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In this paper we consider the decay rate of solitary-wave solutions to some classes of 
non-linear and non-local dispersive equations, including for example the Whitham 
equation and a Whitham–Boussinesq system. The dispersive term is represented 
by a Fourier multiplier operator that has a real analytic symbol that either 
decays/grows, and we show that all supercritical/subcritical solitary-wave solutions 
decay exponentially, and moreover provide the exact decay rate, which in general 
will depend on the speed of the wave. We also prove that solitary waves have only 
one crest and are symmetric for some class of equations.
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1. Introduction

This paper is devoted to the study of decaying solutions u : R → R to equations of the form

cu− L(u) −Gc(u) = 0, (1.1)

where c > 0 is a parameter, L is a Fourier multiplier operator with symbol m : R → R, meaning that

L̂ϕ(ξ) = m(ξ)ϕ̂(ξ),

and Gc is some non-linear function that may depend on the parameter c (see examples and assumptions 
below). In general we will suppress the potential dependency of Gc on c and simply write G. By decaying 
solutions, we mean that

lim
|x|→∞

u(x) = 0.

The goal of this paper is to determine the rate of decay of the solutions, under some assumptions on m and 
G.
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Equations of the form (1.1) are of interest as solitary-wave solutions to a wide variety of model equations 
for water waves can be represented as decaying solutions to (1.1). Consider for instance the non-linear 
dispersive equation

ut + L(u)x + G(u)x = 0. (1.2)

This is a typical form of model equations for the water-wave problem, and many of the most prominent 
models can be cast in this form. For instance, if G(u) = u2 and m(ξ) = 1 − ξ2 we get the Korteweg-de 

Vries equation, and if m(ξ) =
√

tanh(ξ)
ξ we get the Whitham equation [14], to mention a few. Assuming 

that u is a solitary-wave solution to (1.2) moving to the right with speed c, that is, u(x, t) = u(x − ct) and 
lim|x−ct|→∞ u(x − ct) = 0, we can integrate (1.2) to get (1.1).

Another example is solitary-wave solutions to the Whitham-Boussinesq type system:

ηt = − L(u)x − (ηu)x (1.3)

ut = − ηx − uux,

where η is the surface elevation and u is the velocity at the surface in the rightwards direction. A solitary-
wave solution to (1.3) with speed c > 0 is a solution of the form η(x, t) = η(x − ct), u(x, t) = u(x − ct) such 
that u(ζ), η(ζ) → 0 as |ζ| → ∞. Under this ansatz, one finds that (see [13]) η = u(c − u

2 ) and

L(u) − u(u− c)
(u

2 − c
)

= 0. (1.4)

This can be written in the form (1.1) with G(u) = u2

2 (3c − u) and c replaced by c2 in the first term.
We will not concern ourselves with existence theory in this paper, but simply establish the decay properties 

of solutions, should they exist. For results on existence of solitary-wave solutions to equations of the form 
(1.2), see for instance [7] for weak dispersion (i.e. when L is a smoothing operator), and [2] for when L is a 
differentiating operator.

If m(ξ) �= c for all ξ ∈ R, we can formally write (1.1) as

u = Kc ∗G(u), Kc = F−1
(

1
c−m

)
. (1.5)

However, if m decays (that is, L is a smoothing operator), then (c −m)−1 tends to c−1 > 0 at infinity, and 
Kc exists only in a distributional sense. To remedy this, we can apply the operator L to both sides of (1.5), 
and from (1.1) we get

u

(
c− G(u)

u

)
= Hc ∗G(u), (1.6)

where

Hc = F−1
(

m

c−m

)
. (1.7)

We will work under the assumption that L is a smoothing operator (see assumption (A1) below), but 
the results can be applied to differentiating operators as well, if the inverse (which will be a smoothing 
operator) satisfies our assumptions; see section 4.3. In fact, this case is even simpler.

The idea of formulating the equation as a convolution equation in order to study decay is taken from the 
classical paper [4], where the authors study the decay of solutions to equations of the form
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u = K ∗G(u),

under a mild assumption on G (see assumption (A3) below) and for K̂ ∈ Hs(R) for some s ≥ 0. Philosoph-
ically the idea is natural: the decay rate of K should decide the decay rate of u, and if one can prove that, 
the problem is reduced to investigating the kernel K. In [4] they show, under some integrability assumptions 
on K, that a solution u that tends to 0 at infinity decays at least as fast as K, and we will show that it will 
not decay faster. From Fourier analysis it is known that a requirement for K to be exponentially decaying 
is that F (K) is analytical in a strip in the complex plane. Hence one would expect that if the symbol m
of L is not smooth, solitary waves will decay only algebraically. This has been observed for instance for the 
Benjamin-Ono equation [3], for which there is only one solitary wave and that one decays algebraically [1], 
and also for generalized KP equations [6], both of which have Fourier symbols of finite smoothness. A more 
general result about the relation between finite smoothness and algebraic decay can be found in [5]. We will 
assume smoothness of the symbol m in this paper. To be precise, we will study (1.6) under the following 
assumptions:

Assumptions.

(A1) There is an m0 < 0 such that

|m(n)(ξ)| ≤ Cn(1 + |ξ|)m0−n, n ∈ N0.

(A1*) The function m is real analytic and the constants Cn ≥ 0 in (A1) can be chosen such that 
limn→∞

Cn+1/(n+1)!
Cn/n! = k for some k ≥ 0.

(A2) The function m is even and the parameter c satisfies

max
ξ∈R

m(ξ) < c.

(A3) G : R → R is bounded on compact sets, and for all small values of u, we have that |G(u)| � |u|r for 
some r > 1.

Remark 1.1. The assumptions (A1) and (A2) imply that Hc decays algebraically of arbitrary order (cf. 
Section 3.1), while assumption (A1*) is needed for exponential decay. Indeed, if m is real analytic then it 
admits a local extension to a complex analytic function around every point in R, and the condition on the 
constants Cn in (A1*) implies that there is a uniform lower bound on the radius where the local extension 
is valid. This gives that m can be extended to a strip in the complex plane and Paley-Wiener theory can 
then be used to show exponential decay - see Section 3.2.

Under these assumptions we have the following result on decay:

Theorem 1.2. Let (A1), (A2) and (A3) be satisfied and suppose that u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is 
a non-trivial solution to (1.6). Then the following holds:

(i) | · |lu(·) ∈ L∞(R) for any l ≥ 0.
(ii) If m satisfies (A1*) in addition, then u has the exact same rate of asymptotic decay as Hc. In particular, 

there is a number δc > 0 depending on m and c, such that for all δ ∈ (0, δc),

eδ|·|u(·) ∈ L1 ∩ L∞(R).

Moreover,
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eδc|·||u(·)|

does not decay to 0, but it can be bounded, depending on m and c (see Lemma 3.4 for more details).

It is also worth noting that while our inspiration comes from equations and systems for which solitary-
wave solutions are solutions to equations of the form (1.1) and we therefore work with (1.6), the results 
apply to more general equations. Indeed, it is straightforward to extend the arguments to equations which 
can be cast in the form

uF (u) = Hc ∗G(u),

as long as F : R → R satisfies limx→0 F (x) �= 0 and is such that Lemma 4.2 holds.
Under an assumption on Hc that is independent of (A1) and (A2), and some assumptions on the behaviour 

of G on the range of the solution, we have that decaying solutions to (1.6) are symmetric:

Theorem 1.3. Assume that Hc ∈ L1(R) is non-negative, symmetric and monotonically decreasing on (0, ∞), 
and that G satisfies (A3). Let u ∈ BC(R) with lim|x|→∞ u(x) = 0 be a solution to (1.6) and assume that G
is non-negative and increasing on the range of u, and for all 0 ≤ y < x < max(u),

|G(x) −G(y)| < C(x)|x− y|,

where C(x) < c̃ for some 0 < c̃ < c on the range of u, and limx→0+ C(x) = 0. Then u is symmetric about 
some point λ0 ∈ R and has exactly one crest, located at λ0.

