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1 Introduction

One of the classical problems in prime number theory is to study the gaps between prime
numbers. The famous twin prime conjecture asserts that there are infinitely many pairs
(p1, p2) of prime numbers such that [p; — p2| = 2. Although this conjecture remains out
of reach, study of this conjecture leads to several interesting results. The first and very
important breakthrough in this direction is the result of Goldston et al. [3] who showed
that

fpn+1 — Pn -0,

lim in

n— 00 logpn

where p, denotes the nth prime. Zhang [16] has subsequently improved this result by
showing that

liminf(p,11 — pn) <7 x 107
n— o0

Very shortly afterwards, a further breakthrough was obtained by Maynard [9], who devel-
oped a multidimensional version of the Selberg sieve to obtain 600 instead of 7 x 107. DHJ
polymath [13] group extends the methods of Maynard by generalizing the Selberg sieve
further reduce it to 246 unconditionally, and 6 under the assumption of the generalized
Elliott—Halberstam conjecture.
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Let {g»}n>1 be the sequence of positive integers which are products of exactly two primes
written in the increasing order. The members of this sequence are called E; numbers.
Heuristically problems involving E5- numbers are as difficult as problems involving prime
numbers as sieve methods do not seem to distinguish between numbers with even numbers
of prime factors and odd number of prime factors (parity principle of Selberg [14]). Hence it
is interesting to study the gaps between E;- numbers. This study was initiated by Goldston
et al. [4] who showed that

lim inf(gnt1 — g) < 26. (L.1)
n

Later developing the methods of [4], they are able to improve the constant on the right
hand of (1.1) to 6 in [5].

Let K be a number field and let Ok be its ring of integers. We say that an element o € Og
is prime if the principle ideal O is a prime ideal. Castillo et al. [1] have initiated the study
of gaps between primes in number fields. By extending the methods of Maynard-Tao they
showed that for a totally real field K there are infinitely many primes o and oy in Ok
such that |o (o7 — @2)| < 600 for every embedding o of K. The case when K is imaginary
is first considered by Vatwani [15]. In particular it is shown in [15] that there are infinitely
many prime pairs (p;, pp) € Z[i] x Z[i] such that N(p; — p,) < 2462, where N (-) denotes
the norm on Q(i). The method of the proof can be generalized to cover any imaginary
quadratic number field with class number 1.

In the spirit of [1,4,5,8] it is natural to consider gaps between products of two primes in
number fields. Before stating our main result of this article, we will fix some notations.
Let P be the set of prime numbers in O. Let G§ be the set of all « € Ok which can be
written as a product of two elements from P. We say that a tuple (h1,..., hg) € O}g is
admissible if it does not cover all the residue classes modulo p for any prime ideal p of Ox.

Now we are in a position to state the main result of this paper.

Theorem 1 Let K be an imaginary quadratic number field and let r > 2 be an integer.
Then there exists a positive integer k = k(r, K) such that for any admissible k-tuple
(b, .-, bi) € (9}2 with k > k, there are infinitely many a € Ok such that at least r of
a+0y,...,0+ byare Gg—numbers.

It is clear from Theorem 1.1 that liminf |o(a¢ — B)] < M(K) where M(K) is a constant
depends only on K and the lim inf is taken when «, B runs over all Gg numbers. It will be
clear at the end of the proof that the constant depends only on the class number. In the
following corollaries we will precisely give the value of M(K) when the class number is 1
or 2.

Corollary1 Let K; :=Q (ﬁ) be an imaginary quadratic field with class number one (
there are exactly nine such fields correspondingtod = —1, -2, —3, =7, —11, —19, —43, —67
and —163). There exist infinitely many ng—numbers a1, o such that |o (a1 — )| < 2 for
all embeddings o of K.

Remark 1 For d = —1 and —2, we consider the admissible pair {0, 2}. Then, by taking
norms, there are infinitely many rational primes of the form p; = a? + db? p, = m? +
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dn? p3 = a% +db? py = m% + dn% with p1py = (a® + db*)(m?* + dn?) and pspy, =
a ~db

Vdn m
Similarly ford = —3, -7, —11, —19, —43, —67 and —163 considering the admissible pair

{0, 2} we get infinitely many rational primes of the form p1 = (a® + db®)/4, p» = (m*> +

dn?)/4, p3 = (a% + db%)/4,p4 = (m% + dn%)/él with p1py = (a® + db*)(m? + dn*)/16 and

a db
Vdn m

(a® + db®)(m? + dn?) + 2h + h* with a, b, m, n, a1, by, my, ny € Zand || < 2.

p3pa = 1¢(@®+db*)(m®+dn*)+ 1 <2h‘

Z and |h| < 2.

+ h2> witha, b, m, n, ay, by, my, n1 €

Corollary 2 Let K; := Q (\/3) be an imaginary quadratic field with class number two.

There exist infinitely many ng -numbers a1, oy such that |o (o — az)| < 8 for all embed-
dings o of K.

This article is organized as follows. In Sect. 2 we provide the necessary preliminaries
to prove Theorem 1. In Sect. 3 we prove a variant of Bombieri—Vinogradov theorem for
Gg -numbers. In Sect. 4 we explain the method of the proof. Section 2 is devoted to prove
Proposition 2. In Sect. 5 we will prove some preparatory lemmas which are essential for
the proof. In Sect. 6 we will choose the appropriate weights. In Sect. 8 we will conclude
the proofs of Theorem 1, Corollary 1 and Corollary 2.

2 Notations and preliminaries

Here and in what follows, K denotes an imaginary quadratic field unless otherwise men-
tioned. For much of this article, we follow the notations of Hinz [6] and Castillo et al.
[1]. Being an imaginary quadratic field K has no real embeddings and it has exactly two
complex embeddings, namely oy (the identity) and o (complex conjugation). We observe
that for any non-zero o € Ok, |o(@)| > 1. For N > 1, let

A'(N)={a € Ok : 1 <|o(a)| < N}and P'(N) = P N A°(N).

Further, for N; < N>, we define
ANy, Np) = A°(Np) \ A°(N1), P(N1, Np) = ANy, No) N P.

