
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Fanny Øverbø Næss

Exact inference conditioned on the
selection event

Master’s thesis in Applied Physics and Mathematics
Supervisor: Øyvind Bakke
June 2024

Fanny Øverbø Næss

Exact inference conditioned on the
selection event

Master’s thesis in Applied Physics and Mathematics
Supervisor: Øyvind Bakke
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Preface

This thesis concludes the course TMA4900, and completes my M. Sc. degree in Ap-
plied Physics and Mathematics with specialization in Industrial Mathematics. The
work for this thesis was carried out at the Department of Mathematical Sciences
during the spring semester of 2024.

I would like to direct a huge thanks to Øyvind Bakke for excellent supervi-
sion and clear guidance throughout the process of writing this thesis. I extend my
thanks to Mette Langaas for illuminating the topic of selective inference in the
course MA8701, which led me to the topic of this thesis.

Lastly, I would like to express my gratitude to Mathias Dåsvand for valuable
and insightful academic discussions throughout the last years.

Fanny Øverbø Næss
Trondheim, Norway
June, 2024

iii

Abstract

Classical statistical inference tools rely on the assumption that the models and
hypotheses to be tested are specified prior to data exploration. It is common prac-
tice to choose a model by inclusion of the variables that are observed to have a
strong association with the response variable. In order to perform valid inference
after model selection has been carried out on the same dataset, the calculation
of p-values and confidence intervals must be adjusted in order to account for the
stochastic aspect of the events leading to the selection of the particular model.

In this thesis we explore a framework for post-selection inference based on
conditioning on polyhedral selection events. This approach allows us to use the
same dataset for model selection and corresponding inferences. The method is
in closed form, and yields exact p-values and confidence intervals in the case of
Gaussian errors. We introduce the necessary theoretical foundation for the poly-
hedral inference method, and derive selection adjusted p-values and confidence
intervals for coefficients in the multiple linear regression model.

A central criterion of the polyhedral method is that the model selection pro-
cedure that has been carried out can be formulated in its entirety as a polyhedral
statistical event. Forward stepwise selection with a fixed number of steps and the
lasso, when used as a model selector with fixed λ, fulfill this criteria. We derive the
general schemes for construction of polyhedral selection events for forward selec-
tion and the lasso. In order to clarify the applications of the polyhedral method for
inference after model selection by these selection procedures, we implement the
methods in R and present examples of the resulting selection adjusted confidence
intervals. We expand the method by omitting the conditioning on the observed
sign pattern, resulting in shorter confidence intervals with the same coverage
probability.

v

Sammendrag

Klassiske statistiske verktøy for inferens bygger på antagelsen om at modellene
som tilpasses og hypotesene som testes er forhåndsspesifiserte. I praksis er det
vanlig at en modell velges ved å inkludere de forklaringsvariablene som har en
observert sterk sammenheng med responsvariabelen. For å utføre gyldig inferens
etter modellseleksjon på samme datasett, er det nødvendig å tilpasse utregningen
av p-verdier og konfidensintervaller slik at det stokastiske aspektet av hendelsene
som har ført til valget av den gitte modellen tas hensyn til.

I denne oppgaven utforsker vi et rammeverk for gyldig inferens etter mod-
ellseleksjon basert på betinging på polyhedrale seleksjonshendelser. Denne til-
nærmingen tillater bruk av det samme datasettet til modellseleksjon og tilhørende
inferens. Metoden er på lukket form, og gir eksakte p-verdier og konfidensinter-
valler ved normalfordelte residualer. Vi introduserer det nødvendige teoretiske
grunnlaget for å bruke polyedermetoden, og utleder seleksjonsjusterte p-verdier
og konfidensintervaller for regresjonskoeffisienter i lineære modeller.

En nødvendig forutsetning for polyedermetoden er at modellseleksjonspro-
sedyren som har blitt utført kan formuleres i sin helhet som en statistisk hende-
lse på polyederform. Variabelseleksjonsmetodene forlengs stegvis seleksjon med
fiksert antall steg og lasso med fiksert λ oppfyller dette kriteriet. Vi utleder gener-
elle metoder for konstruksjon av polyhedrale seleksjonshendelser for forlengs seleks-
jon og lasso. For å klargjøre anvendelsen av polyedermetoden for gyldig inferens
etter seleksjon ved disse metodene implementerer vi egen kode i R og presenterer
eksempler på resulterende seleksjonsjusterte konfidensintervaller. Vi generaliserer
også metoden ved å ekskludere betinging på observert fortegnsmønster, noe som
resulterer i kortere konfidensintervaller med samme dekningssannsynlighet.

vii

Contents

Preface . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xi
1 Introduction . 1
2 General Setting . 3

2.1 Multiple linear regression . 3
2.1.1 The multiple linear regression model 3
2.1.2 Least squares estimation . 3

2.2 Model selection . 4
2.2.1 Subset selection . 4
2.2.2 Shrinkage methods . 5

2.3 Inference after variable selection in the linear model 6
3 Exact inference by the polyhedral lemma 9

3.1 Conditional inference . 9
3.2 Inference conditional on polyhedral constraints 10

3.2.1 The polyhedral lemma . 11
3.2.2 Deriving the polyhedral lemma 11
3.2.3 The selection adjusted test statistic 12
3.2.4 Generalization to all sign patterns 15
3.2.5 Selection adjusted confidence intervals 15

4 Applications of polyhedral inference . 17
4.1 Forward selection . 17

4.1.1 Introduction to forward selection 18
4.1.2 Hypothesis testing after forward selection 18
4.1.3 Polyhedral selection events for forward selection 22
4.1.4 Example of polyhedral inference for forward selection 24

4.2 Lasso regression . 28
4.2.1 Introduction to the lasso for linear models 28
4.2.2 Polyhedral selection event for the lasso 29
4.2.3 Extending conditioning to a union of lasso polyhedra 33
4.2.4 Examples of polyhedral inference for lasso 35

5 Discussion . 39

ix

x Contents

5.1 Properties of selection adjusted confidence intervals 39
5.1.1 Width of selection adjusted confidence intervals 39
5.1.2 Unbiased confidence intervals 40

5.2 Generalizations . 40
5.2.1 Extension to unknown variance 40
5.2.2 Further extensions . 40

5.3 Related approaches to post-selection inference 41
5.3.1 The covariance test . 41
5.3.2 Simultaneous inference . 41

6 Conclusions and further work . 43
Bibliography . 45
A R code . 47

A.1 Simulating p-values for forward selection 47
A.2 Simulating type I error for forward selection 48
A.3 Polyhedral inference for forward selection 49

A.3.1 Implemented functions . 49
A.3.2 Forward selection example on simulated data 53

A.4 Polyhedral inference for the lasso . 59
A.4.1 Implemented functions . 59
A.4.2 Lasso examples on simulated data 62

Figures

3.1 A geometric interpretation of the stated equivalence of the events
{Ψy ≤ b} = {V−(z) ≤ ηT y ≤ V+(z)} in the polyhedral lemma in
the case of n = 2, σ2 = 1 and ‖η‖2 = 1. Inpired by Lee et al.
(2016), and recreated from Næss (2023). 13

3.2 Illustration of how a 1−α confidence interval [L, U] for a parameter
β is obtained from its truncated Gaussian test statistic. Here Fβ is

an abbreviation of F
[V−s (z),V

+
s (z)](η

T y)

β ,σ2‖η‖22
. 16

4.1 Quantile-quantile plot of 1000 simulations of the χ2-statistic, R1, j .
Recreated after inspiration from Tibshirani (2016), and adapted
from previous figure from Næss (2023). 20

4.2 Type I errors from significance test of the variable entered at the
first step of forward selection for an increasing number of candid-
ate predictors. For the naive test, the type I error increases lin-
early, while the selection adjusted test from the polyhedral infer-
ence framework stays at the nominal type I error level of α= 0.05. 21

4.3 Comparison of confidence intervals for coefficients of a model chosen
forward selection with n = 80, p = 3 and β = (0.6,0.3, 0)T . The
dashed lines indicates the true signal. Selection adjusted confid-
ence intervals conditioned on {Â= A, ŝ= s} and {Â= A} are shown
alongside unadjusted confidence intervals. The difference in width
of the intervals decreases as the magnitude of the underlying signal
β j decreases. 27

4.4 Geometric interpretation of the lasso. The constraint region |β1|+
|β2| ≤ t is marked in red, and the contours of the RSS in blue.
Inspired by and drawn after Figure 6.7 of James et al. (2013). . . . 30

4.5 Illustration of the partition of the R2 sample space according to
model and sign pattern by the lasso for n= 2 and p = 3. Here x1 =
(
p

2
2 ,
p

2
2)

T , x2 = (−1, 0)T , and x3 = (0, 1)T . Adapted and drawn
with inspiration from Lee et al. (2016) and Kivaranovic and Leeb
(2021). 34

xi

xii Figures

4.6 Comparison of confidence intervals for model coefficients in a lin-
ear model chosen by the lasso with fixed λ = 12, conditioned on
the model and signs,{Â= A, ŝ= s} and only the model {Â= A}. The
simulated data has n= 100 and p = 16. Formatting inspired by Lee
et al. (2016). The dashed line shows the true signal. The blue arrow
indicates that the lower bound of the confidence interval cannot be
computed, and defaults to −∞. 36

4.7 Comparison of confidence intervals for model coefficients in a lin-
ear model chosen by the lasso with fixed λ = 12, conditioned on
the model and signs{Â= A, ŝ= s} and only the model {Â= A}. The
simulated data has n= 25 and p = 25. Formatting inspired by Lee
et al. (2016). The dashed line shows the true signal. The blue arrow
indicates that the lower bound of the confidence interval cannot be
computed, and defaults to −∞. 37

Chapter 1

Introduction

Classical statistical theory assumes models are specified prior to data exploration
and inference, which is often not the case in the practice of modern statistics. To
address this, several post-selective inference frameworks have been researched in
recent years, with the goal of providing valid inferences after data-driven model
selection. In this thesis we focus on an approach to post-selection inference that
conditions on the model choice, which results in exact inferences after adaptive
model selection.

The topic of post-selection inference is linked to Goal 3 of the United Nations
Sustainable Development Goals (SDGs), which aims to ensure healthy lives and
promote well-being for people of all ages (United Nations 2015). In medical re-
search, statistical inference is important when the question of interest is the iden-
tity of the features, rather than prediction of the response. In biomarker studies,
for example, the goal is to identify which genes are related to certain diseases.
Accurate statistical inference in these studies can aid in the discovery of critical
biological markers, guiding effective treatment and prevention strategies.

The use of classical statistical inference techniques on models chosed adapt-
ively based on data exploration can lead to biases in parameter estimation and
overreporting of significant findings. This can compromise the replicability of sci-
entific studies and lead to inaccurate findings. In the worst case, this could have
negative implications for treatment strategies in the medical field. Replicability
is generally considered important in the statistical community because it ensures
that findings are reliable (Kuchibhotla et al. 2022). Promoting replicability and the
use of properly adjusted statistical inference methods also align with Goal 17.6,
which emphasizes the importance of knowledge sharing and cooperation for ac-
cess to science, technology, and innovation (United Nations 2015). The use of a
statistical framework that accounts for adaptive selection promotes transparency
and collaboration in science and technology.

We aim our focus towards the polyhedral framework for inference after vari-
able selection in the multiple linear regression model with Gaussian errors. In
Chapter 2 we recall the multiple linear regression model and least squares estim-
ation of model coefficients. The need for model selection in the linear regression

1

2 Chapter 1: Introduction

context is briefly discussed, and we describe two classes of model selection meth-
ods, subset selection methods and shrinkage methods. In Chapter 3, we introduce
the theoretical foundation for the polyhedral approach to inference after adaptive
model selection. We explain the general idea behind conditional inference and
focus on the special case of inference conditional on constraints that can be for-
mulated in polyhedral form. A central result in this framework is the Polyhedral
Lemma, which is used to derive selection adjusted tests and confidence intervals
with 1−α coverage conditional on the selected model and the signs of the model
coefficients. The approach is generalized to conditioning on only the model, res-
ulting in shorter confidence intervals with the same coverage. Chapter 4 describes
the application of the polyhedral inference framework from Chapter 3 to models
selected by forward stepwise selection and the lasso with fixed λ. To enhance un-
derstanding of the theoretical results, we implement these schemes in R, along
with the necessary functionality to perform selection adjusted tests and calcu-
late confidence intervals conditional on the constructed polyhedral constraints.
The code is used to produce examples that illustrate the need for post-selection
inference techniques, and demonstrate the properties of the selection adjusted
confidence intervals.

Chapter 2

General Setting

2.1 Multiple linear regression

2.1.1 The multiple linear regression model

We assume that a dataset consisting of a response variable y and predictor matrix
X is obtained by random sampling from a population. Throughout this thesis we
restrict our focus to the classical normal linear regression setting. The response
variable y ∈ Rn and design matrix of predictors X = (x1, . . . ,xp) ∈ Rn×p are as-
sumed to have the relation

y= Xβ + ε, ε ∼ N(0,σ2 I). (2.1)

Here β = (β1, . . . ,βp)T ∈ Rp is the vector of unkown regression coefficients, and
the variance σ2 > 0 is assumed known. Equivalently to this formulation of the
linear model is that the response y is drawn from a multivariate normal distribu-
tion

y∼ N(µ,σ2 I), (2.2)

where µ = Xβ is a linear function of the predictors. The design matrix X is as-
sumed to be fixed.

2.1.2 Least squares estimation

The regression coefficients β = (β1, . . . ,βp)T of the linear model quantify the as-
sociation between the variables X = (x1, . . . ,xp) and the response y. A regression
coefficient β j is interpreted as the average effect a unit increase in x j has on y
when holding all other predictors fixed (James et al. 2013). The regression coeffi-
cients are unknown, and need to be estimated in order for predictions to be made
from the linear model (2.1) by ŷ = X β̂ , where β̂ are the estimated regression
coefficients. This is done by minimizing the residual sum of squares (RSS)

RSS=
n
∑

i=1

(yi − ŷi)
2,

3

4 Chapter 2: General Setting

which can also be formulated as

RSS(β) = (y− Xβ)T (y− Xβ). (2.3)

The RSS is a quadratic function of β for which there always exists a minimizer. As-
suming that X has full rank, rank X = p, this minimizer is unique. We differentiate
(2.3) with respect to β

∂ ((y− Xβ)T (y− Xβ))
∂β

= −2X T (y− Xβ)

∂ 2((y− Xβ)T (y− Xβ))
∂β∂β T = −2X T X

(Hastie et al. 2009). By setting the first derivative to zero we obtain the unique
least squares solution

β̂ = (X T X)−1X T y. (2.4)

2.2 Model selection

In cases where we have many observations compared to predictors, n � p, the
least squares estimates tend to give a good model fit when the response and the
predictors are linearly related. In this case, the full least squares model tends to
have estimates with low variance, and good prediction accuracy (James et al.
2013). When it is not the case that the number of observations is much larger
than the number of predictors, the full least squares model (2.1) tends to have
high variance, leading to a poor prediction abilities. In the case where we have
fewer observations than predictors, n < p, the matrix X no longer has full rank,
and there no longer exists a unique solution to the least squares problem. Then
there is an infinite set of solutions to the least squares problem.

All least squares estimates β̂ = (β̂1, . . . , β̂p)T are typically nonzero (Hastie et
al. 2015). While it is not impossible for all predictors in the dataset to be associated
with the response, it is more often the case that only a subset of the predictors
are relevant for predicting the response (James et al. 2013). It is of interest to
determine a subset of the variables to be included in a linear model, in order
to improve the prediction accuracy and interpretability of the linear model. We
briefly discuss two well known categories of model selection methods, the subset
selection approach and shrinkage methods.

2.2.1 Subset selection

Subset selection methods use least squares to fit a model to a subset of the can-
didate predictors. The simplest form of this is the best subset selection method,
in which all possible submodels are fitted and evaluated by a model selection cri-
terion. The Akaike Information Criterion (AIC) and adjusted R2 are popularly used
to evaluate the model fit. While this guarantees that the chosen model is the best

Chapter 2: General Setting 5

fit to the data according to the selected criterion, there are several drawbacks of
this approach to model selection.

There are in total 2p models that contain subsets of p predictors (James et
al. 2013). For a large number of predictors p, the best subset selection method
is computationally heavy, and even infeasible for p > 40 (James et al. 2013).
Additionally, when searching through a very large number of candidate models,
we are likely to find an alternative that fits the data well. However, as the data is
a sample from a larger population that we wish to infer properties about or make
predictions on, we are likely to be overfitting to the realized sample of the data
used to choose the model.

Selection procedures that explore a more restricted set of candidate models
are often preferred to the best subset selection method. Stepwise selection is a
classical approach to variable selection, and does not require nearly as much com-
putation as best subset selection. In the forward selection procedure, our starting
point is the null model containing only the intercept. At each step, the variable
that lowers the model RSS the most out of all the available variables in the dataset
is chosen to enter the model. Without an implemented stopping rule, the forward
selection procedure will keep going until all the predictors are added when the
RSS is used as the model selection criterion. For p = 20, the best subset selection
method fits more than 1 million models, while the forward stepwise selection
method only requires 211 models to be fitted in the absence of an implemented
stopping rule (James et al. 2013).

A drawback of the forward stepwise selection method for variable selection
is that does not guarantee that the best model, according to the chosen selection
criterion, is chosen out of all the 2p possible candidate models. Yet, it tends to
perform well in practice, and is still used in practice and taught in introductory
statistics courses. Backward stepwise selection is similar to the forward selection
method, and takes the full least squares model containing all candidate predict-
ors as its starting point, and iteratively removes predictors to end up with a good
model. Like the forward selection procedure, backward selection does not guar-
antee that the best candidate model is chosen.

