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Preface

This thesis is based on the groundwork established in the project report Langeweg
(2023) for the Specialization project TTK4550, within the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology (NTNU). The ideas
and insights from that work form the basis for the current study. Supervision was provided
by Prof. Jan Tommy Gravdahl of NTNU and Prof. Trygve Thomessen, Managing Director
of PPM Robotics AS.

This project is restricted, therefore, the code belongs to PPM Robotics AS and is not
available as open source.
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Abstract

As the world’s population ages, it becomes ever more critical to address the challenges
of elderly care. Among these challenges is the shortage of caregivers, underscoring the
importance of providing mobility support. This thesis explores the introduction of force-
controlled walking assistance, utilizing the Kompaï Assist service robot for experimental
and validation purposes. A central objective of this inquiry is to ensure safety and user
trust, by facilitating dynamic interactions that adapt to the unique requirements of the
users. The study explores how dynamic interaction, emulated by an admittance model,
facilitates compliant behavior. Furthermore, haptic feedback is utilized to offer assistance
and simultaneously preserve user autonomy. As such, the interaction dynamics are
enhanced, while highlighting the importance of trust between the user and the robot. The
study highlights the influence of different diseases and impairments on user interactions,
stressing the importance of adaptability in designing robotic systems to address individual
needs.
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1
Introduction

The challenges posed by the aging population and the scarcity of healthcare professionals
present profound implications for ensuring the quality of elderly care in the coming years.
Projections indicate a shortage of 40,000 nurses for elderly care by 2035, and by 2060,
Norway’s workforce will be insufficient to meet the needs of both the industrial and elderly
care sectors (Meld. St. 7 (2019–2020) - regjeringen.no (2023)). Consequently, there arises
a critical necessity for technological interventions to effectively address and mitigate these
impending challenges (Langeweg (2023)).

Figure 1.1: Predicted need for healthcare workers in elderly care (Meld. St. 7 (2019–2020) -
regjeringen.no (2023)).

1.1 Background

This thesis expands upon the groundwork laid out in the specialization project (Langeweg
(2023)). As such, the initial paragraphs of the Background (Section 1.1) and Problem
Description (Section 1.2) are based on the project report.

1



1 Introduction 1.1 Background

Mobility aids have become increasingly important in addressing the needs of the
expanding elderly population and mitigating the shortage of caregivers. For instance,
canes and walkers are commonly utilized to enhance balance and mobility. They play
a vital role in providing stability, supporting the user’s weight, and facilitating movement
(Naeem et al. (2022)). Nevertheless, traditional designs of both canes and walkers suffer
from certain limitations. They often lack maneuverability and demand a significant amount
of propulsion force (Xing et al. (2021)). Consequently, this presents a challenge for seniors
with weakened lower limb muscles. These challenges underscore the necessity for design
and technological enhancements to optimize the effectiveness of walking aids (Langeweg
(2023)).

Considering these challenges, this study investigates novel literature concerning intel-
ligent and adaptable service robots to provide mobility support for elderly individuals. The
International Organization for Standardization (ISO) defines a service robot as a “robot in
personal use or professional use that performs useful tasks for humans or equipment” (ISO
8373:2021, Robotics (2023)). These robots require a certain level of autonomy, which is
the “ability to perform intended tasks based on current state and sensing, without human
intervention” (ISO 8373:2021, Robotics (2023)). By performing tasks without constant
human intervention, service robots address the caregiver shortage and provide more stable
walking assistance (Langeweg (2023)).

In addition to addressing the challenges posed by an aging population and the shortage
of healthcare professionals, it is crucial to recognize the significance of fall prevention
among elderly. Falls represent a significant risk for older adults, where rollover in the
sideways direction is identified as the most frequent type of fall (Bilgin et al. (2023)).
The consequences of such falls may be severe, often leading to hip fractures due to
inappropriate timing during balance recovery (Ilic et al. (2023)). Hip fractures not only
impose a considerable burden on healthcare systems but also result in increased mortality
rates and reduced functional abilities, ultimately compromising the quality of life for
affected individuals (Ilic et al. (2023)).

Technologies such as cane-type robots (Cerqueira et al. (2023)) and smart walkers
equipped with fall-prevention strategies (Pereira et al. (2019)) have emerged as viable
options to mitigate the risk of falls and enhance the safety of elderly individuals. The
implications of fall prevention extend beyond physical health outcomes. By maintaining
mobility and independence, fall prevention strategies contribute to improving quality of
life and prolonging the ability for older adults to remain at home (Mahdi et al. (2022)).
This aligns with the preferences of many elderly individuals who wish to stay in familiar
environments to preserve autonomy and privacy (Zhao et al. (2020)).

Moreover, non-wearable devices, exemplified by cane robots and smart walkers, offer
walking support without constraining the user’s leg movement (Itadera, Nakanishi, et
al. (2020)). These devices enable natural gait patterns and allow for the evaluation of
walking abilities in situations closely resembling real-life scenarios. On the contrary,
wearable devices such as exoskeletons or exosuits directly augment the user’s movements,
offering targeted support tailored to individual needs. However, they often require intricate
attachment processes and may restrict natural motion (Itadera, Nakanishi, et al. (2020)).
Consequently, wearable devices will not be considered within the scope of this study.

To address the aforementioned challenges, this study utilizes the Kompaï Assist robot,

2



1 Introduction 1.2 Problem Description

a novel service robot developed by Kompaï Robotics (KOMPAI-Assist | Kompai Robotics
(2023)). It serves as an experimental platform to investigate the use of intelligent mobility
devices in healthcare. The Kompaï robot offers physical and cognitive support, aiding
patients in reaching their destinations. Beyond serving as a mobility aid, Kompaï plays
a crucial role in health monitoring and providing entertainment, thereby enhancing the
overall quality of care. Additionally, Kompaï functions as a logistics partner, capable
of transporting goods (KOMPAI-Assist | Kompai Robotics (2023)). Consequently, it
allows caregivers to devote more time to patients, which improves the accessibility and
availability of care (Langeweg (2023)).

1.2 Problem Description
Expanding on the defined capabilities of the Kompaï robot, this study aims to investigate
and evaluate various force control strategies tailored specifically for elderly mobility. The
primary objective is to provide compliance between the user and the robot by offering
guidance and walking support (Langeweg (2023)). Additionally, the study aims to
explore fall prevention measures within the walking assistance framework. Ultimately,
the utilization of the robot is intended to assist the elderly in reaching their destinations,
while concurrently enhancing their physical activity and independence.

Guiding entails the service robot actively assisting and directing individuals in their
movements from one location to another. The robot guides the users along a predetermined
route, providing precise and secure navigation from point A to point B. Consequently,
it ensures user safety and confidence during movement. Notably, users can command
the robot to initiate motion through interactive forces. Hence, the robot must respond
to user-applied forces, allowing it to adapt to the user’s intentions while remaining in
proximity to the predetermined trajectory. This method offers users a degree of freedom
while maintaining proximity to the trajectory, striking a balance between support and user
autonomy (Jiménez et al. (2019)).

Figure 1.2: Walking support with the Kompaï robot (PPM Robotics AS (2023)).

In the context of walking support, the service robot offers assistive forces as users com-
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mand motions. Users possess the freedom to direct the robot, allowing for controlled mo-
tions guided by their intention. The robot provides assistive forces to ease control for users
with weakened muscles, which is especially beneficial for elderly individuals (Pereira
et al. (2019)). Additionally, the robot actively introduces stabilizing motions to prevent
falls during movement. Consequently, the walking support enhances stabilization and
maneuverability (Naeem et al. (2022)). Beyond basic assistance, the robot incorporates
training elements by integrating information, motivation, and challenges throughout the
motion. This approach aims to improve the user’s walking experience, prioritizing safety
and engagement through personalized and supportive interactions (Langeweg (2023)).

Lastly, fall prevention measures focus on helping users recover their balance after a
loss of stability. Yearly, more than a fourth of individuals over 65 years old fall (Falls
and Fractures in Older Adults (2022)). Many older adults fear falling, which can lead
them to avoid activities like walking. However, maintaining an active lifestyle can reduce
muscle weakness and help prevent falls. For elderly individuals, a fall can have severe
consequences, including loss of independence, chronic pain, and reduced quality of life
(Vaishya et al. (2020)). Walking aids, such as robotic walkers, provide stability and lower
the risk of falling. Given the potential severity of falls, intelligent walker aids should
include features that help users regain balance during emergencies. Thus, implementing
fall prevention measures can significantly enhance user safety and quality of life.

1.3 List of Contributions
In this section, the significant contributions of the thesis are outlined. These contributions
represent advancements in mobility support for the Kompaï robot. Methods for walking
support, fall prevention, and guidance are based on a literature review and tailored to the
specific capabilities of the robot. The main contributions are summarized as follows:

• Turning strategies: Developed turning strategies for a differential drive robot to adjust
the turning radius by the applied force.

• Force sensor: Incorporated a force sensor on the Kompaï robot and configured it with
the appropriate transformation matrix.

• Reconstruction of handle forces: Reconstructed handle forces from measured forces
in the sensor frame to assess user intention.

• Admittance controller for walking support: Implemented an admittance controller
proposed by Itadera, Nakanishi, et al. (2020) for a cane robot and adapted it for walking
support with the differential drive Kompaï robot.

• State machine for system state: Incorporated a state machine governing the solution’s
state transitions, determining when to initiate the developed controller and how to
interpret human actions, such as user presence or stopping due to imbalance.

• Stability assessment: Developed a relationship between timestep, mass, and damper
parameters in the admittance controller to assess stability.

4



1 Introduction 1.4 Report structure

• Fall prevention: Implemented a fall prevention strategy by monitoring the user’s
walking state within a support ellipse and adjusting admittance parameters accordingly,
as suggested by Hirata et al. (2006).

• Confidence ellipse estimation: Utilized the Mahalanobis distance and its Chi-Square
distribution to estimate a 90% confidence ellipse of the user’s position, thereby en-
abling the fall prevention strategy when the user moves outside this ellipse.

• Path planning: Exploited the Line of Sight controller (LoS) developed by Fossen et
al. (2003) to generate a steering angle to navigate a set of waypoints, thereby enabling
the implementation of the guidance.

• Guidance through haptic sensations: Implemented guidance with the Kompaï robot,
utilizing haptic sensations inspired by Jiménez et al. (2019), and selected appropriate
coefficients for the function governing adjustments in admittance parameters.

• Guidance through Kompaï’s planner: Implemented a second guidance solution
using the Kompaï robot’s path planner and an admittance controller in the forward
direction to regulate linear velocity.

• Performance metrics: Developed performance metrics to evaluate the implemented
solution during experiments with human subjects.

• Graphical User Interface: Implemented a Graphical User Interface (GUI) with
FlexGui 4.0 (FlexGui 4.0 (2022)) to facilitate easier startup and recording of perfor-
mance metrics during experiments.

1.4 Report structure
The report is composed of nine chapters. Chapter 1 establishes the study’s background
and defines the identified problem. Chapter 2 conducts a literature review on innovative
force control solutions, while Chapter 3 addresses trust in automation.

Moving forward, Chapter 4 delves into the theoretical framework encompassing
human-robot interaction. Chapter 5 details hardware and software solutions specific to
the Kompaï robot, followed by the methodology in Chapter 6.

Moreover, Chapter 7 presents experimental results, while Chapter 8 discuss findings,
limitations and future considerations. The report concludes in Chapter 9 where the key
findings are summarized while emphasizing the significance of the research.
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2
Literature review

To establish the framework for this study, the literature review builds upon the ground-
work established in the preceding project report by Langeweg (2023). The preliminary
investigation yielded valuable insights into force-controlled walking assistance. While
Langeweg (2023) contributed to the initial understanding, the present literature review
expands its focus to explore strategies related to fall prevention, guidance and dynamics of
the human operator. Accordingly, Section 2.2 and 2.3, along with the review addressing
some articles in Section 2.1, 2.4, 2.5 and 2.8, are extracted from Langeweg (2023).

An area that is gaining attention, is the use of force control in smart walkers designed
for elderly care. As the global population ages, there is a growing demand for solutions
that support elders in maintaining their independence and well-being (Langeweg (2023)).
The shortage of nursing professionals and the increasing number of elderly people has
prompted the development of mobility assistive devices, rehabilitation robots, and nursing
care robots as a solution (Cerqueira et al. (2023)).

In order to assess the need for assistive walkers in elderly care, a search in the Scopus
database was conducted on the 11th of March 2024. Furthermore, reproducibility is made
possible via a Scopus literature search, enabling a study that is representative of the state
of the art. The primary search criteria (Appendix A) included elderly using the logical
operators AND and OR to efficiently narrow down the results. These terms were combined
to cover topics including assistive walking devices, smart/robotic walkers, mobility, force
control, admittance control, impedance control, compliance, and robot. The exclusion of
specific terms like exoskeleton, exosuit, wheelchair, prosthesis, humanoid and wearable
made it possible to sort out irrelevant results. Furthermore, the date range for this search
spanned from 2018 to 2023, to guarantee the inclusion of the most recent research and
technological advancements in the field of aged care and assistive walkers (Langeweg
(2023)). Moreover, for the extended literature review, fall prevention is added to the search
query.
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2.1 Smart Walkers
Smart walkers are frequently addressed in the existing literature. Zhao et al. (2020), Chang
et al. (2021) and D. Ding et al. (2023) explore the application of force sensors in smart
walkers with the objective of estimating gait or human intention to eventually lower the
risk of falls among elderly users.

In Zhao et al. (2020) the Smart Robotic Walker is an elderly mobility assistance
device that combines a traditional rollator design with a mobile robotic platform. With
its soft sensing handle, which can perceive gait posture and pressure, the walker can
adapt its position in response to the user’s intentions. Moreover, with its Finite State
Machine (FSM) it possesses the capacity to detect emergencies, such as falls, by constantly
monitoring handle pressure.

The smart walker in Chang et al. (2021) features a posture assessment that utilizes
fuzzy rules to detect six distinct postures based on grip forces, walker speed, and road
incline. Based on the detected posture, the walker offers supportive forces for smoother
and safer mobility. In addition, users have the flexibility to customize the level of
assistance to suit their requirements. Moreover, the walker prevents collisions and
maintains postural stability, thus reducing the risk of potential falls.

The ReRobo walker explored in D. Ding et al. (2023) is tailored to mitigate the
heightened risk of falls among the elderly. It utilizes an FSM with ready, normal, and
abnormal states. In the normal state, Active Disturbance Rejection Control (ADRC)
ensures responsive steering and forward movement based on user force. Additionally,
upper limb forces from the force sensor and lower limb movement from the laser range
finder are fused by a Kalman filter. Falls are detected via a Sequential Probability Ratio
Test (SPRT) on the Kalman filter’s predicted value, prompting a transition to the abnormal
state upon detecting danger. This transition triggers protective actions, highlighting the
device’s approach to fall prevention.

2.2 Wheeled Mobile Manipulator
An alternative approach for offering assistive devices to the elderly involves the utilization
of Wheeled Mobile Manipulators (WMM). This approach is examined by L. Ding et al.
(2022) and Xing et al. (2021).

L. Ding et al. (2022) present a WMM to assist elderly individuals in their everyday
tasks. In terms of mobility assistance, it utilizes Dynamic Movement Primitives (DMPs) to
learn the user’s walking patterns and provide assistive forces. Additionally, by employing
Variable Admittance Control (VAC), the system is designed to detect and react to user
intentions. The system also addresses unexpected situations to avoid user falls.

Furthermore, for tasks involving the manipulation of heavy objects, L. Ding et al.
(2022) employs stiffness estimation and Gaussian Mixture Models (GMM) to reproduce
user actions in the vertical dimension and achieve a compliant movement in the horizontal
plane.

The WMM in Xing et al. (2021) integrates Cartesian-space admittance control with
null-space control to improve its Robotic Assistive System (RAS) performance. This
strategy offers compliance in the horizontal plane while preserving stiffness in the vertical
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plane to ensure reliable support. By applying null-space control, the system maximizes its
ability to exert force, enabling it to provide increased vertical support. Furthermore, the
RAS utilizes a Nonlinear Disturbance Observer (NDOB) which eliminates the need for a
costly force/torque sensor.

2.3 Optimization of Admittance Parameters
The concept of an admittance controller is common in assistive devices, allowing for
a compliant behavior. Real-time adjustments of admittance parameters enable optimal
support according to the current conditions. This approach is implemented in Itadera and
Cheng (2022) and Itadera, Dean-Leon, et al. (2019), in which a human gait model is
employed for the optimization of admittance parameters.

Itadera and Cheng (2022) present an algorithm to enhance the gait stability of elderly
individuals by optimizing admittance control parameters. It utilizes a Linear Inverted
Pendulum Model (LIPM) to represent human gait. With a Model Predictive Control
(MPC) framework, the admittance controller is optimized, for the generation of a virtual
assistive force to enhance the balance of human gait.

Itadera, Dean-Leon, et al. (2019) present a non-wearable robotic system designed to
assist elderly individuals in walking. To improve the physical Human-Robot Interaction
(pHRI), the robotic system employs an admittance controller and integrates an MPC
framework for adaptive assistance. Furthermore, by utilizing a LIPM for human gait, the
optimization process generates an optimal assistive force that adjusts the walker’s Center
of Pressure (COP), enhancing the user’s balance while preserving natural gait.

2.4 Sit-to-Stand Transitions
Inadequate strength during Sit-to-Stand (STS) transitions is a major cause of falls among
the elderly. Mahdi et al. (2022) and Itadera, Kobayashi, et al. (2019) investigate methods
to assist with STS transitions, aiming to enhance the independence of elderly individuals
(Langeweg (2023)).

SkyWalker presented in Mahdi et al. (2022) is a rollator designed to provide aid during
STS transitions and walking across diverse types of terrain. The STS assistance involves
applying vertical force and forward translation. The control parameters are obtained
through experiments examining the kinematics and kinetics of individuals utilizing the
SkyWalker.

On the other hand, the approach in Itadera, Kobayashi, et al. (2019) utilizes a mobile
robot to offer assistive support for elderly individuals, particularly during STS transitions
and walking. Moreover, an impedance controller is employed in conjunction with a
Recurrent Neural Network (RNN) to classify the user’s movement states across six distinct
classes. The current user state is used to dynamically adjust the impedance parameters to
provide appropriate physical support.

Another alternative is presented in Yokota et al. (2019) and aims to address the needs
of elderly and disabled individuals who require assistance during STS transitions, while
allowing them to use their remaining physical strength. The technology combines damping
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control and position control to provide support while also permitting users to utilize their
physical strength. Damping control enables the adjustment of supportive forces, altering
the user’s experienced load. This dynamic control mechanism offers flexibility by allowing
deviations from a fixed reference pathway, ensuring that users can move freely during the
STS transition (Yokota et al. (2019)). Additionally, the algorithm incorporates position
control to maintain body posture when the user’s posture exceeds acceptable limits. In
emphasizing a user-centric approach, the robot adjusts to variations in posture tolerance,
allowing users to maintain muscle exercise and autonomy.

2.5 Cane Robot
Using cane robots is an additional approach to address the growing demand for assistive
devices among older individuals.

Naeem et al. (2022) present a four Degrees of Freedom (DoF) cane robot for fall
prevention and improved walking support for the elderly. Compared to conventional
walkers, this cane robot offers greater maneuverability. It operates in two modes: normal
walking, utilizing kinematic control to follow the user, and fall prevention, employing
real-time impedance control to respond to potential falls. The technology employs Model
Reference Adaptive Control (MRAC) and Genetic Algorithm (GA) gains tuning to handle
system uncertainties, enabling the cane robot to successfully adjust to user needs.

B et al. (2023) introduces an assistive walking cane robot equipped with force sen-
sors in the handlebar, an ultrasonic sensor for obstacle detection, and Micro-Electro-
Mechanical Systems (MEMS) sensors to identify falls. This technology ensures precise
control of the cane’s movement based on user exerted force and alerts through a speaker
when obstacles are detected. The integration of a MEMS sensor to measure acceleration
and the potential use of EEG sensors enhances the system’s ability to detect emergencies.

Furthermore, the future application of machine learning algorithms aims to provide
predictive analysis for advanced fall prevention. In essence, this approach aims to provide
timely alerts and notifications, ultimately reducing the risk of accidents and enhancing the
overall safety of the users (B et al. (2023)).

The smart cane-type robot presented in Itadera, Nakanishi, et al. (2020) employs
Intention-Based Admittance Control (IBAC). This controller utilizes the concept of Inten-
tional Direction (ITD) in modeling human walking intention. The IBAC scheme improves
walking comfort by introducing two distinct admittance models, one for motion along the
intended direction and another for motion perpendicular to it. These models have mass and
damping parameters, enabling the cane to be easily maneuvered in the ITD while offering
resistance in the perpendicular direction. The admittance control not only enhances the
robot’s ability to follow user intention but also contributes to effective gait training.

2.6 Estimating Human Intention
The majority of the explored literature emphasizes the importance of estimating human
intention. By understanding and adapting to human intention, the aids effectively serve
their users’ needs while providing enhanced mobility and stability.
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For Smart Walkers or WMMs, the most common approach involves employing a force
sensor in conjunction with a FSM (Zhao et al. (2020); D. Ding et al. (2023)) or fuzzy
rules (Chang et al. (2021)) to detect user states and emergency events. However, more
sophisticated approaches leverage machine learning techniques such as neural networks
(Zhao et al. (2020)) or DMPs (L. Ding et al. (2022)) to learn human intention from gait
data or classify the user’s state across distinct classes (Itadera, Kobayashi, et al. (2019)).
Once the user’s intention is determined, these methods utilize the force data as the control
input to the admittance controller. Hence, the walking aid is steered toward the direction
aligned with the user’s intention.

On the contrary, cane robots, which provide less stability, require advanced methods
to infer human intention. In this context, Cerqueira et al. (2023) classifies human intention
into five distinct motions. Furthermore, Wakita et al. (2013) present a Kalman filter
approach for estimating the ITD, which is employed by Itadera, Nakanishi, et al. (2020).
The Kalman filter utilizes measured forces and distinct walking mode transitions. By
integrating these inputs into the state model, the Kalman filter estimates the ITD.