We would also use A(N) and P(N) for A(2N, N) and P(2N, N) respectively. For a set S,
|S| denotes its cardinality, for an element o € K and an ideal q of Ok, |«| and |q| denote
the respective norms.

Remark 2 A clarification about the notations is much called for at this point. For an
element @ € Ok, |a| denotes its norm whereas |0 («)| denotes absolute value as a complex
number. For imaginary quadratic fields, they are related by

la| = oo(@)o (@) = |o (@)
Hence A°(N) as defined above can also be described as
A'WN)={a € Ox :1 < |a| < N?}.

These usages will be clear from the context as we proceed.
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For elements a, b € Ok and an ideal q of Ok, we write 2 = b mod ¢ to mean that
the ideal generated by a — b is contained in g, i.e (@ — b) C q. Moreover, if the ideal (a)
generated by a € O does not have any common factor with q then we write (g, q) = 1.
Given a non-zero ideal ¢ € Ok, we define analogues of three classical multiplicative
functions, namely the norm |q| := |Ox/q|, the Euler phi-function ¢(q) := |(Ox /q)*| and
the Mobius function u(q) := (—1)" if g = p;1 . .. p, for distinct prime ideals py, . . ., p, and
1(q) = 0 otherwise. We use t(q) to denote the number of ways of writing q as a product
of k factors and w(q) to denote the number of distinct prime ideals containing g. For ideals
a, b, we use [a, b] and (g, b) to denote LCM and GCD of g, b.

The k-tuple (ay, .. ., ai) witha; € Ok forallj (1 <j < k) is denoted by 0. We use w1, wa to
denote prime elements of Og. Forany R € R, |a| < Ris to be interpreted as ]_[}];1 laj] <R
The notion of divisibility among k-tuples is defined componentwise, i.e,

alb & ajlbj Vi<j<k

For any integral ideal q of Ok, alq & I—[]k:1 a;jlq. We use the notation [g, b] to denote
the product of the component-wise least common multiples, i.e. [a, b] = ]_[]].(:1 [a;, b;] and
(¢, b) = 1 to mean that the ideals a and b are coprime, where 1 is the trivial ideal.

For Re(s) > 1, the Dedekind zeta function of K is defined by

tkls) =Y laI”*

q9<O0k

where the sum is over all non-zero ideals of Og. This function admits meromorphic
continuation to the whole complex plane with a pole at s = 1. Let cx denote its residue at
s=1.
Now we note that [1, page 4] the number of elements & € A(N) satisfying a congruence
condition ¢ = ¢ (mod q) is given by

AN

|C|—| + O(|dA(N, 9)]),
where

1
AN)| 2
panal <1+ (S @)
The following lemma is central in estimation of the sums that arise in Selberg’s higher

dimensional sieve.

Lemma 1 (Lemma 2.5, [1]) Suppose y is a multiplicative function on the non zero ideals
of Ok such that there are constants k > 0,A1 > 0, Ay > 1, and L > 1 satisfying

and

lo
—L < Z W — Kk log(z/w) < Ay,

w<|p|<z
forany2 < w < z. Let h be the completely multiplicative function defined on prime ideals

by h(p) = y(p)/(Ip] — y(p)). Let G: [0, 1] — R be a piecewise differentiable function and
let Guax = supe(o1)(IG(6)] + |G'(2)]). Then
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1 2 k(1 K 1
S 1@h)G (281 _ gklog?) / G Ldx + Oxcay anie (LGmax(logz)< ),
log z I'(x) 0

[0]<z

where cx := Ress—1 (i () and the singular series
V(p)>1 ( 1 )K
s=[[(1-2% 1——) .
1:[ ( ] ]

The following lemma is a consequence of Minkowski’s lattice point theorem (see [1, page
12]).

Lemma 2 Let A°(N) and A(N) be defined as above. We have

. B 27TN2 _ 67TN2
IA°(N)| = (1 + o(1)) and |ANN)| = (1 + 0(1))m

A/ 1Dk|

where Dy is the discriminant of K.

Let wi be the number of roots of unity contained in K and /g be the class number of
K. The following lemma is a special case of Mitsui’s generalized Prime number theorem
[10].

Lemma 3 Let PO(N) be defined as above. We have

N2
o WK du 5
N) |= Ox (N —cy/log N
) 1= | ogu + 0KV exp(—cy/logN))

where c is a non-zero positive real number.

We denote my = h;‘:—ﬁK as Mitsui’s constant. As a direct consequence of Lemma 3 we get

Lemma 4 Let PO(N) be defined as above. Then we have

ony _ @K N? 1
|P°(N)| = e Tog (V%) (1+o(logN>),

We shall also use Dedekind’s class number formula.

Lemma 5 ([12], Corollary 5.11) Let ck, wx and hi be defined as above. We have
2mhyg

K= ———.
wk+/|Dk|

Lemma 6 Let K be an algebraic number field. For any natural number R > 2, we have

1 1
Y — <klogR and Y — < loglogR,

uCOg vl peP ol
[ul<R [pI=R

where first sum is over all non-zero integral ideals of Ox whose norm is less than or equal
toR.

11
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3 A generalization of the Bombieri-Vinogradov theorem
A subset S of Ok is said to have level of distribution ¥ for 0 < 9 < 1 if forany C > 0
there exists a constant B = B(C) such that

IS N A M) |AO(N)|
2, o max T | g B
|q1<—A%a0r” = @a)=11esn4%1) ¢ &
= (log |40(N))B w=a(mod q)

Most important case is when & = P. In this case, an analog of Elliott—Halberstam con-
jecture for number fields predicts that the inequality (3.1) holds with any ¢ in0 < ¢ < 1.
Hinz [6] showed that primes have level of distribution % in totally real algebraic number
fields. Huxley [7] obtained level of distribution % for a weighted version of (3.1). The
GX-numbers for K = Q was shown by Motohashi to have level of distribution %

For our purposes, it is convenient to define the following related quantities.

N = 1PN, A WNsga) = YL

wePON)
w=a(mod q)

1
e(N;q ) = 1" (N;q @) — —7"(N), &*(N;q) = max max |e(M;q, o).
o(q) M<N a;(a,q)=1
Using a theorem of [7] and following the argument in Lemma 10.2 of [15], we prove the

following generalization of the Bombieri—Vinodradov theorem.

