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ABSTRACT

The transmission electron microscope (TEM) is often the instrument of choice to
study crystalline materials locally with nm resolution. As electron diffraction pat-
terns are unique for each unique orientation of a given crystal, they can be used to
determine the orientation of a crystalline sample. A user might want to view their
sample from a specific crystallographic direction, e.g. for lattice imaging. However,
this orientation might not be present in the sample as-is, and needs to be aligned
with the electron beam using the goniometer of a tiltable sample holder.

Here, a software tool was developed to predict tilt angles which align a chosen
point or region on a crystalline sample to a target zone axis, given an initial orien-
tation and TEM geometry. The tool, tiltlib, is based on the open-source Python
suite Pyxem. To accurately predict tilt angles, the position of the tilt axes needs
to be determined. A robust method for this is proposed, based on a tilt series of
scanning precession electron diffraction (SPED) datasets.

A SPED tilt series with four 5◦ steps of polycrystalline silver (Ag) was used
to determine orientations of the sample, and subsequently the tilt axis position, in
a JEOL JEM 2100F TEM, using a new method for tilt axis identification. Addi-
tionally, a polycrystalline lithium manganese nickel oxide (LiMn1.5Ni0.5O4) sample
was used to experimentally verify predicted tilt angles. The tilt axis position was
accurate to 1◦ to 2◦ and the tilt angles to reach the target zone were within 1◦ to 5◦.
This allowed the operator to observe the Laue circle, which was used for final align-
ment. Deviations are likely caused by the 1◦ template matching precision, as well
as the sample being slightly misoriented when re-inserted into the sample holder.
To summarize, tiltlib is shown to be a functional and useful tool for zone axis
alignment, and will save time compared with manual search.

The orientations were mapped with template matching using Pyxem. This is
computationally expensive, and especially time-consuming for low-symmetry crys-
tals. An alternative approach is proposed and tested based on a new algorithm
for discarding templates before full correlation. By interpolating correlation scores
from a rough template bank, a finer bank with promising templates is run again.

As crystal symmetry can affect the analysis, the developed algorithm was tested
against simulated datasets from space groups Fm3̄m, P63/mmc, and P2/c, as well
as a SPED dataset of Fm3̄m Ag. The results indicate the new algorithm indeed re-
duces runtime, and returns the same or similar results as without any pre-selection.
However, the currently implemented pre-selection algorithm in Pyxem, based on
azimuthal integration and radial correlation, clearly outperforms the proposed al-
gorithm, both in terms of runtime and similarity with the un-filtered results.
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SAMMENDRAG

Transmisjonelektronmikroskop (TEM) er ofte det foretrukne instrumentet for å
undersøke krystallinske materialer med nm oppløsning. Siden elektrondiffraksjon-
smønstre er unike for alle orienteringer av en gitt krystall, kan de brukes til å
bestemme orienteringen til en krystallinsk prøve. En mikroskopist vil kanskje un-
dersøke prøven fra en gitt orientering, f.eks. for gitteravbildning. Imidlertid kan
denne orienteringen være utilgjengelig prøven som den er, og prøven må justeres
med elektronstrålen ved å bruke goniometeret til en vippbar prøveholder.

Her ble det utviklet et verktøy for å forutsi vippevinkler som justerer et valgt
punkt eller område på en krystallinsk prøve til en målsoneakse, gitt en initiell orien-
tering og TEM geometri. Verktøyet, tiltlib, er basert på åpen kildekode Python-
pakken Pyxem. For å forutsi nøyaktige vippevinkler må posisjonen til vippeaksene
bestemmes. En robust metode for dette er foreslått, basert på en vipperekke av
sveipe-presesjonselektrondiffraksjon (SPED)-datasett.

En SPED-vipperekke med fire 5◦-trinn av polykrystallinsk sølv (Ag) ble brukt
for å bestemme orienteringen av prøven, og deretter vippeakseposisjonen i en JEOL
JEM 2100F TEM, ved hjelp av en ny metode for identifikasjon av vippeakse. I
tillegg ble litsium mangan nikkel oksid (LiMn1.5Ni0.5O4)-prøve brukt for å verifisere
predikerte vippevinkler, for tre valgte områder. Vippeaksens posisjon var nøyaktig
til 1◦ to 2◦ og vippevinklene for å nå målsoneaksen var innenfor 1◦ to 5◦. Dette tillot
operatøren å observere Laue-sirkelen, som ble brukt til endelig justering. Avvikene
er sannsynligvis forårsaket av 1◦ maltilpasnings-presisjonen, samt at prøven er litt
feilorientert når den settes inn i prøveholderen igjen. For å oppsummere; tiltlib
er vist til å være et funksjonelt og nyttig verktøy for soneaksejustering, og vil spare
tid sammenlignet med manuelt søk.

Orienteringene ble kartlagt med maltilpasning ved bruk av Pyxem. Dette er
beregningsmessig tungt, og spesielt tidkrevende for lavsymmetrikrystaller. En al-
ternativ tilnærming er foreslått og testet basert på en ny algoritme for å forkaste
maler før full korrelasjon. Ved å interpolere korrelasjonsverdier fra en grov malbank
kjøres en finere bank med lovende maler på nytt.

Siden symmetri kan påvirke analysen, ble den utviklede algoritmen testet mot
simulerte datasett fra romgruppene Fm3̄m, P63/mmc og P2/c, samt en SPED
datasett av Fm3̄m sølv. Resultatene antyder at den nye algoritmen faktisk re-
duserer kjøretiden, og returnerer samme eller lignende resultater som uten forhånds-
forkastning av maler. Imidlertid blir den nye foreslåtte algoritmen overgått av den
allerede implementerte forhåndsvalgalgoritmen i Pyxem, basert på kun radiell kor-
relasjon, både når det gjelder kjøretid og likhet med de ikke-filtrerte resultatene.
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CHAPTER

ONE

INTRODUCTION

1.1 Background and Motivation

Understanding the micro-structure of crystalline materials is in many cases crucial
for understanding their properties [1]. This includes e.g. grain size, orientation
distribution (i.e. texture), strain, crystal phases and grain boundaries. The trans-
mission electron microscope (TEM) is a powerful tool to study structure on the
micro- and nano-scale, owing to its unprecedented spatial resolution [2]. Crys-
talline materials are especially suited for the TEM, as the diffraction mode allows
the user to capture electron diffraction patterns arising from µm down to nm sized
areas [2, p. 78 – 79]. Diffraction theory is a mature and quite well understood field
[3, ch. 1-2, 4], facilitating the study of new and novel materials by means of a TEM.

Determining the crystal orientation from a diffraction pattern from a known
structure is a straightforward task in principle, but often cumbersome and time-
consuming [2, ch. 7, 5]. The general methodology is to recognize the characteristic
Kikuchi band pattern [6–10], use the Laue circle to manually align to a recognizable
low-index zone axis [11–15], or template matching (TM) [16–19]. Recent develop-
ments in TEM detector technologies[20], where reduced noise, increased dynamical
range, and especially decreased capture and readout time, combined with scanning
electron diffraction (SED) techniques such as 4D-STEM [21, 22], rotation electron
diffraction (RED) [23] and SerialRED [24], has led to such large diffraction data
quantities as to necessitate automation and streamlining the data processing.

Tools for automated crystal orientation mapping (ACOM) are available, e.g.
ACT [25], NanoMEGAS’ ASTAR [26], and the open-source Py4DSTEM[22] and
Pyxem [27]. The latter three are based on TM, where simulated diffraction pat-
terns are compared with diffraction patterns from the TEM [16, 28]. Pyxem being
open-source is advantageous, as it can more easily exploit the rapid technologi-
cal and architectural developments in computing, e.g. employing the GPU [29].
Community-driven further developments of open-source code is important to im-
prove orientation analysis further, for example regarding accuracy and speed, beside
dealing with ever increasing data sets.

When the orientation of a sample is determined at every point, the results can
be further analyzed in programs such as Orix [30] or MTEX [31]. As the orienta-
tion mapping describes the sample-crystal relationship, only the microscope-gonio-
sample relationship remains to fully describe the geometry. A complete description
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2 CHAPTER 1. INTRODUCTION

of the sample in the microscope reference frame would allow for navigation in crystal
space by means of goniometer tilting. This concept exists in tools such as ALPHA-
BETA [32], KSpaceNavigator [33], and τompas [34], but none of them integrate well
with existing ACOM software, making them more reliant on low-index zones and
more experienced operators. They all tackle the orientation determination problem
themselves, by means of Kikuchi bands or Laue circles, which can be cumbersome
for low-symmetry crystals. Furthermore, they all rely on single selected area elec-
tron diffraction (SAED) or nano-beam diffraction (NBD) patterns, which makes
them unable to exploit SED and the diverse orientations present in polycrystalline
or dispersed nanoparticle samples. Nanocartography [35] seems to support scanning
transmission electron microscopy (STEM) data, which would mitigate this short-
coming, but is closed-source. Additionally, only some of the listed softwares include
methods for accurately determining the positions of the tilt axes in the microscope,
which is crucial for accurate alignment and a complete description of the geome-
try [36]. By implementing crystallographic navigation in the same framework as
existing open-source ACOM software, here Pyxem, and packaging this with robust
tilt axis identification methodology, the drawbacks of the existing software can be
mitigated. An open-source environment additionally enables the use of existing
libraries for automatic TEM control, such as JEOL’s PyJEM [37] and PyED[38].

TM-based ACOM as a basis for zone axis alignment in an open-loop control
system suffers from a few drawbacks, with angular orientation precision of 1.1◦ [39]
(as opposed to 0.1◦ to 0.3◦ for Kikuchi-based orientation mapping [6, 39]), and unre-
liable stage control [40]. However, the prospect of a completely automatic pipeline
for zone axis alignment makes TM an avenue worth investigating and improving.
A beneficial approach to increase accuracy of TM-based orientation mapping, is
to use precession electron diffraction (PED) [41, 42], whereby the precessed beam
yields more kinematic-like diffraction patterns for easier simulations [41, 43]. Fur-
thermore, one could perform more computationally expensive orientation mapping,
e.g. using residual optimization on precessed diffraction pattern intensities [44].
This approach increases the angular orientation precision down to an impressive
0.03◦, at the cost of many orders of magnitude longer computation time than con-
ventional TM. Another approach would be to decrease the runtime, and rely on the
precision of around 1◦ to be enough to observe the Laue circle. By employing the
microscope operator for final alignment on the Laue circle, a closed-loop control
system is established.

Even without using intensity in the orientation analysis, the default TM is too
slow to be done on the fly. For example, TM on a 2 Gb scanning precession electron
diffraction (SPED) data stack for a high symmetry phase like m3̄m and an angular
resolution of 1 degree can take in the order of 30 minutes on a laptop computer.
This hampers in-line implementation and use of a navigation tool based on TM, and
limits the angular resolution of the mapped orientations, certainly for low symme-
try phases which gives large template banks (e.g. for 2/m and 1◦ resolution, there
are 14,593 entries in the template bank, compared to 1081 for m3̄m). One way
would be GPU based TM as suggested by Cautaerts et al. [29], which speeds up
the calculation by means of parallelization rather than algorithmic considerations.
Within Pyxem, described in the same paper, there is an algorithmically faster ap-
proach that pre-filter the bank based on matching azimuthally integrated templates
and patterns. Alternative pre-selection approaches prior to full matching, with a
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small step size in the bank, could be considered. A speedup approach, without
loosing angular resolution, would open new possibilities in material study and use
of TM-based orientation analysis.

1.2 Aim of Study
This study aims to ease and improve crystallographic navigation and orientation
analysis in the TEM, based on SPED, in an open-source environment. The aim will
be addressed in two parts:

TEM navigation tool Creating and testing a navigation tool for aligning crystals
to zone axes in a TEM.

TM algorithmic improvement A novel algorithm for template selection in TM,
that reduces runtime without reducing accuracy.

Both of these will build upon the Pyxem software suite, to ensure transparency
and an open platform, easily expanded and improved in the future.

As part of the first aim, a robust method for determining the position of the tilt
axes in the TEM will be developed. It will be based on a tilt series of SPED data,
where TM is used to produce orientation maps, and require minimal intervention.
The navigation tool aims to take an orientation map as input, allowing the user
to virtually align the different grains present in the scan as desired, rather than
being restricted to single-crystal specimens or regions. Preliminary work on this
aim started in August 2023, culminating in “Relating holder axes and template
matching for grain orientation analysis”[45].

To reduce runtime of TM without loss of precision, a multi-step approach is
suggested, implemented and tested, based on correlation score interpolation. The
aim is to implement a three-step workflow where first, a template bank with low
angular resolution (e.g. 3◦) is used for TM. The correlation scores are then inter-
polated in orientation space, serving as an estimate of the correlation scores for
orientations not part of the original template bank. Finally, the orientations with
high estimated correlation scores are used for a second TM run, with each naviga-
tion position having a unique template bank based on the low angular resolution
correlation scores. This algorithm aims to lower the runtime of TM, while retaining
the output one would get from a template bank with high angular resolution (e.g.
0.2◦).

Note, that building and integrating the proposed developments on a dynamic
community-driven open-source platform will require flexibility and adaptations.
Contribution and fixes are required outside the specific applications (e.g. tiltlib).
These will be listed separately in Appendix C.

1.3 Structure of the Thesis
The thesis is divided into seven chapters. In Chapter 2, relevant theory for crystal-
lography, diffraction, the TEM, orientations, and orientation mapping is presented.
Chapter 3 contains the methodology of the thesis, namely data collection and pro-
cessing, as well as describing the methodology behind the code developed for this
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project. In Chapter 4, the results from orientation mapping, tilt axis identification,
and zone axis alignment are presented, along with the results for the new TM algo-
rithm. The results are subsequently discussed in Chapter 5. A conclusion is drawn,
presented in Chapter 6, before suggestions for future work is presented in Chapter
7. The appendices give additional information: Appendix A contain listings of code
developed for use in this project, apart from the navigation tool. Additional results
are presented in Appendix B. Appendix C list the contributions to various open-
source libraries made during this project. Finally, to demonstrate that the results
of the work are presented to the community, an accepted abstract to the European
Microscopy Congress is included Appendix D.



CHAPTER

TWO

THEORY

This chapter contains relevant theory for the study. First, crystallography is pre-
sented. This section is mainly based on chapters 1 to 6 in The Basics of Crystallog-
raphy and Diffraction by Hammond [1]. The second section introduces diffraction,
based on chapter 7 in Hammond, and chapter 2 in Introduction to Solid State
Physics by Kittel [3]. Next, a brief overview of transmission electron microscopy
is presented, based on chapters 2 and 12 from Transmission Electron Microscopy
and Diffractometry of Materials by Fultz and Howe [2], chapter 3 in Introduction to
Conventional Transmission Electron Microscopy by De Graef [46], and chapter 1 in
Texture Analysis in Materials Science: Mathematical Methods by Bunge [47]. The
fourth section outlines reference frames, and transferring between them using ori-
entation relations. The final section gives an introduction to orientation mapping,
drawing from Bunge, chapter 11 in Physical Metallurgy by Rollett and Barmak [48],
as well as documentation from the Pyxem suite [27]. This chapter borrows heav-
ily from the preliminary work on this project, “Relating holder axes and template
matching for grain orientation analysis”[45].

2.1 Crystallography

A crystal is defined as a basis of one or more atoms, convolved with a lattice. Three-
dimensional lattices are characterized by three translation vectors ai, i ∈ {1, 2, 3},
and are defined as the set of all points r such that ruvw = ua1 + va2 + wa3 for
integers u, v, w. The translation vectors are often given their own names: a, b and
c for a1,2,3, respectively.

By applying a Fourier transform to an (infinite) crystal, we can apply the con-
volution theorem to replace the convolution of the basis and the lattice with a
multiplication of the Fourier transformed basis and the reciprocal lattice. The re-
ciprocal lattice is also a lattice, but its basis is different. One can transform a
crystallographic basis ai to a reciprocal basis bj using

bj =
2π

Vc

aj+1 × aj+2, (2.1)

wrapping around the indices at j > 3 such that e.g. a4 = a1. Vc = a1 · a2 × a3 is
the unit cell volume.

5
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2.1.1 Crystal Systems and Lattices

By choosing different translation vectors, one can create different crystal systems.
These are characterized by the lengths a, b and c of the translation vectors, and
the angles α, β and γ between them. Different combinations of lengths and angles
are possible, e.g. a = b = c and α = β = γ = 90◦ being the cubic crystal system.
There are 7 different crystal systems in total, listed in Table 2.1.1.

Combining a crystal system with one of the four possible centerings yields a
lattice. The centerings are: primitive (P), where there are only lattice sites at the
vertices; body-centered (I), with an extra lattice site in the center of the unit cell;
face-centered (F), with an extra lattice site in the center of each cell face; and base-
centered (A, B, or C), with extra lattice sites in the center of only two opposite
faces. An overview of all the centerings can be found in Figure 2.1.1(a). Some
combinations of crystal systems and centerings have their own names, e.g. cubic F
is often called face-centered cubic (FCC).

All combinations of centerings and crystal systems yield only 14 unique lattices,
as many are duplicates. A complete list of the 14 fundamentally different lattices,
called Bravais lattices, can be found in Table 2.1.1. An example of a duplicate entry
would be cubic C, as it is equivalent to tetragonal P with a change of basis. As
shown in Figure 2.1.1(b), a cubic C with lattice parameter a = 1 is a tetragonal
P with c = 1, a =

√
2
2

. Another example is cubic F, which has a rhombohedral
primitive unit cell as shown in Figure 2.1.1(c). The choice of equivalent unit cells
is arbitrary, and one can choose the representation that makes further work easier.
For cubic F, it is most common to choose the larger cubic, non-primitive unit cell.

2.1.2 Point and Space Groups

Point groups are groups of the set of symmetry elements leaving the structure
unchanged. The trivial point group, the monad, has no symmetry, and is denoted
with 1 using Hermann-Mauguin notation. Using this notation, the point group with
two-fold rotation, i.e. a diad, is denoted 2. A single mirror plane is the point group
m. With two perpendicular mirror planes, one would arrive at the point group mm,
one m for each axis and no symmetry elements for the final axis. This is not a
complete description of the symmetry, since two perpendicular mirrors imposes a
diad symmetry in the final perpendicular direction. As such, two mirror planes,
and the resulting diad, forms mm2. If multiple symmetry elements share an axis,
they are written as a fraction, e.g. 6/m for a hexad and a mirror plane. The
final point group symmetry element used in Hermann-Mauguin notation for point
groups is inversion axes, with a bar over a number. This entails a rotation followed
by an inversion around a center. Only 3̄ is unique, the rest can be represented with
mirrors, inversions, rotations, or a combination of these.

Further combinations of rotations and mirror planes forms an infinite amount
of point groups, as can be easily recognized from the infinite set of n-fold rota-
tions. For crystallography, however, only a finite set of point groups exists, as only
the symmetry elements of 1, 1̄, 2, 3, 3̄, 4, 4̄, 6, 6̄ and m are compatible with the
translational symmetry of a lattice. This set of point groups is called the crystal-
lographic point groups, and contains 32 three-dimensional point groups. Further
use of the term "point group" will refer to these 32 crystallographic point groups,
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P I

C F

(a)

(b)

(c)

Figure 2.1.1: Lattice centerings and equivalence. (a) Different centerings dis-
played on a cubic crystal system. (b) Two unit cells of cubic C, with the contained
tetragonal P unit cell. (c) The rhombohedral primitive unit cell of cubic F.

unless specified otherwise. These are listed in Table 2.1.1.
The three symbols in Hermann-Mauguin notation do not always correspond to

the three crystal axes. For the cubic crystals, for example, this would not be useful,
as the three directions are equivalent by the lattice symmetry. Therefore, for cubic
space groups, the three symbols describe the symmetries along ⟨1 0 0⟩, ⟨1 1 1⟩ and
⟨1 1 0⟩, respectively. This notation is described in Section 2.1.3. Furthermore, the
notation has both a short and long version for each point group. Often, they are
the same, but for e.g. m3̄m, the full name is 4

m
3̄ 2
m

. As such, m3̄m has a four-
fold rotational symmetry and mirror symmetry for the ⟨1 0 0⟩-direction, three-fold
rotoinversion around ⟨1 1 1⟩, and both a diad symmetry and mirror symmetry along
⟨1 1 0⟩.

One can divide the point groups into the 11 centrosymmetric Laue groups, and
the remaining 21 non-centrosymmetric point groups. Certain physical properties
can only be exhibited by non-centrosymmetric crystals, e.g. piezoelectricity is only
possible in the non-centrosymmetric point groups (except for 432). For kinematic
electron diffraction simulations, on the other hand, all point groups are reduced to
their corresponding Laue group, as scattering intensity imposes an inversion center.

Combining a point group with a compatible Bravais lattice yields a space group.
As with centerings combined with a crystal system, not all combinations are unique
or possible. In total, there are 230 space groups. These are denoted with a centering,
followed by a point group. The simplest one is P1, a primitive tetragonal lattice
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Table 2.1.1: A comprehensive list of 3D crystallographic point groups, and their
corresponding crystal systems, adapted from [1, page 91].

Crystal system Centering Unit cell Laue
groups

Remaining
point groups

Triclinic P a ̸= b ̸= c
α ̸= β ̸= γ = 90◦

1̄ 1

Monoclinic PC a ̸= b ̸= c
α = γ = 90◦, β > 90◦

2/m m, 2

Orthorhombic PICF a ̸= b ̸= c
α = β = γ = 90◦

mmm mm2, 222

Tetragonal PI a = b ̸= c
α = β = γ = 90◦

4/m,
4/mmm

4, 4̄, 4̄2m,
422, 4mm

Trigonal PR a = b = c
α = β = γ ̸= 90◦

3̄, 3̄m 3, 3m, 32

Hexagonal P a = b ̸= c
α = β = 90◦, γ = 120◦

6/m,
6/mmm

6, 6̄, 622,
6mm, 6̄m2

Cubic PIF a = b = c
α = β = γ = 90◦

m3̄, m3̄m 23, 432,
4̄4m

with no additional symmetry, and a more symmetric one is Fm3̄m.
When extending a point group with infinite repetition, new symmetry elements

arise. These are glide planes and screw axes, which both entail a previously de-
scribed symmetry plus a fractional translation.

A glide plane is a mirror plane, followed by a translation parallel to the mirror
plane. The translation must be fractional, as a complete unit cell translation in
any direction is symmetric by the definition of a lattice. The basic glides along the
crystal axes are denoted a, b, or c in Herman-Mauguin notation, for a half glide
along each respective axis. An e is used if two axes are possible and equivalent,
e.g. for tetragonal P, a and b are equivalent. A half glide along a face diagonal is
denoted n, and a quarter glide along a body diagonal is denoted d.

Screw axes are a rotation around an axis, followed by a translation along that
axis. These are denoted nm, for an n-fold rotation. m describes the total lattice
translation after n screw operations, e.g. 41 describes a 90◦ rotation followed by a 1

4

translation, as four 1
4

translation gives a total translation of 1. 63 is a 60◦ rotation
followed by a 1

2
translation, and so on.

2.1.3 Crystal Planes and Directions

To label directions and planes in a crystal, one can employ Miller indices. Labeling
of a plane is performed by finding the intercept of the plane with each crystal
axis, taking their inverses, and multiplying by their largest common factor. As an
example, the plane in Figure 2.1.2 intercepts the a1-axis at a, the a2-axis at 2b

3
, and

the a3-axis at c. Inverting these values and multiplying out, one arrives at the plane
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(4 3 2). Negatives are represented with a bar, e.g. (1 2 1), and planes parallel to an
axis get coordinate 0 in that axis. All planes infinitely repeat along their normal
vector, with a spacing dhkl calculated as follows:

dhkl =
2π

|ghkl|
, (2.2)

with the reciprocal lattice vector ghkl = hb1 + kb2 + lb3, using the reciprocal
basis defined in Equation 2.1. For cubic crystals, this simplifies down to dhkl =
a/

√
h2 + k2 + l2.

Crystal directions are labeled with [u v w]. In general, ghkl is the normal vector of
(h k l), but for cubic systems this simplifies to [h k l] being normal to (h k l). Families
of equivalent crystal planes are placed in curly braces, e.g. for cubic crystals, the
(1 0 0), (1 00), (0 1 0), (0 1 0), (0 0 1), and (0 0 1) planes form the {1 0 0} family.
Similarly, families of equivalent crystal directions are labeled ⟨u v w⟩.

1/2 2/3

1

a1

a2

a3

(4 3 2)

[4 3 2]

Figure 2.1.2: Example visualization of Miller indices. The blue plane intercepts
the axes at 1

2
a, 2

3
b, and c. Inverting and multiplying to integers, we get the Miller

indices (4 3 2) for the plane. Its normal, [4 3 2] for this cubic system, is shown in
red.

Note that Miller indices are represented in the crystal basis. As the crystal basis
is only orthonormal for cubic crystals, care must be taken when converting Miller
indices to the Cartesian lab reference frame, and when calculating angles between
crystal vectors and planes.

To represent the relation between Cartesian space and crystal space, a pole
figure (PF) is often used. PFs are a projection of the unit sphere onto a plane,
through a given pole. These allow the viewer to observe more of the direction space
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at once than a Cartesian projection shows. A PF can be constructed by placing a
crystal in the center of a 3D sphere, and creating a pole for chosen crystallographic
planes. A pole is placed where a ray from the center parallel to the plane normal
intersects the sphere. This sphere is then projected onto the equatorial plane with
the stereographic projection (SP), by casting a ray from all poles to a chosen pole.
Note that, for poles on the same hemisphere as the pole chosen for projecting to,
no intersection will be made with the plane, and as such these are not visible. This
can of course be mitigated by showing a PF for both the north and south pole. A
schematic representation of the construction of a SP PF can be seen in Figure 2.1.3.

(a)

(b)

Figure 2.1.3: Schematic representation of how a stereographic projection is con-
structed, and used to visualize a pole figure. Directions are cast out onto the unit
sphere (the ray casting itself is not shown), represented by the red dots on the
sphere mesh, before being projected onto the plane towards the point at (0, 0,−1).
(a) A 3D representation of the process. (b) The resulting pole figure.

The SP is specific to a chosen pole, often represented in the Cartesian lab frame
of the sample. When a sample is viewed in lab-frame coordinates, it is usually not
aligned with a crystal axis. One can therefore use inverse pole figures (IPFs), which
are aligned to the crystal coordinates instead. As an example, in Figure 2.1.4(a)
the IPF of a cubic crystal viewed from [0 0 1] can be seen.

When viewing IPFs of crystals, they often contain symmetrically equivalent
poles. For a cubic crystal, for example, all ⟨1 1 1⟩, ⟨1 0 1⟩, and ⟨0 0 1⟩ are equivalent,
making most of the IPF shown in Figure 2.1.4(a) redundant. One therefore often
only show the reduced zone IPF, where only symmetrically unique poles may be
present. A monoclinic crystal with the 2

m
point group, for example, has a semicircle

as its symmetry reduced IPF, whereas the m3̄m point group has the spherical
triangle between [0 0 1], [1 0 1] and [1 1 1]. These are shown in Figure 2.1.4(b) and
Figure 2.1.4(c).

Additionally, these symmetry reduced IPFs are often shown as a color map, such
that a certain color corresponds to a certain pole. This lets one show the orienta-
tions of spatially distributed crystals, by means of color-coding the orientation of
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[100]

[010]

[100]

[010]

[001]

[110][110]

[110] [110]

[011]

[101]

[011]

[101]

[111][111]

[111] [111]

(a)

2/m

[100][100]

(b)

m-3m [111]

[101][001]

(c)

Figure 2.1.4: Utilizing the stereographic projection (SP) for plotting crystallo-
graphic directions. (a) Inverse pole figure (IPF) in a SP viewed from [0 0 1], with
⟨1 0 0⟩, ⟨1 1 0⟩, and ⟨1 1 1⟩ labeled. (b), (c) Reduced zone IPFs for selected point
groups, including a color map for the crystallographic directions.

the crystal at a given point in space. Note that a single such color map is not suffi-
cient to describe the orientation of a crystal, as viewing the orientation in a single
direction (the chosen pole) gives no information of the orientation in any orthogonal
directions. As such, when plotting spatially resolved crystal orientation maps, one
normally show IPFs for both x, y and z-directions of the sample. This makes three
colormaps, where for each position in space there are three colors, corresponding to
the zone axis in each direction. A schematic of the interpretation of colormap-IPFs
can be seen in Figure 2.1.5, where a single orientation is shown.

2.2 Diffraction

Diffraction, the study of interfering waves interacting with an object, is widely
used for investigating crystalline materials. The length scales of the wave and
the object must be comparable, and as such crystallographers mostly use X-rays
and electrons. This chapter presents kinematic diffraction theory, based mostly on
Kittel’s Introduction to Solid State Physics [3]. The symbols follow Kittel, with the
exception of the reciprocal lattice vector g, which Kittel capitalizes.
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x: [1 1 2]y: [1 1 1]

z: [1 0 1]

(a)

x

y

z

[111]

[101][001]

(b)

Figure 2.1.5: Schematic construction of the interpretation of colormap - IPFs for
a cubic crystal, with Bunge Euler angles (0◦, 45◦, 35◦). (a) The zone axis for each
of the sample directions x, y and z. (b) The colors corresponding to the zone axes.

2.2.1 Bragg’s Law

When a coherent wave of electrons is sent through a material, it will interact and
scatter. Classically, this can be interpreted as elastic scattering with the Coloumb
potential from the atoms in the material. If the material exhibits long-range order,
e.g. crystalline materials, then one may observe well-defined maxima and minima
in the scatter profile.

Bragg presented a simple picture of diffraction in a lattice: assuming a coherent
incident wave with angle θ to a crystal plane (h k l), it will reflect with the same
angle θ. The wave would simultaneously reflect at the next parallel plane, traveling
a distance dhkl sin θ further before reflecting again. To constructively interfere with
itself, this extra path length to and from the next plane must equal an integer
number of wave lengths. This is mathematically formulated in Bragg’s law:

2dhkl sin θ = nλ, (2.3)

where λ is the wavelength and dhkl is the lattice spacing for (h k l) from Equation
2.2.

