
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Christian Lewin
Sebastian Fuglesang

A Framework for Benchmarking a
Private 5G Network Exemplified with
Industry 4.0 Use Cases

Master’s thesis in Cyber Security and Data Communication
Supervisor: Thomas Zinner
Co-supervisor: Stanislav Lange, Waqas Ikram
June 2024

Christian Lewin
Sebastian Fuglesang

A Framework for Benchmarking a
Private 5G Network Exemplified with
Industry 4.0 Use Cases

Master’s thesis in Cyber Security and Data Communication
Supervisor: Thomas Zinner
Co-supervisor: Stanislav Lange, Waqas Ikram
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: A Framework for Benchmarking a Private 5G Network Exemplified
with Industry 4.0 Use Cases

Student: Fuglesang, Sebastian and Lewin, Christian

Problem description:

A private 5G network is a 5G network deployed to be used primarily by a private
organization to provide wireless connection within an area. Private 5G networks can
be deployed and configured in a multitude of di�erent ways. For example, it can be
built using a mix of LTE and 5G equipment, or only 5G equipment, it can use di�erent
classes of frequency bands and have varying configuration setups. Furthermore, 5G is
only a specification and the actual equipment is made by companies who often have
di�erent proprietary implementations. However, the specifications and many vendors
promise high performance in key performance metrics such as delay and throughput,
but it is unclear to which extent this holds in practice. As the private 5G networks
gain adoption in Industry 4.0 use cases, there is a lack of a common consensus
on whether the performance of the network adheres to the use case requirements.
Therefore, a methodology to benchmark the performance of a private 5G network
would benefit private 5G adopters, when considering what applications can be realistic
to run on their network.

Our Master thesis will focus on creating software able to perform reproducible
evaluations of a private 5G network, using example use cases relevant to Industry 4.0.
For this to be accomplished, a common testbed architecture must be defined. The
architecture must be able to capture relevant packet-level metrics, such as throughput,
one-way delay and inter-packet delay variation. Because these networks commonly
consist of closed vendor equipment, such a methodology must treat the network as a
black box. To keep the form factor attractive, the framework should only require
minimal modifications of the network.

The framework this Master thesis will produce will be based on an incremental
development of the software tool. Firstly, we will design and implement a testbed
architecture that is able to measure the metrics of interest. Secondly, we will develop
a prototype of the tool that will generate the tra�c and perform the measurements
we need. Thirdly, we will seek to validate this benchmarking framework. It will be
evaluated based on a set of functional and non-functional requirements. Finally, we
will attempt to optimize and further generalize our benchmarking framework.

The Master thesis will provide a framework that can be applied to capture the
impact of private 5G development on the performance of relevant 5G metrics. This

will help potential adopters to learn about the performance of 5G and its potential
in a realistic environment and provide a common benchmark for comparison with
other networks.

Approved on: 2024-04-10
Main supervisor: Professor Zinner, Thomas, NTNU
Co-supervisor: Lange, Stanislav, NTNU and Ikram, Waqas, ABB

Abstract

5G is envisioned to cater to a plethora of heterogeneous use cases,
ranging from delay-sensitive applications relying on Ultra-Reliable Low
Latency Communication (URLLC), bandwidth-intensive applications re-
lying on Enhanced Mobile Broadband (eMBB), to energy-conserving
applications relying on Massive Machine Type Communication (mMTC).
These use cases enable the fulfillment of several of the stringent require-
ments of Industry 4.0. Therefore, private 5G networks are considered a
promising communication technology for Industry 4.0 use cases. However,
it is unclear whether the technical realizations of private 5G networks
comply with their envisioned requirements. Furthermore, there seems
to be no standard, open-source solution to produce measurements for
comparing such networks. This thesis explored the design and imple-
mentation of a benchmarking framework for private 5G networks. The
work followed a feedback-loop cycle, focusing on improving the produced
artifacts based on insights from validation.

A benchmarking framework consisting of a software tool and a high-
level architecture capable of generating, capturing, and analyzing network
tra�c has been produced and validated. We have combined existing
software utilities with developing custom solutions, leveraging the trade-
o� between resources spent on the development and validation of the
tool and its customizability. The software implementation was validated
based on its functional and non-functional requirements. This provided
insights enabling enhancements of the benchmarking tool. Furthermore,
the e�cacy of the benchmarking framework towards a set of common
Industry 4.0 use cases has been evaluated on two private 5G networks.
The evaluation showed that the benchmarking framework is able to
produce benchmarks of networks based on real-world scenarios and that
the results are comparable across networks. However, some work remains
to enable the benchmarking framework to leverage its testbed architecture
maximally, accurately represent Industry 4.0 use cases, and enhance the
granularity of comparisons between network implementations.

Sammendrag

5G er tenkt å imøtekomme flere heterogene bruksområder, alt fra
forsinkelsessensitive applikasjoner basert på URLLC, båndbreddeintensive
applikasjoner basert på eMBB, til energibesparende applikasjoner basert
på mMTC. Disse egenskapene gjør det mulig å oppfylle flere av de strenge
kravene som Industry 4.0 stiller. Derfor anses private 5G-nettverk som
en lovende kommunikasjonsteknologi for bruksområder innen Industry
4.0. Det er imidlertid uklart om de tekniske realiseringene av private
5G-nettverk i virkeligheten oppfyller de forutsatte kravene. I tillegg ser
det ikke ut til å finnes noen standardløsning med åpen kildekode for
å produsere målinger som gjør det mulig å sammenligne slike nettverk.
Denne avhandlingen utforsker derfor utformingen og implementeringen av
et rammeverk for benchmarking av private 5G-nettverk. Arbeidet følger
en tilbakemeldings-syklus, med fokus på å forbedre programvaren basert
på innsikten fra validering.

Vi har utviklet og validert et rammeverk for benchmarking bestående
av programvare og en høynivå arkitektur som kan generere, fange opp
og analysere nettverkstrafikk. Ved å benytte eksisterende programvare
kombinert med egenutviklede løsninger, har vi utnyttet balansen mellom
ressursbruk til utvikling og validering versus muligheten til å skreddersy
løsninger. Programvaren ble validert på grunnlag av sine funksjonelle og
ikke-funksjonelle krav. Valideringen ga innsikt som muliggjorde forbedring
av verktøyets funksjonalitet. I tillegg har vi evaluert til hvilken grad
rammeverket muligjør benchmarking av vanlige scenarioer i Industry 4.0
i to private 5G-nettverk. Evalueringen viste at rammeverket er i stand til
å benchmarke nettverk basert på virkelige scenarier, og at resultatene er
sammenlignbare på tvers av nettverk. Det gjenstår imidlertid en del arbeid
for å utnytte høynivå arkitekturen maksimalt, representere brukstilfeller
fra Industry 4.0 presist og forbedre detaljnivået i sammenligningene
mellom nettverk.

Preface

This thesis was written to conclude the master’s degree in Cyber Secu-
rity and Data Communication class of 2024 at the Norwegian University
of Science and Technology.

We want to thank our supervisor, Thomas Zinner, and our co-supervisor,
Stanislav Lange, for providing valuable feedback, insight, and support.
Furthermore, we want to thank Waqas Ikram from our industry partner,
ABB, for giving us access to industry perspectives. We also want to thank
Pål Sturla Sæther for valuable support with the technical realization of
our testbeds.

I want to thank my parents for their invaluable motivation throughout
this degree. Moreover, I want to thank my friends and classmates for
stimulating discussions and for making these years exciting and enjoyable.

Christian Lewin

I personally want to thank my parents for their continued encourage-
ment and support through all these years. Finally, I want to thank my
partner, Beatrice, and our children for their support through this study
program.

Sebastian Fuglesang

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outcomes . 2
1.3 Research Questions . 3
1.4 Thesis Structure . 4
1.5 Supporting the UN Sustainable Development Goals 4

2 Background 7
2.1 Benchmarking . 7
2.2 Measurement of Packet-Level Characteristics 8
2.3 5G . 14
2.4 Industry 4.0 . 18

3 Design of the Benchmarking Tool 21
3.1 Requirements of the Benchmarking Tool 21
3.2 Benchmark Tool Software Architecture 24
3.3 High-Level Testbed Architecture . 26

4 Implementation of the Benchmarking Tool 29
4.1 Tra�c Generator . 29
4.2 Packet Matcher . 35
4.3 Packet Analyzer . 40
4.4 Visualization . 42
4.5 Orchestrator . 44
4.6 Data Storage . 45

v

5 Experiments 47
5.1 Validation . 47
5.2 Case Study . 57

6 Results 61
6.1 Validation Results . 61
6.2 Case study NTNU Open-Source Lab Results 74
6.3 Case study NTNU B5G Lab Results 80
6.4 Comparison of Case Study Results 84

7 Discussion 89
7.1 Discussion on the Validation . 89
7.2 Case Study Comparison . 91
7.3 Fulfillment of Research Questions . 95

8 Conclusion and Future Work 101
8.1 Conclusion . 101
8.2 Future Work . 102

References 105

List of Figures

1.1 Illustration of the structure of the thesis, inspired by a feedback-loop. . 5

2.1 Illustration of One-Way Delay (OWD). 9
2.2 Envisioned usage scenarios of IMT for 2020 and beyond from Figure 2 in

[2]. 15
2.3 High-level architecture of a 5G Standalone (SA) system. 16
2.4 Simplified 5G architecture showing the direction of tra�c from source to

destination User Equipment (UE). 16

3.1 Illustration of separation of tra�c generation, tra�c measurement, trans-
mission, and Network Under Test (NUT). 28

4.1 Format of packet constructed for transmission with Cisco TRex. 33
4.2 Illustration of synthesizing of an example packet format to replay format. 34
4.3 High-level testbed architecture with port mirror instead of using L2 bridge

on measurement machine. 35
4.4 A sequence diagram showing how the live update submodule works to-

gether with the packet capture submodule. 39
4.5 A screenshot of the live counter from the semi-live Grafana-dashboard. . 43
4.6 A screenshot from the detailed dashboard showing the visualizations for

the OWD and the IP Packet Delay Variation (IPDV). 43
4.7 A screenshot from the detailed dashboard showing the visualization for

the delay threshold satisfaction. 44
4.8 A sequence diagram showing an overview of orchestration for a trial using

tra�c generation alternative 1. 45
4.9 A flowchart showcasing the files created at the di�erent steps of a trial run. 46

5.1 Diagram of the physical realization of the benchmarking tool. 48
5.2 Testbed architecture used for some select validation questions for the

benchmarking tool. 51
5.3 Diagram illustrating network internals and direction of tra�c from the

benchmarking tool to 5G-connected Raspberry Pi in the open-source
network. 59

vii

5.4 Diagram illustrating the network internals and direction of tra�c from
the benchmarking tool to the 5G-connected Raspberry Pi in the B5G Lab. 60

6.1 Time series plot of Inter-Arrival Times (IATs) for Constant Bit Rate
(CBR) of 10,000 packets per second. 62

6.2 Empirical Cumulative Distribution Functions (ECDFs) for all packet rates,
for payload sizes 16B, 426B and 1432B. 62

6.3 Illustration of skewed mean of normal distribution with µ = 20ms and
‡ = 10ms when negative values are filtered out. 67

6.4 Packet loss for all trials in the validation of packet loss sensitivity compared
to the base case. 68

6.5 Processing time of the Packet Matcher and Packet Analyzer modules for
varying levels of packet loss, for each trial. 70

6.6 Packet loss for the third trial validating network delay sensitivity. 72
6.7 Performance of the Packet Matcher module for varying payload sizes

varying between 16B and 1432B. 72
6.8 OWD for all three trials in the Open-source network. 74
6.9 OWD for all repetitions of the second trial in the Open-source network

with 1,000Packets Per Second (PPS), zoomed in on the first 50 seconds. 75
6.10 OWD for all repetitions of the third trial in the Open-source network

with 30,000PPS. 75
6.11 IPDV for all trials in the Open-source netowrk. 76
6.12 Packet loss rate for all trials for the Open-source network. 77
6.13 Packet loss for all repetitions of the second trial in the Open-source

network with 1,000PPS. 77
6.14 Packet loss for all repetitions of the third trial in the Open-source network. 78
6.15 Average instantaneous throughput for all trials for the Open-source network. 79
6.16 OWD for all three trials in the B5G Lab. 80
6.17 OWD for each repetition of the first trial in the B5G Lab network with

5PPS. 81
6.18 IPDV for all three trials in the B5G Lab. 81
6.19 Packet loss rate for all trials in the B5G Lab. 82
6.20 Packet loss for all repetitions of the third trial in the B5G Lab. 83
6.21 Average instantaneous throughput for all trials in the B5G Lab. 84
6.22 Comparison of OWD in both networks for each trial. 85
6.23 Comparison of IPDV in both networks for each trial. 86
6.24 IPDV of both networks for the third trial. 86
6.25 Comparison of packet loss rate in both networks for each trial. 87
6.26 Comparison of average instantaneous throughput in both networks for

each trial. 88

List of Tables

2.1 Industrial use cases and Key Performance Indicators (KPIs) from [33]. . 19

4.1 Required submodules of the tra�c generator module with the requirements
they satisfy. 30

4.2 Comparison of the o�ered tra�c generation alternatives based on tra�c
pattern realism and ease of use. 30

4.3 Survey findings of popular tra�c generator options. 31
4.4 Required submodules of the Packet Matcher with the requirements they

satisfy. 35
4.5 Comparison of features o�ered by tshark, dumpcap and tcpdump based

on [41], [42], and [43]. 36
4.6 Submodules of the Packet Analyzer module with the requirements they

contribute to. 40

5.1 Measurement machine installed software and corresponding versions. . . 49
5.2 Combinations of packet rates, durations, and payload sizes for validating

tra�c generator Alternative 1. 52
5.3 The µ and ‡ values used in for generating the files for validation of

tcpreplay . 52
5.4 Parameters used for generating input to the analysis module during

validation of the analysis module. 54
5.5 Specifications of trials for testing configurations under sensitivity questions. 55
5.6 Specifications of trials for performing the case study. 58

6.1 Results of running Tra�c Generator Alternative 1 with the trials specified
in Table 5.2. 62

6.2 Comparison of the generated pcaps with the replayed pcaps for Tra�c
Generation Alternative 2. 64

6.3 The number of packets captured by the Packet Capturer submodule when
replaying the pcap with 60,000 packets. 64

6.4 The number of matches made during the validation of the Packet Matching
submodule for User Datagram Protocol (UDP)- and Transport Control
Protocol (TCP)-based tra�c. 65

ix

6.5 The percentage of packet loss for di�erent sliding window sizes. 66
6.6 Results of running the analysis module with the generated data from

Table 5.4. 66

7.1 Threshold compliance of OWD for the Open-source and B5G Lab networks
in the first trial. 93

7.2 Threshold compliance of OWD for the Open-source and B5G Lab networks
in the second trial. 93

7.3 Threshold compliance of OWD for the Open-source and B5G Lab networks
in the third trial. 94

List of Algorithms

4.1 Packet Matching with the naive implementation of the sliding window. 37
4.2 Packet Matching with the improved implementation of the sliding

window. 38

xi

Acronyms

3GPP Third Generation Partnership Project.

5GC 5G Core.

AMF Access Management Function.

API Application Programming Interface.

BBU Digital Baseband Unit.

CBR Constant Bit Rate.

CDF Cumulative Distribution Function.

DPDK Data Plane Development Kit.

DUT Device Under Test.

ECDF Empirical Cumulative Distribution Function.

eMBB Enhanced Mobile Broadband.

EPC Evolved Packet Core.

gNB Next Generation NodeB.

GTP GPRS Tunneling Protocol.

IAT Inter-Arrival Time.

ICMP Internet Control message Protocol.

IoT Internet of Things.

IP Internet Protocol.

xv

IPDV IP Packet Delay Variation.

ITU-R International Telecommunications Unit Radiocommunications Sector.

KPI Key Performance Indicator.

Linux NAPI Linux New API.

LTE Long-Term Evolution.

MAC Medium Access Control.

MIMO Multiple Input Multiple Output.

mMTC Massive Machine Type Communication.

NIC Network Interface Card.

NR New Radio.

NSA Non-Standalone.

NTNU Norwegian University of Science and Technology.

NUT Network Under Test.

OS Operating System.

OWD One-Way Delay.

PPS Packets Per Second.

RAN Radio Access Network.

RRC Radio Resource Control.

RRH Remote Radio Head.

RTP Real-Time Transport Protocol.

SA Standalone.

SDR Software Defined Radio.

SFP Small Form-factor Pluggable.

SMF Session Management Function.

SSH Secure Shell.

TCP Transport Control Protocol.

UDP User Datagram Protocol.

UE User Equipment.

UPF User Plane Function.

URLLC Ultra-Reliable Low Latency Communication.

Chapter1Introduction

This chapter serves as an introduction and overview of the thesis. Section 1.1 describes
the motivation for our thesis, and Section 1.2 presents its outcomes. Then, Section
1.3 introduces the research questions of the thesis, before Section 1.4 presents the
structure of the thesis. Finally, Section 1.5 discusses how the thesis can contribute
to the UN Sustainability Development goals.

1.1 Motivation

The motivation for this thesis is inspired by the work from our pre-project thesis [1].
We have included some of this to provide context below.

The latest mobile technology standard, 5G, is envisioned to support a broad
range of usage scenarios, such as eMBB, URLLC, and mMTC [2]. This is a type of
flexibility that is new to mobile technologies and enables a vast range of heterogeneous
use cases [3].

The forthcoming of Industry 4.0 puts stringent requirements with regard to the
Quality of Service (QoS) of communication systems [3]. For example, industrial
automation and robotics pose strict requirements for the latency and packet delay
variation (PDV) of application tra�c. Until now, manufacturing plants have relied
on wired communication technologies to achieve the required performance. Wired
communication, however, introduces issues related to both scalability and mobility.
Requiring a wired connection to sensors, actuators, and robotics necessitates a free
wired connection for the unit, regardless of the fraction of the tra�c it will use.
Moreover, the wire becomes a physical limitation on where the unit can be placed
and moved.

A method companies can utilize to solve or mitigate the challenges of using
wired connectivity while still meeting the stringent requirements of Industry 4.0 is
deploying private 5G networks. The envisioned use cases and requirements for 5G

1

2 1. INTRODUCTION

coincide with those of Industry 4.0 to a great extent [2]. A private 5G network is a
local area network for dedicated wireless connectivity within a specified area, built
with 5G technology [3]. These networks can provide URLLC, mMTC as well as
eMBB while still maintaining security and customized predictable QoS [4]. Moreover,
the networks can be tailored to meet the needs of the organization, thus enabling
adaption to the various Industry 4.0 use cases.

Private 5G networks include a multitude of deployment options and configuration
parameters. The options range from which 5G deployment option to use, i.e.,
whether to leverage Long-Term Evolution (LTE) infrastructure or to solely deploy 5G
infrastructure, to the degree of integration with mobile service providers. Moreover,
adopters must choose whether to utilize licensed, unlicensed, or shared spectrum for
their Radio Access Network (RAN). This a�ects the financial aspects of the network,
as well as the level of isolation in the radio network. In addition to architectural
options, device vendors vary greatly and often o�er closed equipment and proprietary
interfaces, making interworking between devices from di�erent vendors di�cult. 5G
has also seen the introduction of several open-source software implementations of the
various infrastructure components [3], which may introduce di�erent characteristics.
Furthermore, each component has a plethora of configuration options to enable the
aforementioned flexibility. The sum of this is that deploying a private 5G network
involves a lot of options, and it can be di�cult to determine how the interworking
of architectural choices, device choices, and configuration choices impact the overall
performance of the network.

To our knowledge, no standardized way of testing 5G network performance to
compare the di�erent deployment and configuration options exists. This would enable
a comparison of the real-world performance of deployments with regard to specific
use cases. Such a comparison would aid potential adopters of private 5G networks in
designing their network, as they could compare their application requirements to the
actual recorded performance.

1.2 Thesis Outcomes

This thesis aims to enable the comparison of the deployments of private 5G networks
through the following contributions:

1. A comprehensive design description of the benchmarking framework

2. A technical, open-source realization of the benchmarking framework 1

3. Validation of the technical realization
1
https://github.com/Private-5G-benchmarking/benchmarking_tool

1.3. RESEARCH QUESTIONS 3

4. A case study of the benchmarking framework based on its application on two
private 5G networks

To enable comparisons of private 5G networks, we intend to develop a bench-
marking framework that can perform reproducible benchmarks. It will consist of a
high-level testbed architecture and a software tool that executes on the architecture.
We will refer to the combination of the testbed architecture and software tool as
the benchmarking framework. The software tool that performs the benchmarking
will be referred to as the benchmarking tool. We believe that this framework can
enable comparing the possible deployments of private 5G en masse, supporting an
acceleration in adopting these networks. To ensure that the technical realization
performs according to our design goals we conduct validation on several components
and the framework as a whole. Finally, the ability of the framework to compare
private 5G networks will be tested by performing a case study, where the framework
is used to compare the performance of two real-world networks.

1.3 Research Questions

The decisions and reflections made in this thesis center around a set of four research
questions, presented in this section.

RQ1 How can a system capable of performing reproducible benchmarking of private
5G networks be designed?

RQ2 How can the requirements for integration with the NUT and the granularity of
information provided by the benchmark be balanced?

RQ3 To what extent can such a system support benchmarking of a defined set of
common Industry 4.0 use cases?

RQ4 How can the framework be used to compare 5G implementations?

The first research question provides a basis for discussing the benchmarking of
private 5G networks in general. This is the overarching research question of the
thesis. Performing such a benchmark involves developing a framework consisting of
both a testbed architecture and software tools for producing reproducible results.
Without reproducibility, the quality of comparisons between benchmarks is harder
to ensure.

The second research question considers the balance between integration into the
NUT and the depth of information provided. The NUT refers to the network that is

4 1. INTRODUCTION

being benchmarked. It is challenging to provide much detail without measuring at
multiple points in the network or having access to any network internals. However,
each measurement point added, or network internal that is accessed, increases the
requirements for integration with the NUT. If these requirements are high, it takes
a longer time to set up on a new network and is more error-prone. Furthermore,
depending on the access to the network that can be achieved, the framework might
not be possible to set up in certain networks.

The third research question investigates to what extent the framework can support
use cases relevant to Industry 4.0. Since one of the main groups of users considered
for this framework is industrial adopters, this question is used to explicitly tie the
functionality of the framework to Industry 4.0.

The final research question seeks to investigate how the results produced by
the framework can enable comparisons between networks. This ties into both the
reproducibility aspect of the framework and the depth of information provided by
the benchmarks.

1.4 Thesis Structure

The work in this thesis has been performed in accordance with the feedback loop
in Figure 1.1. Before we began our iterations of the feedback loop, we investigated
the relevant topics in the literature. Our findings are shown in Chapter 2. In the
first iteration of the loop, we made the initial design and technical realization of the
benchmarking framework. This is presented in Chapters 3 and 4. The outcome of
this was an artifact that was validated on a small scale, according to the methodology
presented in Chapter 5. This generated results that were used to infer the performance
of the artifact and identify areas for improvement. The results from the validation
are presented in Chapter 6 and discussed in Chapter 7. This concluded the first
feedback loop iteration. After this, we returned to re-designing the artifact to address
the areas for improvement, which is described in Chapter 4. Following this, we
perform tests on real-world networks, which we refer to as the case study. Chapter 5
describes the methodology of the case studies, and Chapter 6 presents their results.
A discussion regarding the networks and the inferences made about the framework is
made in Chapter 7. Finally, the insights gained through this iteration are concluded
and presented as future work in Chapter 8.

1.5 Supporting the UN Sustainable Development Goals

Our thesis will explore research questions regarding how to perform benchmarking
of private 5G networks. As previously discussed, there is some uncertainty about
the real-world performance of private 5G networks due to their complexity. Thus,

1.5. SUPPORTING THE UN SUSTAINABLE DEVELOPMENT GOALS 5

Figure 1.1: Illustration of the structure of the thesis, inspired by a feedback-loop.

benchmarking the performance of private 5G networks can provide Key Performance
Indicators (KPIs) about the real-world performance of specific networks. Based on
these benchmarks, one can decide if a network is usable for a particular use case.
Adopting private 5G can improve performance compared to other communication
technologies and can support important use cases such as Industry 4.0 and smart grids.
Doing this contributes to several of the UN Sustainable Development Goals. Below,
we highlight some of the specific subgoals that could benefit from this technological
advancement.