Proposition 1 Let K be an imaginary quadratic number field. Then (3.1) holds for any
Y < % when S = P.

Proof Let q be an ideal in Okx. We denote the ray class group (mod q) by Cy and a ray
class by L. Let 7 (x, K) be the number of prime ideals in Ok of norm < x and yp be the
characteristic function of the prime ideals in Og. We define

w(x K
E(x) 9 ['q) = Z X]P)(a) - %y
aCOgk q
la|<x
acly

where /1(q) denotes the cardinality of the ray class group C,. We will now use the following

lemma.

Lemma 7 (Huxley [7]) Using the notations as above, for any A > 0, there exists a real
number B > 0 such that for any ¥ < % we have

h(a) x
E — Ep(y, g, _—
¢(q) Cr?gé(q r}I]lSa;(| POy 0 Lo)] < (logx)4

We have the following relation between the number of ray classes and the class number

([15]):

h
h(q) = p(a)hk
(U : Uga]
where U is the unit group of O, U1 = {a € U : @ = 1(mod q), o > 0} and ki is the

class number of K where @ > 0 means all the real conjugates (if any) of « are positive.
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Now we will estimate the index set [/ : Uj,1]. To do that we define the following homo-
morphism

YU — (Ok/9)"

by ¥ (u) = u (mod q). Then the kernel of v is U;,1 and image of ¥ is the residue classes
(mod q) that contain a unit. Let Tq = Im(y). Then |Ty| = [U : Uq,1] and 2 w(q) \Y@q\'
Since number of units in a imaginary quadratic number field is 2,4 or 6, so if uj, uy € U
satisfies u; = uy (mod q) then |¢q| must divide |u; —uy|, which is atmost 4. Thus for |q| > 4
we see that Ty = |U|, which only depends only on K and not on q. Therefore using these

estimates, from Lemma 7 we obtain the following.

Lemma 8 Using the notation as in Lemma 7, for any A > 0 there exists a positive real
number B such that for any 0 < 9 < , we have

Z max max |Ep(y, g, £q)| <k

a (32)
Lq€Cy y=x (logx)A” ’

4<|q|= logx)

Proof Leta € Ok, (a,q) = 1 and Lq(a) be the ray class containing (a). Then from (3.2)
we get

Z max max |Ep(y, g, Lq(a))| <<

3.3
(a,q)=1 y=x (33)

ogx)A’
4<|q|<

logx

It is easy to see that all integral ideals belonging to £ (a) are principal. Therefore we obtain

D oxe@= Y xe).

aCOg neOgk
la|<y Inl=<y
acLlyq (meLq(a)

We also observe that there is an one to many correspondence between
{neP,nl <x () € Ly(@)} and {weP|w <xw=a(q)

depending on the number of units in Ok (see [[15], Sect. 10] for more details). More
precisely, we have

> xem)=1Ul Y xew).

neOx weOg
Inl<y [w|<y
(meLg(a) w=a(q)

For |q| > 4, we recall that k(q) = hK_(ch . So from (3.3), we get

Ul (y, K X
Z max max ||U| Z X[P(W)—l Im (. K) < — (3.4)
(@,q)=1 y=* hio(q) (log x)
4<lql< 2 e oK
~ (logx)B Iwl<y
w=a(q)

for any ¥ < % and for any A > 0. Now Prime ideal theorem tells us

7(y, K) ~ . (3.5)

logy
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Also from Lemma 4 and using wg = |U|, we get

|y

730 1/2
P91~ T Togy

(3.6)

Combining (3.5) and (3.6) we obtain

(3 K) ~ f[j' PG, (3.7)

Also note that

iy oew= Y L

wl<y wePO(y1/2)
w=a(q) w=a(q)

From (3.7) and (3.4) we complete proof of the proposition. O

We would use the above result in the following form which can be easily deduced by

partial summation.

Lemma 9 LetK beanimaginary quadratic number field. Forany 9,0 < 9 < ,omyB >0
and a fixed integer h > 0, there exists C = C(B, h) such that if Q < |A(N)|” (log N)~ C
then

> P @h”Ve* (N3 q) s IAWN)|(log N) 2.
lql=Q

For 0 < % <b< %, and for1 <Y’ < N? (Y’ := N" with n < %to be made precise
later) we define a function 8 on Ok by
B(a) 1 ifa=wiwy,w € PY/, Nb), Wy € P(Nb, 0)
o) =

0 otherwise.

For the function 8, we define

mp(N) = Y Bl@) mpaN)= Y Bl@) mpWNigy)= Y Bl
a€A(N) ac€A(N) a€A(N)
(,q)=1 a=y(mod q)

1
ep(N;9,y) = mg(N;q, ) — _)”ﬁ,q(N): eg(N;q) = max max |eg(M;q, y)l.

®(q M=N yi(y,q)=1

An arithmetic function f is said to have level of distribution ¥ for 0 < ¥ < 1 if for any
A > 0 there exists a constant B = B(A) such that

N
_ —, 3.8
E max max E f(n) E fn)| <4 (log N)A (3.8)
(a q) 1 n<m n<m
q= (logN) n=a(mod q) (Vl q)=1

Let 7(n) be the number of divisors of a natural number 7. A complex valued arithmetic
function f is said to satisfy Siegel-Walfisz condition if there exist positive constant C such
that

709 =0 (x00°) and Y0 = 0 ), (9)

n=<x
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holds for all D > 0 and for any non-principal Dirichlet character x (mod g) with g <«
(log x)P.

If arithmetic functions f and g both satisfy (3.9) and have level of distribution % then
Motohashi [11] obtained that the Dirichlet convolution f *g also does so. In [2], we extend
Motohashi’s [11] result to arithmetic functions on imaginary quadratic number fields. As
the proof can be carried forward for any level of distribution 0 < ¢ < %, viewing 8 as a
Dirichlet convolution of characteristic functions of P(Y’, N?) and P(N?, 00), we get the
following lemma. More precisely, it is a direct application of Cauchy—Schwarz inequality
and Corollary 1.5 of [2].

