘Device manager,’ ‘System manager,’ and ‘Server.’ These
act as containers for five process components: ‘Perception,’ ‘Action,’ ‘Adaptation
process,’ ‘Declarative knowledge’ and ‘Procedural knowledge’. ‘Adaptation process’
is further divided into five categories, namely, ‘Monitor’, ‘Analyze’, ‘Learn’, ‘Predict’
and ‘Plan.’ Arrows in the notation represent service calls, triggers, or data flows.
The notation is further detailed in Paper G and in Section 6.1.

In the following, we will describe each paper and how, retrospectively, the
respective architectural model contributed to the research goal.

4.1 Summary of included papers

Paper A (Ahlers et al. 2018)

Title:
Analysis and Visualization of Urban Emission Measurements
in Smart Cities

Presented at:
The 21st International Conference on Extending Database Technology
(EDBT), Vienna, Austria, March 2018

In Paper A we present a case study that describes the architecture of a wireless
sensor network (WSN) for data collection, management and analytics. The WSN
consists of several solar-powered sensor nodes deployed in the cities of Trondheim,
Norway and Vejle, Denmark. Apart from the sensor data, several publicly available
data sets are collected and included in the data analytics and visualisation to
improve data quality and support analysis.
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The study highlights two challenges related to the energy management of
the devices and the data integration process. First, traditional, fixed energy
management fails on two accounts: In the summer months, the sensor nodes have
access to an abundance of energy which they potentially could have utilised to
collect more data of higher quality. However, the high variance in energy due to
seasonality and volatile weather conditions makes it difficult for the devices to
stay in operation throughout the winter. Second, data integration is challenging
when the sources contain highly heterogeneous data, with different timescales,
measurement frequencies, spatial distributions and granularities. This requires
that each data stream is tailor-made, which is a big hindrance to the scalability
of smart city systems and applications. Thus, the paper identifies the need for a
management platform that can autonomously handle heterogeneous data streams
in a non-stationary environment.
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Figure 4.1: Component diagram of the data collection platform. Adapted from
Paper A.

The architectural model included in the paper can be seen in Figure 4.1. The
model makes a distinction between sensor data and meta-knowledge, i.e., collected
data that shows the status of the system. The model also defines four fundamental
process components in the generalised model, namely perception, action, adaptation
process and declarative knowledge.

Paper B (Braten et al. 2017)

Title:
Towards Cognitive Device Management: A Testbed to Explore Autonomy
for Constrained IoT Devices

Presented at:
The Seventh International Conference on the Internet of Things,
Linz, Austria, October 2017

Paper B is a demonstration paper where we describe the setup for a platform
that is responsible for collecting environmental and contextual data that can be
used to study principles and mechanisms for autonomous resource management for
IoT devices using machine learning.
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Through the work of the testbed, we found that resource-intensive tasks can be
outsourced to a device manager located in the cloud even when the communication
lines are constrained. In addition, devices must be able to receive commands and
change their operations accordingly. Finally, an autonomous IoT manager who
oversees devices that operate under volatile and non-stationary conditions must be
able to identify previously unseen events and learn from new experiences. Hence,
we defined cognitive device management as an evolution of device management
systems that can manage the learning process on their own.
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Figure 4.2: Component diagram of the autonomous sensor testbed lab. Adapted
from Paper B.

The architectural model presented in the paper is shown in Figure 4.2. It
introduces several important concepts: First, resource management is a separate
entity that is distinct from network management and application management.
Second, the model shows that an autonomous IoT system requires a separate
cognitive device manager for each device, to support individual adaptation. Third,
there are three types of data present in the system, namely application data,
contextual data and meta-data. Fourth, knowledge can be either declarative or
procedural. Fifth, autonomous adaptation is driven by three types of control loops;
one for autonomous device operation, one for autonomous device adaptation, and
one for autonomous learning. These loops are in turn based on four different
adaptation mechanisms: analysing, learning, predicting and planning.

Paper C (Kraemer et al. 2017)

Title:
Solar Energy Prediction for Constrained IoT Nodes based
on Public Weather Forecasts

Presented at:
The Seventh International Conference on the Internet of Things,
Linz, Austria October 2017
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Paper C is a continuation of Paper B. Here, we present a case study where we
focus on the challenges related to the operation of constrained, energy-harvesting
devices located in a non-stationary environment. More precisely, we examine the
influence that seasonal variations in sun angle and short-term effects of volatile
weather have on the energy output from a photovoltaic (PV) panel. We also discuss
the problem of optimising data output from a solar-powered IoT device versus the
need to avoid device failure due to over-consumption of energy.

To investigate this problem, we study how different machine learning methods
can be used to predict the future energy intake of constrained solar energy harvesting
devices, based on publicly available weather data. The evaluation is based on data
provided by commercially available IoT hardware, demonstrating the feasibility of
the proposed solution in a real deployment. Our results show that predicting solar
energy is possible even with limited access to data and that the predictions can
progressively improve as the system runs.
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Figure 4.3: Component diagram of the proposed platform for autonomous operation
of constrained IoT devices. Adapted from Paper C.

The paper identifies three requirements that must be fulfilled to enable optimal
operation for such devices. First, sensor nodes must be aware of their energy budget
and be able to plan their future energy consumption accordingly. Second, due to
the scale of many IoT deployments, maintenance and adaptation must happen
autonomously. Third, sensors that are placed in non-stationary environments must
be able to adapt individually.

The architectural model, shown in Figure 4.3, is essentially the same as the one
shown in Paper B. The main difference is that the Monitor process is removed since
it is only used to visualise data to a human observer, and thus is not necessary for
autonomous adaptation.
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Paper D (Kraemer et al. 2020)

Title:
Operationalizing Solar Energy Predictions for Sustainable,
Autonomous IoT Device Management

Published in:
IEEE Internet of Things Journal (2020), 7(2), pp. 11803-11814

In Paper D we explore how to select and optimise machine-learning models to
improve the prediction accuracy of solar power that is harvested by IoT devices. In
the paper, we examine which machine learning models, feature sets and sampling
rates gain the best results for a medium-term forecasting horizon.

The study used one year of observational data from Trondheim in a simulation to
evaluate IoT devices deployed in an operational setting without any prior data. The
results from the simulation were then analyzed to determine which hyperparameters
to use. The study also obtained empirical estimates for the amount of training data
required for sufficiently accurate solar forecasts for energy budget planning.

Our results indicate that device managers can benefit from optimising energy
harvesting models since this opens up more strategic energy planning. Further,
manual tuning for individual devices in a large-scale deployment is unnecessary even
if the devices have different configurations, as individual and autonomous machine
learning models can be employed easily for each device individually.
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Figure 4.4: Component diagram of the proposed IoT device management platform.
Adapted from Paper D.

The architectural model, shown in Figure 4.4, introduces the system manager.
This component handles the processes that do not influence the individual devices.
It also shows the importance of taking parallelism into account in autonomous
systems, as the internal meta-processes of an autonomous device manager might
not run sequentially.
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Paper E (Braten et al. 2018)

Title:
Towards Cognitive IoT: Autonomous Prediction Model Selection
for Solar-Powered Nodes

Presented at:
IEEE International Congress on Internet of Things (ICIOT),
San Francisco, CA, USA, July 2018
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Figure 4.5: Component diagram showing the architecture needed for the energy
planning workflow. Adapted from Paper E.

In Paper E we do a case study to investigate how prediction model selection can
increase the accuracy of autonomous energy management of solar-powered sensor
devices in an environment with volatile weather and seasonal changes. Further, we
argue that cognitive device management requires that a system takes contextual
data about the operation of the devices into account when managing IoT devices.

For our study, we ran a simulation based on real data gathered in realistic
settings. Here, a device manager was provided with the ability to autonomously
evaluate several prediction models and then select the one with the highest historical
accuracy when predicting the future energy intake of a device.

The statistical analysis of the results from the simulation showed that a classical
machine learning model can learn quickly when data becomes available. However,
simple physical models are more suitable until the machine learning model has
enough data to solve the problem. Thus, applying a set of models can help solve
the bootstrapping problem during the start of a new system when training data is
scarce or non-existent. In addition, having the ability to switch between models can
contribute to the robustness of a system by providing some degree of self-healing.
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Finally, the paper suggests how to select a decaying parameter for the model
selection algorithm to manage the trade-off between reactivity and stability.

The architectural model in the paper, shown in Figure 4.5, stresses the impor-
tance of using triggers to control processes, e.g., to run a machine learning process
when a significant amount of new training data becomes available to the device
manager. It also validates the concept of context-aware device management for IoT,
as it includes a component that can provide support for both self-optimisation and
self-healing.

Paper F (Braten et al. 2019)

Title:
Adaptive, Correlation-Based Training Data Selection
for IoT Device Management

Presented at:
The Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), Granada, Spain, October 2019

Paper F is a case study aimed at understanding how autonomous device
management can enhance large-scale deployments of IoT nodes operating in non-
stationary environments. In particular, we examined the effect that transfer learning
has on the initial prediction accuracy for new devices that are introduced into an
existing deployment. To this end, we designed a conceptual cognitive architecture
that modelled the behaviour of an autonomous device manager who is responsible
for energy planning for solar-powered constrained devices.

For validation, we constructed a mechanism where we simulated a device manager
that can identify suitable training data for a given node by selecting data from
nodes with correlated data. The statistical analysis of the results shows that the
proposed training data selection can support self-management in several ways. First,
adding relevant learning data when training a model can improve self-optimisation,
since this improves the prediction accuracy in the first period after deployment.
Third, self-protection can be improved by analysing data from correlated nodes, for
instance, if the data suddenly and unexpectedly deviates this might indicate that a
device is faulty or hi-jacked.

The case study thus illustrates how employing mechanisms for training data
selection and learning management can improve the ability of constrained IoT
devices to adapt to changes and act more autonomously. This will in turn decrease
the need for manual maintenance and enhance the perpetual operation of the
deployed devices in the wireless sensor network.

On an architectural level, we employ both a system manager and a device
manager, which in turn reflects the division between general and device-specific
knowledge. In Figure 4.6, we can see that the system manager employs a transfer
learning data selection policy to identify which previously deployed device correlates
most with the newly deployed device. Then the system manager takes the data from
the older device and transfers it to the device manager for the newly deployed device.
This transfer learning data is then utilised by the device manager when it retrains
the prediction models for the device. This means that the device manager acts as a
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Figure 4.6: Architecture of a cognitive device manager responsible for energy
planning for constrained IoT devices. Adapted from Paper F.

digital twin of that device, while the system manager models a cognitive control
system that handles the general aspects of autonomous operational management on
the system level.

Paper G (Braten et al. 2021)

Title:
Autonomous IoT Device Management Systems: Structured Review
and Generalized Cognitive Model

Published in:
IEEE Internet of Things Journal, vol 8, no. 6, pp. 4275-4290

Paper G is a structured literature review where we present a comprehensive study
on mechanisms for autonomous device management of constrained IoT devices, in
the light of management tasks, operational environment, network topology, resource
constraints, scalability and management categories.

In the study, we first analysed state-of-the-art models and descriptions of
autonomic, context-aware and cognitive architectures from 32 cases. From these
cases, we extracted relevant data, which was organised, analysed and synthesised
according to a proposed taxonomy of observed adaptation mechanisms. We then
studied the autonomic MAPE-K loop as described by IBM in 2005 [49], the
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cognitive model presented by Vernon [29] and the standard model of human-
like minds described by Laird et al. [40], in light of the results from the 32 case
studies, to identify common patterns of autonomous cognitive management for
constrained IoT devices on component and process levels and best practices for
designing and implementing solutions around adaptation mechanisms. Based on
the gathered insights and knowledge we then designed a generalised cognitive model
for autonomous management of constrained IoT devices.
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Figure 4.7: Component diagram of a generalised cognitive model for autonomous
management of constrained IoT devices. Adapted from Paper G

When we look at the architectural models in Papers A to F as an evolutionary
process, we observe that all components and mechanisms included in the archi-
tectural model in Figure 4.7 can be found in earlier case studies. This shows
that the generalised cognitive model for autonomous IoT device management that
we present in this thesis unifies the insights from the included case studies with
the theoretical study in the structured literature review, into one cohesive archetype.
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4.2 Summary of auxiliary paper

In addition to the main publications listed above, the following auxiliary paper
helped us to decide on a topic, define the scope of this thesis and learn about system
architecture in IoT.

Paper H (Kraemer et al. 2017)

Title:
Fog Computing in Healthcare – A Review and Discussion

Published in:
IEEE Access, vol. 5, pp. 9206-9222

In this literature review, we present the first review on fog computing within
healthcare informatics and explore, classify, and discuss different use cases presented
in the literature.

We categorise applications into use case classes and list an inventory of
application-specific tasks that can be handled by fog computing. In addition,
we discuss on which level of the network such fog computing tasks can be executed
and provide tradeoffs concerning requirements relevant to healthcare.

Our review indicated that when implementing systems in healthcare two opposite
factors move computation either away from the device or away from the cloud: First,
processing on higher network tiers is required due to constraints in wireless devices
and the need to aggregate data. Second, privacy concerns and dependability prevent
computation tasks from being moved to the cloud. Thus, there are a significant
number of computing tasks in healthcare that require or can benefit from employing
fog computing principles.
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Chapter 5

Methodology

This thesis is based on the design science research methodology (DSRM) as it
provides a sound structure for answering the research goal described in Section 1.3.
We will now describe how we applied the research methodology in the PhD project.

5.1 Design Science Research Methodology

According to Wieringa [140], design science aims at improving a studied problem, by
investigating an artefact as it interacts with the problem in its context. Hevner et
al. [141] state further that the purpose of DSRM is to acquire more knowledge and
a better understanding of the design problem and the prescribed solution, through
the study of concrete artefacts. The methodology employed in this thesis is thus
based on answering knowledge questions by investigating a set of design artefacts in
a given context through a series of case studies and a structured literature review.
However, similar to most creative exercises, DSRM is an iterative and unstructured
process. This means that the activities were typically repeated several times and
might not have followed exactly in the presented order.

DSRM is guided by a technical research goal, which is broken down into
knowledge goals and design goals. These goals correspond in turn to research
questions (RQs) and design problems (DPs), respectively. We will now describe the
relationship between the research goal, the research questions, the design problems
and the design artefacts.

5.1.1 Research Goal

The research goal of this thesis is to synthesise and describe a generalised
architectural model for autonomous and perpetual management of IoT devices
deployed in a non-stationary environment. This corresponds to the technical
research goal.

5.1.2 Research Questions

In addition to the research goal, most research projects have knowledge goals. A
knowledge goal can be phrased as a knowledge question, which asks for knowledge of
the artefact in its context. Empirical knowledge questions require either qualitative
or quantitive data to answer them, while analytical knowledge questions are based
on a conceptual or logical analysis [140].

We observe that all our research questions fit the description for empirical
knowledge questions.
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5.1.3 Design Problems

In contrast to knowledge questions, a design problem is solved by (re)designing an
artefact to achieve a design goal. A design goal can typically be classified either as
an instrument design goal or an artefact design goal. In the former case, we design
a research instrument aimed at answering a knowledge question, while in the latter
case, we design an artefact aimed at studying a problem in a given context [140].

We observe that all our design problems are aimed at answering RQ 2 and 3,
which are knowledge questions. However, by their nature, they are also studying a
specific problem in a specified context. Thus our design problems can be classified
both as instrument design goals and artefact design goals.

5.1.4 Design artefacts

In this thesis, three types of artefacts are of particular interest, namely architectural
models, components and mechanisms. These artefacts are found on different levels
in the architecture [140], where they model the behaviour of the system in different
ways.

The architectural model describes the system-level phenomena, that is, the
purpose of the system. This means that the system architecture models the overall
system behaviour through the organisation of the components in the system.

At the middle layer, we find the components. They are characterised by their
capability to respond to a stimulus, an event or some change in the environment.
The system behaviour at this level can be modelled by the interaction between the
components, that is, the sequence in which the components are activated.

At the lowest level, we find the mechanisms that guide the interaction between
the components in the architecture. They produce stimuli, which again creates a
pattern of data that flows between the system components. Thus, the behaviour
can also be modelled by following the data flow, that is, the input and output from
components.

5.2 Research activities

DSRM includes a set of activities that guide the research toward the goal. The
first activity is to identify the problem context. Then comes the identification of
research objectives. Next is the design and investigation of artefacts. Finally, we
have knowledge extraction and communication of results. A framework for DSRM
is illustrated in Figure 5.1.

In the following subsections, we will recount how we applied DSRM in our
research, and how the methodology helped us synthesise the knowledge needed to
reach the goal.

5.2.1 Step 1: Identification of problem context

The first phase in DSRM is the identification of challenges found in a specific
problem context. This is an iterative process that we performed throughout the
PhD project.

40



Research activities

Problem 
context

Conditions and 
constraints

Challenges

Research

Knowledge
context

Design Investigation

Artefacts to investigate 
(in a given problem context)

Research questions 
and knowledge

Existing
designs

Existing
knowledge

Research 
questionsNew designs

New knowledge
New designs

Design goal

Figure 5.1: A framework for Design Science, adapted from [140]

In Paper A we identified the initial challenge, that is, how to keep constrained
and energy-harvesting IoT devices in operation in a volatile and non-stationary
environment. This particular challenge was further addressed in Papers B to D. In
Papers E to G, we went beyond the initial challenge and discovered that cognitive
management of constrained IoT devices is a complex problem involving several
composite and interwoven challenges, as described in Section 1.1.

5.2.2 Step 2: Identification of research objectives

The next phase in DSRM is the process of identifying the research objectives, i.e.,
defining the technical research goal and the corresponding research questions.

The research goal emerged as a result of an iterative process. Already while
working on the analytics engine in Paper B and C we decided that the main goal
of this PhD project would be to define an architecture for cognitive IoT device
management. Our initial idea was to explore different components and mechanisms
through a series of case studies, and then put them together in a simulation. The
strategy was thus based on the idea that the architecture would emerge as a result
of the process in a bottom-up fashion.

However, while writing Papers E and F, we identified a gap in the existing
literature regarding fundamental architectural questions related to autonomous IoT
device management. For example, we found no clear answers to questions such as
which components are required to impart the necessary intelligence to an autonomous
IoT device manager, which adaptation mechanisms are most effective in assessing
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and analyzing a given situation or event, and how the internal communication
should be described in such an architecture. Additionally, we could not find clear
guidelines on the best practices for designing an AIDM management system.

To fill this knowledge gap we therefore decided to do a structured literature
study where we explored, described and synthesised patterns and practices for
autonomous IoT device management platforms and architectures in recent research
literature. Based on this knowledge we could then design a conceptual model for a
cognitive IoT device management solution, using a top-down approach.

As with the research goal, the knowledge goals and their respective research
questions were gradually defined during the PhD project. RQ 1 followed naturally
from the iterative identification of challenges in the specified problem context, as
explained in Step 1. RQ 2 and 3 were defined while working on papers B and C. RQ 4
and RQ 5 were identified in conjunction with the work done in Papers F and G, that
is, after we changed the research goal toward designing a conceptual architectural
model. For reference, the research questions are summarised in Table 5.1.

Table 5.1: Overview of research questions addressed in Papers A to G.

Research question topic Addressed in paper
RQ 1 Identifying challenges A – G
RQ 2 Identifying system and adaptation components A – G
RQ 3 Identifying adaptation mechanisms B – G
RQ 4 Identifying patterns G
RQ 5 Identifying best practices G

5.2.3 Step 3: Design and investigation of artefacts

The third phase in DSRM is the design and investigation of specific artefacts to
gather insights and knowledge about the problem in a given context. These are
interlinked activities that were done iteratively through the work of Papers A to
G. In each paper, we address a specific design problem, which in turn corresponds
to a concrete design artefact. The main artefact of each paper is summarised in
Table 5.2.

In Paper A we focused on DP 1. Here we designed and studied a solar-powered
WSN platform for data collection and analytics. This platform contributed towards
RQ 1 since it helped us identify the need for collecting meta-knowledge on device
level to help devices stabilise their energy consumption against their energy intake.
It also identified some basic architectural components for autonomous collection
and analysis of data, which addresses RQ 2.

In Papers B to F, we designed five architectural models which correspond to
DP 2 to 6. These artefacts were analysed to identify patterns, components, and
mechanisms used to promote autonomous behaviour. This addressed RQ 1, 2 and
3, as follows: In Paper B we addressed DP 2, which corresponds to the testbed for
exploring autonomy for constrained sensor nodes. Through the testbed, we explored
several challenges regarding energy management, which in turn helped us define our
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Table 5.2: Overview of design problems and design artefacts found in Paper A to G.

Design problem Main design artefact Mgmt type1 Val.2 Ana.3 Pap. RQ

DP 1 Data analysis Data collection and
analysis platform N+A Dep. Em. A 1-2

DP 2 Resource
offloading

Device management
testbed N+R Dep. Em. B 1-3

DP 3 Resource
optimisation

Learning and
prediction algorithms R Sim. St. C 1-3

DP 4 Self-optimisation Prediction tuning
algorithms R Sim. St. D 1-3

DP 5 Self-management Prediction model
selection algorithm R Sim. St. E 1-3

DP 6 Self-management Training data
selection policy R Sim. St. F 1-3

RG Cognitive IoT
device management

Generalised
architectural model R Rev. An. G 1-5

1) Management type: N = network, A = application, R = resource
2) Validation: Dep = deployment, Sim = simulation, Rev = Review
3) Analysis: Em = empirical, St = statistical, An = Analytical

first objectives. It also identified and validated the five basic components, the three
autonomous loops in the architecture and the three types of adaptation mechanisms.
In Papers C and D, we explored DP 3 and 4, respectively, through the study of
different machine learning models and the mechanisms needed to train and tune
them. These studies provided a better understanding of the challenges related to
the operation of constrained, energy-harvesting devices located in a non-stationary
environment. We also made simulations which demonstrated that machine learning
is a viable method for autonomous prediction of future energy intake of such devices.
In Paper E we explored DP 5. Here, we investigated a prediction model selection
algorithm, which was used in a simulation to study how an autonomous manager can
increase the accuracy of predictions in the initial period after deployment. In Paper
F we investigated DP 6. Here, we employed a training data selection algorithm to
solve the problem of identifying the node that could provide the most relevant data
for transfer learning when deploying a new device into an existing IoT deployment
in yet another simulation.

In Paper G, we structured and categorised the knowledge gathered through the
structured literature review in tables, taxonomies, patterns and models. These
artefacts were then analysed to answer RQ 4 and 5. In addition, the paper addresses
RQ 1, 2 and 3, both from empirical analysis of the design artefacts provided in the
six case studies in Papers A to F and through the analysis of architectural models
found in industry and recent literature.

5.2.4 Step 4: Knowledge extraction

The fourth phase of DSRM is the extraction of new knowledge that is acquired
through the research.
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First, we successively analysed the results from each case study and discussed the
implications in Papers A to F. In Paper G we synthesised the knowledge gathered
from those six case studies, together with analysed data from 32 reviewed case studies
and three architectural models for autonomous behaviour. The synthesis resulted
in a generalised architectural model for autonomous, perpetual management of IoT
devices. In addition, Paper G contributed the following knowledge: A taxonomy
of adaptation mechanisms for autonomous IoT device management, a model of
cognitive planning and a list of best practices to guide the design and implementation
of cognitive IoT device management platforms.
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Figure 5.2: Relationship between publications, research questions (RQ), design
problems (DP), technical research goal (TRG) and research methodology. Adapted
from [142]

Figure 5.2 shows the relationship between the publications, the phases in the
design science research methodology that they adhere to, and which research
question and design problem they addressed.
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Chapter 6

Research results
This chapter provides an overview of the main outcomes and contributions of this
PhD thesis. First, in Section 6.1, we revisit the research goal and describe how it
was achieved. Next, in Section 6.2, we present answers to each of the five major
research questions. Then, we examine each design problem and how the artefacts
assisted in resolving them in Section 6.3. Finally, in Section 6.4, we showcase how
Veiga et al. [143] utilised the cognitive model we suggested in Paper G to solve a
complex issue that matches the set of challenges and aligns with the patterns and
best practices mentioned in the same article, thereby validating our synthesised
conceptual architecture.

6.1 Research Goal

In Section 1.3 we defined the following research goal for this thesis:
Research goal

Synthesise and describe a generalised architectural model for autonomous
and perpetual management of IoT devices deployed in a non-stationary
environment.

The main contribution of the thesis is a conceptual model of a generalised
service-oriented architecture for cognitive management of constrained IoT devices,
which is shown in Figure 6.1. In essence, the model is a service-oriented architectural
blueprint that describes the interaction between the stored knowledge in a system
and the adaptation processes that are needed to provide cognitive behaviour, i.e.,
reasoning, learning and planning. We will now explain the basic aspects of the
generalised model. A full description can be found in Paper G.

The model is structured around the physical devices, and two distinct types of
managers, which serve the device and the system perspectives, respectively. Devices
are responsible for any interaction with the real world, based on a pre-defined policy
or action plan. For each physical device in the model, there is exactly one instance
of a device manager, following the pattern of digital twins. The device manager
contains information about the device and data concerning its past operation. With
this knowledge, the device manager can predict the future state of the device it
mirrors. In turn, these predictions allow the device manager to evaluate and plan
the operation of the device with better precision. The system manager contains
knowledge about the system, its purpose, the environment in which the devices are
placed, and how this particular environment influences the operation of the devices.
Its main responsibility is to analyse the past, monitor the present and predict the
future states on the system level.

This distinction between system and device supports individual adaptation for
each device and ensures perpetual operation for the system as a whole.
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Figure 6.1: Component diagram of the proposed architectural model for autonomous,
perpetual management of IoT devices. Adapted from Paper G.

On the top level, devices contain components that are responsible for Perception
(P) and Action (A), while managers consist of components that handle adaptation
processes (AP), declarative knowledge (DK) and procedural knowledge (PK).
Adaptation processes are then divided into monitoring, analysing, predicting,
learning and planning mechanisms. The separation between declarative and
procedural knowledge is beneficial as different types of knowledge often use different
implementations. In the context of machine learning, for instance, this means that
declarative knowledge can be stored in the form of training data, and procedural
knowledge can be represented by trained machine learning models.

Further, the model contains four control loops that handle adaptive behaviour
in the system autonomously. L1 controls each device based on the last instructions
received from the device manager. LS2 and LD2 are learning loops on the system and
device level, respectively. They act on incoming events and make decisions whether
any new situation calls for a new learning cycle. L3 is the main control-loop. It
monitors the situation and detects any sudden events or changes in the environment
that happen on either the system or device level. On detection, it runs an analysis of
the situation and decides if any of the devices need to adjust their operation. Note
that the model does not prohibit the inclusion of more control loops. For instance,
a hypothetical control loop L4 between the prediction and planning components
could enable reinforcement learning.

46



Research Questions

Adaptive actions are started by triggers that guide the data flow to the right
component and regulate the behaviour of the managed system. They are also
crucial for controlling parallelism, which can cause errors if not kept in check. In
our generalised model we have identified six particular triggers: TS1 triggers when
a change in the environment happens, e.g., a change in the weather forecast, that
might influence the operation of the devices, while TD1 activates if the device
manager observes an internal change in the device that might affect its operation.
TS2 and TD2 initiate the learning process for the system and device manager,
respectively. Examples of triggers that might activate the learning process can be
previously unseen events, sudden changes in the environment or the discovery that
an executed plan did not have the anticipated effect. TS3 triggers if the result of a
prediction shows a need for adaptation for one or more devices. TD3 informs the
device when a new plan is made, i.e., which adaptive action it needs to take.

As stated earlier, the proposed architectural model was derived from two different
sources. First, we gathered insights through six case studies. This provided insights
regarding the type of components and mechanisms that are needed for cognitive
management, and how to build a basic structure and pipeline for the data flow in
the proposed architecture. An overview of components and mechanisms identified
in each case study is summarised in Table 6.1. Second, we analysed a set of models
described in recent literature that solved similar challenges as those described in
Section 1.1, and synthesised knowledge about adaptation mechanisms, architectural
patterns and best practices from them. This process is fully described in Paper G.

From the 6 case studies and the literature review, we identified and validated
the three system components, the five adaptation components, the five adaptation
processes, the three types of adaptation mechanisms and the three types of control
loops that are needed for the cognitive management of IoT devices. This gave us
the knowledge necessary to describe the direction and control of the data flow in
the proposed architectural component model. Thus, the final result of this thesis is
a new artefact that can enter a new cycle of investigation and knowledge extraction,
as described in Chapter 5.

Although other works have described each part of this model separately, to our
knowledge we were the first research group to put it all together in one comprehensive,
cognitive model, in the context of IoT.

6.2 Research Questions

As detailed in Section 1.4 and Section 5.2.2 this thesis aimed at answering five
research questions. In this section, we will describe how each research question
contributes towards the research goal.

6.2.1 Challenges

RQ 1

What are the contextual and architectural challenges that must be addressed
to realise the research goal?
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How to identify the specific challenges in a problem context is fundamental to
any research. In Section 1.1 and Section 5.2.1 we gave a general overview of the
challenges that we addressed in this PhD thesis.

In Paper A we discovered the initial challenge regarding resource allocation and
management for constrained, solar-powered IoT devices. Through Papers B to F,
we gradually expanded our understanding of the challenges, both on an operational
and architectural level. In Paper G, we concluded that autonomous management
of constrained IoT devices is a complex problem that is related to various factors.
These factors include the context in which the devices operate, the device topology,
available resources, the scale of the deployment, and the problem that the system
aims to solve.

Contributions by paper:

• In Paper A we presented a discussion on the need for monitoring energy intake
and consumption to estimate battery depletion of solar-powered IoT devices.

• Papers B to F gave insights into the contextual and architectural challenges
that must be addressed to build a generalised architectural model for an
AIDM-system.

• In Paper G we synthesised the knowledge gathered from the case studies in
Papers B to F and the 32 papers included in the structured literature review,
and described each challenge in detail.

6.2.2 System and Adaptation Components

RQ 2

Which system components and adaptation components are required to reach
the research goal?

As described in Section 5.2.2, identifying which components to include in the
generalised architectural model was an iterative process that were performed during
the work on Papers A to F. The whole set of components was fully defined in Paper
G.

At the system level, we have identified three components that exhibit adaptive
behaviour, namely ‘Device’, ‘Device Manager’, and ‘System Manager’. Moving to
the process level, we have found five components that guide adaptation. These
components are ‘Perception’, ‘Action’, ‘Adaptation Process’, ‘Declarative Knowl-
edge’, and ‘Procedural Knowledge’. The adaptation process component can be
further divided into five different categories that describe the type of adaptation
that the component is responsible for. These are ‘Monitor’, ‘Analyse’, ‘Predict’,
‘Learn’ and ‘Plan’. Note that in Paper G we originally classified ‘Predict’ as an
‘Analyse’ component, in line with the MAPE-K model. However, while writing this
thesis we concluded that these are two distinct components, which the notation
should reflect. This also makes it easier to read the diagrams. An overview of the
components that we explored and analysed in the six case studies can be found in
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Table 6.1: Overview of included components, processes and mechanisms in the
architectural model described in case studies

Paper SC1 AC2 APT3 Adapt. Mechanism Purpose

A D P — Perceive Sense event
A D A — Execute Execute sensing policy
A S AP Mo Reasoning mechanism Visualise data
A S AP An Reasoning mechanism Merge and filter data
A S AP An Reasoning mechanism Analyse data
A S DK — Data storage Share data

B D P — Perceive Sense event
B D A — Execute Execute sensing policy
B DM AP Mo Reasoning mechanism Visualise data
B DM AP An Reasoning mechanism Collect, merge and filter data
B DM AP Pr Reasoning mechanism Predict solar energy input
B DM AP Le Learning mechanism Retrain ML models
B DM AP Pl Planning mechanism Define sensing cycle policy
B DM DK — Data storage Share data
B DM PK — Prediction model Share prediction procedure

C D P — Perceive Sense event
C D A — Execute Execute sensing policy
C DM AP An Reasoning mechanism Collect, merge and filter data
C DM AP Pr Reasoning mechanism Predict solar energy input
C DM AP Le Learning mechanism Retrain ML models
C DM AP Pl Planning mechanism Define sensing cycle policy
C DM DK — Data storage Share data
C DM PK — Prediction models Share prediction procedure

D D P — Perceive Sense
D D A — Execute Execute sensing policy
D D AP Pl Planning mechanism Define sensing cycle policy
D SM AP An Reasoning mechanism Collect, merge and filter data
D SM AP An Reasoning mechanism Tune ML models
D SM AP Pr Reasoning mechanism Predict solar energy input
D SM AP Le Learning mechanism Retrain ML models
D SM DK — Data storage Share data
D SM PK — Prediction models Share prediction procedure

E D P — Perceive Sense event
E D A — Execute Execute sensing policy
E DM AP An Reasoning mechanism Collect, merge and filter data
E DM AP An Reasoning mechanism Analyse accuracy of prediction models
E DM AP An Reasoning mechanism Select energy prediction model
E DM AP Pr Reasoning mechanism Predict solar energy input
E DM AP Le Learning mechanism Retrain ML models
E DM AP Pl Planning mechanism Define sensing cycle policy
E DM DK — Data storage Share data
E DM PK — Prediction models Share prediction procedures

F D P — Perceive Sense event
F D A — Execute Execute sensing policy
F DM AP Mo Reasoning mechanism Identify changes in training data
F DM AP Pr Reasoning mechanism Predict energy input for device
F DM AP Le Learning mechanism Retrain ML models
F DM AP Pl Planning mechanism Define new policy for operation
F DM DK — Data storage Share device and transfer learning data
F DM PK — Prediction model Share prediction procedure
F SM AP An Reasoning mechanism Collect, merge and filter data
F SM AP An Reasoning mechanism Collect transfer learning data
F SM DK — Data storage Share weather forecasts
F SM PK — Train. data select. policy Identify correlated device
1) System component: D = Device, S = Server,

DM = Device Manager, SM = System Manager
2) Adaptation component: P = Perception, A = Action, AP = Adaptation process

DK = Declarative knowledge, PK = Procedural knowledge
3 Adaptation process type: Mo = Monitor, An = Analyse, Pr = Predict, Le = Learn, Pl = Plan

columns 2 to 4 in Table 6.1.

Contributions by paper:

• In Paper A we show containers for four architectural components for
autonomous collection and analysis of data found in the generalised model,
namely perception, action, process and declarative knowledge.

• Paper B and C include a deployment model and an architectural model,
respectively, of the server backend. In these papers we identify the device
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manager as a separate system component that reflects the physical device.
The model also defines all five top-level adaptation components.

• Paper D identifies the System Manager as an entity that differs from the
Device Manager. While the latter is concerned with the operation of each
device, the former is concerned with models concerning the world and how
they influence the devices in general.

• Paper E contains a model that describes the basic architecture for energy
workflow management. The model shows the need to include components that
can reason about the devices in light of the context, i.e., situational awareness.

• In Paper F we describe and discuss how a learning manager and a planning
manager in a system can support energy planning for constrained IoT devices.
We also show that the adaptation process emerges from the interaction between
the system manager and device manager components. In addition, we touch
upon the need for controlling data flow between components with triggers.

• Paper G shows the full range of components that are needed to build an
architectural model for cognitive management of constrained IoT devices, and
the interaction between them, as described above.

6.2.3 Adaptation Mechanisms

RQ 3

Which adaptation mechanisms can be used to achieve the research goal?

In Papers B to F we explored different adaptation mechanisms that can contribute
towards the design of an architectural model for the cognitive management of
constrained IoT devices. Paper B explored this in an empirical setting, while Papers
C to F used simulations to study the behaviour of selected adaptation mechanisms.

The basic mechanisms needed for adaptation, i.e., monitor, analyse, predict,
learn and plan, were identified already in Papers B and C. Throughout the case
studies these mechanisms were then refined and generalised into three distinct
categories, namely ‘Reasoning’, ‘Learning’ and ‘Planning’. However, these terms
were only identified through the structured literature review we performed in Paper
G, after studying the 32 case studies in light of our research. The mechanisms that
are present in the final architectural model are thus a result of both our case studies
and the case studies in the literature review.

A taxonomy of the adaptation mechanisms that are used to support cognitive
device management in IoT, and how they relate to the proposed architectural model
is detailed in Section G.4. Note that on the component level, the reasoning
mechanism corresponds to the monitoring, analysis and prediction processes.
Through our analysis, we found that reasoning and learning mechanisms can
be categorised into three sub-level mechanisms that reflect the underlying principles
that are used to infer situational awareness. These are model-driven mechanisms,
semantic mechanisms and data-driven mechanisms. Within those categories we
found eight different types of implementation in the literature: Linear and nonlinear
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6) Case based reasoning

3) Fuzzy logic

7) Machine learning (ML)

8) Reinforcement learning (RL) 4) Dynamic programming

1) Linear and nonlinear programming
2) Probabilistic analysis

5) Rule-based programming,

   ontologies and knowledge graphs

Model-driven 
mechanisms 

Semantic 
mechanisms

Data-driven 
mechanisms

Figure 6.2: Venn-diagram showing the relationship between reasoning and learning
mechanisms that are used in IoT device management. From Paper G

programming; probabilistic analysis, Markov-modeling and Bayesian inference;
fuzzy logic; dynamic programming and recursive optimisation; rule-based inference,
ontologies and knowledge graphs; case-based reasoning; machine learning; and
reinforcement learning. The relationship between the three sub-level mechanisms
and the eight types of implementation can be seen in Figure 6.2.

The thesis has focused mostly on the top-level adaptation mechanisms that
are contained in the adaptation component since these are the ones that drive the
adaptation processes. However, as shown in Table 6.1, all adaptation components
include adaptation mechanisms. In our models, we have identified five other
examples of adaptation mechanisms contained in an adaptation component, i.e.,
‘Perceive, ‘Execute’, ‘Data storage’, ‘Prediction model’ and ‘Training data selection
policy’.

Contributions by paper:

• In Papers B and C we show that autonomous adaptation is driven by control
loops, which in turn is controlled by adaptation mechanisms contained in
adaptation components.

• In Paper D, E and F we demonstrate and discuss different adaptation
mechanisms that can support autonomous IoT device management. We
also validate how these adaptation mechanisms can guide the adaptation
processes on an architectural level.

• Paper G identifies the taxonomy of reasoning mechanisms, on three different
levels. It also demonstrates how these mechanisms guide the adaptation
processes in an architectural model for cognitive IoT device management.
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6.2.4 Patterns

RQ 4

Which patterns can we identify in existing autonomous architectural models,
in industry or recent research, that can guide us toward the research goal?

To answer this question we performed a structured literature review, which is
described in detail in Paper G.

In the review, we first analysed 32 models of autonomous IoT device management
platforms found in recent research. The most obvious pattern is that the managing
process is centralised, either in a star or cluster topology. Both these topologies
support constrained devices that typically do not have access to either the resources
or the information that is necessary to reason about their operation or to learn from
experiences. However, centralised managers seem to be better suited for knowledge
distribution.

