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Abstract

We study the gaps between products of two primes in imaginary quadratic number
fields using a combination of the methods of Goldston–Graham–Pintz–Yildirim (Proc
Lond Math Soc 98:741–774, 2009), and Maynard (Ann Math 181:383–413, 2015). An
important consequence of our main theorem is existence of infinitely many pairs α1,α2
which are product of two primes in the imaginary quadratic field K such that
|σ (α1 − α2)| ≤ 2 for all embeddings σ of K if the class number of K is one and
|σ (α1 − α2)| ≤ 8 for all embeddings σ of K if the class number of K is two.
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1 Introduction
One of the classical problems in prime number theory is to study the gaps between prime
numbers. The famous twin prime conjecture asserts that there are infinitely many pairs
(p1, p2) of prime numbers such that |p1 − p2| = 2. Although this conjecture remains out
of reach, study of this conjecture leads to several interesting results. The first and very
important breakthrough in this direction is the result of Goldston et al. [3] who showed
that

lim inf
n→∞

pn+1 − pn
log pn

= 0 ,

where pn denotes the nth prime. Zhang [16] has subsequently improved this result by
showing that

lim inf
n→∞ (pn+1 − pn) ≤ 7 × 107.

Very shortly afterwards, a further breakthrough was obtained byMaynard [9], who devel-
oped amultidimensional version of the Selberg sieve to obtain 600 instead of 7×107. DHJ
polymath [13] group extends the methods of Maynard by generalizing the Selberg sieve
further reduce it to 246 unconditionally, and 6 under the assumption of the generalized
Elliott–Halberstam conjecture.
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Let {qn}n≥1 be the sequence of positive integers which are products of exactly two primes
written in the increasing order. The members of this sequence are called E2 numbers.
Heuristically problems involving E2- numbers are as difficult as problems involving prime
numbers as sievemethodsdonot seemtodistinguishbetweennumberswith evennumbers
of prime factors andoddnumberof prime factors (parity principle of Selberg [14]).Hence it
is interesting to study the gaps between E2- numbers. This study was initiated byGoldston
et al. [4] who showed that

lim inf
n

(qn+1 − qn) ≤ 26 . (1.1)

Later developing the methods of [4], they are able to improve the constant on the right
hand of (1.1) to 6 in [5].
Let K be a number field and letOK be its ring of integers. We say that an element α ∈ OK
is prime if the principle idealαOK is a prime ideal. Castillo et al. [1] have initiated the study
of gaps between primes in number fields. By extending the methods ofMaynard-Tao they
showed that for a totally real field K there are infinitely many primes α1 and α2 in OK
such that |σ (α1 − α2)| ≤ 600 for every embedding σ of K . The case when K is imaginary
is first considered by Vatwani [15]. In particular it is shown in [15] that there are infinitely
many prime pairs (p1,p2) ∈ Z[i]×Z[i] such thatN (p1 − p2) < 2462, whereN (·) denotes
the norm on Q(i). The method of the proof can be generalized to cover any imaginary
quadratic number field with class number 1.
In the spirit of [1,4,5,8] it is natural to consider gaps between products of two primes in
number fields. Before stating our main result of this article, we will fix some notations.
Let P be the set of prime numbers in OK . Let GK

2 be the set of all α ∈ OK which can be
written as a product of two elements from P . We say that a tuple (h1, . . . , hk ) ∈ Ok

K is
admissible if it does not cover all the residue classes modulo p for any prime ideal p ofOK .
Now we are in a position to state the main result of this paper.

Theorem 1 Let K be an imaginary quadratic number field and let r ≥ 2 be an integer.
Then there exists a positive integer k̃ := k̃(r, K ) such that for any admissible k-tuple
(h1, . . . , hk ) ∈ Ok

K with k ≥ k̃ , there are infinitely many α ∈ OK such that at least r of
α + h1, . . . ,α + hk are GK

2 -numbers.

It is clear from Theorem 1.1 that lim inf |σ (α − β)| ≤ M(K ) where M(K ) is a constant
depends only on K and the lim inf is taken when α,β runs over allGK

2 numbers. It will be
clear at the end of the proof that the constant depends only on the class number. In the
following corollaries we will precisely give the value ofM(K ) when the class number is 1
or 2.

Corollary 1 Let Kd := Q

(√
d
)
be an imaginary quadratic field with class number one (

there are exactly nine suchfields corresponding tod = −1,−2,−3,−7,−11,−19,−43,−67
and −163). There exist infinitely many GKd

2 -numbers α1,α2 such that |σ (α1 − α2)| ≤ 2 for
all embeddings σ of Kd.

Remark 1 For d = −1 and −2, we consider the admissible pair {0, 2}. Then, by taking
norms, there are infinitely many rational primes of the form p1 = a2 + db2, p2 = m2 +
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dn2, p3 = a21 + db21, p4 = m2
1 + dn21 with p1p2 = (a2 + db2)(m2 + dn2) and p3p4 =

(a2 + db2)(m2 + dn2)+ 2h

∣∣∣∣∣
a

√
db√

dn m

∣∣∣∣∣+ h2 with a, b,m, n, a1, b1, m1, n1 ∈ Z and |h| ≤ 2.

Similarly for d = −3,−7,−11,−19,−43,−67 and−163 considering the admissible pair
{0, 2} we get infinitely many rational primes of the form p1 = (a2 + db2)/4, p2 = (m2 +
dn2)/4, p3 = (a21 + db21)/4, p4 = (m2

1 + dn21)/4 with p1p2 = (a2 + db2)(m2 + dn2)/16 and

p3p4 = 1
16 (a

2+db2)(m2+dn2)+ 1
16

(
2h

∣∣∣∣∣
a

√
db√

dn m

∣∣∣∣∣ + h2
)
with a, b,m, n, a1, b1, m1, n1 ∈

Z and |h| ≤ 2.

Corollary 2 Let Kd := Q

(√
d
)
be an imaginary quadratic field with class number two.

There exist infinitely many GKd
2 -numbers α1,α2 such that |σ (α1 − α2)| ≤ 8 for all embed-

dings σ of Kd.

This article is organized as follows. In Sect. 2 we provide the necessary preliminaries
to prove Theorem 1. In Sect. 3 we prove a variant of Bombieri–Vinogradov theorem for
GK
2 -numbers. In Sect. 4 we explain the method of the proof. Section 2 is devoted to prove

Proposition 2. In Sect. 5 we will prove some preparatory lemmas which are essential for
the proof. In Sect. 6 we will choose the appropriate weights. In Sect. 8 we will conclude
the proofs of Theorem 1, Corollary 1 and Corollary 2.

2 Notations and preliminaries
Here and in what follows, K denotes an imaginary quadratic field unless otherwise men-
tioned. For much of this article, we follow the notations of Hinz [6] and Castillo et al.
[1]. Being an imaginary quadratic field K has no real embeddings and it has exactly two
complex embeddings, namely σ0 (the identity) and σ (complex conjugation). We observe
that for any non-zero α ∈ OK , |σ (α)| ≥ 1. For N > 1, let

A0(N ) = {α ∈ OK : 1 ≤ |σ (α)| ≤ N } and P0(N ) = P ∩ A0(N ).

Further, for N1 < N2, we define

A(N1, N2) = A0(N2) \ A0(N1), P(N1, N2) = A(N1, N2) ∩ P .

We would also use A(N ) and P(N ) for A(2N,N ) and P(2N,N ) respectively. For a set S,
|S| denotes its cardinality, for an element α ∈ K and an ideal q of OK , |α| and |q| denote
the respective norms.