Given that walker robots adhere to nonholonomic constraints, they benefit from
increased stability and decreased sensitivity to force variations (Batlle et al. (2009)).
Consequently, the estimation of ITD is not as critical for walker robots as for cane robots.
Cane robots encounter challenges such as zigzag trajectories due to stumbling, making an
accurate estimation of ITD essential for designing an effective motion controller (Wakita
et al. (2013)).

2.7 Fall prevention
According to the World Health Organization (WHO), falls are the second leading cause
of accidental or unintentional injury deaths worldwide (Falls - WHO (2024)). There are
several risk factors that increase the probability of falling, such as poor balance and lower
extremity weakness (Pereira et al. (2019)). To address these challenges patients with
balance impairment often resort to using walkers. Recognizing the global impact of falls as
a significant cause of unintentional injuries, the current literature actively explores avenues
for fall prevention to mitigate these risks.

Fall prevention algorithms employ a variety of techniques, such as the analysis of
movement patterns through gait or COP estimation to identify potential loss of balance
(Itadera and Cheng (2022); Naeem et al. (2022)). Additionally, utilizing machine learning
techniques is an effective method for gait analysis (Itadera, Kobayashi, et al. (2019)),
enabling the distinction between normal force variations and those that indicate insta-
bility. Real-time processing must be prioritized in the design in order to ensure timely
interventions and increased effectiveness of the algorithm.

Itadera, Nakanishi, et al. (2020), which was presented in Section 2.5, incorporates
a safety mechanism with fall prevention capabilities. This involves monitoring the risk
of a user falling based on the size of the support polygon formed by the robot base and
the user’s foot positions. When the risk of falling increases, the admittance parameters
are dynamically adjusted to provide appropriate physical support, enhancing stability and
reducing the likelihood of a fall.

Furthermore, Itadera, Nakanishi, et al. (2020) outline a virtual friction model within
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its control system to improve user support and prevent falls. In traditional admittance
control, the cane robot’s velocity remains non-zero as long as external force is applied.
Consequently, when the user leans on the cane robot for support, it continues to move and
cannot adequately assist. To address this, a virtual friction force is introduced into the
admittance control method. This approach facilitates the cane robot’s smooth movement
when the user intends to navigate it, while ensuring a prompt halt to provide support when
the user leans against the robot. The virtual friction force dynamically adapts based on the
vertical component of the user’s applied force, delivering supportive forces to the user.

The cane-type robot presented by Cerqueira et al. (2023), behaves in accordance with
the user’s intentions and meets safety conditions by employing a haptic sensing system.
The user’s intent is detected through the robot’s axial force system, which is composed of
two parts: a haptic sensing system and an axial force system. The haptic sensing system,
measured through vertical forces, monitors the user’s gait and quantifies the body weight
support. It facilitates fall detection by identifying sudden changes in the user’s gait or
movement patterns, offering real-time feedback to detect when support is required.

Moreover, the axial force system, comprising four Force-Sensing Resistors (FSRs),
categorizes user motion intentions as front, back, left, and right, with stop indicating no
applied force. Combined with a vibratory actuation mechanism employing vibrotactile
motors, this facilitates two-way communication to provide feedback on hazards or gait
irregularities (Cerqueira et al. (2023)).

Bilgin et al. (2023) employs lateral support mechanisms on a smart walker to reduce
the risk of sideways rollovers and improve fall prevention, especially for the elderly and
those with Parkinson’s disease. It utilizes a combination of a laser range finder, a 6-
axis force/torque sensor, and an Inertial Measurement Unit (IMU) to estimate the human
state. The system responds to signs of instability, triggered either by exceeding critical
force/torque thresholds or an extended swing phase during gait. This approach differs from
traditional fall prevention methods. Instead of merely stopping the walker, it repositions
support legs to generate a reactive force to counteract tipping torque. With a specific focus
on addressing sideways falls, which are frequently observed among older adults (Bilgin et
al. (2023)), this technology aims to significantly enhance user safety, stability, and balance
during mobility.

2.8 Training
As individuals age, they experience a natural decline in muscle strength (Abdalla et al.
(2021)). Furthermore, the strength of lower limb muscles significantly correlates with
balance, risk of falling, and walking ability (Li, Y. Yamada, K. Yamada, et al. (2022)).
Consequently, certain solutions go beyond traditional assistive devices by focusing on
training programs tailored to improve the balance of older individuals.

In Li, Y. Yamada, Wan, et al. (2019) a gait-phase-dependent control strategy empha-
sizes increasing muscle power rather than just strength in order to restore balance. With
a six-axis force/torque sensor, the smart walker anticipates user intentions and offers real-
time estimations of gait parameters. By dynamically adjusting resistance throughout the
gait, the walker has the potential to significantly improve lower limb muscle activation (Li,
Y. Yamada, Wan, et al. (2019)).
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Li, Y. Yamada, K. Yamada, et al. (2022) explores gait phase-dependent control, taking
into account that different muscles contribute to braking force in the early stance phase and
propulsion force in the late stance phase. Traditional approaches apply constant external
resistance, which may neglect muscle training during braking. In contrast, Li, Y. Yamada,
K. Yamada, et al. (2022) exerts resistance only when the targeted muscles are activated and
releases resistance when the muscles are at rest. This ensures effective training, without
interfering with natural gait patterns or causing unintended propulsion during braking
phases. In conclusion, Li, Y. Yamada, K. Yamada, et al. (2022) demonstrate that effective
strength training for enhanced walking performance focuses on muscles responsible for
generating propulsion during walking.

The control strategy in Li, Y. Yamada, K. Yamada, et al. (2022) requires real-time
estimation of the gait phase, which is accomplished using a six-axis force sensor. The
walker’s handle supports the user’s body weight, alleviating the lower limbs by transferring
force to the upper limbs. Moreover, the fluctuation of the user’s center of mass during
walking causes a cyclic change in the interaction force with each gait cycle. Consequently,
Adaptive Oscillators (AOs) are employed to extract frequency and phase information from
the oscillatory gait component, which is utilized to derive the necessary gait parameters.

Furthermore, physiological cost evaluation is a key aspect addressed by Itadera,
Nakanishi, et al. (2020), presented in Section 2.5, to optimize the admittance control
parameters for gait training. The evaluation involves a Physiological Cost Index (PCI),
which is defined as a measure of energy consumption during walking with the cane robot.
In addition, Itadera, Nakanishi, et al. (2020) considers the total work done by the user
on the robot and the impulse transmitted from the user to the robot. By evaluating these
physiological indicators, the study aims to assess the walking load during gait training.
This emphasis on physiological cost evaluation contributes to the overall effectiveness
of the cane robot in facilitating rehabilitation and enhancing the mobility of elderly and
impaired individuals.

2.9 Human operator dynamics
Comprehending the dynamics of human operators in Human-Robot Interaction (HRI) is
crucial for optimizing system performance. As explored by Woollacott et al. (1988), age-
related neuromuscular changes significantly impact motor coordination, leading to delays
in postural muscle responses and loss of coordination between muscle groups. These
findings underscore the importance of acknowledging and addressing age-related factors
in HRI interfaces to enhance the overall user experience. Moreover, modeling human
behavior provides insight into how human operators adjust their actions to align with
system dynamics. Within manual control systems, methodologies such as the crossover
model (D.T. McRuer et al. (1967)) and time-optimal control theory (D. McRuer (1980))
are commonly employed to describe tracking errors.

Woollacott et al. (1988) presents the effects of neuromuscular changes on motor
coordination. The research identifies significant delays in postural muscle responses
among older adults when confronted with external balance threats, potentially disrupting
timing and coordination. Specifically, elderly induviduals exhibited a significant increase
of 73 ms in postural response latencies for the flexor muscle tibialis anterior (Woollacott
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et al. (1988)). Furthermore, observed breakdowns in muscle response correlation indicate
a loss of coordination between muscle groups, impacting the smoothness and efficiency
of movements. Moreover, the increased co-contraction of agonist and antagonist muscles
suggests a weakened ability for selective muscle activation, potentially leading to higher
stiffness. These findings emphasize the importance of recognizing age-related neuro-
muscular changes and their implications for refining man-machine interfaces to better
accommodate the needs and capabilities of elderly operators.

McRuer’s Crossover Model states that the human controller (Yp) adapts its behavior
to match the system dynamics (Yc), ensuring that the open-loop system (Equation 2.1)
behaves as a single integrator with effective time delay τe in vicinity of the crossover
frequency ωc (Bachelder et al. (2019)). The model acknowledges the human controller’s
capacity to generate lead (TL) or lag (TI ) responses using prediction or memory. More-
over, by adapting the gain Kp and reducing effective time delay τe the operator (Equa-
tion 2.2) achieves the desired crossover frequency ωc (D.T. McRuer et al. (1967)). This
frequency, representing the system bandwidth, signifies the upper limit where operator
input effectively minimizes tracking errors (Bachelder et al. (2019)). Once adapted to
the dynamics, the operator can find the optimal parameters to mitigate disturbances and
eliminate tracking errors.

YOL(jω) = Yp(jω)Yc(jω) =
ωc

jω
e−jωτe (2.1)

Yp = Kp
(TLjω + 1)

(TIjω + 1)
e−jωτe (2.2)

Time-optimal control theory presents an alternative perspective on human operator
dynamics within manual control systems, focusing on minimizing the time needed to
achieve specific control objectives. This framework explores how individuals adjust their
actions to meet performance criteria and effectively complete tasks (D. McRuer (1980)).

Furthermore, by highlighting the importance of speed and efficiency, this theory
reveals the strategies and decision-making processes operators employ to enhance perfor-
mance. These decision-making processes involve trade-offs between speed, accuracy, and
effort, with operators adapting and learning from experience to refine their approaches for
rapid and precise task completion (D. McRuer (1980)). In essence, time-optimal control
theory offers valuable insights into time-sensitive aspects of human behavior in manual
control systems.

The dynamics of a human operator, particularly in terms of response delay, have been
extensively studied over the past century (Bates (1947)). In basic tests, skilled operators
typically exhibit a mean response time of 0.15 seconds, while novices show longer mean
response times ranging from 0.2 to 0.25 seconds (Bates (1947)). An example of a test to
capture this delay involves responding to a visual stimulus by pressing a button. Trained
operators consistently outperform novices, showcasing the significance of experience and
practice in reducing response delays and improving overall performance (Bates (1947)).

In summary, understanding human operator dynamics is essential for optimizing
system performance and user experience. Age-related neuromuscular changes necessitate
the adaptation of interfaces to accommodate older users’ needs (Woollacott et al. (1988)).
Models to describe human behavior emphasize the importance of adaptive behavior,
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response time and experience in enhancing efficiency. Acknowledging these factors is
critical for designing effective systems that cater to diverse user capabilities.

2.10 Summary
The comparison of the gathered articles on assistive technology for the elderly is shown
in Table 2.1. These publications collectively emphasize the importance of stability and
safety in supporting elderly individuals. The literature introduces control algorithms that
recognize and react to human intentions, resulting in a smoother and more reliable walking
experience. Such control methods prioritize stability, security and user customization in
order to improve mobility support (Langeweg (2023)).

By utilizing HRI, intelligent walkers are able to recognize and react to user intentions,
which enhances the overall stability and confidence of elderly users. As such, assistance
for seniors is customized to meet their unique needs and preferences. This individualized
approach improves the smart walker’s usefulness and efficiency. In addition, the research
includes gait models, such as the LIPM. Through the integration of these models, assistive
forces can be optimized, contributing to mobility while preserving a smooth and comfort-
able gait. Overall, the studies stress the need for resolving emergency scenarios, such as
falls (Langeweg (2023)).

Falls pose a significant global health risk (Falls - WHO (2024)), particularly for
individuals with poor balance and lower extremity weakness, leading to increased reliance
on assistive devices such as walkers (Pereira et al. (2019)). Fall prevention strategies
leverage sophisticated algorithms and machine learning techniques for real-time analysis
of movement patterns. The objective of these methods is to improve stability and minimize
the risk of falls in walker robots, ultimately enhancing user safety during walking.

Understanding human operator dynamics in HRI is essential for optimizing system
performance. Age-related neuromuscular changes underscore the necessity of addressing
age-related factors in HRI interfaces to enhance user experience (Woollacott et al. (1988)).
Modeling human behavior provides insights into how operators adapt their actions to align
with system dynamics, thus refining man-machine interfaces (D.T. McRuer et al. (1967)).
These findings emphasize the significance of recognizing human operator dynamics to
ensure effective interaction between humans and robots, ultimately enhancing system
performance and user satisfaction.
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Table 2.1: An overview of the selected articles.

Article WMM Smart
walker

Cane
robot

Falling
prevention

Force
sensor

Gait
estimation/

model

STS Impedance/
Admittance

Supportive
forces

Zhao et al.
(2020)

X X X X

Chang et al.
(2021)

X X X X X

D. Ding et al.
(2023)

X X X X

L. Ding et al.
(2022)

X X X X X

Xing et al.
(2021)

X X X

Itadera and
Cheng (2022)

X X X X

Itadera,
Dean-Leon,
et al. (2019)

X X X X X

Mahdi et al.
(2022)

X X X

Itadera,
Kobayashi,
et al. (2019)

X X X X X X

Yokota et al.
(2019)

X X X X X X

Naeem et al.
(2022)

X X X X X

B et al.
(2023)

X X X

Itadera,
Nakanishi,
et al. (2020)

X X X X X X

Cerqueira et
al. (2023)

X X X X X

Bilgin et al.
(2023)

X X X X X X

Li, Y.
Yamada,
Wan, et al.
(2019)

X X X X

Li, Y.
Yamada, K.
Yamada, et al.
(2022)

X X X X
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3
Trust in Automation

In the field of HRI, robots extend their operations beyond controlled environments,
engaging in close collaboration with humans. This transition emphasizes the importance
of ensuring safety and trust. Considerations regarding Trust in Automation encompass
various concerns, from privacy apprehensions to the ethical implications of assigning tasks
to robots. Moreover, it includes the importance of establishing trust between users and
robotic systems. The following discussions on Trust in Automation are extracted from the
chapter in the project report Langeweg (2023).

One of the main concerns related to HRI with vulnerable users, is ensuring that the
robot is designed and programmed to prioritize the safety and well-being of the user.
Akalin et al. (2022) indicates that users’ perception of safety during HRI is influenced
by factors such as the transparency of robot behaviors and predictability. The study
emphasizes the importance of developing systems that users, especially vulnerable groups
such as older adults, consider safe to interact with. Furthermore, a perception of safety
is accomplished by emphasizing the key factors of transparency, predictability, a sense of
control and trust.

In the context of service robots in elderly care, these aspects become even more crucial.
Transparency allows elderly users to understand the robot’s actions and intentions through
clear communication and feedback (Akalin et al. (2022)). Predictability is essential for
user comfort and safety, as it ensures consistent and reliable robot behavior, allowing users
to anticipate its actions and reducing potential distress (Akalin et al. (2022)). Furthermore,
granting a sense of control to elderly users empowers them by enabling them to start
and stop interactions, preserving their independence and self-assurance. These principles
collectively contribute to an environment where elderly users not only receive physical
assistance, but also experience a profound sense of trust and control.

An additional ethical consideration is informed consent. Certain vulnerable users may
not fully understand what it means to interact with a robot and, therefore, might not be
able to give informed consent. It is crucial to obtain consent from the user’s legal guardian
or caregiver and make sure that the user feels comfortable with the interaction (Akalin
et al. (2022)). Additionally, privacy emerges as a significant ethical concern. The design
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3 Trust in Automation

of the robot must actively respect the user’s privacy by not collecting or sharing sensitive
information without their explicit consent.

The potential replacement of human interaction with actions carried out by robots,
leading to reduced social contact, is a crucial aspect around Trust in Automation. Patients
and healthcare professionals fear a loss of human connection and empathy, both funda-
mental in delivering high quality care (Servaty et al. (2020)).

To tackle these worries, it is vital to involve patients and healthcare workers in the
design and implementation of robotic devices. This ensures that robots complement and
enhance human interaction instead of substituting it (Akalin et al. (2022)). For instance,
robots can handle routine tasks such as monitoring health data or medication delivery,
allowing healthcare professionals to spend more time engaging with patients and offering
emotional support. Moreover, providing patients with clear information about the role of
robots in healthcare and addressing their concerns helps establish trust in the technology
(Akalin et al. (2022)).

In conclusion, this chapter highlights the importance of user safety and trust, providing
a sense of control in decision-making processes. It emphasizes the necessity of balancing
the benefits of robotic assistance and preserving human autonomy to enhance the quality
of care.
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4
Theory

This chapter focuses on essential concepts to guide the development of a smart walker for
elderly care. The central idea is to understand how HRI is enhanced through the implemen-
tation of admittance control, emphasizing the importance of compliance. Additionally, the
coordinate transformation of a force sensor is explored to unveil a correlation between
the sensor data and the interaction coordinates. Lastly, the examination of interaction
dynamics between the walker and users informs strategies designed for fall prevention and
guiding users along a path. The fundamental theory presented in this chapter originates
from the project report (Langeweg (2023)) and has been expanded to offer additional
functionalities for the user. Notably, Section 4.1, 4.2, 4.3 and 4.4 are directly extracted
from the project.

4.1 Human Robot Interaction
Historically, robots were confined to repetitive tasks with predefined instructions. How-
ever, as technology advances, robots engage in increasingly complex and unstructured
tasks. Robots are no longer mere automatons executing programmed routines, they
are becoming an integral part of our daily lives. As robots evolved, the necessity
for HRI emerged (Feil-Seifer et al. (2009)). As defined by ISO, HRI represents the
“information and action exchanges between human and robot to perform a task by means
of a user interface” (ISO 8373:2021, Robotics (2023)). In other words, HRI focuses
on understanding and enhancing the relationships between humans and robots. Its core
objectives involve developing principles and algorithms for robots to safely and effectively
interact with humans in various environments (Feil-Seifer et al. (2009)).

4.2 Compliance
The idea of compliance is crucial in the field of HRI, especially in the context of safety.
Compliance, as defined by ISO, is “flexible behavior of a robot or any associated tool in
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4 Theory 4.2.1 Admittance Controller

response to external forces exerted on it” (ISO 8373:2021, Robotics (2023)). In essence,
the interaction between the user and the robot is dynamic. This idea is applied by smart
walkers and assistive devices which offer assistive forces rather than rigorously prescribing
motions.

Excessive rigidity in technology might lead to balance issues among elderly indi-
viduals. Consequently, integrating compliant behavior into the assistive device has the
potential to reduce falls. This is achieved through the application of impedance control or
admittance control (Khan et al. (2014)). The resulting interaction improves the senior’s
autonomy by offering support, while maintaining a sense of control.

According to Hogan (1984) humans adjust the impedance of their arm when they
interact with an unpredictable environment. Therefore, the arm’s stiffness is adjusted to
facilitate a soft or stiff interaction. In this context, impedance defines the relation between
force and motion, expressed as

F = Z · ẋ, (4.1)

where F is the contact force, Z the impedance and ẋ the velocity.
Correspondingly, the interaction between humans and robots can exploit this principle

(Peternel et al. (2017)). The mechanical impedance of a structure is defined as the
resistance to motion when an external force is applied (Khan et al. (2014)), while
admittance is the inverse of impedance. Thus, high admittance would result in faster
motion for a given force in contrast to high impedance.

Furthermore, impedance and admittance encompass several parameters, such as stiff-
ness, damping, inertia, etc., each corresponding to either position or one of its time deriva-
tives. Due to the practical difficulties involved in measuring variables beyond acceleration,
impedance and admittance are typically represented by a mass-spring-damper (Peternel et
al. (2017)).

The inherent causality in a mechanical system dictates that only forces can excite
a system, resulting in a corresponding motion. This fundamental property enables the
characterization of a mechanical system through its admittance. As a result, admittance
control can assist walking for the elderly by generating compliant behaviors between the
user and the robotic system.

4.2.1 Admittance Controller
Admittance control is one of the most common methods for interaction between humans
and robots, as it controls the motion of the walker based on the applied force and/or
torque (Cerqueira et al. (2023)). Furthermore, the admittance model emulates a dynamic
system, making users feel like they are interacting with the system specified by the model.
Consequently, by modifying the admittance parameters, the interaction dynamics change.

When designing an admittance controller for a nonholonomic robot, it is essential to
consider the imposed velocity constraints (Langeweg (2023)). To address the mechanical
limitations that prevent sideways sliding and to constrain the robot’s movement, linear
position x and heading angle θ serve as the relevant states

p =
[
x θ

]T
. (4.2)
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4 Theory 4.3 Differential Drive Robot

Applying the previously defined coordinates (Equation 4.2), the robot’s base is con-
trolled using an admittance controller as follows

Mp̈ + Dṗ + Kp = F, (4.3)

where the vector F =
[
fx fy

]T
, encapsulates the force exerted by the user in the x- and

y-direction. These elements are selected because the force in the x-direction reflects the
user’s intention to modify linear velocity, while the force in the y-direction corresponds
to the user’s desire to adjust steering. Consequently, the forward dynamics are decoupled
from the turning dynamics, simplifying the detection of the user’s intention.

Moreover, M,D,K are the virtual mass, damper and spring coefficient, respectively,
defined as

M =

[
mx 0
0 mθ

]
D =

[
dx 0
0 dθ

]
K =

[
kx 0
0 kθ

]
.

(4.4)

Using the established admittance controller, the resulting transfer function from exter-
nal force F to position p is defined as follows:

H(s) =
p(s)

F (s)
=

1

Ms2 +Ds+K
. (4.5)

4.3 Differential Drive Robot

A differential drive robot utilizes two independently driven wheels located on opposite
sides of its body. The robot can adjust its heading by manipulating the relative rotation
rates of these wheels, eliminating the need for an additional steering motion (Dudek et al.
(2010)). The rotation of the robot occurs around a point along their common axis, referred
to as the Instantaneous Center of Rotation (ICR). Dudek et al. (2010) present the geometric
relations depicted in Figure 4.1, which implies that the rotation rate ω around the ICR is
equal for both wheels.
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Figure 4.1: Geometric relationship for rotation of a differential drive robot.