Learn
(assimilate)

Percep0on Ac0on

Situa0on-aware	sub-system

Autonomic	sub-system

Predict
(an0cipate)

Plan
(adapt)Analyse

Sensed	
event

Adap,ve
ac,on

adap,ve	loop

autonomic	loop

Figure 6.3: A model of cognitive planning. Adapted from Vernon’s cognitive
cycle [29].

On the component level, we identified several patterns regarding adaptation
mechanisms. First, mechanisms that are required for understanding a situation,
acquiring new knowledge or making decisions are placed in separate components.
Second, reasoning mechanisms are used to guide the internal data flow in the
architecture and are typically activated by observed events, internal processes, or
predictions. Third, learning mechanisms are usually placed in the situation-aware
part of the system. They are most often preceded by a reasoning mechanism and
triggered either by a previously unseen event or an internal decision to retrain the
machine-learning models. Fourth, it is a common strategy to employ a combination
of reasoning and learning mechanisms and disperse them throughout the architecture.
Fifth, planning mechanisms are usually placed in a central, coordinating role on the
device level to do task allocation or policy management. Together, these strategies
ensure modularization and support separation of concerns, which in turn reduces
the complexity of a system.

After reviewing the 32 case studies, we made a comparative and complementary
analysis of autonomic and cognitive models found in research and industry. This
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analysis revealed three models that inspired our work. First, we identified the
MAPE-K as described by IBM [49] loop. This drives the interaction between the
components in the generalised architectural model proposed in this thesis. Second,
we saw that the cognitive cycle presented by Vernon [29] could be adapted into the
cognitive planning model shown in Figure 6.3. From this, we added the two control
loops that drive cognitive behaviour, namely the autonomic loop and the adaptive
loop. Third, the standard model of human-like minds, presented by Laird et al. [40],
showed the benefit of separating declarative knowledge from procedural knowledge.
In addition, their model confirmed the need for separate, autonomous control loops
for learning. For reference, an adapted version of this model is shown in Figure 6.4.

Sensed	event Adap,ve	ac,on

Procedural	
Knowledge

Declara0ve	
Knowledge

Percep0on Ac0on

Adapta0on	process
(working	memory)

adap,ve	loop

autonomic	loop

learning	
loop

learning	
loop

Figure 6.4: A standard model of human-like minds. Adapted from [40].

The knowledge gathered from the six included case studies was then combined
with the patterns identified in the review. This provided the basis for the generalised
architectural model, described in Section G.7.

For clarification and validation, we have redesigned the models described in
Papers A to F, using the notation described in Paper G. These models can be found
in Chapter 4. We observe that the identified patterns become more prominent
with increasing complexity. Laird et al. claim that adaptation emerges from a
combination of the implemented architecture, acquired knowledge and learned skills.
In the generalised architectural model, this corresponds to the interaction between
the components, guided by autonomous control loops and adaptation mechanisms

Contributions in paper G:

• This paper describes patterns for autonomous behaviour found in 32 recent
case studies on IoT device management and three architectural models.

• Further, it presents a distinct cognitive model, based on Vernon’s cognitive
cycle, which we chose to name ‘cognitive planning’.

• Finally, the paper incorporates the identified patterns in a generalised
architectural model for cognitive IoT device management.
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6.2.5 Best Practices

RQ 5

Which best practices can we identify by analysing existing implementations
of autonomous architectures, in industry or recent research, that can help
us reach the research goal?

This research question was also answered through the structured literature
review, as detailed in Paper G. The review identified five best practices that
characterise autonomous device management in IoT. In the following, we will
summarise these practices, and show how we incorporated them into the proposed
architecture.

BP1: Employ adaptation and reasoning mechanisms in accordance to
environmental stationarity

As demonstrated earlier, adaptation requires a mechanism that is capable of
situation awareness, that is, analysing the implications an event will have in the
context of the situation. However, often the operational context of the devices must
also be taken into account when deciding which type of adaptation mechanism to
employ. In a stationary environment, a purely autonomic system may suffice, while
for systems operating in non-stationary environments, the added complexity might
demand the addition of a self-aware subsystem to the architecture.

Through the work of this thesis, we have learned that machine learning is
a suitable mechanism when applied to challenges related to adaptation in non-
stationary environments. Our case studies confirmed that machine learning can be
applied to cognitive tasks like resource-efficient estimation in complex environments,
self-management, intelligent decision making and as input to autonomous planning
processes.

BP2: Select System topology according to the inherent systemic
constraints and requirements

Our review showed that the obvious topology for constrained devices is either
star or cluster-based. A star topology is often a better fit for systems that need
added elasticity since centralised management makes it easier to distribute a set of
resources over many devices. This topology is also preferable if there is a need to
reduce the complexity of the system. Thus, a star topology will often be a good
choice for systems that require variable access to processing power, memory or
storage. In contrast, a cluster topology might be more suitable if the goal is to
reduce latency or increase dependability. It is also a good match when it is necessary
to handle high variance in networking conditions and when distinct manager nodes
are specialised for specific management tasks.

In this thesis, we have consequently employed the star topology in our
architectural models since it is a good match for resource management. However,
the generalised cognitive model can easily be adapted to support a cluster topology,
since each device manager is responsible for exactly one device. On the system
level, it is possible to expand such an architecture with sibling managers, where
each system manager is responsible for a group of devices, or employ a hierarchical
topology where one system manager acts as a parent to a group of system managers.
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BP3: Separate concerns and reduce complexity with modularization
Modularisation, also known as microservices, is an architectural style that allows

larger applications to be split into smaller, independent components, where each
component is responsible for one part of the system.

As described in Section 6.2.4, we observed that a majority of the reviewed
architectural models divided reasoning, learning and planning into separate
components. This became more prominent with increasing complexity. Furthermore,
the reasoning and learning components were typically dispersed throughout the
architectural models, while the planning component was placed in a central,
coordinated role. This ensures that every device connected to the manager is
updated according to the most recent knowledge.

We also observed that architectures aimed at managing devices in non-stationary
environments usually showed a higher degree of modularisation than architectural
models of systems operating under stable conditions. This allows better control of
the data flow and easier control of the different states of the system. In addition,
modularisation makes it easier to replace or extend parts of the architecture if the
requirements or understanding of the system change.

The generalised model proposed in this thesis employs modularisation in
combination with a black-box structure. Thus, the architecture inherently provides
the flexibility of choosing the mechanism that is most suited to solve the given
problem inside each component The notation also allows any number of reasoning
mechanisms to be placed in any order throughout the architecture.

BP4: Control parallelism and data flow with triggers
In complex autonomous management systems, parallel data flows can lead to

uncoordinated state changes, especially when different adaptation processes are
active in several components at the same time. Hence, architectural models need to
include descriptions of how these processes should be controlled, i.e., in which order
the components are activated and how the data flows between the components after
activation. In addition, the architecture needs to allow for activation both from the
producer and consumer of knowledge.

In this thesis, we propose using triggers for controlling parallelism. In our
notation, a trigger presents explicitly both the knowledge that is transferred,
the direction of the transfer and how this knowledge in turn affects subsequent
components.

BP5: Represent devices by digital twins
When a virtual device has a physical counterpart that it mimics, it is known as

a digital twin. In addition to acting as a digital copy of the physical device, it can
also support simulation, decision-making and control of its twin.

A digital twin contains at minimum the current state of the mirrored device
but is often expanded with a record that holds all historical data, a model that
describes its possible actions and interactions and even ways to predict future states
and events. Thus, digital twins make it possible for device managers to keep track
of the past, current and future state of each device individually. This allows to
model the behaviour of the devices individually, which in turn makes it easier for
the device manager to adjust the operation of each device based on their experience.

In the generalised cognitive model, the device manager is based on this concept.
The division between declarative and procedural knowledge makes it easy to con-

55



6. Research results

struct a digital twin on the level of complexity that is needed for perpetual operation.

6.3 Design Problems

In Section 1.5 we defined 6 design problems targeted at helping us investigate RQ 2
and RQ 3. For each of these design problems, we designed corresponding design
artefacts, as described in Section 5.2.3. We will now describe how each of these
design problems contributes towards the research questions.

6.3.1 Data analysis

DP 1

Design a platform that supports data collection and analysis.

Our first design artefact was a solar-powered WSN platform for data collection
and analytics, which is described in Paper A. The architectural model contained four
of the five system components for autonomous collection and analysis of data that is
present in the generalised model, namely perception, action, process and knowledge.
This was relevant for RQ 2. Although the model includes components for collecting,
merging, filtering and analysing data, these are not aimed at resource allocation or
device adaptation. Thus, this design problem did not contribute towards RQ 3.

6.3.2 Resource Offloading

DP 2

Design a platform that supports resource offloading.

In Paper B we demonstrated a testbed for exploring autonomy for constrained
sensor nodes. In particular, we showed how to conduct resource offloading from
constrained IoT devices to a central device manager connected through a wireless
sensor network. Through the architectural blueprint of the testbed, we identified
and validated the one-to-one connection between a device and a corresponding
device manager. It also helped us to identify the three adaptive components found
in the device manager in the generalised model, i.e., adaptive processes, declarative
knowledge and procedural knowledge. In addition, the model included some basic
examples of adaptive processes and autonomous loops. The design artefact was
thus helpful in answering RQ 2, and to a lesser degree, RQ 3.

6.3.3 Resource Optimisation

DP 3

Design a mechanism that supports resource optimisation.

56



Design Problems

In Paper C we focused on DP 3. Here we designed a pipeline used to explore
different mechanisms for training machine-learning models, predicting the energy
buffer for constrained IoT devices, and planning day-ahead operations.

The pipeline was validated in a simulation, using real data collected via the
testbed described in Paper B. This provided a good foundation for understanding
the mechanisms a device manager needs to provide resource optimisation services
on behalf of a constrained IoT device.

On an architectural level, the design artefact showed that the ability to predict
future energy is split between two connected components, namely a component that
contains the procedural knowledge that describes how to perform a prediction and
a reasoning mechanism responsible for conducting the actual prediction. Thus, this
design artefact contributed more towards answering RQ 3 than RQ 2.

6.3.4 Self-tuning

DP 4

Design a mechanism that supports self-tuning of learning processes.

To investigate DP 4 we designed a variety of mechanisms used to explore
autonomous tuning of machine-learning models directed at day-ahead predictions
for energy intake from constrained, solar-powered IoT devices. In particular, we
investigated how to prepare training data, which features are most valuable, which
sampling intervals yield the best results, and which machine learning models are
most suitable.

The algorithms were run in a series of simulations, each aimed at investigating
one aspect of the problem. The statistical analysis performed on the results from
the simulation helped us gain a better understanding of both the components and
mechanisms needed for self-tuning, which is a form of self-optimisation, on the
system level. This addressed RQ 2 and RQ 3, respectively.

6.3.5 Self-management

DP 5

Design a mechanism that supports self-management when deploying a new
system.

DP 5 was directed at ‘the bootstrapping problem’, that is, the tendency that
machine-learning predictors have low accuracy just after a system is deployed due
to a lack of training data. This implies that newly deployed devices risk spending
more energy than they can harvest, which in turn is a threat to perpetual operation.

To investigate this problem we designed an autonomous prediction model
switching algorithm aimed at increasing the prediction accuracy when available
training data is scarce. The algorithm was run in a series of simulations, each
covering a different period. This allowed us to study how the precision of the
algorithms evolved.
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Our results showed that an architecture centred around an autonomous prediction
model selection mechanism can increase the general robustness of the system in
two ways. First, by increasing prediction accuracy when available training data
is limited, and second, by providing some self-healing capabilities when a device
experiences a sudden loss of training data after deployment The architectural model
of this artefact also provided insights into the internal communication between the
components and showed how to use triggers to control the data flow. DP 5 was
therefore relevant for answering both RQ 2 and RQ 3.

DP 6

Design a mechanism that supports self-management when deploying new
devices into an existing IoT deployment.

Self-management is also the theme of DP 6. In Paper F we implemented an
autonomous transfer learning data selection mechanism that increases prediction
accuracy for devices that are deployed into an existing WSN by autonomously
selecting suitable training data for newly deployed devices. The mechanism was
split into two algorithms. The first algorithm looked at correlated data to identify
an existing device that resembles the newly deployed device. The second algorithm
copied the data from the device manager representing the correlated device to the
device manager representing the new device.

To validate the concept, the algorithms were run in a series of simulations.
Data from the simulations were then analysed using statistical difference methods.
Our results showed that autonomous transfer learning data selection can support
self-management by improving its ability to perform self-optimisation, self-healing
and self-protection.

The architectural blueprint of the design artefact shows that to solve complex
tasks autonomously all the identified system-level components, i.e., the device, the
device manager and the system manager, are needed. Furthermore, we see that
splitting collected data into general and device-specific knowledge, allows reasoning
mechanisms to handle complexity on different levels simultaneously. In addition, the
model includes all five types of adaptive processes, that is, monitor, analyse, learn,
predict and plan. The communication between these components is guided by the
three autonomous loops: the autonomic loop, the learning loop and the adaptive
loop. This data flow is managed by triggers, which in turn control parallelism.
Thus, DP 6 contributes both towards RQ 2 and RQ 3.

6.4 Architectural Model Validation

As stated earlier, the objective of this thesis is to design a conceptual architectural
model of a cognitive manager for constrained IoT devices. To validate this model,
we did a theoretical analysis of various case studies that addressed similar challenges.
However, in 2023, Veiga et al. [143] worked on a different stream of research where
they conducted a study that addressed challenges similar to those mentioned in
Paper G. They therefore decided to employ the cognitive model we proposed in that
paper as a blueprint for their implementation of an IoT application to count the
number of people in a skiing area using a camera sensor. In the following, we will
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summarise their research, discuss how they implemented their solution based on
the proposed general model, and highlight the architectural challenges they faced.

The main focus of the research conducted by Veiga et al. was to examine how
to improve the utility of a system by prioritising the data that is most valuable,
otherwise known as ‘value of information’ [144]. The general idea behind this concept
is to only spend resources on data that are relevant for the system functionality or
needed for perpetual operation. This requires that the system can make decisions
about its actions regarding data collection, processing, storage and transmission.
However, this type of knowledge is often specific to the goal of the application, the
sensed events, the environment, and the construction of the device. In addition, data
may vary between individual devices, due to different configurations or environmental
placement, and also over time, because sensed phenomena and external conditions
may be non-stationary.

In a case study, Veiga et al. counted the number of skiers that pass in front of
a camera while minimising the resources needed for operation. To this end, they
proposed a solution where a device manager that employs artificial intelligence
instructs sensors to adjust their operation according to the situation by employing
a technique known as visual attention models [121]. This solution required a self-
adaptive application that could learn, maintain and distribute the visual attention
models. In addition, to reuse proven AI solutions the IoT platform had to support
the creation of pipelines where components are based on containers. Since these
prerequisites match the patterns and best practices identified in Paper G, Veiga et
al. elected to base the implementation of their solution on the general cognitive
model for IoT applications that we proposed. A diagram of their simplified cognitive
architecture is shown in Figure 6.5.
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Figure 6.5: Cognitive architectural model of the proposed camera application,
following the reference architecture in Paper G. Adapted from [143]

The architectural model designed by Veiga et al. shows the communication
between a device and its respective device manager. Since their solution made use of
just one device, there was no need for implementing adaptation mechanisms on the
system level. Hence the system manager is not included in the model. The model
shows further that the device is composed of two subcomponents, namely Perceive
and Execute. We can also see that the device manager contains four components for
handling the adaptation processes (AP), one component for specifying declarative
knowledge (DK) and one component for describing procedural knowledge (PK).
The four adaptation processes are divided into Monitor, Learn, Analyse and Plan,
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respectively. This setup is consistent with the architectural model we propose.
Further, the modified architectural model shows that data flows between the

components in three separate loops. These are an autonomic loop for the device
(L1), a learning loop for the device manager (L2) and an adaptive loop that guides
the interaction between the device and the device manager (L3). L1 controls
the data flow between the Perceive and Execute components inside the device
component. This allows the device some degree of autonomy as it can operate
even if the device manager fails to send a refreshed visual attention model. L2
is located within the device manager. It controls the learning processes for the
visual attention model, such as updated knowledge from reconstructed images and
temporal models describing the number of persons detected for each hour of each
weekday. L3 is the main adaptive control loop. It is responsible for uploading
updated attention models to the device when necessary. Typically, this happens
after a learning process caused by a sensed event makes adjustments to the action
plan, i.e., an adaptation of the device operation. We observe that the control loops
are in alignment with the three loops found in our generalised architectural model.

Finally, we observe that Veiga et al. emphasise the use of triggers to control
the data flow and only dispatch resource-intensive tasks like learning when it is
necessary. They have identified two such triggers in their architecture: T1 activates
the learning process at regular intervals, i.e., once a day, or when new data becomes
available. T2 transmits an updated visual attention model to the device if the
updated model is significantly different from the previous version. This is in line
with the patterns and best practices that we have identified.

Figure 6.6: Container structure for the deployed solution based on the AI4EU
platform [143].

A diagram of the deployed solution can be seen in Figure 6.6. The implementation
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consists of a container-based solution based on the AI4EU platform. Their pipeline
consists of a sensor device, which communicates with an object detection component,
a database component and a dashboard component through the device manager.
The object detection component follows the ‘You only look once approach’ (YOLO).
When an object passes in front of the camera, the data is transmitted through
the device manager to an image recognition component in the object detection
component. This approach follows the principle of modularisation, which we have
identified as a best-practice.

Veiga et al. conclude that since deployment platforms like the AI4EU can
integrate core features of cognitive IoT architectures, they have the potential to
facilitate the deployment process and simplify the implementation of IoT solutions
that contain AI components. However, while this case study demonstrates the
benefits of giving IoT devices access to operational meta-knowledge, it also shows
that current IoT platforms lack certain features that make it difficult to deploy a
modular cognitive architecture. The identified gaps are related to the management
of multiple containers, the integration of IoT devices in the deployment process,
the lack of built-in support for including explicit triggers in the platforms’ editing
tools, and the lack of template architectures in the platforms.

As shown above, the model and implementation demonstrated by Veiga et al.
closely follow the conceptual architectural model and best practices described in
Paper G. This validates that the proposed architectural model is general enough to
also cover other domains than energy budget planning for solar-powered devices.
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Chapter 7

Conclusion
In this chapter we first revisit the challenges, research goal and research questions
that we addressed in the PhD thesis. Then we briefly describe the research
methodology, before we list the contributions. Finally, we indicate possible future
directions for research.

7.1 Concluding Remarks

The thesis addresses the problem of managing a myriad of distinct and constrained
IoT devices operating in dynamic contexts. This is a highly complex problem,
related to the resources that the devices possess, the scale of the deployment,
the device topology, the context in which the devices operate, and the type of
management that is employed. By addressing each of these challenges separately it
was possible to study the problem both in detail and in a broader perspective.

Our research goal was to synthesise and describe a generalised architectural model
for cognitive management of IoT devices deployed in a non-stationary environment.
To guide our research and gather data, we formulated five research questions. These
questions were directed toward identifying overall challenges, system and process
components, adaptation mechanisms, patterns, and best practices, respectively.

We used the design science research methodology to gather the necessary data for
our synthesis. This methodology is centred around answering knowledge questions
and resolving design problems by analysing how concrete design artefacts interact
with problems in a particular context. During the thesis, we focused on three
different artefacts, namely architectures, components, and mechanisms. Each
of these artefacts describes the system’s behaviour on a different level in the
architectural model. By studying these artefacts, we gained more knowledge and a
better understanding of the design problem, which enabled us to come up with a
solution to the problem, i.e., the research goal.

The data collection process followed both a bottom-up and a top-down approach.
First, we did six case studies where we designed specific parts of the proposed
model. These design artefacts were explored to identify which components and
mechanisms are needed to perform cognitive device management in specific use cases.
Then, we performed a structured literature review, where we studied architectural
models found in 32 case studies from recent literature in the domain of IoT device
management. The purpose of this analysis was to find general patterns that were
used to solve problems related to autonomous management. We also analysed a
set of generic autonomic, situation-aware and cognitive models commonly used for
automation of tasks, either in the context of IoT or in other domains.

Based on the insights gathered through this thesis we then designed and
synthesised a cognitive architectural model that met our research goal. The model
describes adaptive behaviour on three levels. On the highest level, the architecture
is based on three system components. These are the device, the device manager and
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the system manager. The device manager acts as a digital twin, that is, a virtual
representation of the physical device. On the second level, we can find five distinct
adaptation components that are contained within the system components. They
are responsible for handling perception, action, adaptation process, declarative
knowledge and procedural knowledge, respectively. The adaptation component is
further detailed in five adaption processes, namely, monitor, analyse, learn, predict
and plan. On the lowest levels, we find adaptation mechanisms and triggers, which
describe the data flow between the components. Thus, the cognitive behaviour
of IoT devices emerges from the interaction between the adaptation components,
driven by adaptive mechanisms.

Apart from the generalised cognitive model, this thesis has made three additional
contributions. First, we made a comprehensive taxonomy of adaptation mechanisms
for autonomous IoT device management. The research showed that we can use
reasoning, learning and planning mechanisms to drive the adaptation process.
Reasoning and learning mechanisms can be further categorised into model-driven,
semantic and data-driven mechanisms, which reflect the underlying principles that
are used to infer situational awareness. Within those categories, these mechanisms
can be implemented using linear and nonlinear programming; probabilistic analysis,
Markov-modeling and Bayesian inference; fuzzy logic; dynamic programming and
recursive optimisation; rule-based inference, ontologies and knowledge graphs; case-
based reasoning; machine-learning; and reinforcement learning. This taxonomy
can help architects and developers to decide what type of mechanism to include
and where to place it in their architecture, based on their particular challenges.
Second, we adapted Vernon’s model of a cognitive cycle [29] into a model of cognitive
planning. The model is centred around the planning component and consists of an
autonomic and a situation-aware subsystem, executed through two separate control
loops. This model can help architects and developers get a better understanding of
the planning process when designing top-level architectures of cognitive systems.
Third, we provided a list of best practices to guide the design and implementation
of cognitive IoT device management platforms, coupled with recommendations for
when and how to apply them. These best practices will be helpful for architects
and developers who aim to design and implement cognitive systems for IoT device
management.

We also made several smaller contributions through the six case studies: In
Paper A, we demonstrated a quick and flexible method to prototype a platform
for data management and analytics using wireless sensor nodes. In Paper B, we
showed that constrained devices can outsource research-intensive machine learning
to a cloud-based device manager. We also proved that it is possible to estimate the
energy consumption of applications running on these devices with high precision. In
Paper C, we ran a simulation that demonstrated the possibility of predicting solar
energy even with limited data access, with the accuracy improving progressively
as the system runs. In Paper D, we solved the problem of individual adaptation
through individual and autonomous learning models in a simulation. Our results
indicated that this approach could improve median prediction scores by more than
20% compared to state-of-the-art predictors for IoT energy prediction. In Paper E,
we simulated a mechanism for autonomous prediction model selection as a means
of mitigating the bootstrapping problem for constrained devices and helping them
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stay operational in periods where training data is missing. Finally, in Paper F, we
simulated a mechanism that can identify suitable training data for a given node
by selecting data from nodes with correlated data. Our results showed that this
approach can improve the accuracy of the predictions of a new node by 14%.

7.2 Future Research Directions

The thesis is rooted in resource management for IoT devices and the design of
cognitive systems. Both fields are still in an early stage, but maturing fast. This
indicates that the research activity is high and that both fields are still relevant.
In the following subsections, we will look at possible future research directions, in
light of the work we have done and our contributions.

7.2.1 Applied Research on Development of Autonomous IoT Device
Management Platforms

As explained in Chapter 1, studies on device management for IoT are characterised
by sporadic and chaotic case studies, where each case study often targets specific
use cases. Through this thesis, we have also observed that in open-source projects
and among commercial vendors, the research and development of generic device
management platforms are still mostly focused on remote-based operations. In
addition, few actors offer any out-of-the-box functionality above the autonomic level.
This means that many easily automated device management tasks are still either
performed manually, or clients who use these platforms do a lot of custom-tailored
third-party integrations for tasks that could be generalised.

Another weakness with current IoT platforms is the lack of certain features that
make it difficult to deploy a modular cognitive architecture, as confirmed by the
case study conducted by Veiga et al. [143]. This makes it hard to implement features
that extend and improve these platforms. Thus, we encourage the research field to
put even more effort into identifying general patterns within the different types of
device management and implement generic solutions that can solve them. Further
research is also needed on how to apply mechanisms and techniques that support
and allow autonomous management, into IoT device management platforms.

7.2.2 Cognitive Resource Management for Constrained Iot Devices

Through the work of this PhD, we have seen that research is advancing slowly
toward a higher level of autonomy for systems aimed at IoT device management
in general and for IoT resource management in particular. However, as shown in
Chapter 3, we have found little research that focuses on using cognitive features for
the autonomous perpetual operation of constrained IoT devices. This means that
there is a need for more research on IoT architectures, platforms and frameworks
that use a combination of reasoning, learning and planning mechanisms to achieve
a higher level of self-management and adaptation. We also see a need for more
research on how to apply artificial intelligence techniques like machine learning,
deep learning and reinforcement learning to the different adaptation mechanisms
that are needed to solve this problem.
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Introduction

Abstract

Cities worldwide aim to reduce their greenhouse gas emissions and improve air
quality for their citizens. Therefore, there is a need to implement smart city
approaches to monitor, model, and understand local emissions to better guide
these actions. We present our approach that deploys a number of low-cost
sensors through a wireless Internet of Things (IoT) backbone and is thus
capable of collecting high-granular data. Based on a flexible architecture,
we built an ecosystem of data management and data analytics including
processing, integration, analysis, and visualization as well as decision-support
systems for cities to better understand their emissions. Our prototype system
has so far been tested in two Scandinavian cities. We present this system
and demonstrate how to collect, integrate, analyze, and visualize real-time air
quality data.

A.1 Introduction

Urban emissions contribute over 60 % to global greenhouse gas emissions. Cities
aim at reducing their emissions through tailored policy and integration to Smart
City approaches. Smart City approaches facilitate easier integration of emission
sensing into city systems and fulfill city requirements through novel and low-cost
approaches [145, 146, 147, 148, 149]. The overall aim of our project1 is to fulfill the
information needs of cities that need specific data for emission reduction actions by
providing complementary on-the-ground emission data for improved understanding
and decision making [150]. In short, the need based on future challenges faced
by cities will be better and more high-granularity measurements to complement
existing official measurement stations. Some Nordic cities have specific challenges
in that they have already implemented a range of climate actions, which means that
future impact on a certain class of emissions can only be achieved by a more detailed
and granular understanding and analysis of emissions, since many broad measures
are already in place. The next step then is to get better insight into more difficult
to measure components, also to be able to adapt policy in fast feedback loops
and at varying scales. This includes impact assessment of measures ranging from
small-scale such as closing down certain streets (and being able to observe spillover
and evasion effects in surrounding parts of the city) to large-scale such as changes
in public transport or denser urban development. A high spatial granularity of
sensor deployments is obviously not possible with the existing expensive high-quality
measurement stations that are often provided nationally. Our approach, in contrast,
is to use low-cost sensors to cover a city’s spatial footprint with a much higher
sensor density. This enables a trade-off of high number and high granularity of
low-cost sensors that can compensate for their relatively lower accuracy. Existing
official measurement stations are equipped with high-quality sensors that cost up to
$500,000. Our low-cost approach could provide a very dense coverage of a city with
250 additional sensors for the price of one additional station by using sensor units
of around $2,000 each. For ease of installation, this requires standalone sensor units
that do not need cabling for electricity or connectivity. We achieve that by deploying
solar-powered sensor nodes with a wireless data link over the LoRaWAN standard
for Smart City IoT applications, which also enables us to quickly scale up the sensor
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Figure A.1: Overall system architecture

deployment. The approach allows to quickly prototype system components on the
hardware and software side for the overall goal of linking the measurement data
to the information needs of the cities for emission reduction both for baseline and
continuous data collection. After having built and deployed the general IoT sensor
net-work before [150], we focus here on the integration of data sources and the data
analysis infrastructure for Smart City applications.

A.2 Approach

Our approach is to build an ecosystem of relevant tools and methods to better
understand city emissions and work with data, such as analytics [151, 152],
visualizations [153], and decision support systems [145, 146, 154] around local
emission measurements and the integration of external data sources. This is an
important aspect of Smart Cities [151], and can also be used as a case study to
understand and build similar systems. Our system is piloted in the two cities
of Trondheim, Norway, and Vejle, Denmark. In this paper, we describe key
aspects of this ecosystem of data analysis and visualization that strongly relates to
challenges and requirements of the cities. We further demonstrate the integration
and aggregation of data sources for a smart city.

A.2.1 Architecture

The system architecture and data flow is sketched in Fig. 1, which consists of four
components: a city-wide IoT sensor network, cloud-based systems for data collection
and storage, integration of external data, and analysis and visualization platforms
for stakeholders. The architecture is flexible through an ecosystem approach and
accommodates different components for a range of related tasks. Our technology
stack follows common concepts for IoT and Smart City systems [148] with project-
specific adaptations. The sensor network is composed of sensor nodes deployed
within the city, which measure emissions and air parameters: CO2, NO2, PMx
(particulate matter); temperature, pressure, and humidity. The data is transmitted
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Figure A.2: Dataport protocol diagram

to the IoT backbone, which forwards collected data to the cloud storage, from where
it is available for analysis and visualization, using relevant external data sources.
The backbone uses LoRaWAN as a radio-based urban sensor networks through a
number of gateways covering the pilot regions [150]. Data forwarding and cloud
sensor management was built through the event-driven MQTT communication
protocol. Visualizations and analyses are connected to all stages of the data
processing. Examples are network monitoring and early data validation close to
the sensors, stream processing on measurement data, up to C&C centers, satellite
measurement grounding, integration into GML-based 3D city models, and other
forms of mapping and integration that we describe in the following.

Table A.1: Examples of external data integration.

Type Example Description
Official air
quality measure-
ments

NILU data (Nor-
wegian Air Qual-
ity Institute)

Ground truth for certain pollution types, ground-
ing and calibrating measurements to high-quality
reference stations

Remote sensing NASA OCO-2
satellite CO2
measurements

Ground truth top-down measurements for certain
emission types, large-scale coverage, low spatial
resolution, coupling to large-scale modeling and
validation

Traffic data Traffic density
from here.com

Estimate traffic emissions by correlating continu-
ous external traffic density to emission measure-
ments

3D city models Municipal traffic
counts
Municipal 3D
model of Vejle

Validate traffic estimations, but only available for
short periods
Integration into existing visualization tools. Use
of city geometry in future emission modeling

National statis-
tics

GHG emission
estimates from
national statis-
tics office

Down-scaled national GHG emission data, often
with high uncertainties

Other municipal
data and tools

GIS, statistics,
decision support,
etc.

Understanding emissions in the context of the city
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A.2.2 Data Integration

Apart from the direct sensor data, there is a range of municipal and national data
sets available as well as other external data sources that need to be included in
the data analytics and visualization to support analyses and improve data quality.
Table 1 gives an overview of these sources and how they can be utilized. They
range from direct measurements of air quality that can be used to validate and
calibrate the sensor network to other data sources that help to understand emissions
in the context of a city, for example through traffic patterns [152] or integration
into city tools and systems. The sensor network has the usual issues of missing data
that is dealt with on a technical monitoring level and being handled by standard
methods in the analyses, as well as the aggregation of data from multiple sensor
units. More interesting are the challenges posed in the data integration. The
sources contain highly heterogeneous data, with different timescales, measurement
frequencies, spatial distributions and granularities, measurement technologies, and
a complex set of related uncertainties and inaccuracies in the data.

A.2.3 Network Metadata Analysis and System Status Monitoring

The network, server components, gateways and sensors are subject to transient
and permanent failures, which can ultimately result in missing data. Although
the later analysis tasks can detect such losses of data, they do not analyze the
cause for the error, or prevent further losses. Instead, failures in the system should
be detected as quickly as possible, so that data loss is kept at a minimum. We
therefore built a monitoring application (the dataport) to monitor the status of all
sensors, gateways and the network [155]. It is built with the Akka framework, which
facilitates the creation of fault-tolerant applications based on the actor model [156].
Actors are independent, supervised processes that encapsulate data and control
logic and communicate via messages. Each device in the real world corresponds to
a dedicated actor that acts as its digital twin, which is a virtual model of the sensor
or gateway. It keeps track of its state in real-time, monitors all communication
and triggers alarms if data is not received as expected. Incoming data contains
meta-data that identifies the originating sensor and the gateway from which it was
received. In this way, the digital twin for a gateway can detect if a gateway operates
as expected.

Faults of a more complex nature, such as decaying sensors, erroneous behavior
of sensor nodes, or missing data patterns need specific analysis. For example, a
single missing measurement is expected occasionally. Based on the measurement
frequency of individual sensors, it takes some cycles to determine a failure with
certainty. As sensors nodes can adapt their frequency based on battery levels, a
complex model of the sensor node and its status is needed for detection. Actors
are organized hierarchically. On higher levels, failures can be grouped so that
for example a distinction can be drawn between sensor failures versus a gateway
outage that would make a set of sensors invisible. The dataport also monitors
the larger system, such as the The Things Network (TTN) cloud backend and the
MQTT connection. If any of the components on the data path from the sensors to
the data storage fails, the dataport generates a notification. If the dataport itself
fails, it is detected by an external watchdog service, in this case AppBeat. The
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Figure A.3: Visualization of sensors, gateways and links

Figure A.4: Battery level analysis

dataport further drives a visualization of the network itself, shown in Fig. 3, of the
structure of digital twins for sensors and gateways, their location, the connections
and live data transmission between sensors and gateways. Apart from the practical
value of monitoring the network, it is also a useful illustration of the spatial and
measurement characteristics.

A.2.4 Data Analyses and Visualizations

A range of analyses work on the collected data streams as illustrated in Fig. 1
apart from the more operational network analysis. Examples are ongoing data
collection and analysis, understanding of patterns, as well as comparison of sensor
measurements to air quality measurement stations to ground the network and
calibrate the sensors. There are very few official stations; to support the grounding
and calibration, we have co-located one of our sensor units to the only station in
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Figure A.5: A study of co2 dynamics

the pilot area. This allows to compare both absolute and relative accuracy and
calibrate the local sensor and, through larger-scale correlated trends, the network,
but with lower certainty. In connection with the network monitoring, it also allows
the identification of outliers and malfunctioning sensors. Main ongoing work is
modeling dependencies of NO2, PMx , and CO2, especially from transport emissions,
which therefore also looks at linking to traffic patterns [152]. We discuss some
analytics around this data in the following levels depend on the charging of the
autonomous sensor units through their solar panels. Charged occurs during daytime,
and is affected by weather conditions. It is important to monitor the battery level
to keep the nodes running. Fig. 4 shows the battery level as a function of time
(left), and the difference in battery-level from previous sent package versus time
of day, and where red indicates whether the nodes could have been charged by
sunlight since the previous package (right). This allows to estimate battery depletion.
Dynamics of CO2 emissions and possible links to traffic in the form of a traffic jam
factor (from here.com data) is shown in Fig. 5. According to the plots, we can
conclude for this sensor location that traffic is not the only factor that accounts
for the dynamics of the CO2 emission as they exhibit different patterns, and have
no apparent correlation. In fact, CO2 emission dynamic is a more complex issue
that may be affected by many factors, including traffic, wind speed, temperature,
humidity and other weather conditions, as well as daily and seasonal patterns, which
we will further investigate in our future work.

Visualizations and Dashboards for real-time monitoring. Fig. 6 shows the air
quality and traffic flow dashboard, respectively. The dashboard is implemented
using Apache Zeppelin as the visualization platform and accesses the data from
the OpenTSDB time series database. The mapped sensors show the real-time data
and analytic results for each location. Examples are the the air quality and traffic
indicators in Fig. 6. This was further integrated into a 3D CityGML model as seen
in Fig. 7 and also into a full network and data overview wall display shown in Fig.
8.
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Figure A.6: Example of dashboards for air quality and traffic

Figure A.7: Integration of sensor data into 3D city model
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Figure A.8: Network monitoring and data visualization dashboards

A.3 Demonstration

In this first full demonstration of the CTT air quality system, we show the
architecture and implementations of IoT and analytic technologies in air quality
monitoring and explore insights. We use two use cases of deploying our systems
in Vejle, Denmark and Trondheim, Norway, where two and twelve sensors were
deployed respectively to collect air quality data. We demonstrate our system from
the perspective of developers, city policymakers, and citizens. For developers, we
explore the system in detail, demonstrate the building blocks of the system, and
show how to build similar IoT systems; for policymakers, we aim to assist them in
decision making for smart cities with the proposed IoT technologies, e.g., urban
planning; for citizens, we aim to raise the awareness of environment protection
and greenhouse gas reduction for better city life. We use real-time data collected
from the deployed sensors from both cities, as well as traffic data sets streamed
from the third- party traffic flow monitoring operator, here.com. The sensor data
consist of the CO , NO , and PM , and weather data including 22x humidity and
temperature. The sensor data is collected at a five-minute interval. The demo
also uses historic data saved in our time-series database, collected since January
2017. Developers’ point of view: We show the architecture and components used
by our air quality monitoring system, including sensors, IoT sensor network, cloud
storage for sensor data and external traffic data, analytics, and dashboards. We
demonstrate how to collect, process and visualize high-frequent sensor data in our
system developed on the Zeppelin platform; and how to streamline the whole data
flow, including segmentation, chaining, and automation. Finally, we demonstrate
how to generate dashboards and integrate analysis algorithms in the web interface.
Attendees can vary system and analysis properties, and observe the reflection on the
dashboard; and change the dependency of the data flow to evaluate the flexibility
of the data stream analysis. City officials’ point of view: We show an interactive
dashboard to analyze CO2 dynamics using real-time and historic measurement data,
and demonstrate the pattern and its correlation to the traffic flow (see Fig. 5–6). In
addition, we demonstrate the 3D CityGML model integrating different measuring
points of air quality (see Fig. 7). In this demo scenario, we can inject synthetic
data showing different pollution levels. We interact with attendees by discussing
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urban planning issues such as construction sites of roads, buildings or factories, and
see how different pollution levels will affect their decision makings. Also, we consult
with attendees about choosing the sites of air quality monitoring, e.g., according to
the road network and building density. Citizens’ point of view: We demonstrate
air quality and traffic flow on the dashboard using the real-time data. Similarly,
we use synthetic data with different pollution levels, and discuss the influence on
routing planning, and citizens’ approaches for emission reduction. Attendees can
browse historic data in the system to investigate anomalous emission levels.