All forms of stepwise selection are discrete variable selection procedures, and
tend to suffer from high variances of the estimates of the regression coefficients. A
class of model selection methods that do not share this issue is shrinkage methods,
which perform variable selection continuously.

2.2.2 Shrinkage methods

Shrinkage methods fit a model containing all p candidate predictors with con-
straints on the coefficient estimates. The constraints shrink the coefficients to-
wards 0, which can reduce their variance significantly (James et al. 2013). Shrink-
age methods perform well in cases of more predictors than observations, p > n,
because they sacrifice some bias in exchange for a large decrease in variance. The
two most known shrinkage techniques are ridge regression and the lasso.

6 Chapter 2: General Setting

The shrinkage method that we will focus on in this thesis is the least absolute
shrinkage and selection operator, the lasso. The lasso fits a least squares model to
the data with an additional penalty on the size of the regression coefficients. This
shrinks several of the regression coefficients to zero, making the lasso a model
selection tool. The lasso performs particularly well on sparse data, where many
features may be irrelevant and should be excluded from the model.

2.3 Inference after variable selection in the linear model

It is often of interest to determine the statistical strength of the variables included
in a model, and form confidence intervals for the model effects. Clearly, model
selection procedures are necessary in order to obtain interpretable models that fit
the data well. Through the use of adaptive variable selection procedures in search
for an interesting model with the most significant effects included, we are “cherry
picking” for the strongest relationships between the predictors and the response
(Taylor and Tibshirani 2015). By the nature of most model selection methods,
the variables that are chosen to enter the model tend to be the significant ones,
leading to overfitting on the realized data sample from the population we wish to
infer properties about (Lee et al. 2016). A much explored topic in recent statistical
literature is how to perform valid inferences after model selection. While there is
no complete and unified framework for post-selection inference, there are several
well-known methods for avoiding overly optimistic inferences when models are
chosen on the basis of the realized observations.

One of the most widely used methods for obtaining valid inferences after
model selection in statistics and machine learning is sample splitting. As the name
suggests, the data is split into a set of training data used to fit the model, and a
set of test data to assess the model. An advantage of sample splitting compared
to more restrictive methods is that it imposes no restrictions on the selection pro-
cedures used, since only the training data is used to choose the model. Sample
splitting provides valid inferences after model selection regardless of the nature
of the selection procedure. The resulting confidence intervals are at most

p
2 times

wider than intervals ignoring the model selection (Kuchibhotla et al. 2022). A dis-
advantage of data splitting is that it results in a loss of test power, especially in
cases where the number of observations is small. Another argument used against
sample splitting is that the model choice depends on the particular observed split
of the data. Fithian et al. (2014) argues that the inferences from data splitting
are valid only if the first data split attempt is used (Lee et al. 2016). In practice,
multiple splits resulting in different models might be tested in order to find a good
fit to the data, which violates this criteria. Simply put, sample splitting is an ef-
fective technique for obtaining valid inferences after model selection, but it does
not cover all our needs for post-selection inference tools.

Another approach to post-selection inference is to condition p-values and con-
fidence intervals on the model selection procedure directly. In this way, the entire
dataset can be used for both model selection and inference. In the next chapter, we

Chapter 2: General Setting 7

introduce the idea behind the conditional inference approach, and describe the
polyhedral inference framework, in which the selection events can be described
by a set of linear constraints on y.

Chapter 3

Exact inference by the polyhedral
lemma

In this chapter we introduce the necessary theoretical foundation for the relatively
recent polyhedral approach to inference after adaptive model selection. In Section
3.1, we elaborate on the general idea behind the conditional inference approach.
In Section 3.2, we aim our focus towards inference conditional on constraints on
polyhedral form. This special case of conditional inference has several desirable
properties. A remarkable property of the polyhedral inference framework is that
it is a closed form method. The resulting p-values from the polyhedral method
are exact, meaning that they are uniformly distributed when the null hypothesis
is true. This approach to post-selection inference allows us to perform both model
selection and inference on the entire dataset.

We give a comprehensive derivation of the polyhedral lemma, and elaborate
on how to apply the result to construct a selection adjusted test statistic. We gener-
alize the construction of this selection adjusted test statistic to include all possible
sign patterns. Lastly, we specify how to invert the test statistic, giving a selection
adjusted confidence interval for the model effects to be tested.

3.1 Conditional inference

Conditional inference is an approach to post-selective inference in which the con-
structed hypothesis tests and confidence intervals are conditioned on the selection
of the model. We consider the linear regression setting from Section 2.1. The most
common inference in question is the significance testing and forming of confid-
ence intervals for the regression coefficients. In a classical setting in which the
model to be tested is specified beforehand, we can expect that requiring

P
�

β j ∈ CI j

�

≥ 1−α

to be fulfilled generally yields valid p-values and confidence intervals with 1 −
α coverage. However, when a linear model has been chosen through adaptive

9

10 Chapter 3: Exact inference by the polyhedral lemma

selection procedures, the p-values have undesired frequency properties. They tend
to be significant, and their corresponding confidence intervals tend to not have
the reported coverage whenever classical tests are used post-selection without
accounting for selection.

Let A = { j : β j 6= 0} ⊂ {1, . . . , p} represent a candidate model. We denote
the particular model selected by the selection procedure as Â. The idea of the
conditional inference approach is to require that the confidence intervals must be
required to have 1−α coverage conditional on the selected model Â,

P
�

β j ∈ CI j | Â= A
�

≥ 1−α (3.1)

(Kuchibhotla et al. 2022). Achieving this is feasible only when the model selection
is carried out through a well-defined procedure that can be fully specified as a
statistical event. The selection event {Â = A} is the set of all values of y that
would yield the model Â with the selection procedure in question. In order to
obtain a confidence interval with conditional coverage such as in (3.1), we aim to
characterize the distribution of

ηT y | {Â= A},

where η ∈ Rn is a linear contrast vector specifying a direction of interest. The
submatrix containing the columns specified by the set A is denoted XA = (x j , j ∈
A). Generally, we are interested in obtaining inference of the the β j included
in the model. We have that ηTµ = β j when η = XA(X T

A XA)−1e j , where e j =
(0,0, . . . , 1, . . . , 0)T is the basis vector where all components are zero except for
the j-th component, which is 1. An unbiased estimator of ηTµ= β j is ηT y= β̂ j .

3.2 Inference conditional on polyhedral constraints

The polyhedral approach to valid inference after model selection was introduced
by Lee et al. (2016). Our goal is to characterize the distribution of ηT y | {Â= A}
in order to obtain inferences that account for selection. The polyhedral lemma
is a central result in this framework, and can be applied to yield valid inference
after model selection in cases where the model selection event can be fully char-
acterized by polyhedral constraints of the form {Ψy≤ b}. It turns out that several
model selection procedures, amongst them the forward stepwise selection method
and the lasso, can be expressed by constraints on this form when the sign pattern
of the coefficients is included in the selection event. In Chapter 4, we elaborate
on how to derive polyhedral selection events from the selection criteria of these
procedures. In order to study the distribution of ηT y | {Â = A}, we first char-
acterize the event that a particular model along with its sign pattern is chosen,
{Â= A, ŝ = s} = {Ψy ≤ b}. The polyhedral lemma states that this selection event
has an equivalent formulation in terms of ηT y, and functions that are statistically
independent of y. This reformulation proves to be very useful when characterizing
the distribution.

Chapter 3: Exact inference by the polyhedral lemma 11

3.2.1 The polyhedral lemma

Let c ≡ η(ηTη)−1 and z ≡ (I − cηT)y. The polyhedral selection event is
equivalent to

{Ψy≤ b}= {V−(z)≤ ηT y≤ V+(z), V0(z)> 0}, (3.2)

where

V−(z) = max
j:(Ψc) j<0

(b) j − (Ψz) j
(Ψc) j

, (3.3a)

V+(z) = min
j:(Ψc) j>0

(b) j − (Ψz) j
(Ψc) j

, (3.3b)

V0(z) = min
j:(Ψc) j=0

((b) j − (Ψz) j). (3.3c)

We note that V−(z), V+(z) and V0(z) are functions of z, which is statistically in-
dependent of ηT y. Figure 3.1 visualizes the polyhedral lemma, providing us with
some intuition of the result.

3.2.2 Deriving the polyhedral lemma

In order to show how to arrive at the polyhedral lemma from our base assump-
tions, we adapt the proof from p. 917 of Lee et al. (2016), as well as explanations
from pp. 151–152 of Hastie et al. (2015). Parts of this section have been adap-
ted from previous work from Næss (2023). It is assumed that the response has a
Gaussian distribution, y∼ N(µ,σ2 I), where the varianceσ2 is known. We decom-
pose y into the sum of its projection onto η and its projection onto the subspace
orthogonal to η,

y= Pηy+ (I − Pη)y,

where Pη = η(ηTη)−1ηT . By defining c≡ η(ηTη)−1, the decomposition of y can
be written as

y= cηT y+ (I − cηT)y.

Defining z≡ (I − cηT)y allows us to rewrite the decomposition of y as

y= cηT y+ z.

The z term of this sum is of interest because it is independent of y because the
vectors are uncorrelated. The polyhedral lemma (3.2) rewrites the selection event
{Ψy ≤ b} in terms of ηT y, and three functions of z, V−(z), V+(z) and V0(z).
Inserting y= cηT y+ z for y in the selection event yields

{Ψy≤ b}= {Ψ(cηT y+ z)≤ b}

= {ΨcηT y≤ b−Ψz}.

12 Chapter 3: Exact inference by the polyhedral lemma

This inequality can be equivalently formulated componentwisely as

{(Ψc) jη
T y≤ (b) j − (Ψz) j for all j},

where (b) j denotes component j of vector b. Dividing each side of the inequality
by (Ψc) j yields the event

ηT y≤
(b) j − (Ψz) j
(Ψc) j

, for all j : (Ψc) j > 0,

ηT y≥
(b) j − (Ψz) j
(Ψc) j

, for all j : (Ψc) j < 0,

0≤ (b) j − (Ψz) j , for all j : (Ψc) j = 0

. (3.4)

Here the components j are sorted in three categories depending on the sign of
(Ψc) j , as this decides the direction of the inequality. From this it is clear that ηT y
must lie in the interval between the maximum value of its lower bound and the
minimum value of its upper bound. To achieve a more concise description of this
set of inequalities, we define the lower and upper bound as

V−(z) = max
j:(Ψc) j<0

(b) j − (Ψz) j
(Ψc) j

, and V+(z) = min
j:(Ψc) j>0

(b) j − (Ψz) j
(Ψc) j

,

respectively. Additionally, the criteria from the last line of (3.4) can be formulated
as

V0(z) = min
j:(Ψc) j=0

((b) j − (Ψz) j).

Then (3.4) can be formulated as {V−(z) ≤ ηT y ≤ V+(z), V0(z) > 0}, and we
conclude that

{Ψy≤ b}= {V−(z)≤ ηT y≤ V+(z), V0(z)> 0}. (3.5)

3.2.3 The selection adjusted test statistic

The polyhedral lemma can be applied to derive a test statistic for H0 : ηTµ = 0
that accounts for the selection procedure that chose the model. Figure 3.1 shows
the equivalence of events stated by the polyhedral lemma. Since the events are
equivalent, they are equal in distribution,

ηT y | {Ψy≤ b} d
= ηT y | {V−(z)≤ ηT y≤ V+(z), V0(z)> 0}.

The formulation of the selection event on the right hand side explicitly states the
interval [V−(z),V+(z)] to whichηT y is truncated. As we already know thatηT y∼
N(ηTµ,σ2 I), this suggests that truncating the unconditional distribution of to this
interval would provide the distribution adjusted for selection. We emphasize the
fact that we have conditioned on the value z = (I − cηT)y. Even though V−(z),

Chapter 3: Exact inference by the polyhedral lemma 13

{Ψy≤ b}

y

η η yT

z

(z) (z)+

Figure 3.1: A geometric interpretation of the stated equivalence of the events
{Ψy ≤ b} = {V−(z) ≤ ηT y ≤ V+(z)} in the polyhedral lemma in the case of
n = 2, σ2 = 1 and ‖η‖2 = 1. Inpired by Lee et al. (2016), and recreated from
Næss (2023).

14 Chapter 3: Exact inference by the polyhedral lemma

V+(z) and V0(z) are functions of z, which is independent of ηT y, the distribution
of ηT y | {V−(z) ≤ ηT y ≤ V+(z), V0(z) > 0} still depends on z. This is intuitive
from Figure 3.1, where a z of smaller magnitude in the same direction would give
a smaller interval [V−(z),V+(z)]. For the fixed value of z = z0 = (I − cηT)y, we
have

ηT y | {V−(z)≤ ηT y≤ V+(z), V0(z)> 0,z= z0} ∼ TN
�

ηTµ,σ2 I ,V−(z),V+(z)
�

Then the cumulative distribution function (CDF) of ηT y | {Â= A, ŝ= s,z= z0} is

Fz0
(x) = P(ηT y≤ x | V−(z0)≤ ηT y≤ V+(z0), V0(z0)> 0, z= z0)

=
P(V−(z0)≤ ηT y≤ x)
P(V−(z0)≤ ηT y≤ V+(z0))

for V−(z0)≤ x ≤ V+(z0), V0(z0)> 0.

From this we know that

P(Fz0
≤ α | Â= A, ŝ= s,z= z0)≤ α.

We integrate over all values of z,
∫ ∞

−∞
P(Fz0

≤ α | Â= A, ŝ= s,z= z0) fz(z)dz≤ α
∫ ∞

−∞
fz(z)dz= α.

Hence, by the law of total probability we may conclude that

P(Fz0
≤ α | Â= A, ŝ= s)≤ α.

With {Â= A, ŝ= s}= {Ψy≤ b}, we conclude that

ηT y | {Ψy≤ b} ∼ TN
�

ηTµ,σ2 I ,V−(z),V+(z)
�

.

We letΦ denote the cumulative distribution function (CDF) of the standard normal
distribution N(0,1). The CDF of a variable with truncated Gaussian distribution
with support only on the interval [a, b] is defined as

F [a,b]
µ,σ2 (x) =

Φ((x −µ)/σ)−Φ((a−µ)/σ)
Φ((b−µ)/σ)−Φ((a−µ)/σ)

(3.6)

(Tibshirani et al. 2016, p. 604). Then the selection adjusted test statistic for {Â=
A, ŝ= s}= {Ψy≤ b} is

F [V
−(z),V+(z)]

ηTµ,σ2‖η‖22
(ηT y) | {Ψy≤ b} ∼ U(0,1). (3.7)

This selection adjusted test statistic can be inverted in order to obtain confidence
intervals of a parameter β with 1−α coverage conditional on {Â= A, ŝ= s}.

Chapter 3: Exact inference by the polyhedral lemma 15

We let η= XA(X T
A XA)−1e j . If L and U are the unique values satifying

F [V
−(z),V+(z)]

L, σ2‖η‖22
(ηT y) = 1−

α

2
, F [V

−(z),V+(z)]
U , σ2‖η‖22

(ηT y) =
α

2
, (3.8)

then the interval [L, U] is a confidence interval for ηTµ = β j , with 1 − α
coverage conditional on {Â= A, ŝ= s} (Lee et al. 2016).

3.2.4 Generalization to all sign patterns

So far we focused on the special case in which the conditioning on {Â= A, ŝ = s}
is equivalent to conditioning on the event that the response y falls into a single
polyhedral region {Ψy≤ b}.

In some cases it is useful to generalize these results to cover all sign patterns
s. We explain how to condition on the selected model only {Â = A}. This event
can be described as a union of polyhedra over the possible sign patterns,

{Â= A}=
⋃

s
{Ψsy≤ bs}.

For every sign pattern s, there exists a selection matrix Ψs and a vector bs. There
is a total of 2|A| different sign patterns for a model containing |A| predictors. The
selection adjusted test statistic for

ηT y |
⋃

s
{Ψsy≤ bs}.

is given by the CDF of a normal variable truncated to the union of intervals
[V−s (z),V

+
s (z)],

F

⋃

s
[V−s (z),V

+
s (z)]

ηTµ, σ2‖η‖22
(ηT y) |

⋃

s
{Ψsy≤ bs} ∼ U(0, 1), (3.9)

by the same argument as in the previous section. Under H0 : ηTµ = 0, the value
of this statistic can be calculated by

F

⋃

s
[V−s (z),V

+
s (z)]

ηTµ, σ2‖η‖22
(ηT y) =

∑

s

�

Φ
�

ηT y
σ‖η‖2

�

−Φ
� V−s (z)
σ‖η‖2

�
�

∑

s

�

Φ
�

V+s (z)
σ‖η‖2

�

−Φ
�

V−s (z)
σ‖η‖2

�� (3.10)

3.2.5 Selection adjusted confidence intervals

In order to calculate the general selection adjusted confidence intervals CI j con-
ditional on {Â= A}, we evaluate the test statistic (3.10) for different values of β j .
For brevity we write β = β j . The test statistic

F

⋃

s
[V−s (z),V

+
s (z)]

β , σ2‖η‖22
(ηT y) =

∑

s

�

Φ
�

ηT y−β
σ‖η‖2

�

−Φ
�V−s (z)−β
σ‖η‖2

�
�

∑

s

�

Φ
�

V+s (z)−β
σ‖η‖2

�

−Φ
�

V−s (z)−β
σ‖η‖2

�� (3.11)

16 Chapter 3: Exact inference by the polyhedral lemma

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

F
β

Fβ

α 2
1 − α 2

L U

Figure 3.2: Illustration of how a 1−α confidence interval [L, U] for a parameter
β is obtained from its truncated Gaussian test statistic. Here Fβ is an abbreviation

of F

⋃

s
[V−s (z),V

+
s (z)]

β ,σ2‖η‖2
2

(ηT y).

is a truncated Gaussian, which is monotonically decreasing with respect to β (Lee
et al. 2016). This selection adjusted test statistic can be inverted in order to obtain
confidence intervals of a parameter β with 1−α coverage conditional on {Â= A}.

