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ORIGINAL ARTICLE

A novel strong duality-based reformulation for trilevel infrastructure 
models in energy systems development

Olli Herralaa, Steven A. Gabriela,b,c, Fabricio Oliveiraa and Tommi Ekholma,d 

aAalto University, Espoo, Finland; bUniversity of Maryland, College Park, Maryland, USA; cNorwegian University of Science and 
Technology, Trondheim, Norway; dFinnish Meteorological Institute, Helsinki, Finland 

ABSTRACT 
We explore the class of trilevel equilibrium problems with a focus on energy-environmental 
applications and present a novel single-level reformulation for such problems, based on 
strong duality. To the best of our knowledge, only one alternative single-level reformulation 
for trilevel problems exists. This reformulation uses a representation of the bottom-level 
solution set, whereas we propose a reformulation based on strong duality. Our novel refor-
mulation is compared to this existing formulation, discussing both model sizes and compu-
tational performance. In particular, we apply this trilevel framework to a power market 
model, exploring the possibilities of an international policymaker in reducing emissions of 
the system. Using the proposed approach, we are able to obtain globally optimal solutions 
for a five-node case study representing the Nordic countries and assess the impact of a car-
bon tax on the electricity production portfolio.
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1. Introduction

Hierarchical optimisation models with three levels of 
decision-makers arise in contexts such as traffic equilib-
rium (Gabriel, et al., 2022; Gu et al., 2019) and electri-
city market modelling (Huppmann and Egerer, 2015; 
Jin and Ryan, 2014). The hierarchical structure can be, 
e.g., such that the bottom-level players use a network 
operated by a middle-level player and regulated by a 
top-level player. For both electricity and traffic net-
works, similar models without the top-level regulators 
have been explored using bilevel optimisation, see Sinha 
et al. (2018) for a review.

Albeit challenging from both methodological and 
computational standpoints, including a top-level regula-
tor as the third level, as opposed to considering only 
bilevel models, can provide important policy insights. 
In the particular case of energy systems, these models 
can yield more realistic solutions in which more stake-
holders are assumed to act in coordination considering 
their own objectives. Obtaining equilibrium solutions 
for these models can thereby provide policy insights on 
pathways towards decarbonisation goals. Gabriel, et al. 
(2022) present a single-level reformulation for bilevel 
problems with complementarity-constrained bottom 
levels and discuss the possibility of using the model in 
a trilevel power market setting. However, their article 
includes no computational experiments demonstrating 
the practical usability of the proposed methods. Our 

aim is to explore the computational efficiency of the 
method using an illustrative power system setting rep-
resenting the market structure in the Nordic countries.

The contribution of this article is twofold. First, 
in Section 2, we present background on bi- and tri- 
level optimisation, ending with our novel approach 
for solving trilevel equilibrium problems based on 
strong duality in Section 2.4. Compared to the for-
mulation presented in Gabriel, et al. (2022) and 
summarised in Section 2.3, our proposed formula-
tion results in fewer constraints, which is likely to 
result in increased computational efficiency. Second, 
we illustrate the methodological contributions using 
a stylised trilevel power market model described in 
Section 3. The motivation for our application stems 
from the recent discussion about optimal carbon 
taxation and its impact on electricity production 
(e.g., H�ajek et al., 2019). The computational per-
formance of the model is explored in Section 4.1, 
and finally, in Section 4.2, we apply the trilevel equi-
librium modelling framework to a power market 
case study based on Belyak et al. (2023). These con-
tributions are significant for the novel class of trile-
vel optimisation problems, and equilibrium 
modelling area in general. Finally, Section 5 con-
cludes the article and discusses future research 
directions.
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2. Background

2.1. Earlier research

Bilevel optimisation considers problems with a hier-
archical structure consisting of an upper-level player 
and one or more lower-level players (Bard, 1983). 
In power sector models (Gabriel, et al., 2012), the 
upper-level player is often a transmission system 
operator and the bottom level consists of electricity 
producers in a Cournot oligopoly. The general 
structure of a bilevel problem with linear upper- 
and lower-level problems is presented in (1) and 
(2). The upper-level problem Pu is