Lemma 10 Let K be an imaginary quadratic number field. For 0 < ¢ < %, B > 0and
fixed integer h > 0, there exists C = C(B, h) such that if Q < |A(N)|” (log N)~C, then

D @ Pef(N;q) <k JAN)|(log N)~~. (3.10)
lal=Q

4 Method

Now we will describe the method of proof which is a combination of methods of [5] and
[9].

Recall that a tuple (h1,...,b) € (’)Ik< is admissible if it does not cover all residue classes
modulo p for any prime ideal p of O. Let Dy = logloglog N, m := HIPI<D0 p. Since
(b, .-, bx) € (’)Ik< is admissible, there exists vp modulo m such that each o + b; lies in
(Og/m)* forallj =1, - -, k. The main objects of consideration are the sums

Si= ) ( > )»al,...,ak>2

acA(N) 01,0000
a=vo(modm) 0;l(e+h;) Vi

and
k 2
SZ = Z (Z IB(a + hl)) < Z )‘-31,...,3/(> h) (4.1)
acA(N) i=1 I
a=vg(mod m) 0;|(e+bh;) Vi

where the inner sum is a k-fold sum over integral ideals and Ay,,..,o, are suitably chosen
weights to be made explicit later.

Since each summand is non-negative, if we can show that So > pS; for some positive
p, then there must be at least one « € A(N) such that among o + b3, ..., o + by atleast
[p] +1are Gg-numbers. We choose the weights 13,, .5, in such a way that Ap,;,..,0, =0
unless (0;, m) = 1, ; is square-free, and [01 - - - 0¢| < Rforeachi =1, -- -, k, where R will

be chosen later to be a small power of N. The main result of this section is the following.

Proposition 2 Let K be an imaginary quadratic number field. Suppose that the primes
P and Gé(-numbers have a common level of distribution 0 < v < 1, and set R =
N? (log N)™ for some constant C > 0. For a given a piecewise differentiable function
F:[0,1]% — R supported on the simplex Ry := {(x1, ..., xx) € [0, K x4+ <13,
we set

k 2
p(ry ... ty) log [v1] log [vx|
b= | [l | Y. 5 F( o L
i=1 oot | i1 #(x0) og og
il Vi
(v;,m)=1Vi
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whenever |01 ... 0| < Rand (01 ...0;, m) =1, and Xy,,.. o, = 0 otherwise.

Then
N log R
= (14 o 2 i X e(6)
and
5, = (14 o1y O POl log R+ i (e + T ®)
2= |m[k+1 —

where0 < n < g, mg = ‘ZK is Mitsui’s constant,

71/<(F) Z//R F(xl,...,xk)zdxl...dxk,
k

~(m)
2/( (F)

B2 g T, 2
(/; y(}g—y)dy> (/ N /Rk71 <A F(JCl, .. ,Xk)dxm> dxl e dxm_ldxm+1 e dxk)

and

Fom) ! T ’
I3, (F) = ./By, YB— y)f /Rk 1 (f F(x1, ... ,xk)dxm) dxy...dx,—1 ... dxdy

withB=2/%,Tyn=1—%1— ... —%Xm-1 — Xmt+1 — - .. — X and Tp,(y) = min(y, Tp,).

5 Preparations
The sum S; has been calculated in [1, Proposition 2.1]. So we would only work with S,. By
squaring innermost sum and interchanging summation from Eq. (4.1) we can write S, as

Sy = Zszm = Z Dohare Y. Blatbn) (5.1)

m=1 a,b acA(N)
a=vp(m)
[a;,b;]1(a+b;)Vj

We note that [a;, b;] and [a), b;] are relatively coprime for i # j since the primes dividing
h; — b; also divides m.

If B(a + b,n) = 1thena +b,, = wiwy with wy € P(Y’, N?), wy € P(N?, 00) where Y’ and
NP are as in the definition of 8. So the norm of wy, [wa| = |o(w2)|2 > N2) >~ N? > R by
our choice of R and b. Hence « + b,, has exactly one prime divisor w; with [w1| < N 2,
Since |a] < R, |b] < R and g, b are square-free, so all prime divisors of [g, b] have norm
<R

Hence we conclude that either [a,,, b,,,] = 1 or [a, by,,] = (w1). Before discussing either
of these cases we need the following lemma.

Lemma 11 For any functionf : Ox — Cwith |[f| <1,

1/2
Y. flat+h) = Y f(a)+O(1+<%> )

a€eA(N) acA(N)
a=ap(q) a=(ao+h)(q)
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Proof Putting o’ = o + b and a = g + b in the L.H.S, we get

> @)

o A(N)+h
o' =0 ()

Since || < 1, we get
> f@)= ¥ g0 ¥ 1)
o' €A(N)+h o/ €A(N) o/ €A(N)+H\AN)
o'=a)(q) o'=ag(q) o'=aj(q)

Now using (2.1), the O-term is

Y oa- Y 1o Yy o MOS0 AW

o' €AN)+H\A(N) o’ €A(N)+h o' €A(N) |l lql
o'=a(q) a'=ay(q) o'=e(q)
AN 2
+ O (3(A(N) + b, q)) + O (B(AIN), 9)) € 1+ )

5.1 Thecase[am, byl =1

Replacing a + b, by «, the condition [aj, b;]|(e + b;) of the inner sum becomes
a = (hy — b;) modulo [aj, b;] for all j # m. Since [a;, b;] is coprime of m for all j, by
Chinese remainder theorem, these kK — 1 congruence equations have a common solu-
tion o (mod m ]_[11;1 [aj, b j]> where the last product remains unchanged by excluding or
including the indexj = m (as [a,;, b,,] = 1). Using Lemma 11 with f = 8, we get

1/2
S Batb= Y ﬁ(a)+0<(w) )

acA(N) acA(N) il
a=ap(q) a=(ao+h,)(q)

where g = m ]]«(:1 [a, bj]. Using this we have

12
S fatb= 3 /3(01)+O<(M|(q—]\|[)|) )

acA(N) acA(N)
a=vp(m) a=a;(q)