Subgoal 8.2 (”Achieve higher levels of economic productivity through diversifica-
tion, technological upgrading, and innovation, including through a focus on high-value
added and labor-intensive sectors.”) is under the eighth UN Sustainable Development
Goal [5]. We believe 5G is a technological upgrade that can support innovation and
increase productivity in several high-value and labor-intensive sectors. An example of
this is how it can be used as a part of the communication infrastructure in Industry
4.0 [6]. Another example is how Private 5G can be used in precision farming to
increase the e�ciency of resource utilization and automation [6]. Thus, by supporting
the adoption of private 5G, our benchmarking framework can help contribute to
subgoal 8.2.

Another of the UN Sustainable Development goals our thesis can contribute to is
Goal 9, specifically subgoal 9.1. Subgoal 9.1 is ”Develop quality, reliable, sustainable
and resilient infrastructure, including regional and transborder infrastructure, to
support economic development and human well-being, with a focus on a�ordable and
equitable access for all” [7]. 5G promises characteristics such as ultra-low latency,

6 1. INTRODUCTION

ultra-high reliability, and high device density while maintaining high throughput [4].
Thus, the adoption of private 5G itself represents an upgrade of our communication
infrastructure. Furthermore, we would argue that private 5G networks can support
other parts of our modern-day infrastructure. For instance, it can be utilized in smart
grids as mentioned in [4]. Another example is how it can improve our industrial
infrastructure through Industry 4.0 [6]. Thus, by supporting the adoption of private
5G networks, we can contribute to subgoal 9.1.

In conclusion, by exploring the benchmarking of private 5G networks, our thesis
can give a small contribution towards the large goals that are the UN Sustainable
Development Goals.

Chapter2Background

In this chapter, the theory and literature this thesis is based on is presented. The
chapter starts by presenting what benchmarking is and how benchmarking of networks
can be performed in Section 2.1, followed by an introduction to measurement of
packet-level characteristics in Section 2.2. Section 2.3 presents 5G and private 5G
networks. Finally, Section 2.4 wraps up the chapter with an introduction to Industry
4.0.

2.1 Benchmarking

Benchmarking can be referred to as ”...an empirical experiment with the aim of
comparing learners or algorithms with respect to a certain performance measure”
[8]. This could be adapted to define a general benchmarking process as an empirical
experiment that generates data that enables comparing candidates with respect to a
certain (set of) performance measure(s). We will use this definition of benchmarking
for the remainder of the thesis.

Our work in the pre-project thesis included a description of RFC 2544 [9], which
presents a benchmarking methodology for networking devices. We have included
parts of this work below [1].

A benchmarking methodology consists of reproducible tests that can be performed
on a system [9]. The purpose is to derive a set of performance characteristics of
the system, which can be used as a reference standard both for the deployment of
the technology and for potential replacement technologies. The methodology relies
on one or several KPIs to establish a common frame of reference. This resembles
the definition of benchmarking presented in the introduction of this section. To
perform a benchmark, a testbed architecture must be defined. This may be done in
varying degrees of generality. The authors of [9] specify a logical testbed architecture
that is intended to work for di�erent types of network devices. The architecture is
justified with regard to what they call the Device Under Test (DUT). The DUT

7

8 2. BACKGROUND

is what the methodology intends to benchmark. The authors also specify in great
detail how the benchmarks should be performed. This includes trial duration, tra�c
pattern, message size and format, and derivation of KPIs. It is interesting to see the
level of detail that the di�erent aspects of the benchmarks are described. Thus, to
ensure comparability between independently performed benchmarks, it is important
to enforce that the benchmark should be reproducible.

A guide to performing reproducible experimental research on networks is described
by the authors in [10]. Although the authors clearly state that the article is not peer-
reviewed, it provides a reasonable general-purpose guide to ensuring reproducible
measurements. The article distinguishes between repeatability, replicability, and
reproducibility. Repeatability refers to the ability of the same researcher to perform
the same measurement on the same setup. If a measurement is replicable, di�erent
researchers must be able to perform the same measurements on the same setup.
Reproducibility, conversely, ensures that di�erent researchers can perform the same
measurement on di�erent networks. Of these, reproducibility is considered the most
di�cult to achieve but gives the measurements the most value. The authors present
guidelines to ensure reproducible measurements. These include hypothesizing before
measuring, always keeping the presentation of the data in mind, iterating consistently
by using automation, and accounting for dynamic behavior in the measured systems.
Moreover, documenting the setup of the hardware and software, as well as the
measurement setup and metadata, contributes to reproducibility. The authors
also recommend starting with small measurements to validate your setup before
performing the planned measurements. Lastly, they highlight the importance of
using existing tools, for instance, software, to perform measurements. The general
guidelines presented in the article are also applicable to designing and developing
software systems capable of performing reproducible network measurements. For
instance, the importance of iteration based on input, which inspired the structure of
our thesis, aligns with product development and research frameworks, such as Scrum
[11] and Design Science [12]. Moreover, thinking critically about hypotheses and
designing measurements before performing the measurements can often reduce the
time spent to understand the data. We believe the same can be true when developing
software, and we will therefore use this as one of our guidelines in this thesis.

2.2 Measurement of Packet-Level Characteristics

This section starts by presenting methods for calculating di�erent packet-level char-
acteristics, which we refer to as KPIs. Section 2.2.1 presents OWD, Section 2.2.2
presents IPDV, Section 2.2.3 presents availability, and Section 2.2.4 presents throug-
put. Lastly, we present two examples of performing measurements and calculating
KPIs from 5G networks in Section 2.2.5.

2.2. MEASUREMENT OF PACKET-LEVEL CHARACTERISTICS 9

Figure 2.1: Illustration of OWD.

2.2.1 One-Way Delay

OWD measures how long it takes for a packet to be fully transmitted by a source
and fully received by a destination, as illustrated in Figure 2.1. Formally, it can be
defined as the di�erence between the timestamp generated upon having fully received
the packet and the timestamp generated upon starting the transmission of the packet
[13]. One can assume that the setup in Figure 2.1 generates two timestamps, t1 and
t2. Using Equation 2.1, the OWD can be calculated by computing their di�erence.

OWD = t2 ≠ t1 (2.1)

When calculating the OWD, clock synchronization must be considered, because
calculating OWD based on timestamps from two clocks o�set by each other yields
an incorrect OWD. This can be mitigated using the Global Positioning System
(GPS), which o�ers synchronization on a scale of tens of microseconds [13]. If the
OWD is required to be precise, one must also consider where the timestamps are
generated. Suppose the packets are generated and timestamped in a user program
on a Linux computer, i.e., software timestamped. In that case, the actual time of
the transmission start is likely after the software timestamp. The same goes for
the timestamp at reception. Thus, it is important to consider the various influence
factors and the accuracy of timestamps required when performing timestamping.

2.2.2 IP Packet Delay Variation

IPDV describes variations in the OWD between packets. In traditional wired
computer networks, IPDV can arise from packets traversing distinct paths from
source to destination or non-deterministic queuing delay along the path. In radio
networks, the packets must traverse the air interface, where variation can be caused
by random access procedures and changing radio conditions. This can cause a

10 2. BACKGROUND

non-zero IPDV. IPDV is often called "jitter", however, we will follow the convention
recommended in [14] and refer to it as delay variation, or IPDV, to avoid confusion.

We found no single standardized way of calculating and expressing IPDV. The
methods for calculating IPDV can be categorized based on what they calculate -
either aggregate IPDV for a stream of packets or singleton IPDV for pairs of packets.
Some suggest calculating the standard deviation of the packet OWD, according to
Equation 2.2 [15]. This is a simple way of deriving the statistic but is limited in its
expressiveness and flexibility. Because it is an aggregate KPI, it only reflects some
aggregated variation in OWD, but hides the fluctuations and distributions of the
variations. Moreover, it is vulnerable to the sample size being small, especially if
there are outliers. Using the standard deviation of the measurements is, therefore, a
simple way of calculating IPDV, but it is also limited.

Jstd =
ı̂ıÙ 1

N

Nÿ

i=1
(Di ≠ D̄)2 (2.2)

Another approach to calculating IPDV is to use the methodology defined in
the Sender Report TCP packet of Real-Time Transport Protocol (RTP) [16]. This
approach produces a rolling average, which is useful for computing an IPDV-value
for continuous network monitoring. The method uses the successive di�erences
in OWD between two packets to update the IPDV-estimate. Equation 2.3 shows
how the relative di�erences are calculated, where Txk and Rxk are timestamps for
transmission and reception of packet k, respectively. Consequently, variables i and
j correspond to packet indices. This di�erence is used to update the IPDV using
Equation 2.4, where a is some value used for initializing the measure for J(0). The
latter equation updates the IPDV-measure by adding one-sixteenth of the di�erence
between the new OWD-di�erence and the previous IPDV-value to the previous IPDV-
value. By scaling down the update to one-sixteenth, the impact of individual outliers
is reduced to some extent. This method is well-suited for producing a IPDV-measure
that is continuously updated during monitoring.

D(i, j) = (Rxj ≠ Txj) ≠ (Rxi ≠ Txi) (2.3)

Javg_diff (i) =
I

Javg_diff (i ≠ 1) + |D(i≠1,i)|≠Javg_diff (i≠1)
16 , if i Ø 1

a, otherwise
(2.4)

2.2. MEASUREMENT OF PACKET-LEVEL CHARACTERISTICS 11

The authors of [14] propose a method for calculating IPDV as singleton statistics.
The methodology for calculating the IPDV is to define a measurement interval,
measuring the OWD of at least two packets inside the interval and selecting two of
the packets using some selection function F , which for example can choose consecutive
packets or packets at specified indices. The IPDV statistic can be calculated by
calculating the di�erence in the OWD, using Equation 2.5. This method of calculating
a singleton statistic can be extended to calculating the IPDV for a set of packets
by dividing the measurements into n intervals and applying the method to each
interval. This yields a set of singleton values, forming a distribution from which
one can perform inferences. Its expressiveness is thus inherently greater than an
aggregate value for IPDV. Additionally, one can study fluctuations in IPDV over
time. By choosing the F , one can filter illegitimate outliers. Thus, this method of
calculating IPDV solves the shortcomings of the above methods.

Jdiff (i) =
I

(Rxi ≠ Txi) ≠ (Rxi≠1 ≠ Txi≠1), if i Ø 1
0, otherwise

(2.5)

2.2.3 Availability

Availability measures the probability of a system or service being operational. Dif-
ferent services require di�erent levels of availability. Its most common definition
is that of Equation 2.6, where MTTF is the mean time to (system) failure, and
MTTR denotes the mean time to (system) repair [17]. Intuitively, this is equivalent
to dividing the total time the system is operational by the total time.

What constitutes a failure depends on the context the system operates in and
the scope in which it is analyzed. For a web server, a failure may be anything that
prevents it from responding to requests. The inability of a switch to forward tra�c
can be considered a failure of the switch, but not necessarily the network it operates
in. For a latency-sensitive application, an end-to-end latency greater than a given
threshold may constitute a failure. The availability of a latency-sensitive application
could be described as the total time when packets are delivered, and the OWD is
less than the threshold, divided by the total time.

A = MTTF

MTTF + MTTR
(2.6)

The state of a system might not always be precisely monitored. In this case, the
exact availability of the system cannot be calculated. However, it can be estimated
by sampling the system state at di�erent time intervals. Equation 2.7 outlines a
method for estimating the availability. Ã is the estimated availability, n represents a

12 2. BACKGROUND

sample from the set of all samples, S, and Up is a function that is 1 if the system is in
an operational state during sample n. This method uses discrete samples instead of
measured time intervals. In Equation 2.7, the numerator represents the total amount
of samples where the system is in an operational state. Thus, it maps to MTTF

in Equation 2.6. Furthermore, the total amount of samples in the denominator
corresponds to the total measured time, i.e., MTTF + MTTR, in Equation 2.6. In
the case of the latency-sensitive application, Equation 2.7 can be used with Equation
2.8 to obtain Ã. For Ã to be representative, the sampling should be performed at
evenly spaced intervals to mitigate the potential for bias.

Ã = �nmax
n=0 Up(n)

|S| (2.7)

Up(x) =
I

1, if OWD(x) Æ threshold

0, otherwise
(2.8)

2.2.4 Throughput

Knowing how much tra�c a network can handle before it starts dropping packets is
essential in network characterization. This metric is known as throughput, as defined
for network interconnect devices in RFC 1242 [18]. Delay-sensitive applications may
not tolerate retransmitting dropped packets. Therefore, the authors argue that the
maximum rate at which the network can successfully handle tra�c is essential to
know. However, calculating the throughput of a network, i.e., a series of devices,
based on the aforementioned definition is di�cult. For example, the network may
be subject to background tra�c, which impacts maximum measurable throughput
because the amount of background tra�c typically is hidden from the measurer.

Throughput can also be defined as the total amount of data that can be trans-
mitted over a network in a given amount of time [19]. Equation 2.9 can be used to
calculate throughput according to this definition. Size(x) denotes the size of packet
x in bits, T ime(x) denotes the timestamp of packet x in seconds, and nmax is the
last packet in the stream of packets. Consequently, the unit of this measure is bits
per second (bps). Care must be exercised when reporting the throughput from this
equation. If T ime(nmax) ≠ T ime(0) is small, chances are that the reported value is
not representative of the network. Capacity utilization of the network devices and
links a�ects the achievable throughput. This can, for instance, be due to dropped
packets or higher queuing delays. Capacity utilization typically varies with time.
Therefore, if the period of time is too short, the network conditions may be unrealis-
tically poor or good. Throughput calculated like this may be characterized as either

2.2. MEASUREMENT OF PACKET-LEVEL CHARACTERISTICS 13

instantaneous, i.e., over a small period of time, or average, i.e., over a longer period
of time.

Throughput = �nmax
n=0 Size(n)

T ime(nmax) ≠ T ime(0) (2.9)

2.2.5 Real-World Examples of Calculating Packet-Level KPIs on
5G Networks

Real-world experiments have been carried out to measure packet-level KPIs on a
5G network in [20] and [21]. These articles were presented and discussed in the
pre-project of this thesis [1]. The paragraphs below include parts of and draw on
these findings.

In [20], the authors developed a testbed architecture designed to measure one-way
KPIs for both Non-Standalone (NSA) and SA deployments of 5G. Specifically, they
analyzed OWD, packet delay variation, and packet loss, and separated each KPI into
uplink and downlink directions. The testbed utilized MoonGen, a high-speed open-
source tra�c generator that uses Data Plane Development Kit (DPDK) for hardware
acceleration [22]. Through the use of port mirroring in the switch connecting the
mobile cores and the Digital Baseband Units (BBUs), the authors could measure
the individual impacts of the RAN and the mobile cores on the calculated KPIs.
Moreover, by capturing all packets on the same physical machine, the need for clock
synchronization was eliminated. The authors calculate the OWD based on the same
equation presented in Section 2.2.1, and IPDV according to Equation 2.5. Moreover,
their definition of downtime resembles how we present the calculation of availability
in Equation 2.7. However, their definition of downtime considers consecutive packets
exceeding the threshold, whereas our definition of availability considers the total
number of packets violating the threshold. In summary, the authors presented a
testbed architecture that can be used to calculate one-way KPIs, but requires some
manual integration in the NUT, i.e., installing a port mirror in a switch.

In [21], the authors perform measurements on a commercial 5G NSA deployment.
The testbed includes UEs from di�erent manufacturers, an application server in
the cloud, and the mobile network. This particular setup treats the 5G network
as a black box, meaning it does not have access to information from the network
components. The authors are thus limited to end-to-end characteristics over the
network. Through the use of a mobile application, physical layer information related to
the air interface could be extracted. Moreover, they utilized iperf3 and traceroute

to measure end-to-end throughput and delay consecutively. The article highlights
some benefits and limitations of using a black-box approach to testing a 5G network;
on the one hand, any arbitrary network the researcher can access can be measured

14 2. BACKGROUND

through existing applications. On the other hand, the level of detail in the reported
measurements is limited, and more complex analysis is required to extract insights
from the measurements, as highlighted by the transport protocol investigation [21].

By integrating their measurement tool in the NUT, the authors in [20] were
able to measure one-way packet-level characteristics of their NUT and separate the
uplink and downlink. The authors in [21], on the other hand, were more only able
to measure data about the NUT as a whole, due to their black-box approach. This
highlights the di�erence between measurement setups and what results they provide,
which is something we consider important to evaluate when designing a measurement
setup.

2.3 5G

This section introduces aspects of 5G that are relevant to this thesis. Firstly, the
envisioned usage scenarios of 5G are presented in Section 2.3.1. Section 2.3.2 presents
the high-level architecture of 5G SA before data bearer establishment is examined in
Section 2.3.3. Lastly, Section 2.3.4 presents the notion of private 5G networks.

2.3.1 5G Usage Scenarios

5G is meant to serve a multitude of usage scenarios with heterogeneous requirements
[2]. Figure 2.2 shows the envisioned usage scenarios from IMT. The figure relates the
usage scenarios to the 5G service categories, namely eMBB, URLLC, and mMTC.
eMBB centers around improving the overall bandwidth and mobility of mobile
networks. URLLC, on the other hand, poses strict requirements on latency and
availability, as it focuses on mission- and safety-critical applications. Lastly, mMTC
necessitates the support of a very high density of devices, each transmitting a small
volume of non-delay sensitive data while remaining battery e�cient.

The multitude of heterogeneous usage scenarios indicates that 5G has to o�er a
high degree of technical flexibility. This can be observed, e.g., in the multitude of
possible deployment architectures and configurations, as well as technically complex
enabling mechanisms, such as network slicing. By introducing logically separate
networks, network slicing enables various heterogeneous services simultaneously. How-
ever, while maintaining virtually separate network slices may theoretically support
the various services, all tra�c must be mapped to physical networks. The authors of
[23] highlighted this as a central challenge of network slicing in 2017 and indicated
that supporting multiple virtual RANs to accommodate the flexibility introduces a
trade-o� between resource utilization and tra�c separation.

2.3. 5G 15

Figure 2.2: Envisioned usage scenarios of IMT for 2020 and beyond from Figure 2
in [2].

The envisioned usage scenarios of 5G indicate that 5G systems should support
high bandwidth, high mobility, extremely low latency, high availability, high device
density, and high battery e�ciency. Some aspects are contradictory, such as high
bandwidth and battery e�ciency. Moreover, the extremely low latency requirements
can impact the performance of high bandwidth usage scenarios, as attempted solved
in [24]. This illustrates how the intended flexibility of 5G necessitates care during
the design and implementation of the systems.

2.3.2 5G Standalone Architecture

5G introduces significant improvements in both the radio interface (5G New Radio
(NR)) and in the mobile core (5G Core (5GC)) [25]. To enable mobile providers to
capitalize on this as soon as possible, Third Generation Partnership Project (3GPP)
defined several deployment options for 5G networks, which can be broadly categorized
in NSA and SA deployments. An NSA deployment typically only rolls out the 5G
NR while leveraging existing LTE infrastructure. An SA deployment, on the other
hand, deploys both the 5G NR and the 5GC. Its high-level architecture can be seen
in Figure 2.3. The network consists of a UE, a Next Generation NodeB (gNB),
consisting of an Remote Radio Head (RRH) and a BBU, and a 5GC. The RRH
translates digital signals from the BBU into analog signals that can be transmitted
over the air interface and vice versa. Signal encoding, decoding, and cell management
are among the responsibilities of the BBU. It also connects each 5G cell to the 5GC.

In line with the trend of virtualization and microservices, 3GPP designed a mobile

16 2. BACKGROUND

Figure 2.3: High-level architecture of a 5G SA system.

Figure 2.4: Simplified 5G architecture showing the direction of tra�c from source
to destination UE.

core consisting of individual network functions [25]. Each network function in the
5GC has its own responsibilities and can run on virtualized infrastructure. Some of
the functions are the Access Management Function (AMF), Session Management
Function (SMF), and User Plane Function (UPF). The AMF handles registration,
connection and mobility management, and session management tra�c, among other
things. Session establishment between a UE and UPF is among the responsibilities
of the SMF. The UPF connects the 5G system to external networks and handles
Internet Protocol (IP) address allocation and bearer termination.

Figure 2.4 shows a simplified overview of the tra�c flow when a UE in a given
5G cell in a SA network wants to transmit data to a UE in another cell, based on
information from [25]. Assuming that the bearers for both UEs are set up and the
data is ready to be transmitted, the data packets traverse (1) the air interface and
RRH before being sent to (2) the BBU. After this, they are forwarded to (3) the
UPF the source UE is registered with, which sends the data towards the destination
through (4) a Data Network. In this example case, the tra�c traverses the Data
Network to (5) a second UPF, that the destination UE is registered with. This UPF
sends the data to (6) the BBU managing the cell of the destination UE, which sends
the encoded data to (7) the RRH, which finally transmits the data over (8) the air
interface to the destination UE.

2.3. 5G 17

2.3.3 5G Data Bearer Establishment

Enabling the transmission of user data through a 5G system is a process that can be
broken down into three steps. The steps are (1) to ensure an Radio Resource Control
(RRC) Active state, (2) to register with the 5GC, and (3) to establish a data bearer.
In the first step, the UE must become associated with a gNB, which is referred to
as an RRC [25]. The UE goes into an RRC Idle state if it has not sent data in a
while. In this case, the connection must be refreshed and transitioned into an Active
state to transmit data. Secondly, the UE must be registered with the 5GC, which
is a responsibility of the AMF. When a UE has an RRC, it registers with a AMF,
after which identification and authentication are performed. When this process is
complete, the UE has registered with the 5GC and can attempt to establish data
bearers. Lastly, the data bearer must be established. To accomplish this, the SMF is
responsible for configuring a GPRS Tunneling Protocol (GTP) tunnel between the
UE and a UPF. Accordingly, all user plane data is encapsulated in a GTP-U-header
between the UE and the UPF [26]. The gNB also configures a radio bearer for the
data tunnel. This prevents the UE from having to send user plane data over its
signaling bearer. 3GPP has stated that transitioning from an idle state to a state
where the UE can transmit continuous data should not take more than 10ms [27].

2.3.4 Private 5G Networks

3GPP has defined a private 5G network, which they refer to as a non-public network,
as ”a 5GS deployed for non-public use” [26]. Furthermore, they state that it can
be deployed standalone or through integration with a public network. This section
presents how private 5G networks di�er from public 5G networks.

Deploying a private 5G network enables an organization to utilize a mobile
network with dedicated access and characteristics tailored to their needs [4]. Through
configuration, the network can, for instance, adhere to the specific security policies
of the organization. This is often seen in contrast with utilizing services from public
5G networks, in which the organization has to adhere to the policies of the mobile
service provider. Moreover, because the private network belongs to the organization,
they receive dependable communication and service [3].

The infrastructure needs can di�er between private and public 5G networks.
For instance, private 5G networks can employ a lean core [3]. Moreover, private
5G networks have been envisioned to utilize the progress of open-source software
implementations of 5G network components, such as from the OpenAirInterface
Software Alliance and the Open5GS Project [28], [29].

18 2. BACKGROUND

2.4 Industry 4.0

One of the possible applications of private 5G is as an enabling technology in Industry
4.0. This concept has been defined as "... the current trend of automation and data
exchange in manufacturing technologies" [30]. Other enabling technologies include
Internet of Things (IoT), cloud computing, and cyber-physical systems [31]. The
integration of these technologies into manufacturing processes allows for the creation
of "smart" factories with increased e�ciency and data sharing [32].

Industry 4.0 can be utilized to improve a multitude of application areas. Table
2.1 based on [33] shows some of these areas with their corresponding use cases and
requirements. The authors of [33] do not provide a definition of reliability. Therefore,
when considering these use cases later, we define reliability as the percentage of
packets arriving within the required latency. Several of the use cases can be considered
safety-critical and, consequently, pose stringent requirements on latency and reliability.
Examples include motion control and condition monitoring for safety. On the other
hand, use cases such as AR/VR have lower requirements for reliability but pose higher
demands on throughput. Finally, some use cases, such as process monitoring, are
mainly concerned with supporting high device density. Thus, the networks enabling
communication between entities must satisfy a diverse set of requirements to enable
multiple use cases in Industry 4.0.

Because of these stringent demands on latency and reliability, wired networks have
traditionally been used in Industry 4.0 [3]. However, as the authors discuss, this has
downsides, such as increased deployment and reconfiguration costs. These downsides
are both related to using wired connections, thus, using wireless communication
technologies could mitigate these challenges. Through URLLC, eMBB, and mMTC,
5G is envisioned to satisfy the requirements of the aforementioned use cases [2].
Therefore it is important to investigate if real-world private 5G networks can fulfill
these requirements.