Remark 1.4. Some remarks on the assumptions:

• Note that we are requiring G to be non-negative, increasing and Lipschitz continuous with Lipschitz 
constant c̃ < c only on the range of u, so these are implicitly assumptions on the solution u itself.

• If |G(x)−G(y)|
|x−y| ≤

∣∣∣G(x)
x + G(y)

y

∣∣∣, then it is not necessary to assume that |G(x) − G(y)| ≤ c̃|x − y|, as it 
follows from Lemma 5.1. This is the case if, for example, G(u) = |u|r for 1 < r ≤ 2.

• If f(ξ) = g(ξ2) where limx→0+ g(x) < ∞ and limx→∞ g(x) = 0 and g is completely monotone, then 
F−1(f) is smooth outside the origin and monotone (Proposition 2.18 in [8]). As one can verify, if m(

√·)
is completely monotone on (0, ∞), then so is m(

√
·)

c−m(
√
·) . It follows that m(0) > 0 and m(

√·) completely 
monotone on (0, ∞) is sufficient for Hc to be symmetric and monotone on (0, ∞).

The paper is organized as follows. Section 3 is devoted to establishing integrability properties and the 
decay rate of Hc under assumptions (A1), (A2) (and (A1*)). An exact description of the asymptotic be-
haviour, depending on c and m, is given. In section 4 we prove Theorem 1.2. Part (i) is more or less a 
straightforward adaption of the proof of algebraic decay of solitary waves for the Whitham equation in [9]
(see also [4]) and we do only part of the proof to show that the arguments of the aforementioned paper 
can indeed be applied. The proof of part (ii) is also an adaption of the arguments in [4] and [9], but we 
are able to give the exact rate of exponential decay. Moreover, in subsection 4.3, the simpler case when L
is a differentiating operator, rather than smoothing as implied by assumption (A1), is discussed. In sec-
tion 5 symmetry is discussed and Theorem 1.3 is proved. Finally, in section 6, the general results from the 
preceding sections are applied to some specific examples, in particular to the Whitham equation, and the 
bi-directional Whitham equation, giving the exact rate of exponential decay of solitary-wave solutions to 
these equations. This is an improvement on the results of [9], where exponential decay of solitary waves of 
the Whitham equation is proved, but the exact decay rate is not established.



M.N. Arnesen / J. Math. Anal. Appl. 507 (2022) 125450 5
2. Notation

As indicated by the very definition of L and Hc, we will make much use of the Fourier transform, for 
which we will use the normalization

F (ϕ)(ξ) = ϕ̂(ξ) = 1√
2π

∫
R

ϕ(x)e−ixξ dx.

The inverse Fourier transform of ϕ will be denoted by F−1 or ϕ̌ and is defined as

ϕ̌(x) = 1√
2π

∫
R

ϕ(ξ)eixξ dξ.

With this normalization, the Fourier transform is a unitary operator on L2(R).
For s ≥ 0, the Sobolev space Hs(R) is the space of all L2(R) functions f which satisfy

‖f‖Hs(R) =

⎛⎝∫
R

(1 + |ξ|2)s|f̂(ξ)|2 dξ

⎞⎠1/2

< ∞.

The definition can be extended to s < 0 by considering tempered distributions, but that is not relevant 
here.

3. The kernel Hc

In this section we establish some essential properties of Hc, in particular its decay rate. We start by 
establishing integrability and algebraic decay; as one could expect assumption (A1*) is not necessary for 
these properties, only (A1) and (A2).

3.1. Algebraic decay

Lemma 3.1. Assume (A1) and (A2) are satisfied. Then, for all l ≥ 1, we have that

(·)lHc(·) ∈ Lp(R), for all 2 ≤ p ≤ ∞. (3.1)

Proof. Assumptions (A1) and (A2) imply that

Ĥc

(j)
∈ Lp(R), for all 1 ≤ p ≤ ∞, j ∈ N+.

As Ĥc

(j)
= ̂(−i·)jHc and F : Lp(R) → Lq(R) for 1 ≤ p ≤ 2 and 1

p + 1
q = 1, the result follows. �

Lemma 3.2. Assume (A1) and (A2) are satisfied. Then, for |x| � 1, we have that

|Hc(x)| 

⎧⎪⎪⎨⎪⎪⎩
|x|−1−m0 , −1 < m0 < 0,
| ln(|x|)|, m0 = −1,
1, m0 < −1.

That is Hc ∈ L∞(R) when m0 < −1.
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Proof. If m0 < −1, then m ∈ L1(R) and by (A2) so is m
c−m and the result is clear. Assume therefore that 

−1 < m0 < 0. Let

g =
(

m

c−m

)′
= cm′

(c−m)2 .

As m is even, we have that g is odd and for x > 0 (it is sufficient to consider x > 0 as m, and therefore Hc, 
is even),

xHc(x) =i F−1(g)(x)

= − 1√
2π

∫
R

g(ξ) sin(xξ) dξ

= − 1√
2π

∫
R

g
( s

x

) sin(s)
x

ds

= − 2c√
2π

∞∫
0

sin(s)
x

1
(c−m(s/x))2m

′
( s

x

)
ds.

By assumption (A1), we have that |m′ ( s
x

)
| �

(
s
x

)m0−1. Moreover, (c − m)−2 is bounded by assumption 
(A2). Hence

x|Hc(x)| � x−m0

∞∫
0

| sin(s)|
s1−m0

ds = Cx−m0 .

Dividing by x on both sides gives the desired result. Now if m0 = −1, we use the estimate |m′ ( s
x

)
| �

(
s
x

)−2

for s ≥ x and the estimate |m′ ( s
x

)
| �

(
s
x

)−1 for 0 < s < x. Hence

x|Hc(x)| �
x∫

0

| sin(s)|
s

ds + x

∞∫
x

| sin(s)|
s2 ds

x + x| ln(x)|,

and the conclusion follows. �
From Lemmas 3.1 and 3.2, we have the following Corollary:

Corollary 3.3. Assume (A1) and (A2) are satisfied. Then x �→ |x|αHc(x) ∈ Lp(R), 1 ≤ p ≤ ∞, if α >

max{1 + m0, 0} − 1
p .

Proof. By (3.1), | · |αHc(·) ∈ Lp(R \ (−1, 1)) for all 1 ≤ p ≤ ∞ and all α ∈ R. It remains to consider the 
behaviour around the origin. If −1 < m0 < 0, then by Lemma 3.2, we have that |x|α|Hc(x)|  |x|−1−m0+α

which is in Lp
loc(R) exactly when α > 1 + m0 − 1

p . For m0 ≤ −1, |x|α|Hc(x)| � |x|α| ln(|x|)| which is in 
Lp
loc(R) if and only if α > − 1

p . �
The results above state that Hc decays algebraically with arbitrary order, is a bounded function away 

from the origin, with the behaviour at the origin being given by Lemma 3.2. As Hc decays faster than 
any polynomial, the natural question to ask is whether it decays exponentially. This is indeed the case, if 
assumption (A1*) is satisfied in addition to (A1) and (A2).
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3.2. Exponential decay

Now we turn the exponential decay of Hc, under the additional assumption (A1*).

Lemma 3.4. Let (A1), (A2) and (A1*) be satisfied. Then m can be considered as a function in the complex 
plane. Let δc > 0 be the smallest number for which there exists z0 ∈ C with Im z0 = δc such that m(z0) = c

or m has an essential singularity at z0. The number δc is well-defined and the kernel Hc can be expressed 
as

Hc(x) = e−δc|x| (v + P (|x|)) , x ∈ R,

where v ∈ Lp({x ∈ R : |x| ≥ 1}), 1 ≤ p ≤ ∞ satisfies Lemma 3.2 and P is bounded near the origin and 
grows slower than any exponential. If m(z0) = c for all the z0 ∈ C defined as above, that is, there are no 
essential singularities among them, then P = Pn is a polynomial of order n, where n is the highest order of 
the zeros of m′ at the z0’s. In particular, if m′(z0) �= 0, then Pn is a non-zero constant.