Remark 2 A clarification about the notations is much called for at this point. For an
element α ∈ OK , |α| denotes its normwhereas |σ (α)| denotes absolute value as a complex
number. For imaginary quadratic fields, they are related by

|α| = σ0(α)σ (α) = |σ (α)|2.
Hence A0(N ) as defined above can also be described as

A0(N ) = {α ∈ OK : 1 ≤ |α| ≤ N 2}.
These usages will be clear from the context as we proceed.
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For elements a, b ∈ OK and an ideal q of OK , we write a ≡ b mod q to mean that
the ideal generated by a − b is contained in q, i.e (a − b) ⊂ q. Moreover, if the ideal (a)
generated by a ∈ OK does not have any common factor with q then we write (a, q) = 1.
Given a non-zero ideal q ⊆ OK , we define analogues of three classical multiplicative
functions, namely the norm |q| := |OK /q|, the Euler phi-function ϕ(q) := |(OK /q)×| and
the Möbius function μ(q) := (−1)r if q = p1 . . . pr for distinct prime ideals p1, . . . , pr and
μ(q) = 0 otherwise. We use τk (q) to denote the number of ways of writing q as a product
of k factors andω(q) to denote the number of distinct prime ideals containing q. For ideals
a, b, we use [a, b] and (a, b) to denote LCM and GCD of a, b.
The k-tuple (a1, . . . , ak ) with aj ∈ OK for all j (1 ≤ j ≤ k) is denoted by a.Weusew1, w2 to
denote prime elements ofOK . For any R ∈ R, |a| ≤ R is to be interpreted as

∏k
j=1 |aj| ≤ R.

The notion of divisibility among k-tuples is defined componentwise, i.e,

a|b ⇔ aj|bj ∀1 ≤ j ≤ k.

For any integral ideal q of OK , a|q ⇔ ∏k
j=1 aj|q. We use the notation [a, b] to denote

the product of the component-wise least common multiples, i.e. [a, b] = ∏k
j=1[aj , bj] and

(a, b) = 1 to mean that the ideals a and b are coprime, where 1 is the trivial ideal.
ForRe(s) > 1, the Dedekind zeta function of K is defined by

ζK (s) :=
∑

q⊆OK

|q|−s

where the sum is over all non-zero ideals of OK . This function admits meromorphic
continuation to the whole complex plane with a pole at s = 1. Let cK denote its residue at
s = 1.
Now we note that [1, page 4] the number of elements α ∈ A(N ) satisfying a congruence
condition α ≡ α0 (mod q) is given by

|A(N )|
|q| + O(|∂A(N, q)|),

where

|∂A(N, q)| � 1 +
( |A(N )|

|q|
) 1

2
. (2.1)

The following lemma is central in estimation of the sums that arise in Selberg’s higher
dimensional sieve.

Lemma 1 (Lemma 2.5, [1]) Suppose γ is a multiplicative function on the non zero ideals
ofOK such that there are constants κ > 0, A1 > 0, A2 ≥ 1, and L ≥ 1 satisfying

0 ≤ γ (p)
|p| ≤ 1 − A1,

and

−L ≤
∑

w≤|p|<z

γ (p) log |p|
|p| − κ log(z/w) ≤ A2,

for any 2 < w ≤ z. Let h be the completely multiplicative function defined on prime ideals
by h(p) = γ (p)/(|p| − γ (p)). Let G : [0, 1] → R be a piecewise differentiable function and
let Gmax = supt∈[0,1](|G(t)| + |G′(t)|). Then
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∑
|d|<z

μ(d)2h(d)G
(
log |d|
log z

)
= S

cκK (log z)
κ

�(κ)

∫ 1

0
G(x)xκ−1dx + OK,A1 ,A2 ,κ

(
LGmax(log z)κ−1) ,

where cK := Ress=1 ζK (s) and the singular series

S =
∏
p

(
1 − γ (p)

|p|
)−1 (

1 − 1
|p|

)κ

.

The following lemma is a consequence of Minkowski’s lattice point theorem (see [1, page
12]).

Lemma 2 Let A0(N ) and A(N ) be defined as above. We have

|A0(N )| = (1 + o(1))
2πN 2
√|DK | and |A(N )| = (1 + o(1))

6πN 2
√|DK |

where DK is the discriminant of K .

Let ωK be the number of roots of unity contained in K and hK be the class number of
K . The following lemma is a special case of Mitsui’s generalized Prime number theorem
[10].

Lemma 3 Let P0(N ) be defined as above. We have

| P0(N ) |= ωK
hKRK

∫ N 2

2

du
log u

+ OK (N 2 exp(−c
√
logN ))

where c is a non-zero positive real number.

We denotemK := ωK
hKRK as Mitsui’s constant. As a direct consequence of Lemma 3 we get

Lemma 4 Let P0(N ) be defined as above. Then we have

|P0(N )| = ωK
hK

N 2

log(N 2)

(
1 + O

(
1

logN

))
.

We shall also use Dedekind’s class number formula.

Lemma 5 ([12], Corollary 5.11 ) Let cK ,ωK and hK be defined as above. We have

cK = 2πhK
ωK

√|DK | .

Lemma 6 Let K be an algebraic number field. For any natural number R ≥ 2, we have
∑

u⊆OK|u|≤R

1
| u | �K log R and

∑
p∈P
|p|≤R

1
|p| �K log log R,

where first sum is over all non-zero integral ideals of OK whose norm is less than or equal
to R.
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3 A generalization of the Bombieri–Vinogradov theorem
A subset S of OK is said to have level of distribution ϑ for 0 < ϑ ≤ 1 if for any C > 0
there exists a constant B = B(C) such that

∑

|q|≤ |A0(N )|ϑ
(log |A0(N )|)B

max
M≤N

maxa
(a,q)=1

∣∣∣∣∣
∑

w∈S∩A0(M)
w≡a(mod q)

1 − |S ∩ A0(M)|
ϕ(q)

∣∣∣∣∣ �A,K
|A0(N )|
(logN )C

. (3.1)

Most important case is when S = P . In this case, an analog of Elliott–Halberstam con-
jecture for number fields predicts that the inequality (3.1) holds with any ϑ in 0 < ϑ ≤ 1.
Hinz [6] showed that primes have level of distribution 1

2 in totally real algebraic number
fields. Huxley [7] obtained level of distribution 1

2 for a weighted version of (3.1). The
GK
2 -numbers for K = Q was shown by Motohashi to have level of distribution 1

2 .
For our purposes, it is convenient to define the following related quantities.

π�(N ) = |P0(N )|, π�(N ; q, a) =
∑

w∈P0(N )
w≡a(mod q)

1,

ε(N ; q,α) = π�(N ; q,α) − 1
ϕ(q)

π�(N ), ε∗(N ; q) = max
M≤N

max
α;(α,q)=1

|ε(M; q,α)| .

Using a theorem of [7] and following the argument in Lemma 10.2 of [15], we prove the
following generalization of the Bombieri–Vinodradov theorem.

Proposition 1 Let K be an imaginary quadratic number field. Then (3.1) holds for any
ϑ ≤ 1

2 when S = P .

Proof Let q be an ideal in OK . We denote the ray class group (mod q) by Cq and a ray
class by Lq. Let π (x, K ) be the number of prime ideals in OK of norm ≤ x and χP be the
characteristic function of the prime ideals inOK . We define

E(x, q,Lq) =
∑

a⊂OK|a|≤x
a∈Lq

χP(a) − π (x, K )
h(q)

,

where h(q) denotes the cardinality of the ray class group Cq.Wewill now use the following
lemma.