A.4 Conclusion

We have described the possibilities for urban emission monitoring and our approach
and the prototype system we have developed together with the approaches to data
flows and analysis. The flexible and scalable solution allows to quickly prototype
different analysis approaches on top of the sensor streams to link measured data to
cities’ information needs for emission reduction. In future work, we plan to improve
the measurement network and the real-time and aggregate dashboards. Further,
with more data collected, we will be able to tune models for emission distribution
and dispersion to overcome some of the issues and provide improved analysis with
better models. Integration into decision support systems is a far goal. Urban
emission monitoring needs a range of heterogeneous data and we are continuing to
build useful urban systems around it.
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Motivation: Autonomous constrained nodes

Abstract

Providing constrained IoT devices with more intelligence is important to make
them work optimally with regard to energy consumption and quality of data.
To overcome the constraints of the sensors, we place cognition, i.e., learning
and planning, in the cloud. In this demonstration paper, we present a testbed
for exploring autonomy for constrained sensor nodes.

B.1 Motivation: Autonomous constrained nodes

Miorandi et al. [157] emphazise the importance of including self-management
and autonomic capabilities in devices connected to the Internet of Things (IoT).
Often, the purpose of such devices is to collect as much data as possible, with
the best possible quality. Since data collection requires energy, which is a scarce
resource in most IoT systems, many devices harvest energy from their environment.
However, they run the risk of depleting their battery if they lack knowledge of
their energy budget, i.e., energy intake vs. energy consumption. This is a challenge
since IoT devices often are too constrained in regard to both computation and
communication to learn and plan ahead. Constrained devices usually also lack
access to contextual data, like weather forecasts. Such data can contribute to better
estimations. Outsourcing the estimation process to the cloud is a countermeasure
to these constraints. We have built a lab to explore how to make constrained sensor
nodes able to operate more autonomously. The lab has two goals: 1) to explore
autonomous resource management for IoT devices using machine learning; and 2)
to make the learning process itself autonomous.

B.2 System overview and architecture

In our testbed, we use Libelium Waspmotes to collect data. They are connected to
The Things Network (TTN) via LoRaWAN antennas. We have three distinguished
sets of nodes, deployed in different ways. Some are placed in various locations in
the city of Trondheim. These are used for long-term data collection. We also have
equipment to do high-precision measurements of energy consumption in the lab.
Our most prominent sensor nodes are the 8 solar powered sensor nodes we have
deployed on the roof, as shown in Figure B.9. These are used for experimentation
and testing under real weather conditions. The sensor nodes provide sensor data
such as CO2 level, sound level and temperature, as well as energy-related meta data,
e.g., battery level and solar charging current. The data is uploaded to TTN via an
antenna located approximately 400 meters away. An overview of the architecture of
the testbed is shown in Figure B.10. We also collect the latest local weather forecast
from the Norwegian Meteorological Institute. The collected data is stored as .csv
files and then pre-processed in the cloud using Python and Pandas. Our ultimate
goal is to build a system (using Scikit-Learn) that continuously learns, predicts
and plans the energy budget for each device. To meet such requirements, we train
a machine learning model every day. The model uses the most recent data (i.e.,
weather forecast and the position of the sun) as input to predict the energy intake
per sensor node for the next 24 hours. Later, we use the predictions to identify
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Figure B.9: Sensor nodes used for testing in real weather conditions.
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Figure B.10: Deployment of the autonomous sensor testbed lab.

the optimal sensing mode for each sensor device, i.e., instruct the sensor to send as
much data as it can while keeping the battery level as stable as possible. Through
the TTN downlink, we instruct the sensor node to apply the identified sensing
mode. The downlink is also used to update general configuration parameters, when
necessary.

B.3 Energy and Sensing Cycle

The sensor node can adapt its own behavior by adjusting activities in different
phases in its sensing cycle. We define the phases as sensing, data processing,
transmitting data, and going to sleep for a period. The energy consumption of each
phase can be adjusted by varying the execution time. This way, we can instruct the
nodes to use different sensing modes to adjust their energy consumption behaviors.
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For instance, one sensing mode performs frequent sensing and calculates a mean
to reduce the risk of errors, while another mode acquires the data sparingly to
conserve energy. However, this comes with the tradeoff of lower data quality.

B.4 Findings

By means of our testbed, we have made these discoveries:

• The energy consumption of applications running on a constrained device can
be estimated with high precision using a generalized model of different sensing
modes [158].

• Constrained devices can outsource research-intensive machine learning to
a device manager located in the cloud. This is possible even when the
communication channels themselves are constrained [159].

• To predict energy intake properly, it is important that the electronics of the
sensor nodes reveal more data regarding the system operations, such as the
current that is produced by a solar panel and the state of the charger [159].

To assist a system that also does the learning autonomously, we additionally need
the following:

• Device management will have to manage, among other things, the process
of knowledge gathering explicitly. This means that it also needs to take
knowledge and learning into account, hence evolving into cognitive device
management.

• To collect better training data, sensor nodes have to accept commands that
override their normal operation. For instance, to gather more knowledge,
they need to be able to switch on or off the charging, measuring short circuit
currents, and switch to a different sensing mode on command. This way, the
central device manager can choose to prioritize learning over normal operation
in a period after a device has been deployed.

B.5 Demonstration setup

In the demonstration, we will: a) present an overview of our lab; b) give a real-time
demonstration of how we are using the Waspmotes for noise detection; c) show
interactive charts that visualize the collected data and the predictions that are
made using machine learning; d) play time-lapse videos that shows the sensor nodes
under real weather conditions.
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Introduction

Abstract

Solar power is important for many scenarios of the Internet of Things (IoT).
Resource-constrained devices depend on limited energy budgets to operate
without degrading performance. Predicting solar energy is necessary for an
efficient management and utilization of resources. While machine learning is
already used to predict solar power for larger power plants, we examine how
different machine learning methods can be used in a constrained sensor setting,
based on easily available public weather data. The conducted evaluation resorts
to commercial IoT hardware, demonstrating the feasibility of the proposed
solution in a real deployment. Our results show that predicting solar energy
is possible even with limited access to data, progressively improving as the
system runs.

C.1 Introduction

Energy harvesting provides a sustainable source of power for Internet of Things
(IoT) nodes and also simplifies their deployment. The downside is that their
performance often changes considerably over time. In case of solar energy, variations
occur throughout the seasons and depend on climatic parameters like weather,
temperature, solar irradiance, hourly solar angle, season and geographical location
[160, 161]. Tilt angle and orientation of the solar panel [162], and other effects like
shadows [163, 164], also influence the output that can be produced by a stationary
photovoltaic (PV) panel. Rechargeable batteries dampen fluctuations through
energy buffering, but only to some degree. For instance, within a project involving
the deployment of solar-driven nodes to measure greenhouse gas emissions [150],
sensor devices worked properly during summer, but failed during winter when sun
exposure was lacking.

Data quality and energy consumption are closely related [165]. Instead of
abruptly running out of power, nodes should adapt their operation [166]. Sensor
devices can for instance average over several measurements to reduce the number of
transmitted messages and save power [167]. On the other hand, to increase accuracy
and adapt to sudden and unexpected changes, sensors may increase their sampling
rate at the cost of increased energy consumption [168]. Additionally, systems
consisting of several nodes may also balance the load between them, improving
energy consumption while providing a good overall sensing coverage [169].

Node failure due to lack of energy is one problem; another is to not use enough
of the available energy to gain better data. When a battery is fully charged, all
solar energy that exceeds the consumption of a node is wasted [82]. Instead, the
sensor node could have consumed more energy and thereby acquired more data or
data with higher accuracy. For that, sensors need to be aware of their current and
future energy budget and plan ahead so that they can operate optimally. Due to the
scale of IoT, such optimizations must happen autonomously. And since sensors are
placed into heterogeneous and changing environments, optimizations must happen
continuously and for each sensor individually. One method of choice is machine
learning to predict the energy budget of a sensor node. An important component in
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such a prediction is the solar energy, which depends on features such as the position
of the sun relative to the solar panel, the atmosphere and other effects.

Forecasting the available solar power with different time horizons is already part
of the operation of solar power plants, to predict fluctuations in energy production
and quickly compensate for sudden changes. These deployments are usually large
in scale and can look back on a long history of available data of dedicated sensor
information, for instance by observing the clouds in the sky by cameras, and
even allow for manual supervision [170]. In an IoT setting, such a high degree
of instrumentation and supervision is unrealistic. Sensor nodes are placed at
many different locations, and requiring specific orientation towards the sun would
complicate the deployment process. Adding more instrumentation to nodes (like
irradiation measurement or sky cameras observing the cloud coverage) would make
them more expensive and complex. Instead, systems should be based on off-the-shelf
sensor nodes and require only minimal instrumentation and setup.

In this paper, we present the results of an experiment on a prototype designed
to investigate how and to which degree machine learning algorithms can be used to
predict the solar energy budget for sensor nodes, based on easily available input
data. In detail, our contributions are the following:

• An explanation of effects in embedded systems that need to be taken into
account with a set of data preparation steps to gain good training data.

• A study of which features are most effective as input for solar energy prediction.

• A study of different machine learning algorithms and how they score as
predictors.

One of the most crucial factors for success in machine learning is the availability
of data. Due to the heterogeneity of environments into which sensor devices are
deployed, this may be a problem. We therefore also study how the approach develops
over time, starting with no initial data.

The focus of this paper is the prediction of solar energy. Nevertheless, we also
outline the planning algorithm that selects the proper sensor operation mode, since it
gives context to the solar energy prediction. Our approach also takes the constraints
typical in IoT into consideration: Since machine learning is executed on a server as
part of the device management, sensor nodes only require minimal computational
effort. As communication we use the constrained LoRaWAN protocol.

C.2 Related Work

Machine learning is already widely used in big scale forecasting for large solar-power
farms. Weather data from numerous sources are blended with several models and
methods via post processing, in order to produce the most accurate solar-energy
forecast possible [170]. This requires high computational power and access to large
amounts of data. However, these systems use highly specialized models tuned to
the specific location of the solar farm. For more distributed energy resources, where
small scale photovoltaic panels are connected to a smart grid, making an accurate
prediction of the expected output is also important. These are used to forecast and
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plan the total distribution of the produced energy over the entire energy grid [171,
161]. In contrast to the solar farms, this needs to be done with more generalized
models and less fine-grained weather data. The power produced by a PV-panel
highly depends on the irradiation reaching it. Shi et. al [172] propose a forecasting
model to predict the output of PV-panels based on a classification of the weather.
They show that weather conditions, clouds, solar angle, and season are factors
that must be taken into consideration when predicting the energy budget for a
solar-energy harvesting device.

Kansal et al. [173] show how power management is inherently different for a
node using energy-harvesting compared to one powered by battery only. This is due
to the variability of available energy and because conventional energy optimization
methods are not always optimal in an energy-harvesting scenario. As such, it is
important to adapt the workload to the amount of energy that can be harvested.
They demonstrate how a closed-loop electronic circuit can be used to predict and
plan the energy budget to achieve energy-neutrality. However, they do not consider
the usage of weather forecasts in their energy planning algorithm, since they assume
that the expected energy production is typically the same on a given time for
consecutive days. This, however, does not apply to many parts of the world, where
the weather condition can shift from day to day, and even from hour to hour. Hsu et
al. [174] propose a modified power management method that is taking unstable and
uncontrollable conditions into consideration, using reinforcement learning. They
claim their method gives a performance increase of 2.3 % in summer time.

Constrained devices that scavenge for energy in a location where weather
conditions are shifting, need to be able to predict their energy budget to keep a
steady battery level. Szydlo et al. [175] propose a concept of a two-stage predictive
power-adaptation method that uses weather forecast services to plan how much
energy it is possible to harvest from the wind in the near future. Their aim is to
create a power management system that address the problem of optimal control of
battery neutrality under shifting weather conditions, and that at the same time can
guarantee a satisfactory level of functionality. Based on these plans, they propose to
change the energy consumption of the devices by switching between four operation
modes, which use different amounts of energy. This is a similar approach to ours.
However, their results are based on values gathered from a simplified test unit and
then run in simulations, while we are using an off-the-shelf sensor station and have
built a prototype for running the test and measure the actual values.

C.3 System Overview

Figure C.11 shows an overview of the system. It consists of sensor nodes that
communicate via gateways with a backend server.

C.3.1 Sensor Nodes

We deployed eight Waspmotes [176] from Libelium, shown in Figure C.12. They are
based on the 8-bit Atmega1281 microcontroller. Each sensor node is coupled with
sensors to measure CO2, temperature, pressure and humidity. Some sensors also
measure particle matters (PM) and NOx. However, since, we focus on the energy
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Figure C.11: Overview of the system

Figure C.12: Testbed with five of the eight sensor nodes

management, only the energy consumption of the sensors is relevant in the following.
The CO2 sensors, for instance, include a heater to correctly capture the gas density
at a specific temperature. Therefore, they require a considerable amount of energy
when sensing.

Each sensor node is powered by a lithium-ion polymer (LiPo) battery with the
capacity of 6600 mAh and a maximum voltage of 4.2 V. The battery is connected
via a charging controller to a solar panel, which can provide a current of up to
330 mA. For this experiment, all solar panels face the same direction. The controller
protects the battery from overcharging, which has some implications for our data
as explained later.

The sensor nodes periodically execute sensing cycles, i.e., they wake up, make
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some measurements, send the results to the LoRaWAN gateway and then go into
sleep mode again. To adjust their behavior, sensor nodes can be configured using
discrete sensing modes [158]. Each sensing mode assigns specific values to the
length of the sleep cycle and the number of measurements within each sensing cycle.
The sensing modes are designed so that a lower sensing mode yields less frequent
measurements and less samples per sensing cycle, and accordingly uses less energy.
Higher sensing modes provide more and better data and use more energy.

C.3.2 Network

For the wireless connection, we use LoRaWAN (868 MHz and 433 MHz ISM
band) [177]. The corresponding gateway is deployed 500 meters away and connected
to The Things Network (TTN, [178]). Before put into deep sleep, sensor nodes
transmit the necessary data required by the backend server to TTN’s gateways via
the LoRaWAN uplink channel. This is the actual sensor data together with the
energy-related data i.e., the battery voltage, the incoming solar current and the
sensing mode. From TTN, our server fetches the data of all sensor nodes at regular
intervals, as explained later. LoRaWAN also provides a downlink channel from the
server towards the sensor nodes. We use this channel to update the sensing mode
in the sensor nodes as a result of the energy planning. The fair access policy of
LoRaWAN and TTN limits the uplink transmission to a 30 seconds airtime per
day per node, which corresponds to roughly 647 bytes per day, given the spreading
factor of 7. The downlink is even more restricted, with 10 messages per day per
node.

C.3.3 Server Backend

The server backend collects all data and has the task to determine the optimal
sensing mode for each sensor node. Figure C.13 provides an overview. The server
operations are coarsely structured into learning, predicting and planning.

The server repeatedly collects the data sent via LoRaWAN to The Things
Network (TTN) from their servers (1). This raw byte data is decoded so that
the individual data fields can be stored as files in CSV format. The server also
collects weather forecast data (2). Both the weather and the sensor device data
are combined into training and testing data for the various machine learning
methods (3), explained later in detail.

For the prediction part, there are three machine learning modules. The first
one (5) predicts the solar energy output based on the weather data and time, and
is the main focus of this paper. The other two modules are used to predict the
expected battery level based on the incoming solar current (6), and to predict the
energy consumption for a sensor node given its sensing mode (7).

The prediction modules contain different machine learning algorithms, detailed
later. They are trained by corresponding modules. This means, for instance, if
(5) is a neural network, (4) encapsulates the execution of the backpropagation
algorithm to train it.

The planning module (8) uses the prediction modules to simulate several
potential energy budgets for a day, given different sensing modes. These potential
budgets are then evaluated, which leads to the selection of the best sensing mode
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Figure C.13: Overview of the operations in the server backend

for each sensor node, which is then sent back to the them as a sensing mode update,
via LoRaWAN.

C.4 Data Acquisition

Table C.2 lists the data required for learning.

Table C.2: Overview of input data

Energy data battery voltage, solar charge current,
sensing mode

Weather
data

forecast time, production time, loca-
tion, temperature, wind speed, wind
direction, pressure, humidity, cloudi-
ness (high, medium, low, total), fog,
dewpoint temperature, precipitation,
weather symbol

Sun position zenith, azimuth

C.4.1 Energy Data from Sensor Nodes

The firmware of the Waspmotes provides access to the voltage at the battery and
the current arriving from the solar panel. The latter is a good indicator for the
available solar energy, and will be the value to be predicted by our algorithms in the
next section. There is one caveat with the current from a solar panel: It only flows
if the Waspmote also consumes energy. We will later see which consequences this
has for the data preparation. However, measuring the current from the solar panel
is still the best indication for the available solar energy. In contrast, only measuring
the open-circuit voltage at the solar panel is less useful. Solar panels are usually
non-linear in terms of sunlight intensity versus output open-circuit voltage [179].
This means that the open-circuit voltage is an indication if the sun is shining, but
not very precise regarding the available energy.
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C.4.2 Weather Forecast and Sun Position

The weather forecast data is collected from the Norwegian Meteorological Institute
via their publicly accessible API [180]. Forecasts are published at irregular intervals,
about three times a day. The different data fields are listed in Table C.2. Each
weather forecast has a production timestamp, i.e., the time when it was created.
The weather forecast includes predictions for several points in time in the future,
each labelled by the forecast timestamp. For each forecast timestamp, the report
lists several numerical weather values. Cloudiness is provided at three different
levels (low, medium, high) as well as an aggregated value (total). The weather
symbol is a discrete value between 1 and 50 that encodes a weather scenario. For
instance, sun is encoded as 1, rain as 10 and snow as 13.

The position of the sun is expressed in terms of two angles, azimuth and zenith.
These can be calculated on the server based on the location of the deployment and
the time, i.e., this data does not need to be collected.

C.5 Data Preparation

The effectiveness of the machine learning algorithms depends to large degrees on
the preparation of the input data. This preparation requires knowledge about the
domain of the system, i.e., the electrical properties of batteries, solar panels, the
charging controller and some knowledge about the sun and weather forecasts.

C.5.1 Preparing Battery Level Data

For Li-ion/LiPo batteries, the battery level (also called state-of-charge, SoC ), and
the voltage at the battery have a relationship that can be approximated by a linear
model as shown in Figure C.14. It is therefore possible to estimate the battery level
as percentage from 0 to 100 based on the measured voltage at the battery. For
our experiment, we use the approximation provided by Libelium as part of their
firmware [181]. The conversion from battery voltage to battery level in percent
is only an issue of understanding the data, since it is more convenient to look at
a percentage (0 . . . 100 %) than at a voltage (≈ 3.3 . . . 4.2 V) when talking about
the state of a battery. For the actual prediction this conversion has little impact
as long as it is done consistently. In our case, we derive the battery level from
two approximated linear functions of the battery voltage illustrated by the two
connected solid lines, as opposed to the unknown real model shown as dotted line
in Figure C.14, which represents the general curve of Li-ion/LiPo batteries [182].

C.5.2 Preparing Current Data from Solar Energy

Figure C.15 shows the solar current throughout three days. April 7th is a day with
extremely varying weather, which makes the solar current vary over the day. April
9th is a consistently cloudy day, and April 12th is a very sunny day. The curve of
the sunny day shows a steep slope because of the sunrise at around 6:00. However,
at 8:45 the solar current drops to zero. This is due to the charging controller. When
the battery level is rising above 98 % or 99 % (depending on the node), the charging
controller switches off charging and the Waspmote is powered from the battery only,
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Figure C.15: The solar current on three days with very different weather conditions.

even if solar energy is available. The charger switches back into the charging state
once the battery voltage falls below ≈ 4.07 V, which corresponds to ≈ 83.7 % of
battery level. This explains why there are periods in which the solar current is zero
despite the shining sun.

The machine learning algorithms need to know about this charging behavior;
otherwise, they would be confused by sunny conditions that seemingly do not lead
to the expected solar current. Adding data about the charging state is part of the
data preparation of the solar current. Since Waspmotes do not provide any data
regarding the state of the charger, we have to guess it from the charging current
and the battery level. For this, we look for the point when charging stops, and
observe the battery level at the same point for all days of a node. Then we select
the highest battery level as the full battery threshold for that node. The thresholds
for all the nodes are used in the data filtering program to assign battery full state
to data points. After every data point is marked with states, those with the state
battery full are removed.
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C.5.3 Aggregation of Weather Forecast

Each forecast is provided as a table, where each row describes the expected weather
at specific points in time. For the close future, this interval is one hour. For
predictions further in the future, these intervals are increasing to up to six hours.
Each row has therefore two timestamps: the time for which the weather is predicted
(forecast time), and the time when the forecast was produced (production time).
Since the forecasts cover overlapping times, the data preparation selects for each
time the forecast where forecast time and production time have the shortest distance.
This means that the most up-to-date forecast is selected.

C.6 Energy Budget Planning

The planning algorithm is only sketched in the following since it is not the focus of
this article, and rather provides context for the machine learning and prediction
of the solar power current. This algorithm simulates the development of the
battery level, given that the node executes a specific sensing mode. As input it
uses the current battery level, the sensing mode and the weather prediction. The
planning algorithm simulates the time ahead in intervals, for which we selected 30
minutes. It first uses the machine learning module for the solar power prediction
(see Figure C.13 (5)) to predict the expected solar current, detailed in the next
section.

From the predicted solar current, the planning algorithm needs to estimate how
the battery will develop within the simulated 30 minute interval. This depends
on two components: (1) how much energy the sensor node consumes in the given
sensing mode, and (2) the energy added from the solar panel. These two components
can be estimated by two different modules, and then added together, as done in
Figure C.13 (9)).

• To analyze the energy consumption of a given sensing mode (Figure C.13 (6)),
we select periods during the night in which the solar energy is zero. During
these periods, the battery level decreases. We analyze the slope, averaging
over several nights, which gives a good indication of the energy consumption
of the currently executed sensing mode.

• To come from the solar intake to the increase in battery level, we need to
determine a simple factor that calculates the increase in battery level from
the average solar current for a given time interval. We currently estimate this
factor manually by comparing simulated data with real ones, but we foresee
also here automated statistical methods.

The plans for the different sensing modes are compared with each other, based on
a utility function that penalizes an empty battery or wasting solar energy. The
planning algorithm then selects the sensing mode that leads to a plan with the
best utility, and updates the sensing mode of a sensor node accordingly, using the
downstream LoRaWAN channel.
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Figure C.16: Top: Number of instances of training and testing data. Middle and
bottom: Correlation coefficient and RRSE (root relative squared error) for the
models built for each day.

C.7 Solar Power Prediction

The biggest unknown influence on the energy budget is the availability of solar
energy, which varies considerably between days based on the weather. The following
section shows the prediction accuracy of the solar current of different machine
learning methods, taking the weather forecast and solar angles as input features.

C.7.1 Training and Test Data

In our experiment, we are also interested in the bootstrapping problem, that means,
how the accuracy of the prediction will develop over time when we start with
no data at all. This corresponds to a realistic scenario of a fresh deployment of
sensors that has not yet observed any data at all. We simulate therefore how the
training data as well as the algorithms will develop over time. For each day dn

with n ∈ {0, . . . , 60} for which we have collected data, we use all data from the
previous days d0, . . . , dn−1 as training data to create a new model Rn. Data of day
dn serves as test data. In our context, it is important to take data from entire days
as test data, and remove those entire days from the training data, to avoid data
leakage. Simply taking out 20 % of random values over a longer period is not good
enough. The relatively slowly changing conditions would lead that the training data
to contain very similar samples as there are in the test data. Instead, our method of
using an entire day as test data and only using data from previous days as training
data corresponds to a causal way that gives realistic results.

Figure C.16 shows at its top the number of data samples in the training and
test sets (on a logarithmic scale). The lower curve shows the samples from each
day, which are used as test data for that day. Its minimum is on the 15th of April,
where there was very little training data because the batteries of all nodes were
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fully charged. The upper curve shows the training data used for building the model
on that day. Since the training data for day dn is the collective test data of all days
d0, . . . , dn−1 before it, the number of training samples monotonously increases.

C.7.2 Attribute Selection

To improve the accuracy of solar power prediction, we used the Ranker method
in [183] for attribute selection to rank attributes and to perform attribute selection
by the removal of redundant and irrelevant attributes. As a result, the selected
list of features, sorted by ascending attribute rank-order, is the following: zenith,
azimuth, low clouds, high clouds, temperature forecast, medium clouds, symbol.

C.7.3 Machine Learning Algorithms

In our work, we have selected a subset of widely-used ML algorithms, namely
k-nearest-neighbor (k-NN), Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Random Tree (RT) decision tree learner and Random Committee
(RC), which are briefly described hereafter. For more details, please refer to [183].

• k-nearest-neighbor (k-NN) is an instance-based lazy learner that compares
the value to predict with existing values gathered from the k closest training
instances (neighbors) using a distance metric. This algorithm requires all the
training instances to be kept in memory and does not produce any model.

• Support Vector Machines (SVM) is a technique that builds cutting hyperplanes,
which separate the data in an optimal manner.

• Artificial Neural Networks (ANNs) consist of an interconnected network of
nodes (artificial neurons). Each node maps complex relationships between
inputs and outputs using weights learned iteratively over the training data by
the backpropagation learning algorithm.

• Decision Trees are prediction models in the form of a tree graph that are built
by binary splitting the set of data using a recursive greedy search algorithm.
We selected the RandomTree decision tree algorithm that considers a given
number of random features at each node.

• Random Committee is a meta technique that can be applied on other
algorithms in order to turn them into more powerful learners. It builds
an ensemble of base algorithms and averages their predictions in a way to
avoid overfitting and reduce the variance of the algorithm output. This
technique makes sense if the base algorithm is randomized. In our work,
Random Committee works only for ANN and Random Tree since the base of
these algorithms is randomized, which is not the case for k-NN and SVM.

C.7.4 Building Machine Learning Models

For each of the tested ML algorithms, we built models using the entire training set
by means of the Waikato Environment for Knowledge Analysis (Weka) [183]. In this
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Figure C.17: Average correlation coefficients and RRSE for the models

work, we have conducted several tests to select a good tuning for each algorithm.
However, tuning these models further is beyond the scope of the paper.

C.8 Evaluation and Discussion

The middle of Figure C.16 shows the correlation coefficient for the various models
on each day. This coefficient measures the statistical correlation between the actual
values of solar power and the predicted values. It ranges from −1 for perfect
negative correlation, through 0 when there is no correlation, to 1 when the results
are perfectly correlated. The bottom of Figure C.16 shows the root relative squared
error (RRSE), which is one of the error evaluation measures described in [183].
Note that the best numerical prediction model is still the best no matter which
error measure is used. Figure C.17 shows the average correlation coefficients and
the average RRSE for all models, with a 95 % confidence interval.

The accuracy of the prediction depends on several factors:

• The accuracy of the weather forecast, this means to which degree the weather
forecast corresponds to the actual weather at the sensor node.

• New weather situations that have not been observed before.

• Missing data, which can happen either due to node failures or transmissions
problems.

• Long periods with fully charged batteries in many nodes at the same time.
In these cases, the system does not learn anything about the solar energy
available.

The RRSE of most models spike on the 6th and 7th of May On these days, the
pattern of reported solar energy was significantly different from the two weeks before.
Revisiting Figure C.15, we see that the most common pattern was similar to that on
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April 12th with a spike in charging and a fully charged battery. However, in some
other days where we also registered an increased error, the intake is distributed
over time and without any identifiable pattern. This could be due to a number of
factors (i.e., weather forecast and battery level) and we believe with more data such
variations will be less frequent.

Concerning the lack of learning data when batteries are fully charged, we can
see this effect in the period following May 25th, when most batteries were full due
to very good weather. This resulted in few samples for the solar intake, that were
in addition taken in short periods between fully charged batteries, which is why
they may not accurately represent the actual solar energy.

C.8.1 Quality of the Predictors

An overall analysis of the results for each predictor reveals their different properties.
k-NN is not a good predictor. It is unstable, with the lowest correlation coefficient
and highest RRSE. The other predictors are better. SVM is quite stable and its
average RRSE is 76 % with a low standard deviation. RC-RT has the lowest RRSE
and a high value of the correlation coefficient. In summary, SVM, RC-ANN and
RC-RT are good predictors. They may even improve with further tuning of these
algorithms.

C.8.2 Suitability of the Prediction

Since the learning process starts at the second day of the systems operation with
only the data from day one, the prediction accuracy is understandably low during
the first days. However, we see that it is improving and, for the methods other than
k-NN, remains relatively stable. Based on our 60 days of observations, we argue that
the predictions are already useful for a planning algorithm. The predictions rely on
the accuracy of the weather forecast, which itself is prone to errors. In addition,
the weather at the test site in Trondheim, Norway, is very volatile. Of course, one
remedy would be to maintain a dedicated local weather station. However, with that
we would make the deployment of IoT nodes more complicated; our intention is to
only rely on easily available public weather forecast data.

C.9 Conclusion

We have presented an approach to predict the solar energy input for constrained
IoT nodes based on numerical weather forecasts that are typically easily available.
This allows for effective energy-budget planning, which is much needed for resource-
constrained nodes. We have also observed that the choice of machine learning
method matters. k-NN shows the biggest drop in accuracy on some days, while the
other algorithms stay more stable.

Given that the predictions are based on weather forecast data, which itself
contains uncertainties, a planning algorithm needs to take the accuracy of the
prediction into account. It can for instance analyze confidence intervals, study best
and worst cases and eventually select the most adequate strategy. In addition, we
have observed that the behavior of the charging controllers used in off-the-shelf
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IoT nodes leads to less training data, since they cannot measure the available
solar energy once the battery is full. This should have influence on the design of
solar-driven embedded IoT nodes; they should be able to gain some insights on the
available solar energy even when fully charged.
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Introduction

Abstract

For sustainable IoT systems, solar-power prediction is an essential element
to optimize performance, allowing devices to schedule energy-intensive tasks
in periods with excess energy. In regions with volatile weather, this requires
taking the weather forecast into account. The problem is how to provide such
solar energy predictions with high accuracy for large-scale IoT systems with
various devices in an autonomous way, without manual adaptation effort. We
present a detailed study on machine-learning approaches for the prediction of
solar power intake for large scale IoT systems. We examine which machine
learning models, feature sets and sampling rates gain the best results for a
medium-term forecasting horizon. We also explore an operational setting in
which devices are deployed without prior data and machine learning models
are re-trained for each sensor continuously as a form of online learning. Our
results show that prediction errors can be reduced by 20 % compared to the
state of the art, despite strong weather volatility.

D.1 Introduction

Energy harvesting via solar panels allows wireless devices to replenish their energy
buffers and is thus one element towards a sustainable, maintenance-free Internet of
Things (IoT) with perpetual operation, as it removes or reduces the need to switch
batteries [184]. Use cases where solar power has great potential cover a wide range of
domains, like smart cities [150], [185], harbors [186] and agriculture [187]. Rainforest
Connection [188], for example, creates acoustic monitoring systems to detect illegal
deforestation, using recycled phones powered by solar panels. Operating sustainably,
with minimal or no maintenance, is crucial for the feasibility and economic aspects
of such use cases. The better the predictions, the more strategically, and hence
optimally, IoT devices can act: Apart from adjusting their sensing intervals, they
can schedule energy-intensive tasks in periods of energy surplus. Such tasks can
include software updates, transmission of aggregated sensing data, or re-training
of machine learning models. Improved energy management helps to minimize the
required energy buffer and solar panel size of IoT devices, making them simpler,
easier to deploy and less obtrusive. This makes systems cheaper, or possible at all,
and further facilitates approaches that even integrate solar energy supplies directly
onto chips [189].

To plan energy budgets effectively also under volatile weather conditions, Sharma
et al. [190] and Renner et al. [191] argue that IoT devices require access to solar
energy predictions that also take the weather forecast into account. With the
availability of new machine learning methods and computational power in general,
this leads to the question of how these methods can improve the prediction of solar
energy intake. While machine learning has been applied for that purpose in the
domain of renewable power, less attention has been paid to solar prediction for
IoT nodes, which require medium-term predictions (up to several days ahead) for
energy budget planning. There is also the challenge of heterogeneity in large-scale
deployments, where devices operate in different settings, for example regarding
their position towards the sun or local obstacles such as trees or buildings. To
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avoid manually modeling these differences, which is prohibitive for large IoT
installations, prediction models should hence be individual, that is, per IoT device
and work autonomously. We envision that IoT devices are supplied with solar
energy predictions as part of the device management, offered by edge or cloud
services. For such an approach to work efficiently at scale, it is required that the
operation of the prediction models is feasible. Instead of manual adjustment and
tuning, predictions must refer directly to individual sensors’ expected energy, based
on the previous energy intake and on features that are easy to acquire, like a public
weather forecast.

In this work, we explore the use of various machine learning techniques combined
with public weather forecasts for the prediction of solar energy. This is the first work
that discusses the issue of machine learning for medium-term solar energy prediction
for IoT devices, paying the necessary attention to operational aspects. We have
previously examined how different machine learning methods can be used in a
constrained sensor setting [159]. We now go further and (i) present the performance
of various machine learning techniques, (ii) conduct an ablation study to identify
the most useful features, (iii) introduce scaled forecast metrics that allow us to
compare prediction performance independent of seasonal changes, (iv) study the
influence of sampling frequency (i.e., how often solar energy should be sampled as
training data), and (v) investigate how the accuracy of the predictions develops
after a deployment in an operational setting. Our results show that the machine
learning models based on weather forecasts outperform other methods by more
than 20 %.

We start with an introduction to solar harvesting in IoT in Sect. D.2 that also
provides the system context, and a study of related work around energy planning
and solar energy prediction in Sect. D.3. This is followed by the discussion of our
method in Sect. D.4, which highlights the techniques for model and feature selection
and introduces the metrics for our evaluation. We then systematically analyze
the type of machine learning models, the suitability of features for the predictions,
and the sensitivity to the sampling frequency in Sect. D.5. In Sect. D.6, where
we combine all insights, we explore and discuss the performance of the prediction
models in an operational setting, and compare them to the state of the art.

D.2 Solar Energy Harvesting Prediction in IoT

We first provide an overview of the significance of solar energy prediction in IoT
and explain then how energy predictions can be integrated into device management
that constitutes our system context.

D.2.1 The Need for Solar Energy Predictions

The challenge with energy harvesting is its stochasticity, and that energy is not
always available when needed by an application [192]. Some of the stochasticity
is compensated by energy buffers like batteries or super capacitors. But this only
helps to a certain degree, as the required capacity of the buffers must be limited
to reduce device cost and physical dimensions [82]. Therefore, energy planning is
required [193, 194, 195], aiming at aligning the application energy demand closer
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Figure D.18: Operational setting, including IoT device and device management
platform.

with the availability of harvestable energy. This can be achieved for instance by
adjusting the duty cycle of the application, allocating tasks to nodes with better
energy budgets [193], or allowing a tradeoff between sensing accuracy and energy
consumption [196]. Some tasks, such as training of machine learning models, are
also tolerant to delays and can hence be scheduled in time slots where more energy
is available or when the demand from other tasks is lower.

A basis for effective energy budget planning is the availability of highly accurate
predictions for the incoming energy [185, 82, 193, 194, 195, 197]. Available solar
energy often follows quasi-cyclic diurnal patterns [192], which motivates approaches
that estimate the incoming solar energy based on historic data, which we will review
in Sect. D.3. While such approaches may be suitable for short time horizons (up
to 3 hours) or long-term horizons (beyond several days), they are not sufficient for
medium-term horizons (3 hours to 3 days), as Sharma et al. [190] and Renner [191]
concluded. This is because the arriving energy is not only dependent on the position
of the sun relative to the solar panel but also the coverage of the sky with clouds
at various levels, which can vary considerably with the local weather conditions.
Sharma et al. [190] and Renner [191] therefore highlighted the importance of also
taking the weather forecast into account, and report significant improvements in
accuracy compared with approaches that only rely on historic data.

Another aspect of sustainable and cost-efficient IoT solutions is operational: due
to the system scale, devices must operate autonomously. Prediction models must
not require manual fitting or oversight for the individual devices. We therefore
turn our attention to off-the-shelf machine learning methods and want to explore
how they can improve the prediction accuracy of solar prediction when taking
the weather forecast into account. We focus in our study on a medium-term time
horizon, as this time horizon is significant for energy budget planning in devices
with typical energy buffer sizes, and approaches based solely on historic data do not
perform well for this horizon. The novelty of our work is the thorough exploration of
machine learning options, selection of features and sampling frequencies to achieve
better prediction performances than the current approaches as the basis for IoT
device energy budget management.
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D.2.2 System Context and IoT Device Management

We suggest to include the weather forecasts into prediction models as part of the
device management [23]. This allows the training of machine learning models for
solar energy prediction and the actual prediction to be executed off-device, in cloud
or edge hardware. Figure D.18 provides an overview of the system, explained in
the following. To allow the device management to be specific to the individual
IoT devices’ settings and micro-environments, the device management distinguishes
different device instances as follows:

• IoT devices record their individual solar intake observations and send them to
the device management module. In Sect. D.5.3, we will discuss the significance
of the reporting frequency.

• The data aggregation step combines the solar intake observation with the
weather forecast data of a region covering a device, further explained in
Sect. D.5.1.

• These data is the input for training prediction models, which is the main
focus of our work. Which input features to use is discussed in Sect. D.5.2, and
the amount of training data to store is discussed in Sect. D.6.1. In principle,
models can be retrained with the arrival of every new observation, but for
most use cases a daily training is sufficient, as shown in our final evaluation
in Sect. D.6.2. We note that the computational effort for retraining a model
is manageable compared with the typical tasks of device management, further
discussed in Sect. D.6.3.

• The trained model is then used to provide solar energy predictions to the
device, taking weather predictions as input. The computational effort for
this prediction is negligible. Depending on the planning mode of the device,
predictions can be provided every hour, or for instance at midnight for the
entire next day.

In this article, we focus on the performance of the prediction models and which
features and frequency of data they require as input.

D.3 Related Work

There is a wide range of approaches for solar power prediction, which vary in terms
of input data, forecast horizon and temporal resolution. Wireless sensor nodes are
typically constrained in computation, which motivates approaches that use the
exponentially weighted moving average (EWMA), like Kansal et al. [82]. They
divide a day d into N time slots (for instance N = 48) and observe the energy
intake x in each time slot n. For each time slot n they iteratively compute the
EWMA x̄ using

x̄(d)
n = αx̄(d−1)

n + (1 − α)x(d)
n ,

where x̄
(d−1)
n is the averaged value of time slot n from the previous day. The

prediction of a slot in the future is the EWMA of the observations for that slot on
previous days, making use of the diurnal pattern of outdoor solar energy. This type
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of model is attractive for embedded systems as it only requires previous observations
that can be accumulated locally, and the EWMA only requires to store one value for
each of the N time slots. However, the performance of such approaches depends on
the stability of weather conditions. As an improvement, Piorno et al. [198] propose
a weather-conditioned moving average (WCMA), which corrects EWMA-based
average values with a factor that indirectly depends on the weather. This factor
is calculated based on the solar intake of the day so far, compared to that of the
previous days, and hence limits the prediction to a short-term horizon, only a
few time slots ahead. UD-WCMA [199] poses another improvement by choosing
weighting parameters autonomously. However, the short forecasting horizon remains.
Saidi et al. [200] use a Kalman fiter with an autoregressive model to predict solar
energy intake, but also this approach only considers a short forecasting horizon,
until the next time slot.