Proof. As m is an analytic function on R, we have at each point x0 ∈ R a local extension to the complex 
plane given by

m(z) =
∞∑

n=0

m(n)(x0)
n! (z − x0)n,

which is valid for all z within a ball around x0 with non-zero radius depending on x0. Let

σ := inf
x0∈R

sup{r :
∞∑

n=0

|m(n)(x0)|
n! rn < ∞}.

That is, σ is the infimum of the convergence radius over all points in R. By (A1*), for any x0 ∈ R the 
convergence radius of the series above is greater than or equal to the convergence radius of

∞∑
n=0

Cn(1 + |x0|)m0−n

n! zn,

which converges for all |z| < 1
k(1+|x0|)m0 where k is as in (A1*). Hence there is a lower bound on the 

convergence radius that is independent of the point x0, and σ ≥ 1
k > 0. Moreover, the convergence radius 

goes to infinity as |x0| → ∞. In general, given a closed form expression for m, it can be considered as a 
function in the complex plane, barring singularities.

We want to use Paley-Wiener theory to show exponential decay. While m is not guaranteed to be in L2, 
assumption (A1) assures that m′ is, and we have

F (i ·Hc(·)) =
(

m

c−m

)′
= cm′

(c−m)2 =: g.

Clearly g is meromorphic in the strip |Im z| < σ with the only potential poles where m(z) = c. If there are 
any such points then, as m decays along all lines in the strip, δc := inf{|Im z| : z ∈ C, m(z) = c} ∈ (0, σ]
is well-defined and achieved at finitely many points, proving the existence of δc as claimed. Assume this is 
not the case. There are three possibilities for the singularities of m along the edge of the strip. If m has a 
pole, then m/(c −m) is bounded and g has a removable singularity and can be extended further. If m has a 
branch cut, this has no impact for our purposes. To see this, let h(z) be real valued on the real line and even 
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there. By symmetry, we can without loss of generality assume that h has a branch cut on the imaginary 
axis. As h is even on the real line and holomorphic away from the branch cut, we have

h(−z̄) = h(z̄) = h(z).

Hence h has equal real part but opposite imaginary part on the two branches. Moreover, as h is even 
Reh′(z) = 0 along the imaginary axis and

h′(−z̄) = −h′(z̄) = −h′(z).

This implies that h′ has the same value on each part of the branch, hence it is not a necessary branch cut for 
h′. In general, if there are two or more branch cuts that are mirrored over the imaginary axis, the integrals 
of g around them will cancel each other out, and we can without loss of generality assume that there are 
no branch cuts. The final possibility is that m has an essential singularity, in which case so does g. At some 
point in the process of extending g, we must either reach an essential singularity or a pole where m(z) = c.

Let y > 0 be fixed and |x| > |y|k. By (A1*),

|m′(x + iy)| ≤
∞∑

n=0

∣∣∣∣m(n+1)(x)
n! (iy)n

∣∣∣∣
≤

∞∑
n=0

Cn+1

n! |y|n(1 + |x|)m0−n−1

=(1 + |x|)m0−1
∞∑

n=0

Cn+1

n!

(
|y|

1 + |x|

)n

≤K(1 + |x|)m0−1, (3.2)

for some K > 0 (that will in fact decrease as |x| increases). As m0 < 0, this is in Lp(R) for all 1 ≤ p ≤ ∞. 
This also implies that for x > 0,

lim
|ξ|→∞

sup
0≤η≤δc

|g(ξ + iη)eixz| = 0, (3.3)

as eixz is bounded for x > 0 and Im z ≥ 0, where z = ξ+ iη. If x < 0 and Im z ≤ 0, then eixz is also bounded 
and

lim
|ξ|→∞

sup
−δc≤η≤0

|g(ξ + iη)eixz| = 0.

We consider first the case x > 0; the case when x < 0 is similar. For any δ ∈ (0, δc), g(· + ıδ) ∈ Lp(R) for 
all 1 ≤ p ≤ ∞ by (3.2). We can apply Cauchy’s theorem to the rectangle with corners ±R and ±R+ iδ. By 
(3.3), the integral over the vertical lines vanish as R → ∞. As g(z)eixz has no singularities in this domain, 
Cauchy’s theorem then gives (letting R → ∞)

ixHc(x) = 1√
2π

∫
R

g(ξ)eixξ dξ = −e−δx 1√
2π

∫
R

g(ξ + iδ)eixξ dξ,

where the integral on the right-hand side is a function of x that is in Lp(R) for all 1 ≤ p ≤ ∞. For x < 0
the arguments are similar, and we find that for any δ ∈ (0, δc), eδ|·|Hc(·) ∈ Lp(R \ [−1, 1]) for all 1 ≤ p ≤ ∞. 
This implies that the growth of eδc|·|Hc(·) must be less than exponential.
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If along the lines {z = x +±iδc : x ∈ R} there are no essential singularities, only points where m(z) = c, 
then we can calculate the expression for Hc more explicitly. Note that if m(z0) = c ∈ R, the symmetry of 
m on the real line and the analyticity of m around z0 implies that

m(−z0) = m(z0) = c = m(z0) = m(z0) = m(−z0).

That is, the poles of g are symmetric with respect to the real axis and the imaginary axis. As g is the 
derivative of a function, we immediately get that the residue of g at the poles z0 = ξ ± iδc such that 
m(z0) = c is zero: for any 0 < r < s such that g(z) is analytic for 0 < |z − z0| < s,

1
2πi

∫
|z−z0|=r

g(z) dz = 1
2πi

∫
|z−z0|=r

d
dz

1
c−m(z) dz = 0,

as the integral is taken over a closed circle. Let n be the order of the zero of m′ at z0. Then, locally around 
z0,

g(z) = c
(n + 1)!(n + 1)
m(n+1)(z0)

(z − z0)−n−2 + O((z − z0)−n−1).

That is, g and therefore also g(z)eixz, x ∈ R \ {0}, has a pole of order n + 2 at z0. It follows that

Residue [g(z)eixz, z0] = 1
(n + 1)! lim

z→z0

dn+1

dzn+1 [g(z)eixz(z − z0)n+2]

=
n+1∑
k=0

1
k!(n + 1 − k)!

[
lim
z→z0

dn+1−k

dzn+1−k
g(z)(z − z0)n+2

]
ikxkeixz0

=:eixz0Qn+1(x), (3.4)

where Qn+1(x) is a polynomial of order n + 1. As the residue of g is zero, Qn+1(0) = 0, and we can write 
Qn+1 as

Qn+1(x) =
n+1∑
k=1

akx
k, an+1 = in+1c

n + 1
m(n+1)(z0)

�= 0. (3.5)

In particular, Residue [g(z)eixz, z0] �= 0 for x �= 0. Furthermore, as g(−z) = −g(z), we see that the residue 
of g(z)eixz at z0 is purely real if z0 = ±iδc. If z0 = ξ0 ± iδc, ξ0 �= 0, then imaginary parts of the residues at 
z0 and −z0 cancel each other, while the real parts add up. For simplicity we therefore assume that we only 
have poles at ±iδc. From (3.4) we then get

Residue [g(z)eixz,±iδc] = e∓xδcQn+1(x) (3.6)

for any x ∈ R.
The function g(· + iδc) is not in L2(R), but for every ε > 0, we have g(· + iδc) ∈ L2(R \ [−ε, ε]) by 

(3.2). To apply Cauchy’s theorem, we consider the indented rectangle defined by the line segments [−R, R], 
[±R, ±R + iδc], [−R + iδc, −ε + iδc], [ε + iδc, R + iδc], and the half-circle

Γε = {z = iδc + εeiθ : π ≤ θ ≤ 2π}.