ðPuÞ : minx, y�0 c>1 xþ d>1 y (1a) 
s:t: A1x þ B1y � a1, (1b) 

y solves PlðxÞ, (1c) 

where PlðxÞ denotes the lower-level problem. Here, 
c1, x 2 Rnx , d1, y 2 Rny , A1 2 Rmu�nx , B1 2 Rmu�ny , 
and a1 2 Rmu : The overall idea of this formulation is 
that the upper-level player’s decision variable x 
affects the lower-level players’ optimal decisions y, 
which is reflected back to the upper level in the 
constraint (1c). The linear lower-level problem is 
formulated as

ðPlðxÞÞ : miny�0 d>2 y (2a) 
s:t: A2xþ B2y � a2: (2b) 

In general, both problems can also include equal-
ity constraints, but they have been omitted here for 
brevity, without loss of generality.

Solution methods for bilevel problems are based 
on the idea of replacing the upper-level constraint 
(1c) with the optimality conditions of the lower- 
level problem (2). The two main alternatives are the 
Karush–Kuhn–Tucker (KKT) optimality conditions 
(Karush, 1939; Kuhn and Tucker, 1951), leading to 
a mathematical program with equilibrium con-
straints (MPEC); and mathematical programming 
with primal and dual constraints (MPPDC) 
(Baringo and Conejo, 2012; Ruiz et al., 2012). 
Additionally, approaches based on optimal value 
functions (Ye and Zhu, 1995) can be used. Bilevel 
optimisation models can be used in contexts such as 
Stackelberg games (Bard, 1991), Cournot competi-
tion (Gabriel, et al., 2012), and robust optimisation 
(Leyffer et al., 2020). For a recent survey on applica-
tions and algorithms for bilevel optimisation, we 
refer to Kleinert et al. (2021).

A major challenge in bilevel optimisation is that, 
even for linear bilevel problems, single-level refor-
mulations using complementarity constraints lead to 
non-linear and non-convex problems. This signifi-
cantly increases the computational complexity of 
solving such problems and requires specialised 
approaches such as the simplex method-inspired 

projected gradient method by Still (2002) or the 
(spatial) branch-and-bound methods discussed by 
Bard and Moore (1990) and implemented in the 
Gurobi solver (Gurobi Optimization, LLC, 2022). 
Alternatively, one can use heuristics such as genetic 
programming (Kieffer et al., 2020) and particle 
swarm optimisation (Gao and Liu, 2021). For a 
review on heuristic solution methods for bilevel pro-
gramming, we refer the reader to Camacho-Vallejo 
et al. (2023).

2.2. Trilevel equilibrium models

Consider a problem with a trilevel structure, in 
which players interact with each other at all three 
levels: top, middle, and bottom. In this structure, 
the top-level problem P1 is assumed to be a linear 
optimisation problem with the middle-level problem 
P2ðxÞ represented by the constraint (3c).

ðP1Þ : minx, y, z c>1 xþ d>1 y þ e>1 z (3a) 
s:t: A1xþ B1y þ C1z � a1 (3b) 

y, z solve P2ðxÞ, (3c) 

where P2ðxÞ denotes the middle-level problem

ðP2ðxÞÞ : miny, z d>2 yþ e>2 z (4a) 
s:t: A2xþ B2yþ C2z � a2 ðcÞ (4b) 

y � 0 (4c) 
z solves P3ðx, yÞ, (4d) 

where c is the vector of dual variables associated 
with constraint (4b) and z is the vector of bottom- 
level variables. In trilevel settings, the “lower-level” 
problem P2ðxÞ is itself a bilevel problem. This is 
challenging, because bilevel optimisation problems 
are generally non-convex and directly obtaining 
their optimality conditions is thus difficult. The 
middle-level problem P2ðxÞ constraints contain a 
bottom-level problem P3ðx, yÞ that is parameterised 
by the upper-level variables x and middle-level vari-
ables y. In particular, Gabriel, et al. (2022) discuss 
the case of the bottom-level problem being a linear 
complementarity problem (LCP)