Persistence models are another type of forecasting model only considering past
observations, which are used as baselines in solar forecasting for the power grid [201,
202]. Instead of averaging over past observations, they take the value from the
previous day d − 1 as forecast for day d. The smart persistence model corrects the
historic observations with the diurnal variance of the solar irradiance [203]. The
global horizontal irradiance (GHI) represents the potential amount of energy that
can be harvested by a solar panel. It depends on the angle between the sun and the
plane of the solar panel and the travel length through the atmosphere. The GHI
can be calculated by using a model that estimates the clear sky global irradiance
directly, such as the simplified Solis model described by Ineichen et al. [204], which
is coherent for the solar elevation angles at most latitudes and calculated as

GHI S = I ′
o · e

(
− τ

sing(h)

)
· sin(h), (D.1)

where I ′
o is the extraterrestial irradiance modified by the atmospheric radiation

component, h is the solar elevation angle, τ is the global total optical depth, and g
is the corresponding fitting parameter for the GHI. Therefore, future energy intake
can be predicted using

Êin(t + 24h) =
{

Ein(t) GHIS(t+24h)
GHIS(t) , GHI S(t) > 0.1

Ein(t), GHI S(t) ≤ 0.1
(D.2)

where Ein is the observed energy intake at a given time t, and GHIS is the irradiance
given by the simplified Solis clear sky model. The used threshold of 0.1 can be
adjusted to avoid unrealistic high levels of irradiance at sunrise and sunset.

The above-mentioned techniques, which only rely on past observations, do not
perform well in locations with volatile weather and for medium-term prediction
horizons, as Sharma et al. [190] point out. They instead propose the inclusion of
weather forecasts in the form of cloud coverage C for the prediction of solar power
P , and formulate a model Psun = Pmax · (1 − C), where Pmax is approximated by
a quadratic model with coefficients for each month, that are derived by manually
selecting sunny days. While this work indicates the benefits of including weather
forecasts, it has the drawback of manually fitting models, which is not realistic in a
large-scale IoT setting with heterogeneous devices and environments.
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Renner [205] combines cloud-cover information of the weather forecast with
an EWMA-based model. This combination is similar to that of WCMA, but uses
actual weather forecasts. IoT devices are provided with access to the cloud coverage
forecast (CCF) for each time slot, and use this value to determine what corresponds
to the clear-sky value for each time slot. The EWMA of these values is then used
as basis that is again combined with the CCFs to compute the actual predictions.
Together with the previously described methods EWMA and smart persistence
(SP), we use this approach – CCF – as another baseline in Sect. D.6.

Another domain for which solar energy prediction is relevant is the power grid
and renewable energy. In this domain, machine learning techniques are much more
common, and used at different forecasting horizons, from short-term prediction
in terms of minutes to react to fluxes of solar power, to long-term predictions to
reason about the feasibility of solar installations. Voyant et al. [206] provide a
comprehensive review of machine learning methods for solar radiation forecasting.
For instance, Bacher et al. [207] use autoregressive models and find that for medium-
term horizons, numerical weather predictions increase the accuracy considerably.
Many approaches employ various machine learning techniques with the use of
distinct prediction variables as input. Yadav et al. [160] provide an overview of
neural networks as prediction models, while Sharma et al. [208] study machine
learning based on weather forecasts, including the sky coverage, using support
vector machines. Alternatively, Dahl and Bonilla [209] use Gaussian Processes as a
forecasting model, which can also quantify the confidence level in the prediction
estimate. Benali et al. [210] use separate models for the different components of
radiation. Similarly, the use of blended learning with a mixture of models has been
addressed by several authors [22, 211, 212].

Tang et al. [213] used an approach based on the least absolute shrinkage
and selection operator (LASSO) for the short-term solar prediction. In [214]
this approach is extended by long short-term memory units (LSTM) of neural
networks into a mixture model based on different weather types. They use weather
observations instead of the public weather forecasts, and identify temperature and
humidity as valuable features. This is probably due to their short forecasting
horizon, and the absence of cloudiness in the weather observations, as these turn
out to be the most important prediction features for medium-term horizons in our
analysis.

Altogether, while there is considerable attention on solar forecasting, there is a
lack of discussion on the operational aspects of the prediction models relevant for
IoT, which are crucial for making them work in a scalable and autonomous way for
constrained devices.

D.4 Methodology

The main goal of our work is to identify machine learning models and corresponding
features to increase the performance of solar energy prediction models. To that
end, we start with a set of standard machine learning models which we test on
an exhaustive set of feature combinations, resulting in a selection of models and
features based on their performance. In the following, we discuss the significant
aspects of our research method. This includes data collection, the chosen metrics,
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and the approaches for feature selection, prevent data leakage and ensure results
under realistic conditions.

D.4.1 Solar Energy Data Collection

We use real data that we collected over more than two years, so that we were able
to cover all seasons throughout a year more than once. The source of our training
data is a solar panel with horizontal orientation on the top of a university building
in Trondheim, Norway. We measured the voltage on a resistor and logged the data
every minute, which resulted in a data set covering two years, starting in October
2017.1 We denote each measurement with a

(d)
i , where d is the day and i ∈ Id the

index of the value within the day. Figure D.19 shows the solar energy intake over
three days, which also shows their extreme volatility from day to day.

Since measurement values are taken in regular intervals ∆t (one minute in our
raw data), the total energy collected during a day can be approximated by summing
over the individual values a

(d)
i ,

E(d) = γ · ∆t
∑
i∈Id

a
(d)
i ,

where γ is a factor including the solar panel’s size, its efficiency, and the efficiency
of the power converter. The specific value of this factor is not relevant here, as it
depends on each individual IoT device and is an internal variable in the prediction
process. Figure D.20 shows E(d) over two years and reveals large seasonal difference
between winter and summer. We also calculate the exponentially weighted moving
average (EWMA) of the solar intake Ē(d) for each day

Ē(d) =
{

E(d), d = 1
α · E(d) + (1 − α) · Ē(d − 1), d > 1.

(D.3)

Figure D.20 shows Ē(d) with α = 0.095, which also illustrates the differences within
the same month from year to year. The average energy harvested in June 2018, for
example, deviates significantly from the same period in the year 2019.

D.4.2 Prediction Metrics

Although various metrics to evaluate solar energy forecasting exist [215], their
scaling is significant to ensure comparability, as we will show next. Two standard
metrics for the prediction performance on a day d are the mean absolute error
(MAE) of the individual prediction values, as well as the total absolute error for
the entire day (TAE):

MAE(d) = 1
|Id|

∑
i∈I

|a(d)
i − p

(d)
i | (D.4)

TAE(d) =

∣∣∣∣∣∑
i∈Id

a
(d)
i −

∑
i∈Id

p
(d)
i

∣∣∣∣∣ . (D.5)

1The data set as well as all the code used in this article will be available after publication.
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Figure D.19: Three days in June 2018 illustrating the volatility of solar energy
intake from day to day.

As the MAE also considers intra-day accuracy, a good score with the MAE also
implies a good TAE. Yet, considering the TAE could reveal good predictors for the
overall day that are just imprecise with their timing. For IoT energy management,
we will in the end address how we can combine these two aspects, but we first need
to address the problem of seasonality.

Figure D.21 shows the MAE for the SP prediction model from in Sect. D.3.
(The TAE shows similar behavior.) Both metrics are scale-dependent (see [216] for
a discussion), and vary with the seasons. This is problematic for our purposes, as
we do not know whether to attribute changes in the score of a prediction to changes
of a predictor’s quality or just seasonality. To eliminate this scale-dependency and
seasonality, we consult the corresponding relative percentage errors MAPE and
TAPE, which scale the error to the actual value a

(d)
i :

MAPE(d) = 100
|I∗

d |
∑
i∈I∗

d

∣∣∣a(d)
i − p

(d)
i

∣∣∣
a

(d)
i

(D.6)

TAPE(d) = 100∑
i∈I∗

d
a

(d)
i

∣∣∣∣∣∣
∑
i∈I∗

d

a
(d)
i −

∑
i∈I∗

d

p
(d)
i

∣∣∣∣∣∣ (D.7)

The modified set I∗
d includes only the indices of observations that are non-null,

to prevent division by zero in (D.6). These percentage errors prevent seasonal
variations, but have the drawback that errors on days with very little energy get
very large, as the high variation in Figure D.21 for the MAPE shows. In line with
the normed errors RMSE and ME in [205] we introduce the scaled MAPE (SMAPE)
and the scaled total absolute error (STAPE), which are scaled to the moving average
introduced in (D.3)

SMAPE(d) = 100
Ē(d)

∑
i∈Id

∣∣∣a(d)
i − p

(d)
i

∣∣∣ (D.8)
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Figure D.20: Measured daily solar power intake over two years. The solid black
line shows the exponentially weighted moving average (EWMA) of the daily intake
with α = 0.95, corresponding to a span of ca. 20 days. Daily values and average
show the high daily and seasonal variations.
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Figure D.21: Mean absolute error (MAE), mean absolute percentage error (MAPE),
scaled mean absolute percentage error (SMAPE) of the smart persistence predictor.
The corresponding TAE, TAPE and STAPE metrics are not shown here for brevity,
but they exhibit the same characteristics as their counterparts.

STAPE(d) = 100
Ē(d)

∣∣∣∣∣∑
i∈Id

a
(d)
i −

∑
i∈Id

p
(d)
i

∣∣∣∣∣ . (D.9)

Neither of them exhibit the challenges of the previous metrics. STAPE is hence a
measure of how many percent, relative to the average intake during that time, the
total energy for a day is off, while SMAPE is also taking into account how accurate
the prediction is within a day. Taking percentages instead of absolute values, as
in [205], has the benefit that scores can be also compared across different IoT devices.
As a single-number metric we use the arithmetic mean between SMAPE and STAPE,
which we for simplicity call the scaled absolute percentage error (SCAPE)

SCAPE(d) = 1
2(SMAPE(d) + STAPE(d)). (D.10)

This metric balances between the total prediction and the intraday accuracy.

D.4.3 Prevention of Data Leakage

A proper split between training and test data is important to prevent data leakage
and ensure applicability and generalization of the results. Since the observed
solar energy intake tends to be similar from one minute to the next, a standard
randomized training/test split would effectively result in data leakage. For example,
a measurement from 12:00 could serve as training data and an almost identical
entry from 12:01 could end up as test data. We therefore only assign only entire
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days to the test set. For that, days of 2018 (which we use for the first parts of
the experiment) are numbered consecutively, and every fourth day is taken into
the holdout test set. Data from these days will not be used to train models or
tune parameters, they are only used to validate the results after models have been
developed. The days for validation are evenly assigned into two of ten crossfolds.

D.4.4 Feature Selection Method

Feature selection is one of the core concepts in machine learning and involves
selecting the most relevant features that yield the best model performance. In an
IoT setting, omitting irrelevant features is especially interesting since it may reduce
training and inference time and requires to store and transmit fewer data.

Many different feature selection methods exist in the literature and they are
being widely used [217]. An optimal feature selection method is the exhaustive
feature search [218] The main strength of the exhaustive feature selection algorithm
is that it is guaranteed to find the best set of features. However, the main drawback
of this algorithm is the complexity cost.

In our context, the size of the dataset, the number of required features, and the
computing resources allow the exhaustive feature selection to be computationally
feasible. Therefore, to identify the best set of features, we employ an exhaustive
feature selection algorithm to evaluate all possible feature combinations. More
specifically, we train several thousand prediction models and evaluate them
independently. Following that, we conduct a study of different features, referred
to as an ablation study, to evaluate the performance impact of removing a given
feature from the machine learning model.

D.4.5 Evaluation in Operational Settings

To ensure the relevance of our approach, we carried out the main evaluation of
our work as a case study under quasirealistic conditions, in an operational setting
further detailed in Sect. D.4.2. This means that we train the selected machine
learning models with the same data they would receive if deployed in reality, and
evaluate them with the metrics from Sect. D.4.2.

For a comparison of our work with current state-of- the-art solutions, we selected
the baselines introduced in Sect. D.3. SP is the standard reference for solar energy
forecasting [201, 202] and EWMA is a fundamental prediction technique in wireless
sensor networks [82]. The CCF itself outperforms other techniques as shown in [205].
Together, these different forecasting techniques constitute a relevant baseline for
our approach.

D.5 Weather-Based Machine Learning Models

In the following, we will discuss the preparation of training data in more detail
and then proceed with the identification of suitable machine learning models and
selection of the most valuable features, and close with the consideration of the
significance of the sampling intervals for the solar intake observations.
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Figure D.22: Example weather forecast values for three days, together with the
observed solar energy. The heatmap at the top shows the cloudiness overall and at
the three levels high, medium and low. Darker shades imply more clouds.

D.5.1 Weather Forecast Data

We use the weather forecast provided by the public application programming
interface (API) of the Norwegian Meteorological Institute [219]. Weather forecasts
are usually issued three times a day, around every 5 to 8 hours. Each issue contains
a forecast for the upcoming 60 hours with an hourly resolution. We extract, for each
hour, the publication and forecast timestamps, temperature, humidity, pressure,
precipitation and the amount of clouds covering the sky. Figure D.22 illustrates
the weather data for three sample days. Cloudiness is provided at several levels.
Internally, the weather model calculates the amount of clouds at 65 vertical levels in
the atmosphere. In the forecast, we use the cloudiness at four different aggregation
levels: low clouds (below 2.5 km), medium clouds (2.5–5 km), high clouds (above
5 km) as well as a total cloudiness percentage, calculated from the entire stack of
cloud levels.

We merge the solar data collected every minute with the hourly slots of the
weather forecast. We clean the data by dropping a negligible number of days where
the weather forecast could not be collected or the solar panel was out of order. Based
on the timestamp, we add the solar angles zenith and azimuth for our location. This
results in a data set with the features f1 . . . f10 ∈ F that represent zenith, azimuth,

127



Operationalizing Solar Energy Predictions for Sustainable, Autonomous IoT Device
Management

temperature, precipitation, pressure, humidity, cloudiness, lowclouds, mediumclouds
and highclouds. The truth value for the data set is the observed solar energy intake.

D.5.2 Feature Selection

For the exhaustive search, we use machine learning models from Scikit-Learn [220],
and specifically a random forest regressor (RFR) with 30 estimators, an artificial
neural network (ANN) with a single hidden layer of 100 perceptrons, and a deep
neural network (DNN) with three hidden layers of 30 perceptrons each. For both
neural networks, we used ReLU activation functions.

We check the performance of all the three base models on different feature sets,
i.e., combinations of the features f1 to f10 from F . As the zenith (feature f1) is the
dominating variable describing the position of the sun, we include it in all feature
sets. The set FS of all feature sets that include f1 is then described by

FS = {x | x ∈ P(F ) ∧ f1 ∈ x}, (D.11)

where P(F ) is the power set of F . This results in a total of 29 = 512 feature sets.
For each model and feature combination, we calculate the performance with

at least 3 crossfolds and take the average of them. Figure D.23 shows the results
for all models and all feature sets. Each point shows the performance in terms
of SMAPE and STAPE for a specific combination of machine learning model and
feature set. The different colors distinguish the different models (RFR, ANN, DNN).
We observe that there is in general a strong correlation between the SMAPE and
STAPE metric. The magnification to the right shows that RFR produces the best
results. This is also confirmed by the histograms in Figure D.24, which shows the
distribution of errors of the different models trained with different feature sets. RFR
manages to achieve the best mean and median results over all feature sets.

We have tried to improve the scores of the neural networks by tuning their hyper-
parameters and applying different activation functions, optimizers, and architectures
regarding the hidden layers. However, we have not been able to achieve the same
robust and consistent performance as with the relatively simple RFR model, which
is why we continue with the RFR models in the following.

For the ablation study, we use the RFR model due to its general good performance
as shown above. Based on each of the optional features f2...f10 we define pairs of
feature sets, (F+, F−) ∈ PFSfi

, where the first set F+ includes feature fi and the
second feature set F− does not, that means

PFSfi = {(F+, F−) | F +, F − ∈ FS ∧ fi ∈ F +

∧ fi /∈ F −

∧ F + \ {fi} ≡ F −}. (D.12)

With the total of 512 feature sets in FS , there are 256 pairs for each of the
optional features fi. We then compute the mean performance of the prediction
models for all pairs, using 10 crossfolds, and consider scatter plots as shown in
Figure D.25. Each scatter plot includes 256 pairs. The x-coordinate is given by
the mean SCAPE of the models trained using feature sets F + with fi included.
Correspondingly, the y-coordinate shows the mean SCAPE of the models trained
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Figure D.23: SMAPE and STAPE of the various basic machine learning models for
different feature sets. The right graph is a magnification as indicated by the dashed
lines to the left.

SCAPE0

10

20 Mean SCAPE RFR
Median SCAPE RFR
RFR

SCAPE0

10

20 Mean SCAPE ANN
Median SCAPE ANN
ANN

30 35 40 45 50
SCAPE

0

10

20 Mean SCAPE DNN
Median SCAPE DNN
DNN

Figure D.24: Distribution of errors (SCAPE) of the three types of base models
(RFR, ANN, DNN) for all 512 combinations of features. Mean SCAPE (dashed)
and median (solid) errors are also shown.

on the feature sets F −, i.e., without fi. If a feature is useful, its inclusion should
reduce the SCAPE value. Hence, points above the identity line indicate pairs where
including fi improves performance, while points below correspond to pairs where
removing fi is detrimental. Points close to the identity line show that the given
feature fi has little influence on performance. The mean SCAPE for each plot is
depicted by a black cross in the intersection between the two dashed lines.
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Figure D.25: Ablation study for the humidity feature. Each point denotes a feature
set pair, the x-coordinate showing the SCAPE with humidity, the y-axis without.
The dashed lines and cross show the mean values.
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Figure D.26: Ablation study for the remaining features. Different colors are used
to distinguish further certain subsets to show feature dependencies.

1) Humidity For the humidity feature in Figure D.25, feature pairs are close
to the identity line, especially for good models. There are some improvements for
models that score worse in general, however they yield significantly poorer results
than the best feature sets not including this feature. This reveals that humidity is
not a useful feature.

The scatter plots for the other features are shown in Figure D.26.
2) Precipitation Similarly to humidity, the results for the precipitation feature

ablation lie mostly on the identity line, with the exception for very few of the
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worse performing models. This is also confirmed by the mean SCAPE result which
coincides with the identity line, proving that precipitation should not be considered
as a feature.

3) Pressure The pressure feature has most pairs along or even below the identity
line, indicating that this feature has little usefulness, being even responsible for
decreasing performance in some feature combinations. In fact, the obtained mean
SCAPE is located below the identity line, confirming that using pressure as a feature
is overall detrimental to the models’ quality.

4)Azimuth and Temperature Azimuth and temperature are both valuable features,
showing loss of performance when removed from the feature set. In particular,
we found a dependency between these two features. In the azimuth plot, the
orange markers are of model pairs that do not include temperature as a feature.
Similarly, in the temperature feature plot, the orange markers indicate pairs where
no azimuth was present. This means that the azimuth feature is especially valuable
if temperature is not a feature, and vice versa. We attribute this to the often
observed pattern of both the azimuth and the temperature raising in the morning
(see Figure D.22). Since the temperature feature is obtained from an uncertain
weather forecast while the azimuth can be calculated precisely, we consider the
azimuth to be the better feature of the two and discard temperature.

5) Low-Clouds When the low-clouds feature is removed, the mean SCAPE
of the RFR models increases from approximately 31 to almost 35. In addition,
the variability of results increases, which explains the appearance of two vertical
columns, with the SCAPE being as high as 45. The coloring of the plot distinguishes
the presence of the general cloudiness feature, but interactions between the two
features are not obvious here.

6) Medium-Clouds The impact of removing the medium-clouds feature is not
as significant as with low-clouds but the mean SCAPE still increases when this
feature is not used. The resulting variation also improves slightly, suggesting that
the medium-clouds should be considered as a feature.

7) High-Clouds The obtained performance by removing the high-clouds feature
is similar to the medium-clouds feature, except that a smaller variation occurs. By
analyzing this third cloud-related feature we can conclude that they complement each
other, even though low-clouds have a stronger correlation to the overall performance
of the model.

8) Cloudiness As shown in the ablation plot, having the overall cloudiness
feature improves the performance of our model similar to the low-clouds feature.
We explain this with the fact that the densest clouds are found in the lower levels.
If a large proportion of the sky is covered by clouds in this layer, clouds in the
medium or high layers have a significant influence on how much light reaches the
ground.

The dependencies between the different cloudiness features are not obvious in
the pairwise comparison above, which is why we also computed the performance of
all combinations of cloudiness-features, shown in Table D.3. Each row shows the
mean performances and variation of the models matched with the combination of
cloudiness features given to the left. The table reveals that models score similarly if
they have at least three cloud-related features included. When the three cloud-levels
(low, medium high) are present, the overall cloudiness feature does not contribute to
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Table D.3: Average scores of all models given the availability of the various cloudiness
features. Using the RFR model with 30 estimators, 10-fold cross-validation.

cloudiness lowClouds mediumClouds highClouds feature count SCAPE SMAPE STAPE

   3 30.0 (0.3) 37.7 (0.3) 22.3 (0.3)
    4 30.0 (0.3) 37.7 (0.3) 22.3 (0.3)
   3 30.3 (0.3) 38.0 (0.3) 22.7 (0.3)
   3 30.4 (0.3) 38.2 (0.3) 22.6 (0.3)

  2 30.6 (0.3) 38.5 (0.3) 22.7 (0.2)
   3 30.8 (0.3) 38.7 (0.3) 22.9 (0.3)
  2 30.9 (0.3) 38.7 (0.3) 23.1 (0.3)

  2 31.1 (0.3) 38.8 (0.3) 23.4 (0.3)
  2 31.9 (0.3) 39.9 (0.3) 23.9 (0.3)
  2 32.2 (0.3) 40.1 (0.3) 24.3 (0.3)
 1 33.1 (0.3) 41.3 (0.4) 24.9 (0.3)

 1 33.9 (0.3) 41.8 (0.3) 26.0 (0.2)
  2 35.1 (0.4) 42.9 (0.4) 27.2 (0.4)
 1 35.9 (0.5) 44.0 (0.5) 27.8 (0.4)

 1 37.5 (0.5) 45.7 (0.6) 29.3 (0.5)
0 40.9 (0.6) 49.4 (0.6) 32.5 (0.6)

any improvement. If we only want to select two cloud-related features, highClouds
and lowClouds combined score best. If only one cloud-related feature should be
taken into account, it should be cloudiness, but it scores ca. 10% worse than the
best combinations.

D.5.3 Training Sample Intervals

We now examine how sensitive the machine learning models are to the intervals
in which training samples are collected. Longer intervals are desirable since they
reduce (i) the amount of data to transfer from the IoT devices to the machine
learning models in the edge or cloud, (ii) how much data needs to be stored, and
(iii) the runtime of the model fitting, i.e., training time.

For the sensitivity analysis, we prepared data sets with different sampling
intervals, ranging from data sampled every minute (the original rate), to data
sampled every 180 minutes, by resampling and taking the mean values. For each
sampling rate, we trained RFR models for each of the 10 crossfolds, using the
feature sets consisting of zenith, azimuth and all cloudiness features. We evaluated
the resulting models with the test data from the original 1-minute sampled raw
data. Figure D.27 shows the mean SMAPE and STAPE for the 10-folds including
their standard error. Interestingly, the lowest sampling interval of 1 minute does not
result in the most accurate models measured by either SMAPE or STAPE. Instead,
we see an optimum for the SMAPE in the range between 30 to 50 minutes, before
the accuracy of the prediction decreases again with growing sampling intervals. We
attribute this to the short-term fluctuations in the cloud coverage that are present
in the more fine-grained data, which are not represented in the hourly weather
forecast. For an operational setting, this is significant: more data does not imply
higher accuracy, and by choosing a sampling interval closer to 30 minutes we can
both increase the accuracy of the prediction and save costs in transmission, data
storage and training time.
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Figure D.27: Scores for models trained with data sampled at different rates. While
the STAPE is fairly unaffected once sampling intervals are longer than 10 minutes,
the SMAPE is getting better in the range between 30 and 50 minutes.

D.6 Day-to-Day Operation and Evaluation

To ensure the relevance of our results, we now study the performance of the prediction
in an operational setting. That means that devices are newly deployed without prior
data, and machine learning models are re-trained continuously as training data
becomes available. In the previous sections, we analyzed suitable machine learning
models, feature sets and sampling frequencies. For the operational settings, we chose
trade-offs that allow for quick computation and good performance. We hence chose
the random forest regressor (RFR), with zenith, azimuth, cloudiness, lowClouds,
mediumClouds, highClouds, as features, and a 30-minute sampling frequency. As
training and test data we use the so far unused data of the year 2019.

We assume that an IoT device n is newly deployed on day dn
dep and use dn

i to
describe the i-th day since the deployment of n. At the end of each day dn

i , the
device manager computes a new model Mn

i with the training data from the previous
days since deployment, i.e.,

trainn
i = {d | d ≥ ddep ∧ d ≤ di + ddep

∧ d ≥ di + ddep − trainmax}.

The last conjunct constraints the use to only the last GHItrainGHImax days for
training data. Since a device is deployed without prior knowledge, the model Mn

i
only contains training data collected from dn

dep to dn
i . The model Mn

i created for
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device n at the end of day dn
i is then used to create a new energy prediction for day

dn
i+1, using the public weather forecast and the solar angles that are calculated from

time and location. To ensure a realistic and causal setting, we only use weather
forecasts for day dn

i+1 that were published on the previous day dn
i . We then calculate

error metrics for all days dn
i , i > 0.

D.6.1 Amount of Training Data

As the computational effort of model fitting increases with the number of training
samples and hence with increasing trainmax , we examine first how the prediction
quality of Mn

i develops with the number of included training days. For that, we
calculate the results for n = 365 devices, each deployed at a different day in 2019,2
and study the results of M355

i when predicting day d365
i for increasing trainmax.

Figure D.28 shows how the SCAPE reduces with a growing number of training
days trainmax. Mean and median error reduce quickly with an increasing amount
of training data. Already after around 30 to 50 days with training data the SCAPE
is on a level that only marginally reduces with further data.

We have also experimented with data augmentation, similar to [221], which takes
the existing training data and generates additional data points through various
techniques. However, this approach could not further reduce the number of required
training days as desired.

D.6.2 Operational Setting and Comparison

For the final evaluation and comparison with other baselines, we now examine
how the metrics evolve over time, i.e., starting with one day of training data on
deployment day d1, and going forward using a maximum of trainmax = 30 days.
Figure D.29 shows the results of the operational setting. Again, we simulated
N=365, corresponding to the deployment of devices at different days of the year
2019.

Table D.4 compares the results of our proposed approach (RFR) with the
approaches described in Sect. D.3. For the EWMA-based approach based on [82] we
used 48 timeslots and α = 0.7. Similarly, we used the same setting for the approach
using cloud-cover forecasts (CCFs), as they provided the best results in [205]. (SP)
denotes the smart persistence model. The numbers show the mean and the median
of the metrics over all 365 prediction days. As expected, the methods only relying
on past data (EWMA and SP) perform worst. The results of CCF show the benefit
of taking cloud coverage forecasts into account. The consistently best results are
achieved by our proposed RFR model, which scores more than 20 % better than
the CCF model for the median SCAPE.

RFR and CCF receive the same weather forecast, but CCF only utilizes the
overall cloudiness feature while RFR also takes the other cloudiness features and
solar angles into account. The remaining error for RFR is comparatively low, and
we suspect that most of it is due to imprecission of the weather forecast, i.e., an
inherent problem that only reduces with more accurate weather predictions.

2We arranged the days of the year in a circular way, so that periods going beyond the year
end draw their days from the beginning of the year.
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Figure D.28: Distribution of SCAPE with growing number of training days, for
N=365 deployments.

D.6.3 Computational Effort

One argument for the EWMA-based approaches is their computational simplicity.
We argue, however, that the computational effort needed for the RFR is insignificant
in a modern IoT system with device management. The effort for storing training
data and training the models is low on cloud- or edge-platforms, especially when
compared with computation and storage needed for the actual application data in an
IoT system. For example, with the setting chosen above (trainmax = 30, sampling
rate 30 minutes and all cloud-related features), training time on a PC-grade CPU
is on average below 400 ms per day and per device. The prediction time for a single
day with 48 time slots is on average below 9 ms. This seems to be acceptable given
the potential gains in prediction accuracy that further increase the energy efficiency
of the IoT device, which is a much more urgent problem.
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Figure D.29: Distribution of SCAPE for N=365 nodes starting without prior data
with growing days di since deployment, and a maximum of trainmax = 30 training
days.

D.7 Conclusion

We presented and evaluated an approach for solar power energy prediction that is
suitable for the application in solar-powered IoT systems. The median prediction
scores are more than 20 % better than the current state of the art for IoT energy
prediction, which we consider significant for the effectiveness of energy budget
planning. The input for the prediction models only uses the public weather forecast
and solar angles derived from the current time and location, that means, only
data that are easily available. The approach scales well in an IoT setting. No
manual tuning was necessary for the individual IoT devices despite any differences,
for instance in solar panel size, as these differences are learned by the individual
machine learning models. The problem of individual adaptation is hence solved by
individual but autonomously learning models.

Once part of the device management, energy harvesting models with better
performance open up for more strategic energy planning. As indicated in Sect. D.1,
IoT devices can then more proactively schedule energy-intensive tasks in predicted
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Table D.4: Results of the prediction models in the operational setting.

SCAPE SMAPE STAPE
mean median mean median mean median

SP 44.79 38.84 50.56 47.67 39.01 32.96
EWMA 40.30 33.19 45.48 41.06 35.13 27.16
CCF 34.49 30.63 41.53 38.47 27.46 21.11
RFR 31.20 24.10 38.00 31.50 24.40 16.10

Error Reduction -9.54 % -21.32 % -8.50 % -18.12 % -11.14 % -23.73 %
from CCF to RFR

periods of energy surplus, avoiding over-dimensioning of systems. This has the
potential to reduce the size of solar panels and energy buffers that IoT devices need
to operate in a perpetual way, further advancing sustainable operation.
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Introduction

Abstract

The future devices connected to the IoT must have the ability to solve
their tasks intelligently, optimize their operations and adapt to changes
autonomously. Machine learning, executed as part of device management, is
the key to such intelligence. We discuss an evolution of device management
systems, that also takes meta-knowledge into account, i.e., has the ability
to manage the learning in the system. This is a step towards the vision
of Cognitive IoT. As one important function for device management, we
identified the selection among various prediction models. As an example, we
use autonomous energy management of solar-powered sensor devices in an
environment with volatile weather and seasonal changes. We investigate an
algorithm that selects among a set of prediction models based on historic
performance. Our results show that even though a classical machine learning
model is able to learn quickly in some periods, it has trouble generalizing well
over the data in other periods, compared to a simple physical model. We show
that providing a system with the ability to select among a set of predictors
can mitigate the bootstrapping problem for constrained devices and also help
them stay in operation in periods when training data is missing.

E.1 Introduction

The next leap for IoT applications is a closer integration of artificial intelligence and
machine learning with the fabric of the IoT system. By acting more intelligently, the
system will not only increase its utility to its domain, but also be able to manage
its resources more efficiently and act autonomously, i.e., require less human control.
Wu et al. [61] describe this as Cognitive IoT. One challenge of this vision are the
constraints within typical IoT devices that restrict the amount of computation and
storage, two generally important factors for the application of machine learning. A
solution to resource constraints in the IoT nodes is to offload learning processes into
the cloud [12] or fog [222], where resources are virtually unlimited. This opens a
path towards the vision of Cognitive IoT through an evolution of cloud-based device
management platforms into what we refer to as Cognitive Device Management
platforms.

Over the last years, several IoT platforms have evolved, and are now an integral
part of any IoT solution [105]. In their current form, most of them focus on the
enablement of remote device management, illustrated in Fig. E.30. Besides taking
care of data aggregation, device management platforms also offer support for the
operation of IoT devices, including monitoring their operational status, for instance
their battery level, location and firmware version. They also manage the remote
update of configurations and firmware. This ensures that bug fixes, security patches
and new features can be deployed remotely. To address the large number of devices
as part of a deployment, device management allows to address many devices at
the same time, perform batch updates, addressing for instance all devices with
a certain firmware version or within a given physical location [114]. This still
constitutes a rather mechanic approach towards device management that is focused
on remote operation. Specific situations still need to be addressed for each device
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Figure E.30: Evolution of remote device management towards a Cognitive IoT

individually [223]. To mitigate this problem, device management can be extended
towards predictive maintenance, which also automatically analyzes the operational
data, with the aim to detect anomalies or trends that require action, to diagnose
problems as early as possible [224, 102]. Instead of just logging the state of the
battery, for instance, predictive management can foresee when a device requires
maintenance or replacement in the future.

In many settings, even predictive analytics is not enough to ensure proper and
scalable operation of an IoT deployment. Instead, IoT applications need to close
the autonomic and cognitive loop, and become autonomous [52] and self-managed.
For nodes subject to energy harvesting, for instance, this means to keep track
of the current state of the energy buffer, predict their future energy supply, and
have the ability to select the best viable strategy to operate energy neutral in the
long run [82]. This can be treated as classical optimization and learning problems.
However, due to the scale of IoT, a manual supervision of these learning processes is
unfeasible. Instead, a device management system needs to be able to manage these
learning processes, i.e., operate on a meta-learning level. For instance, it needs
to monitor the knowledge that is available about a device, its operation and its
environment, manage training data, and supervise machine learning processes.

Within this area, we have explored the mechanism of selecting the best available
prediction model at a given time (also called predictive model selection), and
identified this as an important task for cognitive IoT device management. In
particular, we show how such a model selection can be performed autonomously,
and how a set of models can solve the bootstrapping problem during the start of a
new system when training data is scarce or non-existent. We discuss the tuning of
the model selection to manage the tradeoff between reactivity and stability. We
also show how proper model selection can contribute to the robustness of a system
and provide some degree of self-healing. The experiments underpinning our selector
and the discussions are done in a realistic setting and with real data.

In the following, we describe the concept of cognitive device management,
motivated by a case study of autonomous energy management, explained in Sect. 2.
We detail the functions of cognitive device management in Sect. 3 and present a set
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Figure E.31: Actual produced solar power, in mA, for three consecutive days in
October

of prediction models for solar energy in Sect. 4. In Sect 5 we describe an algorithm
to select among the different prediction models so the overall accuracy is improved,
especially during the critical bootstrapping phase of the system. We conclude with
a discussion of our results and related approaches.

E.2 Machine Learning for Energy Management

We illustrate the concept of cognitive device management by means of energy
planning for constrained IoT sensors. The IoT sensors are Waspmotes, off-the-shelf
components from Libelium intended for monitoring air quality, in particular NOx,
CO2 and dust. To simplify deployment, they are powered by solar panels, with
a lithium polymer battery as energy buffer. During deployment [150] it became
apparent that the energy harvesting opportunities under Nordic conditions varies
significantly between summer and winter. CO2 and dust measurement require a
significant amount of energy, because the sensors require heating and a motor for
airflow, respectively. Using more energy than can be harvested obviously results
in a declining battery charge and eventual node failure. At the same time, saving
too much energy is not optimal either; once the battery is full, any further arriving
solar energy beyond current consumption is lost, and cannot be spent to collect
more data, or improve data quality. For this reason, planning the future energy
budget pays off [174].

In Norway, seasonal changes between summer and winter are drastic. Collecting
measurements every 5 minutes during summer is no problem, but it is necessary to
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Figure E.32: Workflow for energy planning

reduce the sampling rate to around once every two hours during winter, when days
are short and the sun barely looms over the horizon. In addition, the available energy
also varies considerably with the current weather from day to day, especially with
the level of cloudiness [225]. Fig. E.31 shows three consecutive days in October. The
area under the curve is proportional to the harvested energy, and varies considerably.

To improve prediction, we describe in [159] how machine learning can predict
the amount of energy available in the future based on public weather forecasts,
illustrated in Fig. E.32. Since the Waspmotes are only equipped with an 8-bit micro
controller, the machine learning as well as the prediction and planning are offloaded
in the cloud, as part of the device management. The sensor nodes communicate via
the low-bandwidth LoRaWAN protocol. With every payload message, the sensor
nodes also attach the amount of harvested solar energy. This data is combined with
the current weather forecast and makes up the training data for a regression model.
Details about this model are discussed in Sect. E.4. The trained model is then used
as a predictor for a planning algorithm that determines a good sensing strategy
for the sensor node, so that it achieves energy-neutral operation, ENO [82]. This
property secures an optimal utilization of the available energy relative to the data
collected.

While the prediction based on machine learning works well, it also comes with
additional tasks for the operation of the system, which we will discuss in the
following.

E.3 The Need for Cognitive Device Management

We argued in the previous section that optimal control of an IoT system requires
functions that go beyond remote device management, and also include more advanced
resource planning and adaptation. Consistent with the vision of cognitive IoT,
these functions can be supported by various machine learning models, the one for
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Figure E.33: Predicted and actual produced solar power, in mA, for three consecutive
days in October

solar energy prediction taken as example in this paper is only one of many. Other
examples are optimal routing strategies, selection of radio interfaces, decisions to
offload computation, to name a few [12].

This expands the tasks for device management, which now also has to take the
acquisition of knowledge and the management of it into account. The autonomous
orchestration and supervision of such a workflow is done by a cognitive device
manager. While there can be several management tasks, we focus in the following
only on energy management.

For each workflow, there are a number of functions to monitor and control:

• A first task is to manage the collection of meta-data concerning the device’s
operation, in addition to domain data, as this is also a source for machine
learning.

• A second task is to trigger the machine learning process, i.e., model training,
whenever significantly new training data becomes available.

• A third task is to run new iterations of energy planning, as shown in Fig. E.32.
This can for instance be triggered by the availability of updated weather
forecasts for the next hours and days, or by the detection of large discrepancies
between assumed and actually observed energy budget.

These tasks are on a meta-level compared to the primary tasks of the IoT application.
Not only do they regard knowledge about the system’s own operation, but they also
consider how much knowledge the system has about itself, i.e., perform the meta-
learning. Similar to other functions of IoT device management, these operations must
operate constantly and autonomously, without supervision or interventions. Their
tight integration with the device state and communication suggests an integration
as part of the device management [55].