By (3.3), the integral over the vertical lines vanish as R → ∞. As g(z)eixz has no singularities in this 
domain, Cauchy’s theorem then gives (letting R → ∞)



10 M.N. Arnesen / J. Math. Anal. Appl. 507 (2022) 125450
1√
2π

∫
R

g(ξ)eixξ dξ = e−δcx
1√
2π

∫
|ξ|≥ε

g(ξ + iδc)eixξ dξ + 1√
2π

∫
Γε

g(z)eixz dz. (3.7)

Recall that (2π)−1/2 ∫
R g(ξ)eixξ dξ = −ixHc(x). Multiplying by eδcx on both sides, we get

−exδcixHc(x) = 1√
2π

∫
|ξ|≥ε

g(ξ + iδc)eixξ dξ + 1√
2π

eδcx
∫
Γε

g(z)eixz dz.

The first term on the right hand side is in L2(R). For the second term, the (fractional) residue theorem 
gives that for ε > 0 small enough,

eδcx 1√
2π

∫
Γε

g(z)eixz dz =eδcx 1√
2π

(
iπResidue [g(z)eixz, iδc] + O(ε)

)

=
√

π

2 iQn+1(x) + O(ε).

This is clearly not in Lp(R) for any p ∈ [1, ∞]. These calculations were for x > 0; if x < 0 we consider 
the conjugate of the indented rectangle and we obtain the equivalent result. To get the expression for Hc, 
consider the function ξn+2g(ξ + iδc). Taylor expanding around ξ = 0, we get by (3.4) and (3.5) that

ξn+2g(ξ + iδc) =
n∑

k=0

(n + 1 − k)!
(n + 1)! ik−n−1an+1−kξ

k + O(ξn+2),

and hence

g(ξ + iδc) =
n∑

k=0

(n + 1 − k)!ik−n−1an+1−kξ
k−n−2 + O(1)

for small ξ. As g(· + iδc) ∈ Lp(R \ (−1, 1)) for all 1 ≤ p ≤ ∞, we have that

g(ξ + iδc) =
n∑

k=0

(n + 1 − k)!ik−n−1an+1−kξ
k−n−2 + w(ξ),

where w ∈ Lp(R) for all 1 ≤ p ≤ ∞. Hence the “ill-behaved” part of 
∫
|ξ|≥ε

g(ξ + iδc)eixξ dξ can be 
explicitly calculated as ε → 0+, as the limit is symmetric (otherwise it is not defined). The calculation is 
straightforward calculus and the result can be found in any table of Fourier transforms, and we find that 
(again we are assuming x > 0)

lim
ε→0+

1√
2π

∫
|ξ|≥ε

g(ξ + iδc)eixξ dξ =
√

π

2 iQn+1(x) + w̌(x),

where w̌ ∈ Lp(R) for all 2 ≤ p ≤ ∞. Hence, taking the limit ε → 0+ in (3.7), we get

−ixHc(x) = e−δc|x|
(
w̌(x) − i

√
2πQn+1(x)

)
. (3.8)

Dividing by −ix for x �= 0 gives the expression for Hc, with v = − w̌
ix and Pn(x) =

√
2πQn+1(x)x−1 (recall 

that Qn+1(0) = 0, so that Qn+1(x)x−1 is indeed a polynomial). �
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Corollary 3.5. Let (A1), (A2) and (A1*) be satisfied, and let δc be as in Lemma 3.4. Then, for all 0 < δ < δc, 
we have that eδ|·|Hc(·) ∈ Lp(R) for all 1 ≤ p < 1

1+m0
if −1 < m0 < 0, all 1 ≤ p < ∞ if m0 = −1, and all 

1 ≤ p ≤ ∞ if m0 < −1.

Proof. Let δ as in the assumptions. By Lemma 3.4, we have that

eδ|x|Hc(x) = e−(δc−δ)|x| (v(x) + P (|x|)) .

As v ∈ Lp({x ∈ R : |x| ≥ 1}) for all 1 ≤ p ≤ ∞ and δc−δ > 0, we get that eδ|·|Hc(·) ∈ Lp({x ∈ R : |x| ≥ 1}), 
hence we need only check the behaviour at 0. If m0 < −1, then by Lemma 3.2, we have that v ∈ L∞(R), 
and the conclusion follows. For −1 ≤ m0 < 0, the result follows from Corollary 3.3 with α = 0. �

We have established the precise decay rate of Hc, which is sufficient to establish the precise decay rate 
of (decaying) solutions to (1.6) (see Section 4 below).

4. Decay of solitary waves

With the properties of Hc established in Section 3, we can now establish the decay properties of solutions 
to (1.6), under assumption (A3) on G. We start with algebraic decay.

4.1. Algebraic decay of solitary waves

Theorem 4.1. Let (A1), (A2) and (A3) be satisfied and suppose that u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is 
a solution to (1.6). Then

(·)lu(·) ∈ Lq(R)

for all l ≥ 0 and all q ∈
(
max{2,−m−1

0 },∞
)
.

Proof. Choose p ∈ (1, 2) if m0 ≤ −1
2 or p ∈

(
1, 1

1+m0

)
if −1

2 < m0 < 0 and let α = α(p) be a constant 
satisfying

α > max{1 + m0, 0} −
1
p
.

In particular, α satisfies the condition in Corollary 3.3, so that (1 + | · |)αHc(·) ∈ Lp(R). Let As |G(u)| � |u|r
for some r > 1 and lim|x|→∞ u(x) = 0, we get that for any δ > 0, there exists an Rδ ≥ 0 such that

|G(u(x))| ≤ δ|u(x)| for all |x| ≥ Rδ.

Picking 0 < δ < c, we get that

c− G(u(x))
u(x) ≥ c− δ > 0 for all |x| ≥ Rδ

As u is a solution to (1.6), we get that

∣∣∣∣u(x)
(
c− G(u(x))

u(x)

)∣∣∣∣ =

∣∣∣∣∣∣
∫

Hc(x− y)(1 + |x− y|)α G(u(y))
(1 + |x− y|)α dy

∣∣∣∣∣∣

R
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≤
∫
R

|Hc(x− y)|(1 + |x− y|)α |G(u)|
(1 + |x− y|)α dy.

Letting q be the conjugate of p, we get by Hölder’s inequality that

|u(x)| ≤ C

⎛⎝∫
R

|G(u)|q
(1 + |x− y|)αq dy

⎞⎠1/q

for all |x| ≥ Rδ, (4.1)

where C = Cα,p,δ = (c − δ)−1‖(1 + | · |)αHc(·)‖Lp(R) < ∞. That (·)lu(·) ∈ Lq(R) can now be proven in 
precisely the same way as in the proof of Theorem 3.9 in [9]. The only difference is that there G(u) = u2, 
but the only properties needed are that u ∈ L∞(R) ⇒ G(u) ∈ L∞(R) and that for any δ > 0, there is an 
Rδ such that |G(u(x))| ≤ δ|u(x)| for all |x| ≥ Rδ. Both of these properties are guaranteed by (A3). As q is 
the conjugate of p and p can be picked arbitrarily within the specified interval, this gives the stated range 
for q. �

With this result it is simple to prove part (i) of Theorem 1.2:

Proof of Theorem 1.2 (i). As shown in the proof of Theorem 4.1, for every 0 < δ < c there is a Rδ ≥ 0 such 
that

c− G(u(x))
u(x) ≥ c− δ > 0 for all |x| ≥ Rδ.