2.4. INDUSTRY 4.0 19

Application
Area

Use Case Reliability Latency Data Rate Payload Devices

Factory
automation

Motion control 99.9999% 0.5–2ms 1–5Mbps 20–50B 20–100
Control to control — 10–50ms — 1kB 5–10
Mobile robotics (co-
operative)

— 1–50ms — 40–250B 100

Process
automation

Closed-loop process
control

99.9999% Æ10ms — 20B —

Process monitoring 99.99% 50–100ms 0.5–2Mbps — 100–1,000
Condition monitor-
ing (safety)

99.9% 5–10ms 0.1–0.5Mbps — >1,000

Condition monitor-
ing (interval/event
based)

99.9% 50ms–1s 0.1–0.5Mbps — >1,000

HMI and
production IT

Mobile control pan-
els with safety con-
trol

99.9999% 4–12ms — 40–250B 2–4

AR/VR 99.9% <10ms 5–25Mbps — 10–20
Logistics and
warehousing

Mobile robotics
(video operations)

99.9999% 10–100ms — 15k–250kB 100

Mobile robotics
(standard opera-
tions)

— 40–500ms — 40–250B 100

Monitoring and
maintenance

Massive wireless
sensor networks Noncritical, massive devices, and energy aware

Table 2.1: Industrial use cases and Key Performance Indicators (KPIs) from [33].

Chapter3Design of the Benchmarking Tool

This chapter presents the design process of the benchmarking tool. This is the first
step in creating the artifact that will be iterated over during this thesis, as illustrated
in Figure 1.1. During this process, several aspects of RQ1 (design of system capable of
reproducible benchmarking of a private 5G network) and RQ2 (balancing interaction
with NUT with the level of detail provided) will be considered. The outcome of this
chapter is a list of functional and non-functional requirements for the tool in Section
3.1, and the overall software architecture of the artifact and its sub-requirements
in Section 3.2. Additionally, the high-level physical architecture of the artifact is
presented in Section 3.3.

3.1 Requirements of the Benchmarking Tool

This section presents the functional and non-functional requirements of the bench-
marking tool in Section 3.1.1, and a reflection over these in Section 3.1.2.

3.1.1 Functional and Non-Functional Requirements

To ensure that the benchmarking tool could benchmark private 5G networks, we
defined functional and non-functional requirements. These requirements were used
when designing the architecture of the tool and the individual modules. The require-
ments are based on general features required to perform experiments on networks,
requests from ABB, and features supporting the reproducibility of experiments.

The functional requirements of the benchmarking tool describe the set of features
it o�ers. These requirements must be satisfied for the tool to enable answering the
defined research questions. All of the defined functional requirements are presented
below. The benchmarking tool must be able to:

• TFR1: Generate tra�c that emulates real-world scenarios
• TFR2: Capture network tra�c
• TFR3: Calculate a pre-defined set of KPIs based on network tra�c

21

22 3. DESIGN OF THE BENCHMARKING TOOL

• TFR4: Visualize the result of a trial
• TFR5: Provide possibilities for custom analyses of the trials
• TFR6: Execute trials automatically
• TFR7: Display the status of the executing trial

TFR1 ensures that the tra�c used to measure the performance of the NUT
resembles the tra�c used in the desired scenarios. The performance of a network
depends on the tra�c it is subjected to. This requirement enables answering RQ3
(supporting Industry 4.0 use cases), which provides value to ABB. TFR2 is a general
feature required to perform network measurements. Capturing network tra�c is
necessary to calculate the pre-defined KPIs, which is specified in TFR3. The
calculation of KPIs enables analyses of how the NUT performs. This information can
be used to answer RQ4 (compare 5G implementations). TFR4 focuses on providing
an overview of the benchmark results through visualizations. This makes it easier to
compare di�erent networks and supports answering RQ4. While TFR4 provides an
overview of the network performance, TFR5 enables further analyses of the trial
results. TFR6 supports the reproducibility of the benchmarking tool by ensuring
that actions are executed in the same order and environment. Finally, TFR7 is
added to provide a method to verify that a trial is running as expected. This provides
value as some trials last for longer durations.

Non-functional requirements are concerned with how a system behaves rather than
its specific behavior. The benchmarking tool has a single non-functional requirement,
TNFR1: ”The benchmarking tool should be portable to new NUTs”. This simplifies
benchmarking di�erent NUTs, which enables answering RQ4.

3.1.2 Reflections on Requirements

Based on the requirements presented above, there are some considerations we need to
account for in the designs of the modules. This subsection presents a brief explanation
of these considerations.

TFR3 and TFR4 are concerned with the data gathered by the tool and its
representation. Some of the interesting KPIs, such as packet loss, require processing
to make the information easily understandable. For instance, simply labeling packet
loss as either true or false for each packet can be di�cult to interpret. To address
this, the data can be aggregated by calculating the rate of lost packets in the entire
measurement period. While providing an easily digestible number, this approach
simultaneously hides the temporal fluctuations of the packet loss. Care must be
taken to balance aggregation and level of detail to provide meaningful information
to the user.

To fulfill TFR5, files and calculations must be transparent and accessible to the

3.1. REQUIREMENTS OF THE BENCHMARKING TOOL 23

users. We need to know which files will be relevant for such investigations, such
as the captured tra�c and potentially intermediate files between capture and final
calculation. Ideally, all files of previous trial executions should be made available.
However, the resulting file sizes can be in the order of gigabytes, which makes
this impractical. Therefore, balancing accessibility and storage limitations must be
considered while complying with TFR5.

5G can potentially support very high throughput, and thus, the ability to handle
a large number of packets is an important consideration for the benchmarking tool.
Therefore, employing techniques such as filtering out irrelevant tra�c, sampling, and
parallelization should be considered. If the processing time of the tool is too high, it
will be limited to benchmarking scenarios with low amounts of packets. This limits
the extent to which RQ3 can be answered.

During the discussions with ABB, the extensibility of the benchmarking tool was
emphasized. However, because neither of the defined research questions considers
extensibility, we have not included it as its own requirement. Rather, it is a consid-
eration that is taken for the development of all the modules of the benchmarking
tool.

We must consider which functionality we want to build and where we want to
utilize existing tools, as discussed in [10]. Using existing tools can save substantial
amounts of development time as well as increase reliability through maintenance and
documentation. However, it might limit the available functionality and extensibility.
Implementing functionality ourselves o�ers a great deal of flexibility but comes at
the cost of increased development time and the need for validation. Therefore, we
must consider the trade-o� between custom implementation and utilizing existing
tools. Avoiding re-implementing existing functionality yields more time to ensure a
rich and robust feature set in the tool.

The considerations presented will be taken into account when designing and
developing the modules of the benchmarking tool. Awareness of the need to consider
how information should be presented, made accessible, and manipulated supports the
development of the tool with regards to TFR3, TFR4, and TFR5. Furthermore,
being aware of the trade-o�s between custom functionality and the usage of existing
functionality allows for e�cient prioritization of development resources. This will
help align the technical realization of the tool with its functional and non-functional
requirements.

24 3. DESIGN OF THE BENCHMARKING TOOL

3.2 Benchmark Tool Software Architecture

This section presents the architecture of the benchmarking tool. It presents the
Orchestrator, Tra�c Generator, Packet Matcher, Packet Analyzer, and Visualization
modules in this order. The requirements for the individual modules are also presented.

3.2.1 Orchestrator

The Orchestrator is responsible for automating trial execution. This involves the
coordination of all the other modules. To perform its role, the Orchestrator must
fulfill the following functional requirements. The module must be able to:

• OFR1: Start, stop, and pass parameters to the other modules
• OFR2: Run commands on multiple hosts
OFR1 and OFR2 encompass the functionality necessary to perform orchestration.

This enables TFR6 (executing trials automatically). OFR1 emphasizes the ability
to coordinate tasks, while OFR2 focuses on doing so in a distributed system.

3.2.2 Tra�c Generator

The Tra�c Generator generates tra�c based on the trial parameters. This tra�c is
injected into the NUT and provides the foundation for the benchmark. To fulfill its
role, we devised the following requirements. The module must be able to:

• TGFR1: Generate tra�c patterns adhering to real-world scenarios
• TGFR2: Generate tra�c based on parameters for packet rate, duration, hosts

and packet size
• TGFR3: Customize packet fields
TGFR1 and TGFR2 both enable satisfaction of TFR1 (generating tra�c

that emulates real-world scenarios). TGFR1 emphasizes the tra�c patterns of
real-world scenarios, such as CBR or the pattern used in a specific Industry 4.0 use
case. Furthermore, TGFR2 focuses on being able to parameterize the pattern. This
enables changing pattern characteristics such as the duration or the packet size to
accommodate di�erent trials.

TGFR3 focuses on being able to customize the generated packets. Customizing
packets enables, for instance, adding identifiers that can be used for packet matching,
which is necessary for calculating the KPIs.

It must also meet the following nonfunctional requirement.
• TGNFR1: Sustain stable packet transmission over a prolonged duration
The benchmarking tool should be able to execute trials with a long duration. If the

tra�c generator does not generate stable tra�c, it would be di�cult to di�erentiate
this from the performance of the NUT. TGNFR1 addresses this concern.

3.2. BENCHMARK TOOL SOFTWARE ARCHITECTURE 25

3.2.3 Packet Matcher

The Packet Matcher is responsible for capturing and matching packets and storing
the result. To accomplish this, the module must fulfill the following functional
requirements. The Packet Matcher must be able to:

• PMFR1: Perform packet capturing on at least two interfaces
• PMFR2: Filter out irrelevant tra�c
• PMFR3: Match packets
• PMFR4: Write the result of matched packets to persistent storage
• PMFR5: Provide simple updates at a fixed interval during a trial
To capture the packets at both the ingress and the egress of the NUT, the Packet

Matcher must be able to capture on at least two interfaces, which is covered by
PMFR1. By filtering out irrelevant tra�c we reduce the demands for storage and
processing. This is addressed by PMFR2. PMFR3 considers the need to match
the di�erent observations of the same packet from the ingress and egress of the NUT.
Comparing the matched packets and their meta information provides the foundation
for calculating the pre-defined KPIs. PMFR4 supports the handover between the
Packet Matcher and the Packet Analyzer. For this, the results of the matched packets
must be written to storage. Furthermore, it also makes the output of the Packet
Matcher accessible, which supports TFR5 (Provide possibilities for custom analyses
of the trials). Finally, PMFR5 provides the data necessary to comply with TFR7
(display the status of the executing trial).

It must also meet the following nonfunctional requirement.
• PMNFR1: The module should be able to process 1 million packets in at most

60 seconds
PMNFR1 focuses on the need for scaling to trials with a large number of packets,

elaborated in the previous section. If the processing time is too high, the usability of
the tool is impacted. These values above are chosen to ensure that for our purposes
and experiments, the processing time of the Packet Matcher will not be prohibitive.
However, depending on the trials to be executed, this requirement can either be too
stringent or lenient. Therefore, further analysis and adjustments of these values is
required as the tool matures.

3.2.4 Packet Analyzer

The Packet Analyzer is responsible for calculating the pre-defined KPIs. To do this,
it must satisfy the following functional requirements. The Packet Analyzer must be
able to:

• PAFR1: Calculate the set of pre-defined per-packet KPIs
• PAFR2: Calculate the set of pre-defined aggregated KPIs
• PAFR3: Write the results to persistent storage

26 3. DESIGN OF THE BENCHMARKING TOOL

PAFR1 and PAFR2 are both concerned with calculating the pre-defined KPIs,
which satisfies TFR3 (calculating the pre-defined KPIs). The requirement is split
into two to emphasize the di�erence between per-packet and aggregate KPIs. PAFR3
allows for the handover between the Packet Analyzer and the Visualization module
by writing the resulting KPIs to storage. Furthermore, making the results of the
Packet Analyzer accessible for further analysis supports TFR5.

It must also meet the following nonfunctional requirement.
• PANFR1: The module should be able to process 1 million packets in at most

60 seconds
PANFR1 is grounded in the same arguments as PMFR1, which is discussed

above.

3.2.5 Visualization

The Visualization module is responsible for displaying the results of a trial. To accom-
plish this, it must satisfy the following functional requirements. The Visualization
module must be able to:

• VFR1: Give an overview the calculated KPIs
• VFR2: Respond to changes in the data used
VFR1 supports TFR4 (visualizing the results of trials). Emphasis is put on

providing an overview that is easily digestible, and provides an identification of areas
for further analysis. VFR2 enables TFR7 (displaying the status of the executing
trial) by being able to show continuously updated data.

3.3 High-Level Testbed Architecture

After having presented the requirements of the benchmarking tool, we now turn our
attention to the physical testbed architecture upon which the benchmarking tool
runs. This section presents this architecture and discusses its most important design
choices.

Figure 3.1 illustrates the main components of the high-level testbed architecture.
The architecture can be split into two main components - the benchmarking tool
and the NUT. The tasks of the benchmarking tool could be accomplished by a single
host, but it has been split up into a tra�c generator, a measurement machine, and
a 5G gateway. Separating tra�c generation onto its own machine is intended to
o�oad the tra�c generation from the orchestrating machine since tra�c generation
could be a CPU-intensive process. Additionally, it emphasizes the separation of
concerns. Separating the measurement machine and the 5G gateway provides
increased flexibility. The NUT, on the other hand, contains the components of the
network that the benchmarking tool tests.

3.3. HIGH-LEVEL TESTBED ARCHITECTURE 27

When performing tests on a system, the tester must choose whether to perform
black-box, grey-box, or white-box testing. Each alternative di�ers in the amount of
customization necessary and the granularity of the information provided. Black-box
testing requires the least configuration and interaction but is only able to provide
insights into the performance of the system as a unit. White-box testing, on the other
hand, provides detailed information about the system under test and its internals.
However, more prior knowledge must be attained, and tests must be configured
to perform this type of testing. Finally, grey-box testing enables balancing the
complexity of testing with the level of detail in the information it generates 1.

For this project, RQ2 (balancing the requirements for integration with the NUT
and the granularity of information provided by the benchmark) focuses on the trade-
o� between these approaches. Black-box testing of a 5G network has been performed
in [21] and yielded interesting findings. However, the results were only insightful
after being contextualized with auxiliary information. It lacks the information to
enable reasoning about the performance of individual network components and
network configurations. White-box testing may provide detailed information about
the performance of individual network components and network functions. However,
it requires complex customization and a significant amount of hardware and may
not be possible in many cases due to closed proprietary interfaces between certain
components. Grey-box testing of a private 5G network was performed in [20], and
were able to provide what we considered su�cient granularity with only a single port
mirror. Inspired by this, we consider a grey-box approach to be suitable. The only
integration we perform with the NUT is a wiretap installed between the BBU and
the core server (link number 3 and/or 6 in Figure 2.4). This way, we can gain insight
into one-way KPIs of the network without configuring clock synchronization across
the sender and receiver of the tra�c.

The benchmarking framework contains the components that make up our tester,
as illustrated in Figure 1 in RFC 2544 [9]. To gauge the network, a method of
recording when a packet is transmitted and received is necessary. In our high-level
testbed architecture, this is accomplished by measuring when a packet is transmitted
(forwarded) by the measurement machine and when it has passed through the network.
This way, both the transmit timestamp and the receive timestamp are recorded, and
one-way KPIs can be calculated as described in Section 2.2. This is illustrated in
Figure 3.1 through the line from the measurement machine to the 5G gateway and
between the NUT and the measurement machine. Moreover, by recording both the
transmit and receive timestamps at the same host, clock synchronization need not
necessarily be configured.

1
This description is inspired by general knowledge of this type of testing and supplements from

GeeksForGeeks (accessed: June 5
th

2024).

https://www.geeksforgeeks.org/difference-between-black-box-vs-white-vs-grey-box-testing/

28 3. DESIGN OF THE BENCHMARKING TOOL

Figure 3.1: Illustration of separation of tra�c generation, tra�c measurement,
transmission, and NUT.

The NUT of the testbed architecture carries the tra�c of the benchmarking tool.
By keeping this part logically separated from the tester, it is simpler to fulfill TNFR1
(portability to new NUTs) by developing the tester independently of the NUT, such
that it is interchangeable. In theory, the tra�c generation and measurement part
should be agnostic of the type of network it is testing.

Chapter4Implementation of the
Benchmarking Tool

This chapter describes the implementation of the di�erent modules of the benchmark-
ing tool. Its outcome is a description of the artifact used for validation, as seen in
Figure 1.1. The intention of the chapter is to map the design choices from Chapter 3
to the actual implementation of the benchmarking tool. First, the Tra�c Generator
module is described in Section 4.1, followed by the Packet Matcher in Section 4.2.
After this, the Packet Analyzer module is presented in Section 4.3. The Visualization
module is presented in Section 4.4, before the Orchestrator is described in Section 4.5.
Lastly, Section 4.6 presents how data is represented and stored between modules.

4.1 Tra�c Generator

The Tra�c Generator is responsible for producing tra�c that will be applied to
input to the NUT. This section describes the three alternatives we provide for tra�c
generation. Each o�ers a di�erent level of flexibility and ease of use, suiting di�erent
use cases of the benchmarking tool. We balanced the development of new tools and
utilities with the usage of existing tools to tailor the o�ered tra�c generators to our
requirements.

Table 4.1 lists the submodules of the Tra�c Generator and maps them to the
functional requirements they contribute to. First and foremost, it must be able
to generate tra�c adhering to specific patterns, contributing to TGFR1 (realistic
tra�c patterns). Through TGFR2 (parameterizable tra�c), the tra�c patterns it
produces must also be parameterizable, increasing the extensibility of the module.
TGFR3 (customize packet fields) necessitates that it needs to be able to craft custom
packets that contain identifiers, which we refer to as packet crafting. This enables
the system to be able to calculate KPIs such as one-way delay and inter-packet delay
variation. The non-functional requirement specified for the Tra�c Generator must
be considered when developing the module. For instance, TGNFR1 (stable packet
transmission over a long time) entails that the tra�c generator cannot impose too

29

30 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

much load on the benchmarking tool, such that the behavior changes significantly
over time.

Submodule
TGFR1:

Realistic tra�c
patterns

TGFR2:
Parameterizable tra�c

TGFR3:
Customizable packet

fields
Tra�c pattern

generation X X -

Packet crafting - - X

Table 4.1: Required submodules of the tra�c generator module with the require-
ments they satisfy.

In order to cater to the need for flexibility and customization, we developed
three alternatives for tra�c generation. Alternative 1 o�ers a tra�c generator able
to produce parameterizable CBR tra�c, which uses Cisco TRex for transmission,
described in further detail in Subsection 4.1.1. Alternative 2 o�ers a script that
parses a capture file provided by the user and can replay it with configurable source
and destination addresses. The benchmarking tool can thus generate industry-
specific tra�c patterns. This is described in Subsection 4.1.2. Alternative 3 o�ers a
specification that enables using a di�erent custom tra�c generator while utilizing
the remainder of the benchmarking tool. It is described in Subsection 4.1.3. Table
4.2 compares the alternatives based on tra�c realism and ease of use.

Tra�c generation
alternative

Tra�c pattern
realism Ease of use

Alternative 1 CBR - low High
Alternative 2 Any1 High
Alternative 3 Any2 Moderate/Low

1 Limited by the realism of the tra�c pattern in the
provided pcap.

2 Limited by the realism of the custom tra�c generator
used.

Table 4.2: Comparison of the o�ered tra�c generation alternatives based on tra�c
pattern realism and ease of use.

4.1.1 Alternative 1: Constant Bitrate with Cisco TRex

The first tra�c generation alternative enables simple tra�c generation through the
use of a parameterized script able to produce CBR tra�c. Its tra�c pattern realism
is limited to CBR, and its purpose is to provide a simple means for generating tra�c.
It uses the stateless module of Cisco TRex to produce the specified tra�c. Firstly,

4.1. TRAFFIC GENERATOR 31

a survey presenting various software tra�c generators is described, followed by a
description of how Cisco TRex is used.

Survey of Software Tra�c Generators

Before implementing the tra�c generator module, a small survey of software-based
tra�c generators was conducted. There exist several tra�c generator alternatives,
each of them suitable for di�erent scenarios. The survey was intended to find a
suitable software tra�c generator that could be used to implement the submodules in
Table 4.1. The tra�c generator must be programmable to send CBR tra�c. However,
to be extensible, the tra�c generator should also enable di�erent tra�c patterns.
To generate identifiable packets, it must be able to customize individual packets. A
simple example is the ping application, which uses Internet Control message Protocol
(ICMP) messages. ICMP requests and replies place identifiers and sequence numbers
in the header. This way, correlated packets can be identified. Moreover, the tra�c
generator must be able to construct packets with an arbitrary protocol structure and
payload to ensure that the tra�c generator module is extensible.

We considered MoonGen [22], Cisco TRex, Ostinato, Scapy, iperf3, and D-ITG.
iperf3 was discarded because of its evident lack of flexibility in tra�c pattern
customization [34]. Moreover, D-ITG uses the traditional Linux New API (Linux
NAPI), meaning that it cannot guarantee su�ciently accurate transmission of packets
[35], potentially compromising TGNFR1. Therefore, it was excluded from further
evaluation.

Table 4.3 summarizes the remaining tra�c generator options. It categorizes them
based on the capability for hardware acceleration, whether they support stateful or
stateless tra�c generation, and packet crafting capabilities.

Tool Hardware Acceleration Stateful/
Stateless

Packet
Crafting

MoonGen DPDK Stateless Per-packet
modifications

Cisco TRex DPDK Stateful and
stateless

Per-packet
modifications

Scapy No (uses
Python sockets)

Stateful and
stateless

Per-packet
modifications

Ostinato eXpress
Data Path Stateless Per-packet

modifications

Table 4.3: Survey findings of popular tra�c generator options.

Ostinato is a tra�c generator with a proprietary license. It enables extensive
packet crafting and supports a wide range of network protocols [36]. It uses the

32 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

eXpress Data Path. Because of the proprietary license, Ostinato was regarded as an
unsuitable option and was not followed up further. 1

Scapy is a library for Python that allows for simple tra�c generation and flexible
packet crafting [37]. By scripting packet generation and response parsing, Scapy
enables operating in both a stateful and stateless manner. However, because it uses
Python for processing and the tra�c generator machine uses the Linux NAPI and
not DPDK for Python sockets, it is limited in terms of the achievable standard
deviation of inter-transmission times [38]. Scapy o�ers su�cient flexibility in packet
crafting and tra�c pattern modeling. However, the aforementioned limitations
make it unsuitable in use cases where throughput and performance are important
considerations.

MoonGen is an open-source software-based tra�c generator distributed under
the MIT license [22]. It uses the DPDK-framework to achieve high throughput.
Moreover, by enabling scripting with Lua, programmers can craft packets and send
CBR-tra�c as well as, for example, Poisson-distributed tra�c. MoonGen is scalable
in terms of the number of cores used by the tra�c generator. It can transmit more
than 14 million PPS per core, which has been demonstrated to scale up to 12 cores
[22]. However, it only supports stateless tra�c, making emulation of client-server
communication di�cult.

Cisco TRex, subsequently referred to as TRex, is another open-source software-
based tra�c generator using the DPDK-framework [39]. It is distributed under the
Apache license. TRex can operate in both stateful mode and stateless mode and
o�ers great flexibility in both modes of operation. Stateless operation enables packet
crafting and programmatic definitions of tra�c patterns using its own Python-based
software development kit and Scapy. It can generate 10-22 million PPS in stateless
mode [39].

Out of these alternatives, both TRex and MoonGen are viable options. However,
o�ering alternatives for both stateful and stateless tra�c di�erentiates TRex from
MoonGen. Therefore, we decided that TRex provided the greatest opportunities in
terms of flexibility and extensibility and we chose to use this software tra�c generator
for this tra�c generation alternative.

Script for Generating Tra�c With Cisco TRex

To generate CBR-like tra�c, we wrote a Python script using the stateless API of
Cisco TRex. It defines a class that is responsible for creating a tra�c stream. A
tra�c stream is defined by a packet template, the transmit mode, a TRex Field
Engine, and the transmit rate, among other things. The packet template we provided

1
As of April 2024, Ostinato is no longer open-source. https://ostinato.org/open-source

4.1. TRAFFIC GENERATOR 33

Figure 4.1: Format of packet constructed for transmission with Cisco TRex.

is a simple packet consisting of an Ethernet header, IP header, UDP header, and
a fixed payload. This template is illustrated in Figure 4.1. The payload contains
a sequence number and a configurable number of bytes of padding. We used the
Field Engine functionality of TRex to implement an incrementing 4-byte sequence
number. This was done because TRex generates identical copies of the same packet
by default and requires the use of a Field Engine to update packets during tra�c
generation. UDP was chosen as the transport layer protocol because of its stateless
properties. To generate CBR tra�c, the created stream transmits in continuous
mode, which sends packets at the same rate per second for the entirety of the defined
trial duration.