Machine learning models are of statistical nature and depend on the availability
of sufficient training data. This means that a model cannot make an accurate
prediction when it doesn’t have sufficient data [226]. When the operation of the
system depends on the prediction, this implies a bootstrapping problem: We need
a prediction model to start the system, but good prediction models will only be
available after we have collected enough training data, as shown in [227]. Hence, a
cognitive device manager needs to provide self-configuration and self-optimization
already in the deployment phase. To solve this problem, we employ a set of models
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instead, so that the statistical models dependent on training data are complemented
by one or more physical models that don’t require training data. The task of a
cognitive device manager is then to monitor the accuracy of these models, and
find the model that is best suited to support its current operation, in its current
context, at any given time. Intuitively, the system will start with the models initially
available and switch over to more advanced ones when they become available and
accurate enough.

Having a set of models instead of only a single one also makes the system
more robust. A cognitive device manager that detects when the accuracy of a
model suddenly drops, can switch to a backup model. This may happen when
necessary input data is missing, for instance a missing weather forecast, or if the
environment of a sensor changes, for instance when a solar panel is turned into
a different orientation. We will now take a closer look into different models, the
metrics to rank them and how to implement selection algorithm.

E.4 Set of Prediction Models

In the following, we describe a set of models for the prediction of solar power. The
models are of different natures, i.e., physical or statistical.

In previous experiments [159][228], we have observed that on average the available
solar energy correlates with the sun’s angle and the cloudiness, as visible in Fig. E.33.
A simple physical model, based on the sun’s zenith, is therefore the following:

IZENITH =
{

IMAX cos(θs) θs > 0
0 otherwise

(E.13)

where IMAX is the maximum current of the solar panel, in this case set to 315
mA. The sun angle θs is calculated from the geographic coordinates and the time.
Fig. E.33 shows the predictions, compared with the actual solar power. The actual
measured solar energy is shown by the solid bold line. Since the ZENITH model is
independent of weather, it underestimates the available solar energy on sunny days
(day 1), scores well on average days (day 2), and overestimates on days with dense
clouds (day 3).

PREDAY is a very different model and of a more statistical nature, since it
simply uses data observed from a day di as prediction for day di+1. The benefit is
that the model does not require any domain knowledge or specific considerations.
However, the model only works from the second day onwards and its prediction
accuracy highly depends on the stability of the weather conditions [173]. The sunny
conditions on day 1 in Fig. E.33, for instance, lead to an overestimation on day 2.

To take the weather into account, we employ a machine learning model RFR-W
that is trained with a random forest regressor, using the sun and a hourly public
weather forecast as input features. The weather forecast consists of the cloudiness,
and a weather symbol (as a discrete value). This model can be very accurate, but
only with precise weather forecast and sufficient training data. The model was
trained for each day, only taking past observations into account. For a more detailed
discussion of this prediction model, we refer to [159]. Similar to the PREDAY
model, it only delivers predictions from the second day onwards.
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Figure E.34: Daily mean power predictions of all predictor models, together with
the actual mean daily solar power

Table E.5: Prediction Model Summary

Model Type Input features Tr. data MAE∗

ZENITH Physical Zenith None 14.675
PREDAY Statistical Energy produced 1 day 16.803
RFR-NW Statistical Sun angle >1 day 17.933

RFR-W Statistical Sun pos. + weather >1 day 14.242
∗Daily mean absolute error (MAE), averaged over all 105 days.

The last model is RFR-NW, which is a random forrest regressor that only takes
the sun’s position into account. It was trained similar as the RFR-NW predictor,
but with the weather data removed.

For a comparison of the prediction models, Fig. E.34 shows the predicted mean
predicted solar power for each day given by each of the predictors, in addition to
the actual power produced by the solar panel. The harvested energy is gradually
declining, reaching the lowest point at the winter solstice in late December, i.e.,
the point in time where the sun’s daily maximum elevation is at it’s lowest point.
It also displays a high variance throughout the period due to volatile changes in
weather. We observe that the different predictors follow the same trend, but that
which predictor is closest to the actual value varies from day to day. We can also
see that the three statistical models don’t produce any value for the first day, due
to the lack of training data.

Our observations are based on data from 105 days, starting at October 2, 2017
and ending at January 14, 2018. Since we are especially interested in the startup
of the system once it is deployed, we defined seven overlapping periods of 21 days
within those 105 days. To ensure causality, the prediction models were calculated
independently for these periods, i.e., without knowledge of days outside of that
period. Thus, this corresponds to seven independent deployments. Figure E.35
shows the predictions for periods 1 and 5.

As metric for the accuracy for the daily prediction, we calculate the mean
absolute error (MAE) of each prediction model compared to the actual measured
power for each day. Table E.5 provides an overview of all prediction models. In its
last column, it shows the average over all daily MAEs as an indication for the overall
performance of a predictor. The numbers imply that the RFR-W model (machine
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Figure E.35: Mean of predicted vs actual produced energy, for set 1 and 5

learning with weather forecast) is the best overall predictor, with regard to the
entire 105-day period. During the system startup, however, the exemplified periods
in Fig. E.35 indicate that other models perform better during system startup, which
we will address in the next sections.

E.5 Autonomous Predictive Model Selection

The different characteristics of the models above, especially during the first days
after deployment, motivate our search for a good prediction model selector. The
intuition is that a device manager is equipped with a set of prediction models of
different nature, and that an autonomous selection algorithm evaluates the models
and selects the best one for energy prediction and planning. This selection can in
principle be a machine learning task as well. However, in our case this is not a
feasible solution, since we want to address the bootstrapping problem and support
the system especially during the phase where no or little training data is available.
Instead, we examine a selector that does not require any training, since it is solely
based on the past performances of the predictors. The performance is measured
with the mean average error as introduced in the previous section. Intuitively, the
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predictor with the lowest MAE is the best one and should be selected.
The question is how much past performances should count compared to more

recent ones. To investigate this, we calculate the exponential weighted moving
average (EWMA) of the MAE, using the weights wi = (1 − α)i, which gives:

yt = xt + (1 − α)xt−1 + (1 − α)2xt−2 + ... + (1 − α)tx0

1 + (1 − α) + (1 − α)2 + ... + (1 − α)t
(E.14)

Where α is set as:
α = 2

s + 1, for span s ≥ 1 (E.15)

The EWMA smoothes the data, and ensures that the most recent prediction is
weighted more than the predictions in the past. The decaying factor, set as a span
that corresponds to an N-day EW moving average, decides how far in the past the
selection algorithm should look. When setting the decaying factor for the EWMA,
there are several factors that must be considered. If the time span is too short, the
selection will pick up any fluctuations in the weather and thus change predictor too
rapidly to account for trends in the long-term weather pattern On the other hand,
if the span is too long, the selection algorithm will need longer time to adapt to
changes.

To investigate this tradeoff, we implemented different selection algorithms that
used decaying factors with span from 1 to 10 days. They are listed as S-EWMA-x
in Table E.6. The x corresponds to the decaying factor, in number of days. Thus,
the S-EWMA-1 corresponds to the arithmetic mean, while S-EWMA-10 smoothes
the MAE over 10 days.

For each predictor in each period, we calculated the mean of the daily MAE
for all predictors and counted the number of times they were the most accurate,
i.e., having the lowest MAE for that day. The result can be seen in Table E.6. For
comparison, we also defined additional selectors:

• For each predictor from Table E.5, we implemented a selector that always
chooses this predictor, listed as S-predictor in Table E.6.
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• S-ORACLE always chooses the best prediction model in retrospect. Though
this selection cannot be implemented in practice, it serves as a best-case
performance boundary for our selection algorithm.

To explain the selection mechanism, we look at Figure E.36. We see the
calculated EWMA of the MAE for all the predictors, smoothed over a span of 5
days, for the first and fifth period in our test set. The graphs represent the MAE for
each predictor, i.e., the lower the graph, the higher accuracy of the predictor. This
means that the predictor can be ranked accordingly, which results in a diagram like
the one shown in Figure E.37. This rank is used to select a predictor for the next
day, where the selector simply picks the predictor that at any given time has the
lowest MAE.

Table E.6: Performance of Prediction Selectors (from 7 overlapping periods, total
of 147 days)

Mean MAE for individual 21-day periods Overall results for all periods
Selector Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Correct Days Percent Mean MAE
S-EWMA-1 36.279 24.144 14.418 12.473 5.503 4.365 7.316 55 37.41 % 14.928
S-EWMA-2 34.571 23.736 14.178 10.654 5.110 4.597 7.951 63 42.86 % 14.399
S-EWMA-3 34.641 23.333 14.031 10.424 5.194 4.597 7.832 66 44.90 % 14.293
S-EWMA-4 36.577 22.993 14.121 10.424 5.351 4.490 7.624 68 46.26 % 14.511
S-EWMA-5 35.555 22.993 14.211 10.424 5.351 4.490 7.330 71 48.30 % 14.336
S-EWMA-7 32.483 23.308 14.382 10.424 5.334 4.586 7.440 71 48.30 % 13.994
S-EWMA-10 32.483 23.308 14.802 10.424 5.256 4.586 7.048 71 48.30 % 13.987
Trivial selectors that always choose the same predictors, for comparison
S-ZENITH 34.886 23.119 15.091 10.424 5.155 4.606 7.316 72 48.98 % 14.371
S-PREDAY 38.328 21.094 15.502 14.941 6.370 5.408 7.879 37 25.17 % 15.646
S-RFR-NW 42.872 25.383 13.575 15.351 6.982 6.371 8.763 12 8.16 % 17.042
S-RFR-W 31.598 20.405 13.001 13.832 6.665 6.127 8.007 26 17.69 % 14.234
Oracle selector that always chooses the best predictor (with future knowledge), for comparison
S-ORACLE 25.485 16.826 11.677 9.713 4.193 3.838 4.870 147 100 % 10.943
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Figure E.36: MAE of predicted energy, for set 1 and 5, smoothed over the 5-day
EWMA

E.6 Discussion

For each 21-day period, we calculate the mean MAE, shown in Table E.6. The
last three columns show the overall results for all 7 periods, where the first two
columns show how often the selectors picked the predictor that was actually best,
as an absolute value and a percentage, respectively. The last column shows the
mean of the mean MAE of all seven sets. Looking at the overall results, we see
that S-EWMA-10 and S-EWMA-7 have the lowest MAE, with 13.987 and 13.994,
respectively. They are also able to predict correctly which model that was the most
accurate 48.30% of the time. S-ZENITH (always selecting the ZENITH model) is
the predictor that is most often closest to the actual produced energy, having the
closest prediction 48.98% of the time. However, it has a higher MAE, at 14.371.
The overall best predictor is the S-RFR-W, with a MAE of 14.234, even though it
was only able to come with the closest prediction in 26 out of 147 days.

When we look at Fig. E.34, we observe that the predictions of PREDAY and
RFR-NW are often out of sync with the actual produced energy. This is not
surprising, given the strong influence of the volatile weather on the solar energy.
The result is a high MAE, when compared to both the stable ZENITH model, and
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Figure E.37: All predictors, for set 1 and 5, ranked by S-EWMA-5. The predictor
with rank 1 is chosen by the selection mechanism for the next day.

the RFR-W model, which is able to take the shifting weather into account.
Looking at the MAE in each of the seven periods individually, RFR-W is the

best single predictor in the first three periods. However, in the last four periods,
both the ZENITH model and the selection algorithms are performing better. And in
the two last periods even the PREDAY model has a lower error rate than RFR-W.
This indicates that even though RFR-W was able to learn fast in some periods, it
had trouble generalising well over the data in other periods, further confirming the
need for model selection.

To study the bootstrapping phase in each period in closer detail, we take a look
at the MAE of each predictor for periods 1 and 5. For both periods, we choose to
study the EWMA of the MAE with a span of 5 days. In Fig. E.36, we see that the
ZENITH model has the lowest MAE for the first 8 and 9 days, respectively, and that
the RFR-W model is gradually making more accurate predictions, before it becomes
the preferred predictor in day 10 in both of the periods. Looking at the absolute
values in Fig. E.35, it seems that this is because RFR-W is too optimistic in the
first days after deployment. This trend can be seen in all periods. As time goes by,
and the selector builds experience, it will put more weight to the overall trend, and
thus change selected predictor less often. Overall, this benefits the ZENITH model
in the beginning, while the RFR-W model is usually preferred after it has gained
enough training data to give more accurate predictions. This indicates that using a
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set of predictors is beneficial for the overall prediction in the bootstrapping phase.
Period 5 includes a span of days, marked in Fig. E.37, where the weather forecast

data was missing due to a server error, and the RFR-W model relied on old, and
therefore imprecise forecasts. This can explain the sudden rise of the MAE for
RFR-W, which causes the autonomous selection algorithm to change the preferred
predictor, switching between the ZENITH and PREDAYmodels for some days until
it stabilise on the ZENITH model. We can also see that the RFR-W improves when
it get access to updated weather forecast data again. This is an indication that
using a set of selectors will also provide a system with self-healing abilities.

Finally, looking at Table E.6, the data suggest that the decaying parameter
should be set to keep a long span, i.e., favour stability over reactiveness. This will
still allow the selector to adapt rapidly in the beginning, when the period is shorter
than the decaying parameter.

E.7 Related Work

In autonomic computing, self-configuration, self-optimisation, self-healing and self-
protection, are important aspects [52]. Our results indicate that these tasks can be
mitigated by giving a cognitive device manager the ability to select among different
prediction models. In statistics, this problem is known as model selection [229]. An
example of model selection applied in a comparable context can be found in [230],
where Doan et al. use tree-based linear regression for predicting the performance of
different algorithms, in order to select the predictor that has proven most accurate
on a test set. However, the choice of using machine learning for prediction inhibits
the usage until a training set is available. Another example of a model selection
mechanism is [231], where Dhiman et al. implements a dynamic device management
controller that employs a machine learning algorithm, which is trained to select the
expert policy that has the best chance to perform well for the coming period. Their
experiment shows that the controller converges to select the best performing expert
in the set, at a given time. This is in accordance with the observations we made in
our experiment. However, again we see that the use of machine learning to train
the selection controller limits the usefulness in a bootstrapping scenario.

Real-time predictive analytics, i.e., knowledge of an event before it actually occurs
in order to mitigate the event or prepare for the outcome, is also an important aspect
of cognitive device management. In [227], Derguech et al. propose an architecture
for decision support of a energy management system in a building, using predictive
analytics and open data sources. They approach this problem by implementing a
selection mechanism placed inside a controller, which is responsible for choosing the
data source that is best suited for prediction. Their solution is based on two steps,
data management, i.e., data collection, -filtering and -storage, and data analytics,
i.e., source selection and prediction. This setup is comparable to our own. However,
in their paper they show that the machine-learning model they have implemented
is unable to give an useful prediction until it has been fed a certain level of training
data. Hence, the bootstrapping problem is not addressed here either.

An example of a specialized type of device manager for solar energy prediction
can be found in [232]. Here Shresthamali et al. describe an experimental setup
where an adaptive power manager uses reinforcement learning to predict the energy
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production of a solar energy harvesting device, consisting of a solar panel, an ideal
battery and a general sensor node. In addition to historical data about harvested
energy, meta-knowledge (i.e., battery level and weather data from a public weather
forecast) is used to predict the future solar energy production, with the aim to
achieve energy neutral operation. They address the need for sensor devices to be
able to adapt to changes (i.e., season, climate and battery degradation). However,
even though their machine learning algorithm predicts the energy intake with good
accuracy, it neither addresses the bootstrapping problem nor how to cope with
periods with missing training data. They also rely on a single machine learning
model, which means the robustness of their power manager is not considered.

So far we have seen examples of device managers that incorporate model selection
or other forms for cognition in their operation. However, in order to manage the
device manager itself, some sort of framework that is able to handle cognitive
tasks autonomously is needed. Savaglio et al. look in [233] at four relevant
autonomic and cognitive architectures for management of IoT devices, of which
two of them are of particular interest in a cognitive IoT setting: Inox [234] is an
IoT-oriented platform that includes autonomic management, scalability, federation,
adaptability and continuous optimization. It also supports virtualization, which is
an important aspect of IoT device management. Device management, located in the
platform layer, includes several autonomic functions, specifically self-management,
self-monitoring, self-configuration, self-optimisation, self-healing, self-protection and
self-adaptation. Focale [235] is an autonomic, network oriented architecture that
includes a learning- and reasoning engine. It is implemented around the idea that
an autonomic system must have the ability to react to events and conditions that
it senses in the environment, and manage its operations accordingly. In addition,
Focale includes separate models for the node itself and the environment in which it is
operating. This is in contrast to many other IoT architectures and platforms which
are limited to a predefined model where the functionality is known beforehand.

The notion that the environment in which the device is operating is important
for autonomous and cognitive management, is also present in the management
framework for smart cities that is proposed by Vlacheas et. al. in [91]. Among other
things, it has the ability to select behaviour dynamically through self-management
and self-configuration, based on domain knowledge and knowledge about the context
of the operation itself.

E.8 Conclusion

We have proposed an evolution of device management platforms towards cognitive
device management as a path towards the vision of Cognitive IoT. In particular, we
presented and discussed several prediction models, and proposed an algorithm to
select among those. We argue that the management of knowledge, and in particular
the supervision of prediction models and the selection among them, is an important
task for IoT device management. We expect in the future many more cognitive
processes to guide the operation of IoT applications; energy management is only
one of them.

In addition, we looked into the specific problem of operating solar-powered nodes
under volatile weather and seasonal conditions. Our experiment and discussion is
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based on real data gathered in realistic settings. The results show that predictive
model selection is a suitable means to supervise machine learning algorithms, and
that having several models of different nature, i.e., physical vs. statistical, can
solve or mitigate the inherent bootstrapping problem. The autonomous selection
algorithm switches between initially available, but in the long run less accurate and
less adaptive physical models, and statistical models based on machine learning, that
are more accurate once they have gathered enough training data. The results also
revealed how the multi-model approach with selection increases system robustness
and provides some degree of self-healing.
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Introduction

Abstract

Device management can enhance large-scale deployments of IoT nodes in
non-stationary environments by supporting prediction and planning of their
energy budget. This increases their ability for perpetual operation and is a
step towards maintenance-free IoT. In this paper we consider how to accelerate
the collection of relevant training data for nodes that are introduced into
an existing deployment to increase the accuracy of their predictions. In
particular, we investigate how nodes powered by solar energy can learn their
energy intake faster and more accurately by using data from selected nodes
that are working in similar conditions. We explore an architecture that utilizes
different training data selection policies to manage the learning processes. For
validation, we perform a case study to explore how nodes with correlated data
can contribute to the learning process of other nodes. The obtained results
indicate that this approach improves the accuracy of the predictions of a new
node by 14 %.

F.1 Introduction

One step towards maintenance-free IoT systems is to provide devices with solar
panels or other energy-harvesting power-supplies to ensure perpetual operation.
Since these power sources often are stochastic in nature [167], nodes can benefit from
planning their energy budget ahead [236], and hence align their power consumption
with the expected incoming energy for improved overall performance. The incoming
energy depends on the specific node instance, for example the type of solar panel,
orientation and location, and is often non-stationary, i.e., it changes its characteristics
over time. Therefore, each node requires individual adaptation, which implies to
configure each device separately and at run-time [55], taking current context and
previous experience into account [7, 237]. As IoT nodes are typically constrained
with regard to computation power, memory and scope of data, we examine how
fine-grained individual energy planning can be part of the device management for
an IoT system, for instance as part of a cloud service.

The scale of IoT systems makes it unfeasible to tune the required processes
manually for each device [238], which is why autonomous operation and self-
adaptation are required. In [159] we have shown how the energy for a node with
solar panels can be predicted using publicly available weather forecasts and relatively
simple machine learning models, in an autonomous and scalable way. The prediction
can be directly used by planning algorithms like the ones presented in [232, 239].
A remaining challenge is that such approaches require training data. Hence, we
argue that managing the acquisition of suitable training data is an important task
of device management.

In this paper, we investigate how solar-powered nodes introduced into an existing
deployment can accelerate their learning. Our approach is to give them training
data collected from selected nodes that have been working in similar situations, as
illustrated in Fig. F.38. This figure shows the energy intake of eight solar-powered
IoT nodes facing towards four different directions. Nodes facing the same direction
have similar intake profiles.
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Figure F.38: Energy intake from eight solar panels located in Trondheim, Norway,
on December 12th, 2018. The solar panels are pointing pairwise in four different
directions.

When preparing machine learning models for the energy intake prediction for a
newly deployed node, taking training data from any other node indiscriminately leads
to inaccurate predictions. To temper this, we study how to identify suitable training
data for a node by selecting data from nodes with correlated data. The results show
that by selecting the most relevant training data based on the correlation between
devices, we can train a model that decreases the error of the predictions by 14 %,
compared to using data from all previously deployed nodes.

We continue with a discussion of related work in Sect. F.2 and describe the device
management architecture we designed as context for the training data selection
mechanism in Sect. F.3. In Sect. F.4, we present the experimental setup and
elaborate the different selection policies in Sect. F.5. We then present the results
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and discuss them in Sect. F.6 and Sect. F.7, respectively.

F.2 Related Work

Several papers focus on autonomous, adaptive device management within the IoT.
Zhang et al. [240] describe the concept of cognitive IoT, which aims at improving
performance in the network as a whole by monitoring network conditions, analyze
the collected data, make intelligent decisions based on the incurred knowledge, and
perform adaptive actions. Further, they propose a network architecture that makes
use of cognitive nodes that have the ability to autonomously adjust their network
performance to current conditions. Sheth [55] argues that future IoT management
will need to handle a large variety of devices and applications, that are subject
to unplanned and unexpected events and is using predictive processing to solve
their problems at the edge of the network. In this light, situational awareness is
important for IoT devices, to derive value from data and learn from experience.
Afzal et al. [111] advocate that cognition must be extended to incorporate IoT
specific design challenges, like energy harvesting, cognitive spectrum access and
mobile cloud computing technologies. Vlacheas et al. [91] address the challenges of
technological heterogeneity and propose a framework that shows not only how, but
also why and when devices should be connected to a network. Their framework
was later implemented by Sasidharan et al. [241], who added a learning- and
reasoning engine that takes contextual and situational parameters in consideration
in order to improve the decision process. With their architecture they investigate
connectivity issues and run performance analyses, using a network of solar energy
harvesting devices deployed with central coordinators to control the management.
However, the main focus in these works is either on managing the network as a
whole or investigating the connectivity between the devices, while we investigate the
operational part of management of the individual devices with the aim of achieving
self-management.

We can also find relevant research in the domain of autonomous operation for
IoT devices located in non-stationary environments. Wu et al. [61] argue that
cognitive mechanisms should be used for more than network management and
connectivity. Their main argument is that in an IoT framework, objects need to
have the capability to reason about their physical and social environment in an
independent fashion. They provide a conceptual framework based on a perception-
action cycle, data analytics, knowledge discovery, decision making and service
provisioning. In their framework, physical and virtual things are represented as
agents that enable smart resource allocation, automatic network management and
intelligent service provisioning through interaction. Foteinos et al. [7] state that
support for smart and self-adaptive applications and objects are factors that need
to be in place before the process of connecting heterogeneous IoT devices can
be managed in a dependable, scalable and autonomous manner. To solve this,
they present a cognitive management framework that adapts the configuration
and behavior of devices according to the current status and context. They also
show that their framework is able to improve situation awareness, reliability, and
energy efficiency of IoT applications. This is in alignment with our work. However,
their focus is to overcome the technological heterogeneity and complexity of the
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underlying networks and IoT infrastructure, while we look at the heterogeneity and
complexity that is found in the physical environments of the devices. Preden et
al. [237] stress the importance of situation awareness and attention when monitoring
overall system performance in a dynamically changing environment, since selecting
the most proper action in a given situation is highly dependent on the context of
the device in question. They propose a conceptual architecture that explores these
aspects in a self-aware health monitoring prototype and show that both are critical
to self-awareness.

We found few works addressing the process of selecting training data for machine
learning or the mechanisms that are needed to achieve this. Han et al. [242]
demonstrate the challenge of estimating the disturbance covariance matrix based
on an available secondary data set, when the number of secondary datasets is large
and the data is heterogeneous due to non-stationary environments. This results
in a combinatorial problem that is computationally expensive or even infeasible.
To mitigate this, they present an algorithm based on the minimal covariance
determinant that chooses training data with similar disturbance properties and
discards vectors that contain possible outliers. Fraternali et al. [243] discuss the
challenge of tuning individual IoT devices for perpetual performance, when there
is a need to adapt to changing environmental conditions. Their approach focuses
on autonomous configuration of learning algorithms on constrained devices, based
on identifying the environmental context for solar-powered devices. They argue
that it is unfeasible to train a different reinforcement learning policy for each
individual node. Instead, they propose to use a single policy for nodes that share
similar lighting conditions. In a case study, they conduct an indoor experiment
that shows the performance of the devices dropping significantly when using a
single policy across all devices, due to the differences in lightning conditions. This
means that identify devices that experience similar conditions is an important task
when managing a large number of devices. However, they only state that auto-
configuration is an important aspect, but do not answer the problem of identifying
devices that experience similar conditions.

F.3 An Architecture for Managing Learning and Planning
Processes

To address the problem of large-scale, maintenance-free IoT systems, we explore
an architecture that manages the learning and planning processes on behalf of
connected devices and sensor nodes autonomously. With this approach we can
empower constrained IoT devices with the ability to adapt to different situations
occurring in their environment. This opens a path towards cloud-based, cognitive
device management platforms [91], which in turn is a step towards the vision of
self-managed computing systems [52] for IoT.

According to Vernon [29], autonomous operation in non-stationary environments
requires that devices have the ability to see themselves in relation to their context,
learn from experience, predict the outcome of future events, act to pursue goals and
adapt to changes in the environment. Vernon refers to this as artificial cognitive
systems. Figure F.39 shows an abstract model of the underlying cognitive process.
It contains two cycles, a perception-action cycle and a cycle of learning, predicting
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and adaptation through planning. The planning activity is in the center of the
perception-action cycle, binding the two cycles together. The architecture for device
management presented in this paper is based on these principles. The main elements
are autonomous agents hosted in the device management as part of a cloud or fog
computing service. They provide constrained IoT nodes with the capability to
create plans to handle future events, and thus adapt to different situations occurring
in their environment [244].

To illustrate the concept, we designed an architecture that models the behavior
of a cognitive device manager responsible for energy planning for solar-powered,
constrained devices. Figure F.40 shows a diagram of the architecture. It is built
around two components:

• The planning manager represents the perception-action cycle seen in Fig. F.39,
centered around the planning component in the associated learn-predict-plan
cycle. Its main responsibility is to keep track of the status of the devices,
observe events occurring in their environment and act if there is a need to
adapt by sending new configurations, for instance by adjusting the power
consumption to the predicted energy intake. The actual configurations are
handled by an internal configuration manager. The need to adapt may be
caused by a change in predictions, or by sudden or planned events detected
by the planning manager.

• The learning manager is responsible for handling the data, policies and actions
needed for managing the learning and prediction processes. It represents
the learn-predict-plan cycle in Fig. F.39 and have two sub-managers. The
prediction manager is charged with the task of training the machine learning
models and produces the actual predictions. It may contain a number of
different models, depending on the purpose of the system. In our case, it has
access to models for predicting the solar energy intake, the energy consumption
and the energy buffer. The training data manager analyses training data
and evaluates the accuracy of different subsets of training data, with the
aim of feeding the most relevant data for training a model to the prediction
model manager. This task is important to support devices operating in a
non-stationary environment.

To ensure adaptation, all managers have mechanisms to trigger different decisions,
shown as T1...T5 in Fig. F.40. For the planning manager, the trigger is a decision
to send new configurations to a device when there is a need to adjust energy
consumption to the anticipated energy harvest. The trigger for a prediction model
manager fires if the performance of its model decreases significantly, which may
indicate a change in the environment. For the training data manager, the trigger is
an assessment that a different subset of training data will produce more accurate
predictions for a given model. This change will cause the prediction model manager
to select that training data subset next time it trains that particular model.

In the following section, we focus on the internal mechanisms of the training data
manager. To this end we have performed a case study to explore how to identify
suitable training data for a node by selecting data from nodes with correlated data.
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Figure F.39: Abstract model of an autonomous system, based on a perception-action
cycle, which in turn is contributing to and maintained by a second cycle of learning,
predicting and planning. Adapted from [29].

F.4 Experimental Setup

F.4.1 Data Collection

We collect data from a testbed consisting of eight solar panels, with two panels facing
east, south, west and north, respectively. A ninth panel is mounted horizontally,
i.e., in plane with the ground, for reference. The setup of these panels is shown in
Fig. F.41. From the panels we collect data about the actual energy that is produced.
Previously, we have identified that the position of the sun and the amount of clouds
that is blocking and scattering the direct sunlight are the two most important
features for predicting the energy produced by a solar panel [159, 22]. The sun
position is represented by the features zenith and azimuth. Cloudiness at three
different altitudes is obtained from a public weather forecast service and added to
the dataset. Finally, we resample the data to ten-minute intervals.

Our observations are based on data collected between October 12th, 2018 and
May 9th, 2019 [245]. To ensure that the data is useful and relevant to the experiment,
we do some data cleaning. Data points where none of the panels register any energy
intake are removed, since only periods with actual energy production are relevant.
Snow covering the solar panels causes noise in the training data, so we also remove
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Figure F.40: Architecture of a cognitive device manager responsible for energy
planning for constrained IoT devices.

those days from the dataset. In the period when the sun is lowest, cloudy weather
may cause very few data points to be registered during a day. This makes it hard
to find correlations. We therefore take away days where the number of collected
data points is below a 150, which is a manually selected threshold. This results in a
dataset that consists of a total of 168 days.

The data is then organized in nine overlapping subsets. This increases the
number of observations and make it possible to find patterns and generalize the
results. Each set is made up of 28 days with initial training data and 28 days where
we train the model and test the algorithm. We define the start of period Pn+1 to
be 14 days after period Pn.

The training data is collected from nodes I2, I4, I6 and I8, pointing east, south,
west and north, respectively. In addition, we add data from the horizontal panel I0.

At day 29, we deploy four additional devices, named I3, I5, I7 and I9, which are
oriented pairwise in the same direction as I2, I4, I6 and I8, respectively. These are
the nodes we want to predict the energy intake for. We then monitor the energy
intake for all nodes for 28 days. This makes up the test period. Thus, each set is
made up of data from 56 days.

The result can be seen in Table F.7. Columns 1st- and 2nd batch deployment
show the dates for the first and second deployment, respectively, while column
Zenithnoon shows the zenith on the date of the second deployment. Note that high
zenith values mean that the sun elevation is low.

169



Adaptive, Correlation-Based Training Data Selection for IoT Device Management

Figure F.41: Setup of the nine solar panels.

Table F.7: Overview of dates used to define periods

Period Weeks
1st batch
deployment
I0, I2...I8

2nd batch
deployment
I3, I5...I9

Zenithnoon
(2nd depl. date)

P1 Week 1-4 2018-10-12 2018-11-09 80.65◦

P2 Week 3-6 2018-10-26 2018-11-23 84.05◦

P3 Week 5-8 2018-11-09 2018-12-12 86.61◦

P4 Week 7-10 2018-11-23 2019-01-02 86.37◦

P5 Week 9-12 2018-12-12 2019-01-26 82.20◦

P6 Week 11-14 2019-01-02 2019-02-15 76.17◦

P7 Week 13-16 2019-01-26 2019-03-04 69.94◦

P8 Week 15-18 2019-02-15 2019-03-28 60.53◦

P9 Week 17-20 2019-03-04 2019-04-12 54.85◦

F.4.2 Machine Learning Models

For the prediction models, we use a random forest regressor from scikit-learn [220].
We choose this model since earlier experiments has proved it to be suitable [159,
22]. In addition, the model is relatively fast to train, which is an important factor
when we need to train several models for each device, possibly on an agent located
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Figure F.42: Weather conditions, energy intake and correlation graphs of all nodes
for March 28th, 2019.

close to the edge of the network.
One of the limitations of statistical learning algorithms is that they are unable to

extrapolate beyond the range of data that has been used to train the models [246].
To temper this, we train the models regularly. This way, previously unseen weather
conditions and seasonal changes in sun position are added to and reflected in the
training data. Thus, the learning process is handled autonomously and continuously.

F.4.3 Metric for Prediction Performance

To assess the accuracy of the predictions, we need a metric suitable to compare the
prediction performance in various seasons. With ai,d,n we denote the n-th value
measured for solar energy of sensor i on day d, and with pi,d,n a prediction for
the corresponding value. Since measurement points are equally spaced in time, we
calculate the total energy collected during a day by summing over the individual
measurements:

Etotal(i, d) =
∑

n

ai,d,n

and likewise, for the prediction:

Êtotal(i, d) =
∑

n

pi,d,n

We further calculate the exponentially weighted moving average (EWMA) of the
daily measured energy:

s(i, d) =
{

Etotal(i, 1), d = 1
α · Etotal(i, d) + (1 − α) · s(i, d − 1), d > 1

With α = 0.095 we consider the average of the last 20 days. As an error metric
for each day, we consider the scaled absolute difference between the total energy
predicted and observed:

STAPE(i, d) = 100
s(i, d)

∣∣∣Etotal(i, d) − Êtotal(i, d)
∣∣∣
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We call this the scaled total absolute percentage error, STAPE. It describes the error
of the total daily energy in percent, relative to the energy one expects on average
at that day. For example, a STAPE of 20 % means that the prediction was 20 %
off the actual value, relative to the average daily energy s(i, d) that corresponds
to 100 %. This scaling allows to compare prediction performances from different
seasons, where the total energy varies considerably. At the same time, by using the
EWMA, it prevents outliers on days with exceptionally low solar energy.

F.5 Training Data Selection Policies

In Figures F.42 and F.43 we can see the weather conditions, the energy intake of
all nine nodes, and a scatter diagram showing the correlation between the energy
intake of the nodes at the day when we deploy the second batch of nodes, for periods
8 and 9, respectively. From the weather symbols and energy intake pattern, we
can see that on March 28th the weather was volatile with both cloudy and sunny
periods, while on April 4th the conditions were stable with sunny weather.

Looking at the two correlation matrices, we see that for the day with volatile
weather the correlation between the nodes has a high variance (the data-points are
spread), while it has less variance on the day with stable weather (the data-points
form a curved line). However, in both diagrams we see that for the nodes that
are pointed pairwise in the same direction, the correlation graph can be seen as a
straight line with a constant slope close to 1. This is a sign that the energy intake
between these nodes has a high positive correlation both in stable and unstable
conditions. Using Pearson’s correlation, we can express this as a single number
between 1 and -1, where 1 means the data are fully positively correlated, while -1
means the data are completely negatively correlated:

r(i1, i2, d) =
∑

n(ai1,d,n − āi1,d)(ai2,d,n − āi2,d)√∑
n(ai1,d,n − āi1,d)2 ∑

n(ai2,d,n − āi2,d)2

where āi,d and p̄i,d are the daily averages of the actual measured values and the
predictions, respectively.

Using the correlation, we define the selection policy CORR-MOD. To provide
comparison, we also define three other policies SELF-MOD, REF-MOD and ALL-
MOD, that obtain training data using other methods for training data selection. In
addition, we define a control algorithm CONTROL-MOD as a baseline. The total
set of selection policies is then:

• The CORR-MOD policy collects data from a single, previously deployed device
that displays the highest correlation with the newly deployed device on the
date of deployment, starting from the date of the first deployment until the
date of the second deployment. The data produced by the device itself is then
collected for the second half of the period.

• The SELF-MOD policy collects data from the device itself, starting from the
date of the second deployment.
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• The REF-MOD policy collects data from the previously deployed reference
node I0, from the date of the first deployment until the date of the second
deployment. The data produced by the device itself is then collected for the
second half of the period.

• The ALL-MOD policy collects data from all previously deployed devices (I0,
I2, I4, I6 and I8), starting from the date of the first deployment. From the
date of the second deployment it adds the data collected by the device itself.

• The CONTROL-MOD policy resembles SELF-MOD, except it is given data
collected from the entire period, starting at the date of the first deployment.
Thus, it uses future knowledge not available in a real setting.

All five policies are applied once for each of the four devices deployed in the
second batch (I3, I5, I7 and I9), before we use the models for predicting future
energy intake. This results in five series of predictions, for each device and each day.
Each series of predictions is then assessed by the STAPE metric. This results in
one measure for each selection policy, for each device, for each day. Since we want
to compare the overall accuracy of the models that we train, the next step is to
calculate the arithmetic mean of the STAPE for each policy, for all devices during
the whole test period. Lastly, we calculate the arithmetic mean for all periods.
Thus, we end up with five measures for each period, plus five measures representing
all nine periods, as shown in Table F.8.
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Figure F.43: Weather conditions, energy intake and correlation graphs of all nodes
for April 12th, 2019

F.6 Results

Table F.7 shows the zenith at noon, on the day we deploy the second batch of
devices. Figures F.42 and F.43 show the weather condition, energy intake and the
correlation graphs of the deployed nodes, for two of those days. From this we can
identify some of the challenges related to selecting training data for IoT devices
working in a non-stationary environment. Firstly, seasonality and volatile weather
conditions have a large influence on the number of data points that is collected on a
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Table F.8: Performance of four RFR-models, trained on different sets of training
data

Mean STAPE for each 4 week period Mean STAPE
for all periodsSelection Policy Week 1-4 3-6 5-8 7-10 9-12 11-14 13-16 15-18 17-20

SELF-MOD 35.67 % 51.04 % 45.94 % 73.98 % 46.65 % 44.70 % 37.51 % 29.11 % 17.49 % 42.45 %
REF-MOD 24.49 % 36.03 % 50.91 % 79.61 % 56.90 % 52.36 % 48.21 % 29.79 % 16.13 % 43.83 %
CORR-MOD 23.82 % 25.01 % 30.06 % 65.96 % 50.11 % 45.19 % 46.19 % 24.74 % 15.73 % 36.32 %
ALL-MOD 28.85 % 30.53 % 39.83 % 77.81 % 61.83 % 52.97 % 50.17 % 25.95 % 14.00 % 42.44 %
CONTROL-MOD 25.44 % 24.91 % 32.96 % 66.54 % 54.11 % 48.56 % 47.75 % 26.33 % 16.06 % 38.07 %

given day. A high value for the zenith means that we have fewer hours of daylight,
which again means that there is less data collected. Also, heavy clouds might block
the sun completely, and thus further decrease the number of data points. Secondly,
we see that the correlation of the data is more spread on days with volatile weather
than on days with stable conditions. Even so, on days with stable weather and
plenty of sun, the orientation of the solar panels has a great influence on how well
the data correlates. These observations indicate that transferring training data
indiscriminately between devices operating in a non-stationary environment should
be avoided.