P3ðx, yÞ : 0 � ~z ? qþ Nxxþ NyyþM~z � 0 (5) 

parameterised via the vector terms Nxx and Nyy: It 
should be noted that (5) can be viewed as the KKT 
conditions of convex quadratic problems and in 
Section 2.4, we discuss such problems in more 
detail. Hereinafter, we use the standard ? -notation

0 � a? b � 0() a, b � 0, a>b ¼ 0 

for complementarity constraints with vectors a 
and b.

Trilevel problems have been researched by, e.g., 
Sauma and Oren (2007), who do not solve the 
models directly and instead iteratively solve the 
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middle- and bottom-level problems for different val-
ues of the top-level decision variables, and Dvorkin 
et al. (2018), who employ a column-and-constraint 
generation algorithm. In contrast, the goal of this 
article is to explore novel single-level reformulations 
for trilevel problems and solve them using an off- 
the-shelf solver, thus lowering the barrier-to-entry 
for using these models. However, this comes at the 
expense of imposing constraints on the structure of 
the models that are tractable in this manner. In (4), 
a general form of the problem is used, and the bot-
tom-level problem in (4d) is assumed to be parame-
terised by both x and y. For the sake of clarity, we 
define two classes of trilevel problems with different 
degrees of computational challenges.

Definition 2.1. If P3 is parameterised by both x and 
y, we say that the problem has a strong trilevel struc-
ture. In contrast, if P3 is parameterised only by the 
top-level variables x, i.e., it is not directly dependent 
on y, we say that the problem has a weak trilevel 
structure.

Gabriel, et al. (2022) show that in order to use 
their single-level reformulation, the problem must 
have a weak trilevel structure, allowing such prob-
lems to be solved rather effectively by borrowing 
from the results in Cottle et al. (2009, Theorem 
3.1.6) as long as the matrix M in the lower-level 
problem (5) is positive semi-definite (PSD). We also 
show that our novel reformulation in Section 2.4
retains this structural limitation and that the 
energy-environmental planning problem considered 
in this article has this structure. The aim of this art-
icle is to develop an alternative reformulation 
improving computational tractability and efficiency 
compared to the reformulation in Gabriel, et al. 
(2022), and the discussion on ways for lifting this 
restriction on problem structure is outside the scope 
of this article.

While the lack of direct influence for the middle- 
level player is a limitation, there are still structures 
that necessitate the use of a trilevel framework. As 
an example of a setting where a trilevel approach is 
required, we use the power market example in 
Section 3, where the bottom level consists of electri-
city generators, and on the middle level we have a 
profit-maximising system operator who has to sat-
isfy a minimum renewable share in electricity pro-
duction. If the bottom-level LCP matrix M in (5) is 
PSD, the bottom-level problem can have multiple 
optima. This could result in, e.g., a situation where 
it makes no difference for a generator to produce 
electricity using coal in one node or wind power in 
another.

Using the optimistic bilevel assumption 
(Dempe and Zemkoho, 2020), while the system 

operator cannot directly influence the generators, 
they can choose a bottom-level optimum that 
maximises their profit while satisfying the min-
imum renewable share constraint. In turn, maxi-
mising the middle-level player’s profit could, in 
some settings, result in worse objective values for 
the top-level player. These interactions could not 
be represented in a setting where the middle-level 
player is insensitive to the bottom-level player’s 
decisions, as the middle-level player must con-
sider the bottom-level optimality conditions to be 
able to choose between bottom-level optimal 
solutions.