The tra�c generation script has been made parameterizable by connecting
command-line arguments to the script. Source- and destination IP addresses and
UDP ports, packet rate, duration, and payload size can be configured through the
arguments. This makes it easy to reuse the script for di�erent trials and in di�erent
networks.

This tra�c generation alternative requires manual configuration of a server to
respond to the tra�c and make the tra�c bidirectional.

4.1.2 Alternative 2: Packet Capture Replay

To enable tra�c patterns emulating real-world protocols, the benchmarking tool
enables replaying capture files. In this context, replaying means transmitting the
packets from a capture file in the same format, in the same order, and with the same
inter-packet transmission time. tcpreplay is used to replay tra�c. Cisco TRex also
o�ers functionality for this but was deprioritized due to the inconvenience of copying

34 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Figure 4.2: Illustration of synthesizing of an example packet format to replay
format.

files between hosts 2. The tool expects a capture file that contains the application
tra�c. The file can also contain background tra�c, which will be filtered out of the
file. The packet format of the application data is updated according to Figure 4.2.
This adds an identifier to the packets. When the capture file has been parsed, it can
be transmitted using tcpreplay.

This tra�c generation alternative also does not provide bidirectional tra�c
without the manual configuration of a responding server. To emulate bidirectional
tra�c, the destination of the tra�c needs to actively respond to received packets.

4.1.3 Alternative 3: Custom Tra�c Generator

As a third alternative, a custom tra�c generator can be integrated with the bench-
marking framework, enabling full control over the tra�c. This approach requires
more setup but makes it possible to use stateful protocols and applications, such as
TCP, for trials. To properly integrate the tra�c generator, two requirements must be
fulfilled. Firstly, the tra�c generator must be connected to the measurement machine
such that the tra�c can be captured before being injected into the NUT. This can
be done either by sending the tra�c through it using the L2 bridge as done in Figure
3.1 or by port mirroring to the measurement machine as in Figure 4.3. Secondly, the
generated tra�c must comply with TGFR3 to enable identification. An example
of this would be a machine running iperf3 client connected to the measurement
machine, sending tra�c to an iperf3 server.

2
The maintainers of TRex have mentioned functionality for extracting tra�c patterns from

a capture file into a Python script in the forthcoming features [40]. This functionality would be

interesting for this tra�c generation alternative.

4.2. PACKET MATCHER 35

Figure 4.3: High-level testbed architecture with port mirror instead of using L2
bridge on measurement machine.

4.2 Packet Matcher

The Packet Matcher captures the tra�c, processes it, and forwards it to the Packet
Analyzer where the defined KPIs are calculated. Table 4.4 shows the submodules
of the Packet Matcher. The Packet Capture submodule is responsible for capturing
network tra�c. Within the Packet Matching submodule, the timestamps at the
di�erent measurement points of a specific packet are extracted and then stored in a
CSV file, in the Data Extraction submodule. Finally, the Live Update submodule
writes the number of captured packets to InfluxDB at a pre-defined interval. This
section describes each of the submodules in the order they were presented.

Submodule
PMFR1:
capture
packets

PMFR2:
filter during

capture

PMFR3:
match packets

PMFR4:
write to
storage

PMFR5:
semi-live

simple updates
Packet Capturer X X - - -
Packet Matching - - X - -
Data extraction - - - X -

Live update - - - - X

Table 4.4: Required submodules of the Packet Matcher with the requirements they
satisfy.

4.2.1 Packet Capturer

The Packet Capturer submodule captures tra�c on a defined set of interfaces. This
is a use case already implemented in several tools, and therefore we wished to utilize
an existing solution.

36 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Table 4.5 summarizes some characteristics of tcpdump, tshark, and dumpcap.
We chose tshark as it can perform capturing on multiple specific interfaces, and we
had experience with the tool.

Feature tshark dumpcap tcpdump

Capture on multiple
interfaces Yes Yes Either one or all

Timestamp
granularity Nanosecond1 Nanosecond1 Nanosecond1

Filtering abilities libpcap libpcap libpcap
Command line tool Yes Yes Yes

Capturing framework libpcap libpcap libpcap
1 If hardware timestamping with support for nanosecond precision is used.

Table 4.5: Comparison of features o�ered by tshark, dumpcap and tcpdump based
on [41], [42], and [43].

The Packet Capturer applies a filter when capturing and writes the results to a
file and to stdout. The filter reduces the amount and impact of background tra�c
when this is present. Furthermore, the packets written to the file are used as the
input for the Packet Matching, while the stdout is utilized for the semi-live updates.

The Packet Capturer also performs timestamping on the captured packets. tshark

enables timestamping both based on global system time and based on the network
adapter time if the Network Interface Card (NIC) supports this. We opted for the
global system time to prevent issues with clock synchronization because we capture
on multiple interfaces.

4.2.2 Packet Matching

As the packets traverse the network, they will be captured once at the measurement
machine before it is injected into the NUT and once again at the interface connected
to the wiretap. By matching the two observations of the same packet, we can extract
one-way information. We employ a sliding window to perform packet matching
without searching through every packet in the capture file.

The Packet Matching submodule has had two designs. Firstly, we utilized a simple
First In First Out queue as our sliding window, which is described in Algorithm 4.1.
The algorithm reads the packets from the capture file sequentially, and for each new
packet, it searches the sliding window for a match. If no match is found, the packet
is added to the sliding window. If a match is found, the match is removed from the
sliding window, and information from both packets is stored.

4.2. PACKET MATCHER 37

After performing our validation, we re-designed this submodule to be less vulner-
able to the sliding window filling and consequently introducing artificial packet loss
during trials with either high OWD or high packet loss. With the initial design, all
the captured packets were written to a single file, which was iterated through. Thus,
if the PPS were high, especially when combined with high OWD or packet loss, the
sliding window would get filled with packets from the first interface. Depending on
the size of the sliding window, it was then possible for the window to fill up before
matching packets arrived. If this happened, the corresponding packet already in the
sliding window would be ejected without a match. Consequently, both packets would
be stored as packets without a match. Furthermore, the match of a packet observed
at a given interface can only be found at the other interface. Therefore, searching
through multiple packets from the same interface is wasteful.

The new implementation of the Packet Matching mitigates these issues by using
a separate capture file and sliding window for each capture interface. Alternating
the capture files should make the sliding windows less full and reduce the time used
to search through the sliding windows. The new design is described in Algorithm 4.2.
This version is used for the case study.

Algorithm 4.1 Packet Matching with the naive implementation of the sliding
window.

PacketSource Ω Pcap
SlidingWindow Ω Empty FIFO queue
File Ω CSV file
for each packet p in PacketSource do

matched Ω false
for each packet s in SlidingWindow do

if match(s, p) then
Remove s from SlidingWindow

Write s and p to File

matched Ω true
break

end if
end for
if not matched then Add p to SlidingWindow

if isFull(SlidingWindow) then
Remove the first element from SlidingWindow

Write the removed element to File

end if
end for
for each packet p in SlidingWindow do Write p to File

end for

The matching function used in Algorithm 4.1 and 4.2 can be changed depending

38 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Algorithm 4.2 Packet Matching with the improved implementation of the sliding
window.

PacketSourceTx, PacketSourceRx Ω Pcap1, P cap2
SlidingWindowTx, SlidingWindowRx Ω Empty FIFO queue
source1Exhausted, source2Exhausted Ω false

File Ω CSV file
while not source1Exhausted and not source2Exhausted do

if source1Exhausted then continue
p1 Ω PacketSourceTx.Next()
if p1 is null then source1Exhausted Ω true
matched Ω false
for each packet prx in SlidingWindowRx do

if match(p1, prx) then
Remove prx from SlidingWindowRx

Write p1 and prx to File

matched Ω true
break

end if
end for
if not matched then Add p1 to SlidingWindowTx

if isFull(SlidingWindowTx) then
Remove the first element from SlidingWindowTx

Write the removed element to File

end if
if source2Exhausted then continue
p2 Ω PacketSourceRx.Next()
if p2 is null then source2Exhausted Ω true
matched Ω false
for each packet ptx in SlidingWindowTx do

if match(p2, ptx) then
Remove ptx from SlidingWindowTx

Write p2 and ptx to File

matched Ω true
break

end if
end for
if not matched then Add p2 to SlidingWindowRx

if isFull(SlidingWindowRx) then
Remove the first element from SlidingWindowRx

Write the removed element to File

end if
end while
for each packet ptx in SlidingWindowTx do

Write ptx to File

end for
for each packet prx in SlidingWindowRx do

Write prx to File

end for

4.2. PACKET MATCHER 39

Figure 4.4: A sequence diagram showing how the live update submodule works
together with the packet capture submodule.

on the trial. This increases the flexibility by making it simple to change the matching
criteria. When the trial uses TCP tra�c, it matches based on TCP sequence numbers
3. If the trial uses UDP tra�c, as described in Tra�c Generation Alternative 1 and
Alternative 2, it matches based on the sequence number within the custom payload.

4.2.3 Data Extraction

The Data Extraction submodule is responsible for parsing the relevant information
from the packets and writing it to a CSV file. It stores the source and destination
IP addresses, the packet size, timestamps for when the packet was transmitted and
received, and if the match was found. The CSV contains all the information the
Packet Analyzer requires and enables the handover between the Packet Matcher and
Packet Analyzer.

4.2.4 Live updates

The Packet Matcher module also supports providing limited updates on a given
interval. It works by having the tshark-command use the flags -w and -P. This allows
the tshark output to be both written to a file and sent to so the captured packets
are both written to the file and can be piped into this script. At the given interval,
the script reads from stdin and extracts the packet count. For every 10,000 packets,
the new packet count is written to an InfluxDB measurement that the Visualization
module can later utilize. An overview of how the Live Update submodule works with
the Packet Capture submodule can be observed in Figure 4.4.

3
We are aware that because of the matching on TCP sequence numbers, it is vulnerable to

retransmissions because they reuse the sequence numbers.

40 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

4.3 Packet Analyzer

This section describes the Packet Analyzer module, which calculates KPIs based
on the packet data generated by the Packet Matcher module. It distinguishes
between per-packet KPIs, such as OWD, and aggregate KPIs, such as packet loss.
The calculators for aggregate KPIs group packets on a per-second basis and then
compute its KPIs for each second. This preserves the major temporal fluctuations
and simultaneously provides a meaningful number of packets for calculating aggregate
KPIs. All of the calculated KPIs are subsequently written to InfluxDB. Table 4.6
shows the submodules of the Packet Analyzer and the functional requirements they
contribute to. The data reader and parser reads the results of the Packet Matcher
and forwards it to the KPI calculation submodule. This submodule is responsible for
calculating all the configured KPIs and forwards the data to the Database Connection
submodule, which writes the results to a database.

Submodule
PAFR1:

calculate per-packet
KPIs

PAFR2:
calculate aggregate

KPIs

PAFR3:
write KPIs
to storage

Data Reader
and Parser - - -

KPI Calculation X X -
Database Connection - - X

Table 4.6: Submodules of the Packet Analyzer module with the requirements they
contribute to.

4.3.1 Data Reader and Parser

The Data Reader and Parser submodule are responsible for reading a CSV file
containing summarized packet information. The records are read sequentially, and
each record is parsed into a Go-struct containing source and destination IP addresses,
packet size(s), transmit and receive timestamps, and whether a match was found.

4.3.2 KPI Calculation

For each KPI the benchmarking tool supports, a calculator is defined in the KPI
Calculation submodule. Each calculator expects a slice of pointers to the aforemen-
tioned struct and returns a map with transmit timestamps as keys and the calculated
KPI as values. This ensures that the correct order of timestamps and values is
preserved when the values are stored. The input slice must be ordered in ascending
order based on the transmit timestamps because some of the calculators compare
successive packets 4. All of the per-packet calculators return values whose units

4
The transmit timestamp is chosen as the default point of reference for each packet. The

original order of the packets is more closely preserved at transmission than at reception because of

4.3. PACKET ANALYZER 41

are seconds. We calculate OWD, IPDV, and IAT as the per-packet KPIs. For the
aggregate KPIs, we calculate instantaneous throughput, instantaneous packet loss,
and delay threshold satisfaction. The calculators are presented in this order.

One-Way Delay

The calculator for OWD is based on the method described in Section 2.2.1. It
subtracts the transmission timestamp from the reception timestamp to find the
OWD.

IP Packet Delay Variation

Calculating IPDV is based on [16], as described in Subsection 2.2.2. We chose
this equation since it considers the last 16 packets and not just the last two. This
reduces the impact of individual outliers. Each IPDV-value is calculated according
to Equation 2.4, which is why the ordering of the input slice matters. Otherwise, the
evolution of the IPDV along the time axis becomes meaningless.

Inter-Arrival Time

The Packet Analyzer also defines a calculator for IAT for the transmit timestamps.
This calculator is intended as a verification for the tra�c pattern, e.g., for CBR
tra�c. The calculator finds the successive di�erences in transmit timestamps and
assumes an ordered input slice.

Throughput

The throughput calculation is based on the definition from Subsection 2.2.4 and
Equation 2.9. The calculator computes the sum of the total bits transmitted per
second, which yields an instantaneous throughput measure. It uses the non-GTP
encapsulated packet sizes to yield a consistent value independent of the NUT. More-
over, the calculator ignores packets without a match to avoid taking potentially lost
packets into account.

Packet Loss

The packet loss is simply calculated as the rate of packets that do not have a match
in the input slice. The calculator yields the packet loss per second of the trial for the
same reason as the throughput calculator.

non-deterministic procedures in the network internals. Therefore, using the transmit timestamp

yields more stable results.

42 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Delay Threshold Satisfaction

Lastly, the Delay Threshold Satisfaction calculator accepts a map of delay thresholds
in addition to the input slice. This calculator is conceptually similar to the packet
loss calculator. It treats the packets whose OWD exceeds the threshold as lost.
Based on this, it calculates the rate of packets satisfying each delay threshold. It
is based on Equation 2.7. Even though it is based on the definition of availability
presented in Section 2.2.3, we renamed it to delay threshold satisfaction to remove
the connotations to the actual uptime of a system. For each threshold, the delay
threshold satisfaction calculator returns a map like the other calculators.

4.3.3 Database Connection

The Database Connection submodule receives credentials to connect to a time series
database instance. When it receives KPIs from the calculators, it writes them into
the database.

4.4 Visualization

The benchmarking tool uses the Visualization module to show the KPIs calculated
in a trial. It uses di�erent Grafana dashboards to show a simple measurement during
a trial and detailed measurements after a trial is completed.

4.4.1 Grafana

Grafana is a tool for data visualization. It has built-in support for various data
sources for its visualizations [44]. Its core features are the dashboard and panel
features, which can host a multitude of visualizations. A dashboard consists of one or
more panels and is represented as a JSON object [45]. Dashboards can have variables
that get passed to panels, allowing for dynamic queries and visualizations [46]. A
dashboard can also be configured to re-run its queries at pre-defined intervals [47]
to ensure up-to-date data. Grafana has several built-in panels, such as time series,
tables, and metrics [48]. It is available both as a cloud-hosted service and as an open
source with self-hosting [49].

We used a self-hosted instance of Grafana to implement our Visualization module.
Grafana was chosen because it meets all the module requirements, and one of our
supervisors was familiar with it.

4.4.2 Configured Grafana Dashboards

The benchmarking tool provides two dashboards. One shows a count of the captured
packets during the run of a trial. This primarily serves as a verification that the

4.4. VISUALIZATION 43

Figure 4.5: A screenshot of the live counter from the semi-live Grafana-dashboard.

Figure 4.6: A screenshot from the detailed dashboard showing the visualizations
for the OWD and the IPDV.

trial is running as expected to prevent having to re-do long trials. The data source
for this dashboard is described in Section 4.2.4. This dashboard re-runs its query
every 2 seconds, resulting in a close-to-live counter. Figure 4.5 shows the live counter
from the semi-live dashboard, which displays the number of captured packets at the
ingress of the NUT.

The other dashboard displays the KPIs calculated after the trial has finished.
It shows both the per-packet KPIs and the aggregated KPIs, some of these can be
observed in Figure 4.6 and Figure 4.7. The data source of the dashboard is the
data written to InfluxDB by the Packet Analyzer. The user is able to choose which
trial to display results from by either choosing from a set of pre-defined trial names
or typing in one. This dashboard enables the user to get a broad overview of the
performance of the network. The dashboard elements were chosen based on input
from our supervisors.

44 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Figure 4.7: A screenshot from the detailed dashboard showing the visualization for
the delay threshold satisfaction.

4.5 Orchestrator

The Orchestrator module is responsible for coordinating all the modules aside from
Visualization. It needs to be able to satisfy the functional and non-functional
requirements specified in Section 3.2. Its most important functionality is being able
to run tasks on remote machines both synchronously and asynchronously. This is
required to satisfy OFR1 (coordinating other modules with parameters) and OFR2
(running commands on multiple hosts). During the development of this module,
we considered if any existing solutions could satisfy these requirements to avoid
re-building existing functionality.

Ansible is an open-source automation platform [50]. Actions are performed
either through ad-hoc commands through the Ansible CLI or through the execution
of playbooks [51] [52]. Ansible playbooks are YAML files consisting of a set of
plays, which again consist of a set of tasks [52]. Tasks in a play can be run either
synchronously or asynchronously at di�erent hosts [52]. Ansible supports defining a
set of hosts in inventory configuration files that decides which hosts the plays are run
at [53]. Playbooks can also accept variables from files and the command-line [54].

We chose to use Ansible for the Orchestrator because it satisfies all the require-
ments. The benchmarking tool has three Ansible playbooks for running trials, one
for each alternative for generating tra�c discussed in section 4.1. All playbooks
receive variables from a file, and the variables describe all the individual parameters
for a trial. Depending on the playbook, a di�erent set of variables are required.

The only significant di�erence between the playbooks is how they handle tra�c
generation with regard to the three alternatives. A sequence diagram showcasing
the communication between the di�erent modules can be observed in Figure 4.8.

4.6. DATA STORAGE 45

Figure 4.8: A sequence diagram showing an overview of orchestration for a trial
using tra�c generation alternative 1.

First, a series of tasks are performed to ensure that the current trial is una�ected
by any previous trials. One such task is removing previous data from the same
trial from InfluxDB. Unless Alternative 3 for tra�c generation is chosen, the tra�c
generation is started. The Packet Capture submodule is run parallel to the tra�c
generation. Once the tra�c generation is done and the tra�c capture has been
completed, the Ansible playbook resumes executing tasks synchronously. Next, the
playbooks run the Packet Matching and Data Extraction submodules of the Packet
Matcher. Once completed, the Packet Analyzer module uses the output CSV from
the Packet Matcher module to perform the KPI calculations. At this point, the data
is available in InfluxDB for the Visualization module.

4.6 Data Storage

The benchmarking tool must store data at various stages, from the initial capture of
packets to the final data visualization in Grafana. By storing the data from each
step of the pipeline, the benchmarking tool ensures well-defined handovers between
modules. Furthermore, storing the data from each step allows for transparency for
the user and enables the user to make custom investigations, supporting TFR5
(providing possibilities for custom analysis). The storage formats and methods used
are pcap, CSV, and InfluxDB. Figure 4.9 shows the di�erent files created during a
trial.

The benchmarking tool overwrites existing pcaps, CSVs, and InfluxDB measure-
ments when a new trial with the same name is run. This is done to reduce the storage

46 4. IMPLEMENTATION OF THE BENCHMARKING TOOL

Figure 4.9: A flowchart showcasing the files created at the di�erent steps of a trial
run.

demands of the tool. If a user wishes to keep historical data, they must perform
these backups themselves.

4.6.1 Packet captures

Once the packet capture submodule has captured a packet, it is added to a pcap. This
file contains all the packets that passed the filters in a given trial. The benchmarking
tool keeps all the pcaps in a folder reserved for pcaps, where each pcap is named after
its trial name. This enables simple access to the capture files, if further investigation
is necessary.

4.6.2 CSV

After the Packet Matcher module has completed processing a pcap, the result must
be stored somewhere the Packet Analyzer module can access it. The benchmarking
tool uses a CSV file for this purpose. A CSV file is used because only a simple
standard display of information is required. There is no need to query this data or
make changes to it once it has been written. Furthermore, several analysis tools
support CSV as an input format. At the same time, it is relatively human-readable.

The CSV file is stored in a designated folder for the output of the Packet Matcher
module. This makes it accessible and enables further custom investigation.

4.6.3 InfluxDB

Once the Packet Analyzer has calculated the KPIs, the data is stored in InfluxDB.
Storing the data in InfluxDB provides several advantages. First, the tool can use the
built-in query functionality of InfluxDB. The Visualization module, for instance, uses
this to fetch the relevant data for each panel. Second, using a time series database
simplifies utilizing the temporal aspect of the data for queries. Finally, storing the
data in InfluxDB makes it simpler for di�erent hosts to access the data by utilizing
the authentication features provided by InfluxDB.

Chapter5Experiments

This chapter presents the various experiments we performed in our thesis. After
designing and implementing the benchmarking framework in each iteration in Figure
1.1, we performed some kind of validation. The first validation of the benchmarking
framework is further described in Section 5.1. Based on the insights gained during
this validation, we re-designed some components of the framework. Finally, we
performed a larger-scale validation, referred to as the case study, with the improved
framework on two private 5G networks. This case study is described in Section 5.2.

5.1 Validation

This section presents the method for validating the benchmarking framework in the
first iteration of the feedback loop in Figure 1.1. The results of this are then used
to identify areas for improvement before the tool is used in the case study. Section
5.1.1 describes the testbed architecture used for performing the measurements. The
validation questions and the procedures used to answer them are presented in Sections
5.1.2 and 5.1.3. By validating the tool, we ensured it performed as intended and
enabled discovery of potential areas for improvement.

The validation is inspired by the design science framework, which separates valida-
tion into e�ect questions, trade-o� questions, sensitivity questions, and requirements
satisfaction questions [12]. Because of the novelty of the system, trade-o� questions
are omitted because of the di�culty of finding comparable alternatives. Moreover,
we will not present the method for answering requirement satisfaction questions.
The satisfaction of requirements will be addressed in the discussion of the validation.
Finally, we will not be validating the Orchestrator or Visualization modules. These
use solutions that are considered industry standards, and we assume they function
as described.

47

48 5. EXPERIMENTS

Figure 5.1: Diagram of the physical realization of the benchmarking tool.

5.1.1 Validation Testbed Setup

During the development and validation of the benchmarking tool, we used the Beyond
5G Lab at Norwegian University of Science and Technology (NTNU) as a basis for
the testbed. The high-level testbed architecture was described in Section 3.3 and
consists of the benchmarking tool and the NUT. This section maps the high-level
testbed architecture and the physical architecture used during development and
validation. First, the benchmarking tool testbed is presented. After this, the testbed
architecture used for some select validation procedures is presented.

Benchmarking Tool Physical Architecture

This section describes the architecture of the benchmarking tool. It consists of a tra�c
generation machine, subsequently referred to as the tra�c generator, and a machine
performing everything related to measurement and analysis, subsequently referred to
as the measurement machine, as well as a 5G gateway. Figure 5.1 illustrates how
this setup was realized during the development of the benchmarking tool. The figure
also includes the 5G gateway used in the testbed.

Tra�c Generator The tra�c generator is an Intel NUC 8i7hvk with the following
NICs:

• Intel Corporation I210 Gigabit Network Connection
• Intel Corporation Ethernet Connection (2) I219-LM

The former NIC is DPDK-compatible and is used for outputting generated tra�c,
and the latter is used as a management interface, primarily for Secure Shell (SSH)-
connections. The machine is operated by the Ubuntu 22.04 Operating System (OS).
The NIC used for outputting generated tra�c is directly connected to an interface of
the measurement machine. The measurement machine is transparent to the tra�c
generator.

Cisco TRex v3.04 is installed on the tra�c generator. TRex is set up using

5.1. VALIDATION 49

Software Version
InfluxDB v2.4.7
Grafana v10.3.3
Golang v1.18.1
Python v3.10.12
Ansible v2.15.9
Tshark v3.6.2

Tcpreplay v4.3.4

Table 5.1: Measurement machine installed software and corresponding versions.

the aforementioned tra�c generation NIC and a dummy port. TRex is assigned
192.168.2.1/24 as a default gateway. The default gateway corresponds to the 5G
gateway connected to the network infrastructure in Figure 5.1.