[aj,b;]1(a+b;)V)
1 , AN\
20 2 ﬁ(a)+5,3(N,q,a0)+o(< Jal ) )

ac€A(N)
(O{, q)zl

’
where oy = ag + b

5.2 The case [am, bm] = (wq)
In this case w; € P(Y’, R') with R = R'/? because of the support of Lq and Ap. Let w7 be
the inverse of w; (mod q/(w1)). Similarly as above

11
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Yoo Blatby= Y, B@= Y. pl)- Y. B@

acA(N) a—h,eAN) acA(N) ac(AWN)+h)\AN)
a=vy(m) a=ay(q/(w1)) a=ay(q/(w1)) a=ao(q/(w1))

[a;,b;1(a+b;)Vj
JAN)\ 2
= (0] _— .
2 P (( |q|> )

a€A(N)
a=ao(q/(w1))

Now a € A(N) and @ = wiwy. So we separate the above sum with respect to primes w;
and wy. We note that wiwy € A(N) if and only if wy € A(N/|w1|"/?). Therefore in this

case, we have

Y Bw= Y 140 (<|A|(;\|[)|>1/2>

€A(N
cc(h) wﬁA(%)ﬂP

a=ae(q/(w1)) Iwy
wa=aoW1(q/(w1))

P (L) 1/2
RN N ~ |AN)|
~ o (a/n) +8(|wl|1/2’°'/(wl)’“"wl)+O(< al ) )

For each g, the number of ways of choosing ay, ..., ax and by, . . ., by so that

k
m [ la; 61 =q
j=1
is at most 3¢ (q). Therefore for each 1 < m < k, from Eq. (5.1), the sum Sy,,, can be written

as

N Aahp
Som = Z ’ 172 Z ==
wa |/ m [a), bj]
wiePY(Y,N?) ab ¥ j£m 9 O
[am bm]l=1
(w1,9)=1

N Aarp
D au
Y () Tt
wiePY(Y,R)) b ¢ (m [ Tjzmlay bl
[am, bm]=(w1)

A 1/2
+ O<)“r2nax (ﬂ) > 1”1) + O<)“r2nax > 1P @@e) (N CI))

m k b
| | ag,...a 1_[1':1 ‘[IJ], b} |q|<|m\R2
b1,...,b

N
+ O()‘gnax Z ﬂZ(CI)Tak(CI) Z e* <W: Q/(W1)> )

lql<|m|R? wilgwi €PY(Y',R)

where Apax = sup, [Agl.
Using Lemma 6, it can seen that the first error term of the above expression of Sy, is
bounded above by

)3 12(q) 31 (q)

2 1/2.
22 AN pitE

max
|g|<R%loglog N

3k
< A AN R(loglog N)'> T <1 + m)
Ip|<R%loglogN
< A2 AN - R(log R)*-.
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[AN)|

max {log N) for

Lemma 10 gives that the second error term of Sy, is bounded above by A2
any B > 0.
Lemma 9 gives that the third error term of Sy, is bounded above by

N
< 2llogR* Y u@ltn(@ Y e*(|w |1/2,q/(wl>)

lq|<|m|R? wilg
w1eP(Y,R)
N
<120 0g R Y n) Y ule el (—1/25)
[w1|<R |m|R2 wl
Isl= ]
|A(N)|
<M Y K Mo AN .

g w1l log (N/|(w1)1)

Combining these estimations of error terms we get the following lemma.

Lemma 12 Let Sy, be defined as in (5.1). Then with the hypothesis of Proposition 2 we

have
N AgA
Sy — Z P <|W \1/2> _ ftatb
W ePY(Y,Nb) ! ab ¢ (m jm 9 b ]>
[um bul=1
(w1 m]_[ laj, h,])
N Aot
+ Z ﬂb (W) Z Q—E +O()”§nax|A(N)|)‘
w1ePY(Y,R)) ! b ¢ < 77&'”[% bj])
[@m, b ]=(w1)
We define
Aarp
Som(w1) = Z = : (5.2)
ab ¢ (m [Tjzmlap bj])
[ b]l(w1)

The sum Sy, (w1) is estimated in the following lemma.

Lemma 13 Let Sy, (w1) be defined as in (13). For ideals vy, . . ., ty of Ok, we define

yn ,tk(Wl) = 1_[ u( tj)g(t}) Z (5.3)
j#Em 1_[175’” (p(a]
t,la,‘v’]
aml(w1)

where g is the multiplicative function defined by g(p) = |p| — 2 for all prime ideals p of A.
Letyg"a)x(wl) = SUPy, ¢ |y(flrf?,_,tk (w1)|. Then we have

1wy 2 m 1 lpm)f? 1
Sam(w1) ; 1;[ = (7 om) +O<u$n£x<wl>>2<logk)k IWHDO)

Proof From the definition of g it follows that

1 1
o] = ety 2 &

Y wil(agb;)

11
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From Eq. (5.2) we get,

P. Darbar et al. Res. Number Theory (2023) 9:11

b
Som(wi) = > - o (m) [1 (a Z g(w;)
ab j#Em 14 l u]l(u])b])
[am, bm]I(W1)
Aarp
2 Tet) 2 ey
<ﬂ(m) o & e e(@)eb)

um_l [, 0511 (w1)

u;|(a;,b;)Vj
Note that A, q, is supported onideals ay, . . ., ax with (a;, m) = 1foreachiand (a; a;) =

1Vi # j. Thus we may drop the requirement that m is coprime to each of the [a;, b;]

from the summation, since these terms have no contribution. Thus the only remaining

restriction is that (a; bj) = 1Vi # j. So we can remove this coprimality condition by

Mobius inversion to get

Sam(w1) = Z [Tew
u, u_IJ#m

> T wesi

51,295k k—1 1<ij<k

Aalp

H];&m a])q)(b[)‘

ab

i#j [ b7 ]I (w1)
u;l(ay, b;)Vj

s;l(a;, b)), Vidj

Now we make the following change of variables:

G =1 Hsi,j and 0; = u; ]_[5]',1‘.

i#j i#f

By using Eq. (5.3) we can rewrite Sy, (w

s 211 (u))

um—l

Som(w1)

1) as

DY w).