Lemma 7 (Huxley [7]) Using the notations as above, for any A > 0, there exists a real
number B > 0 such that for any ϑ ≤ 1

2 we have
∑

|q|≤ xϑ
(log x)B

h(q)
ϕ(q)

max
Lq∈Cq

max
y≤x

∣∣EP(y, q,Lq)
∣∣ � x

(log x)A
.

We have the following relation between the number of ray classes and the class number
([15]):

h(q) = ϕ(q)hK
[U : Uq,1]

where U is the unit group of OK , Uq,1 = {α ∈ U : α ≡ 1 (mod q) ,α � 0} and hK is the
class number of K where α � 0 means all the real conjugates (if any) of α are positive.
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Now we will estimate the index set [U : Uq,1]. To do that we define the following homo-
morphism

ψ : U → (OK /q)∗

by ψ(u) = u (mod q). Then the kernel of ψ is Uq,1 and image of ψ is the residue classes
(mod q) that contain a unit. Let Tq = Im(ψ). Then |Tq| = [U : Uq,1] and h(q)

ϕ(q) = h
|Tq| .

Since number of units in a imaginary quadratic number field is 2, 4 or 6, so if u1, u2 ∈ U
satisfies u1 ≡ u2 (mod q) then |q|must divide |u1−u2|, which is atmost 4. Thus for |q| > 4
we see that Tq = |U |, which only depends only on K and not on q. Therefore using these
estimates, from Lemma 7 we obtain the following.

Lemma 8 Using the notation as in Lemma 7, for any A > 0 there exists a positive real
number B such that for any 0 < ϑ ≤ 1

2 , we have

∑

4<|q|≤ xϑ
(log x)B

max
Lq∈Cq

max
y≤x

∣∣EP(y, q,Lq)
∣∣ �K

x
(log x)A

. (3.2)

Proof Let a ∈ OK , (a, q) = 1 and Lq(a) be the ray class containing (a). Then from (3.2)
we get

∑

4<|q|≤ xϑ
(log x)B

max
(a,q)=1

max
y≤x

∣∣EP(y, q,Lq(a))
∣∣ � x

(log x)A
. (3.3)

It is easy to see that all integral ideals belonging toLq(a) are principal. Thereforewe obtain
∑

a⊂OK|a|≤y
a∈Lq

χP(a) =
∑

η∈OK|η|≤y
(η)∈Lq(a)

χP(η).

We also observe that there is an one to many correspondence between

{η ∈ P , |η| ≤ x, (η) ∈ Lq(a)} and {w ∈ P , |w| ≤ x, w ≡ a(q)}
depending on the number of units in OK (see [[15], Sect. 10] for more details). More
precisely, we have

∑
η∈OK|η|≤y

(η)∈Lq(a)

χP(η) = |U |
∑

w∈OK|w|≤y
w≡a(q)

χP(w).

For |q| > 4, we recall that h(q) = hKϕ(q)
|U | . So from (3.3), we get

∑

4<|q|≤ xϑ
(log x)B

max
(a,q)=1

max
y≤x

∣∣∣∣|U |
∑

w∈OK|w|≤y
w≡a(q)

χP(w) − |U |π (y, K )
hKϕ(q)

∣∣∣∣ � x
(log x)A

(3.4)

for any ϑ ≤ 1
2 and for any A > 0. Now Prime ideal theorem tells us

π (y, K ) ∼ y
log y

(3.5)
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Also from Lemma 4 and using ωK = |U |, we get

|P0(y1/2)| ∼ |U |
hK

y
log y

. (3.6)

Combining (3.5) and (3.6) we obtain

π (y, K ) ∼ hK
|U | |P

0(y1/2)|. (3.7)

Also note that

|U |
∑
|w|≤y
w≡a(q)

χP(w) =
∑

w∈P0(y1/2)
w≡a(q)

1.

From (3.7) and (3.4) we complete proof of the proposition. ��
We would use the above result in the following form which can be easily deduced by

partial summation.

Lemma 9 LetK bean imaginary quadratic numberfield. For anyϑ ,0 < ϑ ≤ 1
2 , anyB > 0

and a fixed integer h ≥ 0, there exists C = C(B, h) such that if Q ≤ |A(N )|ϑ (logN )−C ,
then

∑
|q|≤Q

μ2(q)hω(q)ε∗(N ; q) �B,K |A(N )|(logN )−B.

For 0 < ϑ
2 < b ≤ 1

2 , and for 1 ≤ Y ′ ≤ Nb ( Y ′ := N η with η ≤ ϑ
2 to be made precise

later) we define a function β onOK by

β(α) =
⎧⎨
⎩
1 if α = w1w2, w1 ∈ P(Y ′, Nb), w2 ∈ P(Nb,∞)

0 otherwise.

For the function β , we define

πβ (N ) =
∑

α∈A(N )
β(α), πβ ,q(N ) =

∑
α∈A(N )
(α,q)=1

β(α), πβ (N ; q, γ ) =
∑

α∈A(N )
α≡γ (mod q)

β(α)

εβ (N ; q, γ ) = πβ (N ; q, γ ) − 1
ϕ(q)

πβ ,q(N ), ε∗
β (N ; q) = max

M≤N
max

γ ;(γ ,q)=1
|εβ (M; q, γ )|.

An arithmetic function f is said to have level of distribution ϑ for 0 < ϑ ≤ 1 if for any
A > 0 there exists a constant B = B(A) such that

∑

q≤ Nϑ

(logN )B

max
M≤N

maxa
(a,q)=1

∣∣∣∣∣
∑
n≤M

n≡a(mod q)

f (n) − 1
ϕ(q)

∑
n≤M
(n,q)=1

f (n)

∣∣∣∣∣ �A
N

(logN )A
. (3.8)

Let τ (n) be the number of divisors of a natural number n. A complex valued arithmetic
function f is said to satisfy Siegel–Walfisz condition if there exist positive constantC such
that

f (n) = O
(
τ (n)C

)
and

∑
n≤x

f (n)χ (n) = O
(

x
(log x)3D

)
, (3.9)
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holds for all D > 0 and for any non-principal Dirichlet character χ (mod q) with q �
(log x)D.
If arithmetic functions f and g both satisfy (3.9) and have level of distribution 1

2 then
Motohashi [11] obtained that the Dirichlet convolution f ∗g also does so. In [2], we extend
Motohashi’s [11] result to arithmetic functions on imaginary quadratic number fields. As
the proof can be carried forward for any level of distribution 0 < ϑ ≤ 1

2 , viewing β as a
Dirichlet convolution of characteristic functions of P(Y ′, Nb) and P(Nb,∞), we get the
following lemma. More precisely, it is a direct application of Cauchy–Schwarz inequality
and Corollary 1.5 of [2].