Pick one such δ and Rδ. Since u ∈ L∞(R), we have that | · |lu(·) is bounded on bounded sets, so it remains 
only to consider |x| ≥ Rδ. From (1.6) and repeated use of Hölder’s inequality, we get

|x|l|u(x)| ≤(c− δ)−1
∫
R

|x− y|l|Hc(x− y)||G(u(y))|dy +
∫
R

|Hc(x− y)||y|l|G(u(y))|dy

�‖| · |lHc(·)‖L1(R)‖G(u)‖L∞(R) + ‖ur−1‖L∞(R)

∫
R

|Hc(x− y)||y|l|u(y)|dy

�‖| · |lHc(·)‖L1(R)‖u‖rL∞(R) + ‖u‖r−1
L∞(R)‖Hc‖Lp(R)‖| · |lu(·)‖Lq(R),

where 1
p + 1

q = 1. By Corollary 3.3 the first term in the last line is bounded and we can find p ∈ (1, 2)
such that Hc ∈ Lp(R) and q ∈

(
max{2,−m−1

0 },∞
)

and by Theorem 4.1 the last term is also bounded. The 
constant implied in the notation � can be taken independently of x, and the conclusion follows. �
4.2. Exponential decay of solitary waves

In this section we will add assumption (A1*).

Lemma 4.2. Let (A1), (A2), (A3) and (A1*) be satisfied. Suppose that u ∈ L∞(R) with lim|x|→∞ u(x) = 0
is a solution to (1.6). Then there exists a constant C > 0 such that

|u(x)| ≤ C

∫
R

|Hc(x− y)||G(u(y))|dy

for almost every x ∈ R.
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Proof. From (1.6) we get that

|u(x)|
∣∣∣∣c− G(u(x))

u(x)

∣∣∣∣ =

∣∣∣∣∣∣
∫
R

Hc(x− y)G(u(y)) dy

∣∣∣∣∣∣ ≤
∫
R

|Hc(x− y)||G(u(y))|dy.

If 
∣∣∣c− G(u(x))

u(x)

∣∣∣ ≥ γ > 0, then

|u(x)| ≤ γ−1
∫
R

|Hc(x− y)||G(u(y))|dy.

As shown in the proof of Theorem 4.1, for any γ ∈ (0, c), there exists an Rγ > 0 such that 
∣∣∣c− G(u(x))

u(x)

∣∣∣ ≥
γ > 0 for all |x| ≥ Rγ . It follows that the set

Eγ = {x ∈ R :
∣∣∣∣c− G(u(x))

u(x)

∣∣∣∣ < γ},

is contained in bounded interval, and moreover that infx∈Eγ
|u(x)| ≥ C > 0 for some C > 0. We have that

|cu(x) −G(u(x))| < γ|u(x)| ≤ γ‖u‖L∞(R), x ∈ Eγ .

By (1.1), cu −G(u) = L(u) ∈ C(R) (since L is smoothing), and it follows that G(u(x)) is non-zero in some 
interval around x for all x ∈ Eγ . As Hc is non-zero around the origin and Eγ is a subset of a compact set, 
it follows that

Iγ := inf{
∫
R

|Hc(x− y)||G(u(y))|dy : x ∈ Eγ} > 0.

Hence, for any γ ∈ (0, c), we have that max{γ−1, I−1
γ ‖u‖L∞(R)} < ∞ and

|u(x)| ≤ max{γ−1, I−1
γ ‖u‖L∞(R)}

∫
R

|Hc(x− y)||G(u(y))|dy,

which guarantees the existence of a C such as in the statement. �
Now we will prove our main result, part (ii) of Theorem 1.2.

Proof of Theorem 1.2 (ii). First we want to show that

eδ|·|u(·) ∈ L1(R) ∩ L∞(R) for any δ ∈ [0, δc).

The proof of this follows largely the arguments of Corollary 3.1.4 in [4], with some adaptations (see also 
Theorem 3.12 in [9]), but we include the details for completeness. If −1

2 ≤ m0 < 0, let 1 < p < 1
1+m0

; 
otherwise let 1 < p < 2. Let q be the Hölder conjugate of p and let δ ∈ (0, δc). Let M1 be the smallest 
constant such that

|u(x)| ≤ M1

∫
R

|Hc(x− y)||G(u(y))|dy for all x ∈ R, (4.2)

and set
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M2 = ‖(·)G(u)u−1‖L∞(R)

M3 = ‖eδ|·|Hc(·)‖Lp(R).

The boundedness of M1 and M2 follows from Lemma 4.2 and Theorem 1.2 (i), respectively, and M3 is 
bounded by Corollary 3.5. Let

D := max{1, δ2‖u‖L1(R),M1M2M3δ
1/p

(
2
q

)1/q

}.

We claim that

‖(·)lu(·)‖L1(R) ≤
(l + 2)!Dl+1

δl+1 , for all l ∈ N. (4.3)

Clearly it is true for l = 0. Assume it is true for l = 1, 2, ...n. Recall the following identity that can be 
proved by induction:

xn(f ∗ g)(x) =
n∑

j=0

(
n

j

)(
(·)n−jf ∗ (·)jg

)
(x).

Using this identity, Young’s inequality and (4.2), we find that

‖(·)n+1u(·)‖L1(R) ≤M1‖(·)n+1(Hc ∗G(u))(·)‖L1(R)

≤M1

n+1∑
j=0

(
n + 1
j

)
‖(·)n+1−jHc(·)‖L1(R)‖(·)jG(u(·))‖L1(R).

Considering the term involving Hc first, we get by Hölder’s inequality:∫
R

|xn+1−jHc(x)|dx ≤
∫
R

|xn+1−je−δ|x|||eδ|x|Hc(x)|dx

≤

⎛⎝∫
R

|eδ|x|Hc(x)|p dx

⎞⎠1/p ⎛⎝∫
R

|x|q(n+1−j)e−qδ|x| dx

⎞⎠1/q

= M321/q

⎛⎝ ∞∫
0

xq(n+1−j)e−qδ|x| dx

⎞⎠1/q

= M321/q
(

(q(n + 1 − j))!
(qδ)q(n+1−j)+1

)1/q

≤ M3

(
2
q

)1/q (n + 1 − j)!
δn+1−j+1/q .

And for the term involving G, we have that for 1 ≤ j ≤ n + 1,

‖(·)jG(u(·))‖L1(R) =
∫
R

|x|jG(u(x))
u(x) u(x) dx

≤ M2‖(·)j−1u(·)‖L1(R)
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≤ M2
(j + 1)!Dj

δj
.

Thus we get that

‖(·)n+1u(·)‖L1(R) ≤ M1M2M3

(
2
q

)1/q n+1∑
j=0

(
n + 1
j

)
(n + 1 − j)!(j + 1)!Dj

δn+1+1/q

= M1M2M3δ
1/p

(
2
q

)1/q n+1∑
j=0

(n + 1)!(j + 1)Dj

δn+1+1/q+1/p

≤
n+1∑
j=0

(n + 1)!(j + 1)Dj+1

δn+2

= (n + 3)!Dn+2

δn+2 ,

which proves the claim. Applying (4.3),

∫
R

eν|x||u(x)|dx ≤
∞∑
l=0

νl

l!

∫
R

|x|l|u(x)|dx

≤
∞∑
l=0

νl

l!
(l + 2)!Dl+1

δl+1

≤
∞∑
l=0

νl(l + 2)(l + 1)Dl+1

δl+1 .

Hence the integral converges if 0 < ν < δ
D , and it follows that eν|·|u(·) ∈ L1(R) for some 0 < ν < δ. Next 

we show that eν|·|u(·) ∈ L∞(R). We have that

|u(x)|eν|x| ≤ M1

∫
R

|Hc(x− y)|eν|x−y||G(u)|eν|y| dy = M1

(
Hc(·)eν|·| ∗ |G(u(·))|eν|·|

)
(x).