Consequently, the following equations are derived

vl = (R− L

2
)ω → ω =

vl

R− L
2

vr = (R+
L

2
)ω → ω =

vr

R+ L
2

,

(4.6)

where L is the length of the axle.
Utilizing the equality of ω for both wheels results in

R =
L

2

vr + vl
vr − vl

, (4.7)

where R represents the signed distance from the ICR to the midpoint of the axle (xf , yf ).
When vr = vl, only forward linear motion occurs, causing R to approach infinity. In

the case of equal yet opposite velocities in the two wheels, rotation takes place around the
midpoint of the wheel axle, resulting inR = 0. Additionally, when turning with one wheel
at a standstill (e.g., Vl = 0), the rotation occurs around that wheel, leading to R = L

2 .
Moreover, the velocity of the robot traveling tangentially to the path, referred to as the

forward linear velocity, is determined by

v =
vr + vl

2
. (4.8)

4.4 Force Sensor
Force sensing technologies play an important role in enhancing the capabilities of service
robots, particularly in applications involving physical interaction with users (Naeem et al.
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4 Theory 4.4.1 Coordinate Transformation

(2022); Zhao et al. (2020); Chang et al. (2021)). The choice of force sensor depends on
the desired accuracy, sensitivity and range of force measurements. As such, sensors that
can detect subtle forces are crucial in the context of HRI for elderly care in order to detect
user intentions and provide compliant interaction.

4.4.1 Coordinate Transformation

Using a six axes force sensor, it is possible to measure both the force and the torque
expressed by

Tf =
[
Ff Mf

]T
=
[
Ffx Ffy Ffz Mfx Mfy Mfz

]T
. (4.9)

The force sensor comes with a factory reference frame f , given in Figure 4.2.

Figure 4.2: Force sensor with factory reference frame.

Due to the placement of the sensor on the robot, there arises a need to rotate the
measurement vector 4.9 to the sensor frame s given in Figure 4.3, which is aligned with
the handle frames. The corresponding transformation matrix from the factory reference
frame f to the sensor coordinates s is expressed as follows:

Cf
s =

[
Rf

s 0
0 Rf

s

]
. (4.10)
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4 Theory 4.4.1 Coordinate Transformation

Figure 4.3: Coordinate systems of sensor and handles.

By employing the provided transformation matrix (Equation 4.10), as indicated below
(Equation 4.11), the data from the factory reference frame is rotated to attain measure-
ments in the sensor frame that are aligned with the two handles.

Ts = Cf
s ·Tf (4.11)

Obtaining the rotation matrix from the factory frame to the sensor frame involves a
sequence of rotations. Initially, there is a rotation of ϕ degrees around the x-axis (roll),
followed by θ degrees around the y-axis (pitch) and finally ψ degrees around the z-axis.
The rotations are executed counterclockwise relative to their respective axes. The rotation
matrices are expressed as follows:

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cosϕ


Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .
(4.12)

A single rotation matrix from the factory frame to the sensor frame can be formed by
multiplying the yaw, pitch and roll rotation matrices to obtain
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4 Theory 4.4.2 Reconstruction of Handle Forces

Rf
s (ψ, θ, ϕ) = Rz(ψ) ·Ry(θ) ·Rx(ϕ) (4.13)

=

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ

 .
To achieve alignment between the factory reference frame f of the force sensor (4.2)

and the defined sensor frame s, a rotation of 180 degrees around the x-axis, succeeded
by a 45-degree rotation around the z-axis, is necessary. Hence, the resulting angles are
θ = 0, ψ = π

4 and ϕ = π.
By inserting the acquired angles into the analytic expression for the rotation matrix

(Equation 4.13), the resulting rotation matrix is derived as

Rf
s =


√
2
2

√
2
2 0√

2
2 −

√
2
2 0

0 0 −1

 . (4.14)

4.4.2 Reconstruction of Handle Forces
Due to the physical interaction between the user and the robot, there are contact forces

Fhl =
[
Fhlx Fhly Fhlz

]T
Fhr =

[
Fhrx Fhry Fhrz

]T
,

(4.15)

between the environment and the left and right handle attached to the robot. Superscript
hl means decomposed into the coordinate system xhl, yhl, zhl illustrated in Figure 4.3.

Figure 4.4: Moments and moment arms defined with respect to the sensor origin.

The moments around the sensor frame are generated by the forces applied to the
handles. Hence, the moment arms are determined by the distance from the sensor frame
to the corresponding handle frame (Figure 4.4):
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4 Theory 4.4.2 Reconstruction of Handle Forces

Dhl =
[
−lx ly lz

]T
Dhr =

[
−lx −ly lz

]T
.

(4.16)

The moment generated in the sensor frame is expressed by the cross-product of the
moment arm and the corresponding forces, as illustrated in the following expression:

Ms = Dhl × Fhl +Dhr × Fhr +Mhl +Mhr

Ms =

∣∣∣∣∣∣
î ĵ k̂

−lx ly lz
Fxhl Fyhl Fzhl

∣∣∣∣∣∣+
∣∣∣∣∣∣

î ĵ k̂
−lx −ly lz
Fxhl Fyhl Fzhl

∣∣∣∣∣∣+Mhl +Mhr.
(4.17)

Assuming that the moments applied to the handles by the user, denoted as Mhl and
Mhr, have no impact on the moment in the sensor Ms, the expression is simplified toMsx

Msy

Msz

 =

ly(Fhlz − Fhrz)− lz(Fhly + Fhry)
lx(Fhlz + Fhrz)− lz(Fhlx + Fhrx)
ly(Fhrx − Fhlx)− lx(Fhly + Fhry)

 . (4.18)

Three additional equations are necessary to solve for the handle forces. These
equations can be derived from the net force measured in the sensor, which is the sum
of both handle forces, expressed as

Fsx = Fhlx + Fhrx

Fsy = Fhly + Fhry

Fsz = Fhlz + Fhrz.

(4.19)

By substituting the expressions in Equation 4.19 into Equation 4.18 and solving for the
handle forces, the result is obtained in Equation 4.20.

Fhlx =
1

2
Fsx − 1

2ly
(Msz + lxFsy)

Fhrx =
1

2
Fsx +

1

2ly
(Msz + lxFsy)

Fhlz =
1

2
Fsz +

1

2ly
(Msx + lzFsy)

Fhrz =
1

2
Fsz −

1

2ly
(Msx + lzFsy)

(4.20)

Despite successfully deriving equations for the forces in x- and z-direction, the
derivation of forces in the y-direction, denoted as Fhly and Fhry , faces a challenge. This
challenge arises from the negative moments generated by both these forces around the x
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and z axes. Consequently, distinguishing between the y-forces applied to the left and right
handles becomes infeasible, as both contribute to moments in the same direction.

Nevertheless, the force in the y-direction solely influences turning. Consequently,
measuring Fsy , which represents the combined forces, is adequate to predict the user’s
intention to turn.

4.5 Fall Prevention
Identifying the risks of falls is essential for effective fall prevention strategies. Falls
among the elderly often originate from a combination of factors, including balance
impairment, muscle weakness and cognitive decline (Al-Aama (2011)). These factors
create vulnerabilities that increase the risk of falling.

To mitigate fall risks, real-time monitoring and responsive interventions are crucial.
Vertical forces are indicative of weight distribution and balance, making them valuable
metrics for assessing the risk of falls (Zhao et al. (2020)). Hence, by continuously
monitoring vertical forces exerted during walking, the robot can detect deviations from
normal patterns that might signal a loss of balance. Detecting potential balance issues and
triggering appropriate responses, such as adjusting its support, enables the robotic system
to assist the user in regaining stability. This proactive approach contributes to maintaining
the stability and safety of elderly users.

The user’s relative position to the robot is represented as rxh and ryh in the robot’s
coordinate system. Utilizing these measurements, the linear velocity of the user can be
calculated as follows

ẋh[n] = (rxh[n]− rxh[n− 1])∆t+ vx, (4.21)

where vx is the linear velocity of the robot and n is the current timestep.
To distinguish between walking and emergency states, the user’s relative position to the

robot (rxh, ryh) is employed. The analysis in Hirata et al. (2006) reveals that the distance
distribution of user position frequencies along the x-axis and y-axis during normal walking
is a normal distribution. Thus, the user state can be estimated as the Probability Density
Function (PDF) of a bivariate normal distribution (Hirata et al. (2006))

Pxy = f(rxh
ryh) =

1

2πσxσy
√
1− ρ2

exp

{
− 1

2(1− ρ2)
Q

}

Q =
(rxh − µx)

2

σ2
x

− 2ρ(rxh − µx)(
ryh − µy)

σxσy
+

(ryh − µy)
2

σ2
y

,

(4.22)

where ρ is the correlation coefficient expressed as follows:

ρ =

∑n
i=1(

rxhi − µx) · (ryhi − µy)√∑n
i=1(

rxhi − µx)2 ·
√∑n

i=1(
ryhi − µy)2

. (4.23)

The probability of a bivariate normal distribution may be visualized as probability
ellipses. These ellipses are characterized by two principal axes in R2, which indicate the
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directions of maximum and minimum variance. These axes are commonly referred to as
the semi-major (a) and semi-minor (b) axes (Bishop (2006)). The eigenvalues (ua, ub) and
eigenvectors (λa, λb) derived from the covariance matrix

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
, (4.24)

represent the variances along the principal axes and the orientation of these axes, respec-
tively (Bishop (2006)). Given positive real valued eigenvalues, the surfaces of the PDF
represent an ellipse, with the center at µ, the axes oriented along (ua, ub) and with scaling
factors in the directions of the axes given by (

√
λa ,

√
λb ) (Bishop (2006)).

Utilizing the bivariate normal distribution given by Equation 4.22, the objective is to
compute the probability expressed as

P (−a ≤ x− µx ≤ a,−b ≤ y − µy ≤ b) = c, (4.25)

in order to determine the region indicative of the user being in a normal state (Hirata et al.
(2006)). However, in the absence of an inverse Cumulative Distribution Function (CDF)
for the bivariate normal, an approximation for the inverse CDF becomes necessary.

The observations outside the region indicative of the normal state may be categorized
as outliers. These observations are characterized by their deviation from the predominant
data pattern (Rousseeuw et al. (1990)). A widely adopted method for detecting multi-
variate outliers is through the employment of the squared Mahalanobis distance (Finch
(2012)), represented as

D2
j = (xj − µ)⊤Σ−1(xj − µ), (4.26)

where xj denotes a specific observation across the set of n variables, µ is the vector of
observation means and Σ is the covariance matrix associated with the n variables.

Consequently, the Mahalanobis distance serves as a measure to characterize points
on the surface of an ellipse, providing a metric for distance within the distribution.
Specifically, when selecting a random point, it is associated with a probability p of having
a squared Mahalanobis distance equal to or smaller than a certain threshold. Moreover, the
squared Mahalanobis distance of a Gaussian distribution is known to follow a Chi-Square
(χ2

df ) distribution where the degrees of freedom (df ) are equal to the number of variables
(n) in the observation.

Additionally, an ellipse is defined such that the probability of the observed value
x being contained within is 1 − α (Equation 4.27). This provides an approximation
for estimating Equation 4.25. This approximation is achieved by setting the squared
Mahalanobis distance equal to the critical value Zc = χ2

n,α obtained with a significance
level α (Applied Multivariate Statistical Analysis (2024)).

P
(
D2 ≤ χ2

n,α

)
= 1− σ = c (4.27)

To determine the 1 − α confidence ellipse, the Percent-Point Function (PPF) of the
chi-squared distribution is employed. The PPF serves as the inverse of a CDF, providing
the critical value (Zc = χ2

n,α) at which the CDF reaches a specified probability (1.3.6
Probability Distributions (2024)). Essentially, this critical value acts as a threshold to
ensure that the ellipse covers a certain probability mass. The critical value is applied
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to scale the semi-major and semi-minor axes of the ellipse, with the scaling being
proportional to the square root of the product of the critical value and the corresponding
eigenvalue (Bishop (2006)).

a =
√
Zc · ua

b =
√
Zc · ub

(4.28)

The derived ellipse is utilized for emergency state estimation. If the user’s position falls
outside the support ellipse, the walker transitions into an emergency state. To avoid user
falls when an emergency state is detected, the damping parameters are increased according
to the distance between the walker and the user (Hirata et al. (2006)).

Hirata et al. (2006) modify the damping parameters when in an emergency state, based
on the distance dh and the angle θh from the user’s position to the mean position of the
bivariate normal distribution (µx, µy).

The user position is measured in the sensor frame as rxh,
ryh relative to the walker.

To determine the distance and angle from the user position to the ellipse center, an inverse
rotation is applied to align the coordinate system with the semi-major and minor axes of
the ellipse [

exh
eyh

]
= R(θ)−1

[
rxh
ryh

]
, (4.29)

where exh,
eyh is the user position in the ellipse frame and R is the rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
. (4.30)

This rotation operation becomes relevant when the correlation coefficient ρ is non-zero.
In such cases, eigenvalues and eigenvectors corresponding to the semi-major (ua, λa) and
semi-minor (ub, λb) axes are computed. The rotation angle θ is determined using the
arctan 2 function applied to the eigenvector associated with the major axis, specifically

θ = arctan 2

(
ua,y
ua,x

)
, (4.31)

where ua,y is the y-component and ua,x is the x-component of the eigenvector.
The position in the ellipse coordinate frame can be reformulated by utilizing polar

coordinates to determine the distance dh and angle θh from the user to the center of the
support ellipse, as expressed by

dh =

√
(exh)

2
+ (eyh)

2

θh = arctan 2

(
eyh
exh

)
.

(4.32)

Furthermore, it is necessary to determine the distance between the mean position of
the normal distribution, denoted as (µx, µy), and the edge of the ellipse along the line with
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the angle θh. This involves identifying the intersection point of the ellipse along the line
passing through exh,

eyh and the center of the ellipse. By utilizing the standard ellipse
equation (

exh
a

)2

+

(
eyh
b

)2

= 1, (4.33)

along with the polar coordinates of the user position exh = re cos θh and eyh = re sin θh,
it yields the equation

re =

√
1(

cos θh
a

)2
+
(
sin θh

b

)2 . (4.34)

All the steps detailed in this section are outlined in Figure 4.5.
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Figure 4.5: Walking ellipse with a 90% confidence interval and distance to user dh and ellipse re.

If the user is situated outside the support ellipse, modifications to the damping
coefficients are applied based on the distance from the ellipse dh − re (Bishop (2006))
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dx = exp{cx(dh − re)}+ dx,init (dh > re)
dθ = exp{cθ(dh − re)}+ dθ,init (dh > re)

dx = dx,init (dh ≤ re)
dθ = dθ,init (dh ≤ re),

(4.35)

where dx,init and dθ,init represent the initial damping coefficients in the typical walking
state, while the values of cx and cθ are determined to achieve the desired behavior for fall
prevention.

4.6 Guidance

When employing a robot for guidance, a predefined path becomes necessary for the robot
to follow. This entails the generation of motion profiles for the chosen control variables.
In the context of nonholonomic robots, a common choice of control variables includes the
linear velocity vd = ẋd and the steering angle δd.

However, providing a forward velocity and steering angle introduces challenges in
understanding the robot’s behavior within the Cartesian space (x, y). Consequently, to
obtain a desired behavior in the Cartesian space, a trajectory in the xy-plane is generated
and transformed to linear velocity and steering angle (Langeweg (2023)). The robot’s
spatial configuration and movement are described as follows[

xf yf θ
]T
, (4.36)

where xf and yf represent the position at the center of the front axle along the x- and
y-axis, while θ describes the heading angle of the robot in radians.

Conversion between the generated trajectory and the control variables is accomplished
by employing a Line of Sight (LoS) controller. The LoS controller was investigated in
Langeweg (2023) and the following section is extracted from it.

4.6.1 Line of Sight Controller

An approach for defining a trajectory is through waypoints in the Cartesian space, rep-
resented as (x, y) ∈ R2. As proposed by Fossen et al. (2003), the path-following
problem can be divided into two objectives. The first objective, referred to as “geometric
assignment” is to achieve convergence to the desired path. The second objective, known
as “speed assignment”, is focused on the regulation of the vehicle’s speed. Fossen et al.
(2003) introduce a LoS controller to reach the first objective. The position, defined as
p =

[
x y

]T
, converges to the desired path by forcing the heading angle θ to converge to

the LoS angle

ψlos = atan2(ylos − y, xlos − x). (4.37)

The geometric relationships are depicted in Figure 4.6.
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Figure 4.6: Geometric relationship for the LoS controller scheme.

Moreover, the path is defined by a sequence of waypoints, where pk represents the
current waypoint and pk−1 denotes the preceding one. By considering the current vehicle
position p as the center of a circle with radius nL, where L is the vehicle’s length, the
circle intersects with the straight-line segment between two consecutive waypoints. The
LOS position plos is determined by identifying the closest intersection point to the current
waypoint. This position is obtained runtime by solving a system of equations given by

(ylos − y)2 + (xlos − x)2 = (nL)2

ylos − yk−1

xlos − xk−1
=
yk − yk−1

xk − xk−1
= tan(αk−1).

(4.38)

To ensure that the vehicle successfully traverses the entire path, it is imperative to select
the subsequent waypoint. A criterion for selecting the subsequent waypoint, positioned at
pk+1 =

[
xk+1 yk+1

]T
, is to ensure that the vehicle is within the radius of acceptance

of the current waypoint pk. Therefore, if, at any given time t, the vehicle’s position p(t)
satisfies

(xk − x(t))2 + (yk − y(t))2 ≤ R2
k, (4.39)

where Rk < nL, the next waypoint is selected.

4.6.2 Variable Admittance Control
Haptic feedback provides users with tactile- or force-feedback in response to their in-
teractions with a system or device. This sensation aims to replicate real-world forces
relevant to specific tasks (Morris et al. (2007)). By providing virtual overlays with rigid
boundaries the user’s movements are constrained within defined surfaces (Abbink et al.
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(2009)). However, many manual control tasks occur in fluid and unpredictable work
environments. In such scenarios, haptic guidance should not impose restrictions but rather
emphasize preferred control strategies to enhance performance or user safety (Abbink et
al. (2009)).

The controller proposed by Jiménez et al. (2019), denoted as Variable Admittance Con-
trol (VAC), introduces haptic sensation by dynamically modifying damping parameters
according to user force and deviation from the path. The damping parameter indicates the
correct direction by decreasing when the device follows the path closely. These parameters
control both linear and angular velocities, thus making it easier to move in the direction of
the path.

Furthermore, the orientation error is defined as the difference between the robot
orientation θ and the desired steering angle δd from the path planner

θ̃ = δd − θ. (4.40)

The damping parameter for the linear velocity dx has the behavior of an inverted
Gaussian. This function offers changes with soft transitions, which are reflected in the
user experience (Jiménez et al. (2019)). Thus, the damping parameter dx is given by

dx = dx,max − dd,max · exp

−

(
θ̃

δdx

)2
 , (4.41)

where, dx,max is the maximum limit of dx, dd,max is the maximum decrease of damping
and δdx is the parameter that determines the width of dx function.

0

d θ
(t)

dθ, min

dθ, max

dθ, max

δdθ

(+)(–)

Figure 4.7: Description of constants in the damping parameter for the linear velocity.

Consequently, when θ̃ approaches zero, the damping is at its minimum, facilitating
smooth movement. However, as the orientation error increases, locomotion becomes
increasingly challenging for the user.

Moreover, the damping parameter for angular velocity dθ is given by
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dθ = diθ +Gdθ · tanh
(

1

Pdθ
Fy θ̃

)
, (4.42)

where diθ is the initial damping parameter, Gdθ the difference between the max and min
desired damping parameter, and Pdθ is the slope of the curve of dθ.

Figure 4.8: Description of constants in the damping parameter for the angular velocity.

When the orientation error θ̃ is positive, the damping parameters decrease in response
to a negative user force Fy , indicating the user’s intention to correct the error. Conversely, a
positive user force increases the damping parameters, constraining walker mobility. On the
contrary, when the error θ̃ is negative, a positive user force reduces the damping parameter.

The utilization of adaptive damping parameters facilitates haptic feedback. This
approach dynamically adjusts parameters in response to user force and deviations from
intended paths, thereby offering intuitive guidance without imposing rigid constraints.

4.7 Performance Metrics
This section investigates a variety of metrics to assess the performance of the system.
These metrics are essential for evaluating system effectiveness and the maneuverability of
the robot.

4.7.1 Physiological Cost Index
Adjusting the virtual coefficients of the admittance controller allows for customization
of both the velocity and the walking load to suit the user. Itadera, Nakanishi, et al.
(2020) examine the correlation between physiological cost and admittance parameters.
One approach to assess cost involves the Physiological Cost Index (PCI) as a measure of
energy consumption during walking. The PCI (Itadera, Nakanishi, et al. (2020)) is defined
as

PCI =
MeanHR at walk−MeanHR at rest

Walking speed [m/min]
, (4.43)
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where HR is the heart rate. The PCI is utilized as a means of estimating energy
consumption during walking, where a larger PCI indicates greater energy consumption
(Itadera, Nakanishi, et al. (2020)).

4.7.2 Work and Impulse
Additionally, Itadera, Nakanishi, et al. (2020) examines the total work performed by the
user on the robot and the impulse transferred from the user to the robot. These measures
are computed based on the force applied to the handle and the distance walked, as follows

W =Wx +Wy =

∫ d

0

fsx(t) dx+

∫ d

0

fsy(t) dy

I = Ix + Iy =

∫ Tc

0

(fsx(t) + fsy(t)) dt,

(4.44)

where d is the distance walked and Tc the duration.
However, these metrics are tailored for a cane-type robot equipped with omnidirec-

tional wheels. In the case of a nonholonomic robot, which lacks the ability to move in any
direction, the force in the y-direction alone is not sufficient to induce movement along the
y-axis. Therefore, it is more appropriate to assess the resultant force generated by both the
x- and y-forces, along with the resultant displacement formed by combining ∆x and ∆y.
By discretizing the integral, the following equation is derived

W ≈
∑
i

(√
fsx[i]2 + fsy[i])2 ·

√
∆x[i]2 +∆y[i]2

)
I ≈ Tc ·

∑
i

(√
fsx[i]2 + fsy[i])2

)
.