We let η= XA(X T
A XA)−1e j . If L and U are the unique values satifying

F

⋃

s
[V−s (z),V

+
s (z)]

L,σ2‖η‖22
(ηT y) = 1−

α

2
, F

⋃

s
[V−s (z),V

+
s (z)]

U ,σ2‖η‖22
(ηT y) =

α

2
, (3.12)

then the interval [L, U] is a confidence interval for ηTµ = β j , with 1 − α
coverage conditional on {Â= A} (Lee et al. 2016).

Chapter 4

Applications of polyhedral
inference

The polyhedral approach to post selective inference described in Chapter 3 can be
applied in cases where the entire model selection procedure can be characterized
by a polyhedral selection event {Ψy ≤ b}. In this chapter we elaborate on the
application of the polyhedral inference method for two well known model selec-
tion procedures that fit this criteria; forward selection and the lasso. We illustrate
the need for a selection adjusted test in the absence of data splitting for models
selected by adaptive selection methods, and derive their general selection events
for use within the polyhedral inference framework. The closed form specification
of these selection events is what allows us to derive tests and confidence intervals
that account for the model selection made by the data.

As the forward selection procedure is very simple, it allows for a light introduc-
tion to the application of the polyhedral inference approach, and provides suitable
examples of the negative effects of naive testing on adaptively chosen models. Its
characterizing selection event is derived directly from the selection criteria, and
we provide examples by implementation in R.

Inference on linear models selected by the lasso is the main focus of this thesis.
Deriving the lasso selection event requires more rigor, and some results from con-
vex optimization theory. We follow the lead of Lee et al. (2016) for deriving the
lasso selection event. We put special emphasis on the generalization to condition-
ing on the model only, {Â = A}, omitting the conditioning on the signs of the
model coefficients. We show that this yields shorter confidence intervals with the
same 1−α coverage in cases where null signals or very weak signals are included
in the selected model.

4.1 Forward selection

Forward selection is one of the simplest forms of variable selection for multiple
linear regression models. In the absence of data splitting, inference on the regres-

17

18 Chapter 4: Applications of polyhedral inference

sion coefficients of a linear model chosen by forward selection requires special
attention, as classical t-tests rely on the assumption that a model is specified prior
to examining the data.

We give a short introduction to the forward selection procedure for linear
regression models, illustrate the need for a selection adjusted test, and derive the
general scheme for constructing its descriptive polyhedral selection events.

4.1.1 Introduction to forward selection

Forward selection is a stepwise model selection procedure for linear regression.
The starting point of the algorithm is the null model, yi = β0 + εi , i = 1, . . . , n.
At each step of forward selection procedure, the candidate predictors x1, . . . ,xp in
the dataset are entered to the model sequentially according to a chosen selection
criterion.

There are many reasonable selection criteria to choose when performing model
selection by the forward selection procedure. One of the most widely used in im-
plementations is the Akaike Information Criterion (AIC). AIC is commonly defined
as

AIC=
1
n
(RSS+ 2|A|σ̂2),

where |A| is the number of covariates included in the model, σ̂2 is the least squares
estimate of the variance in the linear model, and the residual sum of squares (RSS)
is defined as

RSS=
n
∑

i=1

(yi − ŷi)
2 (4.1)

(James et al. 2013). Here ŷi is the predicted response from the linear model.
A lower AIC score indicates a better model fit, and the penalization of model
complexity provides a natural stopping rule for the forward selection procedure.
RSS may be used directly as the selection criterion, which is the case we consider
in the following subsections.

4.1.2 Hypothesis testing after forward selection

We consider variable selection by the forward selection procedure for multiple
linear regression with RSS as the selection criterion of choice. Of interest is the
significance testing of the variable x j entered to the model at step k = 1,2, . . . ,
where the null and alternative hypotheses are

H0 : β j = 0, H1 : β j 6= 0.

Let Ak denote the ordered set of indices of predictors chosen by forward selection
after the k first steps. XAk

is the matrix consisting of the active predictors after k
steps of forward selection. The RSS of a linear regression model with response y
and design matrix X is denoted by RSS(y, X). At each step k, the predictor that

Chapter 4: Applications of polyhedral inference 19

yields the largest drop in RSS is added to the model. Assuming known variance,
this criterion is equivalent to maximizing the statistic

Rk, j =
1
σ2

�

RSS(y, XAk−1
)−RSS(y, XAk−1∪ j)

�

(4.2)

(Lockhart et al. 2014). XAk−1∪ j is the matrix of active predictors from the previous
step, with x j concatenated horizontally to XAk−1

. Under the null hypothesis, the
Rk, j statistic follows a χ2

1 distribution when the inclusion of the variable x j is fixed.
Its maximum over all potential added covariates, max

j∈{1,...,p}
(Rk, j), does not share this

property, as
max

j∈{1,...,p}
(Rk, j)≥ Rk, j ,

and must necessarily be stochastically larger than the χ2
1 -distribution.

This explains why using a standard X 2
1 test to determine the significance of

a variable entered by forward selection will result in larger type I error than the
nominal level α. We illustrate the issue of performing tests that assume fixed pre-
dictors on models chosen by forward selection. We simulate the first step of for-
ward selection in linear regression on a random dataset with no underlying signal.
For any number of predictors p, we assume the null hypothesis H0 : β1 = β2 =
· · ·= βp = 0 is true.

Figure 4.1 shows a simulated example of the observed p-values plotted against
expected p-values under H0 for the effect added by the first step of forward selec-
tion. For each point p j in the plot, the observed value denotes the proportion of
p-values smaller than p j ,

1
n

n
∑

i=1

I(pi ≤ p j),

where I is the indicator function. The setup is inspired by the simulated example
presented by Tibshirani (2016) in the Leo Breiman lecture of 2015 and uses the
selectiveInference library by Tibshirani et al. (2022) to perform the selection
adjusted test. The R code to produce the plot is given in Appendix A.1.

In Figure 4.2 we compare the Type I error rate from using a naive method to
that of a selection adjusted test statistic. We calculate the type I error by

Type I error rate=
1
n

n
∑

i=1

I(pi ≤ α).

In Figure 4.1 we can note that the dashed vertical line at α = 0.05 crosses the
observed simulated p-values for the selection adjusted test in blue at around 0.05,
and at just above 0.2 for the naive test in red. This corresponds with the values
in Figure 4.2, where we see that for 5 predictors, the type I error of the naive
method is at just above 0.2, while it stays at the nominal level of 0.05 for the
selection adjusted method.

20 Chapter 4: Applications of polyhedral inference

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FS step k=1, p=5

Expected

O
bs

er
ve

d

Naive
Selection adjusted

Figure 4.1: Quantile-quantile plot of 1000 simulations of the χ2-statistic, R1, j .
Recreated after inspiration from Tibshirani (2016), and adapted from previous
figure from Næss (2023).

Chapter 4: Applications of polyhedral inference 21

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

FS step k=1

Number of predictors

Ty
pe

 I
er

ro
r

Selection adjusted
Naive

Figure 4.2: Type I errors from significance test of the variable entered at the first
step of forward selection for an increasing number of candidate predictors. For
the naive test, the type I error increases linearly, while the selection adjusted test
from the polyhedral inference framework stays at the nominal type I error level
of α= 0.05.

22 Chapter 4: Applications of polyhedral inference

4.1.3 Polyhedral selection events for forward selection

The forward selection procedure can in its entirety be represented by a set of
linear inequalities forming a selection event {Ψy ≤ 0}. The polyhedral selection
event defines the set of all response vectors y that would lead to a particular
model to be selected by forward selection. In this section we describe the general
scheme for deriving the model selection event for linear models chosen by forward
selection with RSS as the chosen selection criteria. Throughout the construction
of the selection matrix Ψ for forward selection, we follow the lead of Tibshirani
et al. (2016), pp. 605–606.

For simplicity of notation we assume no intercept. In the first step of forward
selection, the matrix X consists only of the first covariate, the column vector x j .
The jth predictor is chosen to enter the model in the first step k = 1 if and only if

RSS(y,x j)≤ RSS(y,xi) for all i ∈ {1, . . . , p} \ j. (4.3)

The RSS of a linear regression model with response y and design matrix X can
be written compactly in matrix notation as

RSS(y, X) = ‖y− X β̂
L
‖22.

Inserting β̂
L
= (X T X)X T y into the RSS expression above expands it to

RSS(y, X) = ‖y− X (X T X)X T y‖22
= ‖yT (I − X (X T X)X T)y‖22

= yT y−
yT X X T y

‖X‖22
.

We expand the inequality (4.3) as above above to obtain the selection criterion

yT y−
yT x jx

T
j y

‖x j‖22
≤ yT y−

yT xix
T
i y

‖xi‖22
for all i ∈ {1, . . . , p} \ j,

which is equivalent to

yT x jx
T
j y

‖x j‖22
≥

yT xix
T
i y

‖xi‖22
for all i ∈ {1, . . . , p} \ j.

Either side of the inequality above can for any design matrix X be simplified as

yT X X T y

‖X‖22
=
‖X T y‖22
‖X‖22

=
|X T y|2

‖X‖22

=
|X T y|
‖X‖2

.

Chapter 4: Applications of polyhedral inference 23

Then the criteria for x j to be chosen in the first step of forward selection can be
written as

|xT
j y|

‖x j‖2
≥
|xT

i y|
‖xi‖2

for all i ∈ {1, . . . p} \ j.

In order to express this set of inequalities more compactly we introduce a sign
notation s j = sign(xT

j y). This allows us to omit the absolute value signs in the
numerator and set up the linear inequalities on polyhedral form. The event that
this set of linear inequalities are fulfilled is equivalent to Ψy≤ 0 with

Ψ1 =

−s j
xT

j

‖x j‖2
+

xT
I1,1

‖xI1,1
‖2

−s j
xT

j

‖x j‖2
−

xT
I1,1

‖xI1,1
‖2

...

−s j
xT

j

‖x j‖2
+

xT
I1,p−1

‖xI1,p−1
‖2

−s j
xT

j

‖x j‖2
−

xT
I1,p−1

‖xI1,p−1
‖2

, (4.4)

where Ik,i is the ith index from the set of indices of the predictors not yet included
in the model at step k, Ik. The order of the rows in Ψ1 is commutative. The one-
step selection matrix Ψ1 is of dimension 2(p−1)×n. When considering the effects
in the model after the first step of forward selection, conditioning on this selection
event provides valid inferences.

The stepwise construction of the final selection event is necessary because the
order in which the predictors enter the model matters when specifying the selec-
tion criteria for forward selection. In the following steps, 1 < k < p, a predictor
is chosen to enter the model if and only if it reduces the model RSS more than
the addition of any other predictor. In order to account for the entire selection
procedure, we need to append 2(p− k) rows for each step. Letting Ik denote the
set of inactive predictors after step k, Ik = {1, . . . , p} \ Ak,

s jε
T
j ε

‖ε j‖2
≥ ±

εT
i ε

‖εi‖2
for all i ∈ Ik−1,

where ε is the residual from regressing y onto XAk−1
, ε = (I−XAk−1

(X T
Ak−1

XAk−1
)−1X T

Ak−1
)y,

and ε j is the residual from regressing Xk onto XAk−1. This is equivalent to

−s jε
T
j ε

‖ε j‖2
±
εT

i ε

‖εi‖2
≤ 0 for all i ∈ Ik−1,

or

−s jε
T
j (I − XAk−1

(X T
Ak−1

XAk−1
)−1X T

Ak−1
)y

‖ε j‖2
±
εT

i (I − XAk−1
(X T

Ak−1
XAk−1

)−1X T
Ak−1
)y

‖εi‖2
≤ 0,

24 Chapter 4: Applications of polyhedral inference

for all i ∈ Ik−1. Setting PAk−1
= I − XAk−1

(X T
Ak−1

XAk−1
)−1X T

Ak−1
we obtain

−s jε
T
j PAk−1

y

‖ε j‖2
±
εT

i PAk−1
y

‖εi‖2
≤ 0,

so that

Ψk =

−s jε
T
j PAk−1
‖ε j‖2

+
εT

Ik,1
PAk−1

‖εIk,1
‖2

−s jε
T
j PAk−1
‖ε j‖2

−
εT

Ik,1
PAk−1

‖εIk,1
‖2

...
−s jε

T
j PAk−1
‖ε j‖2

+
εT

Ik,p−k
PAk−1

‖εIk,p−k
‖2

−s jε
T
j PAk−1
‖ε j‖2

−
εT

Ik,p−k
PAk−1

‖εIk,p−k
‖2

. (4.5)

Above we assumed that k < p. In the last possible step of forward selection,
when k = p, we need only add one row to Ψ. If adding the last possible predictor
lowers the RSS of the model, the row

Ψp =
�

−s jε
T
j PAp−1

‖ε j‖2
+
εT

Ip,1
PAp−1

‖εIp,1
‖2

�

(4.6)

is appended to Ψ. The final selection matrix Ψ has 2pk−k2−k rows (Tibshirani et
al. 2016). Stacking the selection matrices Ψ j , j = 1, . . . , k yields the final selection
matrix Ψ that is needed in order to apply the polyhedral inference framework to
a model chosen by forward selection with k steps. The resulting forward selection
event {Ψy ≤ 0} is always a polyhedral region in the Rn space. Taking advantage
of these affine constraints on y allows us to apply the polyhedral lemma (3.2) and
derive p-values and confidence intervals that take the forward selection procedure
into account by the scheme presented in Section 3.2.3.

4.1.4 Example of polyhedral inference for forward selection

We present a simple example of how to construct the polyhedral region for forward
selection. We simulate a dataset with p = 3 predictors, and n = 80 observations,
where x i j ∼ N(0, 1) for i = 1, . . . , 80 and j = 1, 2,3 are the entries of the design
matrix X . For simplicity of notation, we standardize X by centering and scaling
each column. The response vector is generated by assuming a linear relationship
between the three predictors and the response,

y= Xβ + ε, ε ∼ N(0, I),

where the vector of true coefficients is β = (0.6,0.3, 0)T . As the design matrix is
standardized, the forward selection procedure starts with an empty model with

Chapter 4: Applications of polyhedral inference 25

no intercept. For each step k = 1,2, 3, of this forward selection procedure, we
want to summarize the selection criteria that determined which variable should
enter the model as affine constraints on the response {Ψky ≤ 0}. In step k = 1,
x1 is chosen to enter the model as it lowers the RSS of the model more than the
addition of any of the other predictors,

RSS(y,x1)≤ RSS(y,x2) and RSS(y,x1)≤ RSS(y,x3).

As shown in Section 4.1.3, these inequalities can be reformulated as

|xT
1 y|
‖x1‖2

≥
|xT

2 y|
‖x2‖2

and
|xT

1 y|
‖x1‖2

≥
|xT

2 y|
‖x2‖2

,

respectively. Introducing s1 = sign(xT
1 y) we have that these inequalities can be

written as Ψ1y≤ 0, where

Ψ1 =

−s1
xT

1
‖x1‖2

+
xT

2
‖x2‖2

−s1
xT

1
‖x1‖2

− xT
2

‖x2‖2

−s1
xT

1
‖x1‖2

+
xT

3
‖x3‖2

−s1
xT

1
‖x1‖2

− xT
3

‖x3‖2

.

The matrix Ψ1 has dimensions 2(p−k)×n= 4×80. In step k = 2, the comparison
of model RSS is made in the context of the existing model after step 1, which
contains x1. This means that we need to adjust for x1 when comparing the drops
in model RSS. What we are evaluating now is which of the variables yields a two-
variable model with the lowest possible model RSS. We enter x2 because it lowers
the model RSS more than entering x3,

RSS(y, X[1,2])≤ RSS(y, X[1,3]).

Here X[1,2] = (x1,x2). This selection criterion can be written as

s2ε
T
2 ε

‖ε2‖2
≥ ±

εT
3 ε

‖ε3‖2
, (4.7)

where ε is the residual from regressing y onto x1, and ε2 is the residual from
regressing x2 onto x1 (Tibshirani et al. 2016). In order to express this set of in-
equalities by Ψ2y ≤ 0, we need to isolate y. The residual from regressing y onto
the design matrix from the last step XAk−1

is ε = (I−XAk−1
(X T

Ak−1
XAk−1

)−1X T
Ak−1
)y. In

this case, XA1
= x1, so ε = (I − x1(xT

1 x1)−1xT
1)y . Setting PA1

= I − x1(xT
1 x1)−1xT

1 ,
we can write Equation (4.7) as Ψ2y≤ 0, where

Ψ2 =

−s2ε
T
2 PA1

‖ε2‖2
+
εT

3 PA1
‖ε3‖2

−s2ε
T
2 PA1

‖ε j‖2
−
εT

3 PA1
‖ε3‖2

.

26 Chapter 4: Applications of polyhedral inference

In the last step k = 3, the remaining candidate predictor x3 is added simply if
adding it lowers the total model RSS. This can be encoded in multiple ways, but
we choose to keep the formulation of this criterion similar to the previous ones
for simplicity. By a similar argument as for step 2, x3 is chosen to enter the model
in step k = 3 if and only if Ψ3y≤ 0, where

Ψ3 =
�

−s3ε
T
3 PA2

�

.