While Equation 2.3 correctly predicts scattering angles, and thereby allowing the
measurement of lattice spacing, its simplistic description fails to predict diffraction
peak intensities. For certain charge distributions and angles, the intensity is zero
and the diffraction peak is absent, making Bragg’s law impractical for diffraction
predictions beyond plane spacings.

2.2.2 Diffraction Intensity

To account for scattering intensities, a systematic description of wave-lattice in-
teraction is necessary. If a spatially distributed lattice property is responsible for
scattering, we can describe this as
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ρ(r) = ρ(r+ ruvw) (2.4)

due to the periodic nature of the lattice. ρ can for example be charge number
density for electron and X-ray diffraction.

This can therefore be considered as ρ being limited to only one lattice site, and
being convolved with the lattice. Applying a Fourier transform to simplify the
lattice convolution, we get

ρ(r) =
∑
hkl

ρge
ighkl·r, (2.5)

where
ρg = Vc

∫
cell

ρ(r)e−ig·rdV.

This fulfills Equation 2.4, since exp (ighkl · ruvw) = 1 for all integers h, k, l, u, v, w.
Assuming elastic collisions, the phase difference of waves scattered from two

volume elements dV separated by r is (k− k′) · r for an incident wave k and an
outgoing wave k′. Defining the scattering vector as ∆k = (k′ − k), the phase factor
between the waves is exp (−i∆k · r). We introduce a scattering density F , defined
as

F =

∫
crystal

ρ(r)e−i∆k·rdV, (2.6)

which describes the amplitude of the scattered wave with scattering vector ∆k.
Inserting Equation 2.5 into Equation 2.6, we get

F =
∑
hkl

∫
crystal

ρge
i(ghkl−∆k)·rdV. (2.7)

Note that F can be complex, but as the intensity I ∝ F ∗ ·F this will only appear
as a phase term, which is subsequently lost as we only measure the amplitude of
the intensity.

Integrating Equation 2.7 over an infinite lattice makes F non-zero only for cer-
tain values of k′. These give the diffraction condition

∆k = ghkl. (2.8)

Multiplying both sides of Equation 2.8 by the translation vectors, we get the
Laue equations:

ai ·∆k = 2πvi (2.9)

for integers vi.
The diffraction condition ∆k = g, the Laue equations, and Bragg’s law are

all equivalent formulations of the same phenomenon. One interpretation is that
Bragg’s law is the real-space formulation of the diffraction condition, whereas the
Laue equations are the reciprocal space formulation.

The diffraction condition in reciprocal space is nicely visualized using Ewald’s
sphere. Since elastic collisions are assumed, all possible k′ lie in a sphere around k,
due to the conservation of energy. Imposing this sphere onto the reciprocal lattice,



14 CHAPTER 2. THEORY

the points at which ∆k equals a reciprocal lattice vector is readily observed by
finding intersections of the sphere and the lattice. A 2D example Ewald sphere
construction can be seen in Figure 2.2.1.

In an infinite lattice, the points in the Ewald sphere construction are mathe-
matically perfect points. With finite crystals, diffraction is more lenient. This is
due to a finite crystal being the product of an infinite lattice and a box function,
meaning the sum in Equation 2.5 needs to be replaced by an integral over the new
reciprocal lattice. This can be accounted for by introducing an excitation error s:

∆k = ghkl + s. (2.10)

Applying the convolution theorem, the Fourier transform of the finite lattice
is the convolution of a reciprocal lattice, and the Fourier transform of the box
function. As the Fourier transform of a box function is sinc-shaped, which is close
to 0 everywhere except near its center, Equation 2.5 is a good approximation for
macro-sized crystals. Due to the inverse proportional relationship between spatial
and reciprocal extent, a crystal which is thin (e.g. about 100 nm) will exhibit relrods.
These are a significant widening of the points in the reciprocal lattice, making
diffraction more lenient. More mathematically, the excitation error in Equation
2.10 is larger in directions where the crystal is smaller.

k

k′1

k

k′2

Figure 2.2.1: An arc of Ewald’s sphere for k. Only ∆k that coincide with a lattice
vector exhibit diffraction, as is the case for k′

1. Drawn in red is k′
2, which fulfills

the diffraction condition with a lenient enough maximal excitation error s.

2.2.3 Structure Factor

If the diffraction condition is met, then Equation 2.7 simplifies down to F = NSg

where Sg is the structure factor, i.e. the scattering density contribution for a single
cell, and N is the amount of cells in the volume. Written out,

Sg =

∫
cell

ρ(r)eig·rdV. (2.11)
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If ρ can be decomposed to a superposition, e.g. the charge density contribution
from multiple atoms in a multi-atom unit cell, then one can write

ρ(r) =
s∑

j=1

ρj(r− rj) (2.12)

for s atoms in the basis, at positions rj. Defining r′ = r−rj, and inserting Equation
2.12 into Equation 2.11, Sg can now be written as

Sg =
∑
j

eig·rj
∫

cell
ρj(r

′)eig·r
′
dV.

Introducing the atomic form factor fj as

fj =

∫
cell

ρj(r
′)eig·r

′
dV, (2.13)

we can write
Sg =

∑
j

fje
ig·rj .

With rj = xja1 + yja2 + zja3, this simplifies down to

Sghkl
=

∑
j

fje
2πi(xjh+yjk+zj l). (2.14)

Taking cesium chloride as a simple example, with a two-atom basis in a cubic P
lattice. Defining the origin at a cesium atom, the chlorine atom sits at [0.5 0.5 0.5].
Choosing g100, inserting into Equation 2.14 yields

Sg100 =
∑
j

fje
2πi(xjh+yjk+zj l)

= fCee
0 + fCle

2πi(0.5·1+0.5·0+0.5·0)

= fCe + fCle
πi

= fCe − fCl.

Similarly, Sg200 = fCe + fCl. Notice that, if fCe = fCl, then Sg100 would be zero.
If the atoms are identical, then this would be the case. However, if the atoms are
identical, with one atom at the origin and one in the center of the unit cell in a
cubic lattice, then it would not be a two-atom basis in cubic P, but a one-atom
basis in cubic I. Therefore, cubic I has the “rule” where Sghkl

= 0 for h+ k+ l being
an odd number, and Sghkl

= 2f for even h+ k+ l. This mathematical condition for
the structure factor is called an extinction rule, and results in a missing diffraction
spot even when the diffraction condition is satisfied. Both centerings, glide planes
and screw axes can lead to extinction rules, all of which are tabulated in [1, page
397].

Using the structure factor formalism, describing the unit cell of a crystal is
enough to predict the scattering properties of the material. Conversely, measuring
the scattering properties of a material allows for reconstruction of the unit cell. The
calculation of Sg requires a description of the atoms in the basis, their positions
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and form factors, as well as the reciprocal lattice of the crystal. Since F ∗
hkl = Fh̄k̄l̄,

and therefore Ihkl ∝ F ∗
hkl · Fhkl = Fhkl · F ∗

h̄k̄l̄
, then I must be centrosymmetric

(Ihkl = Ih̄k̄l̄). For the measurement of the intensity pattern, the point group of
the reciprocal lattice is therefore reduced to its centrosymmetric Laue group if it
did not already have this symmetry. This is known as Friedel’s law, and breaks the
direct relationship between scattering and crystal structure for non-centrosymmetric
crystals. For example, a kinematic diffraction measurement would not be enough to
determine polarization of a ferroelectric crystal, as the polarization is determined
by the direction of the non-centrosymmetric unit cell of the crystal.

In practice, handling the unit cell parameters, position and type of all atoms
in a crystal can be cumbersome, especially for large complex crystals like zeolites
or protein crystals. Therefore, crystallographers often make use of .cif-files, an
abbreviation of Crystal Information File. These text files contain lattice parameters,
atoms and their positions in the basis, and all valid symmetry operations for a
certain crystal. Additionally, the format supports a wide range of metadata, such
as the name of the structure and scientific sources for the data.

The kinematic diffraction theory presented in this chapter functions as an ap-
proximation of electron scattering in crystalline materials. For the weak interactions
of X-rays and matter, the accuracy is high. For the comparably strong electron-
matter interactions, however, the accuracy quickly declines with increased sample
thickness. This is due to the increased likelihood of dynamic scattering, where
electrons participate in more than one scattering event on their path through the
sample. The advantage of a strongly interacting wave is the ability to reduce the
probe size compared to more weakly interacting waves, but as discussed, it comes
at the cost of a less kinematic diffraction. Methods to alleviate this, other than
making the sample thinner, are discussed in Chapter 2.3.4.

2.3 Transmission Electron Microscopy
Transmission electron microscopes (TEMs) are a central instrument in the study
of materials, with a spatial resolution down to the sub-nm-range. Broadly, a TEM
accelerates electrons to energies in the 60 keV to 400 keV range, which then hits
a thin (100 nm-range) sample. These electrons travel through the sample, thereby
interacting with it and changing their paths, before hitting a detector on the other
side. The electron beam can be static, broad, parallel, or convergent to a point on
the sample, categorized into conventional TEM (CTEM) for parallel beam operation
and convergent-beam electron diffraction (CBED) for convergent beam operation.
A user can either capture spatial data, e.g. using high resolution TEM (HRTEM)
or high-angle annular dark-field (HAADF), or diffraction data, the latter being the
focus of this section.

2.3.1 Working Principle

A TEM, whether scanning or not, consists of the same general parts: a column with
an electron gun at the top, electromagnetic condenser-, objective-, and intermediate
lenses for focusing and for switching between reciprocal- and real-space, a sample
holder, various apertures in e.g. the image-plane and/or the back focal plane, and
detectors. Electrons are accelerated along the optical axis, which they should remain
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close to to avoid aberrations, before being collected by the condenser lenses. They
then pass between the condenser aperture, and into the scanning coils which can
move the focal point around on the sample. The condenser system is responsible
for collecting and focusing the beam, and the scanning coils move the beam focal
around on the sample. Next, the beam is passed through the upper objective lens,
the sample, and the lower objective lens. An objective aperture and a selected
area aperture may be placed in the back focal plane and image plane, respectively.
Finally, the beam is passed through intermediate lenses and projector lenses, before
entering the viewing chamber or directly to the detector. The projector system
allows the user to switch between imaging mode and diffraction mode, and change
the magnification. As the system totals around 1m to 2m in length, and electrons
interact strongly with matter, the whole column is vacuum-pumped. A schematic
overview of a TEM can be seen in Figure 2.3.1.

When the projector lenses projects the back focal plane to the detector, the
diffraction pattern can be collected. Different detectors allow for different imaging
techniques, as e.g. a bright-field (BF) or HAADF. These detect electrons in certain
angular ranges. With a pixelated detector, e.g. a direct electron detector (DED)
or simply a camera aimed at a fluorescent screen, one can capture the scattering
intensity as a grid, instead of a single value for a range. This results in a 4D data-
set, where a 2D diffraction pattern image is captured for each sample scan position.
The technique is known as scanning electron diffraction (SED), which is a CBED
technique. With a pixelated detector, one can still extract the same data an e.g.
BF-detector would, as this data is present in the dataset, by azimuthally integrating
over the correct radial range. For BF, the pixelated detector-version is then called
virtual bright-field (VBF).

Compared to conventional TEM techniques, SED allows for more automated
data collection and processing. An example of data captured with this technique
can be seen in Figure 2.3.2(a), where the total integral of intensity in the diffraction
pattern is used to reduce the 4D data to a comprehensible 2D format. Note that
this is not VBF, but a integral (sum) of the entire detector area.

2.3.2 Selected Area Electron Diffraction

Selected area electron diffraction (SAED) is a CTEM technique used to attain high
quality diffraction patterns from a small region of a sample [2, ch. 2.3.2]. The region
selection is performed in the image plane, using the Selected Area Aperture as shown
in Figure 2.3.1. The detector is in diffraction mode, and the images captured with
SAED normally have small diffraction spots compared to CBED techniques. The
spatial resolution for the ‘selected area’ is limited to around 1 µm in diameter, a
restraint which can be improved by convergent techniques [2, p. 73].

2.3.3 Nano-beam Diffraction

Nano-beam diffraction (NBD) is a CBED technique, where the electron beam is
focused to a point with nanometer diameter. The size of this point controls the
volume of the sample which the electrons interact with on their path towards the
detector, and it also controls the size of the diffraction spots on the captured image.
As opposed to SAED, the diffraction spots from NBD are disks, rather than points,
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Figure 2.3.1: Schematic representation of a TEM, with important components
labeled. Reprinted with permission from [49].
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Figure 2.3.2: 256×256 scanning electron diffraction (SED) data, with and without
precession, taken of FCC Ag. (a), (b) Integrated intensity micrographs for SED and
SPED, respectively. (c), (d) Diffraction patters taken from the red square in (a)
and (b), respectively.

due to the convergence angle of the beam being non-zero. Modern TEMs are capable
of sub-nm probe sizes, and sub-mrad convergence angles [2, p. 78]. NBD is often
used in conjunction with scanning of the probe, i.e. SED.

2.3.4 Scanning Precession Electron Diffraction

The theory presented on diffraction in Chapter 2.2 assumes elastic, kinematic
diffraction. A theory which accounts for a more realistic, dynamical, diffraction
is certainly possible, but it would necessarily be much more involved and demand-
ing to simulate. Steps can instead be taken to reduce dynamical effects in mea-
surements. One such approach is to angle the convergent beam slightly (e.g. 1◦)
off the optical axis, precessing around the optical axis, and measuring the average
diffraction intensities over one or more precessions. This CBED technique is called
precession electron diffraction (PED), and results in a more kinematic-like diffrac-
tion pattern. To avoid aliasing, one must ensure the detector period is an integer
multiple of the precession period, e.g. 50ms detector period for a 100Hz precession
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would make the beam precess 5 times per diffraction image.
The decreased dynamical effect comes at the price of resolution, as the tilted

electron beam interacts with a larger volume of the sample, thus decreasing spatial
resolution. Furthermore, the optical system responsible for the precession comes
with its own optical challenges, such as alignment and aberrations. Note that
precession is performed in the opposite direction after the beam has passed through
the sample, to obtain a static PED pattern.

The effect of precession on Ewald’s sphere can be seen in Figure 2.3.3, showing
how more reflections are in the diffraction pattern due to the excitation error s from
Equation 2.10.

When a precessing beam is scanned over the sample, i.e. using SED and
PED simultaneously, the technique is called scanning precession electron diffrac-
tion (SPED). An example of SED vs. SPED can be seen in Figure 2.3.2, where
the blurring of the diffraction spots along certain directions in the SED diffraction
pattern is noticeably reduced in the SPED diffraction pattern. The effect is also
apparent in the integrated intensity images, with the SPED image being much less
noisy and less segmented than the SED image.

Figure 2.3.3: Schematic representation of the Ewald’s sphere construction for
PED. The convergent electron beam, shown in green, would only hit the sample as
the central, darker green beam in NBD, resulting in the spherical Ewald’s sphere
shown as a black arc. As the beam precesses, shown in the left- and rightmost
extrema with the other two lighter green electron beams, more reflections are hit.
This is represented with the intersections of the red PED Ewald’s sphere volume
and the blue reciprocal lattice. The lattice is shown including relrods, represented
with black bars.

2.3.5 Laue Zones and the Laue Circle

In TEM, ∆k is normally much larger than the reciprocal lattice vector. As such,
Ewald’s sphere can usually be approximated as flat. The region where the sphere is
approximately flat is called zeroth-order Laue zone (ZOLZ), and gives rise to most
reflections in a zone axis pattern. Further out in reciprocal space, the curvature of
Ewald’s sphere becomes significant enough as to no longer intersect with the relrods,
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which show up as a dim radial region in SAED patterns. Eventually, with large
enough camera lengths, Ewald’s sphere once again intersects the relrods, this time
in the layer of unit cells above the ones in the ZOLZ. These are the higher-order
Laue zones (HOLZs). [2, p. 278]

SAED zone axis patterns are radially symmetric, as Ewald’s sphere is aligned
with the crystal. Small deviations from a zone axis will generally keep the same
reflections, due to the extent of relrods, but intensities change. Specifically, the first-
order Laue zone (FOLZ) gives rise to a ‘circle’, or arc, of more intense reflections.
This is known as the Laue circle. By calculating the angle between the center
of the Laue circle with the direct beam (using Equation 2.3 to translate between
vectors in reciprocal space and angles), one gets the angular deviation of the crystal
orientation to the zone axis.

2.3.6 Sample Holder

To insert a sample into the TEM, it needs to be placed in a sample holder. These
keep the sample in place in a known location, and are designed to facilitate some
sample manipulation when inside the vacuum column. Sample holders come in
many varieties, e.g. with heating or cooling, and most allow movement and tilting.
Multiple different sample holder designs exists for tilting, e.g. double-tilt and tilt-
rotate. Both of these share a tilt axis along the sample holder, often called the gonio
tilt, which can be seen in Figure 2.3.1 at the ‘Gonio’ annotation. The difference
between double-tilt and tilt-rotate sample holders lie in the position of their second
tilt axis. The double-tilt holder has another tilt axis in the sample plane, whereas
the tilt-rotate has an axis parallel to the optical axis. Note that, in both cases, these
axes are attached to the gonio axis, such that they move along with the sample if
a gonio tilt is applied.

An important difference between double-tilt and tilt-rotate sample holders are
the tilt ranges. Along a given tilt axis, only certain angles are possible to tilt to,
limiting the orientations the sample can be put in. Commonly, the gonio tilt is
limited to ±30◦. Double-tilt holders are commonly limited to ±20◦ or ±30◦ in the
second tilt axis, whereas tilt-rotate holders might have the full ±180◦ range inside
its limits. More specialized holders exist, e.g. specialized tomography holders might
have ±60◦ for the gonio tilt.

2.4 Coordinate Systems and Orientations
When describing a TEM, the relationship between positions on the sample, positions
on the detector, and the position and orientation of the crystal(s) in the sample can
be cumbersome to work with in conjunction. Depending on the focus of study,
different reference frames are used and/or considered. The relationship between
these will be discussed in this section.

2.4.1 Orientations and Misorientations

Orientations are a description of the way an object is oriented in space. An interpre-
tation of orientations is that they represent the coordinate transform between the
object’s coordinate system and the coordinate system the object occupies. As an
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example, if a cube is aligned with a Cartesian coordinate system, and then rotated
45◦ around one of the axes, then its orientation changed.

Orientations can also have a notion of symmetry. If the cube were to be rotated
another 45◦ around the same axis as before, then its orientation would be the same
as in the initial state, since cubes have 90◦ rotational symmetry.

Misorientations can be seen as a generalization of orientations. Where orien-
tations represent the operation from the reference frame an object exists in to the
reference frame of the object, misorientations represent the operation transforming
one orientation to another. Mathematically, this can be expressed as qAB = qAOqOB,
where qij represents the transformation from i to j, and O is the reference frame
both objects occupy. An orientation qA would then be the same as a misorientation
qOA, meaning qAB = qAOqOB = q−1

A qB. The same notion of symmetry applies to
misorientations as with orientations, but since a misorientation entails two sepa-
rate orientations, the symmetry of a misorientation consists of two possibly distinct
parts. For example, the misorientation between a monoclinic and a hexagonal crys-
tal can certainly be constructed, but care must be taken to account for the different
symmetries in the two crystals. For the generalization of orientations as misorien-
tations, this means that the space O in qA = qOA has point group 1.

2.4.2 Orientation Representations

To represent coordinate transforms and orientations, one can employ Euler angles.
These describe a sequence of rotations along the cardinal directions. The rotations
can either be intrinsic, i.e. the chained rotations follow the new axes from the
previous rotations, or extrinsic, i.e. chained rotations follow static external axes.
If only a single rotation is applied, the two are equivalent. Two chained rotations
(along two different axes) are different in extrinsic and intrinsic rotations, as can
be seen in Figure 2.4.1.

The transform from one coordinate system to another can also be represented
with a matrix, which, when multiplied by a vector in one coordinate system, gives
the same vector represented in the other coordinate system. When working with
Euler angles, this matrix is straightforward to construct. One constructs a matrix
for each axis, and multiply them either to the left or right depending on whether they
are extrinsic or intrinsic. A rotation matrix is mathematically more convenient to
work with than Euler angles, as the representation of any vector in either reference
frame can easily be converted to the other. Rotation matrices do not contain more or
different information than Euler angles, as they are both equivalent representations
of a orientation.

The rotation matrices for each axis are as follows:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (2.15)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (2.16)
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Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (2.17)

Using Figure 2.4.1 as an example, the rotation matrix transforming a vector in
the blue rotated coordinate system in Figure 2.4.1(b) back to the fixed coordinate
system is Rx(30

◦)Rz(60
◦), whereas for the intrinsic rotation in Figure 2.4.1(a) the

rotation matrix is Rz(60
◦)Rx(30

◦). To transform the other way around, i.e. a vector
in the fixed coordinate system to the rotated one, one multiplies instead with the
inverse of the total rotation matrix. For any rotation matrix, its inverse is its
transpose, making this operation trivial to compute.

As a concrete example, the unit vector along xe in Figure 2.4.1(b) can be trans-
formed back into the fixed coordinate system as follows:

Rx(30
◦)Rz(60

◦)

10
0


e

=

 0.5 −0.866 0
0.75 0.433 −0.5
0.433 0.25 0.866

10
0


e

=

 0.5
0.75
0.433

 .

Note that this is the same vector, but represented in different coordinate systems.

x y

z, z ′

x ′, xi

y ′

yizi

(a) Intrinsic

x y

z, z ′

x ′

y ′
xe

ye

ze

(b) Extrinsic

Figure 2.4.1: Schematic representation of two consecutive Euler rotations, intrin-
sic in (a) and extrinsic in (b). A 60◦ z-rotation followed by a 30◦ x-rotation is shown
for both. The z-rotation is shown in red, transforming x to x′ etc. The intrinsic
x-rotation is shown in blue in (a), transforming x′ to xi etc. by rotating around
x′, while (b) shows the extrinsic x-rotation in blue, transforming x′ to xe etc. by
rotating around x.

Euler angles suffer from a few drawbacks, notably Gimbal lock, as well as the
need to very clearly specify the axis convention used [50]. While crystallographers
commonly use the intrinsic zxz (Bunge) convention [47, ch. 2], somewhat mitigat-
ing the convention issue, both issues can be mitigated by a change in representation.
Rotation matrices is one way, but as they use nine different numbers in their rep-
resentation, most orientation software uses quaternions for internal calculations.
These use four numbers to represent an orientation, which can save memory for
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large calculations, while simultaneously mitigating issues of numerical instability
that can be encountered with rotation matrices [50].

Quaternions also lend themselves nicely for easy conversion to the final orien-
tation representation to be discussed, namely the axis-angle representation. This
representation consists of a vector as an axis of rotation, and an angle to rotate
around that axis. This representation is easier to interpret, but is not commonly
used for rotation/orientation calculations directly. The axis-angle representation is
particularly useful when describing crystal twins. As an example, FCC crystals can
exhibit Σ3 twinning, with a 60◦ rotation around the ⟨1 1 1⟩ axis.

Note that all orientation representations are equivalent, as they describe the
same operation, and as such they can be converted to and from each other.

Calculating the mean orientation of a set of orientations is non-trivial. For
quaternions, for example, simply taking the mean of each of the four elements is
not sufficient, as this trivial algorithm does not preserve the norm. A paper by
Markley et al. [51] define an algorithm (equation 13) with the proper properties for
a mean quaternion.

2.4.3 Uniform Sampling of Orientation Space

Orientations in 3D form a space known as SO(3). Uniformly sampling this space can
be tricky, especially when different expressions of the same space can give different
measures of uniformity [52–54].

SO(3) is a fairly large group; with the unit quaternion interpretation [54, ch.
4], and a resolution of 1, 23,207,680 unique elements exist. This can be reduced
by symmetries [31], e.g. imposing the point group m3̄m onto these reduces the 23
million down to 2,907,105. Further reduction can be achieved if the orientations
need only span the subspace of a projection along a given direction. Specifically
for crystal orientations in the TEM, only the orientations with a unique projection
along the optical axis needs to be considered. These can easily be sampled with
only two Euler angles, and further reduce the previously discussed orientation set
down to 485,147 unique elements. With Euler angle sampling of 1◦ resolution, only
300 unique z-projections exist for m3̄m.

2.4.4 TEM Coordinate Systems

A tilt-rotate and a double tilt holder are fundamentally the same, with the main
differences being the position of the second rotation axis. For both, the sample can
be rotated around the axis connecting the holder to the column, and subsequently
an orthogonal axis which moves along with the first rotation. In a tilt-rotate holder,
this second axis is parallel to the optical axis in the default position, whereas the
second tilt axis in a double tilt holder is in the sample plane. The first axis, called a
gonio-tilt or α-tilt, is extrinsic, whereas the second rotation is intrinsic. An overview
of the different coordinate systems and their relations may be found in Figure 2.4.2.

To calculate how tilting affects the sample and, more importantly, the crystal(s)
in the sample, the orientation relations of each of these reference frames must be
established. The crystal-sample relation is found by orientation mapping, e.g. using
template matching (TM), which is the subject of Chapter 2.5.3. The S frame is
related to the L frame through a simple rotation around the Lz-axis, by the chosen
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Figure 2.4.2: An overview of the different coordinate systems used when describ-
ing a sample holder. The electron beam is parallel to the lab-z (Lz). The rest of
the lab frame, i.e. Lx and Ly, are arbitrary. The detector is aligned with the lab
frame in z, i.e. Dz = Lz. The x- and y-directions of the detector are static com-
pared to the lab frame. The zoom-in shows the scan directions Sx and Sy, which
can be rotated compared to Dx and Dy, but the beam is always along Sz = Dz =
Lz. Example scan positions are indicated with green dots on the blue sample. The
sample holder, i.e. the dark gray cylinder, can tilt and rotate the sample. The Gx
axis is static compared to Lx/Ly, and consequently Dx/Dy, but a rotation around
Gx changes the positions of Gy and Gz. With no rotations of either sample axes,
Gz coincides with all other z-axes so far. The sample’s Cartesian coordinate system
is the gonio (G) frame, i.e any rotation of the axes do not change the sample’s
internal coordinates. However, a crystalline sample often has different orientations,
quantified in an orientation map. The final zoom-in is a inverse pole figure (IPF)
of an orientation map, where a IPF-x would be the orientation between Sx and
the crystal at each point in the scan, and so on. Above the inset is a colormap
translating the color visualization to a direction, here in the 2

m
point group. Note

that the IPF relate crystal directions, which can require careful considerations when
translating to Cartesian space depending on the Bravais lattice.
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scan rotation parameter. The same is normally true for the G reference frame,
although it is certainly possible to construct TEMs with tilt axes outside of the
Lxy-plane. Therefore, the tilt axes (which are aligned with Gx and e.g. Gy) can be
expressed in the S frame by multiplying with Equation 2.17 twice; once to transform
the G frame to the L frame, and once more to transform the L frame to the S frame.
This requires careful consideration of the order, as with all misorientations, as one
of the operations is inverse. When tilting, the G frame moves compared to the L
frame, by properly chained extrinsic and intrinsic rotations around the axes. The D
frame does not require too much consideration, as it cannot move in any way. It can
be assumed to be perfectly aligned with the L frame. Note that others might choose
differently, e.g. the Python package Hyperspy defines the positive Dz direction to
be -Lz.

Additionally, eucentric height can affect tilting. If the eucentric height is not set
correctly, the sample can drift significantly during tilting. This can be especially
confusing if the scan rotation is not set as to align the S frame with the G frame.
Manual calibration is easily performed by rocking the sample with the gonio whilst
adjusting the eucentric height; the height is correct when the sample stops moving
(tilting will still cause shearing and stretching, but no translation).

2.4.5 Sample Holder Orientation

With the preliminary definitions of rotations, as well as the relationships between
coordinate systems shown in Figure 2.4.2, the effect of tilting on orientation maps
can be deduced. This entails defining the orientation of each coordinate system
compared to the others, defining the rotation operations of the tilt/rotate axes,
and combining these in a chain of e.g. rotation matrices. Extra care must be
taken to ensure intrinsic and extrinsic relationships are properly accounted for, as
Figure 2.4.1 shows, getting this wrong can produce different results. Additionally,
the orientations in the orientation map must be considered, as the reference frame
which is transformed to and from might be different.

2.5 Orientation Mapping with Template Matching

Orientation mapping is the process of determining the crystal orientation(s) of a
sample. A common approach is using electron back scattered diffraction (EBSD)
based on Kikuchi band patterns, but this comes with the limitation of a spatial res-
olution in the 20 nm to 80 nm-range. Using diffraction spot patterns from a TEM
gives a much higher spatial resolution, but orientation maps based on these are
typically accurate to around 1.1◦, compared to 0.3◦ using Kikuchi patterns from
TEM, and 0.6◦ with EBSD [39]. While the accuracy of diffraction spot-based ori-
entation mapping is lower than other methods, its advantage is the possibility of
automated crystal orientation mapping (ACOM). A common approach to determin-
ing crystal orientation from a diffraction spot pattern is template matching (TM),
where a library of diffraction simulations are compared to the diffraction pattern,
and the simulation that matches the best is assumed to be correct. A schematic
representation of the workflow can be found in Figure 2.5.1
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Figure 2.5.1: Schematic representation of template matching workflow. (a)
Record diffraction data. (b) Pre-process it to center and remove noise. (c) Simulate
a template bank. (d) Correlate the patterns with the template. (e) The output of
TM: orientations. (f) Verify the solutions. The data is from a SPED scan of gold
nanoparticles, with a 144×144 detector. The reader might note that these are poor
results, as can be seen by the poor fit between the simulated and measured spots
in (f).