(4.45)

The calculation of the impulse is straightforward. However, the dissimilar update rates
of the force sensor (f = 500Hz) and the position measurement (f = 20Hz) present
a challenge to the discretization process of the work metric, as each timestep i does
not align for both measures. To address this issue, one solution involves weighting all
force measurements by a fraction of the total resultant displacement. This is achieved by
applying the trapezoidal rule, defined as∫ b

a

f(x)dx ≈ h

2

[
f [a] + 2

Ns−1∑
i=1

f [i] + f [b]

]
, (4.46)

to the function
f [i] =

√
fsx[i]2 + fsy[i]2 , (4.47)

where fsx[i] and fsy[i] denote the force measurement at timestep i over a horizon Ns.
Moreover, the weight of each sub-interval is given by

h =
1

Ns

Nd−1∑
j=0

√
∆x[j]2 +∆y[j]2 , (4.48)
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where ∆x[j] and ∆y[j] denote the displacement measurement at timestep j over a horizon
Nd ̸= Ns.

4.7.3 Task Completion Time
Moreover, another metric used to quantify effectiveness and performance is task comple-
tion time, which refers to the duration taken by participants to complete predefined walking
tasks. Shorter completion times typically correspond to better performance, demonstrating
the efficacy of individuals or systems in accomplishing objectives (Munoz Ceballos et al.
(2010)). Completion time is defined as

Tc = te − ts, (4.49)

where te represents the time upon task completion, and ts denotes the time when the task
is initiated.

4.7.4 Cross-Track Error
The robot’s maneuverability is associated with its deviation from the intended path.
Therefore, a metric is employed to quantify the maneuvering performance based on the
deviation from the planned route (Steinfeld et al. (2006)). A method to quantify path
deviation is by employing the Cross-Track Error (XTE). This error indicates the difference
in the predefined path’s position and the robot’s actual location, projected onto a vector
perpendicular to the predefined path (Mondoloni et al. (2005)).

When given a path with straight line segments connecting waypoints, the equation of
the current line segment is given by:

y = c(x− xc) + yc, (4.50)

where (xc, yc) represents the coordinates of the current waypoint and c denotes the slope
of the line, calculated as

c =
yc − yp
xc − xp

, (4.51)

with (xp, yp) being the coordinates of the previous waypoint. The slope of the perpendic-
ular line is determined by

c⊥ = −1

c
. (4.52)

Now, considering (xf , yf ) as the coordinates of the robot’s front axle, the perpendicu-
lar line passing through the robot’s location can be expressed as

y = c⊥(x− xf ) + yf . (4.53)

In order to calculate the cross-track error, it is necessary to identify the intersection
point between the path’s line segment (Equation 4.50) and the perpendicular line (Equa-
tion 4.53). Setting these equations equal to each other results in
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c(x− xc) + yc = c⊥(x− xf ) + yf . (4.54)

Furthermore, solving for x and y yields

x =
c · xc − c⊥ · xf + yf − yc

c− c⊥
y = c(x− xc) + yc.

(4.55)

The cross-track error is then determined by the hypotenuse of the differences in the x-
and y- coordinates

dx = xf − x

dy = yf − y,
(4.56)

resulting in the cross-track error

e =
√
dx2 + dy2 . (4.57)

However, in cases where the line segment is either vertical or horizontal, the slope
c tends toward infinity or zero, respectively. As a result, the described method becomes
infeasible. In such cases, the cross-track error is simply the deviation in x-coordinates or
y-coordinates, respectively

e =

{
|xc − xf | : c = ∞
|yc − yf | : c = 0

(4.58)

4.7.5 Velocity Variability
Hirata et al. (2006) utilize the user’s walking velocity (Equation 4.21) to estimte a stopped
state. This walking velocity is derived from the combination of the user’s leg velocity
relative to the robotic walker and the walker’s velocity. Therefore, the system is considered
stopped when the combined velocities converge to zero.

Accordingly, alongside the metrics already presented, an additional metric is proposed
to assess the disparity between the velocities of the user and the walker. Substantial
deviations in these velocities may imply conflicting efforts between the human and the
robot, thus enabling an evaluation of the system’s performance based on their correlation.
This correlation is defined as

Correlation(Vh, Vx) =
∑n

i=1(Vh,i − V̄h)(Vx,i − V̄x)√∑n
i=1(Vh,i − V̄h)2 ·

√∑n
i=1(Vx,i − V̄x)2

, (4.59)

where Vh and Vx represent the vectors containing all velocity measurements over a horizon
n for the human and the robot, respectively, with V̄h and V̄x denoting their respective
means.
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5
Kompaï’s Hardware and Software

The present chapter expands on the specialization project (Langeweg (2023)), in which
Section 5.1 and 5.2 are extracted from it. This chapter outlines essential aspects of
the experimental setup involving the Kompaï robot, which is employed to investigate
applications of force control in assistive devices. A comprehensive understanding of
both hardware and software functionalities is crucial for developing the proposed solution,
detailed in the following chapter.

Figure 5.1: The Kompaï robot and its main robot unit and walker section.

5.1 Robot-to-Walker Joint
The Kompaï robot consists of the main robot unit and an attached walker section with
handles. The main robot is powered by a differential drive mechanism. Conversely, the
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walker part is passive, following the movement dictated by the main robot’s actuation.
As depicted in Figure 5.1, the connection between the two components is a hinge joint
allowing rotation about the vertical axis, enabling the walker to rotate around the robot’s
body. However, for effective force control, the joint is locked, aligning both components
to maintain structural rigidity (Langeweg (2023)).

5.2 Castor Wheels
The Kompaï robot is equipped with swivel castor wheels (Figure 5.2) located at the base of
its walker component. These wheels are attached to a fork, with an additional swivel joint
above the fork that enables it to freely rotate about 360 degrees (Batlle et al. (2009)). This
design facilitates smoother turns, as the wheels of the walker follow the robot’s direction.
However, during the transition from forward to backward motion or vice versa, the castor
wheels undergo a 180-degree rotation, introducing additional friction to the movement. In
conclusion, the castor wheels contribute to the robot’s enhanced maneuverability, allowing
for efficient navigation and directional changes (Langeweg (2023)).

Figure 5.2: Illustration of a castor wheel retrieved from Batlle et al. (2009).

5.3 Direct Differential Actuation
When designing a motion generator, it is crucial to note that the robot employs a differ-
ential drive mechanism, where the movement relies on the independent control of its two
wheels. The Kompaï robot offers an interface through the open-source software Robot
Operating System (ROS) (ROS: Home (2023)), allowing for direct control of each wheel.

Consequently, the ability to control the turning radius while preserving the desired for-
ward velocity becomes achievable by independently applying the combined contribution
from forward velocity and angular velocity to each wheel. For instance, executing a turn
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around one wheel with a constant forward velocity involves keeping one wheel stationary
while the other continues at the desired speed. This enables the generation of a smoother
motion, thereby enhancing the overall user experience (Langeweg (2023)).

5.4 Kompaï’s Path Planner
The Kompaï robot employs two laser range scanners to generate a map of the environment
and execute obstacle avoidance. Furthermore, a third laser range finder, positioned at knee
height and directed toward the user, detects the distance between the user and the robot.

Moreover, the Kompaï software includes functions for navigating to destinations with
or without user support. In these functions, Kompaï’s path planner calculates a route for
the robot based on the current map. By iterating through waypoints and commanding the
robot to reach them, a route can be followed.
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6
Methodology

This chapter provides insights into the methodology employed to develop the control
system for the Kompaï robot, with a focus on walking assistance, guidance and fall
prevention. The primary objective is to facilitate user interaction through a dynamic and
responsive robotic system.

6.1 Walking Assistance
Walking assistance, as defined initially, refers to when the service robot provides assistive
forces as users command motions. This section will provide a brief overview of the
approach outlined in the specialization project (Langeweg (2023)), serving as a reference
for comparison with the walking assistance proposed in this thesis.

6.1.1 Turning Strategies
The project report Langeweg (2023), upon which this thesis is built, implemented walking
assistance using a Finite State Machine (FSM) and a velocity controller. The velocity con-
troller adjusted the velocity based on the current state of the system and the force applied
by the user, thereby providing increments in the velocity during walking. Subsequently, a
concise overview of the project’s solution will be presented for comparison.

State Machine

The FSM, as shown in Figure 6.1, functions as a framework that updates the robot’s
state according to force measurements along the x- and z-direction. Establishing the
force thresholds in the x-direction as ax, y-direction as by and in the z-direction as cz , the
resulting state machine and state transitions are defined.

40



6 Methodology 6.1.1 Turning Strategies

Figure 6.1: The FSM developed in Langeweg (2023).

Furthermore, an algorithm was designed to update the state and reference velocities
according to the user applied force. Adjustments to the velocity were controlled with
acceleration and deceleration phases with known velocity profiles. Additionally, the ability
to initiate turns was facilitated by monitoring the forces exerted on the handles in the y-
direction. However, the turning was controlled with a constant angular velocity due to the
constraints imposed by the interface of the Kompaï robot.

Due to the recent access to direct control of each wheel, an attempt to control the
steering radius is performed in the initial stages of the thesis.

Turning with a Differential Drive Robot

As illustrated in Figure 6.2, the process of turning the robot using a force Fhly,
assuming Fhry = 0, entails distinct sign configurations for ω and R depending on the
direction of the robot’s movement. Table 6.1 provides an overview of these configurations.

Forward Backward
Fsy > 0 R,ω < 0 R > 0, ω < 0
Fsy < 0 R,ω > 0 R < 0, ω > 0

Table 6.1: Sign configuration for turning when moving forward and backward, respectively.
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Figure 6.2: Turning with a differential drive robot as a result of the user-applied force Fhly .

Since it is infeasible to directly acquire the handle forces in the y-direction, turning is
facilitated by monitoring the combined force Fsy (Equation 4.19) obtained in the sensor
frame. This setup becomes relevant when analyzing user intentions through applied forces.

As such, when the user applies a force Fsy > by , it indicates an intention to turn right,
whereas a force Fsy < −by indicates an intention to turn left. Moreover, turning the
robot involves rotating around the vertical z-axis. In accordance with the right-hand rule,
a negative angular velocity ω < 0 enables a right turn, whereas a positive angular velocity
ω > 0 facilitates a left turn (Langeweg (2023)).

Consequently, the following equation is derived from Table 6.1 to obtain the correct
sign configuration

R = −sign(Fsy) · dir ·R
ω = −sign(Fsy) · ω,

(6.1)

where dir is the direction the robot is moving in

dir =
{

1 : State = FORWARD
−1 : State = BACKWARD. (6.2)

Moreover, the right-hand side variables R and ω represent the unsigned values of their
respective parameters. The turning radius R is scaled by the exerted force and ω calculated
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by one of the three turning strategies: constant ω, constant v, or keeping a constant velocity
of the outer wheel.

R scaled by exerted force

The selection of the turning radius R is achieved by scaling it with the magnitude of
the exerted force. This is realized by defining parameters Fmin, Fmax, Rmin, and Rmax,
and subsequently deriving R as a linear function

R(|Fy|) = (
Rmin −Rmax

Fy,max − Fy,min
)(|Fy| − Fy,min) +Rmax, (6.3)

with the saturation
R(|Fy|) = max(min(R,Rmax), Rmin), (6.4)

in order to achieve Rmin ≤ R ≤ Rmax.
Additionally, the correct sign for turning is achieved by applying Equation 6.1 to the

obtained radius R.

Constant v

The initial strategy for executing a turn involves adjusting the turning radius R based
on the user-applied force, while simultaneously preserving a constant forward velocity v.
Utilizing the equation for angular velocity

ω =
v

R
, (6.5)

and employing Equation 4.6, the velocities of the left and right wheels are computed as
follows

vl = ω · (R− L/2)

vr = ω · (R+ L/2).
(6.6)

Constant ω

An alternative turning strategy involves utilizing the scaled value of R while maintain-
ing a constant angular velocity ω. This is achieved by selecting a constant ω = ωd and
applying Equation 6.6 to get the left and right wheel velocities.

It is important to note that the sign configuration described in Equation 6.1 is applied
to the constant ωd, resulting in:

ω = −sign(Fsy) · ωd. (6.7)

Constant outer wheel velocity

The final method maintains the forward velocity of the outer wheel while adjusting the
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velocity of the inner wheel to achieve the desired turning radius R. Utilizing Equation 6.6
and substituting ω with the equation

ω =
vl

R− L
2

=
vr

R+ L
2

, (6.8)

derived in Equation 4.6, leads to the derivation of the following rule

R ≥ 0 :


vr = v,

vl = vr ·
(R− L

2 )

(R+ L
2 )

R < 0 :

vr = vl ·
(R+ L

2 )

(R− L
2 )
,

vl = v

(6.9)

where R ≥ 0 requires the preservation of the right wheel velocity, while R < 0
necessitates the preservation of the left wheel velocity.

Selecting parameters

The process of selecting the turning radius R for the differential drive robot involves
careful consideration of the defined parameters. To determine Rmin, it is crucial to
ensure that neither wheel stops nor moves backward during the robot’s turn, as this would
necessitate the user to step sideways. This precaution is essential as sideways rollover is
the most frequent fall type among older adults (Bilgin et al. (2023)). Hence, by minimizing
lateral movement, the risk of falling decreases. Therefore, it is recommended to set Rmin

greater than L
2 +margin, where a larger margin places the minimum turning radius further

away from the inner wheel. On the other hand, determining Rmax involves considering
the available space, emphasizing the importance of avoiding an excessively large turning
radius.

Additionally, establishing a minimum lateral force threshold Fy,min = by , is essential
to maintain stability during turning maneuvers. If by is set too high, oscillatory behavior
may occur, as the force will drop below the threshold once the turn is initiated. Conversely,
if by is set too low, the turn will be initiated with minimal lateral forces, making it
challenging to maintain straight movement with the robot. Furthermore, the selection of
Fy,max, the maximum lateral force, could potentially be guided by practical considerations
such as the maximum lateral push. The present approach ensures a set of turning
parameters tailored to the robot’s dynamics and the user interaction.

6.1.2 Admittance Controller
While the methodology employed in the specialization project (Langeweg (2023)) was
rule-based, this thesis aims to develop a more dynamic interaction that complies with user
forces. This section describes the implemented admittance controller designed to facilitate
dynamic walking assistance.
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User Intention

Understanding user intention and responding accordingly is fundamental in the de-
velopment of effective HRI systems (Wakita et al. (2013)). By accurately interpreting
user intentions, robots can provide more intuitive and efficient assistance, enhancing
user experience and overall system performance. Establishing clear rules and conditions
for detecting user intention is crucial to ensure that the robot responds appropriately to
user commands. These rules serve as a foundation for creating dynamic and responsive
interaction strategies, enabling the robot to adapt its behavior based on user input.

An important aspect is discerning whether the user is present at the handles. Pres-
ence at the handles indicates the user’s readiness to interact with the robot and initiate
movement. Consequently, releasing the wheel brakes is necessary to facilitate a smoother
initiation of movement when the user applies force. To determine user presence, an
approach is to evaluate the magnitude of the force vector d⃗, which is derived as the resultant
force from the x- and z-forces

||d|| =
√
F⃗x

2
+ F⃗z

2
> c, (6.10)

where c is a constant threshold that indicates user presence when ||d|| exceeds the
threshold.

When approaching the robot, users typically apply downward pressure on the handles
for support. However, as they prepare to initiate motion, they start pushing forwards,
potentially causing the handle forces in the z-direction to diminish. To prevent oscillation
caused by sudden changes in force, it’s necessary to consider both x- and z-directions in
the initiation condition, as opposed to solely relying on the z-direction.

Furthermore, to facilitate forward movement, the robot should initiate linear motion if
the sum of the horizontal forces on both handles exceeds a certain threshold ax

|Fhlx + Fhrx| > ax. (6.11)

Under these conditions, an admittance controller regulates the linear velocity, enabling a
smooth and dynamic motion.

Similarly, when the user intends to initiate a turn, the robot detects this based on
the magnitude of the lateral force exerted on the handles. As introduced previously
(section 6.1.1), a lateral force Fsy surpassing the predetermined threshold by indicates
an intention to turn, with the direction determined by the sign of Fsy

|Fhly + Fhry| = |Fsy| > by. (6.12)

Under these conditions, the angular velocity is adjusted in accordance with the admittance
controller to ensure a smooth and precise execution of the turn.

All the presented conditions are outlined in Figure 6.3, along with various conditions
for fall prevention, which will be elaborated on in the following section.

45



6 Methodology 6.1.2 Admittance Controller

Figure 6.3: A summary of user intentions and robot response.

Figure 6.4: The FSM governing state transitions for the walking assistance developed in this thesis.
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To adapt to a variety of user inputs, the robot operates with three distinct states
governed by a FSM (Figure 6.4). As the walking assistance initiates, the robot enters
the STOP state. Following a predefined interval, it transitions to the IDLE state, where
user inputs are processed. Furthermore, if the condition specified by Equation 6.10 is
met, the system transitions to the PRESENT state and the motor breaks are released.
Subsequently, the motion of the robot is governed by the admittance controller where
user-applied forces serve as input. Additionally, the system returns to the IDLE state if the
condition specified by Equation 6.10 is no longer satisfied, or it reverts to the STOP state
in case of an emergency.

Discrete Admittance Model

In the theoretical framework, Equation 4.3 introduced a general admittance model
comprising a mass-spring-damper. However, when considering velocity control, incorpo-
rating a spring becomes impractical. Springs introduce a restoring force, establishing an
additional equilibrium point at the zero position. Consequently, including a spring would
result in the walker being drawn back to the initial position, thus impeding free movement.

For that reason, a mass-damper model is considered for the admittance controller.
Removing the spring from Equation 4.3, yields

Mv̇ + Dv = F, (6.13)

where ṗ is substituted with v, defined as

v = ṗ =
[
vx ω

]T
, (6.14)

for simpler notation.
Furthermore, by utilizing an explicit integration method such as Forward Euler dis-

cretization
y[k + 1] = y[k] + ∆t · f(t[k], y[k]), (6.15)

a discrete-time model (Equation 6.16) is derived.

v[k] = (I −M−1D∆t)v[k − 1] +M−1F [k − 1]∆t (6.16)

When applying the discrete-time model, the resulting output comprises linear forward
velocity and angular velocity. However, converting these velocities into left and right
wheel velocities is required to command the robot.

Substituting the equation for the turning radius R (Equation 4.7) and the equation
for the forward linear velocity vx (Equation 4.8) into the equation for angular velocity
(Equation 6.5) results in

ω =
vx
R

=
vr + vl

2
· 2
L

vr − vl
vr + vl

=
vr − vl
L

. (6.17)

Additionally, by rearranging vl from Equation 4.8 as

vl = 2vx − vr, (6.18)
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and substituting it into Equation 6.17, yields

ω =
vr − 2vx + vr

L
. (6.19)

By solving Equation 6.19 for vr and subsequently substituting it into Equation 6.18,
the equations for the left and right wheel velocities are derived as

vl = vx − L · ω
2

vr = vx +
L · ω
2

.

(6.20)

Commanded Velocity

Using the established admittance controller (Equation 6.13), the resulting transfer
function from external force F to velocity v is defined as follows:

H(s) =
v(s)

F (s)
=

1

Ms+D
. (6.21)

The inverse Laplace transform of Equation 6.21 (Nakagawa et al. (2015)) results in

v(t) = ṗ(t) =
∫ t

0

G(τ) · F (t− τ) dτ, (6.22)

where

G(τ) =

 e
− τ

Tc,x

mx
0

0 e
− τ

Tc,θ

mθ

 , (6.23)

and Tc,x, Tc,θ are the time constants defined by

Tc,x =
mx

dx
,

Tc,θ =
mθ

dθ
.

(6.24)

Since H(s) (Equation 6.21) is a first-order lag element (Nakagawa et al. (2015)), an
impulse response converges to zero with time. However, to obtain position, an integrator
is added to the transfer function

H(s) =
p(s)

F (s)
=

1

s(Ms+D)
, (6.25)

resulting in an additional pole in the origin. Consequently, the position will not converge
to zero with time.

Furthermore, when a constant force f∗ is applied, the steady-state value of the forward
linear velocity v∗ is achieved by rewriting Equation 6.16 as

v∗ = (I −M−1D∆t)v∗ +M−1f∗∆t, (6.26)

and solving it in terms of v∗:
v∗ = D−1f∗. (6.27)
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Selecting parameters

Since the admittance parameters determine the interaction dynamics between the user
and the robot, they play a crucial role in the overall performance of the system. The initial
approach to select parameters involved identifying a relationship between the mass and
damper parameters arising from the discretization process.

By examining Equation 6.16, it becomes evident that the expression (I −M−1D∆t)
must remain non-negative to prevent oscillations. This leads to the following relationship

M−1D∆t < I, (6.28)

ensuring that the velocity does not oscillate between positive and negative values. More-
over, if (I −M−1D∆t) < −I , equivalent to

M−1D∆t > 2I, (6.29)

the velocity will be amplified, resulting in an unstable system.
Consequently, the selection of admittance parameters relies on the update rate of the

admittance controller ∆t. The update rate is chosen based on the bandwidth required for
human interaction, as delays can significantly impact human performance (Steinfeld et al.
(2006)).

Furthermore, the mass parameter is selected based on the desired contribution from
one unit of force. The force vector F is scaled by ∆tM−1, resulting in velocity

M−1F∆t :
1

m
· m

s2
· s = m

s
. (6.30)

Hence, with one Newton of force, the change in velocity is expressed as

∆tM−1. (6.31)

Given ∆t, a potential strategy involves estimating Fmax and determiningM to achieve
the maximum desirable increment in velocity. Higher values along the diagonal of M
correspond to reduced velocity increments.