Stacking the selection matrices Ψ1, Ψ2 and Ψ3 into Ψ gives us our final forward
selection event {Ψy ≤ 0} for the model. This polyhedral set fully captures the
criteria for the model and the signs of the coefficients to be chosen by forward
selection, in other words {Ψy ≤ 0} = {Â= A, ŝ = s}. We implement the selection
matrix Ψ in the exact manner described above, and present the code in Appendix
A.3.2. Now we have the essential components to apply the polyhedral lemma (3.2)
for deriving p-values and confidence intervals that appropriately account for the
forward selection procedure by conditioning on the event {Ψy≤ 0}= {Â= A, ŝ=
s}.

In Chapter 3 we went into detail on how to derive a selection adjusted test
statistic from the result that a polyhedral selection event {Ψy ≤ b} can be re-
written as a truncation of the values of a linear contrast of y, {V−(z) ≤ ηT y ≤
V+(z), V0(z) > 0}. It is shown in Section 3.2.3 that the conditional test statistic
(3.7) has a U(0, 1) distribution, and can be inverted to obtain confidence inter-
vals of model parameters with 1− α coverage conditional on {Â = A, ŝ = s}. For
significance testing of the model effects β1,β2, and β3, we will use the truncated
Gaussian test statistic

F [V
−(z),V+(z)]

ηTµ,σ2‖η‖22
(ηT y) | {Ψy≤ 0} ∼ U(0, 1), (4.8)

where the truncation limits V−(z), and V+(z) are calculated from

V−(z) = max
j:(Ψc) j<0

−(Ψz) j
(Ψc) j

, and V+(z) = min
j:(Ψc) j>0

−(Ψz) j
(Ψc) j

.

We specify η = X (X T X)−1e j so that ηTµ = β j , and ηT y = β̂ j for j = 1,2, 3. The
vectors z and c depend on η by their definitions,

c= η(ηTη)−1 and z= (I − cηT)y.

We implement a truncated Gaussian test that conditions on the model and the
signs of the coefficients {Ψy≤ 0}= {Â= A, ŝ= s}. The code for this implementa-
tion is provided in Appendix A.3. To obtain selection adjusted confidence intervals,
we invert the test as outlined in Section 3.2.3. An interval halving algorithm to
find the confidence limits.

We extend our approach by omitting the conditioning on the signs of the coef-
ficients. Since the signs of the estimated coefficients are used in the construction
of Ψ, there is a selection matrix Ψs for every possible sign pattern. As argued in

Chapter 4: Applications of polyhedral inference 27

−1.0

−0.5

0.0

0.5

1 2 3
Variable indices

C
oe

ffi
ci

en
t v

al
ue

s

 Model and signs Model only Unadjusted

Figure 4.3: Comparison of confidence intervals for coefficients of a model chosen
forward selection with n= 80, p = 3 and β = (0.6,0.3, 0)T . The dashed lines in-
dicates the true signal. Selection adjusted confidence intervals conditioned on
{Â = A, ŝ = s} and {Â = A} are shown alongside unadjusted confidence inter-
vals. The difference in width of the intervals decreases as the magnitude of the
underlying signal β j decreases.

Section 3.2.4 we can condition on only {Â= A} by using the Gaussian test statistic
truncated to a union of confidence intervals

⋃

s
[V−s (z),V

+
s (z)],

F

⋃

s
[V−s (z),V

+
s (z)]

ηTµ,σ2‖η‖22
(ηT y) |

⋃

s
{Ψsy≤ 0} ∼ U(0, 1). (4.9)

Inverting this test statistic yields confidence intervals with 1− α coverage condi-
tional on the selected model {Â= A} for β j , j = 1,2, 3 .

Figure 4.3 displays that for this particular example, there is no visible differ-
ence between the confidence intervals conditioned on {Â= A} and {Â= A, ŝ = s}
for β1, but they are not identical. However, it is not unreasonable to get two con-
fidence intervals that are exactly identical, because it can occur that all alternative
sign patterns s besides the realized pattern ŝ, yields V−s (z)≥ V+s (z). In these cases,

P(V−s (z)≤ η
T y≤ V+s (z)) = 0,

and hence these intervals do not contribute to the calculation of the test statistic.
The confidence intervals for β2 and β3 that are conditional on the model only are
closer to the unadjusted least squares intervals, but offer the same 1−α coverage
as the intervals that condition on the model as well as the observed sign pattern.

28 Chapter 4: Applications of polyhedral inference

4.2 Lasso regression

The lasso method was first proposed by Tibshirani (1996) as a method for es-
timation in linear models. Several extensions has been made since then, and the
method frequently taught in statistics courses and used in practical settings. The
method combines least squares minimization with an l1 constraint on the size of
the coefficients. The name lasso is an acronym for least absolute shrinkage and
selection operator, and it is also said to be a suitable name since the method con-
strains the coefficients, in a figurative sense similarly to the way in which a lasso
rope is used to throw a loop around horses and cattle (Hastie et al. 2015).

The lasso produces sparse solutions as it automatically shrinks some effects to
zero, making it a popular tool for model selection. The lasso optimization problem
is convex, and always has at least one minimizer (Hastie et al. 2015). We will
consider the case in which the lasso is used as a selection tool for linear models.
The exact lasso estimates are not used directly, but the model choice is defined by
the variables chosen to have non-zero effects by the lasso.

We give a brief introduction to the lasso for linear models and derive the
general polyhedral selection event for the lasso with fixed λ. The formulation
of lasso selection as a polyhedral event allows for the use of the polyhedral infer-
ence method for deriving a truncated Gaussian test and corresponding selection
adjusted confidence intervals.

4.2.1 Introduction to the lasso for linear models

We consider the linear regression setting presented in Section 2.1. We assume that
the response y is centered, and that the design matrix X is standardized, meaning
that

1
n

n
∑

i=1

yi = 0,
1
n

n
∑

i=1

x i j = 0, and
1
n

n
∑

i=1

x2
i j = 1.

The centering and standardization of the data allows us to omit the intercept
β0 from the lasso optimization problem. The lasso problem is the least squares
problem with an added linear constraint on the absolute size of the coefficients,

min
n
∑

i=1

yi −
p
∑

j=1

x i jβ j

!2

subject to
p
∑

j=1

|β j| ≤ t. (4.10)

This formulation is typically referred to the constrained form or the budget form of
the lasso problem. The lasso problem can be written in its equivalent Lagrangian
form,

β̂
L
= arg min

β

1
2
‖y− Xβ‖22 +λ‖β‖1, λ > 0 (4.11)

(Hastie et al. 2009). There is a one-to-one relation between the budget parameter
t from the constrained lasso problem (4.10) and the λ parameter from (5.1). This

Chapter 4: Applications of polyhedral inference 29

means that for any value of t such that
∑p

j=1|β j| ≤ t, there exists a value of λ that

yields the same solution β̂
L
.

The lasso problem (5.1) is a quadratic programming problem with a convex
constraint (Hastie et al. 2015). In general, there is no closed form solution of the

minimization problem (5.1). The only cases in which we can find β̂
L

analytically is
the case of only one or two covariates, or when the design matrix X is orthogonal,
X T X = (X T X)−1 = I (Tibshirani 1996). The issue of solving quadratic programs
is a well-explored topic in optimization with many solutions. The necessary and
sufficient conditions for a solution to (5.1) can be summarized as

〈x j ,y− Xβ〉+ s jλ= 0, for all j = 1, . . . , p (4.12)

(Hastie et al. 2015). Here s j is defined by

s j = sgn β̂ L
j if β̂ L

j 6= 0

s j ∈ [−1, 1] if β̂ L
j = 0.

In the latter case, when β̂ L
j = 0, s j is a subgradient of the absolute value function

(Hastie et al. 2015). The penalty parameter λ > 0 is continuous. As each choice of

λ yields a new solution for the lasso estimator β̂
L
, we note that the lasso regression

estimator is a sequence of estimators for β . λ is often chosen by cross-validation.
In the following subsections, we will focus on inference after lasso selection for
fixed values of λ.

Larger values of λ, or equivalently, smaller values of t imply stricter penaliz-
ation of the size of the regression coefficients, and hence the possibility of more
sparse models as more coefficients are set to zero. For small enough λ or large

enough t, the lasso estimate β̂
L

is equal to the least squares estimate. More spe-
cifically, this is the case when

t ≥
p
∑

j=1

|β̂ L
j |,

or equivalently, when λ = 0. Figure 4.4 gives an intuitive explanation of the es-
timation of the lasso estimator. For larger values of t, the constraint region drawn
red expands, and can come to contain the least squares estimate β̂ itself, which is
the minimum of the RSS function illustrated with blue contours.

4.2.2 Polyhedral selection event for the lasso

In this approach, we consider the lasso as a selection tool for linear regression.
Hence, the exact lasso estimates (5.1) are not used directly for inference, but is
used to determine which variables should be included in the model. Analogously
to Lee et al. (2016), we define a model chosen by the lasso by the indices cor-
responding to the coefficients of the lasso estimator (5.1) that are different from
0,

Â= { j : β̂ L
j 6= 0}

30 Chapter 4: Applications of polyhedral inference

β

β

β

2

1

^

Figure 4.4: Geometric interpretation of the lasso. The constraint region |β1| +
|β2| ≤ t is marked in red, and the contours of the RSS in blue. Inspired by and
drawn after Figure 6.7 of James et al. (2013).

We assume that the design matrix X has full rank, rank X = p. In this case, the lasso
solution is unique because the criterion is strictly convex (Tibshirani 2013). The
Karush–Kuhn–Tucker (KKT) conditions are sufficient and necessary conditions for
the existence of a lasso solution. We can reformulate the KKT conditions (4.12)
as

X T (X β̂
L
− y) +λŝ= 0, (4.13)

where s j is defined by

s j = sgn β̂ L
j if β̂ L

j 6= 0, (4.14)

s j ∈ [−1, 1] if β̂ L
j = 0 (4.15)

(Lee et al. 2016).
We use the KKT conditions directly to derive the selection event of the lasso

procedure. In this section we characterize the lasso selection event {Â= A, ŝ= s}.
This selection event corresponds to a polyhedral region in the Rn-plane. This fact
allows us to use the polyhedral inference method presented in Chapter 3 to obtain
conditional p-values and confidence intervals for the model effects that account
for the lasso selection procedure. The characterization of the event {Â = A} will
be done by taking the union over the possible sign patterns for the model. This is
expanded upon in Section 4.2.3.

In order to characterize the lasso selection event {Â = A, ŝ = s}, we first use

Chapter 4: Applications of polyhedral inference 31

the definitions define the model selection Â implicitly by an equicorrelation set

Â≡ {i ∈ {1, . . . , p} : |ŝi|= 1}

which contains all the predictors with non-zero lasso coefficients, since |ŝi|= 1 for
any i such that β̂ L

i 6= 0 (Lee et al. 2016). It is not impossible for the equicorrelation
set to include variables with lasso coefficients set to zero, this happens for almost
no values of λ, and we do not consider it further. We adapt and expand upon
the method from pp. 912-914 of Lee et al. (2016) for deriving the general lasso
selection event {Â= A, ŝ= s}.

Let X Â be the submatrix of X consisting of the columns of X corresponding
to the indices in the equicorrelation set Â. Correspondingly, we define X ÂC to
be the submatrix of X consisting of the columns corresponding to the indices in
ÂC = {1, . . . , p} \ Â. The KKT conditions (4.13) can be reformulated by using this
partitioning of the design matrix X , as the conditions must imply that

X T
Â
(X Âβ̂

L
Â − y) +λŝÂ = 0, (4.16)

where ŝÂ = sign(β̂
L
Â), (4.17)

and that

X T
ÂC (X Âβ̂

L
Â − y) +λŝÂC = 0, (4.18)

with ‖ŝÂC‖∞ < 1. (4.19)

We note that the condition in (4.19) implies that no subgradient s j from (4.15)
is exactly 1 in absolute value. The KKT conditions are necessary and sufficient
conditions for a lasso solution. Any lasso solution consisting of a model choice A
and sign pattern s must necessarily fulfill the conditions above, and hence also
fulfills

X T
A (XAβ̂

L
A − y) +λs= 0, (4.20)

s= sgn β̂
L
A, (4.21)

X T
AC (XAβ̂

L
A − y) +λsAC = 0, (4.22)

‖sAC‖∞ < 1. (4.23)

Previously we assumed that X has full rank. This implies that rank(XA) = |A|.
Then, for any y, X , and λ > 0, the lasso solution is unique. For an equicorrelation
set A and a sign pattern s, the lasso solution is given by

β̂
L
A = (X

T
A XA)

−1(X T
A y−λs), and β̂

L
AC = 0

(Tibshirani (2013), p. 1462). This solves equation (4.20). Solving equation (4.22)
for sAC yields

sAC =X T
AC XA(X

T
A XA)

−1s+
1
λ

X T
AC (I − PA)y

=X T
AC (X T

A)
+s+

1
λ

X T
AC (I − PA)y, (4.24)

32 Chapter 4: Applications of polyhedral inference

where PA = XA(X T
A XA)−1XA is the projection onto the column span of XA (Lee et al.

2016). With these definitions of β̂
L
A and sAC , along with their respective conditions

s= sign(β̂
L
A), and ‖sAC‖∞ < 1,

we can rewrite the model selection in terms of β̂
L
A and sAC as

{Â= A, ŝ= s}= {s= sign(β̂
L
A),‖sAC‖∞ < 1}. (4.25)

We wish to show that this formulation of the lasso selection event is equivalent to
a polyhedral region in the Rn-plane, or equivalently a set of affine constraints on
y, {Ψy≤ b}.

{s= sign(β̂
L
A)}={(diag s)β̂

L
A > 0}

={(diag s)(X T
A XA)

−1(X T
A y−λs)> 0}

By defining a matrix Ψ1 and vector b1 as

Ψ1 = −(diag s)(X T
A XA)

−1X T
A (4.26)

b1 = −λ (diag s)(X T
A XA)

−1s, (4.27)

we can write

{(diag s)(X T
A XA)

−1(X T
A y−λs)> 0}= {Ψ1y< b1}.

This makes up the active constraints on y. For the inactive constraints {‖sAC‖∞ <

1}, we insert the expression (4.24) and expand

{‖sAC‖∞ < 1}={‖X T
AC (X T

A)
+s+

1
λ

X T
AC (I − PA)y‖∞ < 1}

={−1< X T
AC (X T

A)
+s+

1
λ

X T
AC (I − PA)y< 1}

=

1
λ

X T
AC (I − PA)y< 1− X T

AC (X T
A)
+s,

−
1
λ

X T
AC (I − PA)y< 1+ X T

AC (X T
A)
+s

By defining

Ψ0 =
1
λ

�

X T
AC (I − PA)

−X T
AC (I − PA)

�

, (4.28)

b0 =

�

1− X T
AC (X T

A XA)−1X T
A s

1+ X T
AC (X T

A XA)−1X T
A s

�

, (4.29)

Chapter 4: Applications of polyhedral inference 33

we are able to write the inactive constraint as

{‖sAC‖∞ < 1}= {Ψ0y< b0}.

The final selection event, capturing the entire lasso selection procedure is

{Â= A, ŝ= s}= {Ψy≤ b}, (4.30)

where

Ψ =

�

Ψ0
Ψ1

�

, b=

�

b0
b1

�

, (4.31)

with Ψ1, b1,Ψ0, and b0, defined as in Equations (4.26), (4.27), (4.28) and (4.29),
respectively. The polyhedral lasso event fully captures the the lasso selection pro-
cedure for a fixed value of the penalty parameter λ. This allows us to perform
selection adjusted inference at any point of the lasso path, by use of the polyhed-
ral method from Chapter 3. The order in which the predictors enter the model
on the lasso path does not matter in the final selection event. This is different
from the selection event for forward selection, which must be constructed with
attention to the order of inclusion of each variable.

When using the polyhedral method to calculate selection adjusted p-values
and confidence intervals for a model selected by the lasso, Ψ and b are neces-
sary components. We remark that the lasso selection matrix Ψ and vector b only
depend on the submatrices XA, XAC , λ, and the sign pattern s of the active lasso
coefficients. This makes implementation straightforward, as this information is
readily available after a model is chosen by lasso regression.

4.2.3 Extending conditioning to a union of lasso polyhedra

In the previous section, we used the necessary and sufficient conditions of a lasso
solution to derive a concise characterization of the event that a particular model
is selected by the lasso, along with its sign pattern, {Â= A, ŝ= s}=. It was shown
that this lasso selection event can be described by a polyhedral set {Ψy≤ b}. A key
focus of this thesis is the extension to conditioning solely on the model selected
by the lasso, {Â = A}, omitting the conditioning on the sign pattern s. As Ψ and
b depend on s, there exists a unique Ψs and bs for every possible sign pattern.
The more general lasso selection event {Â = A} is defined by the union of sign
conditional lasso polyhedra over all possible sign patterns,

{Â= A}=
⋃

s

�

Ψsy≤ bs

	

(Lee et al. 2016). What is important to note is that not all sign patterns are possible
for a given model. The lasso partitions the sample space y ∈ Rn into polyhedra
{Â = A, ŝ = s} = {Ψy ≤ b} (Lee et al. 2016). Figure 4.5 depicts a geometrical
interpretation of the partition the lasso makes of the space in the case of n = 2
observations and p = 3 predictors. Every possible value of y corresponds to a

34 Chapter 4: Applications of polyhedral inference

A={1,3}

A={3}

s=(1,1)

s=1s=(1,1)

s=1

s=−1

s=(−1, −1)

s=−1 s=(−1, −1)

s=−1

s=(1, −1)

s=1

A={2,3}

A={2}

A={1}

A={1,3}

A={3} A={2,3}

A={2}

A={1,2}

A={1}

A={1,2}
s=(−1,1)

x1

2

3

x

x

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

A=Ø
s=Ø
^
^

Figure 4.5: Illustration of the partition of theR2 sample space according to model
and sign pattern by the lasso for n = 2 and p = 3. Here x1 = (

p
2

2 ,
p

2
2)

T , x2 =
(−1, 0)T , and x3 = (0,1)T . Adapted and drawn with inspiration from Lee et al.
(2016) and Kivaranovic and Leeb (2021).

model Â and a sign pattern ŝ, but the converse is not true. For example, in Figure
4.5, the model Â= {1, 3} cannot be chosen along with the sign patterns ŝ= (−1,1)
or ŝ = (1,−1). This is a direct reflection of the nature of the shrinkage of the
coefficients by the lasso. In the center of the figure, we see that the selected model
is the empty model, Â= ;, ŝ = ;. In this case, the penalty parameter λ is set to a
value so large that no predictors are added to the model. For a smaller value of λ,
this polyhedral region is smaller. For λ = 1, the faces of the region of the empty
model touch the unit vectors.