Z l_[ M(Sz/)l (crln) (W

Skk—1 I#£]

In the above sum s;; | ([a; b;], [a;, b;]), hence s;; is coprime to m for all i # j. Then either

s;j = 1 or |s;j| > Dy. For a fixed i and j, the total contribution from the terms with

|s;j| > D, is bounded above by

k—1
) (w1))? 12 (u) ( M(5)2>k(k_1)_1 ( u(si,/ﬂ)
¢(m) ( %:R g(u)> ;g(ﬁﬂ o, €
(u,m)=1 g

From Lemma 6 the above quantity is bounded above by

p(m)

|m|

(imae(wn))? O (00))® |k < ¢(m) )’”

1

ZTO.

The main term of Sy, (w1) is obtained from s;; = 1 for all i # j which completes the

proof.

For ideals ty, . . ., tx, we define

: A
oy = <Hﬂ(ti)(ﬂ(ti)> Z %
i=1

ai,...qr
vila; Vi

and ymax = SUPy,, .,k [Yep,.ee |-

i=1 la;]
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We recall the inversion formula from [9, Eq. (5.8)] that

k

Yei,.otk

)‘01,-.-,&/( = (HM(WHW') Z - (5.4)
i=1 ISP I8 nf:1 o(vi)

a;|t; Vi

Therefore Amax < Ymax(l0g R)¥.

The following lemma gives a relation between the quantities y(:l'?‘_,tk (w1) and yy,,.. ¢,

Lemma 14 Ifu,, = 1 (trivial ideal Ok ), then

(m YUt 1 C U 1o [(w1)] Jut, ot 1,(W1) S s U
yul,)m,uk(wl)z Z m o Um+ k Z m m

L (tm) o) & (5m)
|[tm|<R |5m|<R/|w1|
o(m) log(R/Do)>
O max —, ., -~ .
- (y ml Do

Proof Using (5.4), we get

P e w) = [ nw)gw) Z o o) ]_[qulu o) Z

Jj#Em ‘ v jem PA\Y) 7 ‘ .y l:I (p(t,)
ujla;vy a;|t;Vi
aml00)

k
e [T= lojlie(a))
= [Treyea) 3 —>=— Y L=
j#m = TTle) ar lizme@)
W15 wla;¥j
(1)
Juj ()
=[]yt Z [T = 1w ye,)
j#m [Tj= 1<p(t,),¢m ¢(v)
u,\t,V/

Yo |uj | 2 (%))
= | | nlu)gy) wi)l
/l;[n 1 1<r:uzm Hf:l"’(ti)/];[n ¢ () 2

u,,=1

] ()
[T w(t, l_r[” o) )

Byl
(Wl)\l‘m
where 1y, is the indicator function which takes value 1, if (w1) | t,, and O otherwise.
We see from the support of y,,, ., that we may restrict the summation over t; to (rj, m) =
1. The main term is given by t; = w;V}, for all other terms there exists j # m such that
[tj| > Dolu;|. Therefore the error term is bounded above by

L 12 (x) 14(tn)? 1(e)*
yma*(,ﬁ'“"g(u’))(qgw <p<tj>2)('(wl)' 2 go(tm>) Il (Zw(t,ﬂ)

[tm| <Rs(w1)|tm 1<i<k \uilv;
ujlv; tp,m)=1 i#jm

¢(m) log(R/Do)

L Ymax ——— |m| Do

The main term given by t; = w;Vj # m is

(m) |u1|g u} YUt Wi 1, Cip W 1o U YUt W1, Ep e U
o o =TT M 57 Pty 5 St .
/)

Uy =1 jm @(tm) @(tm)

Tm
(w1)ltm

Now the proof can be completed by noting that % =14 0(lp|™?) and t,, = (W1)s,.

11
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6 Choosing the weights
For a real valued piecewise differentiable function F on Ry as in Proposition 2 we define

k 2

log |r1] log vl
Vep,otg (= M Hti F( ook’ ToaR )
i=1 g g

Note that, y¢,, ., is supported on square-free v = ]_[f;l t; such that (r, m) = 1. Hence

P ) =

3 u(t)ZF <log Juz | log || log Iukl)

u,=1 [t|<R o(v) log R yeees 1OgR,..., og R
(t’m ni;ém U;‘)zl
_ 1wl Z u(5)2F <log Ju| log |s(w1)| log \ukl)
o((w1)) | <R i o(s) log R sy og R o T

(s,m(m) [T u,):l

pm)logRY ., p(m) logR)
+O( " [l Do ) _‘Sl+52+o<y’”“" ml Dy )
Estimation of Si. To use Lemma 1 we set
1 if(pm][].. u)=1
y(p) = B m [ ) and h(p) = v _ .
0 otherwise [p] — ¥ (p)

and

Fmax = sup (|F(t)| + |F/(t)|)-
te[0,1]

The singular series in Lemma 1 is easily computed to be
_ @(m jEm uj)
| m Hj;ﬁm u; |
and also L < loglog R. Thus we get

p(m) — e) / 1 (log|u| log |ug|
S =TT 2% ck(logR) | F et dt
1 | jl;n ™ ck (log R) A log R m log R m

4O (Fimax log log R)

where cx = Ress—1 Lk (s).
Estimation of S),. Observe that
log(|(w1)s|)  logR <10g ls|  log |(W1)|>
log(R/|w1]) ~ log(R/|w1]) \ logR logR )"
Therefore by Lemma 1, we get

. 1 1 1
séz_c,(@n‘”(u’)(logze)/ F(ng S Og|uk|>dsm

ml o 1wl ghl -\ logR log R
+ O (Fmax loglogR).
Putting S} and S}, together, we get
(m) ()
P ) = e [T 5 o &) (U = FE ) 6.1)
j

=1 | | j#m

(m) log R
+ O (Fmax lOglOgR) =+ O (Fman'T'Dio)
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where

1 1
(m) 0g [u1]|
Fu}r,l...,uk:/(; F( lOgR,...,tm,..