Subsequently, the damping parameter is adjusted to achieve the desired time constants
(Equation 6.24) and steady-state value (Equation 6.27), while adhering to the constraints
outlined by Equation 6.28.

Block Diagram

A block diagram (Figure 6.5) provides a concise representation of all components.
The forces and moments exerted by the human operator are measured by the sensor and
reconstructed to the left and right handle forces, denoted as Thl and Thr. The handle
forces, serve as input to the admittance Controller and the Patient Performance Selector
(PPS).
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Figure 6.5: Block diagram of the overall control loop.

The PPS considers the needs and limitations of the patient by adjusting the force
thresholds and the admittance parameters, denoted as Parameters. Additionally, the PPS
updates its state based on the FSM outlined in Figure 6.4, where the state determines the
Controller’s action.

Furthermore, the Controller’s output (Equation 6.14) is fed back for the next timestep.
The output is further transformed into independent wheel velocities (vl, vr), as detailed
in Equation 6.20, and applied to the robot. The resulting robot velocities (vf , ωf ) are
employed as feedback for the robot’s inner control loop.

Additionally, the forward velocity vf is integrated into position pf and compared to
the position of the human operator. According to Hooke’s law, the resulting force is

F = K · x, (6.32)

where K is the human stiffness and x = p− pf is the displacement between the robot and
the human. The force is fed back to the sensor, which closes the loop (Langeweg (2023)).

6.2 Fall Prevention
This section details the methodology employed to develop fall prevention strategies. It
covers aspects such as monitoring weight distribution and detecting the support ellipse, as
outlined in the theoretical framework of the thesis.

In line with the findings of Zhao et al. (2020), the vertical forces exerted by the user
serve as indicators of weight distribution. Therefore, a significant difference between the
vertical forces on the left and right handles may suggest a loss of balance. This is defined
by

|fhlz − fhrz| > c∆z, (6.33)

where a difference exceeding the constant threshold c∆z is an indicator of emergency. To
provide assistance, the robot will transition to the STOP state and cease its movement.

Moreover, an additional indication of an emergency is an excessively high vertical
force, defined as

|fhlz + fhrz| > cz (6.34)

where cz >> c, with c being the threshold from Equation 6.10. The two preceding
strategies stop the robot’s motion upon detecting an emergency, without adapting to offer
additional support.
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6 Methodology 6.2 Fall Prevention

In contrast, the following approach adjusts the admittance parameters to provide
assistance for users positioned too far from the support ellipse.

To discern between walking and emergency states, the laser range finder measures the
user’s position relative to the walker, denoted as (rxh,

ryh). Moreover, the distance at
which the laser range finder detects people is limited to an interval denoted as

rxh ∈ [xmin, xmax]
ryh ∈ [ymin, ymax].

(6.35)

Assuming the risk of falling occurs when the user is too far from the robot, the critical
region is behind the user’s average walking position. Thus, the minimum x-value is defined
as xmin = µx.

The objective is to establish the maximum distance between the user and the support
ellipse, which will inform the selection of the damping parameters. This involves defining
de as the distance between the user and the edge of the support ellipse as follows

de = dh − re =
√

(exh − µx)2 + (eyh − µy)2 −
√

1(
cos θh

a

)2
+
(
sin θh

b

)2 , (6.36)

where θh is defined in Equation 4.32.
In order to determine the maximum value of de, it is necessary to identify the maximum

value of dh and then subtract the minimum value of re.
The maximum value of dh is obtained when (exh−µx)

2+(eyh−µy)
2 is maximized.

This occurs when (exh,
eyh) is farthest from (µx, µy), which corresponds to (exh,

eyh)
lying on the boundary of the specified range.

Similarly, the minimum value of re occurs when θh is maximized, corresponding to
the point (exh, eyh) being at the line (eyh = exh). Consequently, the distance de achieves
its maximum at xmax, ymax if µy < 0, and at xmax, ymin if µy > 0.

According to Equation 4.35, the modification of the damping parameters is a function
of de = dh − re. Consequently, a larger distance between the user and the support ellipse
leads to higher damping parameters. This increase continues until the maximum distance
de,max is obtained.

To achieve the desired damping parameters at the maximum distance, dx,max and
dθ,max must be defined, representing the maximum damping parameters allowed. These
values are determined experimentally by identifying the stability limit of the system. Once
all constants are established, the coefficients of the functions modifying the damping
parameters are calculated as

cx =
ln(dx,max − dx,init)

de,max

cθ =
ln(dθ,max − dθ,init)

de,max
.

(6.37)
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6.3 Guidance
As defined initially, guidance involves the robot aiding and directing users along a
predetermined route. The present study employs two distinct strategies to accomplish
this. The first strategy involves the Variable Admittance Controller (Section 4.6.2), where
users dictate motion while haptic feedback guides them along the correct route. The
second solution utilizes the Kompaï robot’s path planning algorithm, where an admittance
controller governs forward linear velocity, while the robot’s planner determines the optimal
path to follow.

6.3.1 Variable Admittance Control
Guidance is achieved by dynamically modifying damping parameters according to user
intention and deviation from the designated path. Consequently, the guidance framework
builds upon the admittance controller utilized for walking assistance in 6.1.2.

To facilitate guidance, the first step involves mapping the robot’s surroundings utilizing
its laser scanner. Once a map is generated, waypoints are introduced to determine the path.
This path comprises straight line segments connecting the designated waypoints. In cases
where guidance is not initiated from the initial waypoint, the first line segment connects
the robot’s current position with the first designated waypoint.

Employing the LoS controller, the steering angle δ = ψlos is determined by solving
Equation 4.38 for xlos and ylos, followed by the application of Equation 4.37. Solving the
system of equations in Equation 4.38 involves rewriting the second equation as

ylos = (xlos − x) tan(αk−1) + yk−1, (6.38)

and substituting it into the first equation, resulting in

0 = ((xlos − x) tan(αk−1) + yk−1 − y)
2
+ (xlos − x)2 − (nL)2. (6.39)

Moreover, Equation 6.39 represents a second-order equation, which implies that its
solution can be expressed as

xlos =
−b±

√
b2 − 4a

2a
. (6.40)

Therefore, there exist two potential solutions for xlos, where the correct one is deter-
mined as the closest value to the current waypoint pk =

[
xk yk

]T
. Upon determining

the correct xlos value, ylos is acquired by employing Equation 6.38.
After obtaining the LoS position, the steering angle δ is determined by applying

Equation 4.37. Additionally, given that both the steering angle and heading angle are
confined to the interval [−π, π], it is required to maintain the steering error within the same
range. Due to the angles wrapping around at 180 degrees, situations may arise where the
heading angle and steering angle are in close proximity yet situated on opposite sides of
the x-axis. Resulting in a difference close to 2π instead of zero. To ensure that the steering
error θ̃ is within the range of −π to π, the following condition is applied

θ̃ =

{
θ̃ − 2π : θ̃ > π

θ̃ + 2π : θ̃ < π.
(6.41)

52



6 Methodology 6.3.2 Guided Walk

Equation 6.41 corrects for situations where the difference between the desired steering
angle δ and the current orientation angle θ would exceed the specified interval. Thus,
preventing large errors due to angle wrapping.

The varying admittance parameters are essential for achieving effective guidance as
they provide the haptic sensation. To aid in the selection of damping parameters, the
following relationship is derived from Equation 4.41

dx,min = dx,max − dd,max, (6.42)

as 0 < exp(−x) ≤ 1 ∀ x ≥ 0.
As the steering error increases, it becomes more challenging to move the walker.

Consequently, dx,min should be selected to facilitate easy movement of the walker.
Conversely, when experiencing a significant steering error, moving the walker becomes
challenging. Therefore, dx,max is chosen as the highest possible damping value while
adhering to the constraints specified in Equation 6.28.

Additionally, to aid in the selection of damping parameters for turning, the following
relationships are derived from Equation 4.42

dθ,min = diθ −Gdθ

dθ,max = diθ +Gdθ,
(6.43)

by utilizing the inequality −1 < tanh(x) < 1. The selection of dθ,min and dθ,max follows
similar principles to those discussed for dx.

The designated coefficients are determined experimentally. Among these are δdx and
Pdθ, which influence the rate at which the damping parameters adapt to changes in error
or user intention.

6.3.2 Guided Walk
The alternative approach to facilitate guidance, relies on the path planning algorithm of
the Kompaï robot. This strategy utilizes the “Guided Walk” feature within the Kompaï
software, accessible via the ROS interface of the robot. Guidance is achieved by iterating
through all desired waypoints and directing the robot to reach each destination.

Additionally, the software enables dynamic adjustment of the linear forward velocity.
Consequently, the robot’s velocity along the path is regulated by user force through the
implementation of an admittance controller in the forward direction.

6.4 Experimental Design
To evaluate the effectiveness of the developed solution, an experiment involving partici-
pants unfamiliar with the control system is conducted. This experiment aims to determine
the intuitiveness and effectiveness of the interaction between humans and the robot.
Furthermore, as the VAC for guidance provides haptic feedback to guide users along the
correct path, participants being familiar with the route in advance would invalidate the
experimental purpose. Therefore, executing the guidance prior to the walking assistance
allows for the use of the same route without compromising the objectives of the guidance
experiment.
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6.4.1 Guidance
As previously stated, the aim of the guidance experiment is to evaluate the effectiveness
of haptic feedback in providing cues for users to navigate along the path. The robot and
the subject will be positioned at the starting point (Start) and informed of the location
of the path’s endpoint (End). To create an environment in which the user is dissuaded
from attempting a direct route from the Start to the End, various obstacles are introduced
to restrict the subject’s movement. These obstacles are outlined in gray in Figure 6.6,
alongside the waypoints represented as blue points.

Figure 6.6: Waypoints outlining the experimental route.

However, the waypoints connecting the Start and End position will not be visible to
the user. Consequently, any deviation from the path will depend on the effectiveness of the
haptic feedback, as the user lacks visual cues regarding the correct direction to follow.
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6.4.2 Walking Assistance

In the context of walking assistance, the aim is to evaluate the robot’s maneuvering
capabilities. This experiment will employ the identical route used for guidance. However,
the waypoints and the pathway connecting them will be marked on the floor using masking
tape. Therefore, the robot’s maneuverability will be evident in deviations from the path
caused by the forces exerted by the user.

6.4.3 Graphical User Interface

To optimize the experimental process for the participants and data recording, a Graphical
User Interface (GUI) is developed utilizing FlexGui 4.0 (FlexGui 4.0 (2022)), as illustrated
in Figure 6.7.

Figure 6.7: GUI implemented for startup.

The GUI consists of two mutually exclusive systems in Walking Assistance and
Guided Walk. These functionalities employ separate interfaces for actuation and cannot be
executed simultaneously. However, Fall Prevention and the VAC for providing Guidance
are activated by dynamically adjusting the admittance parameters within the Walking
Assistance’s controller. Consequently, the activation of Guidance or Fall Prevention
alongside Walking Assistance is necessary. These dependencies are clearly illustrated by a
state machine presented in Figure 6.8, offering a comprehensive overview of the transitions
between the different solutions.
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Figure 6.8: Transitions between the different solutions within the GUI.

In Figure 6.8, the enumeration of start and stop corresponds to the horizontal position-
ing of the widgets within the GUI (Figure 6.7), defined as

1 : Walking Assistance
2 : Fall Prevention
3 : Guidance (VAC)
4 : Guided Walk.

(6.44)

Moreover, a solution for data recording and the corresponding metrics, as defined in
Section 4.7, has been implemented under the title Data Recorder. This feature is initiated
and terminated using buttons, consistent with the other functionalities. Additionally,
within the GUI, users can specify the filename for the recording.

Furthermore, the mass parameters of the admittance controller can be modified using
the “Set param” button. However, the parameter adjustments are not executed while the
robot is running a program. Consequently, restarting the Walking Assistance is necessary
for the updated parameters to be applied. Lastly, a button to update the force sensor offset
has been included to mitigate the impact of sensor drift.
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7
Experimental Results

In this chapter, the experimental results are presented, offering a detailed analysis of
the implemented solutions. By examining the collected data, the study aims to draw
meaningful conclusions regarding HRI with a robot tailored for the needs of the elderly.

7.1 Preliminary Results

The preliminary results address findings regarding the latency in the Kompaï robot’s
control system, as well as the sensor’s noise, drift and the validation of handle force
reconstruction. Additionally, a simulation of the admittance controller is conducted to
measure the impact of the admittance parameters. These experiments aim to provide
insights and validations for the subsequent implementation of the controller and the
execution of upcoming experiments.

7.1.1 Step Response

The robot’s response to a sudden step in commanded left and right wheel velocities is
depicted in Figure 7.1. Three distinct approaches are employed, ranging from equal update
and publish rates at 10Hz and 100Hz to a controller with different update (10Hz) and
publish (100Hz) rates. The update rate denotes how frequently the reference signal is
computed, while the publish rate indicates how often the reference signal is transmitted to
the wheel motor drivers.

Moreover, the frequency of the measured velocity from the Kompaï robot is observed
to be 20Hz. The latency originating from the Kompaï software imposes limitations on
the update rate of the controller, making an update rate exceeding 20Hz ineffective in
enhancing performance. However, employing a publish rate higher than the update rate
is observed to yield the lowest time constant (τ ). The time constant is determined as the
duration until the speed reaches 1

e = 63.2% of the reference (Weik (2001)), resulting in
τ1 = 0.18, τ2 = 0.12, and τ3 = 0.09 for the three distinct approaches in Figure 7.1.
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Figure 7.1: Step response in velocity.

7.1.2 Force Sensor
The figure below illustrates the drift in the z-axis of the force sensor over a span of 19 hours
in the absence of external forces. It demonstrates a noticeable shift in the z-component of
the force measurements from its initial values.
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Figure 7.2: Drift in sensor data.
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Furthermore, the sensor exhibits a certain level of noise, particularly evident in the
z-axis with a magnitude of 0.15N (Langeweg (2023)).
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Figure 7.3: Noise in sensor data taken from Langeweg (2023).

The following figure illustrates the validation of handle force reconstruction from
measured forces/moments in the sensor frame Ts, as conducted in Langeweg (2023). At
t = 2s, a force is exerted on the left handle. The figure illustrates a nearly perfect alignment
between the left handle force Fhlx (orange) and the measured force Fsx (blue), with the
right handle force Fhrx (green) showing a slight deviation from zero. At t = 10s, the
experiment is replicated with a force applied solely to the right handle. This results in Fhrx

closely tracking the Fsx, while the Fhlx displays a marginal deviation from zero. These
results confirm that the reconstruction method accurately computes the handle forces.
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Figure 7.4: Measured forces vs handle forces, generated by Langeweg (2023).
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7.1.3 Simulation of Admittance Controller

Using the derived time-dependent output response of the admittance controller (Equa-
tion 6.22), the admittance model is simulated in Figure 7.10 to observe the impact of
different admittance parameters.
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Figure 7.5: Simulation of admittance model with various admittance parameters.

Using the parameters outlined in Figure 7.10, the time constants are calculated follow-
ing Equation 6.24. Additionally, a step response in the applied force f is simulated for
a duration of 6 seconds. With a constant force of f∗ = 1N, the steady-state velocity is
determined using Equation 6.27. These findings are summarized in Table 7.1.

Table 7.1: Admittance parameters, time constants and steady state velocity.

M D Tc v∗

1 1 1 1
1 2 0.5 0.5

0.5 1 0.5 1
2 1 2 1

Moreover, as indicated by Equation 6.25, it is evident that the position of the ad-
mittance model diverges while the velocity converges to zero. To validate this theory,
an additional simulation is conducted where both position and velocity are displayed, as
illustrated in Figure 7.6.
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Figure 7.6: Simulated system response to a step in input force.

7.2 Walking support
Regarding walking support, the experiments investigate the various turning strategies
utilized in conjunction with the controller developed in the project report Langeweg
(2023), alongside a comparison with the developed admittance controller. Additionally,
experiments are conducted to quantify the impact of various admittance parameters on
robot behavior and interaction dynamics.

7.2.1 Turning Strategies
The following experiment aims to assess and compare the different turning strategies,
based on the controller introduced in Langeweg (2023), with the admittance controller
developed in this thesis. These results are obtained by applying identical force profiles to
all approaches for a predefined duration.

As depicted in Figure 7.7, the force in the y-direction experiences a step to the
minimum force needed to initiate a turn, then rises for 5 seconds, followed by a decrease
of equal duration before dropping to zero. While Fsy remains consistent across all
approaches, Fsx differs between the admittance controller and the turning strategies. The
turning strategies rely on an impulse in Fsx to initiate velocity incrementation, as it builds
on the controller from Langeweg (2023).

In contrast, the admittance controller requires a non-zero force to generate velocity.
Hence, Fsx is maintained at a constant force of 15N for the admittance controller. This
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explains why the admittance controller shown in Figure 7.7 commands a forward velocity
differing from that of the various turning strategies.
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Figure 7.7: Comparison of actuation.

To evaluate the turning strategies detailed in Section 6.1.1, denoted as constant v,
constant ω and constant outer wheel velocity, the parameters specified in Equation 6.3 must
be assigned. These parameters involve the minimum and maximum force Fy required to
scale the turning radius R. The minimum turning radius is given by Rmin = L

2 + margin,
where L denotes the length of the axle connecting the two wheels. Additionally, a constant
angular velocity ωd is chosen for the constant ω strategy.

The experimental parameters are assigned as follows:

Fy,min = 10.0 [N]
Fy,max = 30.0 [N]
Rmax = 1.5 [m]
L = 0.43 [m]
margin = 0.1 [m]
ωd = 0.15 [rad/s].

(7.1)
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The velocity commands assigned by the various controllers (Figure 7.7) result in the
following positions in space.
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Figure 7.8: Position in space obtained with equal force.

Furthermore, the extent to which the different approaches turn is investigated by plot-
ting their respective heading angles over time. As depicted in Figure 7.9, the admittance
controller completes a turn of more than 180 degrees in 10 seconds, whereas the other
methods achieve turns closer to 90 degrees over the same duration.
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Figure 7.9: Comparison of heading angle.

63



7 Experimental Results 7.2.2 Admittance Controller

7.2.2 Admittance Controller
Admittance Parameters

In order to gain insights into the impact of the admittance parameters on the walking
assistance, a series of experiments are conducted. By keeping one of the admittance
parameters constant while varying the other, the effect of either damping or mass can
be isolated. In the following two experiments, a force equal to that of the experiment in
Figure 7.7 is applied. For the first one, the damping parameters are kept constant while the
mass parameters are varied according to Equation 7.2.

MI =

[
10 0
0 10

]
; MII =

[
50 0
0 50

]
; MIII =

[
250 0
0 250

]
(7.2a)

D =

[
100 0
0 50

]
(7.2b)

The results obtained from varying the mass parameters are displayed in Figure 7.10. It
is observed that by increasing the mass parameter, the time constant increases, which is in
accordance with the relation derived in Equation 6.24.
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Figure 7.10: Comparison of different mass parameters.
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For the second experiment, the mass parameters are kept constant while the damping
parameters are varied according to Equation 7.3.

DI =

[
10 0
0 10

]
; DII =

[
50 0
0 50

]
; DIII =

[
250 0
0 250

]
(7.3a)

M =

[
100 0
0 50

]
(7.3b)

By increasing the damping parameters in Figure 7.11, it is evident that the same
amount of force yields a lower steady state velocity. Furthermore, higher damping values
lead to a reduction in the time constant. These observations are consistent with the
relationships described in Equation 6.27 and Equation 6.24.
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Figure 7.11: Comparison of different damping parameters.

65



7 Experimental Results 7.2.2 Admittance Controller

Update Rate

An experiment resembling that shown in Figure 7.1 is carried out with the admittance
controller to investigate the influence of the controller’s update frequency. At 0.2 seconds
into each trial, a constant force is applied. As depicted in Figure 7.12, three distinct
approaches are employed. The first two maintain identical update and publish rates at
10Hz and 100Hz, respectively, while the third utilizes a 10Hz update rate and a 100Hz
publish rate.

Throughout this particular experiment, the admittance parameters remain unchanged,
resulting in a different change per unit force for the controller with a 100Hz update rate,
as detailed in Equation 6.31. Consequently, the results indicate that the middle controller
with 100Hz, equivalent to ∆t = 0.01, converges more rapidly towards the steady-state
value.

Additionally, it is apparent that the final controller, characterized by different update
and publish rates, repeats the same reference ten times over. This recurrence is facilitated
by the publication rate being ten times higher than the update rate. Therefore, this strategy
results in the smoothest measured velocity.
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Figure 7.12: Comparison of different update and publish rates for the admittance controller.
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To justify the selection of the controller’s update rate, an additional experiment is
conducted. The update and publish rates replicate those utilized in the previous experiment
involving a step in the applied force. However, in this scenario, a user aims to sustain a
constant force in the x-direction for a duration of 10 seconds. Additionally, ensuring a
similar contribution per unit force at various update rates requires the relationship outlined
in Equation 6.31 to be consistent across the various approaches. Therefore, for an update
rate at 10Hz, equivalent to ∆t = 0.1, the following parameters are chosen

M =

[
100 0
0 24

]
;D =

[
150 0
0 36

]
, (7.4)

while for 100Hz, resulting in a timestep at ∆t = 0.01, the parameters are

M =

[
10 0
0 2.4

]
;D =

[
150 0
0 36

]
. (7.5)
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Figure 7.13: Comparison of different update and publish rates with user applied force.
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Given these parameters, the relation from Equation 6.31 is obtained as follows

∆t = 0.1 : mx = 100,mθ = 24 → (dx ·∆t)
mx

=
(dθ ·∆t)
mθ

= 0.15

∆t = 0.01 : mx = 10,mθ = 2.4 → (dx ·∆t)
mx

=
(dθ ·∆t)
mθ

= 0.15,

confirming that one unit force contributes equally to the velocity increase across all
controllers.