Lemma 10 Let K be an imaginary quadratic number field. For 0 < ϑ ≤ 1
2 , B > 0 and

fixed integer h ≥ 0, there exists C = C(B, h) such that if Q ≤ |A(N )|ϑ (logN )−C , then
∑

|q|≤Q
μ2(q)hω(q)ε∗

β (N ; q) �B,K |A(N )|(logN )−B. (3.10)

4 Method
Now we will describe the method of proof which is a combination of methods of [5] and
[9].
Recall that a tuple (h1, . . . , hk ) ∈ Ok

K is admissible if it does not cover all residue classes
modulo p for any prime ideal p of OK . Let D0 = log log logN , m := ∏

|p|<D0 p. Since
(h1, . . . , hk ) ∈ Ok

K is admissible, there exists v0 modulo m such that each α + hi lies in
(OK /m)× for all j = 1, · · · , k . The main objects of consideration are the sums

S1 :=
∑

α∈A(N )
α≡v0(modm)

( ∑
d1 ,...,dk :

di|(α+hi) ∀i

λd1,...,dk

)2

and

S2 :=
∑

α∈A(N )
α≡v0(modm)

( k∑
i=1

β(α + hi)
)( ∑

d1 ,...,dk :
di|(α+hi) ∀i

λd1 ,...,dk

)2
, (4.1)

where the inner sum is a k-fold sum over integral ideals and λd1 ,...,dk are suitably chosen
weights to be made explicit later.
Since each summand is non-negative, if we can show that S2 > ρS1 for some positive
ρ, then there must be at least one α ∈ A(N ) such that among α + h1, . . . ,α + hk atleast
[ρ] + 1 are GK

2 -numbers. We choose the weights λd1,...,dk in such a way that λd1 ,...,dk = 0
unless (di,m) = 1, di is square-free, and |d1 · · · dk | ≤ R for each i = 1, · · · , k , where R will
be chosen later to be a small power of N . The main result of this section is the following.

Proposition 2 Let K be an imaginary quadratic number field. Suppose that the primes
P and GK

2 -numbers have a common level of distribution 0 < ϑ ≤ 1, and set R =
Nϑ (logN )−C for some constant C > 0. For a given a piecewise differentiable function
F : [0, 1]k → R supported on the simplexRk := {(x1, . . . , xk ) ∈ [0, 1]k : x1 +· · ·+ xk ≤ 1},
we set

λd1,...,dk :=
⎛
⎝

k∏
i=1

μ(di)|di|
⎞
⎠ ∑

r1 ,...,rk
di|ri ∀i

(ri ,m)=1∀i

μ(r1 . . . rk )2∏k
i=1 ϕ(ri)

F
(
log |r1|
log R

, . . . ,
log |rk |
log R

)
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whenever |d1 . . . dk | < R and (d1 . . . dk ,m) = 1, and λd1 ,...,dk = 0 otherwise.
Then

S1 = (1 + o(1))
ϕ(m)k |A(N )|(cK log R)k

|m|k+1 Ĩ1k (F )

and

S2 = (1 + o(1))
mKϕ(m)k |P(N )|(cK log R)k+1

|m|k+1

k∑
m=1

(
Ĩ (m)
2k (F ) + Ĩ (m)

3k (F )
)

where 0 < η ≤ ϑ
2 , mK = ωK

hK is Mitsui’s constant,

Ĩ1k (F ) :=
∫

· · ·
∫

Rk

F (x1, . . . , xk )2 dx1 . . . dxk ,

Ĩ (m)
2k (F ) :=
(∫ B/2

1

B
y(B − y)

dy
)⎛
⎝
∫

· · ·
∫

Rk−1

(∫ Tm

0
F (x1, . . . , xk ) dxm

)2

dx1 . . . dxm−1dxm+1 . . . dxk

⎞
⎠

and

Ĩ (m)
3k (F ) =

∫ 1

Bη

B
y(B − y)

∫
· · ·

∫

Rk−1

(∫ Tm(y)

0
F (x1, . . . , xk ) dxm

)2

dx1 . . . dxm−1 . . . dxkdy

with B = 2/ϑ , Tm = 1 − x1 − . . . − xm−1 − xm+1 − . . . − xk and Tm(y) = min(y, Tm).

5 Preparations
The sum S1 has been calculated in [1, Proposition 2.1]. So we would only work with S2. By
squaring innermost sum and interchanging summation from Eq. (4.1) we can write S2 as

S2 :=
k∑

m=1
S2m =

k∑
m=1

∑
a,b

λaλb
∑

α∈A(N )
α≡v0(m)

[aj ,bj]|(α+hj)∀j

β(α + hm). (5.1)

We note that [ai, bi] and [aj , bj] are relatively coprime for i �= j since the primes dividing
hi − hj also divides m.
If β(α +hm) = 1 then α +hm = w1w2 withw1 ∈ P(Y ′, Nb), w2 ∈ P(Nb,∞) where Y ′ and
Nb are as in the definition of β . So the norm of w2, |w2| = |σ (w2)|2 > N 2b > Nϑ > R by
our choice of R and b. Hence α + hm has exactly one prime divisor w1 with |w1| ≤ N 2b.
Since |a| ≤ R, |b| ≤ R and a, b are square-free, so all prime divisors of [a, b] have norm
≤ R.
Hence we conclude that either [am, bm] = 1 or [am, bm] = (w1). Before discussing either
of these cases we need the following lemma.

Lemma 11 For any function f : OK → C with |f | ≤ 1,

∑
α∈A(N )
α≡α0(q)

f (α + h) =
∑

α∈A(N )
α≡(α0+h)(q)

f (α) + O
(
1 +

( |A(N )|
|q|

)1/2
)
.
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Proof Putting α′ = α + h and α′
0 = α0 + h in the L.H.S, we get

∑

α′∈A(N )+h
α′≡α′

0(q)

f (α′).

Since |f | ≤ 1, we get

∑

α′∈A(N )+h
α′≡α′

0(q)

f (α′) =
∑

α′∈A(N )
α′≡α′

0(q)

f (α′) + O
( ∑

α′∈A(N )+h\A(N )
α′≡α′

0(q)

1
)
.

Now using (2.1), the O-term is

∑

α′∈A(N )+h\A(N )
α′≡α′

0(q)

1 =
∑

α′∈A(N )+h
α′≡α′

0(q)

1 −
∑

α′∈A(N )
α′≡α′

0(q)

1 = |A(N ) + h|
|q| − |A(N )|

|q|

+ O (∂(A(N ) + h, q)) + O (∂(A(N ), q)) � 1 +
( |A(N )|

|q|
)1/2

.

5.1 The case [am, bm] = 1

Replacing α + hm by α, the condition [aj , bj]|(α + hj) of the inner sum becomes
α ≡ (hm − hj) modulo [aj , bj] for all j �= m. Since [aj , bj] is coprime of m for all j, by
Chinese remainder theorem, these k − 1 congruence equations have a common solu-
tion α0

(
modm

∏k
j=1[aj , bj]

)
where the last product remains unchanged by excluding or

including the index j = m ( as [am, bm] = 1). Using Lemma 11 with f = β , we get

∑
α∈A(N )
α≡α0(q)

β(α + hm) =
∑

α∈A(N )
α≡(α0+hm)(q)

β(α) + O
(( |A(N )|

|q|
)1/2

)

where q = m
∏k

j=1[aj , bj]. Using this we have

∑
α∈A(N )
α≡v0(m)

[aj ,bj]|(α+hj)∀j

β(α + hm) =
∑

α∈A(N )
α≡α′

0(q)

β(α) + O
(( |A(N )|

|q|
)1/2

)

= 1
ϕ(q)

∑
α∈A(N )
(α,q)=1

β(α) + Eβ (N, q,α′
0) + O

(( |A(N )|
|q|

)1/2
)

where α
′
0 = α0 + hm.

5.2 The case [am, bm] = (w1)

In this case w1 ∈ P(Y ′, R′) with R′ = R1/2 because of the support of λa and λb. Let w̃1 be
the inverse of w1 (mod q/(w1)) . Similarly as above
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∑
α∈A(N )
α≡v0(m)

[aj ,bj ]|(α+hj )∀j

β(α + hm) =
∑

α−hm∈A(N )
α≡αo(q/(w1))

β(α) =
∑

α∈A(N )
α≡αo(q/(w1))

β(α) −
∑

α∈(A(N )+hm)\A(N )
α≡αo(q/(w1))

β(α)

=
∑

α∈A(N )
α≡αo(q/(w1))

β(α) + O
(( |A(N )|

|q|
)1/2

)
.