2.5.1 SPED Data Pre-Processing

SPED data is often imperfect, being subject to noise effects. For high-index zone
axes, the reflections can be comparable in intensity to the background noise. As
such, SPED data often needs pre-processing before a good TM result can be achieved.

The pre-processing steps required for good TM results vary between instruments,
scan settings, and samples. Calibrating the scale, both in real and reciprocal space,
is often necessary. To this end, two techniques are presented for reciprocal scale
calibration. Real-space calibration is not discussed.

The first, more manual, approach is to navigate to a diffraction pattern with a
known zone axis. From this diffraction pattern, reflections can be manually indexed.
Dividing the reciprocal distance between reflections, which can be calculated as the
inverse of Equation 2.2, by the amount of pixels between the reflections gives the
calibration value in reciprocal units per pixel.

A more automatic approach, and thus less prone to human error, begins by again
selecting a known zone axis. Then, one performs simulations of the same zone axis,
but for a range of different calibrations. The calibration yielding the simulation
with the highest correlation is then selected as the true calibration.

Data centering can be crucial for TM, especially with a large (∼100µm2) scan
area that forces the scan to be far (∼5 µm) from the optical axis, causing significant
drift in the direct beam. One can mitigate this with proper instrument setup, but
it becomes more difficult with larger scan areas. Instead, the data can be centered
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on the computer, for example by moving the brightest pixel to the center of each
diffraction image. A more robust approach is to calculate the data center of mass
(CoM) in each diffraction pattern, and moving the data such that the CoM is in
the center. Moving the diffraction patterns will make some of the data outside the
borders of the image, and introduce areas without data. A common approach to
address this is to ignore the data that gets moved out of the image, and setting the
areas without data to zero intensity.

After scaling and centering SPED data, one can perform background removal.
One approach is the difference of Gaussians (DoG) method. This is based on blur-
ring the image with two different Gaussians with different sigmas, and comparing
the results. Peaks will have a clear difference for the two blurs, indicating that the
area in question is not a part of the background. Similarly, for areas that are a
part of the background, blurring with different sigmas is unlikely to have a large
difference, provided the blurring is not strong enough as to include intensity from
the peaks. The formula is{

d− g(d, σmax), g(d;σmin) > g(d;σmax) and d > g(d;σmax)

0, else
, (2.18)

where d is the pixelated diffraction data, and g(x;σ) is a Gaussian filter, i.e. a
convolution of x with a (2D) Gaussian. The conditions are pixel-wise.

A simpler approach for background removal is to threshold the data, i.e. setting
all values below a chosen value to zero. Mathematically, this looks like{

d, d > t

0, else
(2.19)

for a threshold t. The condition is pixel-wise.

2.5.2 Crystal Diffraction Simulation

To simulate crystal diffraction, one must define the beam with a given k, a crystal
with a given lattice and atomic form factors, and Equations 2.10 and 2.14. The
reflections are given by the intersections of Ewald’s sphere with the reciprocal lattice
(Equation 2.10), and the intensities of the reflections are given by the atomic form
factors and their positions in the lattice, i.e. the basis of the crystal (Equation
2.14).

The orientation between k and the reciprocal lattice is crucial for determining
the reflections that contribute to the diffraction pattern. Using rotation matrices
(Equations 2.15, 2.16 and 2.17), the transformation between crystal space and re-
ciprocal space, as well as the transformation between Cartesian and crystal space,
one can transform a k in Cartesian space to its equivalent vector in reciprocal space,
and simultaneously rotate it (or, equivalently, rotate the reciprocal lattice) to any
orientation.

Note that, due to crystal symmetry, multiple orientations are equivalent, and
yield the same diffraction pattern. For example, in a cubic crystal, the beam being
parallel to [1 0 0] is equivalent to it being parallel to [0 1 0]. As such, to simulate
all unique directions, one needs only consider the symmetry reduced zone of the
crystal, as described in the end of Chapter 2.1.3. Depending on the way in which the
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orientation map is further analyzed, care must be taken when sampling direction
space, as the smallest possible misorientation is limited by the angular distance
between the sampled directions. If, for example, the aim is to accurately determine
misorientations with an angular resolution in the 0.1◦-range (which is practically
unattainable for normal TM), then a library with angular resolution of e.g. 1◦ would
be useless, as the smallest possible misorientation angle would be 1◦.

The simulations produced by the described method are kinematic, as this is the
assumption in the physical foundation of the equations. To account for dynamical
effects, one may employ the multi-slice solution [55]: a discretized approach sim-
ulating diffraction with quantum-mechanical probabilistic propagation of the wave
through the sample, available with e.g. py_multislice[56]. This is significantly
more computationally intensive.

2.5.3 Template Matching

To quantify correlation between two datasets, a common approach is the (zero)normalized
cross-correlation (NCC). NCC is commonly used to correlate 2D data, e.g. images.
The formula is

NCC =

∑
i

(
Ia, i − Īa

) (
Ib, i − Īb

)√∑
j

(
Ia, j − Īa

)2∑
k

(
Ib, k − Īb

)2 , (2.20)

where Ia, Ib are the two datasets, i, j and k are indices in the data, and Ī is the
mean value of the dataset. The zero-normalized NCC value ranges between −1 and
1.

A typical TM workflow looks as follows, with a visual representation shown in
Figure 2.5.1:
Data collection

Collect a diffraction dataset, preferably (S)PED to make the patterns more
kinematic-like.
Data Pre-processing

Scale, center, and remove noise in the diffraction data.
Template Simulation

Simulate a diffraction template library, with the same scale, acceleration voltage,
and other TEM parameters as used in data collection. The crystal must be defined
beforehand, and the crystal directions to simulate for must be chosen.
Template Indexation

Correlate all diffraction measurements with all diffraction templates, using e.g.
NCC. The template with the highest correlation score is assumed to be the correct
crystal orientation for the given diffraction measurement.
Result verification

Manually check if the results look reasonable, e.g. plot the simulated diffraction
template on top of the diffraction measurement or plot the IPF colormap, to verify
if the results look reasonable.

2.5.4 The Pyxem Suite

Pyxem is an open-source Python software suite, consisting of four packages: Pyxem
[27], Orix [57], Diffsims [58], and Kikuchipy [59]. Kikuchipy is an EBSD-focused
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package, and is not used for this project.
Orix is an orientation- and crystal symmetry-analysis package. It lets users an-

alyze misorientations between grains, draw plots with the stereographic projection,
and visualize orientation maps with IPFs. (Mis)orientations can easily be mapped
to the symmetry reduced zone of the given space group, and the symmetry reduced
region can be sampled for further use with Diffsims for diffraction simulations. Orix
uses quaternions for its internal orientation calculations, but has functionality for
Euler angles in the Bunge convention, as described in Chapter 2.4.2. The mean
quaternion algorithm from Markley et al. [51] is also implemented.

Diffsims is a specialized electron diffraction simulation package. It lets the user
set TEM parameters, such as acceleration voltage, precession angle, and crystal
symmetries, and then simulates the diffraction pattern for given crystal orienta-
tion(s) as described in Chapter 2.5.2. The simulations are stored in a sparse format,
specifying the coordinates and intensities of reflections, rather than the full dense
array format that SPED data is captured with. As such, the simulated diffraction
spots are pixel-precise points, and are not disks like the actual NBD data. If this
is not desired, one can convolve with a Gaussian to give the diffraction spots a
more disk-like shape. The benefit of the sparse format, apart from a reduced mem-
ory usage, is that it allows for a much more efficient correlation score calculation.
The implicit zeros at all the positions that are not specified can be ignored in the
correlation score calculation, since they would not contribute to the score. Con-
cretely for NCC (Equation 2.20), the indices i (and k, assuming the simulations are
dataset b) are limited to only the coordinates of simulated diffraction spots, even
if the diffraction data is non-zero elsewhere. Ignoring overhead, with around 65
simulated diffraction spots and a detector resolution of 256× 256 pixels, the sparse
format necessitates only 65

256×256
≈ 0.1% of the calculations that a dense format

would. The expected number of diffraction spots vary between crystals and camera
lengths, but is often in the order of 65 or less.

The Pyxem package is an extension of the Hyperspy [60] package, with spe-
cialized data classes for e.g. diffraction data. Pyxem implements the CoM data
centering algorithm, and DoG background subtraction with Equation 2.18, which
makes it a useful tool for data (pre-)processing. As it extends Hyperspy, the useful
plotting functionality is exposed as well, allowing for easy data exploration dur-
ing the pre-processing process. Additionally, it has implemented Equation 2.20 for
template indexing, letting users easily perform ACOM with TM.

When using Pyxem v0.16, which was used for TM in this thesis, the full TM
workflow as described in Chapter 2.5.3 would look something like this:

• Load the data with Hyperspy and/or Pyxem

• Pre-process the data with e.g. Pyxem’s centering and DoG algorithms

• Define the sample crystal with a .cif-file, and Diffsim’s dependency Diffpy

• Use Diffsims to sample the symmetry reduced zone for Euler angles to simulate

• Create a library of diffraction simulations with Diffsims

• Index the pre-processed data with the library with Pyxem’s
index_dataset_with_template_rotation
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• Visualize the results as a IPF by exporting the TM results to a Orix CrystalMap
and calling its plot method.

Even though the Pyxem suite has extensive support for orientations through
Orix, the results from TM are Euler angles in the Bunge convention, i.e. intrinsic
zxz-rotations as mentioned in Chapter 2.4.2. These are easily loaded as Orix’s
Orientation-objects, with the from_euler class method.

With the new refactors in Pyxem v0.19, the output and the workflow changes
slightly:

• Load the data with Hyperspy and/or Pyxem

• Pre-process the data with e.g. Pyxem’s centering and DoG algorithms

• Transform the kx, ky signal dimensions to polar coordinates with
Diffraction2d.get_azimuthal_integral2d

• Define the sample crystal with Orix’s Phase class

• Use Orix to sample the symmetry reduced zone for directions to simulate

• Create a library of diffraction simulations with Diffsims

• Index the polar pre-processed data with
PolarDiffraction2d.get_orientation

• Visualize the results with e.g. OrientationMap.plot_over_signal

The grain reconstruction features in Orix is limited to a DBSCAN-based clus-
tering algorithm, and is not strictly a part of the package but rather provided as
an example1 using scikit-learn [61]. A dedicated orientation map-based grain re-
construction algorithm is implemented in the MATLAB-package MTEX [31]. To
export orientation maps from Orix to MTEX, one can export to a .ang-file. This
format is readable in MTEX as a EBSD orientation map with EBSD.load, which al-
lows for grain reconstruction with the method calcGrains. When translating back
and fourth between Orix and MTEX, one must pay attention to the coordinate
system definitions. For example, where Orix stores orientations as lab-to-crystal,
MTEX stores them as crystal-to-lab. The ‘lab’, in both cases, is not the L frame
as defined in Chapter 2.4.4, but rather the S frame.

2.5.5 Template Matching Optimizations

In Pyxem, the TM algorithm contains more steps than the general algorithm out-
lined in Chapter 2.5.3, to increase the speed of orientation mapping. This comes
in addition to hardware- and data structure optimizations, e.g. using a GPU and
sparse simulations. The optimization assumes that the user only wants a few (e.g.
< 50) best matches. With this assumption, if one can rule out certain orientations
or simulations before applying NCC, then one should see a speedup in execution if
the process of ruling out is faster than the NCC. In Pyxem, this is performed by a
one-dimensional correlation of simulations and diffraction patterns, before the full
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Figure 2.5.2: Diffraction pattern processing for template matching correlation.
(a) the original diffraction pattern. (b) the diffraction pattern transformed to polar
coordinates, to ease in-plane rotation correlation. (c) sum of the polar diffraction
pattern along the polar axis, for use in Pyxem’s pre-selection step.

two-dimensional correlation. The algorithm in Pyxem is first described in [29], and
seemingly independently in [62].

First, the diffraction patterns and simulations are converted from Cartesian
coordinates kx, ky to polar coordinates r, ϕ. This is shown schematically in Figure
2.5.2(a) and 2.5.2(b). To avoid confusion, ϕ is used here for the angular dimension,
as the more common θ is already used in Equation 2.3. θ can be measured along r
when combined with the camera length.

Next, the patterns and simulations are summed along the ϕ axis, resulting in a
radial profile like the one in Figure 2.5.2(c). This profile is then correlated with the
simulations, which is very fast.

When all simulations have been correlated in this polar sum form, certain sim-
ulations are discarded for full correlation. These are selected by the user, as either
a fraction or an integer number of simulations. The simulations with the lowest
correlation scores are discarded accordingly. Note that, in the current implementa-
tion, this pre-selection is performed regardless of whether the user wants to discard
anything, which adds a slight overhead.

With this pre-selection, one can discard e.g. 90% of the simulations, avoiding
the need to perform full 2D correlation on patterns which do not fit even in one
dimension. Since the processing to perform pre-selection is run regardless of the
specified discarding strategy, any discarding should yield a reduction in runtime.

1https://orix.readthedocs.io/en/stable/tutorials/clustering_orientations.html

https://orix.readthedocs.io/en/stable/tutorials/clustering_orientations.html
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In this chapter, the methodology for both data collection and processing is pre-
sented. Both samples are subjects of other theses, namely the preliminary work[45]
and Aune’s Master’s thesis[63], so the section regarding those is brief. Next, the
structure, function and development of tiltlib is presented. Finally, an algorithm
for increased performance for TM is presented.

3.1 Sample Overview
Two samples were used in this project: polycrystalline Ag (Fm3̄m) and lithium
manganese nickel oxide (LMNO or LiMn1.5Ni0.5O4) (Fd3̄m). The Ag sample was
used as part of the preliminary work[45], and the LMNO sample is the subject of
Aune’s Master’s thesis[63]. These samples and TEM data acquisition will be briefly
presented here. For more details, refer to the respective theses.

3.1.1 The Samples

The Ag sample was prepared by Tina Bergh on a FEI Helios G4 UX focused ion
beam (FIB). Overview scanning electron microscope (SEM) images of the sample
before and after TEM preparation is shown in Figure 3.1.1. The preparation entailed
laying a capping layer of amorphous C, before milling, extracting and thinning the
lamella. The LMNO sample was prepared similarly by Ruben Bjørge.

3.1.2 TEM Data Collection

All data of Ag was collected on a JEOL JEM 2100F TEM, using a Quantum
Detectors Merlin 256×256 Medipix DED. Either SED or SPED was used. The
collection was performed by Tina Bergh and Emil Christiansen. The parameters of
the scans are summarized in Table 3.1.1. The sample holder was a tilt-rotate holder
with ±30◦ range in the Gx tilt.

Three TEMs were used for the LMNO sample: a JEOL JEM 2100F, a JEOL
JEM 2100, and a JEOL JEM ARM200F. SPED was used in the 2100F, and NBD,
SAED, and HRTEM was used in the other two. The SPED scans were used for
orientation mapping, whereas the others were used for verification of tilt angles.
Collection was performed by Ton van Helvoort, Ruben Bjørge, and Inger-Emma

33



34 CHAPTER 3. METHOD

(a) (b)

Figure 3.1.1: SEM images taken during the Ag sample preparation, by Tina
Bergh. (a) The sample surface, before the capping layer was deposited. (b) The
lamella after being thinned. The C capping layer is visible on the top of the lamella.
Scalebars are 10 µm.

Nylund. Five SPED scans of LMNO were used in this thesis, and some of the
parameters are given in Table 3.1.2. The sample holder was a double-tilt holder,
both axes with a range of ±30◦. As mentioned, more details can be found in Aune’s
thesis[63].

3.1.3 Ag SPED Data Processing

Data processing was performed using Pyxem version 0.16. A more complete list
of software versions can be found in Chapter 3.6. The data was centered using
ElectronDiffraction2D.center_of_mass, and the reciprocal scale was found to
be 0.0113Å−1 using the method described in Chapter 2.5.1. The process is shown
in Figure 3.1.2.
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Figure 3.1.2: Data scaling on Ag was performed by navigating to a [1 0 1] zone axis
in the green square in (a), followed by identifying (3 3 5) and (3 3 5) in (b), before
measuring the distance between them in (c). In this case, the scale was found to be
0.0113Å−1 per pixel. Figure is taken from [45].

The tilt series data was pre-processed before running TM. After testing multiple
different parameters and possible steps, the following steps were chosen, as the
resulting orientation maps seemed homogeneous within each grain. The steps were:
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Table 3.1.1: An overview of the scan parameters of each TEM scan for the Ag
sample. (a) Parameters that differ for the different scans. (b) Parameters which are
the same for all scans. Rocking angle and frequency is for precession, t is exposure
time, XYZ are the coordinates of the sample holder, TX is the tilt angle, and TY
is the sample holder rotation angle. E is the beam energy, the mode is nano-beam
diffraction (NBD), and α is the convergence angle of the beam. Cl is the camera
length, nx/ny is the detector size in pixels, dx/dy is the distance between probe
positions, and Θ is the scan rotation. The first block of rows is SPED and SED,
and the second is a tilt series.

a

Scan
Rocking

angle
Rocking

frequency t X Y Z TX TY
[◦] [Hz] [ms] [µm] [µm] [µm] [◦] [◦]

1 1.0 100 10 180.5 55.9 -63.5 -8.5 -61.0
2 0.0 0 1 180.5 55.9 -63.5 -8.5 -61.0

3 1.0 100 10 -56.4 121.0 -63.5 0.0 -0.1
4 1.0 100 10 -56.4 121.0 -63.5 5.0 -0.1
5 1.0 100 10 -56.4 121.0 -63.5 10.1 -0.1
6 1.0 100 10 -56.4 121.0 -63.5 15.0 -0.1

b

E Mode Spot α Cl nx ny dx dy Θ
[keV] [nm] [◦] [cm] [pixels] [pixels] [nm] [nm] [◦]

200 NBD 1.000 5 10 256 256 61.075 61.075 0

1. Mask out the direct beam

2. Perform DoG background subtraction (Equation 2.18) with σmin = 4.68 and
σmax = 10.58

3. Perform thresholding with t = 1 (Equation 2.19)

4. Blur with a Gaussian with σ = 2

5. Threshold the data with t = 2

6. Change all zeros to −20

Orientation mapping was performed using Pyxem’s TM functionality. Since this
was performed in October 2023 as part of the preliminary work[45], older software
versions were used for creating the orientation maps. In Pyxem version 0.19, the
application-programmer interface (API) will change significantly compared to 0.16,
which was used here.

The diffraction library parameters were set to the same values found in Table
3.1.1, and the minimum_intensity was set to 10−6. Precession was approximated
with a Lorentzian, as described in [64], by setting approximate_precession=True.
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Table 3.1.2: An overview of the scan parameters of each SPED scan for the LMNO
sample. TX and TY are the tilt angles of Gx and Gy, respectively. E is the beam
energy, and Θ is the scan rotation. More details are available in [63].

Scan 1 2 3 4 5

TX [◦] 0 5 10 15 0
TY [◦] 0 0 0 0 5
E [keV] 200 200 200 200 200
Θ [◦] 28 28 28 28 28
nx [pixels] 273 273 273 273 273
ny [pixels] 511 511 511 511 511

The orientation space was sampled according to the two Euler angle method de-
scribed in Chapter 2.4.3. This resolution and sampling resulted in 11476 unique
patterns. A .cif-file for crystalline Ag was used for specifying the phase, from Suh
et al. [65].

Template indexation was performed with
index_dataset_with_template_rotation from pyxem.utils.indexation_utils,
on the GPU.

To verify the precision, twin misorientation relations were used. As the FCC Ag
crystals exhibit Σ3 twinning along ⟨1 1 1⟩, with a known misorientation angle of 60◦,
these can be used to quantify the precision of TM. A crop of the scans containing
twins were extracted from the orientation maps. Two orientation populations were
identified by thresholding the misorientation angle at 5◦ and 55◦, and those in-
between were considered misindexed. The misorientation angle between the means
of the populations were calculated, and compared with the expected 60◦.

3.1.4 LMNO SPED Data Processing

A similar workflow to the Ag scans was used to create the initial orientation maps for
LMNO. These were subsequently used in a refinement step, where the orientations
at each navigation position was compared in a tilt series. By using multiple n_best
orientations and comparing across the tilt series, the most likely candidates were
chosen for each navigation position. This aims to combat speckling, and is an
important part of Aune’s thesis [63].

3.2 Tilt Axis Identification

To predict how tilting affects the crystal, the relationship between the G frame
and the S frame must be established, as discussed in Chapter 2.4.4. To this aim,
a fitness function was used, and subsequently minimized as a function of tilt axis
position. The fitness function used all possible combinations of the scans in the tilt
series, and all pixels in each scan was compared to the corresponding pixels in the
other scans. Three tilt series were used in this project: scans 3-6 inclusive of the
Ag sample for Gx, scans 1-4 inclusive of the LMNO sample for Gx, and scans 1
and 5 of the LMNO sample for Gy. All scans were virtually tilted back to 0◦ before
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comparing. No attempt was made to account for the change in pixel position by
physical shift of the sample during tilting.

For the Ag sample, the total dataset for optimization contained 6×256×256 =
393, 216 misorientation angles. As the LMNO sample had more probe positions,
the datasets consisted of 6× 511× 273 = 837, 018 and 511× 273 = 139, 503 for the
Gx and Gy axes, respectively. From these, the lowest third misorientation angles
were selected, and their mean was the final output of the fitness function. By using
only the small angles, the effect from grain displacement by tilting is reduced. As
the overlaps between grains between scans are likely to have a large misorientation
angle, these will be ignored by only considering the bottom third. Similarly, regions
with noise, non-crystalline regions, or other sources of less meaningful TM results
can be less impactful on the fitness score.

The fitness function has only one input: the angle between Sx and the tilt axis,
in the Sxy-plane. The tilt axis is therefore assumed to lie in the Sxy plane, as
described in Chapter 2.4.4.

Minimization was performed using Scipy’s minimize-function [66], as well as a
visual inspection of a graph of the fitness function. The complete fitness function
code is listed in Listing 3.2.1.

Verification of the position was performed by using a different scan rotation Θ
for the Ag and LMNO scans. As the SPED scans were performed on the same
microscope, the tilt axis should lie in the same place in the L frame, but offset in
the S frame by the difference in scan rotation (0◦ − 28◦ = −28◦).

A Jupyter notebook outlining the entire process of tilt axis identification can be
found in the GitHub repository for the project1, under the examples-folder. This
notebook uses a fabricated tilt series as an example, and was used as a baseline for
tilt axis identification in this thesis.

3.3 tiltlib

With the geometry of the TEM identified, and using the sample-crystal relation
found by TM, a program was developed to predict sample holder tilt angles which
would align a region of the sample to a given zone axis. The structure and imple-
mentation of tiltlib is presented in this section.

3.3.1 Design

The code was written as a standalone Python module, dependent on, but not a part
of, Orix and Hyperspy. A schematic overview of the structure of tiltlib is shown
in Figure 3.3.1. The intended workflow for a user of the program is to first create a
CrystalMap from Orix, and determine the tilt axis position of the TEM. Then, the
user would create a Sample-object from those. Grain selection, or region selection
in general, would be performed using one of Hyperspy’s ROIs. The user would
then create a Miller-object from Orix, containing the desired [u v w] zone axis (or
[u v tw] for hexagonal crystals), and supply it to the Sample.find_tilt_angles-
function. The result of this function is a tuple of tilt angles, corresponding to the

1https://www.github.com/viljarjf/tiltlib

https://www.github.com/viljarjf/tiltlib
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1 import tiltlib
2

3 import numpy as np
4 from itertools import combinations
5

6 x = orix.Vector3d.xvector()
7 y = orix.Vector3d.yvector()
8 z = orix.Vector3d.zvector()
9

10 xmaps: list[orix.CrystalMap] # TM results
11 tilt_angles: list[float] # original tilt angle of each sample
12

13

14 def fitness_function(axis_angle: float):
15 axis_direction = x.rotate(z, np.deg2rad(axis_angle))
16

17 samples: list[tiltlib.Sample] = []
18 for xmap, angle in zip(xmaps, tilt_angles):
19 axis = tiltlib.Axis(
20 axis_direction, min=-30, max=30, angle=angle, degrees=True
21 )
22 s = tiltlib.Sample(xmap, [axis])
23 s.rotate_to(0)
24 samples.append(s)
25

26 misorientation_angles = []
27

28 for sample_a, sample_b in combinations(samples, 2):
29 oris_a = sample_a.orientations
30 oris_b = sample_b.orientations
31 angs = oris_a.angle_with(oris_b, degrees=True)
32 misorientation_angles.append(angs)
33 misorientation_angles = np.array(misorientation_angles).flatten()
34

35 k = misorientation_angles.size // 3
36 lowest_k = np.partition(misorientation_angles, k, axis=None)[:k]
37 return np.mean(lowest_k)

Listing 3.2.1: The fitness function used to find the tilt axis position, by minimizing
the fitness function.

tilt axes, which minimizes the misorientation angle(s) between the desired zone axis
and the predicted zone axis of the sample.

Imprecision is inherent to multiple steps in the determination of tilt angles, and
as such cannot be expected to be perfect. In practice, the angles are therefore
unlikely to perfectly align the crystal. Imprecision of TM contributes with around
1◦[39]. As ALPHABETA suggests 1◦ to 2◦ precision[32], and have more precisely
determined orientations (±0.25◦), tiltlib should predict angles with around 5◦

precision. The aim is to be close enough to see the Laue circle, and align more
precisely using that. This will be evaluated, and is described in Chapter 3.4.
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Sample
G frame to crystal frame

SampleHolder
S frame to G frame

Axis, Gx

Axis, Gy or Gz

CrystalMap
Crystal frame to S frame

Figure 3.3.1: An overview of the structure of tiltlib. The SampleHolder-class
takes a list of Axis as input, which handle the rotations around tilt axes of the
sample holder. A Sample is an extension of a SampleHolder, which additionally
takes in a CrystalMap from Orix that defines the sample-crystal orientations.

3.3.2 Implementation

As new code and functionality is developed within this work, below the implemen-
tation structure is explained in detail.

Apart from general project setup files, such as the pyproject.toml-file defining
the module, the code is organized into three separate folders. The examples-folder
contains Jupyter notebooks, which serve as rudimentary tutorials for how to identify
the tilt axis position from a tilt series, and how to predict tilt angles for zone axis
alignment. These also serve as integration tests. The tests-folder contains unit
tests. Finally, the src-folder contains the source code for the project.

The source code consists of three files, each containing a single class. These are:
the Axis-class, the SampleHolder-class, and the Sample-class.

The Axis-class is a simple data container, which handles the position, tilt, and
range of tilt axes. It is initialized with the direction it is pointing, in the sample
reference frame, the range of tilt angles it is capable of, and its current tilt position,
if applicable. Additionally, one can specify whether the supplied angles were given
in degrees or radians, and whether the axis is intrinsic or extrinsic.

The SampleHolder-class is responsible for calculating the Rotation-object trans-
forming the scan (S) frame to the gonio (G) frame, as defined in Chapter 2.4.4. It
is initialized with a list of Axis-objects, which define the tilt axes of the sample
holder. The order of the list matters in two ways: the first Axis in the list is extrin-
sic, regardless of what was specified in its creation, and the list of angles returned
by member functions of both this and the Sample-class correspond to the axes in
that order.

Two important member functions of the SampleHolder class is rotate and
rotate_to. They both take angles as input, which can be specified as either degrees
or radians, and compute internally the Rotation-object corresponding to a rotation
of each tilt axis by the given angle. The difference between the two functions lies
in whether they rotate additively, i.e. the given angles are added to the current
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position, or if the given angles are the target rotations for the sample holder. rotate
works additively, whereas rotate_to rotates to the given angles regardless of the
current ones. Note that, in both cases, the resulting position cannot be outside the
range of any of the tilt axes, and the amount of angles supplied to the function
must correspond to the amount of tilt axes. The class also exposes some helpful
functions for converting a vector back and forth between the sample and TEM
reference frame, and a rotation matrix representation of the rotation.

Finally, the Sample-class handles the change in orientation from tilting the sam-
ple. It inherits from the SampleHolder-class, meaning all functionality of the par-
ent class is available in the child as well. A Sample-object is initialized with a
CrystalMap from Orix, and either a list of Axis or a SampleHolder. The pixel-
wise Orientations are available with the Sample.orientations member, which
are automatically kept up to date when tilting. This is one of the main functional-
ities of the class, and is how the updated orientations should be accessed. Plotting
functionality is also available, e.g. as an interactive window allowing the user to
change the tilt angle(s) in real time and see the effect on the IPFs as shown in
Figure 3.3.2. The to_navigator member function returns a IPF-z color map of
the sample as a Signal2D object from Hyperspy, intended for use as a navigator
when plotting. A new Sample-object is returned when a Hyperspy ROI is supplied
to the crop member function, containing only the orientations within the region of
interest. Note that plotting a Sample cropped with a CircleROI is unlikely to be
helpful, as the data is flattened to a 1D array.

Figure 3.3.2: Example of an interactive plot of a sample using tiltlib.
The tilt position is controlled with the slider, updating the colors of the
IPFs. Data from an Austenite EBSD orientation map supplied by Orix, from
orix.data.sdss_austenite.

The most important functionality of the Sample class lies in the
find_tilt_angles member function. A listing of the function can be found in
Listing 3.3.1. The function takes a Miller object from Orix, which defines a de-
sired zone axis, and returns the best tilt angles to align the sample to that zone
axis. The algorithm is based on optimization, similar to the tilt axis identification
algorithm seen in Listing 3.2.1, rather than analytical determination of optimal
tilt angles. First, the optical axis is expressed, here as a Miller object, which is
[0 0 1]. Next, the function to be optimized is defined. Its inputs are tilt angle(s),
and the output needs to attain its minimum at the best tilt angles. For the output,
Sample.angle_with is used, which calculates the angle between the optical axis
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of each pixel and the given zone axis. As the optimization needs to output only
a single number, the mean of this set of angles is used. The tilt angles are used
by rotating the sample before calling angle_with. The function to be optimized is
similar to the tilt axis identification function, but rather than discarding a fraction
of the angles, the mean of all of the angles is calculated. Optimization is performed
using Scipy[66], and the result is returned as a tuple of floats in the same order as
the tilt axes used of the Sample.