As G is bounded on compact sets and u ∈ L∞(R), (A3) implies that 
∥∥∥G(u)

|u|r

∥∥∥
L∞(R)

< ∞. It follows that

|G(u)| � |u|r (4.4)

uniformly over R, where r > 1. Pick a p > 1 such that Hc(·)eν|·| ∈ Lp(R); Corollary 3.5 guarantees that 
this is possible. Using (4.4), Young’s inequality and Hölder’s inequality, we get that for 1 ≤ q ≤ p

p−1 ,

‖eν|·|u(·)‖
L

qp
q+p−qp (R)

≤M1‖Hc(·)eν|·|‖Lp(R)‖G(u(·))eν|·|‖Lq(R)

�M1‖u‖r−1
L∞(R)‖Hc(·)eν|·|‖Lp(R)‖u(·)eν|·|‖Lq(R)

�‖u(·)eν|·|‖Lq(R),

uniformly in q, as u ∈ L∞(R). We have already established that the right-hand side is bounded for q = 1. 
Setting qi+1 = min

{
qip

qi+p−qip
, p
p−1

}
and starting from q1 = 1, we get that qi = p

p−1 eventually, in which 

case qip = ∞, and it follows that eν|·|u(·) ∈ L∞(R).
qi+p−qip
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Let η = sup{ν : eν|·|u(·) ∈ L1(R) ∩ L∞(R)}. Assume η < δ, and choose ν such that

η

r
< ν < min{η, δ

r
}.

Recalling, (4.4) we have that

|u(x)|erν|x| ≤M1

∫
R

|Hc(x− y)|erν|x−y||G(u)|erν|y| dy

�M1

∫
R

|Hc(x− y)|erν|x−y|
(
u(y)eν|y|

)r

dy

=M1

(
Hc(·)erν|·| ∗

(
u(·)eν|·|

)r)
(x).

By Young’s inequality, we get

‖erν|·|u(·)‖L1(R) ≤ M1‖Hc(·)erν|·|‖L1(R)‖
(
u(·)eν|·|

)r

‖L1(R) < ∞,

and

‖erν|·|u(·)‖L∞(R) ≤ M1‖Hc(·)erν|·|‖L1(R)‖
(
u(·)eν|·|

)r

‖L∞(R) < ∞.

But as r > 1 we have that rν > η, and this contradicts the definition of η. Hence the assumption that η < δ

must be false, and it must be the case that η ≥ δ. As δ ∈ (0, δc) was arbitrary, this shows that

eδ|·|u(·) ∈ L1(R) ∩ L∞(R) for any δ ∈ [0, δc).

Assume now that n = 0 in Lemma 3.4, so that Hc(x) = e−δc|x|(v + C) for some constant C �= 0, and let 
f = v + C; then f ∈ L1

loc(R) and f is bounded for |x| > 1. We have that

eδc|x||u(x)| �
∫
R

|Hc(x− y)|eδc|x−y|G(u(y))eδc|y| dy 
∫
R

|f(x− y)|
(
u(y)e

δc
r |y|

)r

dy.

Splitting the integral into the integral over |x − y| < 1, and |x − y| ≥ 1 and applying Hölder’s inequality, 
we get

eδc|x||u(x)| �‖f‖L1((−1,1))‖u(·)e δc
r |·|‖rL∞(R)

+ ‖f‖L∞(R\(−1,1))‖u(·)e δc
r |·|‖L∞(R)‖u(·)e δc

r |·|‖L1(R).

The right hand side is finite and independent of x, hence we conclude that eδc|·|u(·) ∈ L∞(R). Now we want 
to show that this is optimal. Let ε > 0. By the decay of u and assumption (A3), we have that

|Hc(x− y)G(u(y))| � e−δc|x−y||f(x− y)|e−rδc|y| ≤ e−δc|x||f(x− y)|e−(r−1)δc|y|,

for all |y| sufficiently large. As r > 1 and f ∈ L1
loc(R), we can find Rε such that∣∣∣∣∣∣∣

∫
Hc(x− y)G(u(y)) dy

∣∣∣∣∣∣∣ < εe−δc|x|.
|y|>Rε
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Now let |x| > Rε be such that f(x −y) = C+O(ε) for all |y| ≤ Rε. This is possible as lim|x|→∞ f(x) = C �= 0. 
If x > Rε, we get that

eδc|x|u(x) eδc|x|
∫
R

e−δc|x−y|f(x− y)G(u(y)) dy

=eδc|x|
∫

|y|≤Rε

e−δc|x−y|f(x− y)G(u(y)) dy

+ eδc|x|
∫

|y|>Rε

e−δc|x−y|f(x− y)G(u(y)) dy

=C

∫
|y|≤Rε

eδcyG(u(y)) dy + O(ε),

and if x < −Rε, we get

eδc|x|u(x)  C

∫
|y|≤Rε

e−δcyG(u(y)) dy + O(ε)

As G(u) is non-zero on a set of non-zero measure,∫
|y|≤Rε

e−δcyG(u(y)) dy and
∫

|y|≤Rε

eδcyG(u(y)) dy

cannot both converge to 0 as ε → 0+. This shows that eδc|x|u(x) does not decay to 0 as |x| → ∞, and it 
also implies that eδc|·|u(·) ∈ Lp(R) only for p = ∞. This was for n = 0; by the same arguments we see that 
eδc|·||u(·)| has the same growth as P in general. �
4.3. When L is a differentiating operator

Assumption (A1) implies that L is a smoothing operator, and the dispersion in (1.1) is very weak. 
However, our results can easily be extended to the case with stronger dispersion as well, by making a few 
observations. As shown in the introduction, (1.1) can formally be written as

u = F−1
(

1
c−m

)
∗G(u).

If m > 0 and m(ξ) → ∞ as ξ → ∞, then m̃ = 1
m is bounded and limξ→±∞ m̃(ξ) = 0. Moreover,

1
c−m

= 1
m

1
c/m− 1 = −1

c

m̃
1
c − m̃

.

Hence, letting Hc be defined by (1.7) as in Sections 3 and 4, with m̃ in place of m, that is, Hc = F−1
(

m̃
c−m̃

)
, 

we get that (1.1) can be written as

cu = −H1/c ∗G(u). (4.5)

Note that c is just a constant and the minus sign makes no difference to our results as we have no assumptions 
on the sign of G. Hence this equation is even simpler than (1.6), as we do not have the term c − G(u) on 
u
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the left-hand side, and all our results are therefore valid if assumptions (A1), (A2) and (A3) (and (A1*)) 
are satisfied for m̃, 1

c and G. We summarize the results in the following theorem:

Theorem 4.3. Let (A3) be satisfied, m : R → R be even and strictly positive, and such that m−1 satisfies 
(A1), and let 0 < c < minξ∈Rm(ξ). Suppose that u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is a non-trivial 
solution to (1.1). Then

| · |lu(·) ∈ L∞(R),

for any l ≥ 0. If m−1 satisfies (A1*) in addition, then there is a number δ1/c and an integer n ≥ 0, depending 
on 1/m and 1/c (see Lemma 3.4) such that

eδ1/c|·|u(·)

has algebraic growth of order n. That is, for all δ ∈ (0, δ1/c),

eδ|·|u(·) ∈ L1 ∩ L∞(R).

Moreover, eδ1/c|·|u(·) /∈ Lp(R) for any p ∈ [1, ∞) and any n ≥ 0, and eδ1/c|·|u(·) ∈ L∞(R) if and only if 
n = 0.

5. Symmetry of solitary waves

Now we will prove Theorem 1.3. The method is based on the method of moving planes. Our proof is an 
adaption of the proof of Theorem 4.4 in [9] (symmetry of solitary-wave solutions to the Whitham equation), 
which in turn was inspired by [12] (see also [11] and [10]).

Essential to the proof of symmetry is the following “touching” lemma:

Lemma 5.1. Let Hc be as in Theorem 1.3, and let u ∈ L∞(R) with lim|x|→∞ u(x) = 0 be a solution to 
(1.6) and assume that G is non-negative and increasing on the range of u. Denote by uλ(·) := u(2λ − ·) the 
reflection of u about λ ∈ R. If u ≥ uλ on [λ, ∞), then either

• u = uλ, or
• u > uλ and G(u)

u + G(uλ)
uλ

< c for all x > λ.