2.3. Bottom-level LCP with a positive semi- 
definite coefficient matrix

For completeness, we summarise the solution 
approach introduced in Gabriel, et al. (2022). Let us 
assume that the matrix M in (5) is PSD and that we 
have a solution �z of (5). Furthermore, we assume 
the problem to have a weak trilevel structure and 
thus Ny ¼ 0, i.e., the middle-level decisions y do not 
influence the bottom-level problem (c.f. Definition 
2.1). Gabriel, et al. (2022) show that for a PSD M 
and a weak trilevel structure, a solution to the trile-
vel problem consisting of (3)–(5) can be obtained by 
solving the equivalent single-level reformulation

min
x, y,~z ,�z, b, c, d, f, g

c>1 x þ d>1 yþ e>1 ~z (6a) 

s:t: A1xþ B1y þ C1~z � a1, (6b) 
0 � y? d2 − B>2 c � 0, (6c) 

0 � ~z ? e2 − C>2 c − M>d − fðqþ NxxÞ

− ðM þM>Þ>g � 0,
(6d) 

0 � �z ? qþ Nxx þ ðM þM>Þ�z − M>b � 0, (6e) 
0 � b? qþ Nxx þM�z � 0, (6f) 

0 � d?ðqþ NxxÞ þM~z � 0, (6g) 
ðqþ NxxÞ>ð~z − �zÞ ¼ 0, ðM þM>Þð~z − �zÞ ¼ 0,

(6h) 
0 � c?A2xþ B2yþ C2~z − a2 � 0, (6i) 

where �z is a solution to the bottom-level problem (5)
and ð�z�Þ>ðqþ Nxx� þM�z�Þ ¼ 0 has to thus hold at 
an optimal solution x�, �z� to (6). Appendix A sum-
marises the reformulation steps taken in Gabriel, 
et al. (2022), including the constraints correspond-
ing to the dual variables b, d, f, and g. This for-
mulation assumes non-negativity for all variables y, 
but we note that this is not a requirement and 
including free variables in the middle level only 
requires small changes to the corresponding KKT 
conditions (6c).

Finally, we note that the reformulation (6) is not 
linear due to the non-linear products fNxx, x>N>x ~z 
and x>N>x �z, resulting in a non-convex problem. In 
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general, obtaining global optimal solutions to non- 
convex problems is enormously challenging, but this 
particular non-convexity can be handled by using a 
solver capable of handling problems with bilinear 
terms in special ordered sets of type 1 (SOS1) con-
straints (Beale and Tomlin, 1970). An SOS1 con-
straint states that out of a set of variables or 
functions, only one can have a non-zero value. A 
complementarity constraint 0 � a? b � 0 can thus 
be reformulated as two non-negative variables a and 
b in an SOS1 constraint. This can be achieved using, 
e.g., the spatial branch-and-bound method in the 
Gurobi solver (Gurobi Optimization, LLC, 2022); 
see also Siddiqui and Gabriel (2013).

2.4. Mathematical programming with 
complementarity from primal and dual constraints

We are now ready to discuss our novel single-level 
reformulation. Let us first consider a setting where 
the bottom level is a convex quadratic minimisation 
problem. So far, we have discussed a reformulation 
based on adding the KKT optimality conditions of 
the bottom-level problem to the middle-level prob-
lem. In our trilevel case, the KKT optimality condi-
tions, having complementarity constraints, require a 
reformulation of the LCP solution set so that we 
can obtain a single-level equivalent formulation of 
the trilevel problem. This eventually results in the 
middle- and bottom-level problems being repre-
sented as two optimisation problems, potentially 
leading to computational challenges with the refor-
mulation (6). Representing these two nested opti-
misation problems as a single-level equivalent 
requires a large number of complementarity con-
straints (6e)–(6i), possibly leading to prohibitive 
computational requirements.