1
) log |u;]
Furlrf...,uk(wl) = ﬁog\m\ F < logR o
TogR

and

7 Proof of Proposition 2
Using the value of yg:')

Sam(w1) =

um_

p(m)

g(u] ( [m|

KRl_[

Page 17 of 23

logluk|>dt
L] m

log R

1
o Sus e s o8 |uk|> ds,.

log R

w, (w1) given by Eq. (6.1) in Lemma 13 we get

2
) (B~ EOD (wl)))

j#m l’l

+0 ((Fmaxf(log R o) 1) '

|m|k+1 Dy

Setting Y’ := Y'/2 and the above equation in Lemma 12, we have

_ p(m) 2 < > (P(u} Flom) 2
S = e 08 50 ; i) 2 ng(unu 2 (Rom)
Y<lwi|<R et
@(m) 2 2 2
+ 7|m|2 CK(IOgR) ; |W1|1/2 Z l_[ |1,l1|2 ( u )
R<|w1|<N?% um—l
2 k+1(‘ﬂ(m))ki b( N ) 2
+O((Fmax) (log B T B, >oox i) ) T O (FralA®))
w1 eP(Y',Nb)
where
S (log |ui log ||
=(m) 8 1 k
F = F seers by e ey dty,.
ul,...,uk(Wl) /O < logR m IOgR ) m
, b(_ N\ _ a(lwi)) N2
Using Lemma24 we can say that 7 (W) = |P(N)| el T Ok (IW1\(logN)2>’ where
_ _log(N7)
) = Tog Ny
Using this the main term of Sy, becomes
@(m) lel) pw)* [/~ 2
= Tz k(g RPN o2 Z ]‘[ P |2( )
Ys|‘v”vll|<R Whettia
p(m) 2 2 a(jwil) W(u] (m) 2
+ ——cg(log R)*|P(N)]|
jm[2 KO8 WZ il Z l_[g(u>|u,|2< )
R<|wy|<N? um—l
90( ) 2 2 a(lwil) a(lwil)
— (log R)2|P(N)| S s
Tmp2 KT8 ; il ; il
Y<|wi|<R R<|w1|<N?

Estimation of S; and Ss. To calculate both S4 and S5 we use Lemma 1 with

[p[2—3[p|+1

o m) =1
[p13—Ip2—2lp|+1 )

if (p,

otherwise.

y(p)
h = ——— d =
) =y 7

11
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The singular series can be easily computed to be & = % + 0 (%) and also L <«

log Dy. Recalling the coprimality conditions S4 can be written as

AVERSS
=X T ()

s 12
UL eeo UL Ut Lo Uk jm 8|
(wpuj)=1Vigj
(ujm)=1

We note that, two ideals a and b with (a, m) = (b,m) = 1 but (0, b) # 1 must have a
common prime factor with norm greater than Dy. Thus we can drop the requirement that

(ui, uj) = 1, at the cost of an error of size

)2 )2
< Fx%mx Z Z 1—[ M(u}) Qﬂ(u/)

2
; U;i) | Ui
9170 s bt g ot <Ry IV

plug,u;ViZj
(u,;m):l
o(p)* )( u<r>2go<r)2)“ ) (w(m)>k1 (log R)k—1
< F? X( —— —_— & Frox .
ma 2 2(p)?|pl* 2 g)r)? M m| Dy
|p|>Do [t|<R
(t,m)=1

Thus it is enough to evaluate the following sums

ow)* /= 2 o(u;)? 2
Y Mo Eew) and > ] 5t (R7)
ULy UL, Wint Lo Uk g(u/)lu}l UL U1 Uit Lo Uk jemm g(ul)lull

(ujm)=1 (ujm)=1

Using Lemma 1 we have,

k—1 k—1
Sq = (M) kL og R} (F(w) + O (F,%m <M> ! (logR)k_l)

|m| |m| Do

and
k—1 k—1
p(m) k—1 k—1 7(m) 2 (em) 1 k-1

55 = (W) CK (lOgR) IZZI (F) + O Fmax W lTo(lOgR)

where
2
(m) T’”(IOI?TWRI‘)
Ly (Fwi)) = | --- F(x1, ..., x ) dxp | dxy ... dxm—1dxysr ... dxy
Ri-1 0

and

2
Tom
15;">(P)=/...f (/ F(xl,...,xk)dxm> dxy . .. dxp_1dper .. . dx
Ri—1 0

where T}, and T},(y) are as defined in the statement of Proposition 2. We note that the
integral Ig:l) (F) is independent of prime element w; of Ok. Using the estimations of the

sums S4 and S5 the term Sy, becomes
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SZm

k
_ o(m) (cx log RFH [PV Z a(|wl‘)1§2")(F(w1))—I—Ié;(")(F) Z Ol(lwll))

|m|k+1 o [w1| i (w1l
Y<|wi|<R R<|w;|<N%
k
2 k41 (M) 1 b N
+ O((Fmax) (IOgR) |m|’<+1 Do Z T |W1|1/2 .
Y <|w1|<N%

Finally it remains to calculate the following sums

a(jwil) a(wil) (o (log Iwil\\’
Sg = ds; := — (v [ =——
o= 2 Ty S = 2 S ( log R

w1 w
R<|w;|<N? Y<|wi|<R

where VO(y) := [J F(x1, . .., x)d%m.
Using Lemma 3, we have

Z log |w| = mgu + E(u) where E(u) = Ok ( “ )
log u
wePO(ul/2)

where myg = 2)—1’(( From the above estimations, we get

K 1 > R 1 * dE
S, = mK/ (1) (V(m) ( 0gu>) du +/ o) (V(”’) ( ogu)) dE(u)
Y log R ulogu Y log R ulogu

= Sg + So.

Putting u = R, first integral Sg gives main term for S; which is

Ss = mgK /Bl L (V(m)()/))2dy

m ¥(B" =)
where
logY . log(N?)
= logN2)' = T “logR

Second integral Sy giving error term of S7 can be estimated as
Sg <« (logR)™L.