That is, if u ≥ uλ on (λ, ∞), then either they are equal or they do not touch.

This lemma is essentially corollary 4.2 in [9] for a general class of equations and can be proved in a similar 
manner. For completeness we include the proof; some of the arguments will also be useful later.

Proof. Let f ≥ 0 on [λ, ∞) be odd about λ, that is, f(x) = −f(2λ − x), and let x ≥ λ. A simple change of 
variables and that f is odd with respect to λ gives that

Hc ∗ f(x) =
∞∫
λ

Hc(x− y)f(y) dy +
λ∫

−∞

Hc(x− y)f(y) dy

=
∞∫
Hc(x− y)f(y) dy +

∞∫
Hc(x + y − 2λ)f(2λ− y) dy
λ λ
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=
∞∫
λ

(Hc(x− y) −Hc(x + y − 2λ)) f(y) dy.

As Hc is symmetric and monotonically decreasing on (0, ∞), and f ≥ 0 on [λ, ∞), we conclude that

Hc ∗ f(x) ≥ 0 for all x ≥ λ,

with equality if and only if f = 0 on (λ, ∞). By the definition of uλ, G(u) − G(uλ) is odd about λ, and 
as u(x) ≥ ul(x) for x ≥ λ, it follows from the assumption that G is increasing on the range of u that 
G(u) − G(uλ) ≥ 0 for x ≥ λ. Hence G satisfies the same properties as f , and by the symmetry of Hc we 
have that uλ is also a solution to (1.6). We therefore conclude that

(u− uλ)
(
c− G(u)

u
− G(uλ)

uλ

)
= Hc ∗ (G(u) −G(uλ)) > 0

for all x > λ unless u = uλ. �
With this result we can prove Theorem 1.3:

Proof of Theorem 1.3. Following [12], we define

Σλ := {x ∈ R : x > λ}

and

Σ−
λ := {x ∈ Σλ : u(x) < uλ(x)}.

The first step is to show that there is a λ far enough to the left such that the open set Σ−
λ is empty. A 

straightforward calculation similar to the one in Lemma 5.1 gives that

c(u(x) − uλ(x))

=
∫
Σλ

(Hc(x− y) −Hc(x + y − 2λ)) (G(u(y)) −G(uλ(y))) dy + G(u(x)) −G(uλ(x)).

Let x ∈ Σ−
λ and let r > 1 be as in assumption (A3). Then

0 <c(uλ(x) − u(x))

≤
∫

Σ−
λ

(Hc(x− y) −Hc(2λ− x− y)) (G(uλ(y)) −G(u(y))) dy + G(uλ(x)) −G(u(x))

≤
∫

Σ−
λ

Hc(x− y) (G(uλ(y)) −G(u(y))) dy + G(uλ(x)) −G(u(x)).

By Hölder’s inequality we get that

‖uλ − u‖L∞(Σ−
λ ) ≤

1
c

(
‖Hc‖L1(R) + 1

)
‖G(uλ) −G(u)‖L∞(Σ−

λ ), (5.1)

and by assumption, |G(x) −G(y)| ≤ C(x)|x − y| for 0 ≤ y < x, and hence
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‖G(uλ) −G(u)‖L∞(Σ−
λ ) ≤ ‖C(uλ)‖L∞(Σ−

λ )‖uλ − u‖L∞(Σ−
λ ),

as 0 ≤ u < uλ on Σ−
λ . As long as ‖uλ − u‖L∞(Σ−

λ ) �= 0, we can divide by this term on both sides in (5.1), 
and we get that

1 ≤ 1
c

(
‖Hc‖L1(R) + 1

)
‖C(uλ)‖L∞(Σ−

λ ) (5.2)

Note that as uλ(x) = u(2λ − x) and u is decaying, limλ→−∞ ‖uλ‖L∞(Σ−
λ ) = 0. As C(x) → 0 as x → 0+, we 

get that the right-hand side in (5.2) goes to 0 as λ goes to infinity, which is a clear contradiction. Hence it 
must be the case that there exists an N ∈ R, such that ‖uλ − u‖L∞(Σ−

λ ) = 0 for all λ ≤ −N . It follows that 
Σ−

λ is empty for all λ ≤ −N , and that u cannot have any crests to the left of −N .
The next step now is to move the plane x = λ to the right from λ = −N until the final point for which 

Σ−
λ is empty. This process will stop at a crest of before. Assume the process stops at a point λ0, where 

u(x) ≥ uλ(x), but u(x) �= uλ0(x) for all x ∈ Σλ0 . That is, u is not symmetric about λ0. By Lemma 5.1, we 
get that u(x) > uλ0(x) for all x ∈ Σλ0 . As u is continuous, we have that for any ε > 0, there is a δ > 0 such 
that |Σ−

λ | < ε for all λ ∈ [λ0, λ0 + δ). Let λ > λ0 with |λ − λ0| sufficiently small such that Σ−
λ is bounded 

(by assumption, Σ−
λ is non-empty, otherwise the process of moving the plane would not have stopped at 

λ0). Let x ∈ Σ−
λ . By similar calculations as those preceding (5.1), we get that

0 <c(uλ(x) − u(x))

≤
∫

Σ−
λ

Hc(x− y)(uλ(y) − u(y))
(
G(uλ(y)) −G(u(y))

uλ(y) − u(y)

)
dy + G(uλ(x)) −G(u(x)).

Let p ∈ (1, ∞). By Young’s and Hölder’s inequalities, we get that

c‖uλ − u‖Lp(Σ−
λ ) ≤‖Hc‖Ls(R)‖(uλ − u)

(
G(uλ) −G(u)

uλ − u

)
‖Lq(Σ−

λ )

+ ‖G(uλ) −G(u)‖Lp(Σ−
λ )

≤‖Hc‖Ls(R)‖
G(uλ) −G(u)

uλ − u
‖Lqp/(p−q)(Σ−

λ )‖uλ − u‖Lp(Σ−
λ )

+ ‖G(uλ) −G(u)
uλ − u

‖L∞(Σ−
λ )‖uλ − u‖Lp(Σ−

λ ),

where s, q ∈ [1, ∞) are chosen such that 1 + 1
p = 1

s + 1
q . Note that this choice can be made such that 

q > p and hence 1 < qp
p−q < ∞. Since Σ−

λ is assumed to be non-empty, the continuity of u implies that 
‖uλ − u‖Lp(Σ−

λ ) > 0, so we can divide out this term and we get that

c ≤ ‖Hc‖Ls(R)‖
G(uλ) −G(u)

uλ − u
‖Lqp/(p−q)(Σ−

λ ) + ‖G(uλ) −G(u)
uλ − u

‖L∞(Σ−
λ ). (5.3)

As |Σ−
λ | → 0 as λ → λ+

0 , the first term on the right-hand side can be made arbitrarily small by taking 
λ > λ0 close enough to λ0. By assumption we have that G(uλ) −G(u) ≤ c̃(uλ − u), so that

‖G(uλ) −G(u)
uλ − u

‖L∞(Σ−
λ ) ≤ c̃ < c.

We have thus showed that there is a δ > 0 such that the right-hand side of (5.3) is less than c for all 
λ ∈ [λ0, λ0 + δ), which is clearly a contradiction. Hence it must be the case that ‖uλ − u‖ p − = 0, which 
L (Σλ )
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implies that Σ−
λ is empty - a contradiction. It follows that the assumption that u is not symmetric about 

λ0 is false and this completes the proof. �
6. Examples

In this section we apply our theory from the preceding sections to some equations of interest, for which 
the (precise) decay properties have not previously been established.