Introducing a physically separate tra�c generator is seemingly unnecessary and
increases the demand for hardware. This design choice was primarily motivated
by the lack of traditional network interface control when it is DPDK-bound [55].
When an interface is DPDK-bound, a user space process can directly access the
interface, bypassing the Linux NAPI. Due to this, it becomes di�cult to police access
to the interface, and thus, control usually resides in a single application. Therefore,
performing both tra�c generation and packet capturing at the same interface is
cumbersome, and the tra�c generation and tra�c capturing were distributed over
two physically separate machines. The machine performing packet capturing is
described next.

Measurement Machine The measurement machine is a Dell Precision 3630
Tower with the following NICs:

• Intel Corporation Ethernet Connection (7) I219-LM
• 2x Intel Corporation I210 Gigabit Network Connection
• 2x Intel Corporation Ethernet Controller X710 for 10GbE Small Form-factor

Pluggable (SFP)+
The first NIC is used as a management interface, and the second type of NIC is
used for interconnection between the tra�c generator and gateway. The last NIC
type is connected to SFPs, which is connected to a wiretap from within the network
infrastructure. The measurement machine is operated by the Ubuntu 22.04 OS. Table
5.1 summarizes installed software and their corresponding versions.

The design goal of the measurement machine was that it should operate trans-
parently in the eyes of the tra�c generator and gateway. To achieve this, the
measurement machine implemented a software bridge br0 between interfaces enp3s0

50 5. EXPERIMENTS

and enp5s0 from now on, referred to as the L2 bridge. We configured a Linux bridge,
which is a virtual network device [56]. It uses the bridge-functionality of iproutes2.
The following commands were used to configure it.

$ sudo ip addr flush dev enp5s0

$ sudo ip addr flush dev enp3s0

$ sudo ip link add br0 type bridge

$ sudo ip link set enp3s0 master br0

$ sudo ip link set enp5s0 master br0

$ sudo ip addr add 192.168.2.100/24 dev br0

$ sudo ip link set dev enp3s0 up

$ sudo ip link set dev enp5s0 up

$ sudo ip link set dev br0 up

$ sudo iptables -A FORWARD -i br0 -o br0 -j ACCEPT

$ sudo ip route add 192.168.2.1/32 dev br0

$ sudo ip route add 172.30.0.0/16 via 192.168.2.1

These commands enabled bidirectional tra�c between the tra�c generator and
the 5G gateway, unaware of the presence of the bridge. Deploying the L2 bridge
between the tra�c generator and the gateway introduces a potential performance
bottleneck. This could be mitigated by connecting the tra�c generator directly to
the gateway and attaching a wiretap to the link that connects to the measurement
machine. However, this was not feasible due to a lack of project resources.

The 5G gateway this machine is connected to is a Teltonika RUTX50. The
testbed setup used during the development of the benchmarking tool included a
physical separation of the measurement machine and the gateway. The motivation
was to keep the benchmarking tool decoupled from the connection to the NUT.
Ensuring that the tool is agnostic of access technology, whether wired or wireless,
becomes simpler by doing this.

Base Case Validation Architecture

A simplified model of the intended operating context of the benchmarking tool was
used for the validation of the base case. This architecture is illustrated in Figure 5.2.
Its purpose is to be able to validate the performance of the benchmarking tool itself,
void of stochasticity that arises from the external radio network. All measurements
performed on this architecture will show the performance of the benchmarking tool
itself, i.e., only measuring OWD between the ports of the measurement machine.
Some of the procedures performed during validation simplify the operating context
even further. When validating individual modules, we attempt to validate them in

5.1. VALIDATION 51

Figure 5.2: Testbed architecture used for some select validation questions for the
benchmarking tool.

isolation from the other modules so that errors do not propagate between modules
during validation.

5.1.2 E�ect Questions

E�ect questions are intended to investigate what e�ects are produced by the tool
in its operating context [12]. Firstly, the e�ect questions for the first two tra�c
generation alternatives are presented. Thirdly, the method for validating the Packet
Capturing submodule is described, followed by the description of the validation of
the Packet Matching submodule. Lastly, the e�ect question for the Packet Analyzer
module is described.

Tra�c Generation Alternative 1

For tra�c generation Alternative 1, we are interested in answering ”Does tra�c
generation Alternative 1 produce the prompted tra�c?”, which seeks to answer
whether the tra�c pattern that the tra�c generator produces adheres to the given
parameters. The question tests the predictability of its behavior and is important to
ensure both valid results of a single trial and consistent results across trials. This
e�ect question is answered by issuing commands to generate tra�c according to the
parameters specified in Table 5.2. The tra�c is then captured, and analyses are
performed to find the distribution of inter-arrival times and recorded durations of the
trials. This is intended to measure the accuracy and precision of the tra�c generator,
both in cases with high and low packet rates and with varying payload sizes.

Tra�c Generation Alternative 2

For tra�c generation Alternative 2, we are interested in answering ”Is tcpreplay able
to replay the tra�c accurately?”. To answer this question, we created a script that
generates a pcap where the packets have an IAT taken from a normal distribution
with a configurable mean µ and standard deviation ‡. This script generated three
capture files, and their respective µ and ‡ can be observed in Table 5.3. Then, we

52 5. EXPERIMENTS

Packet Rate Duration Payload Size
1 10pps 100s 16B
2 10pps 100s 426B
3 10pps 100s 1432B
4 5,000pps 50s 16B
5 5,000pps 50s 426B
6 5,000pps 50s 1432B
7 10,000pps 30s 16B
8 10,000pps 30s 426B
9 10,000pps 30s 1432B

Table 5.2: Combinations of packet rates, durations, and payload sizes for validating
tra�c generator Alternative 1.

used tcpreplay to replay the capture file while we performed capturing with tshark
on the same interface. Finally, we compared the original capture files with those
replayed with tcpreplay.

µ ‡

1 0.01s 0.0015s
2 0.0005s 0.0001s
3 0.0001s 0.00001s

Table 5.3: The µ and ‡ values used in for generating the files for validation of
tcpreplay

Packet Capturer Submodule

The e�ect question to be answered for the Packet Capturer submodule is ”Does the
Packet Capturer submodule capture as many packets as expected?”. This question
determines if the submodule captures all the relevant o�ered tra�c. Determining
this is important because if it captures less than what is expected, the tool produces
artificial packet loss.

To answer this question, we generated a pcap with a known number of packets
that we replayed while the Packet Capturer submodule was capturing. The pcap
was generated by having our tra�c generation module generate 60,000 custom UDP
packets over one minute while we used tshark to capture this tra�c.

We performed three replays and captures to validate the submodule. First, we
began by using it to capture on the interface enp3s0 with a filter that will be used
on this interface. This should result in a pcap with 60,000 of our custom packets.

5.1. VALIDATION 53

Second, we used it on the interface enp1s0f1 with a filter that will be used on this
interface. In this case, it should result in a pcap with 60,000 of our custom packets
encapsulated in GTP. Finally, we performed capturing on both interfaces with the
associated filter for each interface. Each of our packets should then be captured once
at each interface, resulting in a pcap with 120,000 of our packets.

Packet Matching Submodule

For the Packet Matching submodule, we pose two e�ect questions. Firstly, we are
interested in finding out ”Does the Packet Matching submodule match the expected
number of packets?”. This question seeks to determine if the submodule performs
the expected number of matches for a given pcap where the number of matches is
known for both UDP and TCP tra�c. The second e�ect question is ”Is a sliding
window size of 20,000 adequate to not add artificial packet loss for 30,000PPS?”.
This question seeks to validate that a size of 20,000 is adequate for at least up to
30,000PPS. We have a sliding window size for a given packet rate that we know is
adequate.

To answer the first question for UDP tra�c, we made two pcaps and used them
to test the number of matches. The first pcap is the one created in the subsection
for Packet Capturing. For this pcap, the number of matches should be 60,000. The
second pcap was used to verify that it identifies packets without a match. This pcap
is the same as the first pcap, but we removed ten packets that are not related to
each other using editpcap.

To answer the first question for TCP tra�c, we followed the same methodology
as for UDP tra�c. We started by creating two pcaps and checking the number of
matches that occurred when running them through the Packet Matching submodule.
The first pcap was created by capturing the tra�c generated from a simple TCP
client sending packets to a simple TCP server on our network. The second pcap was
created by removing ten unrelated packets from the first pcap.

To answer the second question, we generated a pcap file with a known number of
matches. The pcap file was generated using Alternative 1 from the tra�c generator
with PPS set to 30,000. Then, the Packet Matching submodule was run on the pcap
with varying sliding window sizes, going up in increments of 250 from 250 until no
artificial packet loss was introduced.

Analysis Module

The e�ect question for the analysis module is ”Does the Packet Analyzer provide the
expected analysis of input data with known KPIs?” which seeks to find out whether
the values of the KPIs that are calculated correspond to those of the input data.

54 5. EXPERIMENTS

Inter-arrival
time E[OWD] Std(OWD) Packet loss

probability Throughput

1 1ms 12ms 5ms 1% 459,360bps
2 1ms 32ms 7.5ms 5% 440,800bps
3 1ms 20ms 10ms 20% 371,200bps
4 1ms 12ms 0ms 0% 464,000bps
5 1ms 32ms 0ms 0% 464,000bps

Table 5.4: Parameters used for generating input to the analysis module during
validation of the analysis module.

To validate this in isolation, we manually generate the input data to the analysis
module. This way, we can verify the IAT of packets, the distribution of the OWD,
the packet loss, and the throughput. We define five combinations of parameters,
specified in Table 5.4. The first three include stochasticity in the OWD and packet
loss probability. The throughput is not configured explicitly but calculated using
Equation 5.1. In total, 1,000,000 rows of input data are generated per definition in
the table. Data generation for this validation uses the random module of the numpy

v1.26.3 Python library. The generated data is then provided as input to the analysis
module, the output of which is analyzed and compared against the values in Table
5.4.

Throughput = Packet_size·8·Packets_per_second·(1≠Packet_loss_probability)
(5.1)

5.1.3 Sensitivity Questions

Sensitivity questions validate how the created tool works in varying operating con-
ditions [12]. The Packet Capturer and Packet Analyzer modules are the ones that
have been identified to be a�ected by changing conditions. Therefore, these modules
will be given special attention in this section. Firstly, the sensitivity question for
packet loss is presented, followed by a similar question for network delay. Both of
these questions introduce changing conditions using NetEm [57]. In the following
sections, the sensitivity is tested by changing the payload size and the packet rate
of the generated tra�c. Table 5.5 summarizes the trials used to generate data for
answering the sensitivity questions. This section presents sensitivity questions for
packet loss, network delay, payload size, and packet rate in this order.

5.1. VALIDATION 55

Packet Loss Sensitivity

Packet loss can potentially impact the results and performance of the Packet Match-
ing submodule. Therefore, we are interested in answering ”What happens to the
performance and results of the Packet Matcher and Packet Analyzer modules when
packet loss increases?”. We used NetEm to introduce packet loss to the network to
answer this question. The three trials specified in Table 5.5 are used for each packet
loss value. We tested for 2% and 15% packet loss. In many cases, this high packet
loss is unrealistic, but it still indicates how the benchmarking tool performs under
these conditions.

We analyzed the results and performance of the Packet Matching submodule and
the Packet Analyzer module. We expected the number of packets without a match
to exceed the configured packet loss because of the sliding window containing packets
that will not be matched.

Even though NetEm performs stateless dropping of packets based on a given
probability, which is unrealistic in real scenarios, we argue that the validation results
are still relevant. This validation aims to show how the packet matching submodule
and packet analyzer behave under varying conditions, which is illustrated despite
the conditions being unrealistic.

Network Delay Sensitivity

The delay between measurement points in the benchmarking tool can potentially
impact the results and the performance of the Packet Matching submodule. Therefore,
we ask ”What happens to the results of the Packet Matcher module when the network
delay increases?”. To answer this question, we use NetEm to introduce delay on
interface enp3s0 on the measurement machine. We subsequently execute trials with
the parameters shown in Table 5.5. We tested each trial for three network delays:
5ms, 50ms, and 100ms. We believe these values capture a broad range of delay
values that the tool should be able to handle.

After the trials were finished, we analyzed the results and performance of the

Trial Packets per
second Duration

1 5pps 7,200s
2 1,000pps 600s
3 10,000pps 60s

Table 5.5: Specifications of trials for testing configurations under sensitivity ques-
tions.

56 5. EXPERIMENTS

Packet Matching submodule. The sliding window in the packet matching submodule
can be a�ected the greatest by an increased delay, which can impact the number of
packets matched and the processing time of the submodule. Intuitively, the number
of matched packets should decrease as the delay increases because the sliding window
fills with packets observed at the first measurement point, and the capture file is
read sequentially. Moreover, we expect that the sliding window is, on average, fuller,
leading to an adverse e�ect on the processing time. To trigger this happening, we
reduced the size of the sliding window such that no packets from the second capture
interface are examined before the sliding window is full. The size of the sliding
window was 510, just above 10, 000PPS · 50ms = 500P , which makes it likely that
some packets will be ejected before the match is read from the pcap.

A study from 2011 found that the accuracy of NetEm declined for configured delays
below 50ms, with errors around 0.5ms [58]. Moreover, the author of NetEm states
that the accuracy of the kernel timer limits the accuracy [59]. Despite this potential
inaccuracy, we believe that using NetEm still provides interesting information when
analyzing the performance trends when the delay values are increasing.

Payload Size Sensitivity

The Packet Matching submodule must be able to handle tra�c with varying payload
sizes. We ask, "How does the Packet Matching submodule perform when the payload
size increases?". The procedure for answering this question is the same as for packet
loss and network delay sensitivity. The same trials from Table 5.5 are used, with
configured payload sizes of 16B, 426B, and 1432B. The latter values were chosen to
achieve 512B and 1518B consecutively when they become GTP-encapsulated. Based
on our observations, this is close to the Maximum Transmission Unit.

When the payload size increases, we expect the processing time of the Packet
Matching submodule to grow as well. This is because it has to read and parse a
larger file.

Packet Rate Sensitivity in L2 Bridge

For the packets to reach the NUT, they must traverse the L2 bridge. Thus, knowing
the behavior of the network bridge under high loads provides insights into the
scalability of the hardware setup of the benchmarking framework. We pose the
question, "How do changes in packet rates a�ect the L2 bridge?".

To answer this question, we generated tra�c with our Tra�c Generator using
Alternative 1 and performed capturing at both the ingress and egress ports of the
bridge. We subsequently compared the number of captured packets at each interface
to see whether any packets were dropped. This was done three times for all the values

5.2. CASE STUDY 57

between 5,000PPS and 30,000PPS in increments of 5,000. We chose this interval
because this would validate that the bridge could handle the tra�c used for our case
study.

Furthermore, to observe if the packet sizes impacted the performance of the L2
bridge we used di�erent payload sizes. First, we used a payload of 16B to represent
smaller packets. Then, we used a payload 426B to represent medium-sized packets.
Finally, we used a payload of 1432B to represent large packets.

5.2 Case Study

This section describes the case study performed during the second iteration of the
feedback-loop in Figure 1.1. The case study consisted of using the benchmarking
framework on two di�erent private 5G networks, and comparing their results. Section
5.2.1 describes the methodology used, while Section 5.2.2 describes the architectures
of the networks.

The purpose was to provide more data that could be used to answer RQ2, RQ3,
and RQ4. Firstly, using the framework on multiple networks would provide more
practical insights into the requirements for integration with the NUT. Secondly,
choosing trial parameters that were representative of industry 4.0 use cases would
allow some verification of the degree to which the framework could support such use
cases. Finally, by benchmarking multiple networks and comparing the results we
could understand how the framework could be used for comparison of networks.

5.2.1 Method for Performing Case Studies

For each network, we performed trials with varying parameters as shown in Table
5.6. The trial parameters were chosen specifically to mimic certain Industry 4.0
tra�c scenarios. Trial 1 resembles a single sensor sending continuous updates over a
long period. The results from this trial emphasize how the networks perform under
a low load over a longer period. The duration of the trial was originally intended
to be significantly longer, but due to connection stability issues in the open-source
network, it was shortened. Trial 2 resembles a scenario with higher bandwidth, such
as transferring live surveillance camera feeds. The last trial can resemble a scenario
where a few devices flood the network with packets. All three trials represent but
do not map directly to a use case from [33]. The first trial represents condition
monitoring (safety), while the second represents motion control. Finally, the third
trial represents AR/VR. The trial parameters do not map directly to the use cases
because we wanted to consider other aspects as well, such as very low throughput in
trial 1.

58 5. EXPERIMENTS

Trial Packets per
second Duration Payload size

1 5pps 1,800s 16B
2 1,000pps 600s 1200B
3 30,000pps 60s 16B

Table 5.6: Specifications of trials for performing the case study.

To generate the tra�c for all three trials we used the Tra�c Generation Alternative
1 because of its ease of use as well as a lack of suitable pcaps.

Each trial was repeated five times to reduce the impact of transient performance
factors.

It should be noted that the B5G Lab at NTNU is a testbed for several concurrent
research projects. Consequently, we could not perform trials in isolation from external
tra�c. Therefore, the produced results from this network reflect how it behaves
when it is in active use by other entities. However, by repeating the trials five times,
the e�ects of this factor are reduced. On the other hand, the Open-source network
was configured specifically for our trials, and we could execute the trials without any
interfering tra�c.

5.2.2 Architectures Used for Case Studies

This section describes the architecture and components of the networks where the
case study was performed. First, the architecture for the Open-source network at
NTNU is presented. Following this, the B5G Lab network at NTNU is described.
Both architectures resemble the testbed architecture in [20].

Network Internals at NTNU 5G Open-Source Network

For the first case study, we executed trials on a 5G network consisting of open-source
components. The architecture of this network is depicted in Figure 5.3. The network
consists of a RRH, a BBU, and a 5GC. The RRH and BBU are co-located on the same
physical machine, which is a Dell OptiPlex 7040 operated by Ubuntu 18.04.6 LTS
x86_64 with an Intel i7-6700 CPU. The RRH and BBU are controlled by software
from the OpenAirInterface repository. The code was pulled from the repository on
commit 56c4a6ec07

1. It operates in frequency band n78. The 5GC runs on a Dell
Precision 3630 Tower operated by Ubuntu 22.04.4 LTS x86_64 with an Intel i7-8700
CPU. It uses open-source core software from Open5GS v2.7.1 2.

1
https://gitlab.eurecom.fr/oai/openairinterface5g/-/commit/56c4a6ec07e2093351112314beeda3228beb66f1

2
https://github.com/open5gs/open5gs/releases/tag/v2.7.1

5.2. CASE STUDY 59

Figure 5.3: Diagram illustrating network internals and direction of tra�c from the
benchmarking tool to 5G-connected Raspberry Pi in the open-source network.

The direction of the tra�c is also illustrated in Figure 5.3. The green lines
illustrate uplink tra�c before it has been processed by the UPF in the 5GC, and
the red lines illustrate uplink tra�c after it has been processed by the UPF. It is
especially worth noting what tra�c passes through the wiretaps. The green line of
the wiretap is connected to interface enp1s0f0 of the measurement machine, while
the red line is connected to enp1s0f1.

The wiretap is connected to the link between the BBU and the 5GC. This enables
capturing tra�c after it has been processed by the 5GC. The tra�c destination
in this setup is a Raspberry Pi connected to the same RRH as the benchmarking
framework.

Network Internals at NTNU B5G Lab

The network in the B5G Lab at NTNU is illustrated in Figure 5.4. The network
consists of two pico RRHs, a single BBU, a 5GC, as well as a gateway towards the
Internet. All of the 5G infrastructure is delivered by Nokia. The RRHs are Nokia
5G AirScale Indoor Radios, the BBU is a Nokia 5G Airscale System Module, the
switch is a Nokia 7520 IXR-e Interconnect Router, and the 5GC runs Nokia software
on an HPE EL1000.

The figure also illustrates the direction that the tra�c traverses in the network.
The color scheme is the same as for the figure for the Open-source network.

The endpoint of the tra�c in Figure 5.4 is a Raspberry Pi with a 5G-module,
which is reachable through a second RRH. The choice of endpoint for the trials was
arbitrary. The only criterion was that the tra�c traversed the given BBU that the

60 5. EXPERIMENTS

Figure 5.4: Diagram illustrating the network internals and direction of tra�c from
the benchmarking tool to the 5G-connected Raspberry Pi in the B5G Lab.

wiretaps were connected to in both directions. The placement of the wiretap is the
same as for the Open-source network. This helps ensure that the results from the
two architectures are as comparable as possible. Since the destination used for our
tra�c is not the tra�c generator, the calculated one-way KPIs is an approximation
as in [20].

Chapter6Results

This chapter presents the results of the trials outlined in Chapter 5. These results will
be used to evaluate the performance of the benchmarking framework as illustrated
in Figure 1.1, both from the validation and the case study. Section 6.1 presents the
results from the validation of the benchmarking tool. Sections 6.3, and 6.2 present
the results from the case studies. Lastly, Section 6.4 presents the comparison of the
case studies.

6.1 Validation Results

This section presents the results from performing the validation as described in
Section 5.1. First, the results of the e�ect questions are presented in Section 6.1.1,
followed by a presentation of the results of the sensitivity question in 6.1.2.

6.1.1 Results of E�ect Questions

The results of the e�ect questions are presented in the same order they were presented
in Chapter 5. The two Tra�c Generator alternatives are presented first, followed by
the Packet Capturer, the Packet Matching and the Packet Analyzer.

Tra�c Generation Alternative 1

The e�ect question for tra�c generation Alternative 1 is "Does tra�c generation
Alternative 1 produce the prompted tra�c?".

The results from running the trials specified in Table 5.2 are displayed in Table
6.1. As the table shows, the standard deviations of the IATs are consistently large
for the trials with high packet rates on rows 4 through 9. The IAT oscillates between
a low and a high value, as illustrated in Figure 6.1.

Figure 6.2 shows the ECDFs of IAT for varying payload sizes and packet rates.
For 10PPS, the ECDF is more or less symmetric around the mean IAT, and there is

61

62 6. RESULTS

Duration E[IAT] Std(IAT)
1 100.127s 100.127ms 0.033ms
2 100.028s 100.128ms 0.009ms
3 100.028s 100.128ms 0.009ms
4 50.063s 0.200ms 0.399ms
5 50.063s 0.200ms 0.393ms
6 50.063s 0.200ms 0.377ms
7 30.038s 0.100ms 0.298ms
8 30.037s 0.100ms 0.289ms
9 30.037s 0.100ms 0.264ms

Table 6.1: Results of running Tra�c Generator Alternative 1 with the trials specified
in Table 5.2.

Figure 6.1: Time series plot of IATs for CBR of 10,000 packets per second.

Figure 6.2: ECDFs for all packet rates, for payload sizes 16B, 426B and 1432B.

6.1. VALIDATION RESULTS 63

little to separate the di�erent payload sizes. The ECDFs for 5,000PPS and 10,000PPS
in Figure 6.2 shows that around 80% and 90% of the packets, respectively, arrive with
an IAT close to 0ms. Moreover, the graphs display observable di�erences between
the payload sizes.

The oscillation in Figure 6.1 and ECDFs in Figure 6.2 suggest that TRex utilizes
batching for packet transmission. Further investigation of packet inter-arrival times
from TRex supports this claim. It appears to perform batching when the inter-
transmission time is less than 1ms. The expected inter-transmission time resembles
Equation 6.1, with a representing the expected batch size calculated using Equation
6.2, and b is the packet transmission time. The packet transmission time seemingly
scales proportionally with the packet size. This is natural with what could be
expected from a DPDK-based tra�c generation tool [60], [61]. Batching increases
the performance but reduces the precision of the generated CBR tra�c. An increase
in a results in more packets being transmitted in a burst in each batch. We expect
this to result in a decrease in the standard deviation of inter-arrival times. The
standard deviations of the inter-arrival times in Table 6.1 demonstrate this e�ect
between 5,000PPS and 10,000PPS.

E[IAT] = (a ≠ 1) · b + (10≠3
s ≠ b)

a
(6.1)

a = ÂPPS

103 Ê + 1
(PPS mod 103) · 10 (6.2)

The measured duration in Table 6.1 is consistently between 25ms and 130ms

longer than the configured duration, and the average IAT of packets is often greater
than expected. This indicates a skew in the IAT of packets. However, because the
durations and average inter-arrival times never exceed their configured values by
more than 0.2%, this e�ect is not considered detrimental to the e�ect of the Tra�c
Generator.