Table F.8 shows the mean STAPE for each policy for each 4-week period and
for all periods overall. We see that the prediction accuracy given by this metric is
highly dependent on the training data that is fed to the machine learning algorithm.
If we look at all periods as a whole, the mean STAPE of the predictions is lowest
for CORR-MOD, i.e., the model that is fed training data from a node that displays
high correlation with a newly deployed node (36.32 %). This means it has the
highest overall accuracy. It also closely resembles CONTROL-MOD, which is as
expected since the panels used to collect training data for these two policies are
pointing pairwise in the same direction. For the three other models the performance
is less accurate, but on about the same level, with a STAPE of 42.45 %, 42.44 %,
and 43.83 %, respectively. When we calculate the percentage decrease in STAPE of
CORR-MOD (36.32 %) compared to ALL-MOD (42.44 %), the second-best overall
selection policy, we find that the CORR-MOD policy improves prediction accuracy
by around 14 %.

For all four models, the accuracy is worst in the 4th period (P4). This is when
the sun elevation at noon is lowest, that is, when we have the fewest hours of
daylight and when the beams from the sun hit the solar panels from the lowest
angle. Surprisingly, the results indicate that in periods where training data is
collected while the sun is at the lowest (P5, P6 and P7), the overall accuracy is best
for SELF-MOD, i.e., the model that is not given any extra training data. However,
CORR-MOD still has the next best overall accuracy in these three periods.

F.7 Discussion

In some periods the best training data selection policy is the one where the model is
trained from scratch, without feeding the machine learning model any extra training
data. There can be several reasons for this behavior:
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1. For these specific periods, there are relatively few data points per day in the
transferred training data. Thus, predictions are based on fewer observations,
which in turn might lower the accuracy.

2. As seen in Table F.7, if we look at the two periods preceding the deployment
of P4, P5 and P6, respectively, we see that the zenith at noon is near 90◦,
that is, the sun is low. These are the periods used to collect extra training
data. Meanwhile, for the days being predicted, the zenith at noon is rapidly
decreasing, that is, the sun height is increasing. Since the zenith is the most
important feature for predicting the energy intake [159], this means that the
training data has little relevance for the predictions made in these periods.

3. The weather conditions in November and December in Trondheim are often
volatile and can change from one hour to the next. This might introduce noise
in the training sets.

4. Both the seasonality and the weather conditions cause more light to be
scattered, and thus less energy hits the solar panels directly. This has a big
influence on how much energy that can be harvested.

Since all these explanations are closely connected to the training data used to
produce the predictions, it supports the hypothesis that selecting training data for
transfer learning is an important task for an architecture that handles non-stationary
environmental data.

The results are especially interesting when we look at them from an architectural
point of view. Self-configuration, self-optimization, self-healing and self-protection,
are important aspects of autonomic computing [52]. The proposed training data
selection can support these aspects in several ways:

• By adding relevant learning data when training a model, it is possible to
improve the prediction accuracy in the first period after deployment. This
will improve the systems ability to perform self-optimization.

• If for some reason a node is unable to report the data that is collected, data
collected from a correlated node can be used to substitute the missing data.
This will improve the self-healing of the system.

• By applying methods for comparing data from two or more correlated devices,
we can detect nodes that suddenly deviate from expected behavior, which
might indicate that the device in question is faulty or hi-jacked. This will
improve the overall ability for self-protection.

Thus, the case study also illustrates how training data selection and continuous
learning is a possible method for improving the ability of constrained IoT devices
to adapt to changes and act more autonomously.

F.8 Conclusion

We discussed a step towards maintenance-free IoT device management for large
deployments of constrained IoT nodes working in non-stationary environments. In
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particular, we have investigated how solar-powered nodes that are introduced into
an existing deployment can accelerate their learning by giving them training data
collected from selected nodes that are working in similar situations. To illustrate
the problem, we designed an architecture that models the behavior of a cognitive
device manager that is responsible for energy planning for solar-powered constrained
devices. For validation, we performed a case study where we studied how to identify
suitable training data for a node by selecting data from nodes with correlated data.
The experiment and discussion were based on real data collected under realistic
conditions. Our results indicate that by using our data training selection algorithm
we can train a model that decreases the error of the predictions by 14 %, compared
to using data from all previously deployed nodes. This shows that managing the
acquisition of suitable training data is an important task of device management
when new devices are deployed and introduced into an existing system.
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Introduction and Background

Abstract

Research on autonomous management for large-scale deployments of
constrained devices is still a maturing field in the Internet of Things (IoT).
Although much research has been conducted on how to achieve autonomous
management in specific cases, there is a need for literature investigating
which mechanisms can achieve such behavior in a generalized way. In this
review, we present a comprehensive and structured study of the mechanisms
for autonomous device management of constrained IoT devices in the light
of management tasks, operational environment, network topology, resource
constraints, scalability and management categories. Data extracted from
32 relevant cases is first organized and analyzed according to a synthesized
taxonomy of observed adaptation mechanisms, and then combined with state-
of-the-art models of autonomous operations, identifying common patterns for
autonomous management. Based on our findings we substantiate best practices
for designing and implementing solutions around adaptation mechanisms. We
then present a generalized model for autonomous device management that
describes and explains the processes required for autonomous operation,
unifying the insights from previous works as one cohesive archetype.

G.1 Introduction and Background

Large-scale deployments of IoT devices are held together by device management
platforms. These systems aggregate data collected by the devices and also monitor
and control their operation. They are critical since insufficient device management
can increase the need for expensive manual interventions and cause downtimes,
waste system resources or reduce the reliability and functionality of the system by
not appropriately detecting and reacting to problems [3].

Due to the scale, heterogeneity and constraints inherent to IoT systems, the
architecture of device management systems is itself critical, and we observe an
increasing interest in the use of principles from autonomic computing for device
management over the last decade. Traditional management theory defines autonomy
as “the degree to which one may make significant decisions without the consent of
others” [4]. Applied to the IoT, this emphasizes the use of autonomously acting
devices. However, the actions of autonomous agents are usually guided by a strategy
or objective set by a manager. Autonomous IoT device management hence implies
a division of tasks, with a central manager controlling the strategic direction and
policies of the system, and the devices or agents acting on their behalf, deciding how
to reach their goals [5]. The autonomy of devices can help to overcome challenges
with the scale and heterogeneity of the systems. Autonomy can also reduce the
need for communication, which can make the system more dependable in cases
of intermittent communication. On the other hand, the support by a central
management can free resource-constrained devices from complex analysis tasks,
provide them with context and guide their operation.

Although an increasing amount of research has been conducted on how to
achieve autonomous management of IoT devices, current research on the design
and implementation of these systems is chaotic and sporadic, and does not account

181



Autonomous IoT device management systems: Structured review and generalized
cognitive model

for the variance in adaptation mechanisms found within this domain. In addition,
existing solutions are often highly specialized toward solving one or two particular
tasks within a single use case. Conversely, these solutions often discuss architectural
challenges in general terms, and the proposed management systems are only partially
implemented. The nature of the employed mechanisms that allow autonomous
behavior is rarely discussed, and alternative approaches are seldom considered. In
fact, we have not found any papers that study the specific mechanisms that are
used to achieve this goal in a generalized way, a challenge also identified in [35].
This shows that research on autonomous management for constrained IoT devices
is still a maturing field, and that there is a need for a standardized, unified view or
methodology that can advance the goal of achieving management systems for IoT
that require a minimum of human intervention [6].

This is the first structured review on the topic of autonomous IoT device
management. Existing literature within device management discusses only niche
topics, lacking an overarching perspective. Sinche et al. conducted a survey on IoT
management [31], where they identify key requirements for IoT device management,
and give an overview of management frameworks and protocols. They stress that
management solutions must be able to control IoT devices efficiently with regard
to constraints and complexity. They also identify that there is a strong need for
a common IoT management architecture. Chowdury et al. surveyed resource
management in IoT [247]. One of their contributions is the classification of three
different management activities found within this domain, namely resource discovery,
resource provisioning and resource scheduling. Further, they state that ensuring
automatic management and handling different architectural requirements are among
the biggest challenges in distributed computing in general and IoT in particular.
However, neither of these studies look at the mechanisms that are needed for
autonomous device management. Colakovic et al. published a comprehensive
review on enabling technologies, challenges, and open research issues within IoT [15].
Although their study is too broad to investigate in detail the challenge of autonomous
IoT device management, they discuss aspects of management related to monitoring,
control and configuration. They found that due to the inherent complexity of IoT,
autonomous adaptation to changes in the environment requires the presence of
context-aware management mechanisms.

The lack of a comprehensive review on autonomous management for constrained
IoT devices means that there is a need to identify 1) which problems within this
domain are addressed by the current state of the art; 2) which mechanisms are
most useful for solving these problems; 3) best practices to use when designing
and implementing solutions around these mechanisms; and 4) a generalized model
that describes and explains the processes needed for autonomous operation. To
investigate the issues pertaining to autonomous IoT device management, we chose
to study models of architectures presented in previous research in the field of IoT
management with the goal of unifying used techniques and lay the foundation for a
structured methodology for handling autonomous device management. In particular,
our review contributes to the research and development of device management for
IoT with the following:

• An overview of different aspects that must be considered when designing IoT
device management systems.
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• A taxonomy of adaptation mechanisms that are used to allow autonomous
IoT device management.

• An overview of different patterns and models that are used to achieve adaptive,
autonomous management in the reviewed cases and in general literature on
autonomous behavioral systems, respectively.

• The five best identified practices for designing and implementing autonomous
IoT device management systems.

• A generalized cognitive model for autonomous IoT device management that
unifies the key requirements identified in literature with approaches found in
general autonomic computing, with an emphasis on adaptive control loops.

The rest of the paper is structured as follows: In Sect. G.2 we describe the
research methodology that we used for the literature review. We continue with
an overview of different aspects to consider when designing and implementing IoT
device management in Sect. G.3. In Sect. G.4 we describe different adaptation
mechanisms that are used to solve specific IoT management problems, before we
take a closer look at patterns and models used to achieve autonomous management
in Sect. G.5. Afterwards, we present the five best practices for designing solutions
for autonomous management for constrained IoT devices that we identified through
the review process in Sect. G.6. Finally, in Sect. G.7 we present a generalized
cognitive model for adaptive, autonomous management for constrained IoT devices,
based on the mechanisms, patterns and models discussed earlier, followed by our
conclusions.

G.2 Methodology

This review generally followed the guidelines for performing systematic literature
reviews in software engineering [248]. This process includes developing a review
protocol, identifying and selecting primary studies based on pre-defined inclusion
and exclusion criteria, and defining the data extraction and data synthesis activities.

Our search process is shown in Table G.9. First, we identified relevant papers
(123) that were already in our possession through previous research. We then
conducted a search in the digital libraries offered by IEEE Xplore, ACM Digital
Library, ScienceDirect, SpringerLink and Wiley Online. The search was conducted
by putting together phrases using the terms in Table G.10. We used the same
phrases for all 5 libraries. If a search returned more than 100 papers, the result was
sorted by relevance and the first 100 papers were included for further assessment.
This initial search resulted in 1703 unique papers. The third step was to read
titles and exclude papers that were irrelevant for the study. This left us with 322
papers, of which we read abstracts to identify relevant papers. The resulting 188
papers were then browsed for relevance, which yielded 111 papers that we studied in
detail using the inclusion and exclusion criteria presented next. The whole process
resulted in 32 relevant papers, listed in Table G.11.

The review includes articles published between 2009 and 2019 on the topic of
Autonomous or adaptive device management for constrained IoT devices. Articles
with any of the following traits were excluded:
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Table G.9: Selection process of papers included in the study

Step Included Papers

Relevant papers from former research 123
Total papers after electronic search 2037
Inclusion after removing duplicates 1703
Inclusion based on title 322
Inclusion based on abstract 188
Inclusion based on skimming through text 111

Final inclusion, based on criteria 32

Table G.10: Terms used in search for relevant publications
Mechanisms Abstraction level Awareness level Subject
autonomous adaptive organizing energy harvesting architecture system self-aware internet of things / iot
dynamic machine-learning optimizing management framework wireless context aware constrained device
intelligent resource(-allocation) configuring smart platform situation aware constrained sensor
cognitive orchestration healing cyber physical environment aware constrained network

• Articles that do not provide a detailed model describing the components
involved in device management.

• Articles that do not include an explicit description of adaptation mechanisms.

• Articles where there is no communication between nodes or between a sensor
node and a central node.

• Articles with a dominating focus on security, robotics or autonomous vehicles.

• Articles describing systems where human intervention is a part of the device
management process.

• Articles shorter than 5 pages or not subject to peer review.

If a topic was published in several journals or conferences by the same authors, we
selected the version that contained the most detailed description of the underlying
model.

All papers included after browsing through them were subject to a data extraction
process. From the 111 relevant papers we first documented the main author,
publisher, year published and the search term that was used for identification.
We then carefully read each paper and recorded the main management problem
being addressed; if the authors addressed challenges related to resource constraints,
scalability and technical heterogeneity; a classification of the environment, the
network topology and the management task; and finally a short description of the
reasoning, learning and planning mechanism employed to solve the problem. For
the 32 papers included in the review, we also classified the architectural models
according to their detail level. We synthesized the data into Table G.11. This
process was done incrementally, as some patterns emerged during the extraction
phase.

We identified one threat to construction validity. Initially, we planned to conduct
a snowball search strategy to identify relevant publications that were not caught in
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the manual or automated search. However, initial rounds using this strategy failed
to show any papers from the selected publishers that were not already identified.
Based on this we assumed that a sufficient sample of papers was already available,
and therefore elected to cancel this strategy.

We did not identify any threats to internal or external validity. Any causal
relationships involved in the study are discussed in an open-ended manner. We do
emphasize though that the study can only be generalized within the domain that
is defined through the inclusion criteria. For the assessment of conclusion validity,
the chosen methodology helps to ensure that the collection procedure is repeatable.
Regardless, there is a risk that relevant papers were overlooked when browsing
through the titles or abstracts, since the selection is partly based on subjective
reading. That said, for both identified threats we surmise that the sample of selected
papers is large enough to capture the main patterns within the studied domain.

G.3 Overview of IoT Device Management

Table G.11 summarizes the reviewed use cases [10-41] and lists the different aspects
to contemplate when designing IoT device management systems. We observe that
autonomous management of constrained IoT devices is a composite problem related
to the context in which the devices operate, the device topology, available resources,
the scale of the deployment and the problem that the system solves, as stipulated
in [23]. In the following, we will introduce and explain these aspects in detail. The
synthesized data will then aid our analysis and guide the discussion.

G.3.1 Operational Context and Environment Type

All papers included in the final review cope with problems related to management
of devices operating in settings where conditions change over time. Local conditions
can vary considerably between individual devices within the same network, too.
Device management therefore address operation in a context that is dynamic in
temporal and spatial dimensions [20]. This means that it becomes complicated
to plan proper corrective actions to a previously unseen event, since the same
corrective action applied to two different devices can have different outcomes [21].
A high variance in environmental conditions thus implies that it is necessary to
individually manage each device, to allow for operational adaptation in accordance
to the varying conditions that each device experiences. We observed two types of
dynamic temporal environments:

• Stationary: In a stationary environment, the variance is within a known
distribution, that is, the changes in variation can usually be predicted
stochastically. An example of device management in a stationary environment
can be seen in [251], where Sahni et al. demonstrate energy-aware task
allocation.

• Non-stationary: Non-stationary environments are characterized by dynamic
statistical properties, that is, unstable conditions and distributions that change
over time. An example of device management in a non-stationary environment
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Table G.11: Comparison of adaptive management mechanisms for IoT Device
Management
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management R model-driven

(linear prog.) — predictive controller
model high [167]

S C   # Energy-aware
network management N, R model-driven

(stoch. geometry) — policy-based
(obj. engine coord.) low [37]

S C    Adaptive comp.
offloading N, R semantic

(knowledge-graph) — dependency-tree
(directed graph) low [249]

S C    Context-aware
self-management A, R semantic

(rule-based) — policy-based
inference high [250]

S C    Energy-aware
task allocation R model-driven

(nonlinear algorithm) — model-driven
task allocation matrix low [251]

S S   # Adaptive config.
management N semantic

(rule-based algorithm) — inference-based
algorithm low [252]

S S G#   Adaptive access
control N semantic

(ontology-based)
semantic
(new rules)

event-based
inference engine high [253]

S S G# #  Dynamically change
exec. environment A semantic (ontology-

based context search)
semantic
(stored context info.)

query built
from context search low [254]

S S  G#  Context-aware
QoS-management A model-driven (stoch.

model checker)
semantic
(update context model

goal-directed
MAPE-K control loop high [255]

S S   # Autonomous policy
determination A, R data-driven

(ML classifier)
semantic & data-driven
(text-mining & SVM)

event-triggered
action plan high [256]

N C  G# # Dynamic energy
balancing R model- & data-driven

(game theory + RL)
data-driven
(RL)

reward-based
utility function high [20]

N C  G#  Context-aware
self-management N semantic

(ontology-based) — event-based
inference engine high [257]

N C    Network lifetime
optimization N, A semantic & data-driven

(CBR + RL)
data-driven
(RL)

goal-directed
action plan high [258]

N C    Context-aware
self-management N, R semantic

(ontology/context-based)
model-driven
(game theor. learning)

decision based
on game theory low [61]

N C    Adaptive device
orchestration N, R semantic

(ontology-based)
semantic
(learned facts)

goal-directed
action plan high [259]

N C    Context-aware
self-management N, R model-driven

(game theory)
model-driven
(weighted obs.+ univ. approx.)

maximized
utility function low [260]

N C  G#  Adapt to
recognized activity A model-driven

(fuzzy logic)
data-driven
(machine-learning)

goal-directed
action plan high [237]

N C  G# # Resource-aware
data collection A, R data-driven

(RL)
data-driven
(RL)

utility look-up
table high [261]

N C    Adaptive comp.
offloading R model-driven

(markov dec. proc.)
data-driven
(deep Q-learning) learned policy low [262]

N C  # # Energy-aware
self-management R model-driven

(modal logics) — goal-directed
action plan high [263]

N C   G# Energy-aware
QoS-management R semantic & data-driven

(dynamic prog. + SVM class.)
data-driven
(machine-learning)

QoS- and policy-based
service provisioning low [264]

N C G#   Context-aware
self-management R semantic

(rule-based inf. engine)
data-driven
(machine learning)

event-triggered
action plan high [241]

N S    Energy-aware
self-management A, R semantic

(rule-based inf. engine)
data-driven
(RFR)

policy-based
action plan high [23]

N S    Autonomous network
resource discovery N model-driven

(MAPE-K)
semantic
(stored context info.)

policy-based
MAPE-K control-loop high [265]

N S G#   Adaptive config.
management A, R semantic

(pattern recogn.)
data-driven
(machine-learning)

policy-based
action plan high [7]

N S G#   Adaptive config.
management A, R data-driven

(RL)
data-driven
(RL w/back-propg.)

goal-directed
control loop) high [114]

N S   # Adaptive appl.
management A, R semantic

(semantic modeling)
data-driven
(deep-learning+RL)

goal-directed
action plan high [266]

N S  # # Energy-aware
task allocation R model-driven

(smart persistence) — semantic task
allocation algorithm high [193]

N S  #  Autonomous service
discovery R model-driven

(prob. reasoning)
model-driven
(prob. distr. learning)

event-based
service provisioning high [267]

N S  # # Adaptive energy
management R data-driven

(RL)
data-driven
(RL w/back-propg.)

reward-based
utility function high [232]

N S   # Energy-aware
self-management R data-driven

(ML classifier)
data-driven
(RFR+ANN)

policy-based
utility function high [159]

N S G#   Context-aware
self-management R semantic

(context ontology)
semantic
(stored episodes)

goal-based
action plan high [268]

1) Environment: S. . . stationary, N. . . non-stationary
2) Topology: D. . . distributed, C. . . clustered, S. . . star
3) addresses the concern  . . . directly, G#. . . indirectly, #. . . not at all
4) Category: N. . . network A. . . application, R. . . resource

Abbreviations:
machine learning (ML), case-based reasoning (CBR),
reinforcement learning (RL), support vector machine (SVM),
random forrest regressor (RFR), artificial neural network (ANN)
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can be seen in [262], where Alam et al. demonstrate adaptive computational
offloading.

As we will show in Sect. G.6, this difference plays a significant role for the
employed adaptation mechanism. We therefore classified the reviewed cases
according to the type of environment in which they operate, as shown in column 1
of Table G.11.

G.3.2 System Topology

The system topology describes how the devices are connected. This is a key design
decision that influences the organization of the management processes, which are
organized in three different ways, as shown in column 2 of Table G.11.

• Fully distributed topology (D): In a distributed topology, each device
is responsible for all actions needed to operate and adapt, including storing
knowledge and initiating learning processes. Even though a central node is
usually present, its only task is to collect data that is sensed by the devices.
This means it has no power to manage the operation of the device. In the
reviewed papers, we found only one case with a distributed topology [167].

• Clustered topology (C): In a clustered topology, two or more parent nodes
share the responsibility for storing data and managing processes on behalf
of separate subgroups of devices. Each parent node sends instructions to
the devices belonging to designated subgroups. The devices may have some
autonomous responsibilities, such as basic reasoning, but learning is usually
offloaded to the parent node. Often, a parent node can share knowledge
with other parent nodes. Communication between devices within each own
subgroup is allowed, but uncommon. We found this topology in 16 cases.

• Star topology (S): In a star topology, a single central node stores all data
and manages all processes for all devices. The central node sends instructions
to the managed devices, which are responsible for receiving and storing
instructions, sensing and sending data, and executing actions. There is usually
no direct communication between the managed devices. We found 15 cases
with a star topology.

G.3.3 Resource Constraints

Column 3 of Table G.11 indicates if the cases address resource constraints directly
or indirectly. Despite advances in capabilities of IoT devices, they are constrained
in terms of available energy, memory and processing capability. In addition, they
usually have limited access to contextual information. These constraints make it
hard for the devices to solve their own problems, since they lack resources needed
to analyze the current situation and predict future events that might influence their
operation. To ensure that the devices are able to operate at their optimum and
plan corrective and adaptive actions, such tasks are therefore often moved to nodes
with better access to resources [269]. The problem of resource constraints are thus
often tied to the system topology.
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G.3.4 Scale and Technical Heterogeneity

Traditionally, device management for wireless IoT nodes has been done manually,
where the devices have been configured and updated individually or in bulk,
either on-site or over a communication channel. However, this method does not
work well in large-scale deployments characterized by many devices and high
heterogeneity, which means that the devices and the networks connecting them vary
in form, function and functionality [270]. Maintenance throughout the full device
lifecycle (planning, configuring, deploying, operating, repairing, and recycling) is a
major challenge. Any architecture or framework that supports large-scale device
management must therefore be able to operate autonomously with a minimum
of human intervention [15]. We indicate to which degree the papers address
challenges related to resource constraints, scale and heterogeneity in columns 3 to 5
of Table G.11.

G.3.5 Management Tasks

All the systems in the reviewed cases are directed toward management of constrained
IoT devices. Within this domain we find a broad spectrum of operations. Usually,
the main problem that is addressed in an article maps to a specific management
task. We describe the main management task performed by each reviewed system
in column 6 of Table G.11. Each of these specific tasks can be further mapped to
three distinct categories. We chose to categorize device management in the reviewed
cases as network, application or resource management, or a combination of these.
This categorization is in contrast to Gurgen et al. [271], who divide management of
networked sensing devices in network-, system- and application management. This
is due to the fact that we did not find any cases that focused on system management,
while many cases went beyond application management and focused on how to
manage the resources that are available for the devices directly. The category that
the main management task belongs to is shown in column 7 of Table G.11.

• Network management is concerned with how to initiate, monitor and
maintain the infrastructure of a wireless sensor network, to ensure that
the devices are connected and able to send the collected data. Some
typical management tasks include discovery, that is, registering devices when
connected to a wireless sensor network for the first time [265], ensuring they
maintain a stable connection [272], and reconnecting them when they drop
out of the network or move between base stations [261]. In many networks the
connections between the devices, or even the topology of the network itself,
change over time. Such networks can be regarded as a dynamic environment
with non-stationary properties. Research related to this problem area is
often referred to as Cognitive IoT (CIoT). The main idea of CIoT is that
interconnected devices are able to analyze their context, learn from experience
and develop hypotheses based on their knowledge base with a minimum of
human intervention [266]. Typical management tasks within CIoT are aimed
at maximizing network performance by analyzing current network conditions,
and then deciding and executing adaptive actions [240].
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• Application management runs processes to configure, monitor and maintain
the applications that run on the devices. These are typically extrovert
processes, that is, they focus on the purpose of the system that is managed.
The main input for application management is the sensor data acquired
by the IoT devices. Typical management tasks are off-loading, distributed
computing and data collection, in addition to high-level tasks like processing
and analyzing environmental data sensed by the devices. Two examples of
application management processes are activity adaptation [237] and action
recommendation [256].

• Resource management, in contrast to application management is an
introvert process, as it typically looks at internal processes related to the
maintenance and optimization of the operation itself. The main input for
resource management is operational data about the devices and their current
status. The focus is typically on low-level tasks like ensuring an acceptable
quality of service, managing the energy consumption and scheduling sensing
cycles. In a dynamic environment, resource management needs to be context-
aware, to accommodate for variations in the environment [68]. Examples
of resource management are resource-aware data collection [261] and energy
balancing [20].

G.4 Adaptation Mechanisms

Autonomy is a complex behavior characterized by the capacity an agent has to
achieve a goal while adapting to changes in the environment without human
intervention [43]. Further, Sifakis et al. [43] list five complementary aspects
required to achieve full autonomy: 1) perception, or interpretation of stimuli from
the environment; 2) reflection, that is, building a model of the environmental
context; 3) goal management, i.e., choosing the best among possible goals given the
environmental model; 4) planning, or deciding which actions to take to achieve the
chosen goal, and 5) self-adaptation, i.e., to adjust the autonomous behavior through
learning and reasoning.

Self-adaptation and self-management are core concepts in autonomous sys-
tems [32]. According to Kephart et al., the goal of self-management is to free system
administrators from the tasks of system operation and maintenance and provide
systems with the ability to configure, optimize, heal and protect themselves [52].
However, for systems that operate under conditions that vary over time, this means
that the devices have to adapt, i.e., adjust operation in accordance with the current
situation. Sheth et al. argue that adaptive decision mechanisms under such condi-
tions require situation awareness, that is intelligent mechanisms that can convert
raw data into something that is contextual meaningful [55].

Vernon goes further in [29], discussing the concept of self-awareness, i.e., the
extent to which a system can reflect about itself. He states that self-awareness
can be seen as a device’s ability to see itself in relation to its context, learn from
experience, predict the outcome of future events and act to pursue goals. Preden et
al. support this view in [237], claiming that for devices operating in a dynamically
changing environment, self-awareness is needed for devices to understand their own
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state in relation to the environmental conditions that influence their operation.
Thus, a device manager can achieve autonomous self-management by combining
situation-awareness with adaptation mechanisms to dynamically select its behavior,
taking previous experience, contextual parameters, internal status and designated
policies into account, as discussed by Foteinos et al. [7] and Sezer et al. [273].

G.4.1 A Taxonomy of Observed Adaptation Mechanisms

We see the considerations above confirmed in the reviewed cases, and observe
a general pattern with autonomous device management based on adaptation
mechanisms that analyze input data, reason about the current situation and produce
some output data that result in a corrective action or plan, when needed. Many
models include learning mechanisms as well, to expand the knowledge base of the
system. These mechanisms are often encapsulated in separate modules, to reduce
complexity and separate concerns. We will discuss this aspect further in Sect. G.6.
In particular, we identified three distinct types of adaptation mechanisms, indicated
in columns 8, 9 and 10 of Table G.11:

• Reasoning mechanisms analyze sensed events and device states, reflect
upon the current situation and control the internal data flow of the manager
node. They also decide if a perceived situation requires adaptation.

• Planning mechanisms produce corrective actions or action plans, send
instructions to the managed devices, and make sure the manager and the
devices are in sync.

• Learning mechanisms make sure that the knowledge base is up to date,
that it reflects the state of the devices in the context of the environment in
which they operate.

In the following, we will take a closer look at reasoning mechanisms, since
these are paramount for autonomous behavior. Perera et al. [36] classify reasoning
mechanisms into six categories: supervised learning, unsupervised learning, rules,
fuzzy logic, ontological reasoning and probabilistic reasoning. However, this
classification neither differs between reasoning and learning mechanisms, nor covers
all the different adaptation mechanisms we found in the reviewed papers. We
therefore chose to categorize the different reasoning and learning mechanisms
according to the underlying principle that the mechanisms use to infer an
understanding of the situation, as shown in Fig. G.44.

• Model-driven mechanisms capture knowledge and derive decisions through
representation and rules that are declared explicitly. This means they are
based on logics that are inherent to the model, which also implies that all
variables that are part of the reasoning must be declared within the model
itself. Thus, the output is a result of a logical analysis of a context change.
Linear and nonlinear programming, probabilistic analysis and fuzzy logic can
usually be placed in this category.
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6) Case based reasoning

3) Fuzzy logic

7) Machine learning (ML)

8) Reinforcement learning (RL) 4) Dynamic programming

1) Linear and nonlinear programming
2) Probabilistic analysis

5) Rule-based programming,

   ontologies and knowledge graphs

Model-driven 
mechanisms 

Semantic 
mechanisms

Data-driven 
mechanisms

Figure G.44: Reasoning and learning mechanisms used in device management

• Semantic mechanisms analyze structures where meaning is associated with
the data. This allows data to be interpreted in context, regardless of differences
in syntax or structure [55]. Knowledge is usually stored in a knowledge base
that holds facts about the world, often in the form of ontologies, knowledge
graphs or episodes. The semantic reasoning mechanism is an inference engine
that applies logical rules to the knowledge base to deduce new information.
Its output is thus based on inferring a deeper meaning or finding similarities
to the input variable. Case-based reasoning, ontology-based inferring and
rule-based programming are often placed in this category.

• Data-driven mechanisms are based on some statistical analyses that
attempt to identify patterns in the data. This can be historical data collected
by the devices themselves, or it can be other relevant contextual data collected
from external sources. The output is statistically inferred from the data itself.
Most machine-learning methods can be placed in this category.

We will now take a closer look at the particular mechanisms used in literature
with examples for their usage.

G.4.1.1 Linear and Nonlinear Programming

Linear and nonlinear programming are mathematical models often used for
optimization purposes. The main difference is that in nonlinear programming,
a change in input is not necessarily proportional to the change in output. Often,
nonlinear problems are approximated using linear equations and algorithms to
reduce complexity. Linear and nonlinear programming rely on all decisions being
in place up front. As a consequence, this family of mechanisms is rarely used to
solve complex problems where the answer is inferred from the data, like cluster
analysis. A typical example of linear programming is found in [167] where Moser et
al. use multiparametric programming for power management of solar harvesting
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wireless sensor nodes. They present a formal model for solving the optimization
problem offline in different environmental conditions and system states, maximizing
the utility in a long-term perspective.

G.4.1.2 Probabilistic analysis, Markov-modeling and Bayesian inference

Applying probability theory is a common method for quantitative modeling and
analysis of large, stochastic data sets. Probabilistic models use graphs to represent
stochastic variables, where edges represent assumptions that are conditionally
independent. This means they are well suited to solve problems related to joint
probability distributions. Bayesian inference uses the Bayes’ theorem to update the
probability for a given result as more data becomes available. Thus, by applying
structural learning, knowledge can be retained within the model itself. Probabilistic
models of both types are often used for dynamic analysis of sequences of data.
However, these mechanisms often come with a high computational cost, especially
in models with a large number of parameters. Also, the process of choosing the
prior distribution is time-consuming and often requires in-depth expertise of the
problem to solve. This makes it difficult to apply such methods on constrained
devices or in domains characterized by non-stationary properties. An example of
a probability-based reasoning mechanism can be seen in [262] where stochastic
randomness in available resources and numerous allocation options, in conjunction
with reinforcement learning, make a Markov decision process a good fit to solve the
problem of computational offloading.

G.4.1.3 Fuzzy logic

Fuzzy logic is used to model logical reasoning on sets that amount to degrees of
membership, fuzzy sets. It is based on the idea that a preposition can be partly
true and partly false at the same time, with a degree of truth usually defined as a
real number in the interval [0,1]. This allows a continuous range of choices [274]. A
central aspect of fuzzy logic is the mapping to linguistic variables, like slow or tall.
In a fuzzy expert system, such linguistic variables are used to produce fuzzy rules,
which are used to infer a decision from the model. New knowledge can be retained
within the model itself, by manipulating fuzzy sets, or by applying new fuzzy rules
semantically. Fuzzy logic is suitable for domains where the input is imprecise and
the outcome is uncertain. However, fuzzy systems lack the capability of learning
from experience or recognizing patterns, and extensive testing is often needed
for validation and verification of fuzzy knowledge-based systems. In addition, the
iterative process of defining fuzzy rules and membership functions is time consuming
and requires expert knowledge [275]. Preden et al. [237] present an example of fuzzy
logic, where an application first associates situation parameters like sleeping time,
breathing patterns, heart rate and movement with degrees of membership in fuzzy
sets before fuzzy rules estimate the quality of sleep.

G.4.1.4 Dynamic programming and recursive optimization

The main principle of dynamic programming is to break a problem down into smaller
sub-problems, often to find an optimal score using recursion. Each sub-problem is
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then solved sequentially, and the result of each iteration is retained in a dynamic
programming matrix and used as input to the remaining sub-problems. Finally, the
algorithm does a traceback of the matrix to recover the structure of the optimal
solution. Although dynamic programming shares properties with semantic and
model-driven mechanisms, it is not particularly suited for solving causal inference
since it might align unrelated sequences [276]. Thus, dynamic programming is often
used as part of, or as a complement to, other adaptation techniques. An example
of recurrent dynamic programming can be seen in [264], where Samie et al. use it
for energy-aware QoS management of IoT devices under bandwidth, battery, and
processing constraints.

G.4.1.5 Rule-based inference, ontologies and knowledge graphs

These methods are all based on semantics, associating meaning to collected data.
In systems that rely on semantic adaptation mechanisms, knowledge is usually
represented by defining a set of concepts and the relationship between them [257].
In this way data can be interpreted contextually, that is, detached from the syntax
or structure, by using annotation techniques to infer knowledge from the interpreted
data [55]. Reasoning typically attempts to derive facts that are not explicitly
expressed in the ontology or knowledge graphs [277]. New knowledge obtained this
way can be retained and stored as a new rule, a new ontology or as an expansion of
the knowledge graph. However, since the logic is based on semantics these methods
are not particularly suited to solve problems that are based on quantifiable data.
An example of ontology-based reasoning can be seen in [268] where knowledge
related to a situation is represented in a semantic-based context mode that contains
definitions of basic concepts and relations. This provides a common vocabulary that
can be used to manage and share context data among users, devices and services.

G.4.1.6 Case-based reasoning

The assumption behind case-based reasoning is that similar problems have similar
solutions [57]. Knowledge is usually captured and retained as episodic data in a
case base. This means it can be categorized as a hybrid mechanism, part semantic
and part data-driven. To solve a problem, a reasoning mechanism typically uses
the principle of analogy to retrieve and reuse episodes that match the current
situation. Since case-based reasoning considers what happened rather than on how
or why it happened, it is well suited for domains where the context is not explicitly
defined [278]. This sets it apart from mechanisms based on semantics. We can
see an example of case-based reasoning in [258], where information stored in a
knowledge base is used as a case base to find an appropriate action to improve
network lifetime and quality of information.

G.4.1.7 Machine learning (ML)

In machine learning, data is analyzed statistically using analytical or mathematical
models that identify patterns in the data. The ML algorithms are trained using
sample data, and can then be used to make predictions or decisions without explicit
programming [21]. In supervised learning the data is labeled and an output is
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mapped to an input. Thus, it infers a function from labeled training data. The
output can be a continuous numerical variable found through regression, or a discrete
or categorical value found through classification. In unsupervised learning the data
is unlabeled and the algorithms learn to find unknown patterns or structures in
the data. It is typically used for clustering, to partition data sets into groups [273].
For both methods, learning happens when previously unseen data is added to the
training data and the algorithm is retrained on the new data set. Some limitations
of ML origin in its reliance on statistical data. One problem with ML is the need
to train each model to fit the particular application. Also, the relationship between
output and data is encoded as correlations, but causality or relationships cannot be
inferred. In IoT management we can see examples of supervised learning in [256],
where Megahead et al. use a support vector machine classifier for autonomous policy
determination, and in [159], where Kraemer et al. use random forest regressors and
artificial neural networks for energy-aware self-management of solar-powered IoT
devices. We did not see a clear example of clustering using unsupervised learning
in any of the reviewed cases.

G.4.1.8 Reinforcement learning

Reinforcement learning (RL) is commonly used for control optimization problems
with many states and complex stochastic structures. It employs a reward function
and learns through interaction of an agent with its environment, with no need for
a complete control model or explicit supervision [258]. An RL agent is trained to
improve a task by learning from experience, that is, interacting with that particular
task in context [239]. The algorithm is trained with the goal to maximize the
cumulative reward. The agent thus learns the policy that produces the highest
reward while avoiding policies that produce low or negative rewards. We categorize
RL as a hybrid of data-driven and model-driven mechanisms, since environments
that provide rewards are often based on a mixture of explicit models and data. An
example can be seen in [193], where Edalat et al. use reinforcement learning for
network lifetime optimization. Challenges with RL are the design of the reward
function, as this requires an in-depth knowledge of the domain and the system goals,
as well as a potentially high training effort [239].

G.4.2 Handling Complexity by Combining Mechanisms

Table G.11 shows that reasoning, learning and planning mechanisms often are
combined to solve a particular problem. We also see that some models employ a
mix of different categories of adaptation to achieve adaptation. A synthesis of this
observation is presented in Table G.12. Here we indicate the category of reasoning
and learning mechanisms, grouped by the type of operational environment, for each
of the 32 cases presented in Table G.11.

For systems operating in a stationary environment, we see that only 1 system
uses a data-driven mechanism, most likely because behaviors can be adjusted in a
deterministic manner. Also, just 5 out of 10 cases include a learning mechanism, 4 of
which are purely semantic and 1 has a strong semantic component. For systems that
are deployed in a non-stationary environment, we see that there is more variation
in which type of reasoning mechanisms is used. Here, 7 cases used a model-driven
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Table G.12: Overview of observed reasoning and learning mechanisms

Stationary environment Non-stationary environment
Reasoning Learning Reasoning Learning

Model-driven 4 0 7 3
Data-driven 1 0 4 13
Semantic 5 4 8 2
Mixed 0 1 3 0
Not included 0 5 0 4
Total 10 10 22 22

approach, 4 used data-driven, and 8 used semantics. In addition, 3 cases used a
mixed approach to reasoning, with data-driven reasoning being a component in
all of them. 18 of 22 systems incorporate learning mechanisms, 13 of which are
primarily data-driven.