Now α ∈ A(N ) and α = w1w2. So we separate the above sum with respect to primes w1
and w2. We note that w1w2 ∈ A(N ) if and only if w2 ∈ A(N/|w1|1/2). Therefore in this
case, we have

∑
α∈A(N )

α≡αo(q/(w1))

β(α) =
∑

w2∈A
(

N
|w1|1/2

)
∩P

w2≡αow̃1(q/(w1))

1 + O
(( |A(N )|

|q|
)1/2

)

=
π�

(
N

|w1|1/2
)

ϕ (q/(w1))
+ ε

(
N

|w1|1/2 , q/(w1),αow̃1

)
+ O

(( |A(N )|
|q|

)1/2
)
.

For each q, the number of ways of choosing a1, . . . , ak and b1, . . . , bk so that

m

k∏
j=1

[aj , bj] = q

is at most τ3k (q).Therefore for each 1 ≤ m ≤ k, from Eq. (5.1), the sum S2m can be written
as

S2m =
∑

w1∈P0
1 (Y ′ ,Nb)

π�

(
N

|w1|1/2
) ∑

a,b
[am,bm]=1
(w1 ,q)=1

λaλb

ϕ
(
m
∏

j �=m[aj , bj]
)

+
∑

w1∈P0
1 (Y ′ ,R′)

π�

(
N

|w1|1/2
) ∑

a,b
[am,bm]=(w1)

λaλb

ϕ
(
m
∏

j �=m[aj , bj]
)

+ O
(

λ2max

( |A(N )|
|m|

)1/2 ∑
a1 ,...,ak
b1 ,...,bk

1
∏k

j=1 |[aj , bj]| 12

)
+ O

(
λ2max

∑

|q|<|m|R2
μ2(q)τ3k (q)ε∗

β (N, q)

)

+ O
(

λ2max
∑

|q|<|m|R2
μ2(q)τ3k (q)

∑

w1|q;w1∈P0
1 (Y ′ ,R′)

ε∗
(

N
|w1|1/2 , q/(w1)

))

where λmax = supa |λa|.
Using Lemma 6, it can seen that the first error term of the above expression of S2m is
bounded above by

λ2max|A(N )|1/2·
∑

|q|≤R2 log logN

μ2(q)τ3k (q)
|q|1/2

≤ λ2max|A(N )|1/2 · R(log logN )1/2
∏

|p|≤R2 log logN

(
1 + 3k

|p|
)

� λ2max|A(N )|1/2 · R(log R)3k .



P. Darbar et al. Res. Number Theory (2023) 9:11 Page 13 of 23 11

Lemma 10 gives that the second error term of S2m is bounded above by λ2max
|A(N )|
(logN )B for

any B > 0.
Lemma 9 gives that the third error term of S2m is bounded above by

� λ2max(log R)2k
∑

|q|≤|m|R2
μ(q)2τ3k (q)

∑
w1|q

w1∈P0
1 (Y

′ ,R′)

ε∗
(

N
|w1|1/2 , q/(w1)

)

� λ2max(log R)2k
∑

|w1|≤R
τ3k (w1)

∑

|s|≤ |m|R2
|w1|

μ(s)2τ3k (s)ε∗
(

N
|w1|1/2 , s

)

� λ2max
∑

|w1|≤R

|A(N )|
|w1| log (N/|(w1)|) � λ2max|A(N )|.

Combining these estimations of error terms we get the following lemma.

Lemma 12 Let S2m be defined as in (5.1). Then with the hypothesis of Proposition 2 we
have

S2m =
∑

w1∈P0
1 (Y ′ ,Nb)

π�

(
N

|w1|1/2
) ∑

a,b
[am,bm]=1(

w1 ,m
∏k

j=1[aj ,bj ]
)
=1

λaλb

ϕ
(
m
∏

j �=m[aj , bj]
)

+
∑

w1∈P0
1 (Y ′ ,R′)

π�

(
N

|w1|1/2
) ∑

a,b
[am,bm]=(w1)

λaλb

ϕ
(
m
∏

j �=m[aj , bj]
) + O

(
λ2max|A(N )|) .

We define

S2m(w1) =
∑
a,b

[am,bm]|(w1)

λaλb

ϕ
(
m
∏

j �=m[aj , bj]
) . (5.2)

The sum S2m(w1) is estimated in the following lemma.

Lemma 13 Let S2m(w1) be defined as in (13). For ideals r1, . . . , rk ofOK , we define

y(m)
r1,...,rk (w1) =

∏
j �=m

μ(rj)g(rj)
∑
a

rj |aj∀j
am|(w1)

λa∏
j �=m ϕ(aj)

(5.3)

where g is the multiplicative function defined by g(p) = |p| − 2 for all prime ideals p of A.
Let y(m)

max(w1) = supr1 ,...,rk |y(m)
r1 ,...,rk (w1)|. Then we have

S2m(w1) = 1
ϕ(m)

∑
u

um=1

∏
j �=m

μ2(uj)
g(uj)

(
y(m)
u (w1)

)2 + O
(
(y(m)

max(w1))2(log R)k−1 (ϕ(m))k−2

|m|k−1
1
D0

)
.

Proof From the definition of g it follows that

1
ϕ([ai, bi])

= 1
ϕ(ai)ϕ(bi)

∑
ui|(ai ,bi)

g(ui).
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From Eq. (5.2) we get,

S2m(w1) =
∑
a,b

[am,bm]|(w1)

λaλb

ϕ (m)
∏
j �=m

1
ϕ(aj)ϕ(bj)

∑
uj|(aj ,bj)

g(uj)

= 1
ϕ(m)

∑
u

um=1

∏
j �=m

g(uj)
∑
a,b

[am,bm]|(w1)
uj |(aj ,bj)∀j

λaλb∏
j �=m ϕ(aj)ϕ(bj)

.

Note that λa1 ,...,ak is supported on ideals a1, . . . , ak with (ai,m) = 1 for each i and (ai, aj) =
1∀i �= j. Thus we may drop the requirement that m is coprime to each of the [ai, bi]
from the summation, since these terms have no contribution. Thus the only remaining
restriction is that (ai, bj) = 1∀i �= j. So we can remove this coprimality condition by
Möbius inversion to get

S2m(w1) = 1
ϕ(m)

∑
u

um=1

∏
j �=m

g(uj)
∑

s1,2 ,...,sk,k−1

∏
1≤i,j≤k
i �=j

μ(si,j)
∑
a,b

[am,bm]|(w1)
uj |(aj ,bj)∀j

si,j |(ai ,bj),∀i �=j

λaλb∏
j �=m ϕ(aj)ϕ(bj)

.

Now we make the following change of variables:

cj = uj
∏
i �=j

si,j and dj = uj
∏
i �=j

sj,i.

By using Eq. (5.3) we can rewrite S2m(w1) as

S2m(w1) = 1
ϕ(m)

∑
u

um=1

∏
j �=m

μ2(uj)
g(uj)

∑
s1,2,...,sk,k−1

∏
i �=j

μ(si,j)
g(si,j)2

y(m)
c1,...,ck (w1)y(m)

d1 ,...,dk (w1).

In the above sum si,j | ([ai, bi], [aj , bj]), hence si,j is coprime to m for all i �= j. Then either
si,j = 1 or |si,j| > D0. For a fixed i and j, the total contribution from the terms with
|si,j| > Do is bounded above by

(y(m)
max(w1))2

ϕ(m)

( ∑
|u|<R

(u,m)=1

μ2(u)
g(u)

)k−1(∑
s

μ(s)2

g(s)2

)k(k−1)−1( ∑
|si,j |>D0

μ(si,j)2

g(si,j)2

)
.