Based on the results in Table 6.1, while tra�c generation Alternative 1 meets
the expected IAT on average per millisecond, it potentially compromises TGNFR1
when the packet rate exceeds 1,000PPS due to packet batching. This makes it
unsuitable for scenarios with stringent requirements for stable IATs. TRex evidently
does not enable a batch size of 1, which would improve the precision of its CBR
tra�c. MoonGen, on the other hand, does [35]; hence, using MoonGen could have
alleviated this problem. However, if the requirements for inter-transmission times do
not necessitate stability on a scale of less than 1ms, tra�c generation Alternative 1
complies with both TGFR1, TGFR2, TGFR3, and TGNFR1.

64 6. RESULTS

Tra�c Generation Alternative 2

The e�ect question for Tra�c Generation Alternative 2 is, "Is tcpreplay able to
accurately replay the tra�c?". Table 6.2 shows the results when comparing the
generated capture files with the replayed ones. It shows the di�erence in the duration
of the tra�c stream, the di�erence in the total amount of packets, and the di�erence
in the distributions.

µ ‡
Di�erence
in duration

Di�erence in
packet amount

Di�erence
in µ

Di�erence
in ‡

0.01s 0.0015s 47µs 0 4.7ns 8.4ns
0.0005s 0.0001s 30µs 0 2.9ns 8.3ns
0.0001s 0.00001s 17µs 0 1.7ns 7.2ns

Table 6.2: Comparison of the generated pcaps with the replayed pcaps for Tra�c
Generation Alternative 2.

It can be observed that the di�erence between the generated pcap and the replayed
one is almost indistinguishable with regard to duration and the distribution of the
tra�c. Based on this, we conclude that tcpreplay is adequate for our purposes.
Thus, as long the generated or provided capture file is correct, the benchmarking
tool is able to fulfill TGFR1 with Tra�c Generation Alternative 2.

Utilizing a negative exponential distribution for the inter-transmission time when
generating the capture file could have been more representative of the real world.
However, we assume there is little di�erence regarding tcpreplay, whether the
inter-transmission time between packets follows a normal or negative exponential
distribution. Thus, we would argue that this still provides adequate validation for
TGFR1 with Tra�c Generation Alternative 2.

Packet Capturer Results

The e�ect question for the Packet Capturer submodule is ”Does the Packet Capturer
submodule capture as many packets as expected?”. Table 6.3 shows the numbers of
captured packets for each replay.

Interface enp3s0 enp1s0f1 enp3s0 and enp1s0f1

UDP packets
captured 60,000 60,000 120,000

Table 6.3: The number of packets captured by the Packet Capturer submodule
when replaying the pcap with 60,000 packets.

As shown in Table 6.3, all the o�ered tra�c has been captured. We did not
validate for higher packet rates than 30,000, as this is higher than anything we

6.1. VALIDATION RESULTS 65

intended to use in our case study. Furthermore, the number of captured packets was
as expected for each interface. This validates that the filters work as intended and,
consequently, do not filter out relevant tra�c for the given trials.

Packet Matcher Results

The first e�ect question for the Packet Matching submodule is ”Does the Packet
Matching submodule match the expected number of packets?”.

The number of matched packets for the Packet Matching submodule can be seen
in Table 6.4. The Packet Matching submodule matches the expected number of
packets for UDP and TCP tra�c.

Transport
protocol

All 60,000
packets

Removed 10
packets

UDP 60,000 59,990
TCP 60,000 59,990

Table 6.4: The number of matches made during the validation of the Packet
Matching submodule for UDP- and TCP-based tra�c.

The second e�ect question is, ”Is a sliding window size of 20,000 adequate to not
add artificial packet loss for 30,000PPS?”. Table 6.5 shows the percentage of packet
loss for the varying sizes of the sliding window. After increasing the sliding window
size to 2,750, there was no artificial packet loss introduced, and therefore no higher
sizes are shown for the sliding window. To verify that the remaining packet loss was
not artificial a sliding window size of 100,000 was used once. This gave the same
number of matches as a sliding window of 2750.

This shows that the sliding window has the ability to produce artificial packet
loss if it is too small. For the duration of the tra�c generation, the mean OWD lay
between 11.5ms to 16ms. Based on this, it appears that a sliding window size of
20,000 is adequate with a large margin for a packet rate of 30,000PPS and a OWD
in the range of 11.5 to 16ms.

Packet Analyzer Results

The e�ect question for the Packet Analyzer is ”Does the Packet Analyzer provide
the expected analysis of input data with known KPIs?”.

The results for each of the dataframes are displayed in Table 6.6. All floating
point results have been rounded to a precision of 3 decimal digits. The IATs are more
or less exactly as configured. The standard deviations of the OWD deviate from the
configured standard deviations from the normal distribution they are sampled from.

66 6. RESULTS

Sliding Window Size Packet Loss (%)
250 99.34%
500 93.43%
750 88.09%

1,000 66.46%
1,250 58.08%
1,500 4.31%
1,750 3.94%
2,000 0.39%
2,250 0.39%
2,500 0.39%
2,750 0.13%

Table 6.5: The percentage of packet loss for di�erent sliding window sizes.

Inter-arrival
time E[OWD] Std(OWD) Packet loss Throughput

1 1ms 12.118ms 4.858ms 0.982% 459,449bps
2 1ms 31.992ms 7.501ms 4.993% 440,803bps
3 1ms 20.552ms 9.417ms 20.003% 371,187bps
4 1ms 12.0ms 0.0ms 0% 464,000bps
5 1ms 32.0ms 0.0ms 0% 464,000bps

Table 6.6: Results of running the analysis module with the generated data from
Table 5.4.

The same goes for the packet loss probabilities. The throughputs are also consistently
a little bit greater than expected for the parameters with stochasticity. On the other
hand, the parameters without stochasticity exactly match their configured values.

In the first and third rows, the expected OWD is slightly higher than their
targets, and the standard deviation is slightly lower than their targets. Upon further
inspection, this is due to the standard deviations producing several negative OWDs,
as seen in Figure 6.3, which are filtered out when calculating the KPIs. This skews
the mean of the resulting distribution, leading to a higher mean and lower standard
deviation. We do not see the same e�ect for the second row because the distribution
rarely produces negative values. Moreover, for the rows without stochasticity, the
average OWD is the same as its target. Based on this, we conclude that the Packet
Analyzer module satisfies PAFR1 (calculating the pre-defined set of per-packet
KPIs).

6.1. VALIDATION RESULTS 67

Figure 6.3: Illustration of skewed mean of normal distribution with µ = 20ms and
‡ = 10ms when negative values are filtered out.

The packet loss in Table 6.6 is more or less exactly as expected. Moreover,
because the throughput is a product of packets per second, packet size, and packet
loss probability, and the packet loss probability is the only stochastic variable in
the product, we should expect that the throughput and packet loss are negatively
correlated. The results in Table 6.6 support this, which, in conjunction with the
seemingly correct calculation of packet loss, indicates that the Packet Analyzer
module fulfills PAFR2 (calculating aggregate KPIs).

6.1.2 Results of Sensitivity Questions

The results of the sensitivity questions are presented in the same order the questions
were presented in Section 5.1.3. We start with presenting the results for the packet
loss sensitivity, followed by the network delay sensitivity and payload size sensitivity.
Lastly, the results for the packet rate sensitivity are presented.

Packet Loss Sensitivity

For packet loss, the sensitivity question is ”What happens to the performance and
results of the Packet Matcher and Packet Analyzer modules when the packet loss
increases?”. Our hypotheses for this question are (1) the calculated packet loss
will exceed the configured packet loss due to how the sliding window in the Packet
Matcher works, and (2) the performance of the Packet Matcher degrades when the
packet loss increases.

In Figure 6.4, we observe that the calculated packet loss for all trials with 2%
configured packet loss slightly exceeds 2% except for the last trial, but is exactly

68 6. RESULTS

Figure 6.4: Packet loss for all trials in the validation of packet loss sensitivity
compared to the base case.

0% when no loss is configured with NetEm. For 15% configured loss, the calculated
packet loss lies roughly around 15%. This indicates that the calculated packet loss,
in fact, is not consistently higher than the packet loss configured in NetEm for the
second and third trials. On the one hand, the deviation between configured and
calculated packet loss might be due to how the stateless packet dropping in NetEm
works. This is corroborated by the fact that the calculated packet loss for the first
trial exceeds its target for 2% packet loss. The first trial only inserts around 18,000
packets into the sliding window, which is less than the window size of 20,000 packets.
On the other hand, the deviations in the second trial suggest that the sliding window
implementation tends to add artificial packet loss when actual packet loss is high,
which supports our first hypothesis. During the second and third trials, a total of 1.2
million packets are expected, corresponding to 24,000 and 180,000 packets without
a match for the configured packet losses, consecutively. Because of this the sliding
window is likely to be filled at some point, and eject packets that would have been
matched later. In this case, the initial ejected packet and the corresponding later
packet will be considered packets without a match. Thus, increasing the calculated
packet loss.

However, according to our first hypothesis, we expect the di�erence between
configured and calculated packet loss to increase as the configured packet loss
increases. The results do not indicate this. Moreover, the deviations from the
configured packet loss are small, which suggests that the di�erences in packet loss
are due to stochasticity in packet dropping by NetEm.

6.1. VALIDATION RESULTS 69

For the performance, Figure 6.5 displays the relationship between the trial, i.e.,
the total number of packets and packet rate in the facets, the packet loss percentage
on the x-axis, and the processing time in seconds on the y-axis. Subfigure 6.5a shows
the processing times for the Packet Matcher module, while Subfigure 6.5b shows the
processing times for the Packet Analyzer. The plot for the Packet Matcher for the
first trial, i.e., 5PPS, shows that the processing time increases substantially with the
packet loss percentage. This trend is not visible in the Packet Analyzer for this packet
rate. Moreover, for the second trial, i.e., 1,000PPS for 600 seconds, the di�erence in
processing time for the Packet Matcher is more apparent. For 15% packet loss, the
Packet Matcher used close to 120s to process the entire file, and roughly 50s for 2%
packet loss. The Packet Analyzer also took longer to process the packets with 15%
packet loss. For the third trial, i.e., 10,000PPS for 10 seconds, the Packet Matcher
used roughly the same amount of time as for the second trial. This is as expected
because the total number of packets is the same. The Packet Analyzer, on the other
hand, used less time than it did for 1,000PPS.

The performance data presented in Figure 6.5 supports our expectations from
the second hypothesis about the Packet Matcher. There is an obvious increase in
processing time for the Packet Matcher when the packet loss increases. Based on the
similarity between the Packet Matcher processing times for 1,000 and 10,000 packets
per second, it seems like the packet rate does not impact the processing times as
much as the packet loss and total number of packets does. This increase is likely due
to the limitations of the sliding window. Packet loss leads to a fuller sliding window,
increasing the number of packets searched when matching. We believe this leads to
increased processing time in the Packet Matcher.

The processing time of the Packet Analyzer also increases with the number of
packets. However, the processing time between trials 2 and 3 is not the same as with
the Packet Matcher. The duration of trial 2 is 600 seconds, while the duration of
trial 3 is 60 seconds. Some of the KPIs calculated by the Packet Analyzer aggregates
the packets into 1-second buckets. Therefore, for the second trial, this results in
540 more buckets, which we believe could cause an increased processing time, even
though the total number of packets is the same.

The results are inconclusive regarding the first hypothesis. The results from the
first trial suggest that the deviation is caused by stateless packet dropping in NetEm.
However, the deviations for the second and third trials support the hypothesis.
Finally, we would have expected artificial packet loss to be noticeably higher for 15%
packet loss than for 2% packet loss. Therefore, for this combination of sliding window
size, OWD, and packet loss, it is hard to either prove or disprove the hypothesis with
these results. The second hypothesis, on the other hand, seems to be correct for the
Packet Matcher. The trial processing times display a correlation with the packet loss

70 6. RESULTS

(a) Processing time of the Packet Matcher module for each configured trial with configured
packet loss between 0 and 15%.

(b) Processing time of the Packet Analyzer module for each configured trial with configured
packet loss between 0 and 15%.

Figure 6.5: Processing time of the Packet Matcher and Packet Analyzer modules
for varying levels of packet loss, for each trial.

and number of packets. Moreover, this also seems to hold for the processing time of
the Packet Analyzer. However, it appears also to be impacted by the duration of the
trial.

6.1. VALIDATION RESULTS 71

Network Delay Sensitivity

Regarding network delay sensitivity for the benchmarking tool, we were interested in
answering ”What happens to the results of the Packet Matcher module when the
network delay increases?”. We hypothesize that the calculated packet loss will, at
some point, increase beyond the actual packet loss due to how the sliding window in
the Packet Matcher works.

Figure 6.6 shows the calculated packet loss for the third trial and the network
delay configured with NetEm. The first and second trials have been omitted from the
figure due to not having any artificial packet loss. Before performing an analysis, we
verified that the data contained no non-artificial packet loss. For the third trial, which
transmits 10,000PPS, it is evident that the sliding window causes packet loss. In the
case of 50ms delay, 10, 000PPS · 0.05s = 500P arrived at the first capture interface
before any packet arrived at the second capture interface. Because the sliding window
could fit 520 packets, a significant amount of packets were likely ejected because the
sliding window was filled with packets from the first interface. The same argument
holds for the third trial with 100ms configured network delay. For 5ms configured
delay, on the other hand, 10, 000PPS · 0.005s = 50P arrived at the first interface
before any packet arrived at the second capture interface. Therefore, the sliding
window was far from full when matching packets were examined.

These results support our hypothesis. We expected packet loss to occur when
the product of the packet rate and the configured delay approached the sliding
window size, which was exactly what we saw. Thus, we can conclude that increased
network delay may cause the Packet Matcher module to introduce artificial packet
loss. Moreover, because an increased packet loss rate leads to an increased processing
time for the Packet Matcher module, an increased network delay might also increase
the processing time.

Payload Size Sensitivity

For the payload size sensitivity, we asked, ”How does the Packet Matching submodule
behave when the payload size increases?”. The implementation of this submodule
indicates that only the time to read the capture files into memory should be a�ected
by the increased payload size. After this, the packets are parsed into fixed-size
structs.

As can be seen in Figure 6.7, the processing time of the Packet Matcher module
appears to be impacted by the payload size for 5 and 1,000 packets per second.
However, for 10,000 packets per second, this is not so apparent. Because the total
number of packets read in the trials with 1,000 and 10,000 packets per second roughly
correspond to each other, we would expect the processing times to be equal. This

72 6. RESULTS

Figure 6.6: Packet loss for the third trial validating network delay sensitivity.

Figure 6.7: Performance of the Packet Matcher module for varying payload sizes
varying between 16B and 1432B.

6.1. VALIDATION RESULTS 73

is the case for 426B payload size but not for the other two, indicating that the
performance di�erence comes from di�erences in the captured pcaps. Due to time
limitations, we did not perform any further investigation into the cause of this
discrepancy. However, the data does not refute our claim that the payload size
negatively impacts the processing time, but the results for the third trial make it
more inconclusive. Nevertheless, the noticed impact of the payload size in processing
times indicates that the benchmarking tool can handle varying payload sizes without
su�ering a major performance penalty.

Packet Rate Sensitivity in L2 Bridge

We asked the following sensitivity question for the L2 bridge, ”How do changes in
packet rates a�ect the L2 bridge?”.

There was no di�erence between the number of packets captured at the ingress
and the egress of the L2 bridge for all three repetitions for payload sizes 16B and
426B. However, with a Payload size of 1432B, there were some instances when the
PPS exceeded 10,000 where there was a discrepancy between the number of captured
packets. There were cases of more and fewer packets being captured at the egress
than at the ingress port. The deviations were in the range ≠0.131% and 0.072%. For
packet rates higher than 10,000PPS, there was no apparent relationship between the
packet rate and deviations.

These deviations are either caused by the L2 bridge or tshark not being able to
handle these higher throughputs. The instances where the egress has fewer captured
packets can be explained by packet loss in the L2 bridge. However, the instances
where the egress captures more packets than the ingress are more challenging to
explain. It could be caused by the bridge sending duplicates or fragmenting packets
to fit the MTU, but upon inspection, there are no duplicates or fragmented packets
in the pcaps. Furthermore, it could be caused by the high load the machine is under
while simultaneously running two instances of tshark, as well as the L2 bridge for
throughputs above 117,76 Mbps. The current setup makes it di�cult to discern the
cause behind these deviations.

However, we would argue that these results indicate that the L2 bridge can
support our use cases. It is stable up to throughputs of approximately 117,76Mbps,
which exceeds all requirements for data rates of common Industry 4.0 use cases
presented in Table 2.1. The sensitivity analysis shows that the L2 bridge may
introduce inaccuracies in the tra�c o�ered to the NUT. However, for our purposes
this only happens for very high data rates, and the di�erences are very small, thus
unlikely to impact our trials.

74 6. RESULTS

Figure 6.8: OWD for all three trials in the Open-source network.

6.2 Case study NTNU Open-Source Lab Results

This section presents the results produced from the case study trials on the Open-
source network. First, the results for the OWD are presented, followed by the IPDV,
packet loss, and throughput. Finally, the performance in general is discussed.

6.2.1 OWD

Figure 6.8 shows an ECDF of the OWD for all three trials. The ECDF for each trial
is based on the average of five repetitions. In the first trial, nearly all packets have a
OWD between 5 and 15ms. For the second trial, the majority of the packets have
a OWD in the range 25 to 100ms. Finally, in the third trial, most packets have a
OWD in the range 1.1 to 1.5s. All the ECDFs increases close to linearly, indicating
an even distribution of OWDs in their respective ranges.

Based on this, we observe that the OWD appears to increase with the packet
rate used. Furthermore, as the packet rate reaches 30,000PPS in the third trial, the
network performance drastically decreases. This indicates that it cannot smoothly
handle a tra�c load of this magnitude.

Figure 6.9 shows how the OWD initially evolves for the second trial. As the
graph shows, the OWD spikes at nearly 1s for several of the repetitions. The first
trial with only 5 PPS did have this spike. This suggests that the initial resource
allocation for the 5G gateway is too low, resulting in increased initial OWD.

Moreover, the OWD for all repetitions in the third trial is shown in Figure 6.10.
This graph displays signs of queues building up somewhere in the network, eventually

6.2. CASE STUDY NTNU OPEN-SOURCE LAB RESULTS 75

Figure 6.9: OWD for all repetitions of the second trial in the Open-source network
with 1,000PPS, zoomed in on the first 50 seconds.

Figure 6.10: OWD for all repetitions of the third trial in the Open-source network
with 30,000PPS.

76 6. RESULTS

Figure 6.11: IPDV for all trials in the Open-source netowrk.

leading to packet loss, as indicated by the s-shapes. This is more prevalent for some
of the repetitions and seems to reduce in frequency and magnitude over time. The
pattern supports our claim that the network performance degrades significantly when
subjected to 30,000PPS.

6.2.2 IPDV

Figure 6.11 shows an ECDF plot of the IPDV for all three trials, each based on the
average of five repetitions. For the first trial, most of the packets have an IPDV
between 1 and 2.5ms. In the second trial, the majority of packets have an IPDV
in the range 1.1 and 1.5ms. Finally, in the third trial, most packets have an IPDV
range of 1 to 13ms. When comparing the trials, we observe that the first and the
second trials have roughly the same IPDV for their lowest 90%. However, the IPDV
of the first trial is notably higher in the final 10%. Furthermore, both the mean and
the variance of the third trial are significantly higher than the other trials. This
indicates an inability of the network to provide stable performance.

6.2.3 Packet Loss

Figure 6.12 shows a barplot of the packet loss for all trials based on the average of
all five repetitions. In the first trial, the average packet loss was just above 0. For
the second trial the average packet loss increased to 0.3%. In the third trial, the
packet loss increased all the way to 23.6%.

To ensure that the high packet loss is not due to an issue with the sliding window,
we increased the size of the sliding windows to 100,000 packets each. We still saw

6.2. CASE STUDY NTNU OPEN-SOURCE LAB RESULTS 77

Figure 6.12: Packet loss rate for all trials for the Open-source network.

Figure 6.13: Packet loss for all repetitions of the second trial in the Open-source
network with 1,000PPS.

the same level of packet loss even with a sliding window of this size, which makes it
likely that the packet loss, in fact, was due to the network performance.

Based on this, it appears that the network is not able to handle packet rates of
1,000PPS and above without introducing packet loss. However, as shown in Figure
6.13 showcasing the packet loss over time for all repetitions of the second trial, this
packet loss occurs only at the start. This can be seen in accordance with the initial
spike in OWD presented above. Thus, it appears the network can handle these packet
rates without introducing packet loss.

78 6. RESULTS

Figure 6.14: Packet loss for all repetitions of the third trial in the Open-source
network.

Finally, the high packet loss in the third trial shows how the network cannot
sustain a packet rate of 30,000PPS. Figure 6.14 shows how this evolves over time.
The spikes in the loss coincide with the s-shapes in the OWD in Figure 6.10. This
supports our earlier claim regarding the queues filling causing increased OWD and
packet loss.

6.2.4 Average Instantaneous Throughout

In Figure 6.15, we can observe the average instantaneous throughput for all the trials
based on the average of their respective repetitions. For the first trial, we expected it
to be stable at 2.32Kbps, which it was. In the second trial, the throughput based on
the o�ered tra�c was expected to be 9.93Mbps but was a bit lower, approximately
9.9Mbps. The deviation from the expected value is likely caused by the packet loss of
0.3%. In the third trial, the throughput based on the o�ered tra�c was expected to
be 13.92Mbps, but was approximately 10.7Mbps. This value is roughly as expected
based on the packet loss observed for this trial.

6.2.5 Performance

All the trials showed an initial packet loss in the first second. An analysis of the
capture files revealed that the packets were never captured at the second measurement
interface. If the e�ect had been produced by the benchmarking L2 bridge, the tra�c
would not have been captured at the first interface. Therefore, the problem is
likely either from the network or gateway. Moreover, all trials have a similar total
duration for which the packet loss happens, close to 400ms. An analysis of the initial

6.2. CASE STUDY NTNU OPEN-SOURCE LAB RESULTS 79

Figure 6.15: Average instantaneous throughput for all trials for the Open-source
network.

round-trip time using ping when the gateway had been idle for a while revealed that
the first round-trip time was close to 400ms. Therefore, we assume that what we
see is the e�ect of transitioning from an RRC Idle state to the Teltonika gateway
receiving a data bearer. Consequently, we believe the data bearer establishment
time roughly equals 400ms in the network. This process was described in Section
2.3 and should not take more than 10ms [27]. If our assumption is correct, this
packet loss can be attributed to how the Teltonika gateway handles the queuing of
packets while waiting for a bearer, for instance. On the other hand, the evidence
may also suggest that the NUT has not allocated su�cient resources, and responds
by dropping packets initially. However, because this also happens for the first trial
with 5PPS, this is not likely.

In both the second and the third trials the performance of the NUT is initially
unstable. This can be seen from the initial spike in OWD and packet loss in the
second trial, and the repetitive symptoms of congestion and packet loss in the third
trial. However, these symptoms seem to reduce in magnitude with time. For the
second trial, this happens rather quickly. However, for the third trial, this does not
seem to happen until after roughly 45s. Based on the data, this might be due to
inadequate initial resource allocation to the bearer. This indicates that the NUT is
in a transitional phase when starting the trials, before converging on a more stable
performance. The throughput for the second and third trial are roughly in the same
range. However, the packet rate is substantially higher for the third trial, which
seems to a�ect the performance the most.

The findings presented in this section suggest that the performance of the Open-

80 6. RESULTS

Figure 6.16: OWD for all three trials in the B5G Lab.

Source network degrades when the packet rate increases beyond 1,000PPS. This can
be seen in all the presented KPIs.

6.3 Case study NTNU B5G Lab Results

This section presents the results produced from the case study trials on the network
in the B5G Lab. First, the results for the OWD are presented, followed by the IPDV,
packet loss, and throughput. Finally, the performance of the network in the B5G
Lab in general is discussed.

6.3.1 OWD

Figure 6.16 shows an ECDF of the OWD for all three trials based on the average
of five repetitions. In the first trial, most of the packets have a OWD in the range
of 9.5 to 12.5ms. For the second trial, the majority have a OWD between 11 and
12.5ms. Finally, for the third trial, most are in the 11.5 to 16ms-range.

Figure 6.17 shows the ECDFs of the individual repetitions of the first trial. The
first repetition has a OWD that is consistently 2ms higher than the other. This
network was also subjected to experiments performed by others when we performed
the case study. Because of this, the total tra�c load on the network might have been
higher than expected by our single trial, which could have impacted the performance.
However, we do not have the necessary data to conclude this.