G.5 Patterns and Models for Autonomous Management in IoT

We now turn our attention to the combination of the various adaptation mechanisms
and how their interactions lead towards a cognitive system. The 32 reviewed cases
expose a wide variety in description style and rigor. Most detail only some aspects
while neglecting other components or processes that are necessary to understand the
bigger picture. 19 models mainly focus on component composition and interactions,
while the other 13 models focus on a description of the process. This variety makes
it difficult to interpret the adaptation process as a whole in each case. We therefore
extract partial models from the reviewed cases and expand them with more general
literature and cognitive models.

G.5.1 Patterns Observed in Literature

The 32 reviewed architectures typically divide reasoning, learning and planning
mechanisms into separate components. The descriptions in 23 papers were so
detailed that we could extract the relation between these three mechanisms (marked
with high in column 11 of Table G.11). Our study reveals the following patterns:

1. The managing process is centralized, that is, the network is organized in either
a star or a cluster topology, as for instance in [237, 253, 114].

2. Sensed events are sent from the device to a reasoning mechanism for analysis,
for instance [258, 255, 266].

3. Reasoning processes are initiated either from an observed event, an internal
process or a prediction, for instance in [7, 23, 261].

4. Reasoning and learning mechanisms are distributed throughout the architec-
ture, for instance in [257, 256, 263, 268].
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5. Learning mechanisms are placed in conjunction with a component responsible
for assessing the situation, for instance in [259, 267, 241].

6. There is a separation of concerns between two main processes, namely
understanding the current situation and planning a corrective action, for
instance in [20, 250, 167].

7. Task allocation, goals and policies are managed by a planning component,
e.g., in [265, 193, 232, 159].

Combining multiple adaptation mechanisms is a common strategy. A reason for
this is that distributed processes often complement each other, especially in systems
that need to solve tasks that require understanding on a higher cognitive level,
that is, self-, context- or situation-awareness [36]. In these cases we see that
the interaction between the components, and the interplay between the different
adaptation mechanisms, define and produce the internal cognition.

G.5.2 The MAPE-K Autonomic Control Loop

A general autonomic system architecture is based on sensors and actuators,
controlled by a feedback loop [56]. A typical feedback-control-loop involves four
steps: 1) Collecting and monitoring sensing and contextual data; 2) Processing and
analyzing the collected data, which may trigger a need for adaptation; 3) Making
a decision on what to change, based on an adaptation goal; and 4) Executing
adaptation through an appropriate mechanism. The new, adapted state of the
system is then returned into the feedback loop by a self-reflective mechanism that
is used throughout the adaptation cycle. The accumulated data is stored for future
reference in a knowledge base, and used to provide a more accurate model of past
and future states, in an attempt to identify symptoms and infer trends that go into
the decision planning [279].

Many autonomous and self-adaptive systems that make use of sensory input are
based on the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) autonomic
feedback loop [50, 49]. A model of this type of control loop is shown in Fig. G.45.
This architecture allows a device to manage itself and dynamically adapt to changes
based on predefined policies and objectives. Some learning is inherent in the model
by retaining sensed information and saving the effect of an executed action. Few
of the mechanisms identified in Sect. G.5.1 directly refer to MAPE-K, but we
observe that the pattern of the four reasoning processes, i.e., monitor, analyze, plan
and execute, is present in many of the reviewed papers. It is therefore natural
to incorporate this pattern in a generalized model, which in IoT corresponds to
a system where devices receive events through sensors or internal processes, and
respond to these events through an analysis of the situation and planning of adaptive
actions.

G.5.3 Cognitive Models

From Tables G.11 and G.12 we observe that the adaptation mechanisms found in
purely autonomic systems tend to be preconfigured, while situation-aware systems
more often are able to create their own rules through learning-by-experience.
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Figure G.45: Basic model of a MAPE-K autonomic control loop. Adapted from [49].
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Figure G.46: A model of cognitive planning. Adapted from Vernon’s cognitive
cycle [29].

Pramanik et al. redefine the concept of Cognitive IoT found in network management
as a process where a stateful and probabilistic system adapt to dynamic changes
through situation-awareness and iterative self-learning [32]. This pattern closely
resembles Vernon’s cognitive cycle, which is based on two independent cycles of
(1) perception and action; and (2) anticipation, assimilation and adaptation. In
his model, planning is implicit in the process and intelligent behavior thus emerges
through circular causality, where global system behavior influences local behavior of
system components, while local interactions between components in turn determine
global behavior [29]. In contrast to this model, all models in the reviewed cases
include planning as a separate component. To reflect this, we created a pattern
based on the cognitive cycle that we named cognitive planning, shown in Fig. G.46.

In the cognitive planning model, the planning process is the central component.
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Figure G.47: A standard model of human-like minds. Adapted from [40].

The functionality is divided in an autonomic and a situation-aware subsystem, which
are executed through two separate control loops. The autonomic loop registers an
event and initiates a response in accordance to its active policy. The adaptive loop
analyzes the event and changes the policy if the situation calls for adaptation. This
division has two implications: First, the autonomic subsystem can operate without
the need for learning, that is, as a simple stimuli-reaction loop. Second, since
the situation-aware subsystem receives stimuli from the autonomic subsystem, it
continuously learns from experience. We will later see that this increases autonomy
and robustness of the process.

The cognitive reasoning process is initiated either from an observed event or from
a prediction. Depending on stimuli received, the reasoning processes can trigger
the planning process. This implies either initiating a learning process, performing
an adaptive action, or both. To reflect this, we placed reasoning as a sub-process
that precedes planning. This pattern matches both the reviewed architectures that
actively use learning to adapt to changes in their context, and those that do not
include a separate learning process, i.e., purely autonomic systems.

Cognitive architectures are often organized around a working memory that
uses a cognitive cycle to collect sensory input, retrieve appropriate declarative or
procedural knowledge and initiate adaptive actions. Laird et al. describe this
architectural style in a standard model [40], shown in Fig. G.47. They state that
a key characteristic of intelligent behavior is that changes in a working memory
correspond to steps in an abstract reasoning process or internal simulation of an
external action. Thus, adaptation emerges from a combination of the implemented
architecture, acquired knowledge and learned skills. Implicitly, this corresponds to
a system with three different types of control loops. The autonomic and adaptive
loops have the same traits and behavior as in the cognitive planning model above.
However, in the cognitive architecture the learning processes are outsourced to
separate control loops that are responsible for updating declarative and procedural
knowledge that is stored within the system, in accordance to dedicated learning
policies.
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Sifakis et al. concretize the idea of separating knowledge in [43] with a
computational model for agents. This model includes declarative knowledge that
represents facts about the world, i.e., the entities found in a domain and the relations
between them. This knowledge can for instance be stored as system properties,
training data, logical formulas or patterns. Procedural knowledge, on the other hand,
is represented by executable methods like behavioral descriptions of components,
analytical algorithms or prediction techniques like machine learning models.

G.6 Best Practices for Autonomous IoT Device Management
Systems

Our literature study shows that complexity is a challenge in most large-scale
deployments of autonomous IoT device management systems, due to scale,
constraints and heterogeneity within the system, and non-stationarity of the
environments. Based on our observations, we were able to identify five best practices
(BP) that can guide the design and implementation of such systems. The first three
BPs are a direct result from our observations, and BP4 and BP5 are derived from
an overall analysis of the reviewed papers and the patterns observed in them. In the
following paragraphs, we will describe these practices, and give recommendations
for when and how to apply them. For clarity, we use imperative language.

BP1: Employ adaptation mechanisms according to environmental
stationarity. We observe that the selected adaptation mechanisms correlate with
the type of environment: In stationary environments, there is usually little need
for explicit learning, as the statistical properties of the environment are constant.
Adaptive actions can hence be pre-programmed and automated, using semantic
methods or purely model-driven mechanisms. Learning processes in such systems
are mainly used to identify new rules or policies. In contrast, when operating in
non-stationary environments, environmental factors often vary from device to device,
and they need to adjust their operation to unexpected events. This means that
systems must be able to retain and store knowledge of observed events, the action
that was taken, and the corresponding effect. They also have to reason about the
implication of said action, to make the most suitable corrective action the next time
the same situation arise. In other words, they have to employ advanced adaptation
mechanisms grounded in previously collected data.

Therefore, assessing the environment of devices is critical: For systems managing
devices operating in a stationary environment, the often lower complexity of a purely
autonomic architecture may be sufficient. For systems operating in non-stationary
environments, one should consider adding a self-aware subsystem to allow explicit
learning, since this is often a prerequisite for adaptation under such conditions.

BP2: Select topology according to the inherent systemic constraints
and requirements. System topology and locus of computation are influenced by
constraints inherent to IoT. Constraints in connectivity favor computation on the
device at the edge of the system. We found only one distributed topology [167],
where Moser et al. use linear programming for adaptive energy management directly
on the IoT device.

The majority of the papers are concerned with constraints inherent in the device
rather than the network. This favors cluster or star topologies, as they have the
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potential for better access to memory, processing power, energy and contextual
information. The main argument for employing a star topology is that a fully
centralized management improves elasticity [280], allowing easier access to resources-
as-a-service, which can add flexibility for systems where the management needs to
vary over time. Another argument is that since the managing nodes also need to
be managed autonomously, a star topology reduces overall complexity. Regarding
the cluster topology, we see four benefits: 1) Clustering can help reducing latency,
since processes are placed closer to the sensor devices [281]. 2) A topology that
allows responsibility to be shared among the managing nodes in the network can be
more suited to handle high variances in the network conditions or frequent changes
in application requirements [250]. 3) With cluster organization we can connect
devices that share similar characteristics. This adds flexibility, since it allows that
management nodes can use resources on the aspects of management that are most
relevant for that particular group [112, 282]. 4) Many IoT systems operate under
conditions that may cause instability in the operation. A clustered topology can
improve dependability since it reduces the risk that the whole network is shut down
in case of internal or external events, like handling too many active connections at
once or a power break [260].

We conclude that a star topology fits systems that require variable access to
processing power, memory or storage. For systems where low latency or high
dependability are key concerns, or where manager nodes are specialized for specific
management tasks, a clustered topology may be preferable.

BP3: Separate concerns and reduce complexity with modularization.
Modularization is a general mechanism to handle system complexity that also
applies for device management systems. Consequently, the majority of the reviewed
architectural models divide reasoning, learning and planning mechanisms into
separate components. Planning is often done in a component with a central,
coordinating role. Systems operating in stationary environments often employ a
basic architectural model made up of few components, while higher environmental
complexity is often handled by adding more components and using distributed
reasoning mechanisms throughout the architecture to control the data flow between
components. Such modularization allows specialized subcomponents for a particular
task. This enables a better understanding and control of the data flow and of
the different states of the system, making it easier to integrate mechanisms into
managers and to support black-box designs [283]. Another benefit is that modularity
ensures that parts of the system can be replaced or extended independently if the
requirements or the understanding of the problem change, which can reduce the
risk of project failures due to high complexity.

BP4: Control parallelism and data flow with triggers. Parallelism is
a concern in architectures that manage many devices simultaneously. Adaptation
processes can be active in several components at the same time. Models need hence
to include a detailed description of how these processes work internally, that is,
how they are activated and which components they activate in turn. However, few
papers mention how and when components are activated.

We suggest to explicitly present triggering mechanisms that describe how
knowledge is transferred from an originator to a consumer and how adaptation
processes are activated. Such triggers should possess both push and pull directions,
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so that both originator and consumer component can trigger the knowledge flow.
For instance, an observed event or a predicted future state can trigger the creation of
a new plan, corresponding to an originator pushing knowledge towards a consumer.
Vice versa, a planning component as a consumer of knowledge may trigger a specific
procedure in pull direction if it needs a specific prediction for a future state. This
mechanism also works for learning where, for example, a previously unseen event
can trigger a command to update the declarative knowledge connected to that
event.

BP5: Represent devices by digital twins. A challenge in autonomous
management of constrained IoT devices is to keep track of the past, current and
future state of each device individually. For such tasks, the concept of digital
twins is used in industrialized IoT. A digital twin is a virtual representation which
reflects a specific physical device. Such complete and holistic representation, as
opposed to a more fragmented organization, makes it easier to model the behavior
of the devices individually. A central manager can adjust the operation of each
device based on their actual experience. The twin can then serve as a platform for
simulating behavior and recommend optimal actions in a given situation [284].

Though we have not seen this concept explicitly in IoT device management,
virtual representations of devices are central in several of the reviewed cases to
allow autonomous self-management and context awareness [285]. One example can
be seen in [241], where virtual objects are used to represent both end devices and
devices that are responsible for adaptive management. This is challenging because
it implies that a device and its twin need to stay synchronized for the representation
and its result to be valid.

G.7 A Generalized Cognitive Model for Autonomous IoT
Device Management

We synthesized a generalized cognitive model for autonomous management of
constrained IoT devices, shown in Fig. G.48, based on the observations in Table G.11,
the MAPE-K loop in Fig. G.45, the adapted model of cognitive planning from
Fig. G.46, and the standard model of a cognitive architecture in Fig. G.47. It
provides a blueprint that describes the reasoning, learning and planning processes for
autonomous adaptation, the interaction between these processes, and the declarative
and procedural knowledge involved in such a system.

G.7.1 Component Structure and Digital Twins

Apart from the physical device instances deployed in the field, the model is structured
by two types of managers that serve a system and a device perspective:

• The System manager is responsible for assessing the past, present and future
states of the system as a whole. It contains knowledge that explains the world,
that is, the nature of the environment in which the system is placed, and how
the environment influences the operation of the devices. When new data is
collected, the system manager applies the necessary filters, before it separates
the data into declarative knowledge belonging to either the world or a device,
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Figure G.48: A generalized cognitive model for autonomous management of
constrained IoT devices.

respectively. The main output from the system manager are hence predictions
of how external conditions will influence each device in the future.

• The Device managers are responsible for assessing and planning the operation
of the devices themselves. Following the pattern of digital twins, there is one
device manager instance for each physical device. Their main tasks are to
monitor the knowledge related to each device and produce plans that reflect
the context and environment in which each device is operating.

This separation between situation awareness and planning is prominent in many of
the reviewed architectures, for example in [258], where Al-Turjman et al. use context
awareness to optimize network lifetime in a wireless sensor network. Other examples
are adaptive configuration management [7] and energy-aware self-management [159].
This organization facilitates sharing of information among devices, for instance as
value distributions that model the environment in a given context or as generalized
episodes that can be used to index a structure for matching and retrieval of
similar cases [57]. Sharing of data may also be beneficial for devices with common
properties [286], as for example solar energy intake patterns of devices with similar
location and orientation [23].
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G.7.2 Separation of Declarative and Procedural Knowledge

Both top-level components contain subcomponents to handle declarative and
procedural knowledge separately. The system manager contains a component
to handle declarative knowledge about the world, and the device managers one to
handle declarative knowledge about the device. The more interpretive procedural
knowledge is encapsulated in the respective modules PK .

This separation is beneficial as these different types of knowledge often use
different implementations, as discussed in Sect. G.4. For machine learning, for
instance, declarative knowledge can be stored in the form of training data, and
procedural knowledge is represented by trained machine learning models. Many
papers separate these types of knowledge, too. An example can be seen in [250],
where Minh et al. separate policies from contextual knowledge. Other examples are
dividing knowledge in contextual models, adaptation options, adaptation goals and
plans [255], and separating a context repository from logical rules [257].

G.7.3 Control Loops for Adaptation

The model contains in total four control loops that handle adaptive behavior in the
system.

• L1 is the main control loop. It follows the MAPE-K pattern from Fig. G.45.
However, since we have added procedural knowledge components that contain
prediction models to the loop, it acts more like the adaptive loops seen in
Figs. G.46 and G.47. L1 can take two paths through the model, depending on
whether a change originated in the environment or in a device. The monitor
component in the system manager will detect a change in the environment,
which will trigger an analysis of the contextual change. Likewise, the monitor
component in the device manager will detect any change related to a single
device. This triggers an analysis that evaluates to which degree the change
influences the operation of the device, taking current and future environmental
context into account.

• L2 and L3 are learning loops that control the incremental learning processes
of the system manager and device manager, respectively. They follow the
pattern of the situation-aware subsystem (Fig. G.46), as they act on incoming
events and decide if there is a change that requires learning. Since declarative
knowledge is added continuously, the learning loops are only specified for the
procedural knowledge components in the model. This is a distinction from
Fig. G.47.

• L4 represents the autonomic subsystem from Fig. G.46. It controls the device
in a short-term perspective based on the last plan sent from the device
manager.

G.7.4 Explicit Triggers

In line with the best practice identified before, the model identifies explicit triggers
that guide the data flow to the correct component and control the behavior of the
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management system in general, based on local decisions. The triggers are shown as
arrows pointing from the originator of knowledge to its consumer, but they can be
activated from both directions, as described by BP4 in Sect. G.6.

• A change in the general declarative knowledge base may trigger T1, which
in turn activates a model of the world or a model of how the environment
influences a device.

• After running a general procedural model, the system manager analyzes the
result and triggers T2 if there is a change in the situation that can influence
the operation of a device. This analysis may need to pull specific device
data stored in the device manager, to run the analysis. The prediction or
result of the analyzed situation is then sent to the device manager for further
processing.

• Trigger T3 monitors device-specific declarative knowledge to see if there is a
need for activating a particular behavioral model of that device. After running
a device-specific model or procedure, the device manager will produce a plan
based on the result from this process. A policy-based planning procedure
may for instance analyze the goal of the device, and then select the policy
that addresses the present problem in the best way, taking recent results and
predictions into account.

• If this new plan deviates from the previous, trigger T4 informs devices that
should adapt to this new plan, as we will outline later.

• In each manager there is a special reasoning process that triggers T5 resp. T6
if there is need for learning. Other types of learning triggers are for instance
previously unseen data, or the discovery that an executed plan did not have
the anticipated effect.

We see examples of such distributed reasoning processes in many of the reviewed
cases. For instance, Shah et al. use this pattern to select which task to execute [261].
Other examples are matching similar situations based on previous experience [7],
selecting training data based on correlation [23] and context-aware planning of
corrective actions [268].

G.7.5 Adaptive Instructions vs. Actions

Trigger T4 is a special adaptation process that serves two purposes: (1) It triggers
the creation of an adaptation plan for a device and (2) controls the transfer of
that plan to the mirrored device. The latter reflects the motor action commonly
employed in cognitive architectures [40]. This combined mechanism effectively
decouples the adaptive instruction, which is managed by a manager node, from the
adaptive action, which is managed by the device. The purpose of this separation
is to ensure that the digital twin and the device always are in sync. If they are
not synchronized, the manager risks to wrongly interpret the effect of a corrective
action, which again will cause it to make incorrect assumptions about the device.
In addition, the learning processes may suffer, since unsynchronized states may
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cause noise or anomalies in the training data. One way to mitigate this problem is
to keep the last instruction sent to the device in the working memory of the device
manager until it receives an acknowledgment that the instruction was consumed
by the device. Another argument in favor of decoupling is that a device capable
of some basic reasoning might discover that it has a need for adaptation due to a
sudden external event. When this happens, the decoupling allows a device to take
an adaptive action on its own, and then send an instruction to the manager that
informs it about the action that was made. Again, the device needs to keep a copy
of the instruction in its memory until the device manager has acknowledged that
the states are synchronized.

None of the reviewed cases explicitly address the difference between an adaptive
instruction and an adaptive action. However, Sifakis et al. mention the importance
of synchronizing agents and devices in [43].

G.7.6 Example Use Case: Solar-Powered IoT Devices

We illustrate the proposed model with a management system for solar-powered air
quality sensing devices. It provides feedback to devices about their expected future
solar energy intake based on the weather forecast, so that they can adjust their
operation to the availability of solar energy and maintain perpetual, energy-neutral
operation.

Apart from air quality data, the system manager collects data about the solar
energy intake from the devices and the weather forecasts for the devices’ locations.
Data relevant to the individual device is passed on to the respective device managers.
With this data, they can use a prediction model [287] to estimate the energy intake
for each device. This estimation is used to plan how many measurements each device
can take, also considering the current state-of-charge of the device. To speed up
learning, the device manager may also employ training data from other devices [23]
provided via the system manager. They may also employ a set of prediction models
from which the currently best one is selected [22].

The four control loops guide the information flow through the system. The
adaptive control loop L1 examines the weather forecasts in respect to the device
status, and instructs devices to change their operation if the anticipated energy
budget changes significantly. L2 and L3 guide the learning process. Prediction
models for energy intake can for instance be retrained at midnight, or when the
training data significantly changes. The autonomic loop L4 follows the policy sent
by the device manager unless it detects a state-of-charge of the battery that is
lower than anticipated by the device management. If that happens, it executes a
local policy that restricts the amount of energy that is consumed until it receives
updated instructions from the device manager.

G.8 Discussion

We developed the proposed reference model bottom-up, emerging from the systems
found in literature. Still, there is no guarantee that it fits every specific device
management use case perfectly. A challenge may hence be the application of the
model to specific use cases. However, as we managed to unify the emerging model
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with the principles for autonomic computing (Sect. G.5), we argue that the resulting
model with its loops, main components and responsibilities is likely to be relevant
for a wide range of device management tasks. Further, the reference model should
not be seen as a rigid design, but rather a blueprint for an architecture that can be
further refined following the best practices listed in Sect. G.6.

Our survey reveals the wide range of adaptation and learning mechanisms, often
more than one within a single system, see Sect. G.4. This diversity is good, but
developers are often only familiar with a subset of techniques, and not necessarily
the most suitable ones. Hence, while our model covers the overall system, the initial
selection, application and detailed design of the specific learning and adaptation
mechanisms can remain a challenge. Here we expect a maturation of the field,
where best practices also regarding the detailed learning and adaptation mechanisms
become commonplace and ultimately off-the-shelf components. The current rise in
interest and competence within machine learning among developers makes this a
likely scenario.

For further research and development, we see the mapping of the reference model
to standard components of commercial device management platforms and platforms
that automate machine learning tasks. Alongside the expected maturing of the field
regarding the adaptation and learning mechanisms for specific concerns, we expect
this to be the main driver for consolidation and further progress.

Even though handling security is out of scope for this review, we stress the
importance of considering this aspect when designing device management systems.
Security should be handled as an integral part of an architecture. Apart from
integrating mechanisms like authentication, authorization and certification, security
functions are increasingly subject to learning and adaptation, and hence drawing
benefit from a better management of them.

G.9 Conclusion

We reviewed the state of the art for autonomous device management in IoT.
First, we conducted a comprehensive and structured study on the aspects that
need to be considered when designing and implementing systems for autonomous
management of constrained IoT devices. We further synthesized a taxonomy of the
most commonly used adaptation mechanisms in IoT device management and studied
how and when they are applied. We combined these findings with general state-of-
the-art models of autonomous systems to identify common patterns for autonomous
management. From the conducted work, we made two major contributions that help
advancing the field: first, we managed to summarize insights of the literature by
identifying five best practices for design and implementation; second, we synthesized
a generalized cognitive model for autonomous management of constrained IoT
devices. This generalized model follows the identified best practices, adheres to the
general principles of autonomic computing and connects them with the requirements
for the IoT domain. In this way, the proposed model contributes to the vision of
efficient and sustainable IoT systems that reduce or prevent expensive downtime or
human intervention.
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Introduction

Abstract

Fog computing is an architectural style in which network components between
devices and the cloud execute application-specific logic. We present the first
review on fog computing within healthcare informatics, and explore, classify
and discuss different application use cases presented in literature. For that, we
categorize applications into use case classes and list an inventory of application-
specific tasks that can be handled by fog computing. We discuss on which level
of the network such fog computing tasks can be executed, and provide tradeoffs
with respect to requirements relevant to healthcare. Our review indicates that
(1) there is a significant number of computing tasks in healthcare that require
or can benefit from fog computing principles, (2) processing on higher network
tiers is required due to constraints in wireless devices and the need to aggregate
data, and (3) privacy concerns and dependability prevent computation tasks
to be completely moved to the cloud. These findings substantiate the need
for a coherent approach towards fog computing in healthcare, for which we
present a list of recommended research and development actions.

H.1 Introduction

As Topol writes in The Creative Destruction of Medicine [288], healthcare stands
before its most fundamental changes ever. One driver of these changes is wireless
sensor technology. Besides giving access to an increasing number of biometric
parameters, sensors are also getting smaller, so that they can be worn without
obstructing everyday life. This is important when data needs to be collected
continuously. The BioStamp [289], for instance, is a sensor the size of a band-aid
that can measure various biometric signals and simply be attached to the skin.
Further, Kang et. al [290] describe an optimized technique to print sensors directly
onto adhesive film that can be attached to skin. Contact lenses also offer possibilities
of sensing a number of biometrics [291]. Such advances promote a scenario in which
patients are instrumented with dozens of sensors. In addition comes the abundance
of fitness trackers. They foreshadow a future in which each human, regardless of
health status, is continuously monitored.

Sensory data is only useful if we can derive insights from it. Such insights are
provided by other drivers in healthcare, like big data and machine learning, the
accuracy of which will soon exceed that of humans [292]. Apart from automatic
or assisted analysis of medical images, big data analysis can be used to study the
effectiveness of treatments, identify patients at risk for chronic diseases, ensure that
patients adhere to treatment plans, optimize processes and personalize care [293].

To monitor patients at this scale, sensors need to be wearable and wireless. This
constraints their size, and influences the amount of energy, memory and processing
capacity that they can offer. In addition, data is only valuable in context and
needs to be aggregated from several sensors. Sensors therefore send it to other,
more capable computing devices for analysis, aggregation and storage. The wireless
ECG monitoring system IntelliVue from Philips [294] for instance, requires its own
installation of access points and network switches in order to seamlessly forward
ECG data to central servers. However, such vertical approaches do not scale. When
many patients should be instrumented, each requiring a high number of sensors,
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these cannot be supported by their own, dedicated infrastructure, as such individual
infrastructures are expensive and hard to maintain.

The Internet of Things (IoT) offers an alternative approach. Sensor devices
can use a common infrastructure to forward their data to more comprehensive
applications, using standardized protocols such as 6LoWPAN [295] over IPv6 [296].
Connectivity is provided by border routers, that connect the wireless resource-
constrained nodes to existing network infrastructures. This enables a device-to-cloud
architecture in which the infrastructure between device and cloud is only used as a
communication channel. Cloud computing frees the sensors from battery-draining
computing tasks and provides virtually unlimited resources. The cloud is also one
possible place where data from different sensors can be aggregated, enabling the
large-scale data sets required by the analysis tasks mentioned above.

For many applications within health informatics, however, such a simplistic
sensor-to-cloud architecture is not feasible. In some cases, regulations do not allow
to store patient data outside the hospital. For some applications, relying entirely
on remote data centers is also unacceptable because of patient safety in case of
network and data center failures.

One possible solution to bridge the gap between sensors and analytics in health
informatics is fog computing. This is an architectural style for distributed systems
in which application-specific logic resides not only in data centers (the cloud) or
the devices closest to the users, but also in the infrastructure components between
them. Examples of such infrastructure components are gateways, routers and
access points. This added flexibility of computation opens new possibilities for
solving healthcare challenges. Better patient mobility and increased integration will
enable uninterrupted monitoring as introduced above, and also enable entirely new
applications, as discussed later.

We observe an increasing number of publications on fog computing principles
in general, including applications within healthcare. In most cases, however, little
effort is spent to discuss where computation tasks should be placed, or the tradeoffs
between different requirements. To advance the application of fog computing in
healthcare, it is important to understand such tradeoffs holistically, taking into
account the diverse requirements of several, interacting applications and the vision
of future medicine as outlined above. This raises three questions:

• Which computational tasks in health informatics can be processed by fog
computing?

• Which are potential locations in the Internet of Things where these tasks can
be executed?

• Which are the tradeoffs to consider when placing computational tasks in the
system?

To find answers to these questions, we performed a systematic review of pervasive
health applications relevant for fog computing. We conducted a broad search
within international journals, conferences and workshops, using the sources listed in
Table H.13. We looked for papers addressing personal sensor network applications
in general, and wireless healthcare applications in particular. To identify relevant
publications, we set up three groups of search terms, summarized in Table H.14. The
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Table H.13: Sources used in the search of relevant publications

Primary source URL Use cases found
IEEE Xplore ieeexplore.ieee.org 17
ACM Digital Library dl.acm.org 2
ScienceDirect sciencedirect.com 2
SpringerLink link.springer.com 3

Table H.14: Terms used in search for relevant publications
Network topology Architecture Healthcare
Wireless sensor network Fog computing Pervasive computing Mobile healthcare Ubiquitous healthcare
Ubiquitous sensor networks Edge computing Wearable computing IoT Healthcare Health telemonitoring
Body area network / BAN Mobile edge computing Cyber-physical systems Home healthcare Critical care monitoring
Personal area network / PAN Mobile cloud computing Monitoring systems Pervasive healthcare Non-invasive monitoring
Local area networks / LAN Ubiquitous computing Ubiquitous mobility systems Telehealth
Wearable wireless sensors Wearable computing Wireless health

first two groups encompass the terms that the authors use to describe the network
topology and the architecture, respectively. They set the technical boundaries for
the study. The third group of terms addresses the different phrases that are used to
describe healthcare in a wireless or mobile setting. Whenever we found a paper that
used a new term relevant to our study, we added that term to the corresponding
group, and conducted a new search to find other publications using the same phrase.

The search resulted in 163 papers, published between 2005 and 2016, that
we found relevant to our study after reading the abstracts. Out of this pool, we
discarded 73 after conducting a full-text review. From the papers left, we identified
the network topologies and requirements of the solutions, and extracted 24 relevant
use cases for further analysis. The sources of these use cases are listed in Table H.13.

Previous reviews have addressed the thematic of healthcare related to wireless
sensor networks [297] and body area networks [298], the Internet of Things [299],
ubiquitous and pervasive computing [300] and mobile computing [301]. However, to
the best of our knowledge, there has not yet been a survey of fog computing within
healthcare.

Our review and discussion contributes the following:

• An overview of benefits and challenges of fog computing.

• A review of healthcare applications and the computing tasks that are relevant
for fog computing.

• An overview of network and device types in different deployment scenarios.

• A review of where fog computing tasks are placed.

• A discussion of the tradeoffs when placing fog computing tasks, with respect
to requirements in healthcare.

• A list of recommended research and development actions.

The paper is structured as follows. In Sect. H.2, we will present the concept of
fog computing and list the main characteristics and benefits discussed in literature.
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In Sect. H.3, we present some of the trends and challenges in healthcare, and provide
an overview of medical sensors and actuators and their technical requirements. In
Sect. H.4, we survey healthcare applications, categorized based on deployment
scenario and use case class, and provide an inventory of computation tasks that are
suitable for fog computing. In Sect. H.5 we provide an overview of the most relevant
technologies for wireless health. We then analyze the architecture of applications in
literature, and find out in which hierarchy levels of the network fog computing tasks
are executed. In Sect. H.6 we discuss the benefits and challenges of the applications
and architectures we have reviewed, and discuss selected tradeoffs. We conclude
with an overview of the current state of research, and outline further research and
development demands for applying fog computing within healthcare.

H.2 Fog Computing

The term fog computing was initially coined by industry [302] as a metaphor for
the main architectural idea behind it: fog is somewhere between the cloud (data
centers) and the ground, where the users’ devices are located. A term often used
synonymously is edge computing, describing tasks that are placed at the edge of
the network in contrast to the cloud. Note that the term edge can refer to different
tiers of the architecture. In an industrial setting, edge often refers to nodes in a
production plant and resides on premisses with the user, for instance as part of
a machine controller or a network gateway [303]. ETSI’s terminology [304] takes
the perspective of internet service providers, referring to edge as the border of the
operator’s network, like for instance an LTE base station. Our understanding of
fog covers both of these perspectives.

The main characteristic of fog computing is its topology, i.e., the geographically
distributed nodes that perform computation and offer storage and network services.
Fog computing resources can be integrated into access points, routers and network
gateways alongside the generic network functions. There may also be dedicated
fog computing nodes, like the mobile edge computing (MEC) servers deployed at
LTE base stations and access points described by ETSI [304]. Other devices can
be dedicated gateways deployed at home, like home automation hubs. The specific
types of tasks that fog computing performs depend on the specific application and
domain. In general, tasks contain filtering, aggregating, analyzing and temporarily
storing data.

Fog computing can be performed on a single fog computing node or on several
nodes jointly. This can improve scalability and provide redundancy and elasticity,
adding more fog nodes when more computing power is needed. Mechanisms like
virtualization and sand-boxing can be used to execute applications, which is why
fog computing shares many of the principles of cloud computing. Central to fog
computing is the concept of computation offloading, which has been treated in
research for instance by cloudlets [305], and can also be found in what is called mobile
cloud [306]. Similarly, crowd computing focuses on the utilization of distributed
computation power provided by, for instance, mobile devices [307].

There is a consensus in literature that fog computing is not intended to replace
cloud computing, but rather view it as an perfect ally [308] or an extension [302] of
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it. [309] also points out how many of the technologies and properties like elasticity
used for cloud computing also apply for fog computing.

In the following, we explain and exemplify the benefits of fog computing
mentioned in literature. We discuss and evaluate these benefits with respect
to healthcare later.

Reduced Latency: Compared to a device-to-cloud architecture, placing
processing closer to the devices can reduce the latency since the physical distance
is shorter and potential response time in a data center can be removed. Compared
to a device-only architecture, latency can be reduced since computation-intensive
tasks that take a long time on resource-constrained sensor devices can be moved to
more capable fog computing nodes. The motivation can also be to keep the latency
predictable [310].

Privacy: Compared to the device-to-cloud architecture, fog computing can
reduce the propagation of data, for instance by analyzing sensitive data on a local
gateway instead of a data center outside of the control of the user. This can improve
the privacy of user data [311].

Energy Efficiency: There are several ways how fog computing can improve
energy efficiency within sensor devices. First, gateways can serve as communication
proxies, so that devices can increase the length of their sleep cycles. During the
sleep mode, the gateway takes care of any requests or updates, which are then
processed when the sensor device wakes up. Second, energy-intensive computations
and other services can be offloaded from the battery-driven nodes [310].

Bandwidth: In comparison to a device-to-cloud architecture, fog computing
can reduce the volume of data to be sent into data centers. This can happen in
several ways: Raw data can be filtered, analyzed, pre-processed or compressed
so that only a reduced amount of data needs to be forwarded [312, 313]. Local
nodes can also answer requests from devices based on locally cached data, so that
communication with data centers is not necessary at all [314].

Scalability: Fog computing can improve the scalability of a system. Local
computation can reduce the load from more centralized resources, and be expanded
as needed. Vaquero [311] refers to this as “mini-clouds.”

Dependability: Fog computing can increase system dependability in two ways.
It can be a means to realize redundancy, by letting several nodes in the network
provide the same functionality. It can also execute computation closer to the sensor
nodes, so that they are less dependent on the availability of a network connection
to more centralized resources [308].

Context: In some cases, a fog computing node is the first node in a network
that has enough overview to reason about a situation and the context of data. An
example is a system that induces the current activity of medical staff from the
location and activity of several devices [315].

H.3 Wireless Health Informatics

We briefly review the current challenges in healthcare, give an overview of the
variety of sensors and their requirements.
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H.3.1 Challenges for Healthcare

Healthcare systems in most countries face enormous challenges that will increase
due to aging population and the rise of chronic diseases. Many countries also
experience a growing nursing staff shortage. At the same time, there is a demand to
reduce costs while maintaining high-quality care to patients [316]. As a consequence,
healthcare industry promotes an information-centric healthcare delivery model [317].
Part of this delivery model enables remote monitoring of patients, which leads to
increased accessibility, quality, efficiency, and continuity of healthcare to patients,
and also reduces the overall cost of healthcare [318].

Today, much time is wasted in hospitals by manually measuring biometric
parameters and transferring the data between systems, often involving pen and
paper. Remote monitoring will free time for caretakers. Other improvements include
automated supervision that can replace manual supervision. Bertini et al. [319]
report benefits of remote monitoring compared to in-hospital follow-ups, including
even a positive impact on survival. Another area is the improvement of processes
within the hospital. Many processes are planned manually, and therefore done
sequentially, instead of using resources more effectively. In addition, sensors will
make it simpler to gain correct information about the current status and location
of equipment, caretakers and patients. Sensors will also provide a more precise
picture of patients, as they can capture data continuously and allow an insight into
increasing variety of biometric parameters. This will revolutionize diagnostics and
treatment. Topol [288] calls this “digitizing humans.” Once this new picture of
patients is matched with analytical techniques, new insights will transform early
detections, diagnostics, medication and treatment of diseases. One precondition for
this is that data is not treated in isolated silos, but that it is combined with other
sources and seen in context.

Another trend is the departure from reactive treatment, where patients are
treated in a hospital only after an incident, towards a more preventive medicine [320].
This starts by monitoring healthy people, to keep them out of hospital for as long
as possible. Additionally, increasing the possibilities to monitor patients at home
facilitates releasing them earlier from the hospital. In general, this means that the
borders between hospital, home, and other points of care get increasingly blurred:
healthcare happens continuously and everywhere.

H.3.2 Medical Devices: Wireless Sensors and Actuators

There is a wide variety of sensors, in different stages of technology readiness. Tanaka
et al. [321], for instance, developed an incontinence sensor integrated in diapers.
The sensor uses urine as an electrolyte between two electrodes, which allows it to
send an ID signal with a range of 5 meters once coming into contact with urine.
A similar principle is used for drug prescription. A digestible microchip the size
of a sand particle is integrated into a pill that generates a signal once in contact
with digestive juices [322]. This signal is detected by a skin patch, which relays it
further to a mobile phone. Examples for actuators are hearing aids, medication
dispensers (both intra- and extra-body) or pace makers. The iPill from Philips [323],
for instance, is a small device swallowed by a patient, which senses the acidity of
its surroundings, in order to release drugs via a pump at the right place in the gut.
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H.3.3 Requirements of Healthcare Applications

All of the potential benefits of fog computing listed in Sect. H.2 are relevant
for healthcare. We now exemplify the corresponding requirements and, where
appropriate, quantify them.

Bandwidth: The bitrates of different physiological signals depend on the
number of leads, the quantization step-size of the analog-to-digital converter (ADC)
in bits, and the sampling frequency [324]. Body temperature, for instance, requires
only a low sampling frequency of 0.2 Hz. With a 12-bit ADC, this results in a
bitrate of 2.4 bit/s [325]. Blood pressure sampled at 120 Hz with 12-bit ADC
yields 1.44 kbit/s [325]. Pulse oximetry needs to be sampled at 600 Hz and requires
7.2 kbit/s [325]. Electrocardiograms (ECG) usually require more than one lead. For
clinical applications, a 5-lead ECG needs between 36 to 216 kbit/s, depending on the
sampling rate and step size [324, 326]. Electromyograms (EMG) represent electrical
signals generated by muscles and can be used in several applications such as food
chewing recognition [327] and prosthetic finger control improvement [328]. These
use cases require a bandwidth of at least 20.48 kbit/s and 96 kbit/s, respectively.
Electroencephalogram (EEG) measures electrical activities from the brain and
requires a lot of leads. A 192-lead EEG can demand 921.6 kbit/s bandwidth. This
shows that the bitrates of physiological signals vary considerably.