From Lemma 6 the above quantity is bounded above by

(y(m)
max(w1))2

ϕ(m)
(log R)k−1

(
ϕ(m)
|m|

)k−1 1
D0

.

The main term of S2m(w1) is obtained from si,j = 1 for all i �= j which completes the
proof.

For ideals r1, . . . , rk , we define

yr1,...,rk =
( k∏

i=1
μ(ri)ϕ(ri)

) ∑
a1 ,...,ak
ri|ai ∀i

λa1 ,...,ak∏k
i=1 |ai|

and ymax = supr1 ,...,rk |yr1 ,...,rk |.
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We recall the inversion formula from [9, Eq. (5.8)] that

λa1 ,...,ak =
( k∏

i=1
μ(ai)|ai|

) ∑
r1 ,...,rk
ai|ri ∀i

yr1,...,rk∏k
i=1 ϕ(ri)

. (5.4)

Therefore λmax � ymax(log R)k .
The following lemma gives a relation between the quantities y(m)

r1,...,rk (w1) and yr1,...,rk .

Lemma 14 If um = 1 ( trivial idealOK ), then

y(m)
u1 ,...,uk (w1) =

∑
rm|rm|≤R

yu1 ,...,um−1 ,rm,um+1 ,...,uk
ϕ(rm)

− |(w1)|
ϕ((w1))

∑
sm|sm|≤R/|w1|

yu1 ,...,um−1 ,(w1)sm,...,uk
ϕ(sm)

+ O
(
ymax

ϕ(m)
|m|

log(R/D0)
D0

)
.

Proof Using (5.4), we get

y(m)
u1 ,...,uk (w1) =

∏
j �=m

μ(uj)g(uj)
∑
a

uj |aj∀j
am|(w1)

1∏
j �=m ϕ(aj)

k∏
i=1

|ai|μ(ai)
∑
r

ai |ri∀i

yr∏k
i=1 ϕ(ri)

=
∏
j �=m

μ(uj)g(uj)
∑
r

uj |rj∀j

yr∏k
i=1 ϕ(rj)

∑
a|r

uj |aj∀j
am|(w1)

∏k
j=1 |aj|μ(aj)∏
j �=m ϕ(aj)

=
∏
j �=m

μ(uj)g(uj)
∑
r

uj |rj∀j

yr∏k
j=1 ϕ(rj)

∏
j �=m

|uj|μ(rj)
ϕ(rj)

(
1 − |(w1)|1(w1)|rm

)

=
∏
j �=m

μ(uj)g(uj)
( ∑

r;uj |rj
um=1

yr∏k
i=1 ϕ(rj)

∏
j �=m

|uj|μ(rj)
ϕ(rj)

− |(w1)|
∑
r;uj |rj
(w1)|rm

yr∏
j ϕ(rj)

∏
j �=m

|uj|μ(rj)
ϕ(rj)

)

where 1(w1)|rm is the indicator function which takes value 1, if (w1) | rm and 0 otherwise.
We see from the support of yr1,...,rk that wemay restrict the summation over rj to (rj ,m) =
1. The main term is given by rj = uj∀j, for all other terms there exists j �= m such that
|rj| > D0|uj|. Therefore the error term is bounded above by

ymax

( ∏
j �=m

|uj|g(uj)
)⎛
⎝ ∑

rj>D0uj
uj |rj

μ2(rj)
ϕ(rj)2

⎞
⎠
⎛
⎝|(w1)|

∑
|rm|<R;(w1)|rm

(rm,m)=1

μ(rm)2

ϕ(rm)

⎞
⎠ ∏

1≤i≤k
i �=j,m

(∑
ui |ri

μ(ri)2

ϕ(ri)2

)

� ymax
ϕ(m)
|m|

log(R/D0)
D0

.

The main term given by rj = uj∀j �= m is

y(m)
u1 ,...,uk
um=1

(w1) =
∏
j �=m

|uj|g(uj)
ϕ(uj)2

⎛
⎝∑

rm

yu1 ,...,um−1 ,rm,um+1 ,...,uk
ϕ(rm)

− |(w1)|
∑
rm

(w1)|rm

yu1 ,...,um−1 ,rm,...,uk
ϕ(rm)

⎞
⎠.

Now the proof can be completed by noting that g(p)|p|
ϕ(p)2 = 1 + O(|p|−2) and rm = (w1)sm.
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6 Choosing the weights
For a real valued piecewise differentiable function F onRk as in Proposition 2 we define

yr1,...,rk := μ

⎛
⎝

k∏
i=1

ri

⎞
⎠

2

F
(
log |r1|
log R

, . . . ,
log |rk |
log R

)
.

Note that, yr1 ,...,rk is supported on square-free r = ∏k
i=1 ri such that (r,m) = 1. Hence

y(m)
u1 ,...,uk
um=1

(w1) =
∑
|r|≤R(

r,m
∏

j �=m uj
)
=1

μ(r)2

ϕ(r)
F
(
log |u1|
log R

, . . . ,
log |r|
log R

, . . . ,
log |uk |
log R

)

− |(w1)|
ϕ((w1))

∑
|s|≤R/|w1|(

s,m(w1)
∏

j �=m uj
)
=1

μ(s)2

ϕ(s)
F
(
log |u1|
log R

, . . . ,
log |s(w1)|

log R
, . . . ,

log |uk |
log R

)

+ O
(
ymax

ϕ(m)
|m|

log R
D0

)
=: S′

1 + S′
2 + O

(
ymax

ϕ(m)
|m|

log R
D0

)
.

Estimation of S′
1. To use Lemma 1 we set

γ (p) =
⎧⎨
⎩
1 if (p,m

∏
j �=m uj) = 1

0 otherwise
and h(p) = γ (p)

|p| − γ (p)
.

and

Fmax = sup
t∈[0,1]

(|F (t)| + |F ′(t)|).

The singular series in Lemma 1 is easily computed to be

S = ϕ(m
∏

j �=m uj)
| m∏

j �=m uj |
and also L � log log R. Thus we get

S′
1 = ϕ(m)

|m|
∏
j �=m

ϕ(uj)
|uj| cK (log R)

∫ 1

0
F
(
log |u1|
log R

, . . . , tm, . . . ,
log |uk |
log R

)
dtm

+O (Fmax log log R)

where cK = Ress=1ζK (s).
Estimation of S′

2. Observe that
log(|(w1)s|)
log(R/|w1|) = log R

log(R/|w1|)
(
log |s|
log R

+ log |(w1)|
log R

)
.

Therefore by Lemma 1, we get

S′
2 = − cK

ϕ(m)
|m|

∏
j �=m

ϕ(uj)
|uj| (log R)

∫ 1

log |w1|
log R

F
(
log |u1|
log R

, . . . , sm, . . . ,
log |uk |
log R

)
dsm

+ O (Fmax log log R) .

Putting S′
1 and S′

2 together, we get

y(m)
u1 ,...,uk
um=1

(w1) = ϕ(m)
|m| cK

∏
j �=m

ϕ(uj)
|uj| (log R)

(
F (m)
u1 ,...,uk − F (m)

u1 ,...,uk (w1)
)

(6.1)

+ O (Fmax log log R) + O
(
Fmax

ϕ(m)
|m|

log R
D0

)
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where

F (m)
u1 ,...,uk =

∫ 1

0
F
(
log |u1|
log R

, . . . , tm, . . . ,
log |uk |
log R

)
dtm

and

F (m)
u1 ,...,uk (w1) =

∫ 1

log |w1|
log R

F
(
log |u1|
log R

, . . . , sm, . . . ,
log |uk |
log R

)
dsm.