Based on the results in Figure 6.16, we can see that the OWD of the B5G network
is not heavily impacted by increasing the packet rate or the throughput to the values

6.3. CASE STUDY NTNU B5G LAB RESULTS 81

Figure 6.17: OWD for each repetition of the first trial in the B5G Lab network
with 5PPS.

Figure 6.18: IPDV for all three trials in the B5G Lab.

tested here.

6.3.2 IPDV

Figure 6.18 shows an ECDF plot of the IPDV for all three trials, each based on the
average of five repetitions. The majority of the packets in trial one have an IPDV in
the range 1.2 to 2.1ms. For the second trial, most packets have an IPDV between
1.62 and 1.7ms. Finally, in the third trial, most packets have an IPDV in the range
0.05 and 0.08ms.

82 6. RESULTS

Figure 6.19: Packet loss rate for all trials in the B5G Lab.

The ECDFs of the first and second trials are relatively similar. However, the
variance seems to decrease slightly in the second trial.

6.3.3 Packet Loss

Figure 6.19 shows a barplot of the packet loss for all trials based on the average
of all five repetitions. In the first trial, the average packet loss was approximately
zero. For the second trial, the average packet loss increased to 0.1%. While in the
third trial, it increased to 0.85%. The packet loss occurs exclusively within the first
seconds for the first and second trials. The same initial packet loss can be observed
in the third trial. However, it also contains some minor spikes in packet loss with no
apparent pattern, which can be seen in Figure 6.20.

We ensured that the observed packet loss was not due the sliding window by using
the same method described for the Open-source network. With sliding windows with
a size of 100,000 packets, we observed the same results. Therefore, it is likely that
the observed packet loss was introduced by the network, not by the sliding window.

Based on this, it appears that the B5G network experiences some degradation in
performance in terms of increased packet loss as the packet rate increases. However,
aside from the first second, there was practically no packet loss in the first and second
trials and very little in the third trial. Therefore, it appears that the network can
generally support these high packet rates without inducing substantial packet loss.

6.3. CASE STUDY NTNU B5G LAB RESULTS 83

Figure 6.20: Packet loss for all repetitions of the third trial in the B5G Lab.

6.3.4 Average Instantaneous Throughput

Figure 6.21 shows the average instantaneous throughput for all the trials based on
the average of their respective repetitions. The throughput of the first trial was
expected to be stable at 2.32Kbps, which it was. For the second trial, the throughput
was stably a bit lower than expected based on the o�ered tra�c. It was expected to
be 9.93Mbps but was a bit lower, approximately 9.9Mbps. We were not able to find
the source of this deviation. In the third trial, the throughput based on the o�ered
tra�c was expected to be 13.92Mbps, but was approximately 13.57Mbps. Further
inspection of the capture files revealed that the L2 bridge dropped, on average,
approximately 1,500 packets for each repetition of the third trial. Thus resulting in
the o�ered load being a tiny bit lower than the expected load and impacting the
throughput. This is surprising as it was not the case during the validation with 16B

payloads for 30,000PPS, or in the third trial at the Open-source network. However,
the impact on the trials was relatively small, so we do not consider this further.
Furthermore, the packet loss also impacts the throughput with some minor valleys
for the third trial.

6.3.5 Performance

Almost all repetitions for all trials exhibit packet loss during the first 400ms across
all repetitions. This resembles what we saw for the Open-source network, further
supporting the hypothesis that this is caused by the setup of a data bearer for the
5G gateway.

Figure 6.16 shows that the third trial in the B5G Lab has a noticeably higher

84 6. RESULTS

Figure 6.21: Average instantaneous throughput for all trials in the B5G Lab.

variance in the OWD. However, the IPDV in Figure 6.18 does not reflect this.
Evidently, because of the high packet rate, the IPDV remains low even when the
variance in the OWD is high because the successive di�erences in OWD are low.
However, the di�erences in OWD on a larger scale are significant. The way we
calculate IPDV does not consider the statistical mean; rather, it shows the di�erences
based on a rolling average of the last 16 OWDs and thus indicates the instantaneous
variability of the OWD. Therefore, the ECDFs of the OWD and the IPDV are not
contradictory.

The findings presented in this section suggest that the performance of the B5G
network can handle all the trials without experiencing substantial performance
degradation.

6.4 Comparison of Case Study Results

This section compares the results for the Open-source network and B5G Lab discussed
in the previous sections. Its structure is the same as the aforementioned sections.

6.4.1 OWD

Figure 6.22 shows the OWD for the average of all trial repetitions for both networks.
Due to the large di�erences in the OWD, we use a log scale on the x-axis. For the first
trial, the di�erences between the networks in the OWD are not that large. The B5G
network has a lower variance, while the Open-source network has a slightly lower
OWD for 60% of the packets. However, for the second and third trials, the Open-

6.4. COMPARISON OF CASE STUDY RESULTS 85

Figure 6.22: Comparison of OWD in both networks for each trial.

source network had substantially higher OWD for almost all packets. Furthermore,
the variation in the OWD is also higher in the Open-source network.

Based on this, it appears that the di�erence in performance is not that large for
lower packet rates. In fact, for the first trial, the Open-source network provided a
lower OWD for the majority of its packets than the B5G network did. However, the
B5G network can provide a far lower OWD than the Open-source network for packet
rates exceeding 1,000PPS. Furthermore, the OWD has a significantly lower variance
in the B5G network.

6.4.2 IPDV

Figure 6.23 shows the IPDV for the average of all the trial repetitions for both
networks. It shows that the IPDV for the first and second trials is relatively close for
both networks, with the Open-source generally having a lower IPDV. However, for
the third trial, the Open-source network has far greater IPDV than the B5G network.
This is shown clearly in 6.24, which shows the ECDFs of the IPDV of both networks
using a log-scale on the x-axis.

These figures showcase how the Open-source network generally provides a lower
IPDV for low data rates. However, for higher packet rates, as can be observed in
the third trial, the Open-source network has a significantly higher IPDV than the
B5G network. This indicates that the Open-source network does not provide a stable
performance, while the B5G network does for 30,000PPS.

86 6. RESULTS

Figure 6.23: Comparison of IPDV in both networks for each trial.

Figure 6.24: IPDV of both networks for the third trial.

6.4.3 Packet Loss

Figure 6.25 displays the average packet loss from all repetitions for each trial in both
networks. It shows that the di�erences between the networks in terms of packet loss
are not great for packet rates lower than 1,000PPS. There is a minor di�erence in the
packet loss for the second trial, with the B5G network having a slightly lower packet
loss. However, it is clear that for higher packet rates, as shown in the third trial,
there is a substantial di�erence between the networks. The B5G is barely a�ected
by the packet rate, while the Open-source network has large amounts of packet loss
each second. Observing Figures 6.20 and 6.14 also show the di�erences in the profile
of the packet loss. In the B5G Lab network, the packet loss is consistently 0% with

6.4. COMPARISON OF CASE STUDY RESULTS 87

Figure 6.25: Comparison of packet loss rate in both networks for each trial.

minor local peaks, whereas the packet loss in the Open-source network is consistently
high and varies greatly. Moreover, the average packet loss across the repetitions
decreases after roughly 30 seconds as it stabilizes.

6.4.4 Average Instantaneous Throughout

Figure 6.26 shows that both networks have the expected average instantaneous
throughput for the first trial. In the second trial both networks hovered around the
same throughput as well. However, in the third trial, the B5G network was stable at
around 2.87Mbps higher than the Open-source network. This is most likely due to
the di�erence in packet loss between the networks for this trial.

6.4.5 Performance

By comparing the KPIs between the networks, it is clear that the di�erence in
performance between them is not that large when the tra�c load is low. In fact,
for the very low packet rate used in the first trial, the Open-source network has a
slightly OWD and IPDV for most of the packets. However, for higher loads, the B5G
has a significantly better and more stable performance across all KPIs.

88 6. RESULTS

Figure 6.26: Comparison of average instantaneous throughput in both networks
for each trial.

Chapter7Discussion

This chapter discusses the results from Chapter 6 and relates this to the requirements
of the tool and the background from Chapter 2. It produces insights from the results
of the validation and case study, which is used in the next iterations of the feedback
loop in Figure 1.1. The results of the validation are discussed in Section 7.1. After
this, the results from the case study are discussed in Section 7.2. Lastly, Section 7.3
wraps up the chapter with a discussion relating to the research questions.

7.1 Discussion on the Validation

From the validation, we gained insights into weaknesses with the technical realization
of the benchmarking framework, such as the implementation of the sliding window
and the physical architecture of the benchmarking framework. Section 7.1.1 highlights
these and justifies whether they were handled before the next iteration of the feedback
loop. Section 7.1.2 discusses whether the functional and non-functional requirements
of the modules are satisfied.

7.1.1 Areas for Improvement

As highlighted in the validation of the Packet Matching submodule in Section 6.1.1,
and the packet loss and network delay sensitivity questions in Section 6.1.2, the
sliding window has several weaknesses. Because the sliding window inserts packets
from both the ingress and egress of the NUT into the same queue, many unnecessary
comparisons are performed. Moreover, the queue can become congested with packets
from a single interface if the delay through the NUT is high. As highlighted, this can
lead to a fuller queue and, in the worst case, ejection of packets that, in reality, have a
match, which leads to artificial packet loss. Increasing the size of the sliding window
would eliminate the issue of introducing artificial packet loss but would penalize
the performance. Therefore, we decided to re-implement the sliding window before
performing the case study. The improved implementation is described in Section
4.2.2.

89

90 7. DISCUSSION

Another weakness discovered during validation is within the L2 bridge. As
highlighted in Section 6.1.2, it may be unstable for higher throughputs. This does
not appear to be an issue for the trial parameters we have chosen for the case study,
as previously mentioned. Connecting the Tra�c Generation machine directly to the
gateway would alleviate this problem by bypassing the measurement machine. A
port mirror connected to the Measurement machine could then have been installed
on the Tra�c Generation machine to be able to capture this tra�c as illustrated in
Figure 4.3. However, because this was not considered utterly important and because
we did not have the resources necessary to accomplish this, we did not implement it.

Based on the insight gathered during the validation, we identified potential
for improvements in both the sliding window and the physical architecture of the
benchmarking framework. Because the L2 bridge appeared stable for our use cases,
we decided to only improve the Packet Matcher module.

7.1.2 Fulfillment of Requirements

After the validation was performed, we gained a foundation to evaluate if the
functional and non-functional requirements of the modules were fulfilled. The
Orchestrator and the Visualization modules are not described here as they rely on
existing solutions that already fulfill their requirements.

The Tra�c Generator module has three functional requirements; TGFR1 (gen-
erating tra�c adhering to real-world scenarios), TGFR2 (generating tra�c based
on parameters for PPS, duration, hosts, and packet size), and TGFR3 (customizing
packet fields). The satisfaction of TGFR1 and TGFFR3 are described in Section
4.1. Based on the results for the e�ect questions for Tra�c Generation Alternative 1
and 2, we argue that TGFR2 is fulfilled as well. The non-functional requirement
of the Tra�c Generator is TGNFR1 (sustaining stable packet transmission over a
prolonged period) not met on an intra ms scale for Tra�c Generation Alternative 1.
However, for larger scales, it is arguably satisfied. Based on the results from the e�ect
question for Tra�c Generation Alternative 2, the deviations from the original capture
file are very small. Thus, we argue that TGNFR1 is met by Tra�c Generation
Alternative 2. Since Tra�c Generation Alternative 3 is only a specification, the
fulfillment depends on the implementation.

The Packet Matcher module has five functional requirements; PMFR1 (capturing
packets on at least two interfaces), PMFR2 (filter packets), PMFR3 (match
packets), PMFR4 (store matched packets), and PMFR5 (provide updates at fixed
intervals during a trial). PMFR1 and PMFR2 are validated together with the e�ect
question for the Packet Capturer submodule. The results were as expected, and we
consider these fulfilled. PMFR3 and PMFR4 are tested with the e�ect questions
for the Packet Matching. These results were also as expected and the requirements

7.2. CASE STUDY COMPARISON 91

are considered satisfied. Finally, PMFR5 is not explicitly validated but has been
informally validated through usage of the tool. The non-functional requirement for
the Packet Matcher, PMNFR1 (process 1 million packets in less than 60 seconds),
was found to be satisfied when the packet loss was less than or equal to 2%, but
not at 15%, as discussed in Section 6.1.2. Therefore, we consider PMNFR1 to be
met with the first implementation of the sliding window under some conditions. The
second implementation of the sliding window introduced performance gain, but we
have not validated its processing time.

The Packet Analyzer module has three functional requirements; PAFR1 (calcu-
late pre-defined per-packet KPIs), PAFR2 (calculate pre-defined aggregate KPIs),
and PAFR3 (write the results to persistent storage). PAFR1 and PAFR2 were
both validated in the e�ect question for the Packet Analyzer, and the results found
that both requirements were met. Furthermore, PAFR3 was informally validated
as the results for the e�ect questions were fetched from the persistent storage. The
non-functional requirement, PANFR1 (process 1 million packets in less than 60
seconds), is validated.

Since we have now concluded all the module-level requirements, we can conclude
the tool-level requirements as well. TFR1 (generating tra�c that emulates real-
world scenarios) is fulfilled through the Tra�c Generator module. TFR2 (capturing
network tra�c) is fulfilled through the Packet Matcher module. TFR3 (calculate
pre-defined KPIs based on network tra�c) is fulfilled through the Packet Matcher and
the Packet Analyzer. TFR4 (visualize the results of a trial) is satisfied through the
Visualization module. TFR5 (providing the possibility for custom analysis) is fulfilled
by making output files of the Packet Matcher and Packet Analyzer accessible. TFR6
(executing trials automatically) is satisfied by the Orchestrator module. Finally, the
Packet Matcher and the Visualization modules fulfill TFR7 (displaying the status
of the executing trial).

7.2 Case Study Comparison

This section discusses the case study comparison, starting with a discussion about
the configuration of the trials, followed by a discussion about what the results of the
case study mean in the context of the Industry 4.0 use cases it tests. Finally, the
insights we gained from the case study are discussed.

7.2.1 Setup of Trials

Before discussing the comparison of the networks, we will comment on the methodol-
ogy used.

92 7. DISCUSSION

We initially intended to perform more trials, but the setup at the Open-source
network was unstable. The gNB tended to crash, and the connection between the
Software Defined Radio (SDR) and the 5G gateway often broke. Because of this,
several trials had to be re-run. To reduce the impact of this burden, we limited the
case study to three trials. Furthermore, we reduced the duration of the longest trial
from 2 hours to 30 minutes.

Based on the results of our case studies, we should have increased the duration of
the third trial to at least 3 minutes. This increase could potentially have made it
clearer if some of the observations were caused by transient factors. On the other
hand, storage capacity was a limitation, and we wanted to balance the capture size
files with the length of our trials.

To reduce the impact of performance variations, we performed five repetitions of
each trial in each network. We then used averages of the five repetitions. This was
beneficial as some of the repetitions produced quite di�erent results from the others.

Finally, the network in the B5G Lab was subject to multiple concurrent exper-
iments from other parties. Consequently, we could not verify the present network
load caused by others, potentially increasing the stochasticity of the performance.
Thus, the results produced on this network potentially represent a lower performance
bound.

7.2.2 Comparison of Case Study Results

The results of the case study in the previous chapter highlight the di�erent perfor-
mance factors of the tested networks. However, it is unclear to what extent the
networks satisfy the Industry 4.0 use cases that the trials represent.

Table 7.1 summarizes the share of packets with a OWD lower than or equal
to the given threshold in trial one for each network. Lost packets are assumed to
have an infinite OWD. We consider reliability as the percentage of packets having a
OWD within a given threshold. This trial represents the condition monitoring for
safety applications from Table 2.1 from [33]. A reliability of 99.9% and an OWD
between 5ms and 10ms is required for this use case. As the table shows, neither of
the networks satisfy these requirements. 99.9% of the packets in the Open-source
network has a OWD less than or equal to 35ms. On the other hand, the network in
the B5G Lab delivers 99.9% of packets within 15ms. This shows that the B5G lab
network can almost meet the requirements of the use case, while the Open-source
network is a way o�.

The second trial represents the motion control use case from Table 2.1 from [33].
This use case requires a reliability of 99.9999% and OWD between 0.5ms and 2ms.

7.2. CASE STUDY COMPARISON 93

Network Threshold 50% 80% 90% 95% 99% 99.9%

OS

5ms
10ms
15ms
25ms
35ms

B5G
5ms
10ms
15ms

Table 7.1: Threshold compliance of OWD for the Open-source and B5G Lab
networks in the first trial.

Table 7.2 shows the extent to which the networks comply with the requirements of the
use case. It is evident that neither of the networks provides the required performance.
The Open-source network can only provide 99.9999% reliability for a threshold of
850ms, while the network in the B5G Lab provides the required reliability within
a threshold of 35ms. However, Table 7.2 does not account for the duration of the
executed trial, which was 10 minutes. Realistically, this is too short to make any valid
inferences regarding the use cases. Nevertheless, they still serve as an illustration.

Network Threshold 50% 90% 99% 99.9% 99.999% 99.9999%

OS

5ms
35ms
75ms
100ms
850ms

B5G
5ms
15ms
35ms

Table 7.2: Threshold compliance of OWD for the Open-source and B5G Lab
networks in the second trial.

The third trial represents the AR/VR use case from Table 2.1 from [33], which
requires 99.9% and a OWD less than 10ms. As shown in Table 7.3, neither network
satisfies these requirements. Regardless of the requirements for OWD, the Open-
source network cannot meet the required reliability due to the substantial packet loss.
The B5G Lab network can also not meet the requirement of 99.9% due to packet loss.
However, most of the packet loss occurs in the first 400ms of the trial. Therefore,
after the first 400ms the network can seemingly meet the required reliability with a

94 7. DISCUSSION

threshold of 25ms.

Network Threshold 50% 80% 90% 95% 99% 99.9%

OS

5ms
1,000ms
1,250ms
1,500ms
1,750ms
3,000ms
3,150ms

B5G

5ms
10ms
15ms
20ms
25ms

Table 7.3: Threshold compliance of OWD for the Open-source and B5G Lab
networks in the third trial.

The tables show that neither of the networks satisfies the requirements of the use
cases the trials are based on. However, the network in the B5G Lab is consistently
closer to compliance than the open-source network. It must be considered that the
networks used in the case study were not necessarily customized to satisfy these use
cases. They were simply used as placeholders in order to compare a set of networks.
Moreover, the same can be said for comparing the individual networks. The network
in the B5G Lab is based on equipment from Nokia, while the Open-source network is
based on open-source software running on commercial o�-the-shelf hardware and an
SDR. Nevertheless, the purpose of the case study was to utilize the benchmarking
framework for two real-world private 5G networks. Therefore, no e�ort was made to
ensure that networks were equivalent.

7.2.3 Insights gained from case study

After performing the case study, we discovered two phenomena worth addressing.
These can potentially impact the reproducibility of the benchmarks made by the
tool.

As discussed in Section 6.2 and 6.3, nearly all repetitions of trials in both networks
experienced packet loss during the first 400ms, which we hypothesize is due to the
5G gateway being in an RRC Idle state. Therefore, the dropped packets might be
due to how the Teltonika gateway handles queueing of packets while awaiting a
data bearer. Regardless of whether this hypothesis is true, this highlighted that

7.3. FULFILLMENT OF RESEARCH QUESTIONS 95

the benchmarking tool does not ensure a consistent starting RRC state for the 5G
gateway. This shortcoming can impact the reproducibility of the benchmarks. For
instance, if the 5G gateway had consistently begun in an RRC Active state in one
network while in an Idle state in another network, this e�ect would suggest di�erences
in the networks. Therefore, the RRC state of the 5G gateway should be handled
explicitly by the benchmarking framework.

The initial peak in OWD shown in the Open-source network in Section 6.2 might,
as discussed, be the result of low initial resource allocation. On the one hand, one
might argue that because this e�ect is transient, a warm-up phase should be added to
remove it. On the other hand, the initial performance might provide useful insights
into a transitional phase of a network. This could be an interesting characteristic for
the analysis of delay-sensitive applications. Therefore, the tool should not o�er a
warmup phase to hide this e�ect. To ensure that the benchmark also highlights the
performance when the network is in a steady state, trials should have a su�ciently
long duration to account for this.

The discussed phenomena highlight an insight into the start of the produced
benchmarks. Ensuring a consistent RRC state for the beginning of trials would
remove a shortcoming of the framework itself while adding a warm-up phase would
hide network behavior. Therefore, we argue that the RRC state of the 5G gateway
should be addressed, but the warm-up phase should not. This concludes the insights
gained from the final step of the second iteration of the feedback loop.

7.3 Fulfillment of Research Questions

This section discusses the research questions presented in the introduction in light
of the results and discussions of the thesis. The research questions are discussed in
order.

7.3.1 Benchmarking and Reproducability

When considering RQ1 (”How can a system capable of performing reproducible
benchmarking of private 5G networks be designed?”), we decided to split the question
into two aspects. The first aspect is how benchmarking private 5G networks can be
performed, and the second is how this can be done reproducibly.

Previously, we defined benchmarking as an empirical experiment that generates
data that enables comparing candidates with respect to a certain (set of) performance
measures, inspired by [8]. One needs a way to generate and capture network tra�c
to conduct an empirical experiment that generates data for benchmarking. Then,
analyzing this data enables calculating a set of performance measures. Finally, a way

96 7. DISCUSSION

to communicate the performance measures is necessary to enable comparisons. In
our framework, these functions are fulfilled by the Tra�c Generator, Packet Matcher,
Packet Analyzer, and Visualization module. The combination of these features
provides the foundation to perform benchmarking of private 5G networks.

To support reproducibility in these benchmarks we introduced another module,
the Orchestrator. By automating the execution of trials, this module ensures that
the same steps are executed in the same order every time. Furthermore, it can also
perform tasks ensuring that the internal state of the tool is consistent for all trials.
For example, the Trex server used for Tra�c Generation Alternative 1 is started and
stopped at the beginning and end of each trial.

As discussed in Section 7.2.3, the framework does not actively ensure a consistent
RRC state for the 5G gateway. This enables the potential for an inconsistent initial
RRC state between trials, which, if this is the case, would reduce the reproducibility
of the benchmarking framework.

Furthermore, the realization of the high-level tested architecture can impact the
reproducibility. When the L2 bridge approach is used, the expected o�ered tra�c
load can di�er from the actual one. If the L2 bridge drops packets, the trial can
potentially be run with a lower load than intended. The o�ered tra�c may thus not
be representative of the configured trial. Utilizing port mirroring to the measurement
machine instead of sending the tra�c through the measurement machine reduces
this risk.

Furthermore, the framework does not document or measure the environment
during a repetition. Factors such as the background tra�c and signal-to-noise
ratio are not documented and can di�er between repetitions. These factors can
potentially have a non-negligible impact on the KPIs and should be documented
as meta-information for a trial. This would enable discovering when two trials or
repetitions are not comparable due to external factors.

We believe that our benchmarking framework outlines how reproducible bench-
marking of private 5G networks can be performed. It has functionality for generation,
capturing, and analyzing network tra�c required for benchmarking. Furthermore,
the Orchestrator module supports reproducibility. However, some factors negatively
impact reproducibility, such as the potential for an inconsistent initial RRC state,
usage of the L2 bridge, and not considering external factors.

7.3.2 The Grey-Box Approach

To answer RQ2 ("How can the requirements for integration with the NUT and the
granularity of information provided by the benchmark be balanced?"), we decided to

7.3. FULFILLMENT OF RESEARCH QUESTIONS 97

utilize a grey-box approach.

The grey-box approach reduced the need for integration with the NUT, leading
to an overall higher portability of the benchmarking framework. This e�ect was
noticeable when switching the NUT during the case study.

However, since the KPIs are based on the performance between the two measure-
ment points, we do not know the performance of individual network components.
Thus, the framework can not produce the information to be able to pinpoint where
potential performance bottlenecks occur. This was noticed in both the B5G Lab and
the Open-source network. For instance, during the third trial on the Open-source
network, where it was not possible to identify the reason(s) for the poor performance.
The data did not separate the performance of the 5GC, gNB, or the SDR.

Utilizing the available capture points as in [20] would have led to a greater
granularity in the produced data. In our case, this would only have incurred a
minor altering of the testbed architecture and would leverage the level of network
integration greater than our current architecture. This approach would have enabled
the separation of performance of the RAN and the 5GC.

7.3.3 Support for Industry 4.0 Use Cases

When considering RQ3 (”To what extent can such a system support benchmarking
of a defined set of common Industry 4.0 use cases?”), the framework is limited by
three factors.