Latency: With regard to latency, the requirements also vary considerably with
the intended use for the data. For ECG, Alesanco and Garcia [326] found through
experiments with cardiologists that latencies of up to 2 to 4 seconds in real-time
monitoring are acceptable. These are relatively lax requirements from a technical
point of view. Stricter requirements are necessary for applications within the realm
of the Tactile Internet [329], for instance for the control of exoskeletons which allow
paralyzed patients to walk. Other examples with latency constraints come from
telehealth applications operating in rural areas, where the network infrastructure
itself is often restricted [330].

Energy-Efficiency: Energy-efficiency is a major concern, because replacing
batteries impedes the use of sensors. While some in-body sensors rely on energy-
harvesting, either by heat or kinetic energy [298], some sensors may require an
operation of the patient when a battery needs replacement.

Dependability: Depending on what data is used for, system failures have
different consequences, from minor inconvenience to serious threat to the patients’
lives. Thus, dependability is one of the most important requirements to consider,
tightly interconnected with resilience against security threats.

Security: Because of the sensitivity of patient data and the potentially
severe consequences of tampered or manipulated devices and systems, the security
requirements in healthcare are high. With respect to remote monitoring, increased
connectivity of devices results in larger attack surfaces. This requires procedures
for detection and fixes of security vulnerabilities that are complex. Requirements
go beyond technologies implemented in the devices and surrounding systems, but
also require routines that need to be in place in organizations, regulators and
manufacturers. See, for instance, [331] for an overview.

Interoperability: Systems, even when provided by different vendors, should
be interoperable with each other. This is often not the case. Cardiology patients,
for instance, who should be transported between hospitals and who require close
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monitoring via ECG, need to be attached to different equipment during the transfer
due to incompatibilities [324].

H.3.4 The Vision of Fog Computing in Healthcare

The apparent match between healthcare challenges, the resulting requirements, and
the benefits of fog computing as presented in literature suggests a potential for fog
computing as a driver for pervasive, ubiquitous computing in healthcare:

Flexibility of computation locus: Where scalability, privacy and depend-
ability issues prevent a cloud-only solution, fog computing can offer the needed
computational resources within the network to meet both regulatory and technical
requirements. For such approaches to be effective, it is not only important to have
computational resources between sensors and cloud, but also to optimally manage
them. This includes transparency of execution for application, as well as a flexibility
regarding where computation can be executed. With fog computing, the location
can be dynamic and depend on the current context, environment and application
requirements.

Integration: In the current landscape, the introduction of new sensor devices
often requires the simultaneous introduction of a support infrastructure. An example
is the heart rate monitoring system mentioned in the introduction, which requires
dedicated infrastructure. This is a considerable burden when introducing new,
innovative devices. Within a fog computing architecture, new sensors can be added
to the existing infrastructure. Fog computing can also serve as a compatibility layer
to translate between various standards.

Patient Mobility: Application-specific infrastructure also limits the area where
patients can be monitored. This is especially relevant when patients are about to
leave the highly instrumented infrastructure of a hospital. Current use cases often
do not cover this transition, which can effectively prolong a patient’s stay at the
hospital. With fog computing resources in place, the transitions between different
environments can be managed more gradually.

New applications: Fog computing will also enable entirely new applications:
By adding higher levels of autonomy and intelligence at the edge, fog computing
will provide latency and response time improvements, as well as energy savings
for wearable and low-cost devices, while performing complex tasks such as fall
detection [332]. The next generation of healthcare devices will replace costly and
complex devices, without resorting to simple algorithms with limited accuracy.
These devices will be enabled by fog computing, ultimately leading to the “Internet
of Healthcare Things.”

H.4 Health Applications

In this section, we start with a description of deployment scenarios, give concrete
examples of each type of scenario, and categorize healthcare applications into
different use case classes. We then present an inventory of computation tasks that
are candidates for fog computing.
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H.4.1 Deployment Scenarios

From the reviewed papers, we extracted five deployment scenarios, illustrated in
Fig. H.49. The scenarios differ in terms of involved users and stakeholders, devices
and connectivity:

• Mobile: In this scenario, the mobile phones of users act as hub between
sensor devices and cloud.

• Home Treatment: When at home, connectivity is often provided through
the patient’s internet access. This has influence on device ownership, required
usability and maintainability, and how disturbances can be mitigated.

• Hospital: Within a hospital, devices are often proprietary, and are usually
owned and maintained by the hospital itself. The systems are considerably
more complex, which in turn requires the users of the applications to be
qualified professionals.

• Non-Hospital Premises: Like hospitals, this scenario covers professional
points-of-care, but with less staff and infrastructure. Examples are clinics,
doctor’s offices or nursing homes. Core devices are owned and maintained by
the clinic, but patients are sometimes required to connect personal equipment
to the network.

• Transport: This scenario covers connectivity in an ambulance or helicopter.
It is similar to the non-hospital deployment scenario, but with the added
complexity that the infrastructure needs to be mobile, for instance using a
cellular connection.

H.4.2 Example Use Cases for Deployment Scenarios

In the following, we present example use cases that are typical for their respective
deployment scenario. They are also illustrated in Fig. H.50.

• Mobile: An example for the mobile deployment scenario is the monitoring
system for chronic obstructive pulmonary disease (COPD) patients in [333]. A
mobile phone acts as mobile base unit and collects data from several sensing
devices, processes it and sends it to a back end server. The purpose of placing
fog computing on the mobile device is to increase battery life of the wearable
sensor device.

• Home Treatment: The Parkinson speech analysis solution in [334] is an
example for the home deployment scenario. A fog node is placed on the LAN-
level in the network hierarchy. Like in the mobile scenario, fog computing
is used to collect, store and process raw data, before sending it to the cloud
for permanent storage. The main motivation for fog computing is to reduce
network traffic and latency. Another example of a home deployment scenario
is described in [335], where data from patient- and environmental sensors are
used to detect if a patient falls, and raise alerts about gas leaks and fires.
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Figure H.49: Deployment scenarios in healthcare. Devices are used in different
network layers. Examples are sensors and actuators, gateways, routers, access
points, servers and data centers. We distinguish between devices and infrastructure
owned or controlled by the health institutions (grey), and devices and infrastructure
owned or controlled by the patient (white).

• Hospital: In [336] we see a typical example of a setup used in the hospital
deployment scenario. Smart shirts, coupled with beacons, are used to monitor
physiological data and the location of patients. Fog computing is distributed
among several nodes. The data acquisition and processing board (DAPB)
collects, processes and merges data from the sensors, and sends them to the
wireless transmission board (WTB). The WTB collects data from the beacon
points (BPs), merge them with the data from the DAPB and sends them in
a single packet to the management subsystem, located at LAN level. The
management subsystem uses the data from the DAPB and BPs to monitor
the medical parameters of the patients, locates the patient within the hospital
and verifies if an alarm has been activated.

• Non-Hospital Premises: The real-time epileptic seizure detection sys-
tem [337] is an example of the non-hospital deployment scenario. A three-tier
architecture is proposed, where filtering, preprocessing, feature extraction, fea-
ture selection and classification of EEG patterns are performed on the mobile
device cloud (MDC), which is placed in the middle tier. Two advantages of
using fog computing are mentioned: Providing sub-second real-time responses
with minimal communication overhead, and reducing traffic between the local
area network and the seizure detection system located in a cloud center.

• Transport: The transport deployment scenario is used in the ubiquitous e-
health information interchange solution, described in [338]. The authors
describe how physiological and contextual data can be collected in an
emergency situation from a patient wearing a medical device, and how this
information can be duplicated and shared between different devices on-site,
in the ambulance and in the hospital. Fog computing is only concerned with
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the collecting and sending of data, the complexity lies in the distribution of
data among many fog nodes.

H.4.3 Use Case Classes

To facilitate our discussion, we have synthesized five use case classes, summarized in
Tab. H.15. The table’s columns show whether the use case class requires significant,
application-specific computing, short response times (real-time), the criticality for
the patient’s health, and ability to provide feedback to control medical devices.

• Data Collection. This class of use cases only deals with the collection of
data, which is then further examined by a doctor when needed. Examples
are the logging of training activity, weight or body posture. The criticality of
such data is low. If the system fails to log some data points, the patient is
still safe.

• Data Analysis. This class extends the data collection with some automatic
analysis of the data to gain further insights. An example is the speech analysis
for Parkinson’s patients [334]. Similarly to the data collection, the criticality
of the data is low. This use case, however, requires considerable computation
of data.

• Critical Analysis. These use cases analyze data for critical conditions.
Examples are cardiac monitoring via ECG with automatic alarms once critical
situations are detected [314]. The criticality also implies a certain maximum
response time, i.e., real-time properties.
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Table H.15: Use case classes with their properties.

Use Case Class Computing Real-time Critical Feedback
Data Collection - - - -
Data Analysis  - - -
Critical Analysis    -
Critical Control     

Context Management  ( ) - -

• Critical Control. In this class of use cases, detected events are not only
used to alert personnel, but also to control devices. An example is a device
that regulates the amount of oxygen provided to a patient [339].

• Context Management. This class of use cases is different from the ones
above. It merely observes patients, devices, or employees to figure out
their context and help by improving planning or taking proper decisions.
This usually requires data analysis, but no or only lax real-time constraints.
Examples are systems to figure out the context of healthcare workers [315].

H.4.4 Computing Tasks

Table H.16 lists the healthcare applications we examined, grouped by use case
classes. If an application has several functions, we show it only once under the
use case class with the most critical requirements. The third column describes
which computing tasks are to be executed and subject to fog computing. Column
four shows to which deployment scenario an application belongs. The final column
summarizes at which levels of the network fog computation happens, explained
later in Sect. H.5.4.

We will now illustrate some of the computation tasks listed in Table H.16. The
data collection use case class is exemplified by the ubiquitous emergency scenario
presented in [338], in which data is aggregated and exchanged among involved
parties only in emergency cases. As a side effect, energy consumption due to the
transmission of data is also reduced, increasing the effective operating time of the
device. The data analysis class is exemplified by the speech tele-treatment system
for Parkinson’s patients described in [334]. The speech analysis, performed on a
local gateway, reduces processing time and traffic to the cloud, while remote doctors
can still retrieve the analyzed data from the cloud. The critical analysis class can
be seen in [337], which describes a solution for real-time epileptic seizure detection.
During a seizure, patients are usually unable to press a button, but automatic
detection ensures that healthcare personnel is alerted and the treatment can be
started quickly. The analysis for the seizure detection is done on local servers for
low latency, while big data analysis is offloaded to the cloud. A critical control use
case is found in [339], where an automatic oxygen-controlling system for COPD
patients is proposed. An example of the context management class is [315], which
determines the activity of staffs based on their location and devices being used.
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Table H.16: Reviewed healthcare applications, grouped by use case classes.
REF. APPLICATION COMPUTING TASKS DEP. SCENARIO FOG COMP.
Data Collection Data gathering from devices
[321] Urinary Incontinence Detection Detect signal from sensor, forward information into the system. Non-hospital PAN
[340] Priority-Based Health Data

Aggregation
Temporarily cache sensor data, analyze data to classify its
priority, select which data to forward.

– PAN + BAN

[338] Ubiquitous Emergency Scenario Forwarding of emergency calls and aggregation of patient data. Transport PAN
Data Analysis Data analysis of the collected data
[307] Activity Monitoring Analysis of movement data in context of the location. Forward-

ing of relevant data into the system.
Mobile PAN

[313] ECG Data Compression Encoding of ECG data to compress it and save transmission
energy, decoding at the receiver.

– BAN + PAN
+ LAN

[334] Parkinson Speech Analysis Caching of audio files and local feature extraction on audio files
to analyze data. Forward analysis results, not raw data.

Home PAN + LAN

[341] Patient State Monitoring Local analysis of video and audio data to figure out if a patient
is in pain. No forwarding of raw data, only processed results.

– –

[342] UV Radiance Measurement Analysis of camera data to measure UV level, aggregation of
data from several phones to determine UV level in a specific
area.

Mobile –

[343] Speech Recognition and
ECG Monitoring

Analysis of speech data as in [334]. Analysis of ECG data to
detect arrhythmic beats, compression and forwarding of relevant
data.

Mobile PAN + LAN

[344] Image-Based Healthcare Analysis Local processing of image data to assess wounds, detect skin
cancer and detect heart rate.

Mobile –

Critical Analysis Data analysis for critical conditions with alarms when critical situations are detected
[312] Fall Detection Local analysis of accelerometer data for falls, with filtering of

false positives, based on training data received from the cloud.
Mobile PAN

[314] ECG Monitoring Feature extraction of ECG data based on wavelet analysis. Real-
time notification and enrichment of data with location.

Home BAN + LAN

[333] COPD Patient Monitoring Analysis of ECG data, local analysis and enrichment with GPS
and activity, forwarding of relevant data in compressed form.

Mobile PAN

[335] Dementia and COPD
Patient Monitoring

Real-time analysis of environmental and patient sensors to detect
and alert users about fires and gas leaks. Monitoring a range of
patient behavior, including fall detection.

Home LAN

[345] Arterial Blood Pressure Monitoring Low-pass filtering to reduce noise. Hospital –
[346] ECG Monitoring Feature extraction of ECG data. Classification and detection of

anomalies with local alarms. Filtering, transmission of results
into the system.

Transport PAN

[347] Vital Signs and Environment
Monitoring

Capturing and encoding of various types of biometrical and
environmental sensor data. Authentication and encryption of
data before transmission.

Hospital PAN + LAN

[336] Vital Signs Monitoring Preprocessing and merging of data from a smart shirt, to add
activity and location as context.

Hospital BAN + LAN

[348] ECG Monitoring Applying low-pass and high-pass filters on ECG data to remove
noise and baseline wandering.

– BAN + LAN

[337] Real-time Epileptic Seizure
Detection

Analysis and preprocessing of EEG data, local analysis based on
wavelet transformation, classification based on machine learning
and notification of local staff.

Non-hospital PAN + LAN

Critical Control Control of actuators that are critical for patients
[339] Oxygen Level Control Analysis of oxygen level and patient activity to adjust the

appropriate oxygen dose for the patient in real-time, also taking
location and environmental data into account.

Mobile –

[349] Pacemaker Monitoring and
Configuration

Monitoring and visualization of current pacemaker parameters.
Local support to remotely update of pacemaker parameters.

Hospital LAN

Context Management Observation to deduce the context of a patient or healthcare personnel
[315] Activity-Awareness of

Medical Staff
Analysis of location, equipment usage and time to derive the
current activity and availability status and improve planning
and collaboration.

Hospital PAN

[237] Activity Monitoring Local analysis of heart rate, acceleration and altitude to classify
activity, like driving, resting or different types of walking.

Mobile PAN + LAN

H.5 Fog Computing Architectures

Before we discuss the placement of fog computing tasks, we discuss the types of
networks and devices typically found in healthcare.

H.5.1 Network Types

The reviewed pervasive health use cases employ combinations of four network types
to bridge the gap between medical devices and the cloud: wireless personal area
networks (WPANs), wireless body area networks (WBANs), local area networks
(LANs), and wide area networks (WANs). The hierarchy of these networks is shown
on the vertical axis of Fig. H.49. Some sensor devices are directly connected to the
WLAN via Wi-Fi [312, 333]. Especially in the mobile deployment scenario, devices
are directly connected to a WAN via cellular connections [307, 346].

Another way to connect sensors is by WPAN technology, as provided by
Bluetooth, IEEE 802.15.4, or ZigBee. These typically have a lower range than
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Wi-Fi or cellular connections, but are also more energy efficient. However, WPAN
technologies have limitations. For some applications, they do not offer the necessary
bitrates for the biomedical signals, such as EEG or ECG (cf. Sect. H.3), especially
if patients wear several sensors. Furthermore, electromagnetic signal transmissions
are blocked by the body in some postures [298]. This either reduces the quality of
the link or makes communications with in-body devices impossible.

To mitigate the challenges with WPANs, a specific standard for wireless body
area networks (WBAN) was introduced with IEEE 802.15.6 [350]. It uses a one-
or two-hop star topology with only one hub as gateway to other networks [298].
In addition, IEEE 802.15.6 proposes three different physical layers that can be
chosen for different applications [350]. The narrow band physical layer provides
longer communication range, with slightly lower data rates than some WPAN
technologies [351]. The narrow band utilizes existing frequency bands such as
402–405 MHz medical device radiocommunications band (MICS) and 2.4–2.45 GHz
industrial, scientific and medical band (ISM). The ultra wide band physical layer
offers higher data rates than the narrow band with low transmission power. This
layer can also be designed to achieve better energy consumption per bit than the
narrow band [352]. The human body communication layer utilizes the galvanic
coupling on the surface of the human body for data transmissions. This eliminates
antennas and signal propagation problems. Additionally, it is considered to be the
most energy-efficient physical layer for high-data-rate requirements [353].

Devices compliant with IEEE 802.15.6 devices are, to the best of our knowledge,
still under development [353, 354]. Existing systems referring to WBANs therefore
usually utilize WPAN standards, e.g. Bluetooth or IEEE 802.15.4, which may be
sufficient for some applications that do not require high data rates or communications
with in-body devices.

H.5.2 Device Types in Healthcare

Depending on the deployment scenarios of Fig. H.49, different devices and network
nodes are involved. In the mobile deployment scenario, mobile phones act as WPAN
gateways that connect directly to the WAN through cellular networks. WBAN
gateways, such as smartwatches, can be used as intermediate nodes. Off-path nodes,
for instance environmental sensing equipment, are connected at the WPAN-level. In
the home deployment scenario, wireless routers act as gateways from Wi-Fi to WAN.
The sensing devices communicate via a gateway on BAN- or PAN-level. This can
be a specialized device, for instance mounted in a belt or another item of clothing,
or it can be a mobile phone. Off-path computation nodes, like fall detection devices,
are placed at LAN-level. In the hospital deployment scenario, local data centers are
often available. On both LAN- and PAN-level there are other off-path computation
nodes like localization devices and stationary equipment in labs or operation rooms.
Patients wear proprietary devices which connect to specialized gateways connecting
WBAN or WPAN to the LAN. In the non-hospital deployment scenario, e.g., a
doctor’s office or a nursing home, we typically see small local servers. Lab equipment
or environmental sensing devices act as off-path computation nodes. Patients wear
the same kind of non-intrusive sensing equipment as identified in the home scenario.
A patient in the transport deployment scenario wears the same kind of proprietary
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sensing equipment as in the hospital scenario. This connects to a gateway on a
WPAN network that acts as a bridge to a WLAN router in the vehicle. The WLAN
router connects to the WAN through a cellular network while in transit. Medical
equipment and wired monitoring devices are connected on LAN-level.

H.5.3 Development Platforms

For research and development, there is a wide variety of hardware development
platforms with wireless communication with small form factors and low energy
consumption. We list some of them that are frequently referred to in literature.

• The Arduino is a low-cost platform used in many application domains.
It requires additional hardware modules for wireless communication [335].
nRF24L01 is a low-cost radio transceiver module that can be used with
Arduino and other platforms. It is designed for the 2.4 GHz ISM band and
optimized for low energy consumption [355].

• The MC13213 system is also based on an 8-bit processor, but has a higher
clock rate of 4 MHz. It integrates a 2.4 GHz transceiver module on the chip
that supports 802.15.4 and ZigBee [336].

• Intel Edison is another system-on-chip (SoC) with integrated Wi-Fi and
Bluetooth 4 radio modules. With its 400 MHz processor it is suitable for
computing power-demanding applications like audio processing [334].

• CSEM’s Icycom is a platform with a 900 MHz ISM band transceiver unit and
a 16/32-bit microprocessor. Its form factor is about 1×1 cm with low energy
consumption [356].

• Another SoC suitable for WPAN applications is the nRF51822. This chip
supports 2.4 GHz BLE and can communicate with nRF24L01 providing that
a BLE stack is implemented for nRF24L01. Unlike nRF24L01, the nRF51822
has an integrated 32-bit processor, yet it still consumes low energy and comes
in a tiny package comparable to the nRF24L01 [357].

H.5.4 Positioning of Fog Computing Tasks

We also examined at which level of the network and in which devices the reviewed
papers place computation tasks. This is summarized in the last column of Table H.16.
(A dash indicates authors did not reveal enough information.)

Numerous approaches ([307][312][315][321][335][338]) place their computation
task on a single node at either PAN- or LAN-level. At this level, data is processed
and forwarded to higher levels and eventually to the cloud. There is a wide variety
of tasks. A typical use case is to collect and analyze time-critical data, in order
to achieve critical monitoring, like fall detection [335]. Another example is [307],
which describes a sensing platform where a global task scheduler in the cloud is
offloading a computation strategy to a worker node in the fog. This instructs the
worker node to collect and filter only the most important and relevant data.

Other approaches ([313][314][334][336][340][343][348][237][358]) utilize two or
more fog-nodes on a direct path between the sensor device and an access point to the
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cloud. An example is described by López et al. [336]. They have developed shirts
with embedded sensors that collect physiological data about the patient. The shirts
include a wearable data acquisition device that also acts as a BAN-gateway. The
device processes the data and sends it to a management system at LAN level, where
the data is further processed and permanently stored. In addition, the management
receives data from a separate off-path location system, that collects positioning
data. In cases where several fog computing nodes are used, we observe that the
node closest to the sensor device is typically used for pre-processing or filtering.
In-depth analysis, contextualisation and local storage is usually done on a node
located closer to the cloud, often at LAN level.

We also observed approaches ([333][347]) which use a gateway node at PAN or
BAN-level for computation, and where the node is capable of connecting to either
LAN via Wi-Fi or WAN via a cellular network connection. This is especially useful
for applications which need a high degree of mobility, and where flexibility with
regard to network connectivity is important. Wac et al. [333] describe a scenario
where a patient is wearing one or more sensors along with a mobile base unit,
connected in a BAN. The base unit collects, synchronizes, filters and processes
the data, before sending it further to a back-end server for storage via either
WLAN or a cellular network. Huang et al. [347] describe a wearable sensor system
where physiological data about the patient are captured by on-body biomedical
sensors, and then encrypted locally before the data is sent to a mobile computing
device (MCD) on a higher network tier. A separate system of sensor motes sends
environmental data. The combined data sets are then captured and analyzed by
the MCD before the data is eventually sent to a back-end system for permanent
storage. The MCDs are also able to communicate with each other via a cellular
network. This case also shows that a fog node can use different types of networks,
depending on the type of data it is sending.

H.6 Discussion

After performing our review and going through the use cases, we conclude that
fog computing, despite its potential, is still in an early phase within healthcare,
and only implemented partially, if at all. The main shortcoming of the collective
literature is that many of the works focus on isolated use cases, and often only
discuss infrastructures that are accordingly specialized. Most use cases also only
cover a single deployment scenario. This leads to the lack of a unified view, one
that is required by the grander vision of fog computing for healthcare as introduced
earlier. We will come back to this shortcoming, after discussing the various aspects
of fog computing in health care.

H.6.1 Locus of Computation

Our survey in the previous section shows that computing tasks occur at several
levels of the network, from BAN to cloud. This suggests that the distribution of
computational tasks should not simply be focused on a node’s hierarchical level.
The placement of offloading computing tasks within an infrastructure is rather non-
trivial. The different roles and computing resources of available devices require a
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careful consideration of the tradeoffs and complementarity between possible options,
bearing in mind target-levels of performance like computational performance, latency
limitations, energy consumption and security, to name a few [310]. Even though
for some operations it may seem obvious that a resource-powerful environment
as provided by cloud computing is preferred to another with fewer capabilities,
constraints such as privacy may limit the number of available options, and for
instance block information from leaving the hospital premises.

We have also observed that the health-specific deployment scenarios have a
significant impact on decisions related to the implementation of the fog concept,
despite the generalized acceptance of fog computing anywhere between the cloud
and a device (c.f. H.4.1). In health informatics, clear examples of this impact are
noticeable when comparing computation of fog tasks within hospital premises, with
other locations where healthcare activities are also provided but where less resources
may be available (e.g., doctors’ offices and nursing homes). Other examples include
first-responders’ interventions in areas where access to typical communication and
computing infrastructures may be extremely limited, creating new challenges and
opportunities for fog computing.

When considering the different levels at which offloading can be performed,
from the device to the cloud, enforcing local processing (e.g., within a facility) may
be of paramount importance when reliability is discussed (c.f. H.6.3). This local
processing does not invalidate the cooperation between local nodes and outbound
servers. In fact, they could overlap, but it does provide additional guarantees in case
of connectivity loss to the exterior and may be a requirement for critical systems.
Privacy and regulations that can be coupled to a given scenario, particularly in
health informatics, may however raise stricter constraints and require offloading
tasks to take place within certain restrictions (see H.6.4).

H.6.2 Latency and Throughput

Previous works shows that computation offloading offered by fog computing, in
nodes in the vicinity of constrained devices, can reduce latency up to 2.88 times [359],
when compared against offloading to the cloud. This result is strongly influenced by
the existing local resources and the ones used in the cloud which, with the steady
increase of available data bitrates and a wide coverage of 3/4th generation cellular
networks, should only depend on the amount of used servers (i.e., access to the
network infrastructure is almost negligible). Nonetheless, the increasing number of
nodes and highly specialized sensors raises scalability concerns and latency-sensitive
applications may require improved mechanisms to handle the delay between the
sensors and the cloud [310].

Theoretically [360], using dedicated servers at the edge of the network (e.g.,
cloudlets [361]), performance improvements have been achieved but they disregard
the pervasiveness of IoT devices and their distinct characteristics. Additionally,
while it is intuitive that performing computing tasks locally should improve latency,
throughput and even energy consumption [362], several technical challenges have to
be considered (e.g. VM or container deployment time, resource management, among
other aspects). In fact, these mechanisms may be responsible for adverse effects,
becoming a burden to fog nodes and hindering the desired improvements [309]. In
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many cases, we see that the benefit of reduced latency is taken as granted, without
a precise quantification of the specific requirements and an evaluation of different
solutions.

Latency and throughput may be improved by fog computing through the
reduction of the amount of data transmitted between source and destination,
relieving the core of the network and the overall system [363]. This load
reduction may also reduce the likelihood of transmission errors and can be
achieved by performing computing tasks such as filtering, feature extraction or
even prediction [314, 362, 364]. Applications related to face and speech recognition
require large amount of data and it is shown that local computations can reduce
latency [341]. However, the performance improvement of resource-constrained
devices will also rely on devices being capable of bridging network technologies (e.g.
802.15.4/6 with 802.11). Fog computing must be able to leverage on the diversity
of resource-constrained nodes and their capabilities, throughout the hierarchy of
network infrastructures, in order to scale and provide faster response times [360].

Even though the cloud is typically seen as the endpoint for the data transmitted
by a node, this data may actually begin a new life-cycle within the cloud. For
instance, it often needs to be delivered to another node (e.g. an actuator or
doctor’s computer), after being appropriately processed. This process within the
cloud is prone to additional latency, but fog computing can significantly increase
the performance of bandwidth-intensive and latency-sensitive applications when
compared against a pure “node to cloud to node” solution [314, 309]. Ultimately
the impact of latency and related metrics (e.g. jitter), must be considered in the
Quality of Experience (QoE) registered by doctors and patients in general.

H.6.3 Dependability

The dependability of health applications is crucial, especially for the use case classes
of critical monitoring and critical control (Sect. H.4.3). Any single point of failure
requires careful consideration. With regard to cloud-based solutions, the general
availability of data centers is high, but outages are still a problem, even with
redundancy in place [365].

The network towards data centers may also be subject to failures. Ultimately,
any of the connections towards a central data center in the different deployment
scenarios (Sect. H.4.1) can fail, although some are more exposed than others.
Ambulances can drive through areas without cellular coverage, or patients at home
may loose connection to their Wi-Fi routers. This raises the question to which
degree cloud services can be used for critical use cases. In the description of many
use cases we believe that these aspects are not sufficiently addressed.

Local computation can be used to either completely replace critical tasks done in
data centers, or to use local processing when there are limitations in the cloud [366].
An example is feature extraction to analyze patient ECG data in real-time [314,
336]. If caretakers rely on this function to monitor the well-being of patients, the
analysis must not be interrupted. When done on a nearby gateway, it can also be
performed when the data center or the connection towards it are down. For the use
case class of data collection, where it is only important that data eventually arrives
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at some data base, fog nodes may also buffer data locally until it can be transferred
further.

Like the cloud, fog computing nodes are also subject to failure. However,
consequences and nature of failure are different from that of cloud computing.
Failures in the cloud or the network towards it can affect an entire hospital. In
contrast, when resources of a lower network hierarchy fail, consequences affect a
smaller area, like hospital sections or single wards. Such minor incidents are often
easier to handle with respect to re-equipment or re-staffing. Also, fog computing
can lead to architectures with built-in redundancy on a local level, with several fog
computing nodes acting as fault tolerant sets [366], which increases dependability.

H.6.4 Security

Davies et al. [367] argue that privacy concerns due to “over-centralisation” of IoT
systems are a critical obstacle to their growth. Even though data can be protected
on its way into the cloud and within data centers, a suitable strategy to protect
data is to avoid sending it off premisses in the first place, and process it closer
to its source [311]. The proximity of fog devices, which can be placed within
ones infrastructure, may introduce the required trust and enforce the necessary
privacy mechanisms that threat cloud computing in critical scenarios. An example
is an application to analyze speech from patients with Parkinson’s disease [334].
Instead of sending audio recordings into a data center, analysis happens locally,
and only result metrics are forwarded. Privacy, though, still remains an issue in
more decentralized solutions such as fog computing. Trust and authentication need
to be handled, particularly when considering multi-vendor equipment and purely
wireless devices. The decoupling between nodes and access points, or gateways,
opens the possibility for rogue or compromised fog nodes to hinder the benefits of
locality [368, 369]. In order to achieve a decentralised network between fog nodes
and mobile nodes or sensors, interoperable trust models must be established, as
well as software and physical security mechanisms to protect the networks and their
nodes. Another way to make offloading of computation work on untrusted fog nodes
is verifiable computing [370], given that the computational tasks can be efficiently
mapped to the operations available under these conditions.

Fog nodes can also contribute to security functions. As they often have
more computational power than constrained sensor devices, they may assist with
cryptographic operations [371]. A link between a sensor device and a BAN gateway
may be protected by symmetric encryption, which is supported by many embedded
sensor nodes. The patient data may be further secured by the BAN gateway using
schemes as proposed in [372], before sent further into the network. Fog nodes
may also host other security functions such as intrusion detection [373], or explicit
control of which information may leave a location [367].

The pervasiveness of things and fog-capable technologies will also introduce
a new era for Human-Computer Interaction (HCI) and its relationship with the
security of users and their nodes. In addition to the wireless nature of devices, which
limits the users’ ability to identify the “next hop in the loop,” the size or the lack of
input/output peripherals in some of them, creates new challenges. These systems
will require simple, yet robust, Authentication, Authorisation and Accounting (AAA)
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mechanisms that do not compromise the functionalities of devices and their mobility
between different networks.

H.6.5 Autonomic Fog Computing

Fog computing adds flexibility regarding where computation can be placed.
To mitigate the increased complexity coming with this, dynamically managed
behaviours are expected in the IoT and fog computing paradigms [311, 309],
availing existing resources and coordinating actions for overall improved performance.
Context and scenario-specific requirements are fundamental for enabling efficient
and autonomic management in fog computing, being aligned with IoT in order
to fully exploit its potential [374]. The use of big data is particularly relevant as
an enabler for context-aware management [375], taking into account nodes and
their different roles in the infrastructure [376]. However, these considerations must
handle the heterogeneity of devices and vendors without introducing unbearable
overheads.

Overall, the consideration of multiple parameters for improving management in
fog computing should scale with the dissemination IoT devices and their distinct
uses. This requires nodes to take part in the decision-making process when flexible
reconfigurations are needed, without compromising their own purpose in the system.
Such process should promote node autonomy or self-awareness, together with
dynamic procedures triggered by standard pre-defined protocols [237]. These
standard mechanisms are important for guaranteeing interoperability between
devices [374, 377] and “cross the chasm” of the Internet of Things [367].

H.6.6 Energy Efficiency

Besides the energy spent for the actual sensing procedure, the main energy consumers
on sensor devices are computation and the transmission of data. Fog computing
facilitates energy-efficient sensor devices by offloading expensive computation. Hu
et al. [361] show how offloading functionalities to cloudlets improves the energy-
consumption of mobile devices significantly. These results are for mobile applications.
For BANs, the cost for sending may be different, so that the energy gains through
less processing can be reduced by increased cost for sending. Usually, fog computing
nodes are energy-rich, which is why they are suitable for offloading in the first place.
However, if fog nodes are mobile, like a mobile phone in the mobile deployment
scenario, there is also a tradeoff between the energy consumption of the mobile
phone and the sensor device. Tradeoffs like these may require autonomic reasoning
in the device to determine in which situation which strategy is most efficient.

H.6.7 Insights and Future Directions

Despite some of the identified flaws and shortcomings in literature, fog computing
emerges as a necessary architectural ingredient for ubiquitous computing. Due to
the wide range of applications and use cases that can be considered, the extent to
what offloading computing tasks can benefit health informatics has still not been
fully explored. But fog computing has already proven its effectiveness in terms
of bandwidth utilization and latency, for example when considering ECG feature
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extraction [314]. This is also backed by previous work showing improvements in
latency and energy consumption resulting from offloading tasks from constrained
devices to more powerful nodes, using common networking solutions such as Wi-Fi
and 3/4G [354, 355]. The other main driver for fog computing is dependability.
No matter how connectivity improves, outages can ultimately only be covered by
computing and storage closer to the sensors, which corresponds to fog computing.
Employing fog nodes enables the usage of smarter and autonomous decisions at the
fog layer, regardless of cloud availability. This, however, presupposes interoperability
between heterogeneous devices and systems.

The possibility of introducing local data processing, adaptation and storage,
enabled by fog computing, has also an impact beyond security, latency and
interoperability. It also creates new possibilities for actuation, autonomous
reconfiguration, devices discovery, mobility and even energy efficiency [378].
Examples of these new prospects include robotic prescription dispensing and
medication delivery [379], which must consider medical data collection, formatting,
analyzing and storing, as well as the administration of medication according to
patients’ medical records, as we have seen for instance with the COPD treatment
system [339].

The successful dissemination of fog computing in healthcare will not only
be influenced by its advantages. An additional driver are restrictions such as
regulations imposed by, for example, the Organization for Economic Cooperation
and Development (OECD). Fog computing may help users and service-providers to
overcome these restrictions. Fog nodes may be used for providing a layer between
the end-users, service providers and the cloud, confining private or sensitive health
information within trusted devices [380].

We have seen the demand for computation between sensor and cloud in virtually
all use cases related to ubiquitous healthcare. However, our review also revealed
the lack of a unified strategy or overall architecture for fog computing in healthcare,
and pervasive healthcare applications in general. This lack of cohesion undermines
the potential of IoT and fog computing. Systems are often seen in isolation, since
creators of a specific system focus on isolated use cases, deployment scenarios or
sensor technology. Based on these insights and identified shortcomings, we see
demand in the following areas for research and development:

Standardization Within Healthcare. The challenge with most of the use
cases we reviewed is that they span across several devices, systems and deployment
domains, and therefore lack a single, well-defined stakeholder. Even hospitals,
which cover many use cases, may not be sufficient since much of healthcare will
also happen outside of their scope. The Continua Alliance [381] is one example
for such standardization with special focus on personal health devices. In this
context, it should be explored whether and how fog computing can be utilized to
increase interoperability through its flexibility to offer computation, i.e., by enabling
a heterogeneous, service-based architecture in which computation can take care of
interoperability tasks.

Standardization of Fog Computing Mechanisms. The effort above will
be facilitated with the availability of standards and protocols for advertising and
discovering computing resources within fog environments, as well as offloading
computation. The OpenFog consortium [382], for instance, though not a
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standardizing organization itself, works towards this goal.
Autonomic Fog Management. One challenge of the presented use cases is

their complexity regarding the system structure and components involved. To be
successful, such complexity must not lead to high maintenance costs or come at
the expense of usability. Instead, solutions must be able to manage themselves,
which implies a degree of autonomy. Similar to the issue of interoperability, fog
computing can be both the subject of autonomic management, and also contribute
with solutions, for instance by hosting the computation processes necessary for
autonomy. This represents both opportunities and challenges for the area of
autonomic computing.

Connectivity. The heterogeneity of devices and their communication
technologies raise several challenges regarding connectivity. This should be seamless
between different solutions, coping not only with mobility but also with existing
bitrate and delay constraints. Additionally, networks should be non-intrusive,
requiring for instance the sharing of networking resources or infrastructures.

Security and Trust. Fog computing leads to more complex relationships among
the system nodes, especially sensor devices and fog computing nodes. Associations
between nodes are dynamic. Apart from all security questions relating to privacy of
data and safety of patients, this requires some form of trust management between
these devices. Though trust models have been applied in various areas, these
also need to work with the given complexity and dynamics of fog computing in
healthcare.

To fully exploit the fog computing concepts and provide better integrated health
applications and their specific requirements, the points above must be considered,
both across use case classes and across different deployment scenarios.

H.7 Conclusions

Our review shows that there is a considerable number of computing tasks, across
different deployment scenarios and application use cases, that can benefit from fog
computing. In fact, our review shows that computation is a necessary element in
almost all pervasive healthcare applications, and that these tasks often need to be
executed somewhere between the sensors and the cloud. We provided an inventory
of such computing tasks, and have shown in which nodes within a network they can
be executed. The reviewed papers also show that there is potential for computation
at all network levels.

We have further discussed tradeoffs when placing computation tasks in the
network, and discussed benefits and challenges of fog computing related to pervasive
health applications. Sensor devices are often not powerful enough to do such
computation on their own, which is why they need to offload computing tasks. On
the other hand, cloud computation is often not a suitable solution for such offloading
due to restrictions regarding dependability, privacy concerns or regulations. Fog
computing, with its flexibility to add computation as part of a network infrastructure,
appears therefore as a suitable concept to meet the requirements of healthcare.
Fog computing tasks can filter data, to help preserve privacy or reduce load on
the network. The locus of execution can be adjusted to the current deployment
scenario, regulations and other requirements. Fog computing tasks can also act as
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interoperability components, adapting specific sensor needs to standardized and
harmonized interfaces. In addition, with their ability to act closely to the users, fog
computing tasks add an important component to make systems more dependable.
To make these benefits effective, however, it is necessary to lift focus from the
individual use cases towards more comprehensive architectures, as discussed above.
This review and discussion is a signpost into this direction, summarizing the wide
span of deployment scenarios, variety of requirements in future healthcare and the
variety of fog computing tasks.
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