To circumvent these challenges, we note that 
some bilevel optimisation problems can also be 
reformulated as MPPDC, using strong duality 
instead of complementarity. We present a novel 
strong duality-based reformulation for trilevel prob-
lems, in which a linear middle-level problem and 
convex quadratic bottom-level problems are refor-
mulated into a single quadratically constrained lin-
ear problem instead of two optimisation problems 
(a quadratic program (QP) and a linear program 
(LP)) as in Appendix A and Gabriel, et al. (2022). 
The model sizes resulting from using complemen-
tarity (Section 2.3) and strong duality (this section) 
for the bottom level are compared in Section 2.5.

Consider a trilevel problem with a set of bottom- 
level problems P3iðxÞ

ðP3iðxÞÞ : min
zi

1
2

z>i Fizi þ ei3ðxÞ>zi (7a) 

s:t: Ci3zi � ai3ðxÞ (7b) 

zi � 0, (7c) 

where zi is a vector of decision variables and Fi is 
PSD for all i 2 I: In our illustrative example 
described in the next section, the set I represents 
the electricity producers. Note that we assume a 
weak trilevel structure, that is, P3i does not depend 
on y. Dorn (1960) presents Lagrangian dual formu-
lations for quadratic problems,1 and using these for-
mulations, the dual of each problem P3iðxÞ is

max
pi, zi

−
1
2

z>i Fizi þ ai3ðxÞ>pi (8a) 

s:t: C>i3pi − Fizi � ei3ðxÞ (8b) 
pi � 0: (8c) 

In MPPDC, the complementarity constraints in 
the KKT optimality conditions are replaced with a 
strong duality constraint. The strong duality the-
orem (e.g., Bazaraa et al., 2013) states that if the 
problem has no duality gap, that is, some constraint 
qualification holds for the problem,2 The optimal 
primal and dual objective values are equal. This 
implies that such problems can be solved to opti-
mality by finding any solution that is both primal 
and dual feasible with the primal and dual objective 
values being equal.

Combining formulations (7) and (8), we obtain 
the following primal and dual constraints, combined 
with a strong-duality constraint:

Ci3zi � ai3ðxÞ 8i 2 I (9a) 
C>i3pi − Fizi � ei3ðxÞ 8i 2 I (9b) 

z>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>pi � 0 8i 2 I (9c) 
zi, pi � 0 8i 2 I: (9d) 

The strong duality constraint (9c) states that the 
objective value of each bottom-level primal (mini-
misation) problem must not be higher than the 
value of the dual (maximisation) problem. Recall 
that the weak duality theorem (Bazaraa et al., 2013) 
states that the objective value of any solution of a 
minimisation problem is greater or equal to any 
objective value of the corresponding dual problem. 
This result allows us to write the strong duality con-
straint in an inequality form, following the approach 
in Huppmann and Egerer (2015), thus avoiding a 
quadratic equality constraint that would render a 
non-convex feasible region. Since the matrices Fi are 
PSD, constraints (9c) are convex. Knowing that 
weak duality guarantees the left-hand side of each 
constraint (9c) to be non-negative also allows us to 
combine the jIj constraints into one by taking a 
sum over the left-hand side values, reducing the 
number of constraints.

By combining the middle-level problem (4a)–(4c)
with the bottom-level problem reformulation (9), we 
obtain the resulting bilevel MPPDC formulation of 
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(4):

min
y, zi, pi

d>2 yþ
X

i2I
e>i2zi (10a) 

s:t: A2x þ B2yþ
X

i2I
Ci2zi � a2 (10b) 

Ci3zi � ai3ðxÞ 8i 2 I (10c) 
C>i3pi − Fizi � ei3ðxÞ 8i 2 I (10d) 

X

i2I
ðz>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>piÞ � 0 (10e) 

y � 0 (10f) 
zi, pi � 0 8i 2 I: (10g) 

The objective function (4a) and constraint (4b)
have been modified from (4) by adding a sum over 
the set I to highlight the fact that we consider jIj
sets of decision variables zi.