1 def find_tilt_angles(
2 self, zone_axis: Miller, degrees: bool = True
3 ) -> tuple[float, ...]:
4 """Calculate the tilt angle(s) necessary to align the sample
5 with a given optical axis
6

7 Args:
8 zone_axis (Miller): desired zone axis
9 Returns:

10 tuple[float, ...]: Tilt angles for each axis
11 """
12

13 def optimize(angles) -> float:
14 self.rotate_to(*angles, degrees=degrees)
15 aw = self.angle_with(zone_axis, degrees=degrees)
16 return np.mean(aw)
17

18 bounds = [(ax.min, ax.max) for ax in self.axes]
19 angles = self.angles
20 if degrees:
21 bounds = np.rad2deg(bounds)
22 angles = np.rad2deg(angles)
23

24 res = minimize(
25 optimize,
26 angles,
27 bounds=bounds,
28 method="Nelder-Mead",
29 )
30 self.reset_rotation()
31 return res.x

Listing 3.3.1: The member function of the Sample class responsible for calculating
the optimal tilt angle(s) for aligning the sample to a zone axis.

3.3.3 Code Testing

All parts of the code were tested individually, by comparing the output of functions
to the expected output. For rotations, simple 90◦ rotations around coordinate
axes in the coordinate system(s) were chosen, to ensure the expected output could
be determined manually, by e.g. physically rotating a Rubik’s cube around the
given axes. Combinations of extrinsic and intrinsic chained rotations, handling of
angles and radians, properly transforming between coordinate systems and properly
resetting rotations were tested. Extrinsic and intrinsic rotations were thoroughly
tested by generating thousands of random chained rotation objects using tiltlib
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and asserting that they all compare equal to a Rotation object from Scipy with
the same settings. To ensure correctness of the rotation matrix, random tilt angles
were supplied to Orix, Scipy, tiltlib, and the analytical expression found by Qing
et al. [9]. These all compared equal for each set of random tilt angles.

Unit tests were written alongside the code, ensuring that at each step of devel-
opment the code gave the expected output, and that any changes to the code left
the outputs unchanged. The tests were automatically run whenever the code was
changed on GitHub, using the testing library Pytest and GitHub Actions.

Integration testing was performed by running the example Jupyter notebooks.
These were written at the end of development, and run manually as opposed to the
automatic unit tests.

3.4 Zone Axis Alignment
The two samples were both used for zone axis alignment. As the Ag sample was only
scanned in one session, verification was performed by aligning to a zone found at a
different tilt. For the LMNO sample, the predictions were verified by re-inserting
the sample in the TEM, and setting the tilt angles to the predicted values.

3.4.1 Ag Sample

Zone axis alignment with real data was performed with the example notebooks as a
baseline, first using crystal maps from the Ag tilt series. Tilt axis identification was
performed with the tilt_axis_identification.ipynb notebook as a baseline, but
using the tilt series crystal maps rather than the fabricated tilt series in the example
file. The identified axis was subsequently used in the zone_axis_alignment.ipynb-
notebook to test the find_tilt_angles function. The axis position was verified
by selecting a grain from two different scans, and finding the tilt angles to align one
grain with the other. The expected output would then be the tilt angle at which
the other scan was taken at. Additionally, the zone axes for grains which were not
used for alignment should still align with the corresponding zone axes in the other
scan.

3.4.2 LMNO Sample

A more robust verification test was performed with the LMNO sample, as the
predicted tilt angles were verified in two different microscopes. The tilt axes of the
sample were identified similarly as the Ag sample, using the two tilt series for Gx
and Gy. The CrystalMap from the scan at TX = TY = 0◦, as well as the tilt axis
positions found using the tilt series, was used to initialize a Sample-object from
tiltlib. Tilt angles for zone axis alignment were predicted using this Sample.

Three regions of interest were identified from the orientation map. Area 1 is a
Σ3 twin, and the target zone was [1 1 0]. Area 2 had two grains, with targets [3 2 3]
and [0 1 3]. Area 3 had [1 1 2] set as target. The naming of the areas align with
Aune [63]. Predicted tilt angles were noted, before the sample was re-inserted into
the TEM. Two microscopes, the JEOL 2100 and the JEOL ARM200F, were used
to test zone axis alignment. Testing was performed by rotating the sample holder
to the predicted angles, before using the Laue circle for final correction. The angles
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at the optimal manual alignment were noted. In the JEOL 2100, SAED patterns
were taken at default, predicted, and final tilt angles.

To ensure the tilt axes found by the tilt series would be valid for the other micro-
scopes, the sample was inserted into the sample holder at the same orientation as in
the 2100F. This preserves the sample orientation in the G frame, but as the align-
ment is performed manually it introduces a possible misorientation. Photographs
of the process is shown in Figure 3.4.1.

(a) (b) (c)

Figure 3.4.1: Photographs of the sample holder with the LMNO sample inserted.
The alignment of the sample in the holder needed to be identical as with the 2100F,
to ensure the predicted tilt angles were valid. (a) 2100F. (b) 2100, incorrectly
aligned. (c) 2100, correctly aligned. Images taken by Kaja Eggen Aune.

Note that the tilt angles used on the microscopes was predicted by visual in-
spection of the SP IPF, using the program Recipro rather than tiltlib. The
predictions align with tiltlib. This was done as tiltlib was in an unfinished
state at this point. The measurements of the final tilt angles are unaffected by this.

3.5 Template Matching Pre-selection Algorithm
In order to improve runtime of TM, an algorithm to select which templates to
use was developed, similar to the one used in Pyxem and outlined in Chapter 2.5.5.
Rather than reducing the dimensionality of the problem, this new approach relies on
the continuity of correlation scores in orientation space. By sampling the correlation
scores of orientations and interpolating between them, one can discard orientations
near regions with low correlation score. The aim of the method is to give the same
answer as a single TM sweep with a dense bank of simulations, but in a much
shorter time. In this section, the developed algorithm will be detailed, along with
some specific theory beyond the general theory given in Chapter 2.

3.5.1 Algorithm Outline and Implementation

This method consists of three steps:

1. Full TM with a rough orientation grid

2. Interpolate correlation scores

3. Refined TM with promising orientations
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An outline of the workflow for a single diffraction pattern is shown schematically
in Figure 3.5.1.

Figure 3.5.1: Outline of the pre-selection step, for a single diffraction pattern.
A coarsely sampled template bank is used for TM, and the correlation scores are
interpolated. The best 500 interpolated scores were chosen in this case, and used
for a second TM run.

The biggest difference between this and other TM techniques, is the fact that
the set of simulations in the second sweep is different for each diffraction pattern.
This stems from the correlation values for each of the coarsely sampled simulations
being slightly different for each diffraction pattern, consequently making the inter-
polated correlation scores different, which in turn makes the set of simulations for
the second sweep different. If a 300× 300 probe position scan is used, and the user
wants to use the best 500 templates from interpolation, then this would require
300× 300× 500 = 45 million templates. To simulate all of these would take consid-
erable time, and would be mostly unnecessary as the vast majority would likely be
duplicates. Therefore, the implementation only simulates the unique orientations,
and distributes the simulations with clever indexing as shown later in this section.
This implementation also allows for the use of a different, possibly more accurate
and computationally demanding, simulation generator.

Depending on the orientation resolution for the initial TM sweep, and the
amount of orientations requested for refinement, the interpolation step can take
up considerable time. Initial testing revealed that a naive implementation, using
Scipy’s interpolate.griddata, spends half the runtime on interpolating the cor-
relation scores. By restricting ourselves to a linear interpolation, and by observing
that both the data coordinates and the resampled coordinates are the same for all
probe positions, then we can optimize this step considerably.

The interpolation algorithm works as follows:

1. Calculate the Delaunay triangulation of the coordinates for the initial TM
sweep

2. Identify which triangle each new sample point resides in

3. Calculate the Barycentric coordinates for all new sample points in their re-
spective triangles

4. When interpolating: Sum the product of correlation scores and the Barycen-
tric weights
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This way, only the final step needs to be performed for all different sets of correlation
scores. All other steps need only be run once, saving significant overhead in the
interpolation step.

1 # Based on https://stackoverflow.com/a/20930910
2 from scipy.spatial import Delaunay
3 import numpy as np
4

5 # Known correlation scores’ coordinates:
6 xy: np.ndarray[n_points, 2]
7

8 # Points to interpolate the correlation score
9 new_xy: np.ndarray[n_new_points, 2]

10

11 # Perform triangulation
12 tri = Delaunay(xy, incremental=False)
13

14 # Find the vertices for all new points
15 simplex = tri.find_simplex(new_xy)
16 vertices = np.take(tri.simplices, simplex, axis=0)
17

18 # Calculate the Barycentric coordinates
19 temp = np.take(tri.transform, simplex, axis=0)
20 delta = new_xy - temp[:, -1]
21 bary = np.einsum("njk,nk->nj", temp[:, :-1, :], delta)
22

23 # Use the Barycentric coordinates as weights for linear interpolation
24 weights = np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))
25

26

27 # Actual interpolation function.
28 # NOTE: The values to interpolate must be ordered in the same way as `xy`
29 def interpolate(values: np.ndarray[n_points]) -> np.ndarray[n_new_points]:
30 return np.einsum("nj,nj->n", np.take(values, vertices), weights)

Listing 3.5.1: The implementation of an efficient multilinear interpolation using
Delaunay triangulation and Barycentric coordinates, used for interpolating correla-
tion scores. Note that the type annotations are for clarity, and will throw an error
if run as-is.

Without going into too much detail, Delaunay triangulation is a tessellation of
the convex hull of a set of points, using triangles that maximize the smallest angle
in all the triangles [67]. Barycentric coordinates are essentially a decomposition of
a linear interpolation on a polygon, quantifying the contribution from each vertex
to a given interior point [68].

The implementation used in the project can be found in Listing 3.5.1, which
adapts Jaime [69]. What is not shown is the calculation of the coordinates xy and
new_xy. For this, the rotations are projected onto the optical (z) axis, before the
stereographic projection is used to convert to planar xy-coordinates used in xy.

The interpolated correlation scores can then be calculated for each diffraction
pattern, using the first TM sweep, and the orientations at the top correlation scores
are used for the second TM sweep. The implementation details regarding the cal-
culation of indices in the simulation bank can be seen in Listing 3.5.2.
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1 oris: orix.Orientation # Resampled orientations
2 simgen: diffsims.SimulationGenerator
3 orientationmap: pyxem.signals.OrientationMap
4 num_oris: int # amount of orientations to keep for final TM
5

6

7 def get_top_indices(orientationmap_result):
8 indices, correlations, _, _ = orientationmap_result.T
9 indices = indices.astype(int)

10

11 # Re-order correlations, they need to be in the same order
12 # as the Delaunay triangulation was made with
13 sorted_indices = np.argsort(indices)
14 data = interpolate(correlations[sorted_indices])
15

16 # Only keep the top `num_oris`.
17 # Use argpartition, since we don’t care about the order
18 # (arg since we want indices, partition since we dont care about order)
19 k = data.size - num_oris
20 inds = np.argpartition(data, k)[k:]
21 return inds
22

23

24 indices_signal = orientationmap.map(
25 get_top_indices, inplace=False, lazy_output=False
26 )
27

28 # Reduce total simulation count by only using the unique orientations
29 unique_inds, reconstruct_inds = np.unique(indices_signal, return_inverse=True)
30 indices = reconstruct_inds.reshape(indices_signal.data.shape)
31

32 # Perform the simulations, only use unique orientations
33 simulations = simgen.calculate_ed_data(
34 orientationmap.simulation.phases,
35 oris[unique_inds],
36 )

Listing 3.5.2: The calculation of indices corresponding to the orientations chosen
from interpolating correlation scores. The interpolate-function is the one defined
in Listing 3.5.1. Note that only the unique orientations are used for simulations,
handled in lines 29 and 35.

The result is a numpy array indices, containing indices into the simulation
array. The indices are ordered such that, for each diffraction pattern index, there
are num_oris indices corresponding to this amount of simulations with the best
interpolated correlation scores. As such, accessing the simulations with
simulations[indices] would result in an array of simulations with shape (ny, nx, num_oris),
where each diffraction pattern index only has the num_oris most promising simu-
lations. For the example with 300× 300 probe positions and num_oris = 500, this
is an array of 45 million simulations, but the amount of simulations performed is
at most oris.size.

When performing TM for the second time (step 3), each probe position effec-
tively has a unique simulation library associated with it. As the size of these is
controlled by the user specifying num_oris, the specialized simulation libraries can
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be much smaller than the full orientation space, which should dramatically reduce
runtime compared with using a full set of simulations. This is where runtime can
be saved, given that the initial TM step (step 1) and interpolation (step 2) are fast
enough.

3.5.2 Performance Testing

To evaluate the performance of the new algorithm, both it, the full dense correlation,
and the current pre-selection algorithm was run. The runtime was measured for
multiple runs of the same parameter set, and the resulting orientation maps were
kept for similarity comparisons. Three different metrics were used to measure the
similarity of the orientation maps:

Correlation score similarity The Euclidean norm of the difference in correlation
scores with the dense orientation map, for each navigation position.

Orientation similarity The angle between each orientation and the correspond-
ing index (x, y, n_best) in the dense orientation map, measured in degrees.

Equality length The fraction of solutions present in an orientation map, which are
also present in the dense orientation map. Measured per navigation position.

The implementation of these algorithms is shown in the
TemplateMatchingComparison-class in Appendix A.4. For each of these metrics,
the mean and standard deviation was calculated for the entire dataset. These
results, along with extensive metadata regarding the test parameters, were stored
as .json-files, which were subsequently used for further analysis. An example of a
comparison file can be found in Appendix A.1.

Parameter sweeps for the angular resolution of orientations of the first TM sweep
(coarse_resolution), the resolution for the second sweep (fine_resolution), and
the number of orientations to keep for the second sweep (n_keep, or frac_keep)
were performed, measuring the runtime and similarity scores for both the new and
old pre-selection algorithms. Tests were run on four datasets, one experimental and
three simulated from different point groups. The experimental dataset was a crop
of Scan 1 of the Ag sample, without background subtraction, whereas the simulated
datasets were from the three phases: copper (Fm3̄m), graphite (P63/mmc), and
AgAuTe4 (P2/c). These phases were chosen as they are the archetypes of their
respective space groups [70, p. 124-127]. The point groups were chosen to evaluate
the performance for a variety of crystals and sizes of the symmetry reduced zone.
.cif-files used to simulate the three phases were found on crystallography.net,
using Swanson and Tatge [71], Hassel [72], and Pertlik [73], respectively.

The runtime and similarities of the results were measured by performing TM
on the four datasets, and subsequently compared. Runtime was measured for 6
iterations of each method, to increase statistical significance. The similarities were
calculated using the previously discussed metrics. TM was performed with n_best
= 10 for all methods and all datasets.

For scan 1, the sweep of the n_keep-parameter was performed with 2◦ resolution
in the coarse simulation bank (300 simulations) and 0.4◦ resolution in the fine bank
(6555 simulations). The sweep of the coarse resolution parameter had a resolution of
the fine simulation bank was 0.5◦ (4186 simulations) and n_keep = 400. Finally, the

crystallography.net


48 CHAPTER 3. METHOD

sweep of the fine resolution parameter had a coarse simulation bank of 2◦ resolution
(300 simulations) and n_keep = 400.

The same resolutions and n_keep values were used for the simulated datasets as
well, but due to the difference in size of the symmetry reduced zones for the different
point groups, the amount of simulations were different. For AuAgTe4, 2◦ resolution
corresponds to 3687 simulations, 0.5◦ to 58,065 and 0.4◦ to 90,631. For graphite, 2◦
corresponds to 900 simulations, 0.5◦ to 13,456 and 0.4◦ to 21,025. Copper has the
same point group as Ag, m3̄m, and as such the same numbers of simulations are
used for TM on the simulated copper dataset as for scan 1.

The simulated databanks were made with the same parameters as the simula-
tions used for TM, apart from the precession. For both, the precession angle was
1◦. Differently to where TM was performed with an analytical Lorentzian approx-
imation[64], the simulated datasets were performed with numerical integration of
a full revolution. The resolution of the AuAgTe4 bank was 3◦, corresponding to
1743 simulations. For graphite, the resolution was 2◦, which was 1770 simulations.
Finally, for copper, 1◦ i.e. 1081 simulations was used. The crop of scan 1 was
taken of a region containing multiple grains, and every fourth diffraction pattern
was chosen, resulting in a total dataset of 720 diffraction patterns.

3.6 Computing Resources
All data processing was run on a Windows 10 computer, with 80GB of RAM,
and a 12-core AMD Ryzen 3900x CPU. TM was run on a Nvidia GeForce RTX
3080 GPU, with 10GB of VRAM, which sped up the TM process significantly
compared to using CPU. The software versions are listed in Table 3.6.1. Developer
versions are listed, as these were versions which received contributions as part of this
thesis. Specifics regarding open-source contributions during this thesis are listed in
Appendix C.

Table 3.6.1: List of software versions used for this project. Dev-versions of pack-
ages have their Git commit SHA-1 specified.

Name Version Git commit SHA-1

Python 3.10.12

TM
Pyxem 0.17.dev0 48c83c65acb52aa8ff2f2ea8c28306399ae1cff1
Orix 0.11.1
Diffsims 0.5.2
Hyperspy 2.0rc0 2c841044a6ac232edc23f73d44bdb66bacfd9ea1

Analysis
Pyxem 0.19.dev0 c52505f49349058ad3bce38bc82f42729923a3e1
Orix 0.12.1
Diffsims 0.6rc1 870d6323ea940e9639655f2b8ed2f89feded0582
Hyperspy 2.1
tiltlib 0.0.5
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RESULTS

In this chapter, the results of orientation mapping, tilt axis identification, zone axis
alignment, and testing the pre-selection algorithm are shown. First, the samples
are presented, and the data acquisition and processing is outlined. Next, results
from zone axis alignment are presented, before the final section shows results from
the TM pre-selection algorithm.

4.1 Ag Sample

The Ag sample was scanned using both SED and SPED, and subsequently orien-
tation mapped using TM. Next, the tilt series was used to identify the tilt axis
position of the TEM. This chapter presents an overview of the sample, an analysis
of the precision, and tilt axis identification.

4.1.1 Overview

A SPED scan of the Ag sample, scan 1, can be found in Figure 4.1.1. Some points are
indicated, notably Figure 4.1.1(a) showing the [1 0 1]-orientation used for calibration
as mentioned in Chapter 3.1.3. The other three patterns are notable as they do not
contain the reflections expected of diffraction patterns of Ag, e.g. Figure 4.1.1(d)
being too thick. Most of the scan shows crystalline diffraction. Additionally, the
region of Σ3 twins used for TM precision estimation is shown in the black dashed
box.

4.1.2 Twin Grains

Σ3 twin grains with known theoretical misorientation angle were used to quantify
the precision of TM. An overview of the process carried out for a single scan,
scan 4, is shown in Figure 4.1.2. A crop of the scans containing only twins was
used, where two populations o1 and o2 were identified by thresholding at 5◦ and
55◦. The mean orientations of these populations were calculated for each scan, and
the misorientation angles between these means were calculated. A table of these
population misorientation angles can be seen in Table 4.1.1.

49
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(a)

1 Å 1

(b)

1 Å 1

(d)

1 Å 1

(c)

1 Å 1

3000 nm

Figure 4.1.1: An overview of the sample, showing a IPF-z from scan 1 with insets
of different diffraction patterns. (a) [1 0 1] diffraction pattern used as a reference for
scaling, as mentioned in Chapter 3.1.3. (b) The direct beam through a hole in the
sample. (c) Amorphous capping layer diffraction pattern. (d) A region with too
large thickness for transmission. The black dashed box contains twins, later used
for TM precision evaluation.

Figure 4.1.2 shows the general case, scan 4, where the deviation from the ex-
pected misorientation is 2.15◦. The histogram and IPFs show three distinct pop-
ulations, two of which where considered for calculations. This is not the case for
all scans, as some scans had only two distinct populations present. Similar plots as
was made for scan 4 in Figure 4.1.2 is shown for the two extrema, i.e. scans 5 and
6, in Appendix B.1.

Table 4.1.1: Deviation from the expected misorientation angle (60◦) between Σ3
twins in the Ag sample.

Scan 1 2 3 4 5 6
Angle [◦] 2.79 4.29 3.50 2.15 11.06 0.97

4.1.3 Tilt Axis Identification

To identify the tilt axis in the JEOL JEM 2100F, the workflow outlined in Chapter
3.2 was performed. The result of the optimization indicated a tilt axis position in
the xy-plane, 30◦ counter-clockwise from the x-axis. A fitness score of 1.4 was the
minimum. As can be seen in Listing 3.2.1, the score is the mean of the bottom
third of misorientation angles, i.e. over 130 thousand angles.

To ensure the optimization resulted in the global minima, a sweep of the fitness
function over tilt angles was performed. The results are plotted in Figure 4.1.3(a),
and indicate a well-behaved fitness function. The six different combinations of
scans, and the pixel-wise misorientation angle between them, are plotted for the
optimal tilt axis position in Figure 4.1.3(c).



CHAPTER 4. RESULTS 51

x [111]

[101][001]

y [111]

[101][001]

z
o1
o2
neither

[111]

[101][001]

o1

o2

 -

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 °
0.0

0.1

0.2

0.3 o1 + o2
all

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 °

Scan 4, (o1, o2) = 57.85°

Figure 4.1.2: Twin misorientation of scan 4. The top shows IPFs of the orien-
tations, where the two populations are indicated by color. The left side shows the
masks of where the orientations corresponding to the two populations are. A his-
togram of the misorientation angle of all orientations with all other orientations,
both with and without the discarded orientations, is shown in the center right. The
misorientation angle is shown along the bottom. As the title indicates, the misori-
entation angle between the mean orientations of the two populations is 57.85◦.

Histograms for the around 390 thousand misorientation angles can be seen for
a tilt axis position of 30◦ and 100◦ in Figure 4.1.3(b). The threshold between kept
and discarded data is marked with blue and red dashed vertical lines. Both the
variance and the mean is clearly lower for the tilt axis position of 30◦ compared to
100◦.

With the tilt axis identified, as well as the sample being orientation mapped, the
full orientation relation between the sample holder and the crystals in the sample
is known. This is subsequently used in tiltlib to predict tilt angles for zone axis
alignment in the next section.

4.2 Zone Axis Alignment

The zone axis alignment functionality of tiltlib was tested in two ways: first, on
the Ag sample used for the tilt series, and next on the LMNO sample. Only the
latter was verified by physical testing in the TEM.
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Figure 4.1.3: Tilt axis identification on Ag. The tilt axis lies 29.5◦ from the x-axis,
as seen in (a). (a) The optimization landscape for all axis positions in the xy plane,
measured with an angle from the x-axis. (b) Histograms of the full misorientation
angle dataset, for two different tilt axis positions; 30◦ (the optimum) and 100◦. The
cutoff value of 1

3
is indicated with corresponding vertical dashed lines. (c) The six

misorientation angle sets between scans.

4.2.1 Ag Sample

With the position of the tilt axis determined, the zone axis alignment procedure
was tested. First, a virtual test was performed, where one of the scans in the tilt
series was aligned with the zone axis of the same grain in a different scan. The
expected output would then be the tilt angle of the other scan, and the initial scan
would align well with the target scan for all grains. The test is virtual in the sense
that both the initial and the target scans were made before attempting to align
either to a certain zone axis.

The results are shown in Figure 4.2.1, where the green rectangle was used both
for finding the mean zone axis target, and for optimization of tilt angle. After tilting
to the predicted 16.1◦, which is only 1.1◦ from the expected 15◦, the scans seem to
align well both qualitatively from looking at the colors, and from the mean zone
axes in the black rectangles.

4.2.2 LMNO Sample

Tilt axis identification using the tilt series of LMNO indicated an x-tilt axis rotated
0.6◦ from the x-axis, and a y-tilt axis −90◦ from the x-axis. These were used in the
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Initial, 5.0  tilt

(a)

Target, 15.0  tilt

(b)

Final, 16.1  tilt

(c)

Figure 4.2.1: Zone axis alignment performed on a cropped region of scan 4 (a),
using the green rectangle for optimization. The target was set to the mean zone
axis of the same region (green rectangle) in scan 6 (b). (c) scan 4 rotated to the
angle found by the zone axis optimization, which was 16.1◦. A selection of regions
and their mean zone axes are also annotated. All images are IPF-z.

Sample-object used for zone axis alignment. An overview of the orientation map,
and the three chosen areas, is shown in Figure 4.2.2. Tilt angles predicted with
tiltlib, and the manually corrected tilt angles, are tabulated in Table 4.2.1.

1000 nm

(a)

300 nm

(b)

300 nm

(c)

300 nm

(d)

Figure 4.2.2: Overview of the LMNO orientation map used for zone axis align-
ment, shown as z-IPFs. (a) Full orientation map, with regions of interest marked
and annotated. (b), (c), (d) Zoom-ins of the three regions. The lower regions of
(a) show some speckling in the crystals. The multi-colored strip along the border
is likely not crystalline. The scalebar in (a) is 1000 nm, the rest are 300 nm.
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Table 4.2.1: Predicted and found angles to align grains to zone axes. The actual
tilt angles were measured with two microscopes: the JEOL ARM200F and the JEOL
2100. Note the two different sets of angles predicted for area 2B, corresponding to
different initial tilts for optimization.

Area Target zone Description Tilt angles [x◦, y◦]

Area 1 [1 1 0] Predicted 17.0◦, −4.49◦

Actual, ARM 17◦, −7.1◦

Actual, 2100 16.4◦, −8.9◦

Area 2A [3 2 3] Predicted −10.6◦, 12.3◦

Actual, ARM −9.3◦, 12.0◦

Actual, 2100 −8.3◦, 12.9◦

Area 2B [0 1 3] Predicted 13.9◦, 1.00◦

Predicted −9.37◦, 12.9◦

Actual, ARM −7.8◦, 13.3◦

Actual, 2100 −6.6◦, 13.8◦

Area 3 [1 1 2] Predicted 3.76◦, −12.9◦

Actual, ARM 3.2◦, −13.8◦

Actual, 2100 1.4◦, −14.0◦

The crops which were used for predicting the tilt angles in each area are shown
in Figure 4.2.3, 4.2.4, 4.2.5, and 4.2.6, for areas 1, 2A, 2B, and 3, respectively.

IPF x IPF y IPF z

(a)

IPF x IPF y IPF z

(b)

Figure 4.2.3: LMNO orientation map, Area 1 IPFs. (a) before tilting to predicted
angles for zone [1 1 0]. (b) after tilting to the predicted angles.

Area 1 is a region with a twin, and the crop includes orientations from both
grains. Tilt angles to align both to [1 1 0] were successfully found, as indicated by
the homogeneous green color in the IPF-z in Figure 4.2.3(b).

Area 2 was aligned to [3 2 3] and [0 1 3], for 2A and 2B, respectively. As the two
grains were aligned to different zones, the optimization was performed separately
for each grain. The first attempt yielded different tilt angles for the two grains,
but different initial parameters for optimization gave more similar results. The two
different tilt angle sets found for 2B both align the crystal with the target zone axis,
as can be seen in Figure 4.2.5(b) and 4.2.5(c).

For area 3, the alignment with [1 1 2] was performed successfully, as indicated
by the homogeneous purple color in the IPF-z in Figure 4.2.6(b), corresponding
to [1 1 2] in the IPF colormap for m3̄m. Interestingly, the two other directions also
show homogeneity in the color, implying the twins are aligned in all three directions.
By extracting the mean orientation from each grain in area 3 after alignment to
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IPF x IPF y IPF z

(a)

IPF x IPF y IPF z

(b)

Figure 4.2.4: LMNO orientation map, Area 2A IPFs. (a) before tilting to pre-
dicted angles for zone [3 2 3]. (b) after tilting to the predicted angles.

[1 1 2], the misorientation angle between them was calculated to 59.67◦, even though
the IPFs show them as being identical.

The grains are fairly homogeneous, as can be seen by the even coloring in the
different IPF colormaps in Figures 4.2.3 - 4.2.6. Therefore, the SP IPFs are also
plotted, shown in Figure 4.2.7 for all areas. This makes nuances in color more easy
to differentiate, e.g. the vibrant red and blue of the IPF-y in Figure 4.2.3(b) seems
closely aligned to [1 0 0] and [1 1 1] by only looking at the color. Figure 4.2.7(a)
shows this alignment is a couple degrees off.

IPF x IPF y IPF z

(a)

IPF x IPF y IPF z

(b)

IPF x IPF y IPF z

(c)

Figure 4.2.5: LMNO orientation map, Area 2B IPFs. (a) before tilting to pre-
dicted angles for zone [0 1 3]. (b), (c) after tilting to the two sets of predicted angles.
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Figure 4.2.6: LMNO orientation map, Area 3 IPFs. (a) before tilting to predicted
angles for zone [1 1 2]. (b) after tilting to the predicted angles.
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Figure 4.2.7: SP IPF of the areas in the LMNO sample. (a) Area 1. (b) Area
2A. (c) Area 2B. (d) Area 3.

Figure 4.2.8 shows SAED diffraction patterns of area 1 from the JEOL 2100
TEM. In Figure 4.2.8(a), the Laue circle is clearly visible, as a ring of greater
intensity centered outside the image to the top right. This was used for the final
manual alignment, by tilting in such a way as to move the center of the Laue circle
to coincide with the direct beam. As is shown in Table 4.2.1, this difference is
around 2◦ to 5◦.