A Whitham–Boussinesq system

Let us return to the Whitham–Boussinesq system mentioned in the introduction (cf. (1.3)). Solitary-wave 
solutions to this system satisfy (see (1.4))

u

(
c2 − G(u)

u

)
= Hc ∗G(u),

where G(u) = u2

2 (3c − u) and

Hc = F−1
(

m

c2 −m

)
. (6.1)

This is exactly of the form (1.6) only with c replaced by c2. Clearly, G satisfies (A3) with r = 2 and hence, 
if (A2) is satisfied with c2 in place of c, all the results of the previous sections are valid. A specific equation 
of particular interest within this class is when m is the bi-directional Whitham-Kernel:

m(ξ) = tanh(ξ)
ξ

. (6.2)

For this m, the theory in the previous sections gives the following result:

Theorem 6.1. Let c > 1, m(ξ) = tanh(ξ)
ξ , and δc ∈ (0, π2 ) satisfy tan(δc)

δc
= c2. Then, for Hc defined as in 

(6.1),

Hc(x) = e−δc|x|
(
v(x) +

√
2π tan(δc)δc

δc sec2(δc) − tan(δc)

)
,

for some even function v that satisfies v ∈ Lp({x ∈ R : |x| ≥ 1}) for all 1 ≤ p ≤ ∞, and v(x)  | ln(|x|)|
for |x| � 1.

Moreover, if u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is a non-trivial solution to (1.4), then

u(·)eδc|·| ∈ Lp(R) if and only if p = ∞.

That is, u(x) decays exactly like e−δc|x|. Furthermore, if u : R → [0, c − 1
3 ], then u is symmetric.

Proof. It is straightforward to see that m satisfies (A1) and (A2) with m0 = −1, so all results in Section 3
hold in the present case; in particular Hc(x)  | ln(|x|)| for x near 0 (cf. Lemma 3.2). Moreover, m(z) is 
analytic for all z ∈ C except z ∈ iπ2Z \ {0} and as m is even and monotonically decreasing on (0, ∞), it is 
real-valued on, and only on, the real and the imaginary axis. Along the imaginary axis,

m(iy) = tan(y)
,

y
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which is even in y and a bijection from [0, π2 ) to [1, ∞). Hence, for all c > 1, the equation tan(y)
y = c2 has 

one solution in (0, π2 ), which we denote by δc. By Lemma 3.4 we get that

Hc(x) = e−δc|x| (v(x) + C) ,

with v as in the statement and some C. As the singularities are at ±iδc, we can use (3.8) to calculate C
explicitly in terms of c (recall that tan(δc)

δc
= c2) and we get the expression in the statement.

With the expression for Hc, the decay of u follows directly from Theorem 1.2. It remains only to show 
symmetry. It is straightforward to check that the function G(x) = x2

2 (3c − x) is increasing on [0, 2c], 
G′(x) < c2 on [0, c − 1√

3) and limx→0 G
′(x) = 0, so that G satisfies the assumptions in 1.3. Similarly, it 

is straightforward to check that Hc also satisfies the assumptions in Theorem 1.3 (cf. Remark 1.4). The 
symmetry then follows from Theorem 1.3. �
The Whitham equation

Let us now turn to the Whitham equation

ut + 2uux + Lux = 0, (6.3)

where, m(ξ) =
√

tanh(ξ)
ξ . In this case solitary wave solutions will satisfy the equation

u(c− u) = Hc ∗ u2. (6.4)

Clearly m satisfies (A1) and (A2) with m0 = −1/2.
In [9] they prove that for c > 1

eδ|·|(·)Hc(·) ∈ L2(R), for any δ ∈ (0, δc),

where δc ∈ (0, π2 ) satisfies 
√

tan(δc)
δc

= c, without showing whether or not this is optimal. Moreover, they 
prove that solitary waves satisfy

eη|·|u(·) ∈ L1(R) ∩ L∞(R), for some η ≥ δ.

With our results from Sections 3 and 4, we can improve upon these results by giving the precise rate of 
decay both for the kernel Hc and for a solitary-wave solution u:

Theorem 6.2. Let c > 1, m(ξ) =
√

tanh(ξ)
ξ , and δc ∈ (0, π2 ) satisfy 

√
tan(δc)

δc
= c. Then

Hc(x) = e−δc|x|
(
v(x) +

√
2π 2 tan(δc)δc

δc sec2(δc) − tan(δc)

)
,

for some even function v ∈ Lp({x ∈ R : |x| ≥ 1}) for all 1 ≤ p ≤ ∞ that satisfies v(x)  |x|−1/2 for |x| < 1.
Moreover, if u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is a non-trivial solution to (6.4), then

eδc|·|u(·) ∈ Lp(R) if and only if p = ∞.

Proof. As noted above, m satisfies (A1) and (A2) with m0 = −1
2 , so all results in Section 3 hold in the 

present case; in particular Hc(x)  |x|−1/2 for x near 0 (cf. Lemma 3.2). Moreover, m(z)2 is analytic for all 
z ∈ C except z ∈ iπZ \ {0}. Hence m(z) is analytic in the strip |Im z| < π . Moreover, as m is even and, 
2 2
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clearly, monotonically decreasing on (0, ∞), it is real-valued on, and only on, the real and the imaginary 
axis. Along the imaginary axis,

m(iy) =

√
tan(y)

y
,

which is even in y and a bijection from [0, π2 ) to [1, ∞). Hence, for all c > 1, the equation 
√

tan(y)
y = c

has one solution in (0, π2 ), which we denote by δc, and g has two singularities within the strip |Im z| < π
2 , 

namely at ±iδc. It follows from Lemma 3.4

Hc(x) = e−δc|x| (v(x) + C) ,

for v as in the statement and some C. However, as our singularities are at ±iδc, we can use (3.8) to calculate

C = −i
√

2π c

m′(iδc)
=

√
2π 2 tan(δc)δc

δc sec2(δc) − tan(δc)
,

where we used that c =
√

tan(δc)
δc

. This proves the first part.
For the second part, note that G(u) = u2 satisfies (A3) with r = 2. Having proved the first part, the 

second part now follows by Theorem 1.2. �
The capillary Whitham equation

The examples above were with very weak dispersion, but as shown in Section 4.3 the theory can also 
be applied to equations with stronger dispersion. We take the Capillary Whitham equation as an example. 
That is, we consider (6.3), now with

m(ξ) =

√
(1 + βξ2) tanh(ξ)

ξ
, (6.5)

where β > 0, called the Bond number, is the strength of the surface tension. In this case we have that all 
sub-critical solitary wave solutions are exponentially decaying:

Theorem 6.3. Let β > 0 and m be defined by (6.5), and let 0 < c < minξ∈Rm(ξ). Denoting by δ1/c > 0 the 
smallest positive number for which there exists a z0 ∈ C with Im z0 = δ1/c such that m(z0) = c, we have 
that if u ∈ L∞(R) with lim|x|→∞ u(x) = 0 is a non-trivial solution to (6.4), then

eδ1/c|·|u(·) ∈ Lp(R) if and only if p = ∞.

Noting that (A3) is clearly satisfied and for all β > 0 and 0 < c < minξ∈Rm(ξ),

m̃(ξ) := 1
m(ξ) =

√
ξ

(1 + βξ2) tanh(ξ)

satisfies (A1), (A1*) and (A2) (with 1
c in place of c), the result follows directly from Theorem 4.3. However, 

it is still of interest to investigate some of the dynamics. Let z0 ∈ C with Im z0 = δ1/c be such that m̃ = 1
c . 

We observe that m̃ is analytic in

C \ {iy : y ∈ R \ {0}, sign(y)(1 − βy2) tan(y) ≤ 0},
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and the intervals cut out from the imaginary axis are branch cuts. In particular it is analytic in the strip 
|Im z| < min(

√
β−1, π2 ). If β > 4

π2 , then

m̃(iy) =
√

y

(1 − βy2) tan(y) : [0, β−1/2) → [1,∞),

is a bijection; in particular, z0 lies on the imaginary axis within the strip where m̃ is analytic. If β < 4
π , 

however, then the point z0 does not lie within the strip, and not necessarily even on the imaginary axis (if 
z0 is not purely imaginary, then m̃(−z0) = 1

c as well).
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