The last step is to take the (KKT) optimality con-
ditions of the middle-level MPPDC problem (10) and 
add them to the top-level problem, resulting in a (tri-
level) mathematical program with complementarity 
from primal and dual constraints. Similar to the LCP- 
based reformulation summarised in Section 2.3, this 
strong duality reformulation has the requirement that 
the bottom level is not directly influenced by the mid-
dle-level decision variables. With a weak trilevel struc-
ture (as per Definition 2.1), both the objective 
function and constraints are convex (or affine) and 
the KKT conditions of (10) are thus sufficient for 
optimality. However, to the best of our knowledge, 
no constraint qualification is known to hold for the 
problem (10). For example, Slater’s constraint qualifi-
cation (all non-linear constraints can be satisfied as 
strict inequalities, Slater, 1950) is not satisfied because 
weak duality states that

X

i2I
ðz>i Fizi þ e>i3zi − a>i3piÞ � 0 

and thus, the non-linear strong duality constraint 
(10e) cannot be strictly satisfied. This means that 
the KKT conditions of this problem are only suffi-
cient but not necessary for optimality. Nevertheless, 
this tells us that if we find a point that satisfies the 
KKT conditions, that point is optimal for the prob-
lem (10). The complete single-level strong duality 
reformulation is thus

minx, y, z c>1 xþ d>1 yþ e>1 z (11a) 
s:t: A1x þ B1yþ C1z � a1 (11b) 

0 � y? d2 þ B>2 c � 0 (11c) 

0 � c? a2 − A2x − B2y −
X

i2I
Ci2zi � 0 (11d) 

0 � zi? ei2 þ C>i2c − C>i3pb
i − F>i zb

i þ ðFi þ F>i Þzi�

þ ei3ðxÞ>� � 0 8i 2 I
(11e) 

0 � pi?Ci3zb
i − ai3ðxÞ� � 0 8i 2 I (11f) 

0 � zb
i ? ei3ðxÞ − C>i3pi þ Fizi � 0 8i 2 I (11g) 

0 � pb
i ?Ci3zi − ai3ðxÞ � 0 8i 2 I (11h) 

0 � �? −
X

i2I
ðz>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>piÞ � 0,

(11i) 

where pb
i and zb

i are the dual variables of the bottom- 
level primal and dual constraints (10c) and (10d), 
respectively, and � is the dual variable of the strong 
duality constraint (10e). That is, pb

i can be interpreted 
as the middle-level shadow prices associated with the 
bottom-level primal constraints. On the other hand, it 
is well known that the dual of the dual problem is the 
primal problem, and the dual variables associated with 
dual constraints are the primal variables. The value of 
these bottom-level primal variables must be the same 
for the middle- and bottom-level players, i.e., zb

i ¼ zi:

Note that the right-hand sides of constraints (11e), 
(11f), and (11i) contain bilinear terms (assuming ei3ðxÞ
and ai3ðxÞ are affine) including the top-level variables 
x, making the resulting model non-convex in general. 
As discussed before, such constraints can be modelled 
as quadratic SOS1 constraints and solved using spatial 
branch-and-bound-based methods.

If the problem instead has a strong trilevel struc-
ture, some of the terms ai3 or ei3 would effectively 
be functions of y, and the strong duality constraint 
(10e) would consequently have non-convex bilinear 
terms. The middle-level variables would be consid-
ered fixed for the bottom-level problems, but not 
for the middle level. A non-convex strong duality 
constraint in the middle-level problem (10) would 
result in the KKT conditions of the problem not 
even being sufficient for optimality. If we assume 
for example that the middle-level variables y 
appeared in linear terms added to the constant 
terms a and e, constraint (10e) would become

X

i2I
ðz>i Fizi þ ei3 þ Nobj

y y
� �>

zi

− ai3ðxÞ þ Ncon
y y

� �>
piÞ � 0, 

resulting in bilinear terms ðNobj
y yÞ>z and ðNcon

y yÞ>p, 
where Nobj

y and Ncon
y are the coefficient matrices of 

the y-variables in the bottom-level objective and 
constraints, respectively.