7 Proof of Proposition 2
Using the value of y(m)

u1 ,...,uk (w1) given by Eq. (6.1) in Lemma 13 we get

S2m(w1) = 1
ϕ(m)

∑
u

um=1

∏
j �=m

μ(uj)2

g(uj)

⎛
⎝ϕ(m)

|m| cK log R
∏
j �=m

ϕ(uj)
|uj|

(
F (m)
u1 ,...,uk − F (m)

u1 ,...,uk (w1)
)⎞
⎠

2

+ O
(
(Fmax)2(log R)k+1 (ϕ(m))k

|m|k+1
1
D0

)
.

Setting Y ′ := Y 1/2 and the above equation in Lemma 12, we have

S2m = ϕ(m)
|m|2 c

2
K (log R)

2
∑
w1

Y≤|w1|≤R

π�

(
N

|w1|1/2
) ∑

u
um=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F̃ (m)
u (w1)

)2

+ ϕ(m)
|m|2 c

2
K (log R)

2
∑
w1

R<|w1|≤N 2b

π�

(
N

|w1|1/2
) ∑

u
um=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F (m)
u

)2

+ O
(
(Fmax)2(log R)k+1 (ϕ(m))k

|m|k+1
1
D0

∑

w1∈P0
1 (Y ′ ,Nb)

π�

(
N

|w1|1/2
))

+ O
(
F2
max|A(N )|)

where

F̃ (m)
u1 ,...,uk (w1) =

∫ log |w1|
log R

0
F
(
log |u1|
log R

, . . . , tm, . . . ,
log |uk |
log R

)
dtm.

Using Lemma 4 we can say that π�
(

N
|w1|1/2

)
= |P(N )|α(|w1|)|w1| + OK

(
N 2

|w1|(logN )2

)
, where

α(u) := log(N 2)
log(N 2/u) .

Using this the main term of S2m becomes

= ϕ(m)
|m|2 c

2
K (log R)

2|P(N )|
∑
w1

Y≤|w1|≤R

α(|w1|)
|w1|

∑
u

um=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F̃ (m)
u (w1)

)2

+ ϕ(m)
|m|2 c

2
K (log R)

2|P(N )|
∑
w1

R<|w1|≤N 2b

α(|w1|)
|w1|

∑
u

um=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F (m)
u

)2

=:
ϕ(m)
|m|2 c

2
K (log R)

2|P(N )|

⎛
⎜⎜⎝

∑
w1

Y≤|w1|≤R

α(|w1|)
|w1| S4 +

∑
w1

R<|w1|≤N 2b

α(|w1|)
|w1| S5

⎞
⎟⎟⎠ .

Estimation of S4 and S5. To calculate both S4 and S5 we use Lemma 1 with

h(p) = γ (p)
|p| − γ (p)

and γ (p) =
⎧⎨
⎩
1 − |p|2−3|p|+1

|p|3−|p|2−2|p|+1 if (p,m) = 1

0 otherwise.
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The singular series can be easily computed to be S = ϕ(m)
|m| + O

(
ϕ(m)
|m|D0

)
and also L �

logD0. Recalling the coprimality conditions S4 can be written as

S4 =
∑

u1 ,...,um−1 ,um+1 ,...,uk
(ui ,uj)=1∀i �=j
(uj ,m)=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F̃ (m)
u (w1)

)2
.

We note that, two ideals a and b with (a,m) = (b,m) = 1 but (a, b) �= 1 must have a
common prime factor with norm greater thanD0.Thus we can drop the requirement that(
ui, uj

) = 1, at the cost of an error of size

� F2
max

∑
|p|>D0

∑
|u1|,...,|um−1|,|um+1|,...,|uk |<R

p|ui ,uj∀i �=j
(uj ,m)=1

∏
j �=m

μ(uj)2ϕ(uj)2

g(uj)|uj|2

� F2
max

( ∑
|p|>D0

ϕ(p)4

g(p)2|p|4
)( ∑

|r|<R
(r,m)=1

μ(r)2ϕ(r)2

g(r)|r|2
)k−1

� F2
max

(
ϕ(m)
|m|

)k−1 (log R)k−1

D0
.

Thus it is enough to evaluate the following sums

∑
u1 ,...,um−1 ,um+1 ,...,uk

(uj ,m)=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F̃ (m)
u (w1)

)2
and

∑
u1 ,...,um−1 ,um+1 ,...,uk

(uj ,m)=1

∏
j �=m

ϕ(uj)2

g(uj)|uj|2
(
F (m)
u

)2
.

Using Lemma 1 we have,

S4 =
(

ϕ(m)
|m|

)k−1
ck−1
K (log R)k−1I (m)

3k (F (w1)) + O
(
F2
max

(
ϕ(m)
|m|

)k−1 1
D0

(log R)k−1
)

and

S5 =
(

ϕ(m)
|m|

)k−1
ck−1
K (log R)k−1I (m)

2k (F ) + O
(
F2
max

(
ϕ(m)
|m|

)k−1 1
D0

(log R)k−1
)

where

I (m)
3k (F (w1)) =

∫
· · ·

∫

Rk−1

⎛
⎝
∫ Tm

(
log |w1 |
log R

)

0
F (x1, . . . , xk ) dxm

⎞
⎠

2

dx1 . . . dxm−1dxm+1 . . . dxk

and

I (m)
2k (F ) =

∫
· · ·

∫

Rk−1

(∫ Tm

0
F (x1, . . . , xk ) dxm

)2

dx1 . . . dxm−1dxm+1 . . . dxk

where Tm and Tm(y) are as defined in the statement of Proposition 2. We note that the
integral I (m)

2k (F ) is independent of prime element w1 of OK . Using the estimations of the
sums S4 and S5 the term S2m becomes
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S2m

= ϕ(m)k

|m|k+1 (cK log R)k+1|P(N )|
( ∑

w1
Y≤|w1|≤R

α(|w1|)
|w1| I (m)

3k (F (w1)) + I (m)
2k (F )

∑
w1

R<|w1|≤N 2b

α(|w1|)
|w1|

)

+ O
(
(Fmax)2(log R)k+1 ϕ(m)k

|m|k+1
1
D0

∑

Y<|w1|≤N 2b

π�

(
N

|w1|1/2
))

.

Finally it remains to calculate the following sums

S6 :=
∑
w1

R<|w1|≤N 2b

α(|w1|)
|w1| and S7 :=

∑
w1

Y≤|w1|≤R

α(|w1|)
|w1|

(
V (m)

(
log |w1|
log R

))2

where V (m)(y) := ∫ y
0 F (x1, . . . , xk )dxm.

Using Lemma 3, we have

∑

w∈P0(u1/2)

log |w| = mKu + E(u) where E(u) = OK

(
u

log u

)

wheremK = ωK
hK . From the above estimations, we get

S7 = mK

∫ R

Y
α(u)

(
V (m)

(
log u
log R

))2 du
u log u

+
∫ R

Y
α(u)

(
V (m)

(
log u
log R

))2 dE(u)
u log u

:= S8 + S9.

Putting u = Ry, first integral S8 gives main term for S7 which is

S8 = mK

∫ 1

B′η

B′

y(B′ − y)

(
V (m)(y)

)2
dy

where

η = log Y
log(N 2)

, B′ = log(N 2)
log R

.

Second integral S9 giving error term of S7 can be estimated as

S9 � (log R)−1.