By examining Figure 7.13, it is evident that the interaction between the user and the
robot becomes oscillatory at an update rate of 100Hz. This occurs despite the user’s efforts
to maintain a constant force level. The admittance controller commands velocities that
exhibit oscillations, leading to oscillatory forces applied by the user as they hold onto
the handles. Further investigation into the potential reasons behind this behavior will be
addressed in the discussion.

The following figure offers a closer view of the preceding experiment depicted in
Figure 7.13. The admittance controller is configured to initiate movement for Fsx ≥ 10N,
as a means to mitigate oscillations attributed to noise in the force sensor.
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Figure 7.14: Closer view of the initial second in Figure 7.13.

Moreover, the vertical dashed line in Figure 7.14 denotes the point at which the force
exceeds the threshold. Initially, it appears that there is a delay between the force surpassing
the threshold and the reference velocity increasing.
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In addition, the data points along the reference serve to indicate the controller’s
update frequency. This observation reveals that there is only a single time step between
the detection of the force level and the subsequent increase in reference velocity. This
phenomenon is less noticeable in the second subplot, where the reference is published at
100Hz. Nonetheless, since the update rate remains consistent with the previous scenario,
the same explanation applies.

To illustrate the effect of downsampling the force signal, the following simulation is
conducted. A combination of sinusoidal waves is employed to replicate the interaction
forces between the user and the handles. Initially, a slowly varying sinusoidal with an
amplitude of 5N and an offset of 20N is introduced to emulate the gait phase of the
walker. Subsequently, a fast varying sinusoidal of 2N is incorporated to represent the
high-frequency variations inherent in the continuous interaction between the user and the
robot. As the user walks, postural sway and minor oscillations from the robot’s chassis
induce high-frequency variations in the interaction force. Furthermore, to account for
sensor noise, an additional high-frequency sinusoidal with a small amplitude is included.

As demonstrated in Figure 7.15, sampling the force signal at 100Hz preserves nu-
merous high-frequency variations. Conversely, sampling at 10Hz effectively captures the
overall trend of the force signal. Although the noise is not eliminated, the user intention is
obtained.
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Figure 7.15: Different sampling rates of the force signal.
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Stability Limit

In order to achieve a comprehensive understanding of the admittance controller, the
following experiment is conducted. It involves the execution of a step in applied force
with various damping parameters.
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Figure 7.16: Analysis of the stability limit for the admittance controller.

Given an update rate of ∆t = 0.1 and a mass parameter of mx = 100, the damping
parameters depicted in Figure 7.16 yield the following values when applying the relation
from Equation 6.28:

∆t = 0.1 : mx = 100, dx = 1500 → (dx ·∆t)
mx

= 1.5

∆t = 0.1 : mx = 100, dx = 2000 → (dx ·∆t)
mx

= 2.0

∆t = 0.1 : mx = 100, dx = 2100 → (dx ·∆t)
mx

= 2.1,
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where (dx·∆t)
mx

> 1 results in an oscillatory admittance model. However, according to

Equation 6.29, the admittance model becomes unstable only when (dx·∆t)
mx

> 2. Upon
examining the behavior of systems with different damping, it becomes apparent that these
relations remain valid.

Cost Evaluation

In the subsequent figure, an attempt is made to evaluate the impact of different damping
parameters. The objective is to walk a distance of 2 meters with the robot while observing
the costs associated with an increase in the damping parameter.
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Figure 7.17: Walk of 2m for admittance controllers with different damping dx.

The performance metrics outlined in Section 4.7 are utilized to assess these costs and
summarized in Table 7.2.

The cost related to the higher damping parameter (dx = 600) becomes evident in
several aspects. Firstly, the completion time nearly doubles, compared to that of the lower
damping parameter (dx = 150). Moreover, both the work performed by the user and the
impulse transmitted to the robot notably increase. This distinction is evident in Figure 7.17,
where the applied force is higher for the higher damping, while the commanded velocity
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Table 7.2: Cost evaluation for admittance parameters with different dx values.

Parameter dx = 150 dx = 600
Distance [m] 2.00 1.98
Duration [s] 12.08 20.87
Impulse [Ns] 313.97 1191.16
Work [Nm] 52.11 113.14
Correlation 0.89 0.41

is lower. Lastly, the correlation between the walker speed and the speed of the user serves
as a metric for assessing the controller’s performance, revealing a significantly lower
correlation for the high damping parameter.

7.3 Fall prevention

In this section, experiments are conducted to evaluate fall prevention strategies, integrating
the support ellipse to detect emergency situations. These experiments seek to reveal valu-
able insights and provide information on determining coefficients for adjusting admittance
parameters, thereby offering additional support for the user.

7.3.1 Support Ellipse

To establish the axes of the support ellipse, the mean position (µx, µy) of the user behind
the Kompaï robot is recorded, along with the computation of the standard deviations σx
and σy . Applying α = 0.1 in Equation 4.27 to establish a 90% confidence interval, the
support ellipse is depicted alongside the recorded walker position in Figure 7.18.

Additionally, to generalize across users and environments, the correlation coefficient
ρ is set to zero, as discussed in the subsequent chapter. The descriptive statistics are
summarized in Equation 7.10, with measurements provided in millimeters. This includes
the magnitude of the semi-major a and semi-minor b axes for the specific trial utilized in
determining the support ellipse.

µx = 430.3 [mm]
µy = 2.2 [mm]
σx = 51.7 [mm]
σy = 38.8 [mm]
a = 110.9 [mm]
b = 83.2 [mm]

(7.6)

72



7 Experimental Results 7.3.1 Support Ellipse

250 300 350 400 450 500 550 600
X-position (mm)

−150

−100

−50

0

50

100

150
Y-
po

sit
io
n 
(m

m
)

U er po ition in the  upport ellip e
U er po ition
Pxy= c

0.0

1.2

2.4

3.6

4.8

6.0

7.2

Pr
ob

ab
ilit

y 
De

n 
ity

1e−5

Figure 7.18: User position in the support ellipse.

In Figure 7.19, a red point denotes the position representing the maximum distance
from the walker to the user.

0.45
0.50

0.55
0.60

0.65
0.70

0.75
0.80

r xh (
m)

−0.15
−0.10

−0.05
0.00

0.05
0.10

0.15

ryh  (m)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

d
h  (m

)

dh, max
(μx, μy, 0)

0.05

0.10

0.15

0.20

0.25

Figure 7.19: Maximum distance from the walker robot to the user.

By analyzing the data from the laser scanner, the maximum range for user detection,
in meters, is determined within the intervals
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[xmin, xmax] = [0, 0.79]

[ymin, ymax] = [−0.139, 0.139].
(7.7)

Additionally, as derived in Section 6.2, the distance dh between the walker and the
user reaches its maximum at xmax, ymin when µy > 0. With µy = 0.0022 [m],
the maximum value is achieved at the coordinate (0.79,−0.139), where the maximum
distance is dh,max = 0.277 meters.

7.3.2 Parameters
The function governing the adjustment of admittance parameters (Equation 4.35) deter-
mines the behavior of the fall prevention strategy. In normal operational conditions, the
admittance parameters are determined as follows

Minit =

[
100 0
0 24

]
;Dinit =

[
150 0
0 36

]
, (7.8)

where these parameters enable the determination of the relationship described in
Equation 6.28, resulting in

∆t = 0.1 : mx = 100, dx = 150 → (dx ·∆t)
mx

= 0.15

∆t = 0.1 : mθ = 24, dx = 36 → (dθ ·∆t)
mθ

= 0.15.

To determine the maximum allowable parameters dx,max and dθ,max, the stability
criteria outlined in Section 6.1.2 are employed. According to Equation 6.28, a relation
between the mass and damping less than 1 prevents oscillations. Nevertheless, to provide
additional support, a certain degree of oscillation is acceptable. Thus, the relation should
not exceed 2, as specified by the stability limit in Equation 6.29. Through trial and error,
the maximum damping parameters are established as dx,max = 1900 and dθ,max = 400,
resulting in

∆t = 0.1 : mx = 100, dx,max = 1900 → (dx ·∆t)
mx

= 1.90

∆t = 0.1 : mθ = 24, dθ,max = 400 → (dθ ·∆t)
mθ

= 1.67.

With the previously defined parameters as well as the maximum distance between
the user and the walker de,max, the coefficients in Equation 4.35 are derived using
Equation 6.37, yielding

cx =
ln(dx,max − dx,init)

de,max
= 27.2

cθ =
ln(dθ,max − dθ,init)

de,max
= 21.3.

(7.9)
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7.3.3 Evaluation

The performance of the fall prevention system is evaluated with the established coefficients
for adaption of admittance parameters in an emergency state.
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Figure 7.20: Adjustment of damping parameter dx for fall prevention.

In Figure 7.20, a constant force of Fsx = 20N is exerted. Meanwhile, the user’s
position relative to the walker robot, represented by | ⃗rph| =

√
rx2h + ry2h , linearly

increases within the interval [µx,
√
x2max + y2min ] = [0.43, 0.80]. The user’s distance

is confined within the specified interval, resulting in a periodic behavior resembling a
sawtooth function.

As depicted in Figure 7.20, once the distance from the user to the walking ellipse (de =
dh − re ) exceeds zero, there is a corresponding increase in the damping parameter dx.
With this increase in the damping parameter, the velocity gradually decreases, despite the
application of a constant force. Moreover, the presence of oscillations in the commanded
velocity becomes evident as the damping parameter approaches its maximum value, a
point elaborated in the discussion.

Similarly, in Figure 7.21, a constant force of Fsy = 20N is applied alongside the same
variation in the distance to the user, as observed in the previous experiment. With a positive
force applied, the user intends to turn left, causing the left wheel to move forward and the
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right wheel to move backward. As seen in Figure 7.20, when de = dh − re exceeds zero,
it leads to an increase in the damping parameter dθ. Consequently, the velocity is reduced
to near zero. Although the robot does not come to a complete stop, the velocity is notably
reduced to provide increased support.
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Figure 7.21: Adjustment of damping parameter dθ for fall prevention.

7.4 Guidance
Within this section, experiments are conducted to provide information on the coefficients
for the VAC to facilitate guidance. Furthermore, the two guidance strategies are evaluated
and compared.

7.4.1 Parameters
As guidance is facilitated by the adaptation of admittance parameters, the selection of
coefficients governing this adjustment is crucial to ensure efficient guidance.
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The damping parameter for linear velocity is a function of the steering error, as detailed
in Equation 4.41. Following a similar reasoning as for the fall prevention parameters,
the maximum allowable damping parameter is set to dx,max = 1900. Furthermore,
the minimum damping parameter is defined by the initial damping parameters for non-
emergency conditions, as defined in Equation 7.8, resulting in dx,min = 150.

Additionally, the mass parameter mx is chosen to be identical to the value used for fall
prevention in Equation 7.8, namely mx = 100. Employing the relationship outlined in
Equation 6.42, the coefficients are then determined as follows

dx,max = 1900
dd,max = 1750.

(7.10)

Furthermore, the coefficient δdx, dictating how fast the damping parameter adjusts
in relation to the steering error, is determined through experimentation. Figure 7.22
demonstrates the influence of δdx, assisting in the selection process. To provide users
with some autonomy and facilitate smoother transitions to new waypoints, δdx is chosen
as δdx = 1.4.
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Figure 7.22: Impact of δdx on the damping parameter dx for guidance.

In contrast to the damping affecting linear movement, the damping parameter dθ for
turning (Equation 4.42) is influenced by both the steering error and the applied force in
the y-direction. Furthermore, the maximum acceptable value for this parameter does not
align with that of fall prevention. Instead, it is chosen as the highest feasible value to
mitigate oscillations, as ensured by Equation 6.28. Nevertheless, the minimum value and
the constant mass remain identical to the parameters defined for fall prevention under non-
emergency conditions, as outlined in Equation 7.8. Thus, the mass parameter is defined as
mθ = 24 and the minimum damping parameter is set to dθ,min = 36.
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By applying Equation 6.28 to the mass parameter with ∆t = 0.1, the maximum
damping parameter is determined as

dθ,max ·∆t
mθ

= 1 → dθ,max =
mθ

∆t
= 240. (7.11)

Having determined dθ,min and dθ,max, Equation 6.43 is rewritten as

Gdθ =
dθ,max − dθ,min

2
= 102

diθ = dθ,max −Gdθ = 138,
(7.12)

to determine the coefficients governing the adjustment of the damping parameter dθ.
Furthermore, the coefficient Pdθ, that governs the rate at which the damping param-

eters adjust to changes in error or user intention, is established through experimentation.
Given its dependency on both steering error and applied force, Figure 7.23 is divided
into two figures, each representing a constant force level with different signs applied. It
becomes evident that higher values of Pdθ lead to slower transitions to increased damping.
The selection of this coefficient entails a trade-off between accuracy and autonomy. In
subsequent experiments, Pdθ is set to Pdθ = 1.6.
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Figure 7.23: Impact of Pdθ on the damping parameter dθ for guidance.

Additionally, for a deeper understanding of the influence of steering error and applied
force on the damping parameter dθ, Figure 7.24 is provided. The strategy to achieve the
lowest damping parameter when the steering error θ̃ is greater than zero involves applying
a negative force in the y-direction (Fsy) and vice versa.
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Figure 7.24: Impact of steering error and applied force on the damping parameter dθ .

7.4.2 Evaluation

Upon determining the coefficients for adjusting admittance parameters to facilitate guid-
ance, the performance of the VAC is assessed.
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Figure 7.25: Adjustment of damping parameter dx for guidance.
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In Figure 7.25, a constant force of Fsx = 20N is applied. Simultaneously, the steering
error θ̃ increases linearly within the interval [−π

2 ,
π
2 ]. The steering error is confined within

this specified range, resulting in periodic behavior resembling a sawtooth function. As
illustrated in Figure 7.25, when the steering error is near zero, the damping parameter
dx remains low, leading to high velocity. However, as the absolute value of the error
increases, the damping parameter increases accordingly, causing the velocity to decrease.
Consequently, the user is restrained from moving in the incorrect direction.

Conversely, in Figure 7.26, the applied force Fsy increases linearly within the interval
[−20, 20] with periodic behavior. Additionally, a constant steering error of θ̃ = −π

4
is simulated. From Figure 7.26, it becomes apparent that a positive force combined
with a negative steering error corresponds to the user’s intention of correcting the error.
Consequently, the velocities of the left and right wheels increase with positive and negative
signs, respectively, turning the robot to the right to minimize the error. However, applying
a negative force causes the wheel velocities to approach zero, preventing the error from
escalating.
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Figure 7.26: Adjustment of damping parameter dθ for guidance.

Additionally, in Figure 7.27, an experiment is conducted with a maximum damping
parameter exceeding the value suggested by Equation 6.28. As a result, oscillations in
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the wheel velocities become apparent during the transition between low and high damping
parameters.
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Figure 7.27: Oscillation in wheel velocities with too high damping parameters.

7.4.3 VAC vs Guided Walk

To highlight the contrast between the guidance solutions enabled by the VAC and the
guided walk facilitated by Kompaï’s path planner, the same experiment is conducted using
both approaches. The objective is to follow a predefined set of waypoints as indicated in
Figure 7.28.

From Figure 7.28, it is apparent that the trajectory followed with VAC closely resem-
bles a series of straight line segments connecting the waypoints. Conversely, the path taken
with the guided walk appears smoother but deviates from the path. Specifically, it passes
directly through waypoint W1 but overshoots waypoint W2. The blue transparent circles
represent the radius in which a waypoint is considered reached, prompting the transition
to the next waypoint. Hence, it is essential to consider the impact of the acceptance radius,
particularly for closely spaced waypoints.

81



7 Experimental Results 7.4.3 VAC vs Guided Walk

Figure 7.28: Comparison between VAC and guided walk by traversing a set of waypoints.

Additionally, presenting the forces and forward linear velocities for both the walker
robot and the user, enables a comparison between the two systems. The forward linear
velocity of the robot during VAC, as shown in the bottom left of Figure 7.29, confirms the
previously discussed observation of this solution being less smooth. In contrast, the guided
walk’s velocity profile displays a noticeably smoother pattern. Moreover, the smooth
transition in the robotic walker’s speed contributes to a better synchronization with the
human user’s velocity.

Figure 7.29: Comparison of applied forces and forward linear velocity for VAC (left) and guided
walking (right).
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Moreover, the metrics outlined in Section 4.7 are captured to assess performance and
are summarized in Table 7.3. These metrics reveal that the completion time and distance
traveled are nearly identical for both approaches. However, the correlation validates the
observation made in Figure 7.29, regarding the better synchronization between the user’s
and the walker’s speed during the guided walk. Furthermore, the impulse and work exerted
during the guided walk are lower compared to VAC, as evident in the aforementioned
figure. Lastly, the cross-track error (XTE) is notably higher for the guided walk, as
observed in Figure 7.28.

Table 7.3: Comparison of performance metrics for Guided Walk and VAC.

Parameter Guided Walk VAC
Distance [m] 5.71 5.73
Duration [m] 23.54 25.64
Impulse [Ns] 921.14 1125.17
Work [Nm] 223.45 251.34
Correlation 0.91 0.84
XTE 322.20 12.61

7.5 Experiments with Human Subjects

Within this section, experiments involving five participants are conducted. The subjects
have limited familiarity and knowledge of the solution. The objective, as outlined in
Section 6.4, is to assess the effectiveness of the VAC for guidance and the admittance
controller for walking support by navigating a predefined route.

7.5.1 Guidance

In the guidance experiment, participants are only provided with information about the
starting and ending points, as detailed in Section 6.4. Each participant completes three
trials, with the initial and final trials depicted in Figure 7.30. The blue transparent
circles in the figure represent the acceptance radius of the waypoints, indicating when
a waypoint is considered reached. The trajectories depicted reveal that all participants
showed improvement from the first trial, as they became acquainted with the system.
Notably, subject 4 demonstrates proficient performance from the first trial, a topic explored
in the discussion.
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Figure 7.30: A comparison of the path traversed during the first and third trials.

Furthermore, Figure 7.31 depicts the spatial position over time, with the time dimen-
sion represented along the z-axis. This visualization facilitates a comparison of the paths
traversed by the subjects and the time taken to accomplish the task. Additionally, a gradient
is applied to the trajectory to illustrate the steering error at each location. The figure
reveals that subjects encounter challenges in reducing steering error, particularly near the
waypoints where turning is required.
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Figure 7.31: Comparing the trajectories and steering errors across the subjects’ first trials.
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Additionally, the subsequent figure presents the same plot as described above, how-
ever, for the third trial of each subject. As trajectories become smoother, an improved
performance is noticeable. Steering errors decrease more rapidly after transitioning
to new waypoints and completion times are generally shorter. However, whether this
enhancement is due to the user’s familiarity with the path or increased adaptation to the
system, will be explored in the discussion.
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Figure 7.32: Comparing the trajectories and steering errors across the subjects’ third trials.

The results of the experiments are evaluated using the previously mentioned metrics,
with data from the first and third trials presented in Table 7.4 and Table 7.5, respectively.
Notably, improvements in the third trial include reductions in total distance and completion
time, as well as a decrease in impulse. However, variations in performance among subjects
are observed in the correlation between walker and user speed, work and XTE, topics that
will be addressed later.

Table 7.4: Performance metrics recorded for the subjects during the first trial.

Metric Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Correlation 0.29 0.23 0.15 0.54 0.16
Distance [m] 10.8 9.8 11.3 8.6 10.0
Duration [s] 107.9 110.7 163.5 43.0 138.1
Impulse [Ns] 4434.7 2337.3 3185.7 1658.2 3185.6
Work [Nm] 445.8 206.7 220.0 333.3 230.6
XTE [m] 37.9 1223.8 2470.4 3482.8 28.6
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Table 7.5: Performance metrics recorded for the subjects during the third trial.

Metric Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Correlation 0.17 0.05 0.23 0.42 0.40
Distance [m] 9.4 8.6 9.1 8.3 8.5
Duration [s] 48.9 112.1 41.4 48.7 55.1
Impulse [Ns] 1847.2 1703.1 1872.5 1604.5 1605.9
Work [Nm] 356.3 130.1 409.7 273.1 248.0
XTE [m] 94.7 1245.5 2479.6 3493.8 49.1

From these experiments, two distinct user behaviors emerge. In general, participants
tend to increase their speed as they become more accustomed to the system. However,
subject 2 did not exhibit improved task completion time during the third trial. Instead,
they displayed controlled movement without exerting excessive force.

The subsequent two figures offer details regarding the third trial conducted by subjects
1 and 2, aiming to compare their distinct behaviors. These figures encompass several
parameters, such as the user-applied force, damping parameters, steering error, distance
to the next waypoint (referred to as POI) and the velocities of the right and left wheels.
Notably, a significant increase in the distance to the next waypoint indicates the acceptance
of a new waypoint, providing additional insight into the subject’s progress.

0 10 20 30 40 50
Time (s)

-20.00
0.00

20.00
40.00
60.00

Fo
rc
e 
(N
)

Force vs time
Fsx
Fsy

0 10 20 30 40 50
Time (s)

0.00
100.00
200.00
300.00
400.00
500.00

Da
m
pi
ng

 (k
g/
s)

Virtual damping vs time
Dx

Dθ

0 10 20 30 40 50
Time (s)

-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40

An
gl
e 
(ra

d)

Steering error vs time
steering error
distance to poi

0 10 20 30 40 50
Time (s)

0.00

0.10

0.20

0.30

Ve
lo
cit
y 
(m

/s
)

Right and left wheel command
Right
Left

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Di
st
an
ce
 to

 P
OI

Figure 7.33: Details regarding the third trial conducted by subject 1.
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Moreover, the largest difference lies in the magnitude of the applied force. Subject
2 (Figure 7.34) consistently applies a force in the x-direction of approximately 20N with
minimal variations, whereas subject 1 (Figure 7.33) applies nearly double the force with
greater variability. Consequently, these differences result in distinct behaviors. Subject 1
completes the path quicker but exhibits less accuracy, as indicated by the steering error
failing to converge to zero before reaching the next waypoint. In contrast, subject 2
takes longer to navigate the course but demonstrates greater precision, as indicated by
the steering error converging to zero before reaching each waypoint.
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Figure 7.34: Details regarding the third trial conducted by subject 2.