We implement a solution in R that automatically constructs the selection event
for a model selected by lasso, and performs a selection adjusted test conditional
on the active variables and the chosen sign pattern. The code is provided in Ap-
pendix A.4, along with an extension that allows the construction of confidence
intervals conditioned on the union of lasso polyhedra for all possible sign pat-
terns. A natural concern might be how to identify the impossible sign patterns for
a given model, in order to exclude them from the calculation of the test statistic

Chapter 4: Applications of polyhedral inference 35

and confidence intervals conditioned on the model only. It turns out that this is
not necessary, and that their inclusion even tend to have some very advantageous
properties for the confidence intervals conditional on {Â= A}, at the cost of more
computation.

When calculating truncation intervals [V−s (z),V
+
s (z)] for the |A| sign patterns,

some of which that cannot happen for any y, it is not uncommon that we get
some V−s (z), V

+
s (z), and p-values that may look suspicious at first glance. This is

of no consequence to the final p-values and confidence intervals conditioned on
the union of the polyhedral events

⋃

s

�

Ψsy ≤ bs

	

. If V−s (z) ≥ V+s (z), the values

for the particular sign pattern are omitted from the calculation of the truncated
Gaussian test statistic

F

⋃

s
[V−s (z),V

+
s (z)]

ηTµ,σ2‖η‖22
(ηT y).

This is handled in the code implementation. One should note that obtaining V−s (z) =
−∞ or V+s (z) =∞ for one or more sign patterns is reasonable, and can occur
even when conditioning on {Â= A, ŝ = s}. When

⋃

s
[V−s (z),V

+
s (z)] is unbounded

from above and below, the expected length of the conditional confidence interval
is finite (Kivaranovic and Leeb 2021). In Section 4.2.4, two examples of polyhed-
ral inference for the lasso are presented. The confidence intervals conditioned on
{Â= A, ŝ= s} are compared to the ones omitting the conditioning on the sign pat-
terns of the lasso coefficients. In Section 5.1, the properties of these confidence
intervals, specifically their expected length, is discussed further.

4.2.4 Examples of polyhedral inference for lasso

Now that we have described a general scheme for constructing polyhedral events
for the lasso, we have what we need to use the polyhedral lemma and derive
test statistics and confidence intervals. For illustrative purposes, we simulate two
example datasets and perform lasso variable selection. We simulate two examples,
one with n > p and one with n < p. In both examples, we keep λ fixed, and fit
a lasso regression model using the glmnet package. With the described approach
from Section 4.2.2 and 4.2.3, we calculate selection adjusted confidence intervals
conditioned on the model and the signs of the coefficients, as well as intervals
conditioned on the model only. We compare these intervals to the unadjusted
least squares intervals, that do not take into account the adaptive selection of the
lasso.

As in the forward selection example presented in Section 4.1.4, the entries
of the design matrix X are simulated by x i j ∼ N(0,1) for i = 1, . . . , n and j =
1, . . . , p. We standardize and scale X , and generate the response y from the linear
relationship

y= Xβ + ε, ε ∼ N(0, I).

36 Chapter 4: Applications of polyhedral inference

−2

−1

0

1

2

1 2 3 4 55 6 7
Active Set Indices

C
oe

ffi
ci

en
t V

al
ue

s

 Model and signs Model only Unadjusted

Figure 4.6: Comparison of confidence intervals for model coefficients in a linear
model chosen by the lasso with fixed λ = 12, conditioned on the model and
signs,{Â= A, ŝ= s} and only the model {Â= A}. The simulated data has n= 100
and p = 16. Formatting inspired by Lee et al. (2016). The dashed line shows
the true signal. The blue arrow indicates that the lower bound of the confidence
interval cannot be computed, and defaults to −∞.

Chapter 4: Applications of polyhedral inference 37

−2.5

0.0

2.5

5.0

1 2 3 4 55 6
Active Set Indices

C
oe

ffi
ci

en
t V

al
ue

s
 Model and signs Model only Unadjusted

Figure 4.7: Comparison of confidence intervals for model coefficients in a linear
model chosen by the lasso with fixed λ = 12, conditioned on the model and
signs{Â = A, ŝ = s} and only the model {Â = A}. The simulated data has n = 25
and p = 25. Formatting inspired by Lee et al. (2016). The dashed line shows
the true signal. The blue arrow indicates that the lower bound of the confidence
interval cannot be computed, and defaults to −∞.

We observe that for strong signals, there is no significant difference between
confidence intervals that condition on the model as well as the signs of the coeffi-
cients, compared to the ones conditioned on the model only. For weaker signals,
there can be larger differences in the width of the confidence intervals, and even
intervals with infinite length. This usually happens when the observed test statistic
ηT y is very close to one of the truncation limits V−(z), V+(z). Figure 3.2 illustrates
that the confidence interval CI j = [L, U] is found from a monotonically decreasing
test statistic. In order to obtain the confidence interval, we need the statistic to be
defined and continuous around 1− α2 and α

2 . When the observed ηT y is too close
to the truncation limits, the search becomes unstable, and the interval cannot be
computed because the test statistic used to calculate the confidence intervals is
not defined at one of the critical points (Tibshirani et al. 2022). This aligns with
theoretical results from Kivaranovic and Leeb (2021) on the expected length of
the confidence intervals from the polyhedral inference method, which we discuss
in further detail in Section 5.1.1.

38 Chapter 4: Applications of polyhedral inference

In Figure 4.6 we see that for indices 5 and 6 of the active set, the unadjusted
least squares intervals did not cover the true signal in the simulated data, while
both versions of the selection adjusted intervals did. In the case of n� p the se-
lection adjusted confidence intervals are usually close to the unadjusted intervals
for strong signals. Figure 4.7 shows that this is not the case for n < p, where
there are larger differences between the intervals that adjust for selection and the
unadjusted intervals for both strong and weak signals in the data. This suggests
that we stand to gain more from the use of the polyhedral inference method after
lasso selection when we have few observations compared to predictors.

Chapter 5

Discussion

In this chapter, we discuss the properties and limitations of the polyhedral infer-
ence framework. We clarify the assumptions we have relied on throughout this
thesis, and acknowledge existing generalizations of the polyhedral inference ap-
proach, as well as related approaches to obtaining valid post-selection inferences.

5.1 Properties of selection adjusted confidence intervals

5.1.1 Width of selection adjusted confidence intervals

Selection adjusted confidence intervals are generally wider than least squares con-
fidence intervals that do not take model selection into account. We have seen from
the examples in Figures 4.6 and 4.7 that we at times obtain very wide confid-
ence intervals when conditioning on {Â = A, ŝ = s}. When the truncated Gaus-
sian random variable ηT y is very close to the endpoints of the truncation interval
[V−s (z),V

+
s (z)], we get wide confidence intervals because there are many values

of ηTµ that are consistent with the observation of ηT y (Lee et al. 2016). This
usually occurs when the signal is weak or null. For strong signals, the observed
statistic ηT y is usually far from both V−s (z) and V+s (z), giving relatively narrow
confidence intervals with 1−α coverage conditional on {Â= A, ŝ= s}.

Conditioning on more leads to wider confidence intervals and less powerful
tests (Tibshirani et al. 2016). Omitting the conditioning on the sign pattern s
yields shorter confidence intervals with the same 1 − α coverage. The option of
computing p-values and confidence intervals conditional only on {Â = A} is not
available in the selectiveInference library in R (Tibshirani et al. 2022). Hence,
extending our approach to cover this was a natural focus point for this thesis.

The confidence intervals conditional on {Â= A, ŝ = s} are shown by Kivaran-
ovic and Leeb (2021) to have infinite expected length. However, confidence inter-
vals with infinite expected length can still have a high probability of turning out
short, or of appropriate lengths (Kivaranovic and Leeb 2021). It is also shown that
under a set of necessary and sufficient conditions, the confidence intervals condi-
tional on only {Â= A} share the property of infinite expected length. When these

39

40 Chapter 5: Discussion

conditions are not fulfilled, the expected length of these intervals is finite. From
our examples in Figures 4.6 and 4.7 we cannot determine the expected length
of the different types of confidence intervals, but we do observe two instances
of intervals that go to −∞ when conditioned on {Â = A, ŝ = s}, that are finite
when omitting the conditioning on the realized sign pattern. While this does not
make any guarantees regarding length properties of the confidence intervals, the
realizations shown in the examples align with the general results presented by
Kivaranovic and Leeb (2021).

5.1.2 Unbiased confidence intervals

The confidence intervals CI j = [L, U] for β j found from test inversion of the selec-
tion adjusted test statistic (3.11) have at least 1−α coverage. While many alternat-
ive confidence intervals will share this property, CI j is one of the shortest possible
alternatives with this conditional coverage, which is preferable. Unbiasedness is
also valued when evaluating confidence intervals. An unbiased confidence inter-
val CI for a parameter θ is an interval which covers no other parameter θI with
probability greater than 1−α, in other words,

P(θI ∈ CI)≤ 1−α for all θI 6= θ

(Lee et al. 2016). Fithian et al. (2014) show that the CI j conditional on {Â =
A} from the polyhedral inference framework are close to the shortest unbiased
intervals for β j among all intervals with the same 1−α coverage (Lee et al. 2016).

5.2 Generalizations

5.2.1 Extension to unknown variance

Throughout this thesis we have assumed that the variance σ2 is known. In prac-
tice, this is rarely the case. In the simulated examples in Sections 4.1.4 and 4.2.4,
the variance is known to be σ2 = 1. In our implementations in R, we have relied
on the knowledge of the value of σ2, and have not generalized to cover unknown
variances. The selectiveInference library estimates the variance, and uses this
estimate as a known variance. In the cases of more observations than predictors,
n > p, the estimated variance cσ2 of the residuals from fitting the full model is a
consistent estimator of σ2 (Lee et al. 2016). In settings where p > n, estimating
σ2 is difficult. Tibshirani et al. (2018) discuss the asymptotics of selective infer-
ence in further detail, and suggest an efficient bootstrap approach for when σ2 is
unknown.

5.2.2 Further extensions

Variable selection in the linear model with Gaussian errors is often chosen as the
target of post-selection inference partly because it is widely used, and partly be-
cause it is one of the most familiar examples of model selection. There exist many

Chapter 5: Discussion 41

methods for variable selection for linear regression. Forward selection with a fixed
number of steps k, the lasso with fixed λ, and least angular regression are known
to be compatible with the polyhedral method (Tibshirani et al. 2016). There still
remain many interesting generalizations of conditional inference beyond the lin-
ear model, and some of these are explored in literature and implementations. The
R package selectiveInference contains extensions of the polyhedral inference
framework to logistic regression, the graphical lasso, and the Cox proportional
hazards model (Tibshirani et al. 2022).

Hyun et al. (2018) extends the polyhedral inference framefork to inference
conditioned on model selection events defined by the generalized lasso path. The
generalized lasso estimate is given as

β̂ = argmin
β

1
2
‖y− Xβ‖22 +λ‖Dβ‖1, λ≥ 0 (5.1)

where D ∈ Rm×p is a penalty matrix and m ≤ n. The inference tools presented
in the article holds for any penalty matrix D, and the method has many possible
applications.

5.3 Related approaches to post-selection inference

5.3.1 The covariance test

The covariance test for the lasso is proposed by Lockhart et al. (2014) as a solu-
tion for valid significance testing of variables that enter a linear model along the
lasso solution path. When the true model is linear, the covariance test statistic has
an Exp(1) distribution under the null hypothesis that all significant predictors are
already contained in the current lasso model (Lockhart et al. 2014). The covari-
ance test is based on the least angular regression algorithm. It takes advantage
of the knots of the lasso, which are the values of λ for which the set of active
predictors changes. The covariance test statistic measures how much of the cov-
ariance between the fitted model and the outcome is associated with the predictor
that was last entered by the lasso. For forward stepwise selection, the Rk, j statistic
(4.2) is the covariance test statistic (Hastie et al. 2015).

5.3.2 Simultaneous inference

A central requirement of the conditional approach to post selection inference is
that the model selection is realized by the use of well-defined selection methods
that can be specified by statistical events. It is impossible to condition on a se-
lection procedure that can not be summarized mathematically. In practice, it is
often the case that a model is selected partially by informal selection methods,
e.g. by inspection of visual representations of the data or post hoc considerations.
A post-selection inference approach that addresses this challenge is simultaneous
inference.

42 Chapter 5: Discussion

The simultaneous inference approach was proposed by Berk et al. (2013). The
method yields universally valid inferences by considering all possible selection
procedures that could produce the submodel in question. Let A denote the set of
all possible candidate models. We regard the regression coefficients βA

j relative to
their respective submodels A, not relative to the full model (Berk et al. 2013). The
method constructs a set of confidence intervals for all possible submodels such
that

P
�

⋂

A∈A
{βA

j ∈ CIA
j }
�

≥ 1−α

(Kuchibhotla et al. 2022). The resulting inferences do not depend on the selected
model being correct (Tibshirani et al. 2016). Simultaneous inference is a lot more
computationally expensive to perform than polyhedral inference. It is recommen-
ded by (Berk et al. 2013) to impose restrictions on the set of candidate models A
to manage computation. However, in contrast to polyhedral inference, simultan-
eous inference can be used to obtained valid inference after any model selection
procedure has taken place, which is a notable advantage when the model selection
cannot be formally defined.

Chapter 6

Conclusions and further work

Post-selection inference is a highly relevant field in modern statistics. Techniques
for handling inference after adaptive model selection are continuously being de-
veloped and researched, and existing frameworks are being improved and ex-
panded. The polyhedral framework provides a general scheme to perform valid
inference after model selection whenever the selection event can be fully charac-
terized by a set of linear inequalities in y, {Ψy≤ b}. The polyhedral lemma states
that this selection event can be rewritten as the event that the linear contrast ηT y
lies in the interval [V+(z),V−(z)]. The truncation limits are functions of Ψ, b, and
the part of y orthogonal to the projection onto η, z, but they are statistically inde-
pendent of y. This key result allows the construction of a selection adjusted test
statistic conditional on {Ψy ≤ b}, which is shown to follow a U(0,1) distribution
under the null hypothesis ηTµ = 0. This provides us with a scheme to perform
exact inferences after the model selection has taken place.

A remarkable property of the property of the polyhedral method is that it is in
closed form. As it requires no sampling or estimation, it is very computationally
convenient. However, through the use of the polyhedral inference framework,
we do condition on both the model and signs Â = A, ŝ = s and on the vector
z. As discussed in Section 5.1, the resulting confidence intervals are generally
wide, and can have infinite expected length. Conditioning on less results in shorter
confidence intervals, but requires more computation when we require the same
level of coverage proability. We have successfully omitted the conditioning on the
sign pattern of the coefficients for forward selection and the lasso, and reviewed
theory and examples that show that this results in shorter confidence intervals
with the same 1 − α coverage probability. An interesting question is whether it
would be possible to omit the conditioning on the component z of y orthogonal to
the direction η of interest. However, this condition is necessary for the polyhedral
method to be a closed form method for post-selection inference. In other words,
including the conditioning on z is done for computational reasons, and it is not
clear how to exclude it without losing the very properties that make the polyhedral
method convenient to use for inference after model selection.

Two significant assumptions we have relied on are that the number of steps

43

44 Chapter 6: Conclusions and further work

k in the forward selection procedure and the tuning parameter λ in the lasso are
fixed. In practice, the number of steps for forward selection is usually determined
by a stopping rule. The lasso tuning parameter λ is normally chosen by cross
validation, and hence it is a random variable. An interesting extension to consider
for further work is how to include a conditioning on the choice of λ, instead of
assuming that it is fixed.

Another natural extension of this thesis could be to include the construction
of polyhedral selection events for least angular regression. This is elaborated by
Tibshirani et al. (2016), pp. 606–607, and implementations for this are included
in the selectiveInference package. Similarly to forward selection and the lasso,
the selection adjusted tests and confidence intervals are calculated in the same
way.

Bibliography

Berk, Richard, Lawrence Brown, Andreas Buja, Kai Zhang and Linda Zhao (2013).
‘Valid post-selection inference’. In: The Annals of Statistics, pp. 802–837.

Fithian, William, Dennis Sun and Jonathan Taylor (2014). ‘Optimal inference after
model selection’. In: arXiv preprint arXiv:1410.2597.

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman and Jerome H Friedman
(2009). The elements of statistical learning: data mining, inference, and predic-
tion. Vol. 2. Springer.