(a) (b)

Figure 4.2.8: SAED of area 1, for predicted tilt angles (a), and actual tilt angles
(b). Note the clear Laue circle in (a), centered near the top-right corner, easily
allowing the operator to correct the final alignment.
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4.3 Template Matching Pre-selection Algorithm
The new pre-selection algorithm was tested against the existing (old) algorithm on
four different datasets: a crop of scan 1 from the Ag sample, and simulated datasets
for copper, graphite and AuAgTe4. The results are shown in Figure 4.3.1, 4.3.2,
4.3.3 and 4.3.4, respectively. Each figure shows the runtime and correlation score
similarity, plotted as a function of the n_keep-parameter, the angular resolution of
the coarse template bank, and the angular resolution of the fine template bank. The
remaining similarity scores, i.e. the orientation similarity and the equality length,
can be found in Appendix B.2. The other scores show qualitatively the same trends
as the correlation score similarity.

The runtime of the dense algorithm is constant for sweeps of n_keep and coarse
resolution. The coarse resolution does not affect the old algorithm either, but
changes with n_keep. Correlation scores generally converge quickly for the old
algorithm, and both the variance and mean of the new algorithm stays at a higher
level throughout. The exception is AuAgTe4, as Figure 4.3.4(b) shows, where the
new algorithm seems to outperform the old in terms of correlation score. Regarding
runtime, the new algorithm only consistently outperforms the old for graphite, as
Figure 4.3.3(a) shows. However, the corresponding correlation similarity scores for
graphite are much worse for the new versus the old algorithm.

In total, each parameter sweep took between 30 minutes for m3̄m to around 18
hours for 2/m. With limited computational resources, finer step sizes and combined
parameter sweeps was down-prioritized in favor of testing more point groups.

An attempt was made to achieve a situation where the new algorithm com-
prehensively outperformed the old. A similar strategy to the tilt axis identification
and zone axis alignment was performed, where a score function was minimized using
Scipy[66]. This was performed on the experimental dataset of scan 1. The scoring
function, in this case, was a weighted mean of the three similarity metrics, as well
as the total runtime. Both the runtime, orientation similarity and correlation sim-
ilarity attain their optimal values at 0, so they were used as-is. The final similarity
score, the equality length, is optimal at a value of 1, so the absolute difference of
equality length with 1 was used. The weighting prioritized runtime, and the re-
maining scores were weighted roughly equally. Only a roughly equal weighting was
used, since the scores are not normalized. The tests on the experimental dataset
did not converge within 24 hours, and the attempt was abandoned.
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Figure 4.3.1: Performance evaluation of the new and old TM pre-selection algo-
rithms, tested on scan 1. (a) Mean runtime for 6 runs, with standard deviation,
plotted for the parameter sweeps. (b) The correlation score similarity, with stan-
dard deviation, for the parameter sweeps.
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Figure 4.3.2: Performance evaluation of the new and old TM pre-selection algo-
rithms, tested on simulated data from copper. (a) Mean runtime for 6 runs, with
standard deviation, plotted for the parameter sweeps. (b) The correlation score
similarity, with standard deviation, for the parameter sweeps.
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Figure 4.3.3: Performance evaluation of the new and old TM pre-selection algo-
rithms, tested on simulated data for graphite. (a) Mean runtime for 6 runs, with
standard deviation, plotted for the parameter sweeps. (b) The correlation score
similarity, with standard deviation, for the parameter sweeps.
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Figure 4.3.4: Performance evaluation of the new and old TM pre-selection algo-
rithms, tested on simulated data for AuAgTe4. (a) Mean runtime for 6 runs, with
standard deviation, plotted for the parameter sweeps. (b) The correlation score
similarity, with standard deviation, for the parameter sweeps.



60 CHAPTER 4. RESULTS



CHAPTER

FIVE

DISCUSSION

In this chapter, the methods and results are discussed. First, the structure of
tiltlib is discussed, before following the same structure as the results chapter.
Possible explanations for the observations are brought up, as well as ways to po-
tentially mitigate the issues.

5.1 tiltlib’s Design
The aim of the navigator was to extend the usability of orientation maps from TM
given a complete description of the TEM reference frames as outlined in Chapter
2.4.4. In broad terms, this entailed expressing the tilt axis rotations and crystal
orientations in the same reference frame. This is conceptually simple, but requires
careful considerations in implementation. When writing tiltlib, decisions were
made regarding the design and implementation of the code. These will be discussed
in this section.

5.1.1 Project Structure

As discussed in Chapter 3.3.1, the code was written as a standalone Python mod-
ule. This makes the code more portable, and makes the lead time of new features
shorter than being a part of a bigger framework, e.g. Pyxem. Instead of taking
weeks or months to get a new feature out, typical for new versions of Pyxem, a new
version could be released with new features whenever it was finished. Such a devel-
opment cycle puts increased requirements on automatic testing, as extensive user
testing for quality assurance takes time. This is useful and practical for established
software, where most or many features are already available and thoroughly tested,
but impractical for initial development.

The project being a separate module rather than a part of e.g. Pyxem was also
chosen due to the lack of an obvious place where it fits in. The Pyxem module
is more centered on analysis of data, rather than data acquisition and instrument
control. Diffsims and Kikuchipy are focused elsewhere as well, namely diffraction
simulation and EBSD analysis. tiltlib might fit as a part of Orix, which is
focused on plotting and crystallography, especially since it is the only dependency
of tiltlib from the Pyxem suite. However, the developed tool is very focused on
practical S(P)ED rather than general crystallography, which is the focus of Orix,
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which is in turn heavily inspired by MTEX. As such, even though tiltlib could fit
as a submodule of Orix, the decision was made to keep it as an independent project.
The ownership of the repository on GitHub could instead be transferred to Pyxem,
incorporating it into the Pyxem suite. This would depend on if the quality of the
project is good enough, and if it is deemed useful and general enough for a wider
audience. If the project is not transferred to Pyxem, it can be transferred to the
TEM Gemini Centre at NTNU, which was the initial scope of the userbase. The
project will remain open-source, and hopefully have users in a broader community.

tiltlib is an extension of the work by Mathisen [49], which uses Pyxem ori-
entation maps and grains identified by MTEX[31] to predict tilt angles for zone
axis alignment. The extensions include e.g. support for spatially distinct orienta-
tions in an orientation map rather than MTEX grains, plotting functionality, and
an improved tilt axis calibration method. He discussed whether to add his code
to Orix in an issue on GitHub1, but no conclusion was reached and the discussion
went stale. The Orix developers seemed positive to an inclusion of a tutorial for
zone axis alignment based on Mathisen’s work, indicating an inclusion of tiltlib
in Orix or the Pyxem suite might be accepted as well.

The folder structure is quite standard, used for several Python projects, and is
used in the official tutorial for creating Python modules[74]. The Pyxem suite is
set up a little differently, where the tests-folder is a subfolder of the sourcecode-
folder, and the contents of the src-folder is moved up one level. Recently, it was
discussed whether Diffsims should move the tests out of the sourcecode folder, which
concluded by keeping them, since this allows users to run the tests themselves2.
The reason for the tests being in a completely separate folder in tiltlib, is to
unambiguously separate them from the module code itself. The tests are only
meant to test the code, and not meant as a part of the distribution. Therefore, the
decision was made to move them out into their own folder in the project directory.

The decision to have a src-folder, instead of simply moving its contents up one
layer and deleting the (now empty) src, was less considered. A project structure
with src-folder(s) is quite common in other programming languages, such as C and
C++, and is familiar to many programmers. Regardless, changing the structure to
align more with the Pyxem packages is simply done, and does not affect the end
user of tiltlib.

5.1.2 Non-code Parts of the Project

Effort was put into setting up tools which would ease development work. These
are mainly GitHub Actions, which were set up to automatically run all the tests
on multiple versions of Python every time new code was added or edited. Another
action was to ease deployment of new versions of the code, where the package was
built and published to PyPI whenever a new release was made in GitHub. PyPI
(Python Package Index) is a Python package repository, and uploading a package
there facilitates download/installation with pip. Similar actions can be set up for
automatically building and publishing new versions of documentation, if such were
to be written. These automatic actions were very helpful during development, and
will likely continue to be helpful if more features are added later. The automatic

1https://github.com/pyxem/orix/issues/452
2https://github.com/pyxem/diffsims/issues/212

https://github.com/pyxem/orix/issues/452
https://github.com/pyxem/diffsims/issues/212
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testing is especially useful, as merging code into the main branch is automatically
blocked if the tests do not pass.

The examples-folder contain Jupyter notebooks which serve as tutorials and,
inadvertently, integration tests. These currently show how to identify the tilt axis
position from a tilt series, and how to calculate the tilt angles necessary to align
the sample to a given zone axis. Both of these are quite specific and complex
features. The project can benefit from more tutorials with a simpler scope, showing
how to initialize Axis and Sample instances, and showing the different plotting
functionality available. Additionally, documentation of the API should be easily
accessible to users and developers.

These can both be achieved by using e.g. Sphinx[75] to generate a website,
similar to what is done for all modules in the Pyxem suite. This website can
show installation instructions, the discussed examples, simpler tutorials, and an
API reference. As most functions have docstrings, and all functions have type
annotations, an auto-generated API reference is likely quite presentable and useful
without much work. A home page for the project could also attract more attention
to it, both for users and developers. The work required for creating such a website
is low, as Sphinx does most of it automatically, and as all of Pyxem use Sphinx to
generate their websites. Additionally, as discussed, GitHub Actions can be set up
to automatically generate and publish new versions of the documentation, lessening
the workload further.

As mentioned in Table 3.6.1, the version of tiltlib used in this thesis is
0.0.5. When finalizing the thesis, version 0.1 was released, which implemented
a documentation website as outlined in this section. The website is available on
https://viljarjf.github.io/tiltlib.

5.1.3 The Classes

The Axis class is a data container, keeping track of the direction of rotation, the
current angle of rotation, and the limits of said angle. For some usecases, setting the
limits to lower values than what the sample holder is capable of can be beneficial,
e.g. to limit the use of a secondary tilt axis, or to only allow tilting towards a
secondary detector in the column. Excluding this, what is relevant to discuss is the
unit of measurement for the angles. Upon initialization, the user may specify their
angles either in degrees or radians. At creation, the constructor will convert all
these to radians, as all internal calculations use radians by default. As such, when
accessing the member variables, one will get radians, regardless of whether the
object was created with degrees or radians. This might lead to downstream bugs, if
the programmer assumes their angles and units were kept as they were initialized.
A workaround exists, as the degrees member variable, which describes whether
the angles are measured in degrees (True) or radians (False), is set correctly after
initialization. A user may access this variable, and act accordingly.

The SampleHolder class is relatively straightforward, and the scope of its fea-
tures is currently limited to only handling the rotation object transforming from
the detector reference frame to the sample reference frame. The reason for keeping
this functionality in its own class, as opposed to having it in the Sample-class, is the
possibility for creating other subclasses. The physical behavior of the sample holder
is the same if using S(P)ED or e.g. rotation electron diffraction (RED), but the

https://viljarjf.github.io/tiltlib
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format of the data is very different. As such, by keeping the rotation logic separate,
more features can more easily be added at a later stage.

A useful feature which is currently not implemented in the SampleHolder is to
account for the shift in position which comes with a rotation. The tilt axes might
not be perfectly aligned with the studied region of the sample, requiring the sample
to be shifted around to find the same scan region after tilting. In practice, this
realignment might take up a considerable part of the valuable time at the micro-
scope with an inaccurate calibration of the eucentric height, but the mathematics
behind the shifting is simple. The difficulty of predicting the sample movement
after tilting lies not in the mathematics, but in the sample holder geometry. Tilt
axis determination can be used to determine the direction of a tilt axis, but the
technique described in this thesis does not determine the position of the tilt axis
relative to the sample. As shown in Table 3.1.1, the sample position in the sample
holder (X,Y,Z) was unchanged between scans in the tilt series. Still, the scans are
quite well aligned, indicating that the eucentric height intersects or is close to the
sample. However, this might not be the case in general, and the different tilt/ro-
tation axes are likely to lie at different positions making simultaneous calibration
difficult.

For orientations, the position of the tilt axes do not matter, only the direction,
but the tilt axis positions have a large impact on where the sample is at a given scan
coordinate. If the positions of the axes were known, then the physical displacement
of the sample could easily be predicted, saving time at the TEM. This would simply
entail calculating the distance of a point on the sample to the tilt axis, i.e. the
radius of rotation, and multiplying with the change in tilt angle, to get the arc
length. Projecting this into the scan frame should resolve the shifting from any
eucentric height, and for multiple tilt axes at different heights.

To achieve this, the position of the tilt axes must be known. The necessary
accuracy of the position has not been investigated, but it could be in the µm - nm
range as this is the typical length scales of a scan. However, the relative change in
coordinates between pixels can be calculated without knowing the position of the
tilt axes. The shifting will need to be accounted for manually at the microscope,
but accounting for relative squeezing/stretching is as simple as multiplying with the
Rotation-object calculated by the SampleHolder. The relative squeezing/stretch-
ing is identical when projected onto the scan frame, regardless of how far from the
tilt axis the scanned region lies, making it possible to implement in tiltlib.

The Sample class is responsible for handling the change in orientation from a
rotated sample holder. The scope of other features is limited to mostly plotting.
A lacking feature is, as discussed, the physical movement of the orientations. The
current implementation only accounts for the change in orientation, not in posi-
tion, meaning the orientations are changed in the positions they started in. This
might be confusing to users of tiltlib, and can be mitigated by expanding the
SampleHolder-class with proper scan coordinate handling as discussed.

Sample is a specialized class for handling the change of a CrystalMap from
Orix. To make the user experience more streamlined, the Orientation from the
CrystalMap is accessed using the private _rotation-member. This is due to the
way the crystallographic data is stored in the CrystalMap, where all arrays are
flattened. Some bugs were encountered during development, where CrystalMaps
sometimes had transposed the data arrays before flattening them. When reshaping
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the orientations back into a 2D array, the data was the transpose of the expected.
When working with square arrays, this might not be noticed, as the relative posi-
tions of orientations with their neighbors do not change. However, for non-square
arrays, the orientations were unrecognizably ordered. No satisfying explanation was
found when investigation this issue, other than recognizing the transpose.

Python does not enforce private/public variables. A popular convention is to
prepend an underscore before private members of a class, but there is nothing stop-
ping anyone from accessing these. As such, a user might break some functionality
of the classes by accessing and modifying the private members of the classes. The
_original_rotations of Sample is especially vulnerable, as it is used every time
the tilt angles change. The orientations of the Sample might be implemented in
another way to circumvent this issue. This was down-prioritized during develop-
ment, as the implementation works, and accessing private members is discouraged
for users. In version 0.1, a newer version of tiltlib not used in this thesis (0.0.5
was used), the implementation is changed to no longer rely on private members of
CrystalMap.

5.1.4 find_tilt_angles

With the given implementation, the accuracy of zone axis alignment can be esti-
mated. TM is precise to around 1◦, which when comparing with other TM results
to find the tilt axis would compound to an around 2◦ precision. However, as this
is averaged over hundreds of thousands of orientations, the tilt axis identification
should provide little decrease in precision. Additionally, the effect of an imprecisely
determined tilt axis position is more noticeable at high tilts and less noticeable at
low tilts. The remaining sources of imprecision is then the TM results used for
prediction, which as discussed have a precision of 1◦. Re-inserting the sample into
a sample holder might introduce misorientation as well; a precision of e.g. 3◦ can
be expected from visual inspection and manual alignment. The goniometer might
introduce some imprecision, especially if they are stepping-motor based rather than
a closed-loop control system with an actual reading of the tilt angle. The gears in
the goniometer might be more worn at low tilts, possibly improving the precision
at high tilt angles. Cautaerts et al. [32] observes the opposite: a worse precision at
large tilt angles. Finally, as the grain orientation is not necessarily homogeneous,
using a crop of the grain might introduce more variance. Commonly, intra-grain
orientation variance in TM is around 0◦ to 2◦. In total, a precision of around 5◦

is expected, but by careful sample alignment and good TM-results, one can expect
around 1◦. This should be close enough to the target to allow the operator to ob-
serve the Laue circle, which can be used for final alignment. ALPHABETA suggests
their predictions are accurate to 1◦ to 2◦, but the uncertainty of orientations seems
to be ±0.25◦, much lower than that of TM[32].

As can be seen in Listing 3.3.1, the general algorithm for find_tilt_angles is
similar to the one used to identify the tilt axis position. A score function, based on
a set of angles, is optimized to find a minimum. The biggest difference lies in this
set of angles, which for find_tilt_angles is the angle between the target zone
axis and the current zone axis of the sample. Another difference is what is done
to reduce this set of angles to a fitness score, in this case taking the mean of all
the misorientation angles, whereas the tilt axis identification algorithm only used a
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third of the misorientation angles.
By using all angles in the optimization, the user is required to crop their scan

to a single grain for the result to have any reasonable accuracy in alignment. Oth-
erwise, the optimization will only find the angle which fits best for all grains in
the scan simultaneously. With undesired pixels or grains contributing to the score,
the predicted angles are unlikely to actually align closely with the desired zone
axis. However, in certain cases, multiple grains can simultaneously be aligned to
the same zone axis. This is the case for FCC Σ3 twins along ⟨1 1 1⟩, where the
twin grains share [1 1 1] and [1 1 2], which is shown in Figure 4.2.3 and 4.2.6, re-
spectively. The alignment might also be possible by chance for grains without a
pre-determined orientation relation. Cropping the scan in such a way as to include
both grains will make tiltlib attempt to align both simultaneously. This can be
very useful for studying twins, as the likelihood of such an alignment being present
in a scan by chance is low, and manually aligning both simultaneously can be very
difficult. Alignment like this facilitates studying effects related to grain boundaries,
e.g. diffusion, as is explored in [63].

The current implementation of the algorithm first finds the angle between each
vector in the z-projection (the optical axis) of the orientations in the sample and the
desired vector, before taking the mean of these angles. Alternatively, one could use
the mean orientation of the sample, which would circumvent the need for a separate
function for finding angles and a fitness score. The separation was initially used to
allow for a percentile selection of angles, similar to the tilt axis identification, but
this was later changed to use 100% of the data, deprecating the separation of the
functions.

Calculating a mean orientation comes with its own challenges, as discussed in
Chapter 2.4.2. The algorithm by Markley et al. [51] is the one used in Orix, so using
the mean orientation should provide little numerical difficulties. This is already
what is used for the mean_zone_axis member function of the Sample class, and
e.g. using the output of this function as a basis for the fitness function instead
should provide little issue.

If the code is refactored to use the mean orientation, instead of the mean angle,
the possibility of a selection similar to the one used in the tilt axis fitness function
is lost. Initially, this was used in find_tilt_angles too, but it was removed
during development. By using all pixels for optimization, the result is more likely
to generalize to the whole scan, provided the crop is monocrystalline. If not, e.g.
if the grain is difficult to crop with either a circle or a rectangle, then the results
might be better if the user was allowed to choose a fraction of the pixels to discard.
Implementing such a choice does not entail much work, and would expand the
usability of the library. Additionally, one could then add the option of using the
mean orientation instead of the mean angle. tiltlib version 0.1, a newer version
developed after finalizing the thesis, supports this option for zone axis alignment.

5.1.5 Code Testing

The code of tiltlib was tested mainly in the form of unit tests. These can be
found in the tests-folder of the project. Unit tests entail testing some functionality
on its own, rather than the interaction between different parts of the code. For
tiltlib, this mostly meant testing whether the rotations were handled correctly,
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as discussed in Chapter 3.3.3. Although all the tests that were constructed gave the
correct output, they were mostly simple 90◦ rotations around the Cartesian axes.
This made the tests easy to construct, seeing as the outputs were straightforward
to calculate separately. However, the simplicity of the tests might not capture
all dynamics of the rotations. As an example, if rotating twice around the same
axis, then it does not matter if the second rotation is intrinsic or extrinsic. The
tests needs to capture all possible cases that might be encountered when using the
program, and ensuring this is indeed the case is a difficult task.

One way this issue was mitigated was by keeping the scope of each test small,
and keeping the scope of functionality for each part of the code small. This makes
it easier to construct tests which span the expected input space of the functions.
As an example of keeping the scope of tests small, separate tests were written for
checking if an object could be initialized at all.

The unit tests were written alongside the development of tiltlib, sometimes
being modified to fit the new expected output. A better method would be to plan
out the API of the module, and write all the tests before starting to develop the
actual module. While this development cycle might ensure less bugs are introduced
during development, it is difficult to implement in practice. It would ensure a
clear plan was made, and that the functionality was carefully considered. This
is common practice in enterprise-level software development, indicating it is good
practice. The biggest issue is time, as the planning and considerations of necessary
features is rather time-consuming. Furthermore, when planning a project to a level
of detail precise enough as to be able to write encompassing tests, then one might as
well simply write the functions to test simultaneously. Additionally, planning out
the entire API can be difficult, as the requirements for the project might be poorly
understood in the beginning. By simply starting to write some code, one can get a
better understanding of what a user might want, how to structure the code, what
should be available for the user and what should be hidden ect. This more dynamic
approach leads to a quickly developed project, but it can be more prone to bugs as
the tests are written alongside the code that is being tested.

The greatest weakness of the testing suite is the lack of automatic integration
tests. As opposed to unit tests, integration tests are tests which test how differ-
ent parts of the codebase interact. For tiltlib, this was done using the example
notebooks, as mentioned in Chapter 3.3.3. These were written after the develop-
ment was assumed to be finished, but multiple bugs were found thanks to these
notebooks, showcasing the importance of proper testing. The notebooks can be run
automatically, similarly to the unit tests, but verification becomes more difficult
as they are currently checked manually. As discussed, this can be addressed by
running the notebooks and displaying them as part of online documentation.

5.2 Tilt Axis Identification

The tilt axis position was determined to lie 30◦ from the x-axis in the xy-plane of
the sample, as can be seen in Figure 4.1.3(a). From a manufacturing standpoint,
this makes sense, as 30◦ is a round and reasonable angle to use when designing the
instrument.

The method developed and used in this thesis differs significantly from estab-
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lished methods. Often, other papers only concerns themselves with tilt axis iden-
tification in the detector frame. This is the case for e.g. ALPHABETA[32] and
PETS2.0[64]. Tomography-focused microscopists are often interested in the tilt
axis in the sample frame, and employ a more similar method to what was done in
this thesis, namely a tilt series[76]. In this case, the implementation is image-based,
rather than diffraction-based as used in this thesis. Brown et al. [77] use SED for
to identify and compensate for tilting, but do not identify the position as they use
annular detectors. For the purpose of orientation mapping, especially with SED
data, Mathisen [49] suggests a method using a SPED tilt series, where grains orien-
tations are compared for multiple tilts. Additionally, the preliminary work for this
thesis[45] attempted to perform tilt axis identification in a similar way. However,
both of these rely on grain segmentation, using MTEX[31], which complicates the
workflow. A standalone method using a SPED tilt series was therefore developed.
The methodology used, its downsides and potential improvements, are discussed in
this section.

5.2.1 Pixel Coordinate Misalignment

The position of the tilt axis was determined through pixel-wise comparison between
orientations of the sample. As such, there are multiple factors which can contribute
to misidentification.

The largest contribution to misidentification is the misalignment between pixel
coordinates and true sample coordinates for different scans. The fact that tilting
the sample causes a displacement, making a given pixel correspond to a different
position on the sample, is not corrected for in the fitness function. The six plots
of the pixel-wise misorientation angle at the optimal fitness function value, shown
in Figure 4.1.3(c), clearly show how the grain boundaries do not perfectly coincide
between scans. This adds a large contribution of non-representative misorientation
angles to be part of the fitness function, where pixels from one grain near the bound-
ary are compared with the neighboring grain in a different scan. The contribution
becomes larger for larger tilt angles, as the physical displacement of the sample is
greater. Thus, the comparison between scan 3 and 6 with 15◦ tilt angle difference,
has a high amount of incorrect comparisons. This could be somewhat detrimental
to the accuracy of the optimization, since a larger difference in tilt angle would
decrease the effect imprecise orientation mapping has.

To combat this, one could crop the data of each scan before comparing them.
The cropping could be aligned in such a way as to minimize the overlap of the grains
along boundaries. Simultaneously, one could choose a region where the sample is
crystalline, avoiding e.g. holes and amorphous regions. The data was not cropped
in this project, as the process is rather time-consuming.

Instead of cropping the data, one could use the known tilt angle to predict how
the sample coordinates of each pixel transform under rotation. Hyperspy does seem
to support such an action, as the navigation and signal axes coordinates can be
updated manually. The transformation to apply is the same as the one applied to
the orientations, which suggests this being possible to implement. Additionally, if
the coordinate transform feature is implemented in tiltlib, no additional work
is required to use the same framework for zone axis alignment. Both of these
considerations might improve the accuracy of the comparisons, but as the results
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without these measures work well, this was not prioritized.
Apart from coordinate misalignment in real-space, the reciprocal space might be

misaligned. Two factors can contribute to this; centering and scaling. Additional
factors might be present with different detectors, e.g. shearing and stretching with
camera imaging of a fluorescent screen, but the DED used in this thesis does not
suffer from these. Centering was performed with subpixel-precise estimation of the
CoM of the central spot, which should be precise enough for accurate TM. The
scaling, however, might be incorrect, as it was done with the assumption of an
alignment on [1 0 1]. TM revealed the alignment of the crystal to [1 0 1] was off by
a few degrees, although it was certainly close enough to index the spots manually.
However, the deviation of a few degrees is unlikely to significantly move the positions
of the reflections, but rather change their intensity with a differing excitation error.
Additionally, by manual inspection of the TM results with overlaid simulated spots,
the calibration seems correct, as is shown in Figure 5.2.1.
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Figure 5.2.1: The near-[1 0 1] zone axis pattern used for reciprocal calibration of
the Ag sample in Chapter 3.1.3, with the TM results overlaid as red circles. The
spots align well, both near and far from the central spot, indicating a fitting scale
calibration.

5.2.2 Misindexation

Another factor which might contribute to misidentification of the tilt axis is the
effect known as ‘speckling’. This is a misindexation caused by two orientations, or
more accurately, two regions of orientation space, having similar-looking diffraction
patterns. If the orientations are sufficiently far apart, one would see them in a
IPF as pixel-wise speckling, where two different colors are present in a single grain.
Speckling is present to some extent in all four scans in the Ag tilt series, and a
specific example is shown in Figure 5.2.2. The misorientation angle between the
two orientations shown is around 15◦, and a significant fraction of the grain is
misindexed in this way.

Aune [63] attempts to mitigate this effect by means of a tilt series. Tilting the
sample can break the similarity between the regions, which can be used to determine
which of the two speckled colors are more likely to be the true orientation.
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Figure 5.2.2: Two orientations in the same grain in scan 4, which were identified
as two orientations which are around 15◦ from each other. (a) Locations of the
two points in the grain. (b) Location in the symmetry reduced zone of the two
orientations, with a misorientation angle of about 15◦. (c), (d) Diffraction spots of
the labeled points A and B respectively, with the simulated diffraction spots marked
as red crosses. Figure from [45].

A third factor to consider which might cause an incorrectly identified tilt axis,
is a consistent misindexation of a grain. This would essentially be the same as
speckling, but instead of just affecting some pixels, entire grains would be identified
as the incorrect orientation. Although unlikely, the impact of such an occurrence
would be much larger than simple speckling.

5.2.3 Data Selection

All three of the factors discussed so far can be addressed by considering only some,
and not all, pixels. One must then decide which pixels to choose. Manually correct-
ing for speckling and/or consistent misidentification by removing those pixels is an
option. One could also choose a cutoff point, discarding any misorientation angles
above a certain value. By inspecting Figure 4.1.3(b), a cutoff of 20◦ seems a good
choice. However, as only two tilt axis positions are shown, it is unlikely to be a
good choice for all tilt axis positions. If, for example, some tilt axis position existed
where all grains have a 30◦ misorientation angle, then a simple cutoff at 20◦ would
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discard so much of the data that the fitness score no longer holds much weight. The
aim of the fitness function is to calculate how effective a certain virtual tilt axis
position aligns with the real one, so by discarding most of the data the fitness score
loses meaning.

Another option for a discarding strategy, the one used for the fitness function,
is to choose a fraction of the pixels with the lowest misorientation angle. The
6 × 256 × 256 misorientation angles were sorted in ascending order, and the top
2
3

of those were discarded, leaving the bottom 1
3

for further processing. Note that
the actual implementation is algorithmically more efficient, as it uses the introselect
algorithm3 instead of actually sorting each element. The selection is unsupervised,
meaning it has no regard for the physical position of the pixels or which scans were
compared in a given misorientation angle.

As the grains were relatively large, the overlap between grains along the bound-
aries still left a good amount of pixels which were compared to the correct corre-
sponding grain. This can be seen in Figure 4.1.3(c), where grain boundaries are
only 5-10 pixels wide, meaning their misorientation angle of about 60◦ does not
constitute a large fraction of the data. The ratio 1

3
to keep was chosen to keep a

safe margin, allowing some correctly compared pixels to be discarded rather than
opening for the possibility of including incorrect comparisons. The kept/discarded
misorientation angles are shown for two different tilt axis positions, 30◦ and 100◦,
in Figure 4.1.3(b). By inspection, it seems a larger fraction of misorientation angles
could safely be included in the optimization without issues with e.g. convergence.
However, the aim of ensuring a safe margin seems to have been fulfilled.

By varying the fraction to keep/ discard, the fitness score changes accordingly.
Keeping more data results in a larger fitness score, as the score takes the mean value
of the kept angles. Similarly, keeping a smaller fraction results in a lower fitness
score.