2.5. Comparison of trilevel formulations

In the reformulation (6) (Gabriel, et al., 2022), the 
vector ~z contains both the primal and dual variables 
of each bottom-level problem. This is because the 
variable ~z appears in the LCP (5), which, in the 
problems presented in this article, represents the 
concatenated KKT conditions of the bottom-level 
problems. We denote by n2 the number of variables 
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in the middle-level problem and by m2 the number 
of constraints in the same problem, and analo-
gously, n3 and m3 for the number of variables and 
constraints, respectively, in the bottom-level prob-
lem. There are then n2 þm2 þ 4ðn3 þm3Þ comple-
mentarity constraints (6e)–(6g) and (6i) in 
formulation (6), and one variable for each comple-
mentarity constraint. Additionally, there are n3 þ

m3 þ 1 equality constraints (6h) used in the refor-
mulation, and the constraints (6b) for the top-level 
problem.

The novel strong duality formulation (11)
(assuming only inequality constraints and non- 
negative variables in the middle- and bottom-level 
problems for comparison) results in n2 þm2 com-
plementarity constraints for the middle-level varia-
bles and constraints, 2ðn3 þm3Þ complementarity 
constraints for the bottom-level primal and dual 
variables and constraints, and one complementarity 
constraint for the strong duality. Because strong 
duality is represented as an inequality constraint, no 
equality constraints are needed for the strong dual-
ity reformulation.

The strong duality reformulation of the bottom 
level results in half the number of complementarity 
constraints compared to the LCP reformulation pre-
sented in Gabriel, et al. (2022), plus one for strong 
duality, and no equality constraints. While the LCP 
reformulation results in two nested optimisation 
problems, the intermediate MPPDC (10) in the 
strong duality reformulation is a single problem, 
explaining the difference in the number of con-
straints. This is computationally beneficial, as large 
numbers of complementarity constraints contribute 
greatly to the computational challenges with equilib-
rium problems. Additionally, it should be noted that 
the column-and-constraint generation algorithm 
(Dvorkin et al., 2018) requires the middle- and bot-
tom-level problems to be represented as a single 
optimisation problem, suggesting that the strong 
duality approach could be easily extended to that 
context, unlike the LCP solution set reformulation.

On the other hand, the main disadvantage of our 
strong duality formulation is that the strong duality 
constraint (10e) retains the quadratic term from the 
bottom-level objective function, while the previous 
formulation has only affine constraints. This results 
in the formulation (10) not satisfying a constraint 
qualification, making the KKT conditions only suffi-
cient for optimality. Additionally, unlike the strong 
duality formulation, the formulation in Gabriel, 
et al. (2022) is applicable to settings where the bot-
tom-level complementarity conditions are not 
derived as KKT conditions of an optimisation prob-
lem. For example, the spatial price equilibrium 

problem in Gabriel, et al. (2022) could not be refor-
mulated using strong duality.

3. Applications in energy-environmental 
planning

In this section, we describe a trilevel power market 
equilibrium model that contains environmental con-
siderations for the top-level regional policy-maker. 
Finding effective instruments for emission reduction 
and climate change mitigation is becoming increas-
ingly important, and we focus our attention on car-
bon tax (see K€oppl and Schratzenstaller, 2023, for a 
review). At the middle level, a single regional system 
operator is responsible for operating transmission 
lines a 2 A between nodes k 2 K, maximising its 
profit from operating the system.

At the bottom level, each energy producer i 2 I 
produces electricity at nodes k 2 K using energy 
sources j 2 J and sells the electricity to nodes k0 2
K, that is, the electricity is not necessarily sold to 
the same node it is produced in. The producers 
maximise their profit from selling electricity, know-
ing that their decisions will affect the selling prices, 
making the bottom level a Cournot oligopoly. 
Instead of considering a fixed demand that must be 
satisfied exactly, we model the demand side as react-
ing with an affine relationship between production 
and price so that total demand increases linearly as 
the price of electricity decreases. This means, e.g., 
that if the producers started to generate unreason-
ably large amounts of electricity, the price would go 
down because more and more of the (elastic) 
demand is satisfied.