Since R = Nϑ (logN )−C we observe that

B′ = B + O
(
log logN
logN

)

where B = 2
ϑ
as defined in Proposition 2. Therefore combining these estimations we have

S7 = mK

∫ 1

Bη

B
y(B − y)

(
V (m)(y)

)2
dy + O

(
log logN
logN

)
.

By using the same method we have

S6 = mK

∫ B/2

1

B
y(B − y)

dy + O
(
log logN
logN

)
.
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Therefore we conclude that

S2m =mK
ϕ(m)k

|m|k+1 (cK log R)k+1|P(N )|
(
Ĩ (m)
2k (F ) + Ĩ (m)

3k (F )
)

(7.1)

+O
(
F2
max(log R)k+1 (ϕ(m))k

|m|k+1
1
D0

|P(N )|
)
.

Recall that

S2 =
∑

1≤m≤k
S2m.

Therefore Proposition 2 follows from 7.1.

8 proof of theorem 1, corollary 1 and corollary 2
We start with the following corollary of the Proposition 2.

Corollary 3 Let K be an imaginary quadratic number field andmK be itsMitsui constant.
Suppose that the primes P and GK

2 -numbers have a common level of distribution 0 <

ϑ ≤ 1. Let (h1, . . . , hk ) ∈ Ok
K be an admissible tuple. Let B, Ĩ1k (F ), Ĩ

(m)
2k (F ) and Ĩ (m)

3k (F ),
1 ≤ m ≤ k be defined as in the statement of Proposition 2. Let Sk denote the set of
piecewise differentiable functions F : [0, 1] → R supported onRk such that Ĩ1k (F ), Ĩ

(m)
2k (F )

and Ĩ (m)
3k (F ), are non-zero for all m in 1 ≤ m ≤ k. Let

M̃k := sup
F∈Sk

∑k
m=1(Ĩ

(m)
2k (F ) + Ĩ (m)

3k (F ))
Ĩ1k (F )

and r̃k :=
⌈
mKM̃k

B

⌉

Then there are infinitely many α ∈ OK such that at least r̃k of the α + h1, . . . ,α + hk are
GK
2 -numbers.

Proof Since each summand is non-negative, if S := S2−ρS1 > 0 for some positive ρ, then
there is an α ∈ A(N ) such that α + h1, . . . ,α + hk contains atleast [ρ] + 1 GK

2 -numbers.
Therefore it is enough to show that S > 0 for all sufficiently large N .
Fix a δ > 0 and 0 < ε < δB

mK
, then choose F̃ ∈ SK so that

k∑
m=1

(Ĩ (m)
2k (F̃ ) + Ĩ (m)

3k (F̃ )) > (M̃k − ε)Ĩ1k (F̃ ).

Using Proposition 2, we obtain

S = (1 + o(1))
(ϕ(m)k |A(N )|(cK log R)k

|m|k+1

(
mK
B

k∑
m=1

(Ĩ (m)
2k (F ) + Ĩ (m)

3k (F )) − ρ Ĩ1k (F )
)

≥ (ϕ(m)k |A(N )|(cK log R)k

|m|k+1 Ĩ1k (F̃ )
(
mK
B

(M̃k − ε) − ρ

)
.

If ρ = mKM̃k
B − δ, then S > 0 for large N . Since δ is arbitrary, there are infinitely many

α ∈ OK such that at least
⌈mKM̃K

B
⌉
of the α + h1, . . . ,α + hk are GK

2 -numbers.
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To complete the proof of the Theorem 1 it is enough to show that r̃k → ∞ as k → ∞.
Since the integrals Ĩ (m)

3k (F ) are positive

M̃k ≥ sup
F∈Sk

∑k
m=1 Ĩ

(m)
2k (F )

Ĩ1k (F )

It follows from Sect. 7 of [9] that

sup
F∈Sk

∑k
m=1 Ĩ

(m)
2k (F )

Ĩ1k (F )
> c log k

for sufficiently large k and an absolute constant c > 0 ( note that Ĩ (m)
2k (F ) is a positive

constant multiple of J (m)
k (F ) in [9]). This completes the proof as r̃k is directly proportional

to M̃k .

Remark 3 Comparing the integral Ĩ (m)
2k (F ) with J (m)

k (F ) as in [9], we can show that M̃k ≥
(1.0986)Mk whereMk is as in [9]. Since ωK = 2 for fields with class number more than 2,
From Proposition 4.3 of [9], it follows that

r̃k >
1.0986
2hK

(log k − 2 log log k − 2)

for sufficiently large k . We conclude that there exist infinitely many α ∈ OK such that for
any admissible k-tuple (h1, · · · , hk ) there is atleast oneGK

2 -number among α+h1, · · · ,α+
hk (i.e r̃k ≥ 1) provided

log k − 2 log log k ≥ (1.82)hK + 2

and in that case the gap is bounded above by hk − h1 where (h1, · · · , hk ) is an admissible
k-tuple. Therefore gaps between GK

2 -numbers are bounded in terms of class numbers.

To prove the Corollary 1 stated in Sect. 1, we need following lemmas .

Lemma 15 (Proposition 3.1, [1]) Suppose that H is an admissible tuple in Z. Then H is
also an admissible tuple inOK for every number field K .

Using Proposition 1, we obtain the following lemma.

Lemma 16 (Corollary 1.4, [2]) Let K be an imaginary quadratic field. Then product of
two primes inOK have level of distribution 1

2 .

Proof of Corollary 1 Recall that

S = S2 − ρS1 (8.1)

where S2 and S1 are defined as in Proposition 2.We choose F (t1, . . . , tk ) to be a symmetric
polynomials in t1, . . . , tk . By Proposition 2, we see that

S = (1 + o(1))
(ϕ(m)k |A(N )|(cK log R)k

|m|k+1 Ĩ

where

Ĩ = mKk
B

(
Ĩ (1)2k (F ) + Ĩ (1)3k (F )

)
− ρ̃I1k (F ).
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We know that

ωKd =

⎧
⎪⎪⎨
⎪⎪⎩

4 if d = −1

6 if d = −3

2 otherwise.

Therefore Mitsui’s constant for imaginary quadratic number fields of class number one
are listed below:

mKd =

⎧⎪⎪⎨
⎪⎪⎩

4 if d = −1

6 if d = −3

2 otherwise.

For Corollary 1, we take k = 2,ϑ = 1
2 , ρ = 1, η = 1

200 , F (t1, t2) = 1−F1(t1, t2)+F2(t1, t2),
where F1(t1, t2) = t1 + t2 and F2(t1, t2) = t21 + t22 .
Using SageMath we obtain

Ĩ12(F ) = 0.227778, Ĩ (1)22 (F ) = 0.169151, Ĩ (1)32 (F ) = 0.150712.

Therefore we have Ĩ > 0. Hence Corollary 1 follows from Lemma 15 considering the
admissible set {0, 2} and invoking Lemma 16.

Proof of Corollary 2 For imaginary quadratic number field Kd of class number two

ωKd = 2 and mKd = 1.

For Corollary 2, we choose k = 4,ϑ = 1
2 , ρ = 1, η = 1

200 , F (t1, t2, t3, t4) = 1 −
F1(t1, t2, t3, t4)+F2(t1, t2, t3, t4),whereF1(t1, t2, t3, t4) = t1+t2+t3+t4 andF2(t1, t2, t3, t4) =
t21 + t22 + t23 + t24 .
Using SageMath we obtain

Ĩ14(F ) = 0.0095238, Ĩ (1)24 (F ) = 0.0044928, Ĩ (1)34 (F ) = 0.0059492.

Therefore we have Ĩ > 0. Hence Corollary 2 follows from Lemma 15 considering the
admissible set {0, 2, 6, 8} and using Lemma 16.
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