Hastie, Trevor, Robert Tibshirani and Martin Wainwright (2015). Statistical learn-
ing with sparsity: the lasso and generalizations. CRC press.

Hyun, Sangwon, Max G’Sell and Ryan J. Tibshirani (2018). ‘Exact post-selection
inference for the generalized lasso path’. In: Electronic Journal of Statistics
12.1, pp. 1053–1097. DOI: 10.1214/17-EJS1363. URL: https://doi.org/10.
1214/17-EJS1363.

James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani et al. (2013). An
introduction to statistical learning. Vol. 112. Springer.

Kivaranovic, Danijel and Hannes Leeb (2021). ‘On the length of post-model-selection
confidence intervals conditional on polyhedral constraints’. In: Journal of the
American Statistical Association 116.534, pp. 845–857.

Kuchibhotla, Arun K, John E Kolassa and Todd A Kuffner (2022). ‘Post-selection
inference’. In: Annual Review of Statistics and Its Application 9, pp. 505–527.

Lee, Jason D, Dennis L Sun, Yuekai Sun and Jonathan E Taylor (2016). ‘Exact
post-selection inference, with application to the lasso’. In:

Lockhart, Richard, Jonathan Taylor, Ryan J Tibshirani and Robert Tibshirani (2014).
‘A significance test for the lasso’. In: Annals of statistics 42.2, p. 413.

Næss, Fanny Øverbø (2023). Exact inference conditioned on the selection event. Pro-
ject report in TMA4500. Department of Mathematical Sciences NTNU – Nor-
wegian University of Science and Technology.

Taylor, Jonathan and Robert J Tibshirani (2015). ‘Statistical learning and selective
inference’. In: Proceedings of the National Academy of Sciences 112.25, pp. 7629–
7634.

Tibshirani, Robert (1996). ‘Regression shrinkage and selection via the lasso’. In:
Journal of the Royal Statistical Society Series B: Statistical Methodology 58.1,
pp. 267–288.

45

https://doi.org/10.1214/17-EJS1363
https://doi.org/10.1214/17-EJS1363
https://doi.org/10.1214/17-EJS1363

46 Bibliography

Tibshirani, Robert (2016). Invited Talk: Post-selection Inference for Forward Step-
wise Regression, Lasso and other procedures. Microsoft Research. URL: https:
//youtu.be/RKQJEvc02hc?si=%200dlktxA7rY-%20K05R7.

Tibshirani, Ryan J. (2013). ‘The lasso problem and uniqueness’. In: Electronic
Journal of Statistics 7.none, pp. 1456–1490. DOI: 10.1214/13-EJS815. URL:
https://doi.org/10.1214/13-EJS815.

Tibshirani, Ryan J., Alessandro Rinaldo, Rob Tibshirani and Larry Wasserman
(2018). ‘Uniform asymptotic inference and the bootstrap after model selec-
tion’. In: The Annals of Statistics 46.3, pp. 1255–1287. DOI: 10.1214/17-
AOS1584. URL: https://doi.org/10.1214/17-AOS1584.

Tibshirani, Ryan J, Jonathan Taylor, Richard Lockhart and Robert Tibshirani (2016).
‘Exact post-selection inference for sequential regression procedures’. In: Journal
of the American Statistical Association 111.514, pp. 600–620.

Tibshirani, Ryan, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
and Jelena Markovic (2022). Package ‘selectiveInference’. R package version
1.2.5. URL: https://cran.r-project.org/web/packages/selectiveInference/
selectiveInference.pdf.

United Nations (2015). Transforming our world: The 2030 Agenda for Sustainable
Development. Accessed: 2024-05-28. URL: https://sustainabledevelopment.
un.org/post2015/transformingourworld.

https://youtu.be/RKQJEvc02hc?si=%200dlktxA7rY-%20K05R7
https://youtu.be/RKQJEvc02hc?si=%200dlktxA7rY-%20K05R7
https://doi.org/10.1214/13-EJS815
https://doi.org/10.1214/13-EJS815
https://doi.org/10.1214/17-AOS1584
https://doi.org/10.1214/17-AOS1584
https://doi.org/10.1214/17-AOS1584
https://cran.r-project.org/web/packages/selectiveInference/selectiveInference.pdf
https://cran.r-project.org/web/packages/selectiveInference/selectiveInference.pdf
https://sustainabledevelopment.un.org/post2015/transformingourworld
https://sustainabledevelopment.un.org/post2015/transformingourworld

Appendix A

R code

A.1 Simulating p-values for forward selection

The following code snippets are recycled from previous work (Næss 2023).

library(selectiveInference)
set.seed(123)
n<-1000
preds <- 5
p <- apply(matrix(runif(n*preds), nrow = n), 1, min)
obs_naive <- sapply(1:n, function(i) sum(p <= p[i])) / n
pvec <- numeric(n)
X <- matrix(rnorm(n*preds), nrow = n)
for (i in 1:n) {
y <- rnorm(n)
fs_fit <- fs(X, y, maxsteps = 1)
fs_inf <- fsInf(fs_fit)
pvals <- fs_inf$pv
pval <- min(pvals)
pvec[i] <- pval

}
obs_selective <- sapply(1:n, function(i) sum(pvec <= pvec[i])) / n

The results from the code above is plotted to create Figure 4.1 as follows:

plot(p, obs_naive, xlim = c(0, 1), ylim = c(0, 1), ylab = "Observed",
xlab = "Expected", main = "FS␣step␣k=1,␣p=5", col="indianred3")

points(pvec, obs_selective, xlim = c(0, 1), ylim = c(0, 1), ylab = "Observed",
xlab = "Expected", col = "royalblue")

legend("bottomright", legend = c("Naive", "Selection␣adjusted"),
col = c("indianred3", "royalblue3"), pch = c(1, 1))

abline(v=0.05,col="gray5", lty=2, lwd=1.5)

47

48 Chapter A: R code

A.2 Simulating type I error for forward selection

library(selectiveInference)
set.seed(123)
type1forp_FS <- function(n, preds){
p <- apply(matrix(runif(n*preds), nrow = n), 1, min)
obs_naive <- sapply(1:n, function(i) sum(p <= p[i])) / n
type1naive <-(sum(p <= 0.05))/n #Type 1 error for the Naive test
pvec <- numeric(n)
X <- matrix(rnorm(n*preds), nrow = n) #Random design matrix
for (i in 1:n) {
y <- rnorm(n) #Random response vector
fs_fit <- fs(X, y, maxsteps = 1) #Perform first step of FS
fs_inf <- fsInf(fs_fit) #From selectiveInference library
pvals <- fs_inf$pv #Selection adjusted p-value
pval <- min(pvals)
pvec[i] <- pval

}
obs_selective <- sapply(1:n, function(i) sum(pvec <= p[i])) / n
type1tg <- (sum(pvec <= 0.05))/n #Type 1 error for the TG test
returnlist <- list("TG"=obs_selective, "p"=p, "naive"=obs_naive,
"type1_TG"=type1tg, "type1_naive"=type1naive)
return(returnlist)

}

#Number of simulations and observations
n<-1000
#Vector containing values for the number of predictors
preds <- 1:10
#Initialize result vectors
type1_TG_results <- numeric(length(preds))
type1_naive_results <- numeric(length(preds))

for (i in seq_along(preds)) {
p_result <- type1forp_FS(n, preds[i])
type1_TG_results[i] <- p_result$type1_TG
type1_naive_results[i] <- p_result$type1_naive

}

The results from the code above is plotted to create Figure 4.2 as follows:

plot(preds, type1_TG_results, type = "l", col = "royalblue",
xlab = "Number_of_predictors", ylab = "Type_I_error",
main = "FS␣step␣k=1", ylim=c(0,0.5), lwd=2)
lines(preds, type1_naive_results, col = "indianred3", lwd=2)
legend("topright", legend = c("Selection␣adjusted", "Naive"),
col = c("royalblue", "indianred3"), lty = 1, lwd=c(2,2))
abline(h=0.05,col="gray5", lty=2, lwd=1.5)

Chapter A: R code 49

A.3 Polyhedral inference for forward selection

This section contains the necessary functions to use polyhedral post-selection in-
ference on models chosen by forward stepwise selection. The example described
in Section 4.1.4 and shown in Figure 4.3 is also provided.

A.3.1 Implemented functions

For error checking purposes, all p-values and confidence intervals have been com-
pared to equivalent results produced by the selectiveInference library. The p-
values from this code are equal to the ones from the library up to the fifth decimal.
The confidence intervals differ slightly from the second decimal. This is likely due
to different choices of grid size in binary search algorithms. Throughout the code,
the selection matrix Ψ is named A.

Auxiliary functions

#Libraries
library(selectiveInference)
library(glmnet)
library(ggplot2)
library(knitr)
library(MASS)
library(plotrix)

ej <- function(j, n){
ej <- rep(0, n)
ej[j] <- 1
return(ej)

}

euclidean_norm <- function(v) {
return(sqrt(sum(v^2)))

}

#Simple binary search algorithm
interval_halving_search <- function(f, target, lower, upper, tolerance = 1e-6,
max_iterations = 1000) {
iteration <- 0
while (upper - lower > tolerance && iteration < max_iterations) {
middle <- (lower + upper) / 2
if (f(middle) < target) {
upper <- middle

} else {
lower <- middle

}
iteration <- iteration + 1

}
return((lower + upper) / 2)

}

#Generates all possible sign patterns of n active coefficients
sign_patterns <- function(n) {

50 Chapter A: R code

#Only one active variable
if (n == 1) {
return(list(c(-1), c(1)))

} else {
#Use recursion to generate sign patterns for n-1 coefficients
subpatterns <- sign_patterns(n-1)
signpatterns <- list()
#Make new sign patterns for every subpattern by adding -1 and 1
for (signpattern in subpatterns) {
signpatterns <- c(signpatterns, list(c(-1, signpattern)))
signpatterns <- c(signpatterns, list(c(1, signpattern)))

}
return(signpatterns)

}
}

Truncated Gaussian test for models chosen by forward selection

#Performs a FS adjusted test from the polyhedral lemma
myselinf_FS <- function(X,y,A,b,actives,j,s){
#X: design matrix
#y: response vector
#A: current FS selection matrix
#b: vector of zeros
#actives: vector of indices of active variables
#j: the variable index to be tested
#s: current sign pattern vector
X_A <- X[, actives]
XTX <- t(X_A) %*% X_A
XTXinv <- solve(XTX)
pinv <- (XTXinv) %*% t(X_A) #Pseudoinverse of X_A
pinvt <- t(pinv)
e <- ej(j,length(actives))
e <- matrix(e, ncol=1)
eta <- pinvt %*% e #eta
etat <- t(eta)
etateta <- etat %*% eta
etatetainv <- solve(etateta)
c <- eta %*% etatetainv
z<- y-(c%*%etat)%*%y
Ac <- A %*% c
Az <- A %*% z
#Extract indices for which Ac < 0 and Ac > 0
minjs <- which(Ac < 0)
maxjs <- which(Ac > 0)
zerojs <- which(Ac ==0)
#Calculate the truncation limits
vmin<- max((b[minjs]-Az[minjs])/Ac[minjs])
vmax<- min((b[maxjs]-Az[maxjs])/Ac[maxjs])
etaty <- etat %*% y
etanorm <- euclidean_norm(eta)
#Calculate selection adjusted p-value and F
#Truncated gaussian CDF
if(etaty >= 0){
F_selectionadjusted <-(pnorm((etaty)/etanorm)-pnorm(vmin/etanorm))/
(pnorm(vmax/etanorm)-pnorm(vmin/etanorm))

p_selectionadjusted <- 1-F_selectionadjusted
}else{

Chapter A: R code 51

p_selectionadjusted <-(pnorm((etaty)/etanorm)-pnorm(vmin/etanorm))/
(pnorm(vmax/etanorm)-pnorm(vmin/etanorm))

F_selectionadjusted <- 1-p_selectionadjusted
}
#Handling values too close to 0 in denominator
if (is.nan(p_selectionadjusted)) {
p_selectionadjusted <- 0

}

if (is.nan(F_selectionadjusted)) {
F_selectionadjusted <- 1

}
returnlist <- list("pv"=p_selectionadjusted, "F"=F_selectionadjusted,
"vmin"=vmin,"vmax"=vmax, "etaty"=etaty, "etanorm"=etanorm)
return(returnlist)

}

Selection adjusted test statistic for calculation of confidence intervals

F_selectionadjusted_CIsearch <- function(L, selinf.results){
etaty <- selinf.results$etaty
etanorm <- selinf.results$etanorm
vmin <- selinf.results$vmin
vmax <- selinf.results$vmax
F_val <- (pnorm((etaty-L)/etanorm)-pnorm((vmin-L)/etanorm))/
(pnorm((vmax-L)/etanorm)-pnorm((vmin-L)/etanorm))

return(F_val)
}

Selection adjusted test statistic conditional on only the model

F_union <- function(L, etatys, etanorm, vminvals, vmaxvals){
n_signpatterns <- length(vminvals)
numvec <- c(rep(0,n_signpatterns))
demvec <- c(rep(0,n_signpatterns))
for(i in 1:n_signpatterns){
if(vminvals[i] < vmaxvals[i]){
if(etatys[i] < vminvals[i]){
numvec[i] <- 0

}else{
if(etatys[i] > vmaxvals[i]){
numvec[i] <- demvec[i] <- pnorm((vmaxvals[i]-L)/etanorm[i])
-pnorm((vminvals[i]-L)/etanorm[i])

}else{
numvec[i] <- pnorm((etatys[i]-L)/etanorm[i])-
pnorm((vminvals[i]-L)/etanorm[i])

}
}
demvec[i] <- pnorm((vmaxvals[i]-L)/etanorm[i])-
pnorm((vminvals[i]-L)/etanorm[i])

}
else{
numvec[i] <- 0
demvec[i] <- 0

}

52 Chapter A: R code

}
numerator <- sum(numvec)
denominator <- sum(demvec)
F_val_union <- numerator/denominator
return(F_val_union)

}

Test inversion

union_CI_FS <- function(X, y, A_list, b, signpatterns,j, buffer, alpha, result.orig,
actives){

#A_list: List of selection matrices A_s for the different sign patterns
#Signpatterns: List of all possible sign patterns for the active variables
results <- list()
for (i in seq_along(signpatterns)) {
s <- signpatterns[i]
result <- myselinf_FS(X, y, A_list[i], b, actives,j, s)
results <- c(results, list(result))

}
vmins <- c()
vmaxs <- c()
etatys <- c()
etanorm <- c()
for (result in results) {
vmins <- c(vmins, result$vmin)
vmaxs <- c(vmaxs, result$vmax)
etatys <- c(etatys, result$etaty)
etanorm <- c(etanorm, result$etanorm)

}
lb <- result.orig$etaty - buffer
ub <- result.orig$etaty + buffer
lower <- interval_halving_search(function(L)
F_union(L, etatys, etanorm , vmins, vmaxs),

1-alpha/2,
lb,
ub)

upper <- interval_halving_search(function(L)
F_union(L, etatys, etanorm , vmins, vmaxs),

alpha/2,
lb,
ub)

CI_union <- c(lower, upper)
return(list("CI_union"=CI_union, "vmins"=vmins, "vmaxs"=vmaxs, "etatys"=etatys,

"etanorm"=etanorm))

}

Chapter A: R code 53

A.3.2 Forward selection example on simulated data

We note that when implementing selection events manually for small p, it is useful
to check that Ψy≤ 0 holds.

set.seed(1)
n=80
p=3
sigma=1
X <- matrix(rnorm(n*p),n,p)
X <-scale(X, center = TRUE, scale = TRUE)
beta <- c(0.6,0.3,0)
y <- X%*%beta + sigma*rnorm(n)

x1 <- matrix(X[, 1], ncol = 1)
x2 <- matrix(X[, 2], ncol = 1)
x3 <- matrix(X[, 3], ncol = 1)

#Creating the rows of A
#A is 2(p-k) x n
#Rows of selection matrix, k=1, x1 chosen
A1 <- -(t(x1) / euclidean_norm(x1)) + t(x2) /euclidean_norm(x2)
A2 <- -(t(x1) / euclidean_norm(x1)) - t(x2) /euclidean_norm(x2)
A3 <- -(t(x1) / euclidean_norm(x1)) + t(x3) /euclidean_norm(x3)
A4 <- -(t(x1) / euclidean_norm(x1)) - t(x3) /euclidean_norm(x3)

#Collect the rows to form the selection matrix
A_1 <- rbind(A1, A2, A3, A4)
b_1 <- c(rep(0,4))
s1 <- sign(t(x1) %*% y)
actives <- c(1)
#Selection adjusted test cond. on model and signs
selinf.results <-myselinf_FS(X,y,A_1,b_1,actives,1,s1)

#Calculating confidence intervals
alpha <- 0.05
lb <- selinf.results$etaty -1.5
ub <- selinf.results$etaty +1.5
lower_1 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results),

1-alpha/2,
lb,
ub)

upper_1 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results),

alpha/2,
lb,
ub)

myCI1 <- c(lower_1, upper_1)
s <- sign(t(x1) %*% y)
buffer <- 1
#STEP 2: x2 chosen
s2 <- sign(t(x2) %*% y) #sign
X_A <- X[,1]
XTX <- t(X_A) %*% X_A
XTXinv <- solve(XTX)
#Projection onto the column space of X_A1
P <- X_A %*% (XTXinv) %*% t(X_A)
X_A2 <- X[, c(1,2)]