Firstly, the benchmarking framework neither generates nor calculates KPIs for
downlink tra�c. The high-level testbed architecture does not include hosts responding
to the tra�c. Thus, bidirectional tra�c cannot be generated. Because no downlink
tra�c is generated, the tool does not have the necessary data to calculate downlink
KPIs. Furthermore, due to downlink tra�c never being part of the produced results,
we did not write the logic to separate uplink and downlink tra�c, thus necessitating
a minor rewrite of the Packet Matcher module. Depending on the configuration of
the private 5G network, such as the uplink/downlink ratio in the radio network,
the performance of the uplink and downlink can significantly di�er. This means it
does not provide the necessary information in use cases that are concerned with the
performance in both directions.

Secondly, the method for tra�c generation from Alternative 1 and 2 limits the
extent to which the system can support benchmarking of Industry 4.0 use cases. All
the tra�c is currently generated from a single device. Based on the requirements
discussed in [33], most Industry 4.0 use cases require multiple devices. Having only
one device generate all the tra�c might not provide tra�c patterns representative of

98 7. DISCUSSION

the actual use cases. For instance, having a single device only requires a single data
bearer, which might impact the scheduling of devices.

The benchmarking tool matches UDP packets based on an identifier in the first
four bytes of the payload. This causes issues when packets are large enough to
require fragmentation into multiple datagrams. In that case, only the first packet
will have the guaranteed unique identifier, while all the other packets will contain
the padding bytes. This results in arbitrary matching of the fragments lacking an
identifier. To mitigate the challenges caused by fragmentation, the matching could
have been done on the IPv4 Identification header field. This approach provides
multiple improvements, such as being agnostic of the transport protocol, and enables
simpler matching of fragmented packets. Fragmented packets could be handled by
matching on a combination of the Identification field, More Fragments flag, and the
Fragmentation o�set field in the IPv4 header. However, most of the requirements for
payload size of the use cases in [33] are at most 250B. These use cases should not
cause fragmentation and, therefore, not be an issue for the benchmarking framework.
However, the tool cannot support use cases such as mobile robotics (video operations),
where the requirements for payload sizes range from 15kB to 250 kB [33].

In conclusion, the benchmarking framework can support benchmarking of industry
4.0 use cases with some caveats. It does not consider the downlink performance. Fur-
thermore, the tra�c patterns generated can approximate realistic patterns depending
on the use case and tra�c generation alternative used. Specifically, the payload size
cannot cause fragmentation, and the number of hosts generating tra�c cannot be
more than one. However, based on the case study, we argue that the benchmarking
framework satisfies many aspects, such as calculating several of the relevant uplink
KPIs and emulating aspects of the tra�c patterns, such as throughput.

7.3.4 Comparing Network Performance

To answer RQ4 (”How can the framework be used to compare 5G implementations?”),
we conducted a case study using the benchmarking framework on two di�erent
networks and compared the results.

Based on our case study, assessing the KPIs of the two networks enables a
systematic comparison of the performance between the networks. Furthermore, since
the trial execution is automated with parameters describing the trial, the framework
can easily produce data for a multitude of scenarios. This enables the comparison of
networks under varying conditions.

The choice of trial parameters, such as duration and packet rate, is important for
the comparison. The networks can behave di�erently depending on the load and trial
duration. For instance, the OWD in the Open-source network increased dramatically

7.3. FULFILLMENT OF RESEARCH QUESTIONS 99

as the packet rate reached 30,000PPS, while the network in the B5G Lab remained
at the same level. However, for the first trial, the di�erence in performance between
the Open-source and the B5G Lab networks was smaller. Thus, it is important to
keep in mind that the results are only representative of the specific parameters used.
If the framework is used to compare networks, the parameters should reflect the use
cases to be tested.

To produce comparable results, the network integration for di�erent networks
must be as similar as possible. For our framework, this means that the measurement
points must be similar across networks. If the tra�c measurement is done after it
has been processed by the core in one network and before it has been processed by
the core in the other, the resulting KPIs will not be comparable.

The depth of the network comparison is limited to the available set of KPIs, and
the granularity o�ered by the grey-box approach. For instance, the set of KPIs does
not consider KPIs targeting the physical interface. Thus, the framework is currently
not suited for comparing the radio networks of 5G implementations. Furthermore, as
discussed for RQ2, the benchmarking framework does not provide information about
the performance of individual components in the networks. Therefore, it can only be
used to compare the performance of the networks as a whole. Adding more KPIs,
such as round trip time, signal-to-noise ratio, bandwidth, and bit error rate, could
provide a more thorough foundation for comparing networks. Moreover, separating
the performance of the RAN and the 5GC, as discussed for RQ2, would enable a
finer granularity when comparing networks.

The case study of the B5G Lab and Open-source networks shows an example of
how the framework can be used to compare 5G implementations. However, some
considerations should be taken when utilizing the framework. Firstly, the trial
parameters must be representative of the desired use case(s). Furthermore, the
comparison is limited to the available KPIs and to the granularity of the network as
a whole. Nevertheless, useful insights can be drawn from the produced results as the
benchmarking framework stands.

Chapter8Conclusion and Future Work

8.1 Conclusion

In this thesis, we have designed and implemented a framework for benchmarking
private 5G networks. We performed validation on several of the modules of the
framework. Based on the insights gained from the validation, we improved the Packet
Matcher module to mitigate potential issues caused by the sliding window. Once
the adjustments were made, we used the framework to benchmark the performance
of two private 5G networks. Finally, we compared their performance based on the
results produced by the benchmarking framework. As the thesis concludes, we are
left with a benchmarking framework consisting of a validated software tool and a
high-level testbed architecture, and a case study showing the performance of two
real-world private 5G networks. Since the thesis was based on the research questions
we will now revisit each question for a brief conclusion.

Firstly, for RQ1 (”How can the requirements for integration with the NUT and the
granularity of information provided by the benchmark be balanced?”), we argue that
our contribution captures how such a system can be designed. The results of our case
study show how it could perform reproducible benchmarks of two di�erent networks.
Currently, only uplink performance is considered, but the design of the framework
can be extended to include downlink performance. Furthermore, some factors can
impact the reproducibility, which we did not have time to address. Examples include
not accounting for background tra�c and the initial RRC state of the 5G gateway.
Aside from this, we believe the framework shows how a system capable of performing
reproducible benchmarking of private 5G networks can be designed.

Secondly, for RQ2 (”How can integration with the network under test and level
of detail in benchmark output be balanced?”), we went for a grey-box approach.
This required little integration with the NUT, which made the framework portable
and easy to set up in our experience. However, we argue that by requiring a
bit more integration into the network, the framework could have extracted more

101

102 8. CONCLUSION AND FUTURE WORK

useful information. The authors of [20] illustrated this, enabling the separation of
the performance of the RAN and the 5GC. Augmenting the KPIs for the overall
performance with KPIs for both the RAN and the 5GC enables more fine-grained
analysis. We believe this is a better balance of integration with the NUT and the
granularity of the provided information.

For RQ3 (”To what extent can such a system support benchmarking a defined set
of common Industry 4.0 use cases?”), we argue the framework can support several
aspects of common Industry 4.0 use cases as defined in [33]. However, there are some
limitations related to the tra�c generation and lack of downlink KPIs.

Finally, for RQ4 (”How can the framework be used to compare 5G implementa-
tions?”), we argue that the framework can be used to compare the uplink performance
of 5G networks. By assessing the calculated KPIs the performance of networks can
be compared. Utilizing comparable measurement setups and carefully choosing repre-
sentative trial parameters of the desired use case(s) ensures that the KPIs calculated
are comparable between networks.

In conclusion, the thesis explored the design and implementation of a bench-
marking framework for private 5G networks. This, combined with the validation
and usage of the framework provided insights into all the research questions. The
framework shows promise but requires further work to fulfill its potential. Due to
time limitations, we were not able to address the shortcomings identified after the
case study and during the evaluation of the research questions.

8.2 Future Work

As mentioned, there are several aspects of the benchmarking framework that can
be improved or extended in future work. The main categories are extending the
framework to consider downlink KPIs or separation of KPIs from the RAN and 5GC,
making the tool produce results in real-time, and improving the tra�c patterns.

• Separate the performance of the RAN and core: Enchancing the
benchmarking framework by separating the performance of the RAN and the
5GC. This could give increased insight into the main components of the network
while requiring only a bit more integration to the NUT.

• Extend the framework to consider downlink KPIs: Extending the func-
tionality of the framework to also calculate KPIs for the downlink performance
would enable the benchmarking to both uplink and downlink. This could give
a more complete view of the performance of a network.

• Make the tool able to run in real-time: Currently, the tool does not
calculate the KPIs until after a trial is completed. Therefore, it is not well
suited for monitoring. Enabling the tool to function in real-time would increase

8.2. FUTURE WORK 103

its applicability as a monitoring tool.
• Improved Tra�c Patterns: To improve the extent to which the framework

can be used to benchmark common Industry 4.0 use cases, it would be beneficial
to provide easy access to tra�c patterns based on common Industry 4.0 use cases.
It is currently possible to replay a pcap using Tra�c Generation Alternative 2,
but having this in a simple and scripted manner, such as Tra�c Generation
Alternative 1, would make this more usable. Furthermore, extending the tra�c
generations to allow for stateful protocols would also open up more use cases
for the framework.

By focusing on these areas of future work, the benchmarking framework can
perform benchmarks with more detail regarding downlink performance and the sepa-
ration of RAN and core performance. Furthermore, improving the tra�c generation
could enable the framework to be used for more use cases. Finally, making the
tool produce results in real-time would open up a new avenue of possibility as a
performance monitoring tool.

References

[1] S. Fuglesang and C. Lewin, «A Methodology for Benchmarking a Private 5G Network
Exemplified with Industry 4.0 Use Cases», Department of Information Security,
Communication NTNU – Norwegian University of Science, and Technology, Project
report in TTM4502, Dec. 2023.

[2] ITU-R, «IMT Vision – Framework and Overall Objectives of the Future Development
of IMT for 2020 and Beyond», ITU-R, Tech. Rep. Recommendation ITU-R M.2083-0
(09/2015), 2015.

[3] A. Aijaz, «Private 5G: The Future of Industrial Wireless», IEEE Industrial Electronics
Magazine, vol. 14, no. 4, pp. 136–145, 2020.

[4] M. Wen, Q. Li, et al., «Private 5G Networks: Concepts, Architectures, and Research
Landscape», IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 1,
pp. 7–25, 2021.

[5] United Nations, Goal 8: Promote sustained, inclusive and sustainable economic growth,
full and productive employment and decent work for all, Accessed: 2024-05-28, 2015.
[Online]. Available: https://sdgs.un.org/goals/goal8#targets_and_indicators.

[6] S. Eswaran and P. Honnavalli, «Private 5G Networks: a Survey on Enabling Technolo-
gies, Deployment Models, Use Cases and Research Directions», Telecommunication
Systems, vol. 82, Nov. 2022.

[7] United Nations, Goal 9: Build resilient infrastructure, promote inclusive and sus-
tainable industrialization and foster innovation, Accessed: 2024-05-28, 2015. [Online].
Available: https://sdgs.un.org/goals/goal9#targets_and_indicators.

[8] T. Hothorn, F. Leisch, et al., «The Design and Analysis of Benchmark Experiments»,
Journal of Computational and Graphical Statistics, vol. 14, no. 3, pp. 675–699, 2005.

[9] S. O. Bradner and J. McQuaid, Benchmarking Methodology for Network Interconnect
Devices, RFC 2544, Mar. 1999. [Online]. Available: https://www.rfc-editor.org/info/r
fc2544.

[10] V. Bajpai, A. Brunstrom, et al., «The Dagstuhl Beginners Guide to Reproducibility
for Experimental Networking Research», ACM SIGCOMM Computer Communication
Review, vol. 49, no. 1, pp. 24–30, 2019.

105

https://sdgs.un.org/goals/goal8#targets_and_indicators
https://sdgs.un.org/goals/goal9#targets_and_indicators
https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc2544

106 REFERENCES

[11] K. Schwaber and J. Sutherland, The Scrum Guide: The Definitive Guide to Scrum: The
Rules of the Game, This publication is o�ered for license under the Attribution Share-
Alike license of Creative Commons, accessible at https://creativecommons.org/licenses/by-
sa/4.0/legalcode., Nov. 2020. [Online]. Available: https://scrumguides.org/docs/scru
mguide/v2020/2020-Scrum-Guide-US.pdf.

[12] R. J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. Springer, 2014.

[13] G. Almes, S. Kalidindi, et al., A One-Way Delay Metric for IP Performance Metrics
(IPPM), RFC 7679, Jan. 2016. [Online]. Available: https://www.rfc-editor.org/info/r
fc7679.

[14] C. M. Demichelis and P. Chimento, IP Packet Delay Variation Metric for IP Perfor-
mance Metrics (IPPM), RFC 3393, Nov. 2002. [Online]. Available: https://www.rfc-e
ditor.org/info/rfc3393.

[15] A. Lamberti, How to Measure Jitter & Keep Your Network Jitterbug Free. [Online].
Available: https://obkio.com/blog/how-to-measure-jitter/#how-do-you-measure-jitt
er (last visited: Jun. 5, 2024).

[16] H. Schulzrinne, S. L. Casner, et al., RTP: A Transport Protocol for Real-Time
Applications, RFC 3550, Jul. 2003. [Online]. Available: https ://www.rfc - editor
.org/info/rfc3550.

[17] M. Clouqueur and W. D. Grover, «Availability Analysis of Span-Restorable Mesh
Networks», IEEE journal on selected areas in communications, vol. 20, no. 4, pp. 810–
821, 2002.

[18] S. O. Bradner, Benchmarking Terminology for Network Interconnection Devices, RFC
1242, Jul. 1991. [Online]. Available: https://www.rfc-editor.org/info/rfc1242.

[19] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach, Global Edition,
English, 7th. Pearson, 2017.

[20] J. Rischke, P. Sossalla, et al., «5G Campus Networks: A First Measurement Study»,
IEEE Access, vol. 9, pp. 121 786–121 803, 2021.

[21] D. Xu, A. Zhou, et al., «Understanding Operational 5G: A First Measurement
Study on its Coverage, Performance and Energy Consumption», in Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
2020, pp. 479–494.

[22] P. Emmerich, S. Gallenmüller, et al., «MoonGen: A Scriptable High-Speed Packet
Generator», in Proceedings of the 2015 Internet Measurement Conference, ser. IMC
’15, Tokyo, Japan: Association for Computing Machinery, 2015, pp. 275–287. [Online].
Available: https://doi.org/10.1145/2815675.2815692.

[23] X. Foukas, G. Patounas, et al., «Network Slicing in 5G: Survey and Challenges»,
IEEE Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.

[24] A. Anand, G. de Veciana, and S. Shakkottai, «Joint Scheduling of URLLC and eMBB
Tra�c in 5G Wireless Networks», IEEE/ACM Transactions on Networking, vol. 28,
no. 2, pp. 477–490, 2020.

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.rfc-editor.org/info/rfc7679
https://www.rfc-editor.org/info/rfc7679
https://www.rfc-editor.org/info/rfc3393
https://www.rfc-editor.org/info/rfc3393
https://obkio.com/blog/how-to-measure-jitter/#how-do-you-measure-jitter
https://obkio.com/blog/how-to-measure-jitter/#how-do-you-measure-jitter
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc1242
https://doi.org/10.1145/2815675.2815692

REFERENCES 107

[25] M. Sauter, From GSM to LTE-Advanced Pro and 5G. John Wiley and Sons Ltd, 2021.

[26] 3GPP, «5G; System Architecture for the 5G System (5GS); (3GPP TS 23.501 version
16.6.0 Release 16)», 3GPP, Tech. Rep. ETSI TS 123 501 V16.6.0 (2020-10), 2020.

[27] 3GPP, «5G; Study on Scenarios and Requirements for Next Generation Access
Technologies (3GPP TR 38.913 version 14.2.0 Release 14)», 3GPP, Tech. Rep. ETSI
TR 138 913 V14.2.0 (2017-05), 2017.

[28] OpenAirInterface Organization, Openairinterface. [Online]. Available: https://openair
interface.org/ (last visited: May 22, 2024).

[29] Open5GS, Open5gs. [Online]. Available: https://open5gs.org/ (last visited: Jun. 5,
2024).

[30] S. Rao and R. Prasad, «Impact of 5g technologies on industry 4.0», Wireless Personal
Communications, vol. 100, pp. 1–15, May 2018.

[31] L. D. Xu, E. L. Xu, and L. Li, «Industry 4.0: State of the Art and Future Trends»,
International Journal of Production Research, vol. 56, no. 8, pp. 2941–2962, 2018.

[32] S. Wang, J. Wan, et al., «Towards Smart Factory for Industry 4.0: a Self-Organized
Multi-Agent System with Big Data based Feedback and Coordination», eng, Computer
networks (Amsterdam, Netherlands : 1999), vol. 101, pp. 158–168, 2016.

[33] A. Mahmood, S. F. Abedin, et al., «Factory 5G: A Review of Industry-Centric
Features and Deployment Options», IEEE Industrial Electronics Magazine, vol. 16,
no. 2, pp. 24–34, 2022.

[34] J. Dugan, S. Elliott, et al., iPerf 3 User Documentation, n.d. [Online]. Available:
https://iperf.fr/iperf-doc.php#3doc (last visited: Jun. 6, 2024).

[35] P. Emmerich, S. Gallenmüller, et al., «Mind the Gap-A Comparison of Software
Packet Generators», in 2017 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), IEEE, 2017, pp. 191–203.

[36] S. P, Ostinato - features. [Online]. Available: https://ostinato.org/features (last
visited: May 9, 2024).

[37] P. Biondi, Scapy - general documentation. [Online]. Available: https://scapy.readthed
ocs.io/en/latest/ (last visited: May 9, 2024).

[38] S. Lange, A. Nguyen-Ngoc, et al., «Performance Benchmarking of a Software-Based
LTE SGW», in 2015 11th International Conference on Network and Service Manage-
ment (CNSM), IEEE, 2015, pp. 378–383.

[39] TRex Team, TRex Stateless Support. [Online]. Available: https://trex-tgn.cisco.com
/trex/doc/trex_stateless.html (last visited: May 9, 2024).

[40] TRex Team, Trex advanced stateful support. [Online]. Available: https://trex-tgn.cisc
o.com/trex/doc/trex_astf.html (last visited: May 18, 2024).

[41] Wireshark, Tshark(1) manual page. [Online]. Available: https://www.wireshark.org/d
ocs/man-pages/tshark.html (last visited: Mar. 13, 2024).

[42] Tcpdump, Tcpdump(1) man page. [Online]. Available: https://www.tcpdump.org/ma
npages/tcpdump.1.html (last visited: Mar. 13, 2024).

https://openairinterface.org/
https://openairinterface.org/
https://open5gs.org/
https://iperf.fr/iperf-doc.php#3doc
https://ostinato.org/features
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://trex-tgn.cisco.com/trex/doc/trex_astf.html
https://trex-tgn.cisco.com/trex/doc/trex_astf.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html

108 REFERENCES

[43] Wireshark, Dumpcap(1) manual page. [Online]. Available: https://www.wireshark.org
/docs/man-pages/dumpcap.html (last visited: Mar. 13, 2024).

[44] Grafana labs, Grafana data sources. [Online]. Available: https://grafana.com/docs/gr
afana/latest/datasources/ (last visited: May 3, 2024).

[45] Grafana labs, Json model. [Online]. Available: https://grafana.com/docs/grafana/lat
est/dashboards/build-dashboards/view-dashboard-json-model/ (last visited: May 3,
2024).

[46] Grafana labs, Variables. [Online]. Available: https://grafana.com/docs/grafana/lates
t/dashboards/variables/ (last visited: May 3, 2024).

[47] Grafana labs, Modify dashboard settings. [Online]. Available: https://grafana.com/do
cs/grafana/latest/dashboards/build-dashboards/modify-dashboard-settings/ (last
visited: May 3, 2024).

[48] Grafana labs, Visualizations. [Online]. Available: https://grafana.com/docs/grafana
/latest/panels-visualizations/visualizations/ (last visited: May 3, 2024).

[49] Grafana labs, Grafana documentation. [Online]. Available: https://grafana.com/docs
/grafana/latest/#grafana-documentation (last visited: May 3, 2024).

[50] Ansible, Introduction to ansible. [Online]. Available: https://docs.ansible.com/ansible
/latest/getting_started/introduction.html (last visited: May 3, 2024).

[51] Ansible, Introduction to ad hoc commands. [Online]. Available: https://docs.ansible.co
m/ansible/latest/command_guide/intro_adhoc.html#why-use-ad-hoc-commands
(last visited: May 3, 2024).

[52] Ansible, Ansible playbooks. [Online]. Available: https://docs.ansible.com/ansible/late
st/playbook_guide/playbooks_intro.html#playbook-syntax (last visited: May 3,
2024).

[53] Ansible, How to build your inventory. [Online]. Available: https://docs.ansible.com/a
nsible/latest/inventory_guide/intro_inventory.html (last visited: May 3, 2024).

[54] Ansible, Using variables. [Online]. Available: https://docs.ansible.com/ansible/latest
/playbook_guide/playbooks_variables.html (last visited: May 4, 2024).

[55] S. Gallenmüller, P. Emmerich, et al., «Comparison of Frameworks for High-Performance
Packet IO», in 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2015, pp. 29–38.

[56] Network bridge - ArchWiki, English. [Online]. Available: https://wiki.archlinux.org/ti
tle/network_bridge (last visited: Apr. 12, 2024).

[57] S. Hemminger, «Network Emulation with NetEm», in Linux conf au, vol. 5, Apr.
2005, p. 8.

[58] A. Jurgelionis, J.-P. Laulajainen, et al., «An Empirical Study of NetEm Network
Emulation Functionalities», in 2011 Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN), 2011, pp. 1–6.

[59] F. Ludovici and H. P. Pfeifer, tc-netem(8) - Linux manual page. [Online]. Available:
https://man7.org/linux/man-pages/man8/tc-netem.8.html (last visited: Apr. 25,
2024).

https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/docs/man-pages/dumpcap.html
https://grafana.com/docs/grafana/latest/datasources/
https://grafana.com/docs/grafana/latest/datasources/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/view-dashboard-json-model/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/view-dashboard-json-model/
https://grafana.com/docs/grafana/latest/dashboards/variables/
https://grafana.com/docs/grafana/latest/dashboards/variables/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/modify-dashboard-settings/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/modify-dashboard-settings/
https://grafana.com/docs/grafana/latest/panels-visualizations/visualizations/
https://grafana.com/docs/grafana/latest/panels-visualizations/visualizations/
https://grafana.com/docs/grafana/latest/#grafana-documentation
https://grafana.com/docs/grafana/latest/#grafana-documentation
https://docs.ansible.com/ansible/latest/getting_started/introduction.html
https://docs.ansible.com/ansible/latest/getting_started/introduction.html
https://docs.ansible.com/ansible/latest/command_guide/intro_adhoc.html#why-use-ad-hoc-commands
https://docs.ansible.com/ansible/latest/command_guide/intro_adhoc.html#why-use-ad-hoc-commands
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://wiki.archlinux.org/title/network_bridge
https://wiki.archlinux.org/title/network_bridge
https://man7.org/linux/man-pages/man8/tc-netem.8.html

REFERENCES 109

[60] T. Barbette, C. Soldani, and L. Mathy, «Fast Userspace Packet Processing», in
2015 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), IEEE, 2015, pp. 5–16.

[61] S. Lange, L. Linguaglossa, et al., «Discrete-Time Modeling of NFV Accelerators
That Exploit Batched Processing», in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, IEEE, 2019, pp. 64–72.

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Motivation
	Thesis Outcomes
	Research Questions
	Thesis Structure
	Supporting the UN Sustainable Development Goals

	Background
	Benchmarking
	Measurement of Packet-Level Characteristics
	5G
	Industry 4.0

	Design of the Benchmarking Tool
	Requirements of the Benchmarking Tool
	Benchmark Tool Software Architecture
	High-Level Testbed Architecture

	Implementation of the Benchmarking Tool
	Traffic Generator
	Packet Matcher
	Packet Analyzer
	Visualization
	Orchestrator
	Data Storage

	Experiments
	Validation
	Case Study

	Results
	Validation Results
	Case study NTNU Open-Source Lab Results
	Case study NTNU B5G Lab Results
	Comparison of Case Study Results

	Discussion
	Discussion on the Validation
	Case Study Comparison
	Fulfillment of Research Questions

	Conclusion and Future Work
	Conclusion
	Future Work

	References