Since R = N (log N)~€ we observe that

B =B+O(loglogN)

log N

where B = % as defined in Proposition 2. Therefore combining these estimations we have
1 B 2 loglog N
S = mK[ Vi) dy+0 (—)
By Y(B—Y) ( b ) 4 logN

By using the same method we have

B/2 B loglog N
S6:m1</ dy-}—O(&),
1 yB—Y) logN

11
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Therefore we conclude that

<P(m)k F(m F(m
Som =mico iy (e log RH PV (B®+T @) (7.1)

k
(pm)k 1 |7><N)|).

|m|k+1 Dy

+0 (Pﬁm (log R)+!

Recall that
Sa= Y Soum
1<m<k

Therefore Proposition 2 follows from 7.1.

8 proof of theorem 1, corollary 1 and corollary 2
We start with the following corollary of the Proposition 2.

Corollary 3 Let K be an imaginary quadratic number field and my be its Mitsui constant.
Suppose that the primes P and Gg—numbers have a common level of distribution 0 <
0 < 1 Let (hy,...,hx) € (’)Ik< be an admissible tuple. Let B, I (F), jg(")(F) and jg(;(")(F),
1 < m < k be defined as in the statement of Proposition 2. Let Sy denote the set of
piecewise differentiable functions F : [0, 1] — R supported on Ry such that I, (F), fZ(Z’)(F )
and 7;2”)(1-"), are non-zero forallminl < m < k. Let

k 7(m) 5(m)
it e sup T U5 B+ TP

Fes, Lik(F)

Wl](Mk
B

and 7= ’V

Then there are infinitely many « € Ok such that at least 7y of the @ + B, ..., + by are
Gé(—numbers.

Proof Since each summand is non-negative, if S := S, — pS; > 0 for some positive p, then
there is an @ € A(N) such that & + by, ..., « + b contains atleast [p] + 1 Gg—numbers.
Therefore it is enough to show that S > 0 for all sufficiently large N.

Fixad >0and0 < € < r‘;—i, then choose F € Sk so that

k
SO AE) + 1) > (e — (),
m=1

Using Proposition 2, we obtain

k
S AP E) + I E) - pilkm)

_ (@(m)FJAN)|(cx log R ( mc
5= 4ot EEECRC (2 =
k k
> lolw) 'ﬁ‘ﬁiﬁ? log R) Mﬁ)(—”;f (T — ) — p).

If p = mKTka — 8, then § > 0 for large N. Since § is arbitrary, there are infinitely many

a € Ok such that at least [mKéVIK} ofthea + by, ..., a + by are Gf—numbers.

P. Darbar et al. Res. Number Theory (2023) 9:11
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To complete the proof of the Theorem 1 it is enough to show that 7y — oo as k — oo.
Since the integrals 1 (rm) (F) are positive

k (m)
- F
Mk > sup Zm 1 2k ( )
res,  Li(F)
It follows from Sect. 7 of [9] that

7om
(F)
sup ZMI— > clogk

Fes,  Li(F)
for sufficiently large k and an absolute constant ¢ > 0 ( note that 72(2")(F ) is a positive
constant multiple of ,Em)(F ) in [9]). This completes the proof as 7 is directly proportional
to Mk.

Remark 3 Comparing the integral I (rm) (F) with (m)(F ) as in [9], we can show that /1; >
(1.0986) M, where M is as in [9]. Slnce wg = 2 for fields with class number more than 2,
From Proposition 4.3 of [9], it follows that

1.0986
Pr > (logk — 2loglogk — 2)
2hx

for sufficiently large k. We conclude that there exist infinitely many o € O such that for
any admissible k-tuple (1, - - -, h) there is atleast one Gg—number amonga +by, -+, o+
b (i.e 7 > 1) provided

logk — 2loglog k > (1.82)hx + 2

and in that case the gap is bounded above by b — h; where (b3, - - -, by) is an admissible
k-tuple. Therefore gaps between G§ -numbers are bounded in terms of class numbers.

To prove the Corollary 1 stated in Sect. 1, we need following lemmas .

Lemma 15 (Proposition 3.1, [1]) Suppose that 'H is an admissible tuple in Z. Then H is
also an admissible tuple in Ok for every number field K.

Using Proposition 1, we obtain the following lemma.

Lemma 16 (Corollary 1.4, [2]) Let K be an imaginary quadratic field. Then product of
two primes in Ok have level of distribution %

Proof of Corollary 1 Recall that

§=8 —p& (8.1)
where S; and S; are defined as in Proposition 2. We choose F(ty, . . ., ) to be a symmetric
polynomials in ¢4, . . ., tx. By Proposition 2, we see that

(@(m)*|A(N)|(ck log R)k7

= (1+0(1)) iz
where
~ ka ~ ~
T === (L +T0) - pTu(F)

Page 21 of 23
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We know that

4 ifd=-1
wg, =6 ifd=-3

2 otherwise.

Therefore Mitsui’s constant for imaginary quadratic number fields of class number one
are listed below:

4 ifd=-1
mg, =16 ifd=-3

2 otherwise.

For Corollary 1, we take k = 2,9 = %, p=1Ln= ﬁ, F(t1, t) = 1 = Fi(t1, t2) + Fa(ty, t2),
where Fi(t, t) = t1 + tp and Fy(¢1, £) = tlz + lf22.
Using SageMath we obtain

Ta(F) = 0227778 13 (F) = 0.169151, 1S3 (F) = 0.150712.

Therefore we have I > 0. Hence Corollary 1 follows from Lemma 15 considering the
admissible set {0, 2} and invoking Lemma 16.

Proof of Corollary 2 For imaginary quadratic number field K; of class number two
wg, =2 and mg, =1

For Corollary 2, we choose k = 4,9 = %,,o =1n = WIO,F(% byt ta) = 1 —
Fi(t1, o, £3, ta)+Fo (8, B2, 3, ta), where Fi(t1, £, U3, ta) = ti+tat+t3t+taand Fo(fy, b2, 3, fa) =
2424 424 42

£+t 412+

Using SageMath we obtain

T1a(F) = 0.0095238, 1} (F) = 0.0044928, T{%)(F) = 0.0059492.

Therefore we have T > 0. Hence Corollary 2 follows from Lemma 15 considering the
admissible set {0, 2, 6, 8} and using Lemma 16.
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