54 Chapter A: R code

#Regress x2 onto x1
lm_2 <- lm(X_A2[,2] ~ X_A2[,1], data=as.data.frame(X_A2))
res_2 <- residuals(lm_2)
res_2<- matrix(res_2)
#The submatrix if 3 had been chosen in step 2
X_A23 <-X[, c(1,3)]
#Regress x3 onto x1
lm_23 <- lm(X_A23[,2] ~ X_A2[,1], data=as.data.frame(X_A23))
res_23 <- residuals(lm_23)
res_23<- matrix(res_23)
#Orthogonal to P
P_ortho <- diag(n)-P
#Rows for the selection matrix at k=2, x2 chosen
A5 <- -s2%*%(t(res_2)%*%P_ortho / euclidean_norm(res_2)) +
t(res_23)%*%P_ortho /euclidean_norm(res_23)
A6 <- -s2%*%(t(res_2)%*%P_ortho / euclidean_norm(res_2)) -
t(res_23)%*%P_ortho /euclidean_norm(res_23)
#Append the new rows to A
A_2 <- rbind(A_1, A5, A6)
A_2_11 <- A_2

actives_2 <- c(1,2)
s2<- c(s,s2)
b_2<- c(rep(0,6))
selinf.results_2 <-myselinf_FS(X,y,A_2,b_2,actives_2,2,s2)

lb_2 <- selinf.results_2$etaty -1.2 #adjusted manually for precision
ub_2 <- selinf.results_2$etaty +1.2
lower_2 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results_2),

1-alpha/2,
lb_2,
ub_2)

upper_2 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results_2),

alpha/2,
lb_2,
ub_2)

myCI2 <- c(lower_2, upper_2)

#THIRD STEP: x3 chosen
s3 <- sign(t(x3) %*% y)
XTX_2 <- t(X_A2) %*% X_A2
XTXinv_2 <- solve(XTX_2)
#Projection onto the column space of X_A2
P_2 <- X_A2 %*% (XTXinv_2) %*% t(X_A2)
P_ortho2 <- diag(n)-P_2
X_A3 <- X[, c(1,2,3)]
#Regress X[,3] onto the other columns
lm_3 <- lm(X_A3[,3] ~ X_A3[,1] +X_A3[,2] , data=as.data.frame(X_A3))
res_3 <- residuals(lm_3)
res_3<- matrix(res_3)

#Adding row for p=k=3
A7 <- -s3%*%(t(res_3)%*%P_ortho2 / euclidean_norm(res_3))
#Bind to the final selection matrix
A_3 <- rbind(A_2,A7)

b_3 <- c(rep(0,7))

Chapter A: R code 55

actives_3 <- c(1,2,3)
s_3 <- c(s2,s3)
selinf.results_3 <-myselinf_FS(X,y,A_3,b_3,actives_3,3,s_3)
lb_3 <- selinf.results_3$etaty -1
ub_3 <- selinf.results_3$etaty +1
lower_3 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results_3),

1-alpha/2,
lb_3,
ub_3)

upper_3 <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, selinf.results_3),

alpha/2,
lb_3,
ub_3)

myCI3 <- c(lower_3, upper_3)

#Rows of selection matrix, k=1, x1 chosen, signs reversed
A1r <- (t(x1) / euclidean_norm(x1)) + t(x2) /euclidean_norm(x2)
A2r <- (t(x1) / euclidean_norm(x1)) - t(x2) /euclidean_norm(x2)
A3r <- (t(x1) / euclidean_norm(x1)) + t(x3) /euclidean_norm(x3)
A4r <- (t(x1) / euclidean_norm(x1)) - t(x3) /euclidean_norm(x3)
A_1_rev <- rbind(A1r, A2r, A3r, A4r)

selinf.results_rev <-myselinf_FS(X,y,A_1_rev,b_1,1,1,s=c(-1))
etatys <- c(selinf.results$etaty, selinf.results_rev$etaty)
etanorm <- c(selinf.results$etanorm, selinf.results_rev$etanorm)
vmins <- c(selinf.results$vmin, selinf.results_rev$vmin)
vmaxs <- c(selinf.results$vmax, selinf.results_rev$vmax)

selinf.results_rev <-myselinf_FS(X,y,A_1_rev,b_1,c(1,2),1,s=c(-1))
etatys <- c(selinf.results$etaty, selinf.results_rev$etaty)
etanorm <- c(selinf.results$etanorm, selinf.results_rev$etanorm)
vmins <- c(selinf.results$vmin, selinf.results_rev$vmin)
vmaxs <- c(selinf.results$vmax, selinf.results_rev$vmax)

lb <- selinf.results$etaty - 1.1
ub <- selinf.results$etaty + 1.1
lower <- interval_halving_search(function(L)
F_union(L, etatys, etanorm , vmins, vmaxs),

1-alpha/2,
lb,
ub)

upper <- interval_halving_search(function(L)
F_union(L, etatys, etanorm , vmins, vmaxs),

alpha/2,
lb,
ub)

CI_union <- c(lower, upper)

s2 <-1
#Rows for the selection matrix at k=2, x2 chosen, signs reversed
A5r <- s2%*%(t(res_2)%*%P_ortho / euclidean_norm(res_2)) +
t(res_23)%*%P_ortho /euclidean_norm(res_23)
A6r <- s2%*%(t(res_2)%*%P_ortho / euclidean_norm(res_2)) -
t(res_23)%*%P_ortho /euclidean_norm(res_23)

#sign pattern x1 pos x2 neg
A_2_10 <- rbind(A_1, A5r, A6r)
#sign pattern x1 neg x2 neg

56 Chapter A: R code

A_2_00 <- rbind(A_1_rev, A5r, A6r)
#sign pattern x1 neg x2 pos
A_2_01 <- rbind(A_1_rev, A5, A6)

#Store results for each
selinf.results_2_10 <-myselinf_FS(X,y,A_2_10 ,b_2,actives=c(1,2),2,s=c(1,-1))
selinf.results_2_00 <-myselinf_FS(X,y,A_2_00,b_2,actives=c(1,2),2,s=c(-1,-1))
selinf.results_2_01 <-myselinf_FS(X,y,A_2_01,b_2,actives=c(1,2),2,s=c(-1,1))

etatys2 <- c(selinf.results_2_00$etaty,
selinf.results_2_10$etaty,selinf.results_2_01$etaty,selinf.results_2$etaty)
etanorm2 <- c(selinf.results_2_00$etanorm,
selinf.results_2_10$etanorm,selinf.results_2_01$etanorm,selinf.results_2$etanorm)
vmins2 <- c(selinf.results_2_00$vmin,
selinf.results_2_10$vmin,selinf.results_2_01$vmin,selinf.results_2$vmin)
vmaxs2 <- c(selinf.results_2_00$vmax,
selinf.results_2_10$vmax,selinf.results_2_01$vmax,selinf.results_2$vmax)

lb2 <- selinf.results_2$etaty - buffer
ub2 <- selinf.results_2$etaty + buffer
lower2 <- interval_halving_search(function(L)
F_union(L, etatys2, etanorm2 , vmins2, vmaxs2),

1-alpha/2,
lb2,
ub2)

upper2 <- interval_halving_search(function(L)
F_union(L, etatys2, etanorm2 , vmins2, vmaxs2),

alpha/2,
lb2,
ub2)

CI_union2 <- c(lower2, upper2)

#step 3 signs reversed
A7r <- s3%*%(t(res_3)%*%P_ortho2 / euclidean_norm(res_3))

#All possible selection matrices
A_3_000 <- rbind(A_2_00, A7)
A_3_100 <- rbind(A_2_10, A7)
A_3_101 <- rbind(A_2_10, A7r)
A_3_110 <- rbind(A_2_11, A7)
A_3_001 <- rbind(A_2_00, A7r)
A_3_010 <- rbind(A_2_01, A7r)
A_3_011 <- rbind(A_2_10, A7)
A_3_111 <- rbind(A_2_11, A7r)
selinf.results_3_000 <-myselinf_FS(X,y,A_3_000
,b_3,actives=c(1,2,3),3,s=c(-1,-1,-1))
selinf.results_3_100 <-myselinf_FS(X,y,A_3_100
,b_3,actives=c(1,2,3),3,s=c(1,-1,-1))
selinf.results_3_101 <-myselinf_FS(X,y,A_3_101
,b_3,actives=c(1,2,3),3,s=c(1,-1,1))
selinf.results_3_110 <-myselinf_FS(X,y,A_3_110
,b_3,actives=c(1,2,3),3,s=c(1,1,-1))
selinf.results_3_001 <-myselinf_FS(X,y,A_3_001
,b_3,actives=c(1,2,3),3,s=c(-1,-1,1))
selinf.results_3_010 <-myselinf_FS(X,y,A_3_010
,b_3,actives=c(1,2,3),3,s=c(-1,1,-1))
selinf.results_3_011 <-myselinf_FS(X,y,A_3_011
,b_3,actives=c(1,2,3),3,s=c(-1,1,1))
selinf.results_3_111 <-myselinf_FS(X,y,A_3_111
,b_3,actives=c(1,2,3),3,s=c(1,1,1))

Chapter A: R code 57

etatys3 <- c(selinf.results_3_000$etaty, selinf.results_3_100$etaty,
selinf.results_3_101$etaty,
selinf.results_3_111$etaty,
selinf.results_3_001$etaty,
selinf.results_3_010$etaty,
selinf.results_3_011$etaty,
selinf.results_3_111$etaty)
etanorm3 <- c(selinf.results_3_000$etanorm,
selinf.results_3_100$etanorm,
selinf.results_3_101$etanorm,
selinf.results_3_111$etanorm,

selinf.results_3_001$etanorm, selinf.results_3_010$etanorm,
selinf.results_3_011$etanorm,
selinf.results_3_111$etanorm)

vmins3 <- c(selinf.results_3_000$vmin, selinf.results_3_100$vmin,
selinf.results_3_101$vmin,
selinf.results_3_111$vmin,

selinf.results_3_001$vmin, selinf.results_3_010$vmin,
selinf.results_3_011$vmin,
selinf.results_3_111$vmin)

vmaxs3 <- c(selinf.results_3_000$vmax, selinf.results_3_100$vmax,
selinf.results_3_101$vmax,
selinf.results_3_111$vmax,

selinf.results_3_001$vmax, selinf.results_3_010$vmax,
selinf.results_3_011$vmax,
selinf.results_3_111$vmax)

etatys3 <- c(selinf.results_3_000$etaty, selinf.results_3_100$etaty,
selinf.results_3_101$etaty,
selinf.results_3_110$etaty,

selinf.results_3_001$etaty, selinf.results_3_010$etaty,
selinf.results_3_011$etaty,
selinf.results_3_111$etaty)

etanorm3 <- c(selinf.results_3_000$etanorm, selinf.results_3_100$etanorm,
selinf.results_3_101$etanorm,
selinf.results_3_110$etanorm,

selinf.results_3_001$etanorm, selinf.results_3_010$etanorm,
selinf.results_3_011$etanorm,
selinf.results_3_111$etanorm)

vmins3 <- c(selinf.results_3_000$vmin, selinf.results_3_100$vmin,
selinf.results_3_101$vmin,
selinf.results_3_110$vmin,

selinf.results_3_001$vmin, selinf.results_3_010$vmin,
selinf.results_3_011$vmin,
selinf.results_3_111$vmin)

vmaxs3 <- c(selinf.results_3_000$vmax, selinf.results_3_100$vmax,
selinf.results_3_101$vmax,
selinf.results_3_110$vmax,

selinf.results_3_001$vmax, selinf.results_3_010$vmax,
selinf.results_3_011$vmax,
selinf.results_3_111$vmax)

lb3 <- selinf.results_3$etaty-0.9
ub3 <- selinf.results_3$etaty +0.9
lower3 <- interval_halving_search(function(L)
F_union(L, etatys3, etanorm3 , vmins3, vmaxs3),

1-alpha/2,
lb3,
ub3)

upper3 <- interval_halving_search(function(L)

58 Chapter A: R code

F_union(L, etatys3, etanorm3 , vmins3, vmaxs3),
alpha/2,
lb3,
ub3)

CI_union3 <- c(lower3, upper3)

#Unadjusted least squares confidence intervals
model_x1 <- lm(y ~ x1-1)
naiveCI1<- confint(model_x1, level = 0.95)
x2 <- matrix(X[, 2], ncol = 1)
X12 <- cbind(x1, x2)
model_x1_x2 <- lm(y ~ X12-1)
naiveCI2<-confint(model_x1_x2)[2,]
X123 <- cbind(x1, x2, x3)
model_x1_x2_x3 <- lm(y ~ X123-1)
naiveCI3<- confint(model_x1_x2_x3)[3,]

modelonly <- data.frame(index = c(1, 2, 3),
lower_ci = c(CI_union[1], CI_union2[1], CI_union3[1]),
upper_ci = c(CI_union[2], CI_union2[2], CI_union3[2]))

naives <- data.frame(index = c(1, 2, 3),
lower_ci = c(naiveCI1[1], naiveCI2[1], naiveCI3[1]),
upper_ci = c(naiveCI1[2], naiveCI2[2], naiveCI3[2]))

modelandsigns <- data.frame(index = c(1, 2, 3),
lower_ci = c(myCI1[1], myCI2[1], myCI3[1]),
upper_ci = c(myCI1[2], myCI2[2], myCI3[2]))

combined_data <- rbind(modelandsigns, modelonly, naives)
combined_data$method <-
rep(c("Model␣and␣signs", "Model␣only","Unadjusted"), each = 3)

Plot with ggplot2
ggplot(combined_data, aes(x = index, ymin = lower_ci, ymax = upper_ci,
fill = method)) +
geom_rect(aes(xmin = index - 0.2, xmax = index - 0.05),
data = subset(combined_data, method == "Model␣and␣signs"), color = "gray100") +
geom_rect(aes(xmin = index - 0.05, xmax = index + 0.1),
data = subset(combined_data, method == "Model␣only"), color = "gray100") +
geom_rect(aes(xmin = index + 0.1, xmax = index + 0.25),
data = subset(combined_data, method == "Unadjusted"), color = "gray100") +
labs(x = "Variable␣indices", y = "Coefficient␣values", fill = "␣") +
scale_x_continuous(breaks = c(1, 2, 3)) +
scale_fill_manual(values = c("cornflowerblue", "brown", "gray40")) +
theme_minimal() +
theme(legend.position = "top", text = element_text(size=14))+
geom_segment(aes(x = 0.7, xend = 1.5, y = 0.6, yend = 0.6),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 1.5, xend = 2.5, y = 0.3, yend = 0.3),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 2.5, xend = 3.5, y = 0, yend = 0),
linetype = "dashed", color = "midnightblue", size=0.35)

Chapter A: R code 59

A.4 Polyhedral inference for the lasso

We use the same auxiliary functions for the basis vector, euclidean norm and bin-
ary search as in the previous section.

A.4.1 Implemented functions

Lasso selection event and truncated Gaussian test

myselinf_lasso <- function(X,y,lambda,actives,j,s){
#Split the design matrix into active and inactive columns
X_A <- X[, actives]
X_I <- X[, -actives]
#Define the projection onto the column span of X_A
XTX <- t(X_A) %*% X_A
XTXinv <- solve(XTX)
P <- X_A %*% (XTXinv) %*% t(X_A)
#Inactive constraints A_0
I <- diag(nrow(X))
elem <- t(X_I) %*% (I-P)
A_0 <- 1/lambda * rbind(elem, -elem)
pseudoinv <- ginv(t(X_A))
pseudoinvs <- pseudoinv %*% s
#Inactive constraints b_0
ones <- matrix(1, nrow = dim(t(X_I)%*%pseudoinvs)[1],
ncol = dim(t(X_I)%*%pseudoinvs)[2])
b_0 <- matrix(c(ones - t(X_I)%*%pseudoinvs,
ones + t(X_I)%*%pseudoinvs), nrow=2*dim(ones)[1], ncol=dim(ones)[2])
b_0 <- rbind(ones - t(X_I)%*%pseudoinvs, ones + t(X_I)%*%pseudoinvs)
#Sign vector
s_vec <- c(s)
mat <- diag(s_vec)
#Active constraints
A_1 <- -mat %*% XTXinv %*% t(X_A)
b_1 <- -lambda * mat %*% XTXinv %*% s_vec
#Collecting the active and inactive constraints
A <- rbind(A_0, A_1) #Lasso selection matrix
b <- rbind(b_0, b_1) #Lasso selection vector

#Using the polyhedral lemma to derive a selection adjusted test
#Note that the test is the same as for FS
XTX <- t(X_A) %*% X_A
XTXinv <- solve(XTX)
pinv <- (XTXinv) %*% t(X_A)
pinvt <- t(pinv)
e <- ej(j,length(actives))
e <- matrix(e, ncol=1)
eta <- pinvt %*% e
etat <- t(eta)
etateta <- etat %*% eta
etatetainv <- solve(etateta)
c <- eta %*% etatetainv
z <- (diag(1, nrow=nrow(X), ncol=nrow(X))-c%*%etat)%*%y
Ac <- A %*% c
Az <- A %*% z
minjs <- which(Ac < 0)
maxjs <- which(Ac > 0)

60 Chapter A: R code

zerojs <- which(Ac ==0)
vmin<- max((b[minjs]-Az[minjs])/Ac[minjs])
vmax<- min((b[maxjs]-Az[maxjs])/Ac[maxjs])
etaty <- etat %*% y
etanorm <- euclidean_norm(eta)
if(etaty >= 0){
F_selectionadjusted <-(pnorm((etaty)/etanorm)-pnorm(vmin/etanorm))/
(pnorm(vmax/etanorm)-pnorm(vmin/etanorm))

p_selectionadjusted <- 1-F_selectionadjusted
}else{
p_selectionadjusted <-(pnorm((etaty)/etanorm)-pnorm(vmin/etanorm))/
(pnorm(vmax/etanorm)-pnorm(vmin/etanorm))

F_selectionadjusted <- 1-p_selectionadjusted
}
#Handling values too close to 0 in denominator
if (is.nan(p_selectionadjusted)) {
p_selectionadjusted <- 0

}
if (is.nan(F_selectionadjusted)) {
F_selectionadjusted <- 1

}
returnlist <- list("pv"=p_selectionadjusted, "F"=F_selectionadjusted,
"vmin"=vmin, "vmax"=vmax, "etaty"=etaty, "etanorm"=etanorm)
return(returnlist)

}

We note that the selection adjusted test is derived in the same way for forward
selection and the lasso. The function above includes the construction of the lasso
selection event.