By lowering the fraction of kept angles enough, one will eventually start over-
fitting to the data, and one might unknowingly only consider a single grain, or a
single scan combination. This might result in a tilt axis position which does not
generalize well to the whole dataset. Conversely, considering a too large fraction
might introduce more variance, which might lower the precision of the answer.
Furthermore, for the scans in this thesis, multiple regions of the scans are not
crystalline (holes, the amorphous capping layer, and the thick region), but still have
an assigned orientation from TM. By considering a larger fraction, these regions
are eventually included in consideration. This is unwanted, as the crystallographic
orientation assigned to these regions do not correspond to a physical orientation.
Holes and thick regions are likely to be assigned an orientation at random, as the
data for these regions are essentially random. For amorphous materials, however,
the diffraction pattern is radially symmetric. Therefore, due to the implementation
of TM in Pyxem, the zone axis in x- and y scan directions are spatially uncorrelated.
The z-zone axis, however, will correspond to the diffraction pattern which is the
densest in reciprocal space, in terms of reflections. For cubic crystals, this is usually
the ⟨1 1 0⟩-direction, as can be seen in Figure 5.2.3, but other crystals may have other
directions of maximal diffraction spot density. Regardless of which direction is the
one being picked, the assigned orientations of amorphous diffraction patterns are
not indicative of the actual orientation of the sample, and as such have a detrimental

3https://numpy.org/doc/stable/reference/generated/numpy.partition.html

https://numpy.org/doc/stable/reference/generated/numpy.partition.html
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impact on the reliability and accuracy of the tilt axis position if those orientations
are included in the fitness score.

Figure 5.2.3: The NCC values of templates with a uniform diffraction pattern,
giving a measure of the density of diffraction spots in reciprocal space. The highest
correlation, and therefore density, is at [1 1 0]. Figure from [45].

5.2.4 Parameter Space Restrictions

The plot in Figure 4.1.3(a), showing the tilt axis fitness score as a function of tilt
axis position, is one dimensional, as the tilt axis was assumed to be in the xy-
plane. This assumption removes a degree of freedom, and is reasonable given the
knowledge of the physical layout of the TEM. However, it might not be entirely
accurate, as a small deviation from the plane might be present. Optimizing in
the complete direction space, instead of the planar subspace chosen for the fitness
function, might increase accuracy. The computation time would increase, but as
the tilt axis position would only need to be determined once per microscope, this
consideration bears little weight.

Note that the minimum of the fitness function in Figure 4.1.3(a) is not 0, but
1.4. The misorientation angle is never negative, so taking the mean of these is very
unlikely to ever reach 0, due to e.g. the 1◦ expected precision of TM.

One issue to consider is the parameter space increasing in size, which might lead
to local minima which are not the global minimum. Clearly, the single-parameter
optimization shown in Figure 4.1.3(a) is very well-behaved, appearing to have only
a single minimum. Adding another parameter to the optimization could introduce
local minima which ‘trap’ the optimization algorithm.

Symmetry might also cause local minima, or even degenerate global minima, if
the tilt axis is aligned with an axis of symmetry in the crystal. This is observed
for area 2B for zone axis alignment, which uses a similar optimization function.
Along one of the ⟨1 0 0⟩-directions in a cubic crystal, for example, one would get
four minima separated by 90◦. This effect is easily prevented by including multiple
grains in different orientations. The total fitness function would then act as a
superposition of the fitness functions considering each grain separately, and the
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global minimum would only occur at the minimum valid for all grains. This can be
seen in Figure 4.1.3(c), where all grains (excluding non-crystalline regions, speckling,
and overlapping grains) have a low misorientation angle. Other tilt axis positions
might have some grains with low misorientation angles, e.g. Figure 4.1.3(b) shows
a peak at around 5◦ for the tilt axis position of 100◦, but only where all grains
simultaneously have a low misorientation angle can the true tilt axis lie.

A parameter restriction enforced by the data collection strategy is the limited
tilt range in the scans. Only 15◦ is spanned by any of the three tilt series used
in this thesis, and the Gy-tilt series of LMNO was only 5◦. As a larger tilt span
would cause a larger difference in orientation, this could potentially give a better
precision. The eventual limitation, given that the increased distortion in sample
coordinates is handled, will be the range of tilt available with the given sample
holders. In this thesis, the limits were ±30◦, but specialized tomography holders
can go much higher. More scans will also increase the precision, as the increase
in data will give a better estimate. The current implementation uses all possible
combinations of scans, making the misorientation angle count scale with the square
of the number of scans. This is a rapidly increasing scaling, which can quickly
impose a computation resource limitation on the optimization. Other strategies
can easily be implemented by modifying the function as listed in Listing 3.2.1.

5.2.5 Grain Segmentation and Statistics

By introducing grain segmentation, instead of considering pixel-by-pixel orienta-
tions, one could circumvent a lot of the points discussed so far. Considering only
the mean orientation of a grain, and ignoring the physical position as well as speck-
ling, would remove the need to align and filter the misorientations. This comes
at a cost of decreased data size, as e.g. 20 grains in each scan would give a total
dataset of 240 angles, whereas the pixel-approach had a total dataset of almost 400
thousand angles, where over 120 thousand of them were used for the Ag sample.

Grain segmentation is a complicated problem, where several aspects, criteria
and models have to decided on, and there is no dedicated functionality for this in
Pyxem. Exporting the TM results to e.g. MTEX[31] is an option, as the package
has dedicated grain segmentation algorithms. This was done in the preliminary
work[45], but one then needs to consider how exporting and importing the data
between packages works, and ensuring the different conventions are accounted for.
Additionally, the inclusion of MTEX and Matlab in the pipeline makes it much
more complicated and less streamlined.

Packages exist for grain segmentation in Python, e.g. DefDap[78], so it should
be possible to have a grain-based workflow while keeping to the Python framework.
Staying within one framework is desired, both for the user and for the programmer,
as having to switch programs or write interfaces between systems is tedious.

Assuming the data alignment between scans is mitigated, and ignoring speckling
and misindexation, then the pixel-by-pixel comparisons should be very similar to
a grain-based comparison. The difference would lie in the variance within grains,
which is ignored when using only the mean orientation of grains. If variance is the
only difference between using grains and pixels, then one could argue that using
SED should be sufficient to determine the tilt axis. Inspecting Figure 5.2.4, it seems
using SPED instead of SED decreases intra-grain orientation variance, but even
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(a) IPF-z, SPED (b) IPF-z, SED

Figure 5.2.4: IPFs-z of orientation maps for a SPED (scan 1) and a SED (scan 2).
The color map can be found in Figure 2.1.4(c). (a) SPED IPF-z. (b) SED IPF-z.

with increased variance the fitness function should still attain its minimum at the
correct tilt axis position. As such, one could collect data at a much faster rate, and
avoid precession alignment challenges, while still determining the tilt axis position
with sufficient precision. If tilt axis identification is possible without precession,
it also opens up for using this method for tilt axis identification in microscopes
without a precession system, making tiltlib useful for these as well. Bergh et al.
[43] compares the effects of precession on orientation maps, and it seems a shorter
acquisition time can be detrimental, but orientation maps created from SED data
with longer acquisition times seem to be of high enough quality to determine the
tilt axis. This possibility was not explored in this thesis, as SED was only used for
a single scan rather than a tilt series.

5.3 Zone Axis Alignment

The predicted tilt angles for alignment to a given zone axis generally seems to
align well with the actual tilt angles. This is shown in e.g. Table 4.2.1, where the
predicted and actual angles are up to around 4◦ apart. Both for the Ag sample and
the LMNO sample, tiltlib show alignments within a few degrees, which is within
the expected range of 5◦ outlined in Chapter 5.1.4.

Both tests were performed on cubic materials, with the point group m3̄m. This
might hide some bugs in the code, as cubic crystals have an orthogonal basis.
tiltlib could have defined some operation where an orthogonal basis is assumed,
which would yield inaccurate results for e.g. hexagonal and monoclinic crystals.
Care was taken during development to outsource as much crystallography as pos-
sible to Orix, which is extensively tested to ensure correct handling of all crystals.
Undiscovered errors might still be present in tiltlib, and further testing is neces-
sary to ensure correctness for other crystal systems.

5.3.1 Ag Sample

Qualitatively, Figure 4.2.1(b) and 4.2.1(c) show a large degree of similarity, although
simple visual color inspection is not very precise. As Figure 4.2.1(c) is virtually
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Figure 5.3.1: 3D axis-angle representation[31] of the two populations used in
twin analysis in Chapter 4.1.2. (a) The twins of scan 5 of the Ag sample, showing
how o2 consists of two distinct populations. Therefore, the mean of o2 is not
representative of the population as a whole. The single orientation of o2 in the
upper ‘hemisphere’ is considered an outlier. (b) Scan 6, shown as an example of
homogeneous populations found in the remaining scans

tilted to 16.1◦, only 1.6◦ from Figure 4.2.1(b), their visual similarity indicates a
good fit of the tilt axis. Furthermore, as the tilt angle was calculated by aligning
the grain marked with a green rectangle in Figure 4.2.1(a) to the mean zone axis of
the same grain in Figure 4.2.1(b), the apparent similarity indicates a working zone
axis alignment in tiltlib. The remaining indicated zone axes also show a good
alignment, with angles between the mean zone axes between 0.9◦ and 1.7◦.

As Table 4.1.1 shows, the deviation from the known expected misorientation
angle of the Σ3 twin domains is generally around 2◦ to 4◦. This deviation is a
little higher than expected, as comparisons with two populations of 1◦ precision
should have around 2◦ precision. Generally, the results of zone axis alignment with
these orientation maps should be within 4◦, if the twin misorientation deviation is
representative of the true deviation.

A clear outlier is present in Table 4.1.1: scan 5. This is due to the population
selection by thresholding, as two sub-populations are present within one. This is
shown in Figure 5.3.1(a), where o2 is shown to consist of two separate populations
when viewed in the axis-angle representation. The mean orientation of o2 is not
representative of the population as a whole, and the angle between the means of
o1 and o2 is therefore not indicative of the precision of TM for this scan. For
comparison, Figure 5.3.1(b) shows the axis-angle plot of the two twin populations
in scan 6, the twins with the lowest deviation from 60◦. This distribution, where
neither population have a bimodal distribution, is the case for all scans except scan
5.

One limitation of attempting zone axis alignment on the Ag sample is the fact
that all scans were taken before the orientation maps were made. Therefore, the
data is already used for tilt axis identification, and the results are technically part
of the data. However, the Ag sample is prone to oxidization once removed from the
vacuum-pumped TEM column, which would affect the crystals. The LMNO sample
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does not suffer from this drawback, and the structure was stable for the weeks
between the SPED session for orientation mapping and the verification session.
If orientation maps were produced without removing the sample, and zone axis
alignment predictions with tiltlib was made on the fly, then an increased precision
is expected due to no longer having a sample-sampleholder misalignment possibility.

The results for the Ag sample show how tiltlib can accurately predict tilt
angles, with a precision of 1◦ to 2◦. One might question the generality of these
results, as already stated above, one could argue the expected result was a part
of the data used for obtaining the tilt axis position. This is analogous to machine
learning, where one avoids testing a model on the same dataset as it is trained on[79].
Furthermore, the search for a tilt axis was limited to only the x-tilt, which might
artificially impose a bias towards the expected answer. In general, the results for the
Ag sample are promising, but more robust testing, and validation after prediction,
is necessary to properly evaluate the accuracy.

5.3.2 LMNO Sample

The LMNO sample, which is part of Aune’s thesis[63], was used in a more robust
test. The sample was scanned, orientation mapped, and tilt angles were predicted
for alignment on multiple grains, before verifying the predictions by re-inserting the
sample into the TEM. This provides the necessary results to determine if tiltlib
is accurate and precise enough to be of use.

The predicted tilt angles align well for all investigated grains, zone axes, and
combinations of axes, both on the JEOL ARM and the JEOL 2100 microscopes,
as shown in Table 4.2.1. All sets of predicted angles were within a couple degrees,
which made final alignment using the Laue circle method easy for the operator, as
can be seen in Figure 4.2.8. The accuracy is within the expected range of 5◦, as
mentioned in Chapter 5.1.4, despite the sample being removed and re-inserted into
the sample holder, and into different TEMs.

Area 1 and 3 show how tiltlib can be used for aligning multiple grains si-
multaneously to the same zone axis. This is especially useful for HRTEM grain
boundary imaging, where the grains should be aligned to a low-index zone axis for
good contrast in lattice imaging. Figure 4.2.3 and 4.2.6(a) show two distinct pop-
ulations of orientations, i.e. the two twin grains in each of the two scans, meaning
the mean orientation is unlikely to be representative for the crop as a whole. This
is the case in general for distinct orientation populations; the mean of disjunct pop-
ulations of similar size are not representative for either population. As such, using
the mean orientation for the optimization function would not allow for this usecase
of tiltlib.

Predicted angles for alignment of LMNO area 2B initially differed from the ones
predicted for area 2A, as is shown in Table 4.2.1 where there are two sets of predicted
angles for area 2B. This is caused by symmetry and the optimization algorithm. As
can be seen in Figure 5.3.2(a), the optimization landscape in the case of area 2B
contains four degenerate minima. A more typical example with only one minimum
(that is, one minimum within ±20◦ in this case) is shown in Figure 5.3.2(b), showing
the optimization landscape for area 2A. This makes the optimization more sensitive
to the initial tilt angles, as was the case in this instance. Starting optimization of
area 2B from tilt angles (0◦, 0◦) yielded the tilt angles (13.9◦, 1.0◦). By starting
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at (10.6◦, 12.3◦) (the results from aligning area 2A, see Table 4.2.1), the prediction
instead converged to (−9.37◦, 12.9◦). This behavior is an advantage; by specifying
the limits for the tilt axes, one can force the optimization to e.g. heavily favor one
tilt axis, or to only tilt towards a secondary detector.
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Figure 5.3.2: The zone axis alignment optimization landscape of area 2 in the
LMNO sample when aligning to zone axes. (a) Area 2B, aligned on [0 1 3], showing
the presence of four degenerate minima within the tilt ranges. (b) Area 2A, aligned
on [3 2 3], with a single minimum within ±20◦.

As Figure 2.4.2 shows, the scan rotation affects the real-space coordinates of
the scan. This in turn affects the orientation of the tilt axes in the scan reference
frame. To account for this, the orientation maps made from the SPED tilt series
were used to identify the tilt axes of the sample as a safety measure, given that the
same microscope (JEOL 2100F) was used for both this and the Ag tilt series. The
samples were inserted differently in the sample holder; the Ag sample was randomly
oriented, whereas the LMNO sample was intentionally aligned with the tilt axes.
Scan rotation was used to additionally align the sample with the scan. Since the
scan rotation for the LMNO scans is known to be 28◦, it can be presumed that
the tilt axes sit at 30◦ − Θ and −60◦ − Θ for the x- and y-tilt axis, respectively,
for a scan rotation Θ. This might be different for other microscopes, depending
on the internal definitions of reference frames. However, as Figure 2.4.2 shows, the
scan rotation only affects the S reference frame, rather than e.g. crystal orientation
relationships.

By careful consideration of the sample orientation in the sample holder, as well
as the sample holder axes in the TEM, one can significantly reduce the mental
workload for the operator when searching for and aligning on a zone axis. If the
sample is aligned well with the sample holder before insertion, e.g. aligning an
edge of the sample to the Gx axis before inserting the holder, then the physical
(image mode) effect of tilting is consistent between instruments, and predictable
for the operator. Inspecting Figure 3.4.1, this was done for the LMNO sample.
Furthermore, if the scan rotation is set to the position of the tilt axis in the TEM,
i.e. Θ = 30◦ for the JEOL 2100F used in this project, then the tilt axes would be
aligned with the scan axes Sx, Sy. Aligning both the sample and scan rotation with
the tilt axes allows the operator to more easily navigate the sample, both to identify
regions of the sample between scans or microscopes, and to more easily understand
and predict the effects of tilting.
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Scan rotation alignment was used when the LMNO sample was re-inserted into
the microscope, as shown in the photographs of the sample holder in Figure 3.4.1.
A consistent alignment between the sample and the sample holder between TEM
sessions is necessary for the predicted tilt angles to be of any use, as they are
predicted based on the tilt axes’ positions relative to the initial orientation map.
A slight discrepancy, e.g. ±3◦, of the sample orientation is to be expected, given
the manual insertion of the sample into the sample holder. Inspecting Table 4.2.1,
one might observe the consistent trend of a slightly smaller actual tilt angle in the
x-tilt, and a slightly larger actual y-tilt, for the 2100 compared to the ARM. The
consistency of this trend implies the cause is due to the presence of a misorientation
of the sample in the sample holder between the two microscopes. This might account
for some of the misalignment observed between the predicted and actual tilt angles.

The main reason for having to take the sample out of the holder is the need for
time-consuming data analysis (e.g. TM) to create an orientation map for use in
tiltlib. During this time, occupying the microscope and/or holder without doing
any data collection is unproductive in terms of efficient use of resources, which
can rather be spent by someone else in the meantime. If enough sample holders
are available, or if some automatic sample storage and loading system is in place,
then one could keep or accurately reproduce the sample orientation for subsequent
analysis after tiltlib has produced its output.

Alternatively, one could identify the regions of interest while operating the TEM,
and either take a small SPED scan or simply a single PED or NBD pattern. This
would reduce the data analysis time, enabling analysis to take place on the fly
during the TEM session. Currently, single PED patterns are not directly supported
in tiltlib, but by creating a 1 × 1 CrystalMap from its orientation it should
work without much trouble. A small scan (in terms of probe positions) would not
only reduce the time spent on TM, but also the time spent on finding the tilt
angles for zone axis alignment. Optimally, the whole procedure of SPED, TM, and
tilt axis alignment, should be possible to perform whilst at the microscope in an
interactive fashion. Similar processes are already possible with programs such as
KSpaceNavigator[33] and τompas[34], exemplifying the feasibility of an interactive
in-line tiltlib.

The twinned grains in Figure 4.2.6, i.e. area 3, is an interesting special case
where it seems both grains are aligned in all three directions x, y, and z. As
mentioned in Chapter 4.2.2, the misorientation angle between the grains was 59.67◦.
This aligns well with the expected 60◦ from Σ3 twins around ⟨1 1 1⟩, and suggests
that they are indeed different domains even when the homogeneous color in all
three IPFs suggests otherwise. Normally, even when aligned in z, twin domains
are often differently colored in x and y, which is seen in e.g. Figure 4.2.3. The
fact that the grains from area 3 align so well in the two other directions could just
be a lucky coincidence (apart from the desired [1 1 2] in the z-direction, which is
expected). The zone axes for x and y, [13 6 20] and [9 5 19], are seemingly arbitrary
high indices and do not share any factors, suggesting they do not hide some hidden
meaning. Yet, the orientation of the two crystals is clearly different, as is understood
by the different cubes in Figure 5.3.3(a) and 5.3.3(b). This example shows that, if
possible, multiple regions at different (initial) orientations should be analyzed.
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Figure 5.3.3: 3D construction showing the zone axes for the mean orientation
of the twin grains in area 3. The zone axes in all three Cartesian directions are
symmetrically equivalent. (a) The lower grain, as viewed in Figure 4.2.6. (b) The
upper grain.

5.3.3 Computational Performance Considerations

Predicting tilt angles for zone axis alignment with tiltlib is time-consuming, tak-
ing a couple minutes for a double-tilt holder and a approximately 30×30 orientation
map crop. Profiling the code indicated initialization of Orix’s Orientation was re-
sponsible for significant throttling of the runtime. Orix might not be designed for
this usecase, and certain methods and operations might be inefficient. The under-
lying data structure is numpy_quaternions, which are very fast to compute, so by
bypassing some of Orix’s data handling one might see a performance increase in
tiltlib.

Another possible avenue for increased performance is the optimization routine.
Currently, Scipy’s minimization algorithm is used without much consideration for
optimal arguments. By tuning these, one might observe increased performance.
The parameter which likely has the largest effect on runtime is the method param-
eter. This controls the underlying solver, which in turn can have a large impact
on the number of times the optimization function is called. Ideally, the optimiza-
tion function should be called as little as possible, seeing as it is computationally
expensive with the current Orix-based implementation. The currently used solver,
‘Nelder-Mead’, could possibly be improved by supplying the initial simplex, rather
than the initial tilt angles. Other solvers might see increased performance by man-
ually supplying the Jacobian, which might reduce the need for gradient estimation
by means of optimization function evaluation.

The underlying problem of decomposing an orientation into one or two orienta-
tions with known axes, does not strictly necessitate an optimization-based approach.
ALPHABETA was also designed to use numerical calculations, but state that an
analytical solution is theoretically possible[32]. This would reduce the problem to
3 × 3 matrix factorization (assuming the matrix representation of orientations),
which would be many orders of magnitude faster than the current algorithm. The
mean orientation of the grain can be easily extracted from the Sample-object with



80 CHAPTER 5. DISCUSSION

get_mean_orientation, which could be supplied to the analytical solver along with
the rotation axes. As opposed to the numerical approach, an analytical solver is
likely to require the existence of an analytical solution. This might not always be the
case, as guaranteeing the existence of a solution would require the tilt axes to span
orientation space (or rather, the symmetry reduced subspace of SO(3) with unique
z-projections). With highly symmetric crystals, a double-tilt holder, and grains in
multiple orientations, the orientation space is likely to be spanned. However, for
low-symmetry crystals, limited tilt ranges, and e.g. a single tilt axis, not all zone
axes can necessarily be reached. This does not pose an issue with the optimization
approach; it will simply return the angles which most closely align the crystal to the
zone axis. Whether this makes the crystal 0.02◦ or 20◦ from the target makes no
difference, so long as no other closer orientation is available. To avoid confusion for
users of tiltlib, a visualization showing the available region of orientation space
(i.e. reduced zone IPF) should be implemented in a future version, to allow users
to verify if the target is reachable.

Using the program Recipro, this visualization is what Aune [63] used to pre-
dict tilt angles for zone axis alignment. She entered the orientations found by TM
and saw what low-index zone axes were within the tilt ranges. As she found sim-
ilar angles to tiltlib, this another independent confirmation that tiltlib gives
reasonable predictions.

5.3.4 Other Considerations

The accuracy of tiltlib zone axis alignment is within a few degrees, but could
likely be improved further. Fundenberger et al. [6] saw increased accuracy of orien-
tation mapping by increasing the camera length, albeit by using Kikuchi lines for
indexation. From a template matching perspective, this is likely to help as well, as
a larger camera length would increase the amount of visible reflections. As Figure
5.2.2 shows, diffraction patterns of different orientations might only show differ-
ences further out in reciprocal space, so increasing the camera length to capture
these differences might also reduce speckling as discussed in Chapter 5.2.2.

Kikuchi-based indexation is difficult with SPED, as Kikuchi patterns arise from
dynamical effects, but using SED could work. However, as multiple sources state
that Kikuchi-based orientation mapping is significantly more precise[6, 17, 44], it
might be worth looking into a possible combination of dynamical Kikuchi indexation
and kinematical TM indexation.

Shi et al. [80] present a precision estimate of TM-based Kikuchi pattern index-
ation for EBSD, where the quaternion representation of the orientations of two Σ3
twins are used in multiple ways to estimate precision. Their analysis methods can
be applied to tiltlib as well, especially as the orientations in Orix are stored as
quaternions. The twin analysis used in this project, i.e. Figure 4.1.2, is easily ex-
panded to include the different metrics presented in [80], which would facilitate an
increased understanding in the precision of tiltlib.

Zone axis alignment software that interface directly with the TEM can achieve
arbitrary precision, with a closed-loop control system. ALPHABETA, which simi-
larly to tiltlib is off-line,state a zone axis alignment precision of around 2◦ [32].
Cautaerts et al. present a thorough error analysis for their precision estimate, much
more in-depth than was presented in this thesis, which in the future can be adapted
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for tiltlib to improve the error estimate. Some software do a correction step,
based on the Laue circle, to achieve final alignment and a closed-loop control [33,
34]. For both tiltlib and ALPHABETA, this is not currently possible, as neither
interface directly with the TEM.

5.4 Template Matching Pre-selection Algorithm
One of the downsides of TM is how time consuming the process is, enough to make
it unfeasible to perform during a TEM session. One of the aims of this work was
to improve TM runtime, primarily on angular resolution, without becoming even
slower due to the use of a too large template bank. Angular resolution of the bank
becomes a larger issue for low-symmetry phases, as the template banks become
increasingly large. In this work, the full brute-force TM with a large template bank
is compared to two alternatives: 1) the existing polar-based pre-selection and ii)
new 2-step alternative pre-selection.

In general, the current algorithm for pre-selection templates in Pyxem performs
better than the new proposed algorithm in this thesis. In almost all test cases, the
runtime is lower for the old algorithm compared with the new, and both pre-selection
algorithms are much faster than the default brute-force approach. When this is not
the case, e.g. in Figure 4.3.3(a), the results of the new algorithm usually disagree
with the results without any pre-selection. In cases where the new algorithm has
a better agreement with the results without pre-selection, the runtime is higher
than the old algorithm. As such, the general conclusion is that this new proposed
algorithm does not give the desired improvement compared to the current polar
pre-selection algorithm. Note that, for algorithm evaluation, all TM was performed
on a 12-core CPU rather than a GPU, which was used for orientation mapping on
the Ag sample.

5.4.1 Runtime and Correlation Evaluation

There is one case where the new algorithm might prove useful and better than the
old. Inspecting the runtimes of the fine resolution sweeps, e.g. in Figure 4.3.4(a),
the runtime of the new algorithm is mostly constant as a function of the fine resolu-
tion. This is expected, as the number of simulations to keep (the n_keep-parameter)
was kept constant, and this is what controls the number of simulations included in
calculations. The trend for different crystal systems seems to be a greater reduction
in runtime compared to the runs without filtering when the crystal is less symmet-
ric. There seems to be a point for AuAgTe4 around 0.3◦ fine resolution where both
the runtime and accuracy of the new algorithm is better than the old, as can be
seen in Figure 4.3.4. As such, it seems highly un-symmetric crystals (or rather,
large template banks) might get better results faster with the new pre-selection
algorithm than the old. This could be due to the computational complexity of the
algorithm, which is constant for all fine resolutions with a constant coarse resolution
and n_keep. While this is the case for a constant n_keep, this value will eventu-
ally become too small to be useful. A constant frac_keep would likely perform
better, but it would increase runtime with a finer fine resolution. A dedicated test,
sweeping the fine resolution for a constant frac_keep, should be performed on a
low-symmetry crystal.
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Graphite seems to be the crystal with the best runtime performance of the new
algorithm compared with the old, as Figure 4.3.3(a) shows. Both the n_keep sweep
and the coarse resolution sweep show an reduced runtime for the new in around
half the sweep. Taken on its own, this could indicate that the new algorithm is
more suited for hexagonal crystals. However, by taking the correlation similarity
scores in Figure 4.3.3(b) into consideration, the new algorithm seems less suitable.
All three of the similarity scores, the correlation similarity, orientation similarity
and equality length, show a considerably worse performance for the new algorithm
compared with the old, as can be seen in Appendix B.2, where all results are
given. The similarity scores for the new algorithm are consistently worse and have
higher variance. Additionally, they converge to values which differ significantly
from the expected values, a trend not seen with the polar algorithm. This could
indicate a problem with the algorithm itself, or an unfit parameter set for the static
parameters.

Disregarding graphite, all datasets converge to optimal correlation values for
the coarse resolution sweep. This is expected, as when the coarse resolution ap-
proaches the fine resolution, the new algorithm essentially performs TM with the
same template bank twice. However, this adds further confusion around the results
for graphite, as they do not converge to the correct value. A more in-depth anal-
ysis on hexagonal crystals could be fruitful to understand the inconsistent results
compared to the remaining crystals.

An interesting feature in the correlation graphs for the two m3̄m datasets is
the dip in the fine resolution sweep. The increase towards very low resolution,
corresponding to very large template banks, is observed for all datasets, and could
indicate that the n_keep parameter is too small or the coarse resolution being too
large. In either case, the correct (i.e. the ones the brute-force dense run chose)
templates are being discarded erroneously, which is undesired. The polar algorithm
does not seem to have this issue, and stays at a very low level throughout the sweep.
As to why the correlation similarity score increases again after the dip with increas-
ing fine resolution, this could be an effect of the linear correlation interpolation
being inadequate at predicting the correlation scores of the fine orientation when
they approach the resolution of the coarse orientations.

Another interesting find with the two m3̄m datasets is their qualitative similarity.
While they have the same symmetry, only one of the datasets contain the noise and
dynamical scattering effects from real TEM data, which should differentiate them
substantially. The graphs are less similar if the y-scale is considered, as for all three
sweeps the correlation similarity scores are multiple orders of magnitude different
between the two datasets. The runtimes also differ slightly, especially for the n_keep
sweep, where the crossover point between the new and dense happens earlier for
scan 1 than for simulated copper. However, this could be attributed to the dataset
sizes rather than the data source, as the copper dataset is larger (1081 diffraction
patterns, scan 1 has 720) and has longer runtimes consistent with this discrepancy.
The overhead with the new algorithm seems to be the limiting factor for its runtime,
as they are practically the same for the two datasets.
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5.4.2 Similarity metrics

The goal of the pre-selection algorithms is to reduce the runtime, while still yielding
the same results as if they were not used. In this thesis, the three similarity scores,
described in Chapter 3.5.2, were utilized to quantify the similarity. The first two,
correlation score similarity and orientation similarity, should be 0 when the two
datasets are identical, while the equality length should be 1. Three metrics were
used, since only using a single one is unlikely to capture the similarity well. A
drawback of the correlation score similarity, for example, is that if a single pattern is
discarded that would have ended up in the top n_best, then all patterns with lower
correlation score than that would contribute to the total correlation dissimilarity for
that pixel. Additionally, the correlation score measure only considers the correlation
score, ignoring e.g. pseudosymmetries and systematic rows, which are common
causes for misindexation as discussed previously in Chapter 5.2.2. The orientation
similarity score uses the element-wise angle between the orientations of each match,
which would capture these misindexations and show them as a high score. However,
the orientation score suffers from the same issue regarding missing templates, which
cause all subsequent matches to contribute to the score even if they are correctly
ordered. The final metric, the equality length, aims to combat this shortcoming
by not considering the order of the matches, but rather the fraction of simulations
which appear in both sets. This way, one out of ten missing simulations would give
a 90% similarity, whereas the orientation similarity and correlation score similarity
would likely indicate a more dissimilar result.