7.5.2 Walking Support

In the walking support experiment, participants are provided with information regarding
the location of all waypoints, as outlined in Section 6.4. Given that participants are already
familiar with the path and the system after completing the guidance experiment, the pre-
viously observed improvement between trials is absent in this experiment. Consequently,
only one of the two trials per participant is depicted in Figure 7.30.
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Figure 7.35: The path followed by the subjects during walking support.

Furthermore, the performance metrics are recorded and presented in Table 7.6. The
completion time has decreased further compared to the guidance experiment. Additionally,
the cross-track error is recorded to facilitate the comparison with the guidance experiment,
despite participants not being constrained by the path. The trajectories reveal that
participants tend to cut corners compared to the guidance experiment, resulting in greater
deviation from the path.

Table 7.6: Performance metrics recorded for the subjects during walking support.

Metric Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Correlation 0.32 0.08 0.13 0.58 0.30
Distance [m] 8.9 8.5 9.0 8.5 8.2
Duration [s] 40.7 84.2 40.0 45.3 47.4
Impulse [Ns] 1386.8 1389.7 1407.1 1326.7 1347.5
Work [Nm] 303.9 140.0 316.2 249.1 232.8
XTE [m] 643.1 2395.3 3030.0 4104.9 834.6
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Moreover, a comparison between the final trials of guidance and walking support for
subject 1 is presented in Figure 7.36. It is evident that the forward velocity in the walking
support trial (right) maintains a more consistent pattern compared to the guidance trial
(left). Additionally, there is a general decrease in force levels during the walking support
trial, particularly noticeable in the force applied in the y-direction, which displays a distinct
trend compared to the oscillatory pattern observed in the guidance trial. These distinctions
will be elaborated on in the discussion.

Figure 7.36: Comparison between the guidance (left) and walking support (right) trials for the first
subject.
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8
Discussion

The discussion delves into the main findings of this study, encompassing the evaluation
of both walking support and the guidance solution. It explores the implications of
these findings within the context of elderly assistance, identifying existing limitations
and proposing potential advancements. Through this structured approach, the aim is
to provide a comprehensive understanding of the results and their relevance to force-
controlled walking assistance.

8.1 Preliminary Results
When designing the controllers, it is crucial to consider the update rate of the Kompaï
robot, the noise and drift of the force sensor, as well as the effects of the admittance
parameters. The preliminary results offer insights into these aspects.

8.1.1 Step Response
The step response analysis examines the sensor’s update rate and the latency introduced by
the Kompaï robot. The sensor operates at 500Hz, which does not impose any limitations
on the controller. However, insights derived from the step response (Figure 7.1) suggest
that the internal control system of the Kompaï robot operates at approximately 20Hz.
Consequently, employing a controller with a frequency exceeding this value does not result
in improved transmission.

In terms of latency, the controller with an update rate of 10Hz and a publish rate
of 100Hz, as shown in Figure 7.1, demonstrates the lowest time constant. Since the
reference is published ten times more frequently than it is updated and five times more
frequently than the Kompaï robot’s update rate, synchronization is less critical. However,
if the publish rate were to match with the Kompaï robot’s update rate and synchronization
was imperfect, the robot might fetch the published reference just before a new controller
update. This could result in a delay of one update period. Therefore, publishing faster than
the Kompaï robot’s update rate minimizes latency.
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Additionally, higher update rates, such as 100Hz in Figure 7.1, cause irregularities
in publishing reference velocities. This occurs as the controller’s computation time
exceeds what is allocated by the update frequency, namely ∆t = 1/100s. Therefore, the
subsequent updates are delayed until the current is computed. Since publishing follows
the update, this causes delays between the published velocities, as seen in the figure.
Moreover, the impact of a higher update rate on the admittance controller, as discussed
later, justifies the selection of a lower update rate together with a higher publish rate.

8.1.2 Force Sensor

Upon analyzing the performance of the force sensor, Figure 7.2 indicates substantial drift
along the z-axis. The observed drift influences the precision of force measurements,
consequently affecting the robot’s decision-making process. A notable implication is the
possibility of transitioning from the IDLE to the PRESENT state if the resultant force
exceeds the specified threshold. In such a scenario, the drift might induce the transition,
even in the absence of force being applied to the handles.

Moreover, the observation is gathered over the course of an entire day to assess the
behavior of the force sensor. Notably, the force measurements stabilize over the observed
period, likely due to the sensor attaining operational temperature. When utilizing the robot
in human interactions where sensor accuracy is crucial, it is recommended to regularly
reset the sensor’s offset before initiating movement or to allocate adequate time for the
force measurements to stabilize.

Furthermore, the force sensor exhibits a degree of noise, comprising both inherent
noise and possible bias. The bias, illustrated in Figure 7.3, may arise from drift or
offset, particularly if the sensor was not calibrated prior to data collection. However,
the amplitude of this noise is minimal, with a variation of 0.15N. Although it represents
a disturbance, its influence seems restricted and will not present a substantial challenge to
the intended use.

To reconstruct the forces exerted on the handles Fhl, Fhr, an analytical expression
has been formulated (Equation 4.20), which incorporates both known measurements and
unknown moment arms. Consequently, the application of known forces to the handles
facilitates the computation of moment arms. While determining moment arms in the z-
direction is straightforward, accomplishing this in the x-direction poses a more intricate
challenge.

As discussed in Langeweg (2023), it is feasible to conduct an experiment that involves
disassembling the handle construction and aligning the sensor’s x-axis with gravity to
apply a known mass. However, this time-consuming process is omitted within the thesis’s
scope. Instead, approximate measurements were taken and adjusted to generate Figure 7.4,
ensuring that a force applied to the left handle minimally influences the force on the
right handle. Acknowledging the inherent coupling within the system, it is improbable
to achieve zero deviation at the handle opposite to the applied force. Therefore, the results
obtained through this simplified approach are deemed adequate for the objectives of the
thesis.
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8.1.3 Simulation of Admittance Controller
Simulations are conducted to verify the impact of various admittance parameters on the
system’s behavior. As shown in Figure 7.10, the damping parameter affects the steady-
state velocity, while the mass parameter influences the system’s inertia. Specifically, a
higher mass results in slower acceleration when a force is applied and slower deceleration
when the force is removed.

Additionally, the effect of removing the stiffness parameter is illustrated in Figure 7.6,
where the velocity converges to zero while the position diverges. This occurs because the
transfer function is second-order with one pole at the origin. Consequently, the velocity
will converge to zero, but the position will not. This means that the walker will not return
to its starting position when the force is no longer applied, which is necessary for providing
walking support where the user commands motion.

8.2 Walking Support
In the context of walking support, conducting experiments is essential to identify the most
suitable control method and parameters for interactions with elderly users. Comparing the
solution from the project report (Langeweg (2023)) with the new controller developed in
the current study, supports the decisions made in favor of the new controller.

8.2.1 Turning Strategies
When comparing the various turning strategies based on the controller from the project
report (Langeweg (2023)), the constant ω approach proves to be effective. Other solutions
maintain a constant forward velocity when initiating turns, which may feel too fast if the
turning radius R becomes small. These methods are adequate as long as the turning radius
does not decrease significantly, meaning the user does not apply excessive force in the
y-direction. In contrast, the constant ω approach is smoother when a large force is applied
in the y-direction because the forward velocity decreases as the turning radius increases.
However, a limitation of this method is that the forward velocity may abruptly change
when turning is initiated.

The challenges outlined above support the decision to develop a more dynamic ap-
proach for interaction between the user and the robotic walker. Therefore, the experiments
conducted with various turning strategies are compared to the admittance controller
developed in this study. As shown by the commanded velocity in Figure 7.7 and the
heading angle in Figure 7.9, the admittance controller exhibits a smoother behavior than
the turning strategies. Moreover, the initiation of movement and increase in velocity with
the admittance controller are dynamic, whereas the turning strategies rely on rule-based
increments in velocity.
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8.2.2 Admittance Controller
Parameters

An experiment, equivalent to the preliminary simulations of an admittance model, is
conducted to analyze the effect of the admittance parameters on the physical system. The
results displayed in Figure 7.10 and Figure 7.11 support the same conclusion drawn from
the simulations. Higher damping increases the steady-state value given a constant force,
while higher mass increases inertia, resulting in a slower system response. While the
damping parameter also affects the time constant, prioritizing the selection of mass is
crucial. Mass determines the increase in velocity per unit force and should therefore be
chosen first to ensure comfortable accelerations for the user. Once the mass is determined,
the damping can be selected to achieve the desired time constant or resistance within the
stability limits.

As outlined in the methodology, one approach for determining the mass parameter
involves ensuring that it achieves the desired change per unit force, as described by
Equation 6.31. For future enhancements, it would be advantageous to customize the
mass parameter according to each subject’s maximal force exertion. In this scenario,
the maximum acceptable increase in velocity, given the maximum force, is determined.
Subsequently, the mass parameter is computed as a function of this value, the maximum
force Fmax and the timestep ∆t. However, for the sake of simplicity, the mass parameter
remains consistent across all subjects in this study.

Update Rate

Similarly to the step response in the preliminary experiments, the experiments concern-
ing the update rate of the admittance controller support the decision to use asynchronous
update and publish rates. When both rates are set to 100Hz, as shown in Figure 7.12,
irregularities similar to those observed in the step response occur. Since the required
computation time exceeds the time provided by the 100Hz update rate, the controller
cannot operate efficiently at this high frequency. Consequently, it causes delays in
transmitting the reference signal, potentially affecting the interaction dynamics.

To further support the choice of asynchronous update and publish rates of 10Hz
and 100Hz, respectively, the interaction dynamics for various rates are evaluated in
Figure 7.13. When both rates are set to 100Hz, the interaction becomes oscillatory even
when the user attempts to maintain a constant force. These oscillations are likely due to
high frequency variations from the force sensor, which operates at 500Hz. With an update
rate of 10Hz, the sensor measurements are utilized only ten times per second, effectively
filtering out high-frequency variations. Conversely, with an update rate of 100Hz, the
sensor measurements update the velocity a hundred times per second, resulting in a more
oscillatory velocity. As the velocity fluctuates due to high-frequency variations in force, it
induces oscillations in the applied force as the user holds onto the handle. Thus, the high
frequency variations are amplified, resulting in oscillatory interaction.

Therefore, the lower update rate effectively filters out the user’s intention, as illustrated
in Figure 7.15. The force shown in this figure is simulated, serving as an approximation
of real interaction. Although it does not precisely replicate real-life interaction forces, it
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effectively demonstrates the impact of a lower sampling rate.
Given that the bandwidth requirement for interacting with human operators is not

significantly large, especially with the elderly, a 10Hz update rate is considered sufficient.
However, for future advancements, it is recommended to introduce a filter for the force
measurements independent of the controller. This would ensure that issues with oscilla-
tions in velocity are no longer dependent on the controller’s sampling rate.

Moreover, the controller’s behavior at synchronous rates of 10 Hz appears to perform
similarly to the asynchronous rates when a user is interacting with the system. However,
as discussed for the step of input force in Figure 7.12, the asynchronous rates exhibit
less latency. Consequently, the update and publish rates for the admittance controller are
selected to be asynchronous.

Stability Limits

From the expression derived in Equation 6.29 and the experiment shown in Figure 7.16,
it is clear that excessively increasing the ratio between damping and mass can destabilize
the system. It may seem counterintuitive that increasing the damping parameter too much
leads to instability, as an overdamped system generally causes the response to move slowly
toward the equilibrium. However, due to the discretization process, the amplification factor
for the velocity v[k − 1] should not be less than negative 1.

This factor determines how the previous velocity influences the current velocity in
the numerical integration process. If this factor is less than negative 1, the velocity
will oscillate between negative and positive values and experience amplification, making
the system unstable. Therefore, it is crucial to satisfy the stability limit provided in
Equation 6.29.

Cost Evaluation

As previously discussed, after selecting the mass parameter the interaction dynamics
can be adjusted to achieve the desired training effect or to provide support for weaker in-
dividuals. The impact of varying damping parameters, specifically the damping parameter
for forward velocity dx, is examined in Figure 7.17. In this analysis, two different damping
parameters are tested alongside the same mass parameter. The interaction dynamics clearly
change as a result of the higher damping parameters. The cost evaluation demonstrates
that more effort is required to move the robot with higher damping parameters, making it
more suitable for training purposes. However, reducing the damping can benefit weaker
individuals by making it easier to command motion.

Furthermore, the correlation between the human and the robotic walker suggests that
the controller with lower damping parameters performs better. In this case, the whole
system moves more cohesively, with the human and the robot working in the same
direction. Nevertheless, the experiments involving human subjects have revealed that
drawing definitive conclusions from this metric is not feasible. Therefore, relying on it
for this experiment may lead to false conclusions.
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User Interaction

To facilitate a smooth initiation of movement, a state governs whether the admittance
controller is active or inactive. Under this framework, a rule is necessary to transition
from the IDLE state to the PRESENT state, activate the controller and release the breaks.
Initially, only forces in the z-direction were monitored to detect the user’s presence. This
behavior arises from users’ inclination to apply downward pressure on the handles for
support when approaching the robot.

However, as users prepare to initiate motion, they begin to push forwards, potentially
decreasing the handle forces in the z-direction. Additionally, users may even apply
upward pressure on the handles, generating a positive z-force that exacerbates the issue.
Consequently, the robot ceases motion due to the reduction in force, leading to an abrupt
halt that reestablishes force in the z-direction, resulting in an oscillatory behavior where
the robot repeatedly starts and stops.

To address this concern, the rule was modified to classify the user as present when
the resultant force surpasses a predefined threshold, as outlined in Equation 6.10. This
adjustment aims to prevent the previous oscillations, as the force in the x-direction
increases while the force in the z-direction decreases.

Additionally, conditions were established to account for the forces in the forward
(Equation 6.11) and lateral (Equation 6.12) directions, preventing the robot from fre-
quently starting and stopping. This allows the user to remain stationary, with the state
being present and the admittance controller activated, without the robot making minor
adjustments due to small force variations. Without these conditions, the robot would make
slight movements even when the user, present at the handles, does not intend to move.

The study identifies two main strategies for initiating movement. The first involves
starting with a sudden jerk to alert the user, while the second initiates movement slowly to
allow the user time to adjust.

In this study, the admittance controller employs the slow transition into movement,
with the controller gradually building up speed due to the inertia from the mass parameter.
For walking support, where the user controls the movement and velocity is driven by the
user’s intention, a sudden jerk may catch the user off guard and cause a loss of balance.
However, during guidance, a sudden jerk in the direction of the next waypoint might help
direct the user appropriately. Thus, determining the most effective approach is complex
and likely varies based on the application and individual user needs. Consequently, it is
advisable to conduct physical experiments with elderly individuals to evaluate the effects
of different strategies.

8.3 Fall Prevention

8.3.1 Parameters

Regarding the fall prevention parameters, the same statistical measures are utilized
throughout the entire study. However, variations in the mean walking position behind the
walker may compromise fall prevention effectiveness. Therefore, for future enhancements,
customizing the walking ellipse to each individual user is recommended. Additionally,
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as walking statistics are adjusted, the coefficients governing the adjustment of damping
parameters change. Consequently, streamlining this process is essential to facilitate a
smoother adaptation for new users.

Moreover, as elaborated in Section 7.3.2, the maximum permissible damping param-
eters are selected to exceed the threshold ensuring the absence of oscillations in velocity,
as defined by Equation 6.28. This is essential to provide sufficient resistance for assisting
individuals in restoring balance. Thus, these minor oscillations in velocity, particularly
when the velocity is low, are not regarded as problematic for the interaction.

Unlike the varying damping parameters, the mass parameters remain constant. An
interesting experiment involves adjusting the mass parameters to make the walker feel
heavier. While this adjustment makes the walker challenging to move when stationary,
changing the mass while the walker is in motion would increase its inertia. As a result, the
walker’s speed would decrease slowly, offering minimal support to a user losing balance.
Therefore, adjustments are limited to the damping parameters alone, to facilitate fall
prevention.

8.3.2 Correlation Coefficient
The normal distribution of walker position introduced by Hirata et al. (2006) includes the
correlation coefficient, as represented by Equation 4.23. While this approach was designed
for a cane robot with omnidirectional drive, the current study employs a walker robot with
a differential drive. Consequently, the user is positioned more directly behind the walker
compared to a cane-type robot. As a result, when walking in a straight line, the correlation
coefficient for the walker robot will be zero.

Additionally, unlike the omnidirectional drive of a cane robot, the differential drive
mechanism cannot navigate in all directions. Therefore, the user remains behind the
robotic walker when turning. However, the coefficient may exhibit slight variations during
turns, as the user may need to step sideways for sharper turns. Consequently, collecting
walking statistics during an uneven distribution of left and right turns would render them
unrepresentative. Hence, the correlation coefficient is deemed excessive for fall prevention
with a robotic walker.

8.3.3 Walking Dynamics
As movement with the robot is primarily forward, it is assumed that all falls will occur
forward or sideways. Consequently, the admittance parameters are optimized for these
directions. The coefficients governing the adjustment of damping parameters are set to
achieve maximum damping when the user is at the maximum distance from the walking
ellipse. This maximum distance is calculated for a user positioned behind the mean of the
walking ellipse, corresponding to a forward fall.

However, if a backward fall occurs, the user would be positioned in front of the walking
ellipse, closer to the walker. In this scenario, the user would exert force on the robotic
walker’s handles to try to regain balance. As the user’s center of mass moves further
behind their body, the force on the handles would increase. The damping parameters
alone may not suffice to counteract this force, as the user’s weight could pull the robot’s
wheels faster than the motors rotate. To address this, it would be necessary to engage the

96



8 Discussion 8.4 Guidance

robot’s wheel brakes, assuming the user has the strength to hold onto the handles.
Moreover, to stop the robot at the correct moment, conditions for imbalance are defined

in Equation 6.33 and Equation 6.34. Since the best method for helping users recover
balance is not straightforward, most walkers halt when a near fall occurs (Pereira et al.
(2019)). Therefore, if the force imbalance is too large or if too much of the user’s weight
is supported by the handles, the walker stops. This action is intended to support users
who are out of balance. It is recommended to conduct physical experiments with elderly
individuals to evaluate the effectiveness of this approach.

From the evaluation of the fall prevention strategy, specifically regarding the ad-
justment of the damping parameter for the forward velocity dx in Figure 7.20, minor
oscillations in the velocity are observed. This occurs when the ratio between damping
and mass surpasses the limit recommended by Equation 6.28 to prevent oscillations
in velocity. However, increasing damping parameters within this range is considered
essential to ensure sufficient support. Although minor oscillations persist, they do not
significantly disrupt the user. Therefore, a trade-off is struck between reducing oscillations
and providing adequate assistance. Given the urgency of support during emergencies, the
presence of oscillations remains acceptable as long as the system maintains its stability.

8.4 Guidance
In this section, the two developed guidance solutions are evaluated based on the conducted
experiments. Additionally, the two approaches are compared and their limitations pre-
sented.

8.4.1 VAC
Achieving effective haptic sensations that guide users along the correct path depends on the
functions adjusting the admittance parameters. Selecting these functions requires a trade-
off between user autonomy and deviation from the intended path. Since haptic feedback
aims to assist rather than control the user, excessively high damping in proximity to the
path should be avoided. However, for elderly individuals with reduced cognitive abilities,
prioritizing path proximity over user autonomy may be more appropriate. Therefore,
it is acknowledged that different individual capabilities necessitate varying admittance
parameters.

Furthermore, the width of the function adjusting the damping parameter for the
forward velocity dx is governed by the coefficient δdx . Selecting a low value for this
coefficient means that even small steering errors make it difficult to move, thereby keeping
the user in close proximity to the path. However, when the current waypoint is reached,
the steering error increases as the next waypoint is targeted. Consequently, the damping
parameter will increase and slow the walker down.

If the user has built up some speed and the δdx coefficient is low, the transition to the
next waypoint will feel abrupt as the robot suddenly slows down due to the high damping.
Therefore, it is important to strike a balance between maintaining user proximity to the
path and ensuring smooth transitions to new waypoints when selecting the δdx coefficient.

Additionally, selecting a low minimum damping makes it significantly easier to
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navigate toward the correct path. However, the previously mentioned challenge regarding
transitions to new waypoints becomes more significant. With a low minimum damping,
users will move at a higher velocity as they approach the waypoint. If the δdx coefficient is
not appropriately chosen, the parameters will shift abruptly from a low to a high damping
parameter upon reaching the waypoint, resulting in a sudden decrease in speed. Therefore,
it is essential to carefully consider the relationship between δdx and dx,min when selecting
the coefficients.

Moreover, in Figure 7.22, the maximum damping parameter for the forward velocity
is chosen to exceed the relation between mass and damping, detailed in Equation 6.28.
Consequently, near maximum damping, some oscillations in velocity may occur. This
decision aims to increase the resistance for users walking in the wrong direction. As the
user deviates further, the walker’s speed decreases, with maximum damping resulting in
nearly zero velocity. Consequently, minor oscillations are acceptable at such low speeds.
However, during transitions between waypoints at higher speeds, oscillations should be
avoided. Thus, the selection of the δdx coefficient should ensure that damping does not
reach its maximum when targeting the next waypoint.

In contrast to the damping parameter in the forward direction, the maximum damping
parameter for turning dθ adheres to the inequality specified in Equation 6.28. Conse-
quently, no oscillations are evident in the velocity, as illustrated in Figure 7.26. However,
as shown in Figure 7.27, excessive parameters lead to oscillations, making it challenging
for the user to identify the correct direction. Therefore, the strategy involves preventing
oscillations and adjusting Pdθ to ensure a sharp transition from low damping to high damp-
ing. This approach enables the robotic walker to respond swiftly when the user applies
force towards the correct direction, while resisting movement in the wrong direction.