CIfunc_tent <- function(result, buffer, alpha){
lb <- result$etaty -buffer
ub <- result$etaty +buffer
lower <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, result),

1-alpha/2,
lb,
ub)

upper <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, result),

alpha/2,
lb,
ub)

CI <- c(lower, upper)
return(CI)

}
CIfunc_custom <- function(result, lb, ub, alpha){
lower <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, result),

1-alpha/2,
lb,
ub)

upper <- interval_halving_search(function(L)
F_selectionadjusted_CIsearch(L, result),

alpha/2,
lb,
ub)

CI <- c(lower, upper)
return(CI)

Chapter A: R code 61

}

Selection adjusted test statistic generalized to all sign patterns

F_union <- function(L, etatys, etanorm, vminvals, vmaxvals){
n_signpatterns <- length(vminvals)
numvec <- c(rep(0,n_signpatterns))
demvec <- c(rep(0,n_signpatterns))
for(i in 1:n_signpatterns){
if(vminvals[i] < vmaxvals[i]){

if(etatys[i] < vminvals[i]){
numvec[i] <- 0

}else{
if(etatys[i] > vmaxvals[i]){
numvec[i] <- demvec[i] <- pnorm((vmaxvals[i]-L)/etanorm[i])
-pnorm((vminvals[i]-L)/etanorm[i])

}else{
numvec[i] <- pnorm((etatys[i]-L)/etanorm[i])-
pnorm((vminvals[i]-L)/etanorm[i])

}
}
demvec[i] <- pnorm((vmaxvals[i]-L)/etanorm[i])-
pnorm((vminvals[i]-L)/etanorm[i])

}
else{
numvec[i] <- 0
demvec[i] <- 0

}
}
numerator <- sum(numvec)
denominator <- sum(demvec)
F_val_union <- numerator/denominator
return(F_val_union)

}

union_CI <- function(X, y, lambda, signpatterns,j, buffer, alpha, result.orig,
actives){

results <- list()
for (s in signpatterns) {
result <- myselinf_lasso(X, y, lambda, actives,j, s)
results <- c(results, list(result))

}
vmins <- c()
vmaxs <- c()
etatys <- c()
etanorm <- c()
for (result in results) {
vmins <- c(vmins, result$vmin)
vmaxs <- c(vmaxs, result$vmax)
etatys <- c(etatys, result$etaty)
etanorm <- c(etanorm, result$etanorm)

}

lb <- result.orig$etaty - buffer
ub <- result.orig$etaty + buffer
lower <- interval_halving_search(function(L)

62 Chapter A: R code

F_union(L, etatys, etanorm , vmins, vmaxs),
1-alpha/2,
lb,
ub)

upper <- interval_halving_search(function(L)
F_union(L, etatys, etanorm , vmins, vmaxs),

alpha/2,
lb,
ub)

CI_union <- c(lower, upper)
return(list("CI_union"=CI_union, "vmins"=vmins, "vmaxs"=vmaxs, "etatys"=etatys,
"etanorm"=etanorm))

}

#Generates all possible sign patterns of n active coefficients
sign_patterns <- function(n) {
#Only one active variable
if (n == 1) {
return(list(c(-1), c(1)))

} else {
#Use recursion to generate sign patterns for n-1 coefficients
subpatterns <- sign_patterns(n-1)
signpatterns <- list()
#Make new sign patterns for every subpattern by adding -1 and 1
for (signpattern in subpatterns) {
signpatterns <- c(signpatterns, list(c(-1, signpattern)))
signpatterns <- c(signpatterns, list(c(1, signpattern)))

}
return(signpatterns)

}
}

A.4.2 Lasso examples on simulated data

More observations than predictors

#Generate simulated data
set.seed(1)
n=100
beta <- c(2,2,0.5,0.5,0,0,0,0,0,0,0,0,0,0,0,0)
p=length(beta)
sigma=1
X <- matrix(rnorm(n*p),n,p)
X <-scale(X, center = TRUE, scale = TRUE)
y <- X%*%beta + sigma*rnorm(n)

#Fit the lasso with glmnet
lassofit <- glmnet(X, y, standardize = FALSE)
#Set a fixed value of lambda
lambda <- 12
#Extract coefficients for specified lambda
betas <- coef(lassofit, s = lambda/n, exact=TRUE, x=X, y=y)[-1]
#Indices of the active variables
actives <- which(betas != 0)
s <- c(1,1,1,1,1,-1,1)
#Polyhedral inference for lasso
results <- lapply(1:7, function(i) {

Chapter A: R code 63

myselinf_lasso(X, y, lambda, actives, i, s)
})
result.x1 <- results[[1]]
result.x2 <- results[[2]]
result.x3 <- results[[3]]
result.x4 <- results[[4]]
result.x5 <- results[[5]]
result.x6 <- results[[6]]
result.x7 <- results[[7]]

#Confidence intervals conditioned on model and signs
x1_ci_ms <-CIfunc_tent(result.x1, 1, 0.05)
x2_ci_ms <-CIfunc_tent(result.x2, 1, 0.05)
x3_ci_ms <-CIfunc_tent(result.x3, 1, 0.05)
x4_ci_ms <-CIfunc_tent(result.x4, 1, 0.05)
x5_ci_ms <-CIfunc_custom(result.x5, -0.73,1, 0.05)
x6_ci_ms <-CIfunc_tent(result.x6, 2, 0.05)
x7_ci_ms <-CIfunc_custom(result.x7, -0.75,0.6, 0.05)
#Adjusting only for plot. Cannot be computed
x7_ci_ms[1]<- -1.75
#Conditioned on model only
signpatterns <- sign_patterns(length(actives))
x1_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=1, buffer=1, alpha=0.05, result.orig = result.x1, actives=actives)
x2_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=2, buffer=1, alpha=0.05, result.orig = result.x2, actives=actives)
x3_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=3, buffer=1, alpha=0.05, result.orig = result.x3, actives=actives)
x4_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=4, buffer=1, alpha=0.05, result.orig = result.x4, actives=actives)
x5_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=5, buffer=1, alpha=0.05, result.orig = result.x5, actives=actives)
x6_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=6, buffer=1, alpha=0.05, result.orig = result.x6, actives=actives)
x7_ci_m <- union_CI(X, y, lambda, signpatterns =
signpatterns, j=7, buffer=1, alpha=0.05, result.orig = result.x7, actives=actives)
x1_ci_m<-x1_ci_m$CI_union
x2_ci_m<-x2_ci_m$CI_union
x3_ci_m<-x3_ci_m$CI_union
x4_ci_m<-x4_ci_m$CI_union
x5_ci_m<-x5_ci_m$CI_union
x6_ci_m<-x6_ci_m$CI_union
x7_ci_m<-x7_ci_m$CI_union

#Naive selection: The lasso has chosen the model
X_actives <- X[, actives]
linear_model <- lm(y ~ X_actives-1)
naives <- confint(linear_model)

modelonly <- data.frame(index = c(1, 2, 3,4,5,6,7),
lower_ci = c(x1_ci_m[1], x2_ci_m[1],
x3_ci_m[1],x4_ci_m[1], x5_ci_m[1],
x6_ci_m[1],x7_ci_m[1]),
upper_ci = c(x1_ci_m[2], x2_ci_m[2],
x3_ci_m[2], x4_ci_m[2], x5_ci_m[2],
x6_ci_m[2],x7_ci_m[2]))

modelandsigns <- data.frame(index = c(1, 2, 3,4,5,6,7),
lower_ci = c(x1_ci_ms[1],
x2_ci_ms[1], x3_ci_ms[1],

64 Chapter A: R code

x4_ci_ms[1], x5_ci_ms[1],
x6_ci_ms[1],x7_ci_ms[1]),
upper_ci = c(x1_ci_ms[2],
x2_ci_ms[2], x3_ci_ms[2],
x4_ci_ms[2], x5_ci_ms[2],
x6_ci_ms[2],x7_ci_ms[2]))

naive <- data.frame(index = c(1, 2, 3,4,5,6,7),
lower_ci = c(naives[1,1], naives[2,1], naives[3,1],
naives[4,1],
naives[5,1], naives[6,1],
naives[7,1]),
upper_ci = c(naives[1,2],
naives[2,2], naives[3,2],
naives[4,2],naives[5,2],
naives[6,2],naives[7,2]))

ggplot(combined_data_all, aes(x = index, ymin = lower_ci,
ymax = upper_ci, fill = method)) +
geom_rect(aes(xmin = index - 0.2, xmax = index - 0.05),
data = subset(combined_data_all, method == "Model␣and␣signs"),
color = "gray100") +
geom_rect(aes(xmin = index - 0.05, xmax = index + 0.1),
data = subset(combined_data_all, method == "Model␣only"),
color = "gray100") +
geom_rect(aes(xmin = index + 0.1, xmax = index + 0.25),
data = subset(combined_data_all, method == "Unadjusted"),
color = "gray100") +
labs(x = "Active␣Set␣Indices", y = "Coefficient␣Values", fill = "␣") +
scale_x_continuous(breaks = c(1, 2, 3,4, 5, 5, 6, 7)) +
scale_fill_manual(values = c("cornflowerblue","brown",
"gray45")) +
theme_minimal() +
theme(legend.position = "top", text = element_text(size =
12)) +
ylim(c(-2, 2.5)) +
geom_segment(aes(x = 0.8, xend = 2.5, y = 2, yend = 2),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 2.5, xend = 4.5, y = 0.5, yend = 0.5),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 4.5, xend = 7.3, y = 0, yend = 0),
linetype = "dashed",
color = "midnightblue", size=0.35)+
annotate("segment", x = 6.8745, xend = 6.8745, y = -1.5, yend = -2,

arrow = arrow(type = "closed", length = unit(0.08,
"inches")), color = "cornflowerblue")

More predictors than observations

set.seed(1)
n=25
beta <- c(2,2,0.7,0.7,rep(0,46))
p=length(beta)
sigma=1

X <- matrix(rnorm(n*p),n,p)
X <-scale(X, center = TRUE, scale = TRUE)

Chapter A: R code 65

y <- X%*%beta + sigma*rnorm(n)

lassofit <- glmnet(X, y, standardize = FALSE)
lambda <- 12
betas <- coef(lassofit, s = lambda/n, exact=TRUE, x=X, y=y)[-1]
actives <- which(betas != 0)
s<- c(1,1,1,1,-1,1)
results <- lapply(1:6, function(i) {
myselinf_lasso(X, y, lambda, actives, i, s)

})
result.x1 <- results[[1]]
result.x2 <- results[[2]]
result.x3 <- results[[3]]
result.x4 <- results[[4]]
result.x5 <- results[[5]]
result.x6 <- results[[6]]

#CIs conditioned on model and signs
x1_ci_ms <-CIfunc_tent(result.x1, 1.5, 0.05)
x2_ci_ms <-CIfunc_tent(result.x2, 3, 0.05)
x3_ci_ms <-CIfunc_tent(result.x3, 2.55, 0.05)
x4_ci_ms <-CIfunc_custom(result.x4,-2,0.86,0.05)
x5_ci_ms <-CIfunc_custom(result.x5, -1.5,6, 0.05)
x6_ci_ms <-CIfunc_tent(result.x6, 2, 0.05)
#Adjusting for plot. Cannot be computed.
x4_ci_ms[1]<- -3.9269364

signpatterns <- sign_patterns(6)
#Conditioned on model only
x1_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=1, buffer=1.5, alpha=0.05, result.orig = result.x1, actives=actives)
x2_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=2, buffer=3, alpha=0.05, result.orig = result.x2, actives=actives)
x3_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=3, buffer=2, alpha=0.05, result.orig = result.x3, actives=actives)
x4_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=4, buffer=1.7, alpha=0.05, result.orig = result.x4, actives=actives)
x5_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=5, buffer=4, alpha=0.05, result.orig = result.x5, actives=actives)
x6_ci_m <- union_CI(X, y, lambda, signpatterns = signpatterns,
j=6, buffer=2, alpha=0.05, result.orig = result.x6, actives=actives)

x1_ci_m<-x1_ci_m$CI_union
x2_ci_m<-x2_ci_m$CI_union
x3_ci_m<-x3_ci_m$CI_union
x4_ci_m<-x4_ci_m$CI_union
x5_ci_m<-x5_ci_m$CI_union
x6_ci_m<-x6_ci_m$CI_union
#x7_ci_m<-x7_ci_m$CI_union

#Naive selection: The lasso has chosen the model
X_actives <- X[, actives]
linear_model <- lm(y ~ X_actives-1)
naives <- confint(linear_model)

modelonly <- data.frame(index = c(1, 2, 3,4,5,6),
lower_ci = c(x1_ci_m[1],
x2_ci_m[1],
x3_ci_m[1],x4_ci_m[1],
x5_ci_m[1], x6_ci_m[1]),

66 Chapter A: R code

upper_ci = c(x1_ci_m[2],
x2_ci_m[2], x3_ci_m[2],
x4_ci_m[2], x5_ci_m[2],
x6_ci_m[2]))

modelandsigns <- data.frame(index = c(1, 2, 3,4,5,6),
lower_ci = c(x1_ci_ms[1],
x2_ci_ms[1], x3_ci_ms[1],
x4_ci_ms[1], x5_ci_ms[1],
x6_ci_ms[1]),
upper_ci = c(x1_ci_ms[2],
x2_ci_ms[2], x3_ci_ms[2],
x4_ci_ms[2], x5_ci_ms[2],
x6_ci_ms[2]))

naive <- data.frame(index = c(1, 2, 3,4,5,6),
lower_ci = c(naives[1,1],
naives[2,1], naives[3,1],
naives[4,1], naives[5,1],
naives[6,1]),
upper_ci = c(naives[1,2],
naives[2,2], naives[3,2], naives[4,2],naives[5,2],
naives[6,2]))

combined_data_all <- rbind(modelandsigns, modelonly, naive)
combined_data_all$method <- rep(c("Model␣and␣signs","Model
only","Unadjusted"), each = 6)

ggplot(combined_data_all, aes(x = index, ymin = lower_ci,
ymax = upper_ci, fill = method)) +
geom_rect(aes(xmin = index - 0.2, xmax = index - 0.05),
data = subset(combined_data_all, method == "Model␣and

␣␣signs"), color = "gray100") +
geom_rect(aes(xmin = index - 0.05, xmax = index + 0.1),
data = subset(combined_data_all, method == "Model␣only"),
color = "gray100") +
geom_rect(aes(xmin = index + 0.1, xmax = index + 0.25),
data = subset(combined_data_all, method == "Unadjusted"),
color = "gray100") +

labs(x = "Active␣Set␣Indices", y = "Coefficient␣Values",
fill = "␣") +

scale_x_continuous(breaks = c(1, 2, 3,4, 5, 5, 6, 7)) +
scale_fill_manual(values = c("cornflowerblue","brown",
"gray45")) +
theme_minimal() +
theme(legend.position = "top", text = element_text(size = 12))+

geom_segment(aes(x = 0.8, xend = 2.5, y = 2, yend = 2),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 2.5, xend = 4.5, y = 0.7, yend = 0.7),
linetype = "dashed", color = "midnightblue", size=0.35) +
geom_segment(aes(x = 4.5, xend = 6.3, y = 0, yend = 0),
linetype = "dashed", color = "midnightblue", size=0.35)+

annotate("segment", x = 3.87, xend = 3.87, y = -3,
yend = -4.5, arrow = arrow(type = "closed", length = unit(0.08, "inches")),
color = "cornflowerblue")

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Introduction
	General Setting
	Multiple linear regression
	The multiple linear regression model
	Least squares estimation

	Model selection
	Subset selection
	Shrinkage methods

	Inference after variable selection in the linear model

	Exact inference by the polyhedral lemma
	Conditional inference
	Inference conditional on polyhedral constraints
	The polyhedral lemma
	Deriving the polyhedral lemma
	The selection adjusted test statistic
	Generalization to all sign patterns
	Selection adjusted confidence intervals

	Applications of polyhedral inference
	Forward selection
	Introduction to forward selection
	Hypothesis testing after forward selection
	Polyhedral selection events for forward selection
	Example of polyhedral inference for forward selection

	Lasso regression
	Introduction to the lasso for linear models
	Polyhedral selection event for the lasso
	Extending conditioning to a union of lasso polyhedra
	Examples of polyhedral inference for lasso

	Discussion
	Properties of selection adjusted confidence intervals
	Width of selection adjusted confidence intervals
	Unbiased confidence intervals

	Generalizations
	Extension to unknown variance
	Further extensions

	Related approaches to post-selection inference
	The covariance test
	Simultaneous inference

	Conclusions and further work
	Bibliography
	R code
	Simulating p-values for forward selection
	Simulating type I error for forward selection
	Polyhedral inference for forward selection
	Implemented functions
	Forward selection example on simulated data

	Polyhedral inference for the lasso
	Implemented functions
	Lasso examples on simulated data