In TM, a commonly displayed metric is the confidence score [17], which was
not used in this project for similarity evaluation. Confidence scores is a metric for
the accuracy of TM, based on the misorientation between the n_best simulations.
For similarity evaluation, this internal metric is unsuited, as it does not entail
comparisons between datasets. The aim of the pre-selection algorithm is not to
achieve better results than a full correlation, but rather to achieve the same results.
Evaluating the precision using the confidence score is therefore not helpful to the
aim of evaluating if the pre-selection algorithms give the same results as the brute-
force approach.

For the simulated datasets, additional similarity metrics are possible where the
two pre-selection algorithm results can be compared to the true value for the given
simulation. This is not possible for the real dataset, as the orientation (i.e. the
ground truth) is not known from beforehand. Even for the simulated datasets, this
was not done, as in the best case, the pre-selection algorithms give the same results
as without pre-selection. The underlying problems of NCC, and the TM algorithm
as a whole, cannot be addressed by careful selection of simulations to correlate in
this way. The metrics were therefore all comparing with the dense simulation bank
rather than the ground truth, as comparing with the ground truth is not directly
relevant to determining if the pre-selection algorithms performed correctly.

5.4.3 Algorithmic Considerations

The two-step approach for TM is suggested in recent work; Corrêa et al. [44] pro-
poses using TM for rough orientation mapping before using residue optimization
on (dynamical) intensities of indexed reflections. What is new with the proposed
pre-selection algorithm is using correlation scores in orientation space to predict
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unknown correlation values.
The most efficient optimization for the implementation of the pre-selection al-

gorithm was to pre-compute weights for multilinear interpolation. This imposes
a first-degree (linear) interpolation on the correlation scores. As such, the first
sampling of orientation space needs to be fine enough as to make this assumption
accurate. Alternatively, one could implement a higher-degree interpolator, e.g. us-
ing Scipy’s SmoothBivariateSpline. This would add significant computational
complexity, but if it allows for a coarser sampling for the first TM sweep then it
might lead to lower computation times overall. A bigger impact should be expected
for crystals with low symmetry, as these have a larger reduced zone IPF. If changing
from a linear to a cubic interpolation allowed for 1◦ higher angular distance between
simulations, then a high-symmetry crystal might go from e.g. 2000 to 1000 simula-
tions in the coarse bank, whereas a low-symmetry crystal might go from 40000 to
20000. A difference of 1000 simulations has a low impact in the long run, whereas
a difference of 20 thousand simulations would save hours of runtime.

Coarse Linear Linear diff

Spline Spline diff

Real

Figure 5.4.1: A comparison between linear and 2nd degree spline interpolation.
The left image shows the data to be interpolated, with the sampled points marked
with dots. The center shows the resulting linear and spline interpolations, with the
deviation from the target. The right shows the actual values for the chosen function.
While both interpolations have around the same magnitude of deviations, the spline
is much smoother.

Higher-order interpolation also opens up for a different algorithm altogether;
only run TM once, and use the interpolated correlation scores directly as the result.
For linear interpolation, the largest value can only ever occur at one of the sampled
points, meaning higher-order interpolation is the only option for this approach.
However, as Figure 5.4.1 shows, spline interpolation does not seem to necessarily
be much better at capturing the dynamics of the data. Furthermore, as the coarse
sampling is relatively fine, the interpolated values are unlikely to be much different
when using spline interpolation compared to linear. Further testing is needed to
see if this approach can be fruitful for orientation refinement.

A situation where one might see additional speedup is in a sample with clear ori-
entation relations, e.g. a substrate with precipitates. In this case, only a fraction of
the total dense bank is likely to be used for the second sweep. Since the simulations
for the second sweep are made on-the-fly, using only the set of unique orientations
chosen for the second sweep, this can save time. This would be especially noticeable
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for more computationally expensive dynamical simulations. Currently, with kine-
matic simulation and Lorentzian approximation for precession, simulating a bank
of tens or hundreds of thousands of simulations take around the same time than the
NCC step (using CPU, 90 000 simulations took 4 minutes, TM with this bank on a
256 × 256 dataset took 6 minutes). The effect should therefore be noticeable even
with simple default simulation parameters, given a sample with such orientation an
relation.

It is worth noting that increased accuracy of simulations is not necessarily the
correct measure to increase the precision of TM. Cautaerts mentioned in a discus-
sion post4 on this very topic that he observes improved results by binarizing the
diffraction patterns, e.g. performing background subtraction and setting all non-
zero intensities to 1. As the NCC score (Equation 2.20) heavily favors the strong
reflections (near the direct beam), binarizing will give much increased relevance to
the weak reflections further out. However, this effectively deletes the potentially
valuable intensity information in the patterns, which would reduce the best-case
precision significantly. This is due to minute variations in orientation having a
large impact on the intersection of Ewald’s sphere with the relrods, increasingly
so further out in the ZOLZ or HOLZs. These variations in intensity is what al-
lowed Corrêa et al. [44] to achieve their impressive precision, and this information
is lost by binarizing. It is especially detrimental in less symmetric crystals, where
diffraction patterns are less unique when intensities are disregarded.

During the final stages of development, a bug was found in the interpolation
code. This bug might be the cause for some of the discrepancies in results with
the new algorithm, where the correlation scores did not always converge to the
optimum. While simple to fix, it was not discovered early enough to have time for
new runs. The bug is related to the triangle assignment of resampled points. The
interpolation is based on finding which triangle within the convex hull of the coarse
points each fine point resides in. No issues occurred in the interior, but along the
edges of the reduced zone, points were at risk of being outside the convex hull.
Along straight edges, the assignment is correct, but along edges with a bend there
will be resampled points on the outside. The bug is this: the tri.find_simplex-
function in line 15 in Listing 3.5.1, which normally returns the index of the triangle
the requested point resides in, simply returns −1 instead. A fix is shown in Listing
5.4.1, intended to slot in between lines 15 and 16 in Listing 3.5.1.

1 # Account for simplices outside the convex hull
2 outside = simplex < 0
3 # Just bump the points a little closer to the origin,
4 # and assume this moves them within a close triangle
5 simplex[outside] = tri.find_simplex(new_xy[outside] * 0.99)

Listing 5.4.1: A possible fix for the interpolation bug with points outside of the
convex hull. These lines are intended to be slotted in between lines 15 and 16 in
Listing 3.5.1.

This behavior of returning −1 is described in the documentation, but is not
displayed during runtime as a warning or error. The programmer must handle this

4https://github.com/pyxem/pyxem/pull/1076#issuecomment-2117352228

https://github.com/pyxem/pyxem/pull/1076#issuecomment-2117352228
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themselves. The issue is that, in Python, −1 is a valid index, and returns the last
element of the iterable. This made all points along a bend receive values as if they
were part of the last triangle in the list, rather than e.g. extrapolating the closest
triangle. For m3̄m, and the sampling with Orix, the final triangle in the list is the
one containing the [1 0 1] vertex. This region often has a large correlation value,
which was then incorrectly used for all the points along the edge between [1 0 1] and
[1 1 1].
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SIX

CONCLUSION

The overall aim of this thesis was to improve orientation analysis with SPED, by
writing new code based on the Pyxem suite that establish the full gonio-sample-
crystal geometry and use it for the navigator tool tiltlib. The tool allows users
to easily traverse crystallographic space given the sample and gonio layout. Addi-
tionally, reducing the runtime of TM is required for improving practical use, and
addressing more demanding cases such as low-symmetry phases without compro-
mising on angular resolution.

The first aim, developing a tool to predict tilt angles for zone axis alignment, was
performed and culminated in tiltlib. Accuracy testing based on SPED scans of a
polycrystalline FCC Ag sample, taken at four 5◦ intervals and orientation mapped
with Pyxem, had convincing results indicating a sufficient accuracy. The tilt axis
was identified based of a limited SPED tilt series, comparing all combinations of
scans at different tilt angles to attain the position. From the combined set of over
400,000 misorientation angles, the bottom 1

3
were selected, allowing the tilt axis

identification algorithm to accurately determine the position even with the limited
precision of TM. In the JEOL JEM 2100F TEM used in this work, the tilt axis was
determined to lie 30◦ - Θ from the x-axis in the scan frame, where Θ is the scan
rotation.

With the tilt axis identified, and the orientations mapped using TM with Pyxem,
a test was performed to verify the accuracy of tiltlib. A region of the Ag sample
was identified in two scans at different tilts, and the zone axis of this region was
extracted from the orientation map of one scan. This zone axis was set as the target
of the same region in the other scan. The alignment was 1.6◦ off when restricting
the search to a single tilt axis. By comparing more different regions between the
two scans, the alignment was between 1◦ and 2◦ for multiple differently oriented
grains.

The polycrystalline Ag sample used in this thesis had many clear Σ3 twins, which
have a known 60◦ misorientation around ⟨1 1 1⟩. These were used to estimate the
accuracy of the orientation maps. The TM orientations were within 2◦ to 4◦ of the
known 60◦ misorientation, which is higher than expected (1◦). Many of the grains
within the scanned region and at different tilts, displayed misindexation, which is
detrimental to accurate analysis. Despite both misindexation and the relatively
imprecise orientation maps, the tilt axis identification algorithm was robust enough
to accurately and precisely determine the tilt axis, and thereby the sample-gonio
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relation.
Additional experimental tests were performed using another cubic sample, here

polycrystalline LMNO. The tests include re-inserting the sample into the sample
holder, and were performed on two different TEMs by different operators. The
results of these tests on three different regions show an accuracy of tiltlib of
2◦ to 5◦. This is well within the range required to observe the Laue circle, easily
allowing the operator to manually align the final few degrees. Tilt axis identification
by means of a tilt series gave good results, and seems to be a robust method without
requiring cumbersome manual zone axis alignment or manually following Kikuchi
bands (which are suppressed in SPED) by experienced operators.

The tool, tiltlib, is available to install through PyPI, and on GitHub1. It
was successfully used for predicting tilt angles for aligning both single grains and
multiple grains simultaneously to given zone axes. Multiple visualization tools
were developed, such as IPFs scatterplots and colormaps, and interactive versions
exploration of the data. Additionally, the mean zone axis is easily calculated with
mean_zone_axis, which is useful to get a more precise estimate of the orientation
than e.g. the color maps.

The second aim, decreasing the runtime of TM without changing the angular
resolution or accuracy, i.e. the returned values, was evaluated by running TM on
four datasets, with three different methods. The methods were 1) brute-force dense
template bank, 2) Pyxem’s template pre-selection, using azimuthal integration and
radial correlation, and 3) the new two-step correlation interpolation approach de-
veloped in this work. The four datasets were chosen to cover a variety of point
groups and sizes of the symmetry reduced zone, as well as testing perfect simu-
lated data and realistic experimental data with noise effects. The datasets were an
experimental SPED scan of Ag (m3̄m), and simulated datasets of copper (m3̄m),
graphite (6/mmm), and AuAgTe4 (2/m). Three metrics were used to evaluate the
similarity of the pre-selection algorithms (2 and 3) with the dense results (1). These
were the correlation score similarity, orientation similarity, and equality length.

The results indicated little to no improvement of the developed two-step ap-
proach compared to the existing polar algorithm. The new proposed algorithm
generally had longer runtimes, and was less similar to the brute-force dense tem-
plate bank than the current algorithm was. One possible usecase where the new
algorithm might outperform the existing one, is for very large template banks, e.g.
when using crystals with low symmetry and small angular distance between simu-
lations. With the developed two-step algorithm, the simulated hexagonal graphite
dataset did not conform to the expected output for any of the three evaluated met-
rics, indicating some error happened somewhere in the new algorithm. A possible
cause, and fix, for this discrepancy is outlined in the discussion (Listing 5.4.1).

The navigation tool was successfully developed and tested. With the future
possibility of automatic control of the TEM for more efficient automatic data aqui-
sition, and faster and more accurate orientation mapping with TM all combined
with tiltlib, automatic investigation of materials is more accessible and conve-
nient, facilitating further research on crystals using the TEM.

1https://www.github.com/viljarjf/tiltlib

https://www.github.com/viljarjf/tiltlib
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FUTURE WORK

The aim of this work was to improve crystal orientation analysis with SPED and
TM, and led to two main findings: i) the navigation tool tiltlib that extend the
use of TM results beyond orientation maps and further orientation analysis, and
ii) that in general, the proposed 2-step TM-approach with pre-selection based on
a course sampling of orientation space before fine sampling around interpolated
correlation scores. For the latter, there are some suggestions for future work made
in the discussion chapter (for example considering other interpolation routines and
dedicated studies for low-symmetry classes). In this chapter, the suggestions for
future work are mostly related to i) the navigation tool.

tiltlib is a program meant to facilitate easier exploration of crystalline ma-
terials in the TEM, and as such one could be very general and say that more
different materials with different symmetries can be explored with it. This chapter
will instead focus on specific usecases and expansions of tiltlib, and orientation
mapping as a whole.

7.1 Automation

The step from predicting tilt angles to automatically aligning to those angles is
quite small. Automatic TEM control with open-source software should be fairly
straightforward to implement with e.g. PyJEM [37], SerialED and PyED[38].

However, as discussed, the accuracy of tiltlib is only within a few degrees;
enough to see the Laue circle, but not enough for lattice imaging in HRTEM imaging
for grain boundary analysis. Automatic alignment on the Laue circle has been
proposed before [11], and is implemented in e.g. KSpaceNavigator [33], and is
as such a possible avenue for a closed-loop automatic alignment control system.
Note that the technique is recently patented[13–15] despite being known for half a
century[81, p. 18], so care must be taken to avoid legal action.

To facilitate automatic alignment, orientation mapping should be made possible
when at the microscope. Currently, the TM process is too time-consuming for this to
be feasibly performed at scale, hence why speedup of TM is important. By limiting
the scan to fewer probe position, and larger step sizes, the dataset can become
manageable. Automatic grain segmentation, reducing the number of orientations
to consider from thousands of pixels down to e.g. 50 mean grain orientations, would
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allow the program to choose which grain to align to any given zone axis, similarly
to Mathisen’s zone axis alignment program [49]. A fully automatic approach, where
the user simply provides a sample, a .cif-file, and a zone axis, seems highly possible
within a few years.

An alternative approach is to use SED or SAED rather than SPED, to get a
single diffraction pattern. TM to determine this single orientation is certainly possi-
ble while at the microscope, meaning tiltlib could be used in-place even without
automatic TEM control. This would likely increase the accuracy as well, since
re-inserting the sample into the sample holder is observed to cause misalignment.

7.2 tiltlib Expansion

Apart from the already discussed support for single diffraction pattern samples
from e.g. SAED, tiltlib could be improved and expanded further. One major
limitation is the computation time of zone axis alignment, which can take minutes
with the current implementation. As discussed in Chapter 5.3.3, this could be
mitigated by optimizing on the mean orientation, at the cost of losing the possibility
to align on multiple grains simultaneously. Apart from algorithmic considerations,
the code itself should be looked more into, as Orix is a performance bottleneck at
the moment. By doing more low-level operations on the quaternions directly, a
significant speedup should be possible. With a faster optimization, the tool is even
more usable directly while using the TEM.

tiltlib has presently been tested on m3̄m only. Simple tests on e.g. hexagonal
data should be performed to ensure the conventions are followed. Non-centrosymmetric
crystals could also be interesting to test, as this would confirm if the positive z-
direction is aligned correctly. The ErMnO3 orientation maps from Mathisen [49]
seems like a promising candidate, as ErMnO3 has the hexagonal non-centrosymmetric
point group 6mm, and both experimental tilt series, finished orientation maps, and
multi-slice simulations are available.

More visualization tools could be beneficial for tiltlib, e.g. a IPF without
the symmetry reduced projection, where low-index zone axes are shown alongside a
rectangle showing the range of the tilt holder. A similar visualization is available in
multiple existing tools for zone axis alignment, indicating this is a practical addition.

Currently, zone axis alignment is the main functional feature of tiltlib. Other
uses are possible with the full description of the orientation relations in the TEM.
One possibility is to allow the user to supply an axis of rotation, e.g. a Miller, and
the angle to rotate around that axis. tiltlib could then compute the necessary
tilt angles to move the sample equivalently. This could be useful for boundary
alignment, or tilting along a boundary.

Finally, tiltlib should be tested with other sample holders, notably the tilt-
rotate holder. This unique sample holder geometry has seen little usage for zone
axis alignment tools, and operators usually find them difficult to wrap their heads
around. In theory, as the rotation axis has a much larger angular range, the available
orientation space should be much larger for a tilt-rotate holder than a double-tilt
holder. tiltlib is designed with support for arbitrary tilt axes in mind, meaning it
should work nicely. Preliminary investigations were performed in this work and the
preliminary study[45], using the orientation map shown in Figure 7.2.1. Although
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the mathematics are the same, in practice the usage of a tilt-rotate holder is more
complicated than a double tilt. The difficulty comes mainly from the displacement
of the sample when rotating. This can be somewhat mitigated by changing the scan
rotation with the rotation, but the sample will still move around in the frame if
the rotation axis does not coincide with the center of the frame. tiltlib supports
using a tilt-rotate holder, but more work is needed to confirm if it works correctly.

(a) (b) (c)

Figure 7.2.1: IPFs from a SPED scan of the Ag sample, with unit cells displayed
on large grains. The unit cells were added using MTEX[31]. This scan is part of
a rotation series, i.e. a tilt series using the rotation axis of the tilt-rotate sample
holder. (a), (b) and (c) are IPF-x, y and z, respectively.

7.3 Orientation Refinement
The pre-selection algorithm developed (Chapter 3.5), results presented (Chapter
4.3) and discussed (Chapter 5.4) in this thesis were mainly focused on decreasing the
runtime of TM rather than increasing the precision/accuracy. If orientation maps
are more accurate, tiltlib is more accurate. As such, the approach of Corrêa et al.
[44] seems promising, as they achieved orders of magnitude better precision than is
expected from TM [18]. Orientation refinement on intensities is very promising, but
also time-consuming, as Corrêa et al. spent multiple days on their computations (for
comparison, TM often takes mere minutes, for much larger datasets). Method- and
code-optimization is necessary to feasibly use this for datasets of significant sizes.
This could be implemented as part of Pyxem, to keep the code open-source and
accessible, and to increase the likelihood of someone seeing possible optimizations.

Corrêa et al. manually index the diffraction patterns before refinement, which
is undesirable from an automation perspective. They suggest using TM for initial
indexation, before employing the residual optimization for refinement. For this,
one might employ the binarization step Cautaerts suggests, to increase the initial
accuracy without increasing computation time much. However, as the discussion
suggests, this is case dependent, and can worsen the confidence off-zone as inten-
sities are not taken into account. Another approach to increase the importance of
reflections further out, is to simply mask out the inner reflections. This is made easy
with the new API for TM in Pyxem v0.19, where the present work has contributed
to (see Appendix C), as shown in Listing 7.3.1. The output of running this script
is shown in Figure 7.3.1.
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1 from hyperspy import api as hs
2 from pyxem.signals import Diffraction2D
3

4

5 def mask_inner(data, r):
6 out = data.copy()
7 out[:r, :] = 0
8 return out
9

10

11 data: Diffraction2D = hs.load("path/to/your/data.hspy")
12

13 # Use npt=140 as this is 100 * sqrt(2),
14 # so we know the (approximate) radius in pixel coordinates
15 polar = data.get_azimuthal_integral2d(npt=140, mean=True)
16

17 polar.map(mask_inner, r=40, inplace=True)
18

19 polar.plot(norm="symlog", cmap="viridis")

Listing 7.3.1: An example showing how one can easily mask a radial range for
TM using Pyxem v0.19. The output is shown in Figure 7.3.1.
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Figure 7.3.1: The output of running the script in Listing 7.3.1, showing how an
inner radial range is masked out.

Alternatively, one can increase the relative intensity (and consequently the
relative importance for NCC) of far reflections by simply using mean=False in
Diffraction2D.azimuthal_integral2d, which is the default in Pyxem 0.19. As
the regions near the center have much more pixels in polar space than regions
further out, the intensity in polar space is much reduced when the integrated in-
tensity is preserved. This increases the relative intensity of reflections proportional
to r2, giving increased significance to far reflections in the NCC. Previous versions
of Pyxem performs polar unwrapping as a part of the TM process, which the user
cannot control, but it effectively used mean=True. The difference between using
mean=True and mean=False is shown with IPF-z colormaps in Figure 7.3.2. No
obvious improvement can be seen by visual inspection of the IPF colormaps. How-
ever, the pre-processing was simple, using only
PolarDiffraction2D.subtract_diffraction_background with the polar_median
method. More considered pre-processing might yield other results.

Corrêa et al.’s approach is certainly possible to implement in Pyxem. In fact,
much of the functionality is already in place for the refinement step, and all that
should be necessary is to combine existing methods and classes. A good place
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Figure 7.3.2: IPF-z of a crop of scan 1, using TM with Pyxem 0.19 with different
polar unwrapping strategies. (a) using mean=False. (b) using mean=True.

to start would be the DiffractionVectors2D-class, and the various peak- and
intensity-finding functionality associated with it, as well as the different indexation
generators. A large optimization can be made with clever use of Diffsims, by as-
suming 1. small deviance between the refined orientation and the initial orientation
found by TM and 2. precession. If these two conditions are met, then the reflec-
tions are likely to only change in intensity rather than changing in indices. The
hkl-values are therefore constant, and only the intensity needs re-calculating. This
skips a significant computational bottleneck in the diffraction simulation, namely
finding the intersection between Ewald’s sphere and all reflections. With these
optimizations, this facilitates very fast diffraction simulation, which is necessary
for refinement; a pre-simulated template bank is unlikely to contain the very best
possible simulation for a given list of reflections. The optimization algorithm for
refinement, i.e. difference between simulated and measured intensity for each hkl,
is fairly straightforward to implement after Corrêa et al.

One limitation with their approach is the simulations, which are based on a dy-
namical two-beam approximation. These are more accurate to the data, as electron
diffraction is indeed dynamical, but comes at a significant cost in terms of computa-
tion time, compounded with the vastly expanded parameter space. As briefly men-
tioned in Chapter 2.5.2, Python packages for this exists, e.g. py_multislice[56],
and writing an interface to Diffsims should allow these to be used with TM in
Pyxem. Minimizing the size of the parameter space is crucial, as e.g. the thickness
parameter was optimized to a constant throughout the sample in [44]. Parameter
space minimization is also used to good effect in Pyxem, where the analytical pre-
cession estimation by a Lorentzian is possible by setting the extinction length to π
times the thickness, which makes the expression independent on thickness[64].

As dynamical electron diffraction simulations are much more computationally
expensive than kinematic ones, optimizations in the simulation step should be
sought. When simulating a bank with precession, regardless of whether they are
dynamical or not, one could achieve faster computation times by avoiding re-
computing previous orientations. The algorithm would look something like this:

Simulate a bank without precession Using any simulation method, e.g. sim-
ple kinematic or multislice.

Sum simulations in a ring As this is essentially what precession entails.
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The radius of the ring is determined by the rocking angle. A visual outline of the
algorithm is outlined in Figure 7.3.3 for a single orientation.

z
=

[111]

[101][001]

Figure 7.3.3: A visual representation of an approximation of precession, where a
precessed simulation at the blue orientation can be seen as a sum of the red un-
precessed simulations. Shown as IPF-z.

Another possible avenue for refinement, in the form of lowering the misindex-
ation rate, is to automatically determine if the orientation found by TM is likely
to be misidentified. This is commonly done by looking at the reliability index. If
the orientation is difficult to correctly index, tiltlib could suggest a different tilt,
where the orientations are expected to no longer be as difficult, and re-index at the
new orientation. Aune [63] proposes and investigates a method for automatically
discarding misindexed orientations from a tilt series, which could be integrated into
tiltlib for this purpose. The process is outlined in Figure 7.3.4, showing how
a slight tilt can make difficult orientations easier to index correctly. The results
from the tilt with easily indexed diffraction patterns could be used to make a new
template bank, containing only the orientations that are possible given the easily
indexed orientation.

Figure 7.3.4: The correlation score plotted in orientation space for two orienta-
tions, marked with red crosses. The blue cross in the left map is the point with the
highest correlation score. This misindexation is mitigated with a slight tilt, shown
in the right map.
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APPENDICES

The first chapter lists the code used for performance evaluation of the TM-pre-
selection algorithm. The second chapter show extended results and figures supple-
mentary to the thesis. The third chapter lists and comments upon contributions to
open-source software made as part of the work done during this project. The final
chapter contains the abstract accepted for oral presentation at EMC 2024, to be
held by Antonius van Helvoort.
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APPENDIX

A

TEMPLATE MATCHING PRE-SELECTION
ALGORITHM CODE

This chapter contains listings of the code used to run tests for the TM-pre-selection
algorithm discussed in this thesis. The font size is kept small to fit more of the code
in fewer pages.

A.1 Results Data File
This is an example of the file written as output after testing, containing the results
and metadata from the test.

1 {
2 "dense": {
3 "runtime_mean": 7249603716.666667,
4 "runtime_std": 104926601.59386683,
5 "runtimes": [
6 7155551100,
7 7445231500,
8 7332224800,
9 7211154000,

10 7179539000,
11 7173921900
12 ],
13 "total_runtime": 43.4976223,
14 "runs": 6
15 },
16 "refined": {
17 "correlation_mean": 85.22341485373194,
18 "correlation_std": 114.2972650689875,
19 "orientation_mean": 9.834190280111782,
20 "orientation_std": 16.310914001091085,
21 "runtime_mean": 2231131333.3333335,
22 "runtime_std": 1182358903.0371683,
23 "runtimes": [
24 4860438800,
25 1623325600,
26 1631349100,
27 1971628100,
28 1686737700,
29 1613308700
30 ],
31 "total_runtime": 13.386788,
32 "runs": 6,
33 "equality_length_mean": 2.736111111111111,
34 "equality_length_std": 4.4581169902510895,
35 "equality_length_set_mean": 7.873611111111111,
36 "equality_length_set_std": 2.249536560639618
37 },
38 "old": {
39 "correlation_mean": 16.84738847403998,
40 "correlation_std": 53.60347776437754,
41 "orientation_mean": 3.4698019224642622,
42 "orientation_std": 11.256141732474601,
43 "runtime_mean": 1794140966.6666667,
44 "runtime_std": 49612047.37946442,
45 "runtimes": [
46 1776323400,
47 1740644100,
48 1737157200,
49 1839436200,

102



50 1873359800,
51 1797925100
52 ],
53 "total_runtime": 10.7648458,
54 "runs": 6,
55 "equality_length_mean": 7.555555555555555,
56 "equality_length_std": 4.297573245736381,
57 "equality_length_set_mean": 9.248611111111112,
58 "equality_length_set_std": 1.8523628345946845
59 },
60 "coarse_resolution": 2,
61 "coarse_oris_count": 300,
62 "fine_resolution": 0.4,
63 "fine_oris_count": 6555,
64 "n_best": 10,
65 "frac_keep": null,
66 "n_keep": 50,
67 "simulation_generator_parameters": {
68 "reciprocal_radius": 1.7,
69 "with_direct_beam": false,
70 "max_excitation_error": 0.01,
71 "accelerating_voltage": 200,
72 "approximate_precession": true,
73 "precession_angle": 1.0,
74 "minimum_intensity": 1e-20,
75 "shape_factor_model": "lorentzian"
76 },
77 "dataset_parameters": {
78 "title": "Scan 1",
79 "space_group": "SpaceGroup #225 (Fm-3m, Cubic). Symmetry matrices: 192, point sym. matr.: 48",
80 "phase_name": "Ag",
81 "device": "CPU",
82 "num_diffraction_patterns": 720
83 },
84 "comment": "n_keep sweep"
85 }

A.2 get_data.py

This file contains functions to load the real dataset, and simulate datasets for a
given phase.

1 from hyperspy import api as hs
2 from pyxem.signals import ElectronDiffraction2D
3 from orix.crystal_map import Phase
4 from orix.quaternion import Orientation
5 from diffsims.generators.simulation_generator import SimulationGenerator
6 from pathlib import Path
7
8 ROOT = Path(__file__).parent
9

10
11 def get_real_data() -> ElectronDiffraction2D:
12 data = hs.load("data/centered_calibrated_1_crop.hspy", lazy=True)
13 data.metadata.General.title = "Scan 1"
14 data = data.inav[::4, ::4]
15 return data
16
17
18 def get_simulated_data(phase: Phase, oris: Orientation) -> ElectronDiffraction2D:
19 gen = SimulationGenerator(
20 minimum_intensity=1e-20, precession_angle=1, approximate_precession=False
21 )
22 sim = gen.calculate_diffraction2d(
23 phase=phase,
24 rotation=oris,
25 reciprocal_radius=1.7,
26 with_direct_beam=False,
27 max_excitation_error=0.01,
28 )
29 get_diffraction_pattern_kwargs = {
30 "shape": (128, 128),
31 "calibration": 0.02,
32 "sigma": 2,
33 }
34 sig = ElectronDiffraction2D(
35 [
36 s.get_diffraction_pattern(**get_diffraction_pattern_kwargs)
37 for s in sim.irot
38 ]
39 )
40 sig.set_diffraction_calibration(get_diffraction_pattern_kwargs["calibration"])
41 sig.calibrate(center=None)
42 sig.metadata.General.title = f"Simulated data: {phase.name}"
43 return sig
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A.3 refinedsimulation.py

This file contains the source code for the new algorithm, as a subclass of ‘Simula-
tion2D’ from Diffsims.