8.4.2 Guided Walk

The guided walk refers to the feature provided by the Kompaï robot’s path planner. This
feature regulates the angular velocity to stay on the path, while the user controls the linear
forward velocity. Thus, the user determines the speed at which the path is followed but
not the direction. However, if no forward velocity is commanded, the robot will rotate in
place to align its heading toward the waypoint. As shown in Figure 7.28, the guided walk
occasionally overshoots some waypoints. The path planner aims to maintain a smooth
movement causing deviations from the path when waypoints are positioned close together.

Additionally, a waypoint is accepted and a new one is targeted once the walker is within
the acceptance radius. With the same set of waypoints, if the radius were lower, the guided
walk would not accept the waypoints with an overshoot and would need to backtrack
to reach them. Therefore, for paths with closely spaced waypoints, it is important to
adjust the acceptance radius accordingly. In open spaces, the acceptance radius should
be large enough to prevent the walker from having to return to waypoints. Conversely, in
narrow hallways, the walker should move slower to minimize overshoot. Consequently,
it is recommended to set speed limits based on the environment or the proximity of the
waypoints, to ensure accurate navigation.
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8.4.3 Comparison
When comparing the two solutions, it is evident that the guided walk offers less flexibility
than the VAC. The objective of the VAC is to provide the user with a sense of control
while making it more difficult to deviate from the path, thereby emphasizing the preferred
route. In contrast, the user cannot change the trajectory during the guided walk and can
only control the speed at which they traverse the path.

Moreover, since the user is responsible for maneuvering during VAC, it requires
cognitive capabilities, making it a better tool for maintaining autonomy. Additionally,
when navigating narrow hallways, the user can adjust the path if necessary, allowing them
to move around obstructions. In contrast, with the guided walk solution, the user can
only stop the walker and cannot correct its motion to avoid collisions. Furthermore, with
appropriate parameters, the VAC generally tracks straight line segments better than the
guided walk, which may overshoot. Thus, in confined spaces, the VAC is the preferred
solution.

On the contrary, if the objective is to navigate between locations in a less demanding
environment, opting for the guided walk may be more appropriate. This choice reduces
the user’s cognitive load, as the robot manages the trajectory. Furthermore, the required
level of work is notably lower compared to the VAC. Consequently, both cognitive and
physical demands are significantly reduced in comparison to the VAC. Therefore, it could
provide mobility to individuals with physical or cognitive impairments, who are unable to
move independently. Additionally, the user’s velocity is smoother and better synchronized
with the walker’s speed, potentially enhancing the overall user experience.

8.5 Experiments with Human Subjects

8.5.1 Guidance
Effect of Training

When comparing the first and third trials in Figure 7.30, it is evident that the perfor-
mance of nearly all participants has improved. However, the performance of subject 4 was
already adequate in the first trial, resulting in minimal to no improvement in the third trial.
This is likely due to the subject’s familiarity with the system, as they regularly work with
the Kompaï and are well-acquainted with its capabilities.

Moreover, the first trial for the remaining subjects exhibits poor performance, as
they all appear to go straight past the first waypoint without turning. This suggests that
the variable admittance parameters are inadequate when the user is unfamiliar with the
system. Additionally, the subjects were instructed to navigate from the starting position
to the end position without knowing the waypoints, as outlined in Figure 6.6. However,
their behavior indicates an anticipation for the robot to execute the turns on their behalf.
Consequently, it reduces their initiative to actively seek the path of least resistance.

As the users decide the trajectory, they may ignore the cues from increased resistance
and deviate from the intended path, particularly if the user expects the robot to perform
the turns. Therefore, the control solution designed to encourage user autonomy while
emphasizing the intended path, may fail if the user is not actively seeking the easiest route.
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However, by the third and fourth waypoints in the first trial, it is evident that there is
an improvement in performance. Following this trend, there is a notable improvement in
the performance of all subjects in the third trial, as evidenced by their ability to command
smooth trajectories. This implies that once the user becomes acquainted with the system, it
behaves as intended. However, determining whether this enhancement is attributed to the
user’s familiarity with the system or their knowledge of the intended path is challenging.

This raises further concerns about employing the technology for elderly individuals
with cognitive impairments such as dementia. If familiarity with the system is required to
achieve adequate performance, these patients will need to become accustomed to it every
time it is employed. Hence, it is recommended to conduct various experiments using
different routes to assess the influence of system familiarity on performance. Additionally,
evaluating the rate at which the learning effect diminishes, especially among elderly
individuals, would provide valuable insights for further enhancements.

Evaluation of Metrics

The experiments reveal two distinct user behaviors, as detailed in Section 7.5.1.
The main distinction arises from the application of varying levels of force, resulting in
significant differences in completion time. These disparities pose challenges in comparing
subjects. Additionally, the subject applying minimal force carefully aligns the robot’s
heading to eliminate steering errors between each waypoint. Consequently, the behavior
observed in Figure 7.34 appears more precise than that of the subject applying greater
force in Figure 7.33. However, due to the longer duration taken by the subject applying
less force, the accumulation of cross-track error over time leads to a larger overall error.
Consequently, some metrics present difficulties in accurately evaluating performance.

Similarly, the correlation between human and robot speed did not perform as expected.
In the comparison between the guided walk and the VAC, the correlation coefficient
appeared to be a useful indicator. However, in experiments involving human subjects,
no definitive conclusions can be drawn from the low correlation coefficient. This may be
due to these subjects walking with less confidence, causing them to lag slightly behind
the walker to better understand its movement. Therefore, it is recommended to conduct
additional tests with this metric to evaluate its reliability and effectiveness.

Moreover, the impulse metric significantly decreased from the first to the third trial,
suggesting that less overall change in momentum occurred. However, since time was
considerably reduced and impulse is a function of force and time, the decrease in impulse
might be attributed to the reduced time. Nonetheless, the impulse for subject 2 decreased
compared to the first trial, even though the subject spent the same amount of time on the
last trial. This may indicate that, as users become more familiar with the system, they
apply less excessive force. Additionally, the work performed shows that less force was
applied to navigate the same path in the last trial. However, for one subject, the work
increased considerably, likely because they became familiar with the path and increased
their speed to complete it as quickly as possible. Therefore, for future experiments, it is
recommended not to encourage subjects to prioritize speed.
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Waypoints

An advantage of using the LoS controller is that it permits the use of sparse way-
points. As such, the waypoints employed during the experiments are spaced relatively
sparsely. However, since straight-line segments connect the waypoints, a limited number
of waypoints results in a non-smooth path. While adding more waypoints facilitates a
smoother path, incorporating them may be cumbersome. Hence, the selection of waypoints
necessitates a trade-off between simplicity and smoothness.

8.5.2 Walking Support
When comparing the walking support experiment with the guidance, it is clear that the
completion time is further reduced. Additionally, the impulse is significantly lower than
in the guidance trials. This is likely due to the subjects being aware of the waypoint
locations and aim to command smoother motions. Furthermore, the damping parameters
are not abruptly increased upon reaching the waypoints, unlike in the guidance trials. As
discussed earlier, sudden increases in damping reduce the speed abruptly and induce force
in the handles. Therefore, without the guidance activated, the turns are smoother. This is
also reflected in the reduced work exerted by each subject compared to the guidance trials.

8.6 Limitations
This study’s limitations are primarily related to the significant differences in physical
and cognitive abilities among the elderly population. When designing robotic systems,
it is crucial to consider this variability to ensure effective and safe assistance. One
challenge is selecting the appropriate admittance parameters. Balancing the need for user
autonomy with the necessity of staying on the correct path depends on the individual user’s
requirements. Addressing these challenges is essential for creating a system that improves
user experience.

One aspect to consider is the effect of cognitive impairments. As previously men-
tioned, individuals with cognitive impairments, such as dementia, may find it difficult to
use the guidance solution. Familiarity with the system appears to be necessary for adequate
performance. Therefore, these individuals might never learn the system well enough to use
it effectively.

Furthermore, muscle impairments can complicate the detection of balance loss. While
healthy individuals typically distribute their weight evenly on each handle, those with
conditions such as hip pain may rely more on the unimpaired side. As a result, a single
solution for all users may be less effective in detecting falls. Hence, future research should
prioritize the development of multiple modes and the enhancement of adaptability, to offer
customized solutions that address individual needs.

The limited variety of subjects and experiments is acknowledged as a constraint in
evaluating the system’s performance. For instance, delving into the effects of higher
damping on individuals with Parkinson’s disease could prove insightful. The patients
with Parkinson’s experience involuntary movements. Therefore, higher damping might
aid them in controlling the robotic walker, as it could mitigate the impact of tremors and
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uncontrollable motions.
Additionally, the study acknowledges the complexity of experimental design. For

example, isolating the influence of variable admittance parameters on guidance is proven
to be challenging. To accurately assess performance, subjects should be unaware of the
path beforehand. However, the outcome might be influenced by the effect of training
and familiarity with the path when conducting multiple trials. Furthermore, the proposed
metrics are recognized as incomplete for making definitive conclusions. Consequently,
it is advisable to allocate more time to experimental design, to thoroughly evaluate the
effectiveness of the implemented solution.

8.7 Future Work
In addition to the enhancements discussed earlier, this section delves into further sugges-
tions to improve the interaction between the user and the robot.

To address the limitations associated with the guidance solution for cognitively im-
paired individuals, future research should aim to make interaction more intuitive. This
could involve integrating an additional layer to the controller in order to manage user
interaction. For example, this layer could introduce a subtle jerk in the intended direction
to signal the initiation of a turn during guidance. Furthermore, visual feedback, such as
displaying directional arrows, could be implemented to further assist users.

Additionally, the effectiveness of the proposed criteria for detecting imbalance is likely
dependent on individual needs. For example, individuals with Parkinson’s disease may
exhibit uncontrolled tremors that impact the forces applied to the handles. Similarly,
patients with hip impairments might distribute their weight unevenly on one side of the
walker. Therefore, a more adaptable approach is recommended. A potential strategy, as
presented by Li, Akiyama, et al. (2021), involves utilizing gait phase estimation to identify
abnormal gait patterns. Upon detecting an abnormal gait, fall prevention measures could
be initiated.

Another aspect to consider is the walker’s ability to facilitate training. As such,
adjusting the virtual mass could increase resistance, necessitating greater muscle effort
to generate propulsion force (Li, Y. Yamada, K. Yamada, et al. (2022)). Consequently,
this modification increases the training impact on the targeted muscle group. Additionally,
introducing different modes, such as a sport mode, may facilitate training for individuals
with higher fitness levels. However, given the potential increase in speed, it may be
advantageous to implement a steering lock mechanism at higher velocities, to mitigate
the risk of balance loss.

Furthermore, the existing solution for walking assistance may necessitate a lateral
stepping strategy during sharp turns. It is advisable to investigate whether this correlates
with an elevated risk of falls. Such investigation could guide the formulation of an optimal
turning strategy. For instance, it is worth exploring the possibility of regulating the turning
radius while employing admittance control.

In addition to utilizing haptic feedback for guidance, the same sensation could be
employed for obstacle avoidance. Considering the difficulties that cognitively impaired
individuals may encounter in navigating the walker without collisions, obstacle avoidance
would enhance safety measures. Accordingly, the vicinity of obstacles could be rendered
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as an area with increased resistance. Consequently, the increased resistance would
decelerate the user’s velocity and direct them away from potential collision trajectories.

The advancement of robotics in elderly care necessitates a thorough comprehension
of the users’ requirements. Performing experiments is essential to refine the system and
ensure user trust and safety. Thus, future improvements should focus on experimental
design and the development of valuable metrics to evaluate performance. This approach
is essential for the system to achieve a balance between providing meaningful support and
preserving the privacy and independence of elderly individuals.
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Conclusion

The aim of the present research was to investigate and evaluate various force control
strategies designed specifically for elderly mobility. By providing guidance and walking
support, the primary objective was to facilitate compliance between the user and the robot,
while ensuring safety through fall prevention measures. The introduction highlighted the
need for intelligent and adaptable mobility solutions, especially for those with weakened
muscles. Consequently, integrating service robots in healthcare, such as Kompaï, emerges
as a promising method to improve the overall quality of care.

The present study utilized an admittance controller to achieve compliance in human-
robot interaction. As such, a state machine governing the logic of user intentions was
applied alongside the admittance controller to facilitate walking support. Furthermore,
variable admittance parameters were employed to enable haptic sensations that provided
guidance to the users. Additionally, to ensure user safety, fall prevention measures were
implemented to help the user regain balance. This was accomplished by increasing the
admittance parameters when detecting an emergency state, thereby providing additional
support.

Finally, experiments with human subjects were conducted to evaluate the effectiveness
of the proposed solution. In these experiments, the guidance solution was employed
without the user having prior knowledge of the path. Consequently, the impact of the
variable admittance parameters was isolated and the performance evaluated.

This study identifies the impact of various admittance parameters on user interaction
and stability. Additionally, the utilization of haptic feedback is promising in facilitating
guidance while preserving the user’s sense of control. The solution enables the user to
command motion while haptic feedback emphasizes the intended route. Furthermore,
increased damping as a fall prevention measure provides additional support during emer-
gencies.

The effectiveness of most mobility aids is limited due to the diverse range of physical
and cognitive abilities among the elderly. Therefore, the study emphasizes the necessity
for careful consideration and adaptation to accommodate for various impairments and
diseases.
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In conclusion, the research demonstrates the promising role of the Kompaï robot as
an intelligent mobility aid for elderly individuals. Beyond providing physical support,
it fosters user engagement and independence. Future endeavors should address the
identified limitations and refine the proposed solution. Additionally, experiments involving
representative subjects are imperative to ensure user trust and effectiveness in real-world
scenarios.
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Appendix

A Scopus

elderly
AND
( ( assistive AND walking ) OR ( ( smart OR robotic ) AND walker ) OR

mobility )
AND
( ( force OR admittance OR impedance ) AND control ) OR ( ( fall AND

prevention ) )
AND
robot
AND NOT
exoskeleton OR exosuit OR wheelchair OR prosthesis OR humanoid OR

wearable
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User Manual for the Kompaï Robot 

Assumptions 

This user manual assumes a working setup of ROS on a computer running Ubuntu. If you do not have 

this setup, please follow the instructions at the following URLs: 

• noetic/Installation: https://wiki.ros.org/noetic/Installation  

• Install Ubuntu Desktop: https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview  

Kompaï’s interface 

Connect to Kompaï’s ROS interface 

To connect to Kompaï’s ROS interface, follow these steps to configure the network after connecting to 

the “KOMPAI v3” Wi-Fi: 

1. Open the Wi-Fi settings and configure the IPv4 settings. 

2. Set the IPv4 Method to Manual. 

3. Configure Addresses as follows: 

• Address: Choose an IP address for your computer in the format 192.168.1.𝑥, where 𝑥 

must be different from Kompaï’s IP address (𝑥 = 2). 

• Netmask: 255.255.255.0 

• Gateway: 192.168.1.1 

4. Disable automatic DNS. 

• DNS: 8.8.8.8 

5. On Linux, you may need to toggle the Wi-Fi off and on for the new settings to take effect.  

 

B User Manual
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Establish Kompaï as the ROS Master 

Modify your.bashrc file by opening it with the command gedit .bashrc in the terminal from your 

home directory. Then, append the following lines to the.bashrc file. 

Replace your_ip with the IP address you selected during the Wi-Fi configuration. 

The Force Sensor 

Connect over Ethernet  

To establish a connection with the sensor, follow the instructions outlined in the Quick Start guide for 

the force/torque sensor: 

• Quick Start Guide: https://www.ati-ia.com/app_content/documents/9610-05-

1022%20Quick%20Start.pdf  

In the default setting, the sensor's IP address is configured as 192.168.1.1. In the Quick Start manual, 

you are instructed to configure your Ethernet settings as follows: 

• Netmask: 255.255.255.0 

• IP address: 192.168.1.100 

However, since this falls within the same subnet as the Kompaï’s IP address at 192.168.1.1, you will 

not be able to connect both the sensor via Ethernet and the robot via WiFi simultaneously. 

Consequently, it is essential to adjust the IP configuration of the sensor and your Ethernet settings to 

a different subnet, requiring a change in one of the first three octets. For instance, you could select: 

• Sensor’s IP address: 192.168.2.90 

• Ethernet address: 192.168.2.100 

Sensor driver – netft_utils 

To obtain a ROS node for the ATI force/torque sensor, install the netft_utils package. This package 

can be installed from the following location: 

• netft_utils: https://wiki.ros.org/netft_utils  

To configure it to the force sensor used on the robot, modify line 151/152 in the 

netft_rdt_driver.cpp file to:  

Following this, source the setup.bash file with source devel/setup.bash from the workspace 

folder, then launch the node using rosrun netft_utils netft_node ip_address, where 

ip_address corresponds to the sensor's IP address. 

 

 

 

  static const double counts_per_force = 1000;   

  static const double counts_per_torque = 1000; 
 
 

export ROS_MASTER_URI=http://192.168.1.2:11311  

export ROS_IP=your_ip 
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Launch the implemented solutions 

Repository structure 

. 

├── controller_srvs  # Custom service type to adjust parameters  

│   ├── srv                  # Service definitions 

│   │   └── EditParameters.srv          

├── force_controller  # Package with controller solutions 

│   ├── config            # Configuration files 

│   ├── launch            # Launch files 

│   ├── src               # Source code 

│   │   ├── controller.admittance.py    

│   │   ├── controller.fall_prevention.py    

│   │   ├── controller.guided_walk.py     

│   │   ├── controller.turning_strategies.py    

│   │   └── utils.py                   

├── force_transformation  # Package managing the force sensor 

│   ├── config         # Configuration files 

│   ├── launch               # Launch files 

│   ├── src                  # Source code 

│   │   ├── rotation.py     # Performs rotation of the sensor data 

│   │   ├── transformation.py    # Reconstruct handle forces 

│   │   └── dummy_data.py        # Publishes force data for testing 

├── path_planning            # Package for path planning  

│   ├── config               # Configuration files 

│   ├── launch               # Launch files 

│   ├── src                  # Source code 

│   │   ├── planner.py     # Publish steering angle for VAC 

│   │   ├── waypoints.py    # Publish next waypoint for guided walk 

│   │   └── dummy_data.py        # Publish steering angle for testing 

├── recorder                 # Package to record data 

│   ├── src                  # Source code 

│   │   └── record.py           # Record data from subscribers 

├── walking_statistics       # Package to collect walking statistics  

│   ├── config               # Configuration files 

│   ├── src                  # Source code 

│   │   ├── capture_statistics.py    # Statistics for walking ellipse 

│   │   ├── cost_evaluation.py   # Record metrics for cost evaluation 

│   │   └── dummy_walker.py       # Publish laser scanner data for testing 

└── .gitignore               # Specifies files to be ignored by Git 

 
 

In addition, each package includes a package.xml file, which serves as the package manifest, and a 

CMakeLists.txt file containing build instructions. 
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Launch scripts 

To start all the scripts, you can run the bash script start_all.sh by executing ./start_all.sh in the 

terminal. This script initiates the following functions: 

• Force Sensor 

- netft_node for force measurements 

- Rotation and transformation of the force data 

- Calibration scheme to offset the sensor 

• Controllers 

- Admittance controller 

- Fall Prevention 

- Guided walk controller 

• Path Planners 

- Planner (Guidance) 

- Waypoints (Guided Walk) 

• Data Recorder 

• Cost evaluation 

Services 

The various controllers or recorders can now be enabled by interacting with FlexGui on the tablet of 

the robot or calling the following services from the terminal: 

• Admittance controller offering walking support. 

- Start: /controller/set/start 

- Stop: /controller/set/stop   

• Fall prevention by adapting the parameters of the admittance controller. 

- Start: /fall_prevention/set/start 

- Stop: /fall_prevention/set/stop 

• Guidance by adapting the parameters of the admittance controller. 

- Start: /controller/guidance/start & /planner/set/start 

- Start: /controller/guidance/stop & /planner/set/stop 

• Guided walk offering an alternative approach for guidance.  

- Start: /guided_walk/set/start & /waypoints/set/start  

- Stop: /guided_walk/set/stop & /waypoints/set/stop 

• Data recorder and Cost Evaluation. 

- Start: /recorder/set/start & /cost_evaluation/start 

- Stop: /recorder/set/stop & /cost_evaluation/stop 

- Stopping saves the data that has been recorded from the recorder was started. The 

data is stored with the filename decided by the rosparam /filename. 

All these services are of the service type std_srvs/Empty and can be executed from the terminal 

using the command rosservice call service_name, where service_name is the specific name of the 

service that is called. 

Additionally, since the fall prevention and guidance solutions rely on the admittance controller, they 

should be halted when the admittance controller is stopped. Moreover, the guided walk cannot 

operate concurrently with the admittance controller for walking support. Therefore, activating the 

guided walk requires stopping the admittance controller, and vice versa. 
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Walking Statistics  

Recording the statistics required for determining the walking ellipse involves the following steps 

1. Ensure that walking assistance is activated and the rear laser scanner is publishing data. 

2. Launch the capture_statistics.py function by executing rosrun walking_statistics 

capture_statistics.py from the terminal. 

3. Start to record the user’s position behind the Kompaï robot by calling the service 

statistics/set/toggle with rosservice call statistics/set/toggle. 

4. Walk around with the walker to gather the required data. When finished, call the same 

service to stop recording. The data is temporarily stored in arrays until reset with the service 

call rosservice call statistics/set/reset or until the node is terminated.  

5. The walking statistics are derived from the recorded data when calling the 

statistics/get/report service using the command rosservice call statistics/get/report. 

The statistics are stored with the filename statistics.yaml in the config directory of the 

walking_statistics package. 

6. After obtaining the walking statistics, the walking ellipse is calculated and represented by its 

semi-major (a) and semi-minor (b) axes using the command         

rosservice call statistics/get/interval. The walking ellipse is saved in the config directory 

under the filename interval.yaml. 

Tips and Tricks 

• How to build a catkin package in python: https://dabit-industries.github.io/turtlebot2-

tutorials/08b-ROSPY_Building.html  

• Make new scripts executable with: 

chmod +x src/.../.../...py 
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