1 from pyxem.signals.indexation_results import OrientationMap
2 from diffsims.simulations import Simulation2D
3 from diffsims.generators.simulation_generator import SimulationGenerator
4 from scipy.spatial import Delaunay
5 from orix.quaternion import Orientation
6 from orix.vector import Vector3d
7 import numpy as np
8 from orix.projections import StereographicProjection
9 from pyxem.utils.indexation_utils import _get_max_n

10
11
12 s = StereographicProjection()
13
14
15 def ori2xy(o) -> tuple[np.ndarray, np.ndarray]:
16 y, x = s.vector2xy(o * Vector3d.zvector())
17 y = -y
18 return x, y
19
20
21 class RefinedSimulation2D(Simulation2D):
22 def __init__(
23 self,
24 orientationmap: OrientationMap,
25 simgen: SimulationGenerator,
26 oris: Orientation,
27 n_keep: int = None,
28 frac_keep: int = None,
29 simgen_kwargs: dict = None,
30 ) -> None:
31 if simgen_kwargs is None:
32 simgen_kwargs = {}
33
34 num_oris = _get_max_n(oris.size, n_keep, frac_keep)
35
36 ## Set up coordinates for interpolation.
37 # Known correlation scores:
38 x, y = ori2xy(orientationmap.simulation.rotations)
39 xy = np.vstack(
40 [
41 x.flatten(),
42 y.flatten(),
43 ]
44 ).T
45
46 # Points to interpolate the correlation score
47 new_x, new_y = ori2xy(oris)
48 new_xy = np.vstack(
49 [
50 new_x.flatten(),
51 new_y.flatten(),
52 ]
53 ).T
54
55 ## Set up interpolation.
56 # Since the data coordinates and interpolated coordinates
57 # are always the same, and since we use linear interpolation,
58 # we can pre-calculate the barycentric weights for Delaunay triangulation
59 # https://stackoverflow.com/questions/20915502
60 tri = Delaunay(xy, incremental=False)
61 simplex = tri.find_simplex(new_xy)
62 vertices = np.take(tri.simplices, simplex, axis=0)
63 temp = np.take(tri.transform, simplex, axis=0)
64 delta = new_xy - temp[:, -1]
65 bary = np.einsum("njk,nk->nj", temp[:, :-1, :], delta)
66 weights = np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))
67
68 def interpolate(values):
69 return np.einsum("nj,nj->n", np.take(values, vertices), weights)
70
71 # Map func to calculate indices
72 def get_top_indices(orientationmap_result):
73 indices, correlations, _, _ = orientationmap_result.T
74 indices = indices.astype(int)
75
76 # Re-order correlations, they need to be in the same order
77 # as the Delaunay triangulation was made with
78 sorted_indices = np.argsort(indices)
79 data = interpolate(correlations[sorted_indices])
80
81 # Only keep the top `num_oris`.
82 # Use argpartition, since we don’t care about the order
83 # (arg since we want indices, partition since we dont care about order)
84 k = data.size - num_oris
85 inds = np.argpartition(data, k)[k:]
86 return inds
87
88 indices = orientationmap.map(
89 get_top_indices, inplace=False, lazy_output=True
90 )
91
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92 # Reduce total simulation count by only using the unique orientations
93 unique_indices, reconstruct_indices = np.unique(indices, return_inverse=True)
94 self.indices = reconstruct_indices.reshape(indices.data.shape)
95
96 # Perform the simulations, only use unique orientations
97 simulations = simgen.calculate_diffraction2d(
98 orientationmap.simulation.phases, oris[unique_indices], **simgen_kwargs
99 )

100
101 # Store the flattened unique simulations,
102 # for use in `self.polar_flatten_simulations`
103 self._original_simulations = simulations
104
105 Simulation2D.__init__(
106 self,
107 simulations.phases,
108 simulations.coordinates[self.indices],
109 simulations.rotations[self.indices],
110 simulations.simulation_generator,
111 simulations.reciporical_radius,
112 )
113
114 def polar_flatten_simulations(self, radial_axes=None, azimuthal_axes=None):
115 """Flattens the simulations into polar coordinates for use in template matching.
116 The resulting arrays are of shape (n_simulations, n_spots) where n_spots is the
117 maximum number of spots in any simulation.
118
119
120 Returns
121 -------
122 r_templates, theta_templates, intensities_templates
123 """
124
125 (
126 r_templates,
127 theta_templates,
128 intensities_templates,
129 ) = self._original_simulations.polar_flatten_simulations(
130 radial_axes, azimuthal_axes
131 )
132 return (
133 r_templates[self.indices],
134 theta_templates[self.indices],
135 intensities_templates[self.indices],
136 )

A.4 simulation_comparison.py

The main workhorse of the comparisons. The class TemplateMatchingComparison
stores the parameters, runs the tests, and calculates statistics from those.

1 from refinedsimulation import RefinedSimulation2D
2 from orix.sampling import get_sample_reduced_fundamental
3 from pyxem.signals import PolarDiffraction2D
4 from pyxem.signals.indexation_results import OrientationMap
5 from diffsims.generators.simulation_generator import SimulationGenerator
6 from orix.crystal_map import Phase
7 import numpy as np
8 from tqdm import tqdm
9

10 from time import perf_counter_ns
11 from dataclasses import dataclass, field
12
13 DEFAULT_SIMGEN_KWARGS = {
14 "reciprocal_radius": 1.7,
15 "with_direct_beam": False,
16 "max_excitation_error": 0.01,
17 }
18
19
20 @dataclass
21 class TemplateMatchingParameters:
22 pol: PolarDiffraction2D
23 gen: SimulationGenerator
24 coarse_res: float
25 fine_res: float
26 phase: Phase
27 n_best: int
28 frac_keep: float = None
29 n_keep: int = None
30 simgen_kwargs: dict = field(default_factory=lambda: {**DEFAULT_SIMGEN_KWARGS})
31
32 def __post_init__(self):
33 self.coarse_oris = get_sample_reduced_fundamental(
34 self.coarse_res, point_group=self.phase.point_group
35 )
36 self.fine_oris = get_sample_reduced_fundamental(
37 self.fine_res, point_group=self.phase.point_group
38 )
39
40 self.coarse_sim = self.gen.calculate_diffraction2d(
41 self.phase, self.coarse_oris, **self.simgen_kwargs
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42 )
43 self.fine_sim = self.gen.calculate_diffraction2d(
44 self.phase, self.fine_oris, **self.simgen_kwargs
45 )
46
47 def to_dict(self) -> dict[str]:
48 return {
49 "coarse_resolution": self.coarse_res,
50 "coarse_oris_count": self.coarse_oris.size,
51 "fine_resolution": self.fine_res,
52 "fine_oris_count": self.fine_oris.size,
53 "n_best": self.n_best,
54 "frac_keep": self.frac_keep,
55 "n_keep": self.n_keep,
56 "simulation_generator_parameters": self.compile_simulation_generator_parameters(),
57 "dataset_parameters": self.compile_dataset_parameters(),
58 }
59
60 def compile_simulation_generator_parameters(self) -> dict[str]:
61 return {
62 **self.simgen_kwargs,
63 "accelerating_voltage": self.gen.accelerating_voltage,
64 "approximate_precession": self.gen.approximate_precession,
65 "precession_angle": float(self.gen.precession_angle),
66 "minimum_intensity": self.gen.minimum_intensity,
67 "shape_factor_model": self.gen.shape_factor_model.__name__,
68 }
69
70 def compile_dataset_parameters(self) -> dict[str]:
71 return {
72 "title": self.pol.metadata.General.title,
73 "space_group": str(self.phase.space_group),
74 "phase_name": self.phase.name,
75 "device": "GPU" if self.pol._gpu else "CPU",
76 "num_diffraction_patterns": len(self.pol),
77 }
78
79
80 class TemplateMatchingComparison:
81 def __init__(self, params: TemplateMatchingParameters) -> None:
82 self.params = params
83
84 self._dense_orientation_map = None
85 self._refined_orientation_map = None
86 self._old_orientation_map = None
87 self.dense_runtimes = []
88 self.refined_runtimes = []
89 self.old_runtimes = []
90
91 @property
92 def is_test_complete(self) -> bool:
93 return all(
94 len(times) > 0
95 for times in [
96 self.dense_runtimes,
97 self.refined_runtimes,
98 self.old_runtimes,
99 ]

100 )
101
102 @property
103 def refined_orientation_map(self) -> OrientationMap:
104 if self._refined_orientation_map is None:
105 self._refined_orientation_map, runtime = self._run_tm_refined()
106 self.refined_runtimes.append(runtime)
107 return self._refined_orientation_map
108
109 @property
110 def old_orientation_map(self) -> OrientationMap:
111 if self._old_orientation_map is None:
112 self._old_orientation_map, runtime = self._run_tm_old()
113 self.old_runtimes.append(runtime)
114 return self._old_orientation_map
115
116 @property
117 def dense_orientation_map(self) -> OrientationMap:
118 if self._dense_orientation_map is None:
119 self._dense_orientation_map, runtime = self._run_tm_dense()
120 self.dense_runtimes.append(runtime)
121 return self._dense_orientation_map
122
123 def collect_runtime_data(self, num_runs: int = 1):
124 if num_runs < 1:
125 return
126
127 # Ensure the properties are set as well
128 if not self.is_test_complete:
129 _ = self.refined_orientation_map
130 _ = self.dense_orientation_map
131 _ = self.old_orientation_map
132 tqdm_total = sum(
133 num_runs - len(t)
134 for t in (self.dense_runtimes, self.refined_runtimes, self.old_runtimes)
135 )
136 with tqdm(
137 total=tqdm_total, leave=False, desc="Collect data", position=1
138 ) as pbar:
139 while len(self.dense_runtimes) < num_runs:
140 _, runtime = self._run_tm_dense()
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141 self.dense_runtimes.append(runtime)
142 pbar.update()
143
144 while len(self.refined_runtimes) < num_runs:
145 _, runtime = self._run_tm_refined()
146 self.refined_runtimes.append(runtime)
147 pbar.update()
148
149 while len(self.old_runtimes) < num_runs:
150 _, runtime = self._run_tm_old()
151 self.old_runtimes.append(runtime)
152 pbar.update()
153
154 def _run_tm_refined(self) -> tuple[OrientationMap, float]:
155 ### START OF TIMER
156 start_time = perf_counter_ns()
157 orient = self.params.pol.get_orientation(
158 self.params.coarse_sim,
159 n_keep=None,
160 n_best=self.params.coarse_oris.size,
161 normalize_templates=True,
162 frac_keep=1,
163 )
164 ori_inds = RefinedSimulation2D(
165 orient,
166 self.params.gen,
167 self.params.fine_oris,
168 frac_keep=self.params.frac_keep,
169 n_keep=self.params.n_keep,
170 simgen_kwargs=self.params.simgen_kwargs,
171 )
172 orient_best = self.params.pol.get_orientation(
173 ori_inds,
174 n_keep=None,
175 n_best=self.params.n_best,
176 normalize_templates=True,
177 frac_keep=1,
178 lazy_output=True,
179 )
180 end_time = perf_counter_ns()
181 ### END OF TIMER
182
183 timedelta = end_time - start_time
184
185 return orient_best, timedelta
186
187 def _run_tm_dense(self) -> tuple[OrientationMap, float]:
188 return self._run_tm_old(dense=True)
189
190 def _run_tm_old(self, dense: bool = False) -> tuple[OrientationMap, float]:
191 frac_keep = 1 if dense else self.params.frac_keep
192 n_keep = None if dense else self.params.n_keep
193
194 ### START OF TIMER
195 start_time = perf_counter_ns()
196 orient = self.params.pol.get_orientation(
197 self.params.fine_sim,
198 n_best=self.params.n_best,
199 n_keep=n_keep,
200 frac_keep=frac_keep,
201 normalize_templates=True,
202 )
203 end_time = perf_counter_ns()
204 ### END OF TIMER
205
206 timedelta = end_time - start_time
207
208 return orient, timedelta
209
210 @staticmethod
211 def correlation_score_similarity(
212 ori_map_1: OrientationMap, ori_map_2: OrientationMap
213 ) -> np.ndarray:
214 def similarity(result_1, result_2):
215 _, scores_1, _, _ = result_1.T
216 _, scores_2, _, _ = result_2.T
217 return np.linalg.norm(scores_2 - scores_1)
218
219 return ori_map_1.map(
220 similarity, result_2=ori_map_2, inplace=False
221 ).data.squeeze()
222
223 @staticmethod
224 def orientation_similarity(
225 ori_map_1: OrientationMap, ori_map_2: OrientationMap
226 ) -> np.ndarray:
227 oris_1 = ori_map_1.to_single_phase_orientations()
228 oris_2 = ori_map_2.to_single_phase_orientations()
229 return oris_1.angle_with(oris_2, degrees=True)
230
231 @staticmethod
232 def equality_length(
233 ori_map_1: OrientationMap, ori_map_2: OrientationMap
234 ) -> np.ndarray:
235 # Assume equal correlation score => same simulation
236 def get_inequality_index(result_1, result_2):
237 _, scores_1, _, _ = result_1.T
238 _, scores_2, _, _ = result_2.T
239 eq = scores_1 == scores_2
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240 # if full overlap, argmax would return 0
241 if all(eq):
242 return eq.size / scores_1.size
243 return np.argmax(eq) / scores_1.size
244
245 return ori_map_1.map(
246 get_inequality_index, result_2=ori_map_2, inplace=False
247 ).data.squeeze()
248
249 @staticmethod
250 def equality_length_set(
251 ori_map_1: OrientationMap, ori_map_2: OrientationMap
252 ) -> np.ndarray:
253 def get_equality_set_length(result_1, result_2):
254 _, scores_1, _, _ = result_1.T
255 _, scores_2, _, _ = result_2.T
256 return len(set(scores_1).intersection(set(scores_2))) / scores_1.size
257
258 return ori_map_1.map(
259 get_equality_set_length, result_2=ori_map_2, inplace=False
260 ).data.squeeze()
261
262 def compile_statistics(self) -> dict[str, dict[str, float]]:
263 if not self.is_test_complete:
264 raise Exception(
265 "Tests have not been completed; no statistics to compile"
266 )
267
268 refined_out = {}
269 dense_out = {}
270 old_out = {}
271
272 refined_correlation = self.correlation_score_similarity(
273 self.refined_orientation_map, self.dense_orientation_map
274 )
275 old_correlation = self.correlation_score_similarity(
276 self.old_orientation_map, self.dense_orientation_map
277 )
278
279 refined_out["correlation_mean"] = float(np.mean(refined_correlation))
280 refined_out["correlation_std"] = float(np.std(refined_correlation))
281
282 old_out["correlation_mean"] = float(np.mean(old_correlation))
283 old_out["correlation_std"] = float(np.std(old_correlation))
284
285 refined_orientation = self.orientation_similarity(
286 self.refined_orientation_map, self.dense_orientation_map
287 )
288 old_orientation = self.orientation_similarity(
289 self.old_orientation_map, self.dense_orientation_map
290 )
291
292 refined_out["orientation_mean"] = float(np.mean(refined_orientation))
293 refined_out["orientation_std"] = float(np.std(refined_orientation))
294
295 old_out["orientation_mean"] = float(np.mean(old_orientation))
296 old_out["orientation_std"] = float(np.std(old_orientation))
297
298 refined_out["runtime_mean"] = float(np.mean(self.refined_runtimes))
299 refined_out["runtime_std"] = float(np.std(self.refined_runtimes))
300 refined_out["runtimes"] = self.refined_runtimes
301 refined_out["total_runtime"] = sum(self.refined_runtimes) / 1e9
302 refined_out["runs"] = len(self.refined_runtimes)
303
304 old_out["runtime_mean"] = float(np.mean(self.old_runtimes))
305 old_out["runtime_std"] = float(np.std(self.old_runtimes))
306 old_out["runtimes"] = self.old_runtimes
307 old_out["total_runtime"] = sum(self.old_runtimes) / 1e9
308 old_out["runs"] = len(self.old_runtimes)
309
310 dense_out["runtime_mean"] = float(np.mean(self.dense_runtimes))
311 dense_out["runtime_std"] = float(np.std(self.dense_runtimes))
312 dense_out["runtimes"] = self.dense_runtimes
313 dense_out["total_runtime"] = sum(self.dense_runtimes) / 1e9
314 dense_out["runs"] = len(self.dense_runtimes)
315
316 refined_equality_length = self.equality_length(
317 self.refined_orientation_map, self.dense_orientation_map
318 )
319 refined_equality_length_set = self.equality_length_set(
320 self.refined_orientation_map, self.dense_orientation_map
321 )
322
323 old_equality_length = self.equality_length(
324 self.old_orientation_map, self.dense_orientation_map
325 )
326 old_equality_length_set = self.equality_length_set(
327 self.old_orientation_map, self.dense_orientation_map
328 )
329
330 refined_out["equality_length_mean"] = float(np.mean(refined_equality_length))
331 refined_out["equality_length_std"] = float(np.std(refined_equality_length))
332 refined_out["equality_length_set_mean"] = float(
333 np.mean(refined_equality_length_set)
334 )
335 refined_out["equality_length_set_std"] = float(
336 np.std(refined_equality_length_set)
337 )
338
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339 old_out["equality_length_mean"] = float(np.mean(old_equality_length))
340 old_out["equality_length_std"] = float(np.std(old_equality_length))
341 old_out["equality_length_set_mean"] = float(np.mean(old_equality_length_set))
342 old_out["equality_length_set_std"] = float(np.std(old_equality_length_set))
343
344 return {
345 "dense": dense_out,
346 "refined": refined_out,
347 "old": old_out,
348 }

A.5 run_tests.py

The file which was actually run. Parameter sweeps, optimization with Scipy, and
data collection and storage to .json-files.

1 from simulation_comparison import (
2 TemplateMatchingComparison,
3 TemplateMatchingParameters,
4 )
5 from get_data import get_real_data, get_simulated_data, ROOT
6 from diffsims.generators.simulation_generator import SimulationGenerator
7 from orix.crystal_map import Phase
8 import json
9 from hyperspy import api as hs

10 from tqdm import tqdm
11 from glob import glob
12 from pathlib import Path
13 from orix.sampling import get_sample_reduced_fundamental
14
15 RESULTS = ROOT / "results"
16 DATA = ROOT / "data"
17
18
19 def store_test_results(comment: str, data: TemplateMatchingComparison):
20 res = data.compile_statistics()
21 res.update(data.params.to_dict())
22 res["comment"] = comment
23
24 files = (Path(file) for file in glob(str(RESULTS / "*.json")))
25 filenums = (int(file.with_suffix("").name) for file in files)
26 max_filenum = max(filenums, default=0)
27 filename = RESULTS / f"{max_filenum + 1:06}"
28
29 if not filename.parent.exists():
30 filename.parent.mkdir()
31 with open(filename.with_suffix(".json"), "w") as f:
32 json.dump(res, f, indent=4)
33
34
35 def main():
36 hs.preferences.General.show_progressbar = False
37 hs.set_log_level("ERROR")
38
39 phase = Phase.from_cif(str(DATA / "Cu.cif"))
40 gen = SimulationGenerator(
41 minimum_intensity=1e-20, precession_angle=1, approximate_precession=True
42 )
43
44 oris = get_sample_reduced_fundamental(1, point_group=phase.point_group)
45 data = get_simulated_data(phase, oris)
46 # data = get_real_data()
47 print("Starting azimuthal integration")
48 pol = data.get_azimuthal_integral2d(npt=100)
49 pol.compute()
50 print("Starting sweep")
51 for n_keep in tqdm(
52 [100, 200, 300, 500, 1000, 1500, 2000], desc="n_keep", position=0
53 ):
54 params = TemplateMatchingParameters(
55 pol, gen, 2, 0.4, phase, 10, n_keep=n_keep
56 )
57 comp = TemplateMatchingComparison(params)
58 comp.collect_runtime_data(6)
59 store_test_results("n_keep sweep", comp)
60 for coarse_res in tqdm(
61 [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0], desc="coarse_res", position=0
62 ):
63 params = TemplateMatchingParameters(
64 pol, gen, coarse_res, 0.5, phase, 10, n_keep=400
65 )
66 comp = TemplateMatchingComparison(params)
67 comp.collect_runtime_data(6)
68 store_test_results("coarse_resolution sweep", comp)
69 for fine_res in tqdm(
70 [0.2, 0.3, 0.45, 0.5, 0.8, 1.0, 1.5], desc="fine_res", position=0
71 ):
72 params = TemplateMatchingParameters(
73 pol, gen, 2, fine_res, phase, 10, n_keep=400
74 )
75 comp = TemplateMatchingComparison(params)
76 comp.collect_runtime_data(6)
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77 store_test_results("fine_resolution sweep", comp)
78
79
80 def optimize():
81 hs.preferences.General.show_progressbar = False
82 hs.set_log_level("ERROR")
83
84 phase = Phase.from_cif(str(DATA / "Ag.cif"))
85 gen = SimulationGenerator(
86 minimum_intensity=1e-20, precession_angle=1, approximate_precession=True
87 )
88
89 data = get_real_data()
90 print("Starting azimuthal integration")
91 pol = data.get_azimuthal_integral2d(npt=100)
92 pol.compute()
93 print("Starting optimization")
94
95 from scipy.optimize import minimize
96 import numpy as np
97
98 def to_optimize(params):
99 coarse_res, fine_res, n_keep = params

100 n_keep *= 100
101 n_keep = int(n_keep)
102 params = TemplateMatchingParameters(
103 pol, gen, coarse_res, fine_res, phase, 10, n_keep=n_keep
104 )
105 comp = TemplateMatchingComparison(params)
106 comp.collect_runtime_data(6)
107 store_test_results("optimization", comp)
108
109 # Quantify the difference
110 res = comp.compile_statistics()
111 runtime = res["refined"]["runtime_mean"] / 10
112 correlation = res["refined"]["correlation_mean"] / 50
113 orientation = res["refined"]["orientation_mean"] / 10
114 equality = 1 - res["refined"]["equality_length_set_mean"] / 10
115 return np.linalg.norm([runtime, correlation, orientation, equality])
116
117 opt = minimize(to_optimize, [2, 0.2, 5])
118 print(opt)
119
120
121 if __name__ == "__main__":
122 main()
123 # optimize()
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APPENDIX

B

SUPPLEMENTARY FIGURES

This chapter contains supplementary figures for this thesis.
The first section contains twin misorientation plots, similar to Figure 4.1.2, for

scans 5 and 6 of the Ag sample. The second section contains complete results for
the TM pre-selection algorithm.

B.1 Twin Misorientation Figures
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Figure B.1.1: Twin misorientation of scan 5, which had the largest deviation from
the expected (11.06◦). For more details on the figure layout, see Figure 4.1.2.
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Figure B.1.2: Twin misorientation of scan 6, the scan which conformed the best
with the expected (0.97◦ off). For more details on the figure layout, see Figure
4.1.2.

B.2 Template Matching Pre-selection Algorithm Re-
sults

This section contains plots of the results from testing the new TM pre-selection
algorithm against the current and no filtering. To fit more plots per page, they are
grouped according to the parameter along the x-axes. This makes them small, so a
print might not show all details, but the pdf is zoomable to any desired level.
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Figure B.2.1: n_keep sweep. (a) Scan 1. (b) Copper. (c) Graphite. (d) AuAgTe4.
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Figure B.2.2: Coarse resolution sweep. (a) Scan 1. (b) Copper. (c) Graphite. (d)
AuAgTe4.

114



103 104 105

fine_oris_count

100

101

102
runtime [s]

103 104 105

fine_oris_count

100

0

100

200

correlation [-]

103 104 105

fine_oris_count

0

10

20

orientation [deg]

103 104 105

fine_oris_count

0.4

0.6

0.8

1.0

equality_length_set [-]

Scan 1

refined
old
dense

(a)

103 104

fine_oris_count

101

runtime [s]

103 104

fine_oris_count

0.0

0.1

0.2

0.3
correlation [-]

103 104

fine_oris_count

0

10

20

30
orientation [deg]

103 104

fine_oris_count

0.6

0.8

1.0

equality_length_set [-]

Simulated data: Cu

refined
old
dense

(b)

104 105

fine_oris_count

101

102

runtime [s]

104 105

fine_oris_count

0.0

0.2

0.4

correlation [-]

104 105

fine_oris_count

0

50

100
orientation [deg]

104 105

fine_oris_count

0.0

0.5

1.0

equality_length_set [-]

Simulated data: C

refined
old
dense

(c)

104 105

fine_oris_count

101

102

103

runtime [s]

104 105

fine_oris_count

0.2

0.0

0.2

0.4

correlation [-]

104 105

fine_oris_count

20
0

20
40
60

orientation [deg]

104 105

fine_oris_count

0.00

0.25

0.50

0.75

1.00

equality_length_set [-]

Simulated data: AuAgTe4

refined
old
dense

(d)

Figure B.2.3: Fine resolution sweep. (a) Scan 1. (b) Copper. (c) Graphite. (d)
AuAgTe4.
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APPENDIX

C

CODE CONTRIBUTIONS

This chapter lists the contributions to open-source software made as part of this
project.

C.1 Pyxem
https://github.com/pyxem/pyxem/pull/1058 Fix an off-by-one error in azimuthal

integration, dropping the final row and column from the original data.

https://github.com/pyxem/pyxem/pull/1060 Properly support azimuthal range
in azimuthal integration. This is important for a consistent definition of the
in-plane angle when template matching.

https://github.com/pyxem/pyxem/pull/1061 Expands upon the new template
matching result class, by implementing multiple plotting utility functions. Of
note is the to_marker function, which generates markers to add to a plot
representing the simulated diffraction spots.

https://github.com/pyxem/pyxem/pull/1062 Implemented some background sub-
traction methods for polar data, specifically radial mean and radial percentile.

https://github.com/pyxem/pyxem/pull/1076 In favour of https://github.com/
pyxem/pyxem/pull/1061

Additionally contributed with discussions and code review.

C.2 Orix
https://github.com/pyxem/orix/pull/469 Fix a bug in phase initialization, where

atom positions were not expressed in the correct basis.

C.3 Diffsims
https://github.com/pyxem/diffsims/pull/205 Contributed to large restructur-

ing of simulations, with code review, discussions, and testing. See also https:
//github.com/pyxem/diffsims/pull/201.
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C.4 Hyperspy
https://github.com/hyperspy/hyperspy/pull/3362 Fix discrepancy in axes ticks

between plotting a signal and plotting several images.
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EMC ABSTRACT

Below is the abstract submitted and accepted as an oral presentation during the
European Microscopy Congress 2024, to be held by my supervisor Antonius van
Helvoort.
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Scanning precession electron diffraction tilt series for orientation analysis 

 

A.T.J. van Helvoort1, V.J. Femoen1, A.C. Mathisen1, K.E. Aune1, E.F. Christiansen1, I.-E. Nylund, T. 
Bergh1,3, R. Bjørge1,4  
1 Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.  
2 Department of Materials Science and Engineering, NTNU, Trondheim, Norway. 
3 Department of Chemical Engineering, NTNU, Trondheim, Norway. 
4 Materials and Nanotechnology, SINTEF Industry, Trondheim, Norway.  

 
Identifying the orientation of crystalline phases at the nanometer scale is relevant for understanding 

materials properties. Here we will demonstrate that collecting and processing scanning precession 

electron diffraction (SPED) datasets collected at a few different specimen tilts can improve the 

accuracy of template-based orientation mapping [1,2]. In addition, the tilt series allows complete 

determination of the relation between the specimen crystallographic setting and the goniometer 

axes. This insight, combined with the orientation map, can be used in a convenient semi-automatic 

approach to predict the tilts required to reach a target specimen orientation for further structure 

analysis. 

 

SPED of different polycrystalline systems (Si, Ag, and oxides) were recorded in a JEOL JEM2100F with a 

NanoMegas DigiStar precession system and a Quantum Detectors MerlinEM direct electron detector. 

Scans were taken over areas up to 15 x 15 µm containing 10’s of grains using a nominal precession 

angle of 1˚. Tilts series using one or two axes contained 3-5 tilts in the range 0 - 20˚ from the initial 

flat specimen position. For data analysis and visualization, we used primarily the open-source python 

library pyxem [3]. 

 

The indexed frames, taken at different tilts, were compared, after manually aligning the frames, using 

the set tilt as expected misorientation. Together with considering as well the best 5 to 25 normalized 

cross correlations between the experimental patterns and the simulated pattern bank, orientation-

dependent misindexations can be identified and the orientation estimate refined. Compared to the 

standard approach of collecting SPED using only a single specimen tilt and the best correlation scores 

for each pattern, the tilt series approach reduces indexation variations within grains. This gives a 

more uniform representation of the grains in the final orientation maps.  

 

The accuracy of the refined orientation analysis can be determined with a known orientation relation, 

here for example Σ3 twins in face-centered cubic and diamond crystal systems. The misorientation 

deviation between the measured and expected misorientation between twin domains is used as the 

metric [4]. The found accuracy is below the used precession angle.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The refined orientation mapping based on a small tilt series has a further practical use. From a single  

axis tilt series, the position of the two perpendicular tilt axes can be determined. As the tilt series is 

small and over a limited angular range, sufficient probe positions must be used to accurately 

determine the tilt axis position. Misaligned between frames and areas with overlap, such as grain 

boundary areas, were excluded through thresholding. A second tilt axis series or grains correctly 

indexed in different frames can be used to verify the found axes positions. Using the determined 

orientation of a grain together with the deduced axes positions, the tilts to reach a target zone for a 

grain can be predicted. Based on tests on different TEMs and holders, the target zone was within 2˚. 

In the tests the specimen was placed at approximately the same rotation relative to the holder axes. 

However, should the specimen be differently placed compared to where the orientation was mapped 

out, an additional transformation matrix can be included in the navigation tool to recalculate the 

target tilts for the given specimen placing. This correction is based on a manual estimation of 

misorientation from the tilts to the actual target zone, diffraction (using the Laue circle), or imaging 

(assuming in-plane rotation).   

 

 

To conclude, template matching based on multiple SPED scans at a few varying specimen tilts 

improves the accuracy and the final orientation visualization. In addition, the approach is used to 

make a practical navigator tool that widens to use of template matching results for subsequent 

lattice imaging and further crystallographic analysis. With the advancements in automatic scan 

controls, faster detectors and optimized transparent open-source routines, the benefits gained will 

more than compensate for the drawbacks of acquiring and processing multiple scans.  
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