Finally, we consider a set D of representative 
days (Poncelet et al., 2017) of renewable generation 
availability factors and demand curves. The top-level 
regulator chooses a tax and minimum renewable 
share which apply for all days. In contrast, the oper-
ational decisions at the system operator and produ-
cer levels can differ between the days d 2 D: The 
weights of the representative days are denoted with 
Pd, with 

P
d2D Pd ¼ 1, that is, Pd represents the 

fraction of days in a year that is represented by day 
d. The purpose of representative days is to reduce 
the size and complexity of the model while still 
being able to realistically convey the variability in 
renewable energy availability and demand, and they 
are used in models such as US-REGEN (Young, 
2020) and LIMES-EU (Nahmmacher et al., 2014).

Our illustrative example is based on the model in 
Hobbs (2001). This model is chosen because of its 
simple nature, as using a more realistic model 
would require further discussion on assumptions 
and data, shifting the focus away from the methodo-
logical contributions of this article. We highlight 
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however, that while this reference model is a simpli-
fied representation of reality, models containing an 
equivalent structure to that in Hobbs (2001) are 
used in case studies by, e.g., Keles et al. (2020) and 
Rib�o-P�erez et al. (2019).

3.1. The top-level regulator

On top of this trilevel hierarchy is the regional regula-
tor which tries to both maximise the amount of electri-
city produced and minimise the carbon dioxide 
emissions from doing so. The motivation for this set-
ting is to balance the utility from electricity generation 
and to maintain reasonable electricity prices, while sim-
ultaneously mitigating negative environmental 
outcomes.

In addition to maximising production, the regula-
tor wants to minimise the total emissions 
P

ijk gijkzijkd from electricity generation, where gijk is 
the emissions factor corresponding to the produc-
tion level zijkd. For carbon-emitting energy sources, 
gijk > 0, while it is zero for zero-emission energy 
sources. These two objectives are then converted 
into a single objective by giving the total production 
value a weight r 2 ð0, 1Þ and the total emissions a 
weight ð1 − rÞ: By varying the value of this weight 
parameter, one could, for example, consider differ-
ent priorities between these two objectives.

The top-level player decides on a carbon tax x, 
which affects each firms’ variable costs: cijk ¼

�ijk þ gijkx, where �ijk > 0 is the cost specific to the 
firm-fuel combination (i, j) in node k, and gijk is the 
emissions factor. Additionally, the top-level player can 
impose a minimum renewable share q that the system 
operator must satisfy at each node k 2 K: We assume 
q to be the same for all nodes, but it would be 
straightforward to extend our model to consider this 
minimum renewable share to differ by node. The car-
bon tax and minimum renewable share affect the 
optimal solutions of the middle- and bottom-level 
players, resulting in different values for z, and conse-
quently, the top-level objective value. Increasing the 
carbon tax results in lower emissions as the high- 
emission sources become more expensive for the 
producers. However, this also results in the market 
equilibrium in the lower levels shifting towards lower 
total production and higher electricity prices.

Given the upper-level variables x and q, the over-
all problem for this top-level player is given as

max
x,q, y, z

X

d2D
Pd

X

i2I, j2J, k2K
ðr − ð1 − rÞgijkÞzijkd (12a) 

s:t: x, q � 0 (12b) 
z and y solve ð13Þ for all d 2 D: (12c) 

3.2. Profit-maximising system operator

At the middle level, following the model in Hobbs 
(2001), we consider a profit-maximising independent 
system operator (ISO). This ISO is responsible for 
operating the transmission lines a 2 A between nodes 
k 2 K for each representative day d 2 D and has to 
make sure that the lines function within their capacity 
limits, between −T−

a and Tþa : The ISO chooses each 
node’s net import ykd of electricity through the trans-
mission lines (i.e., negative ykd implies that more elec-
tricity is produced than used in node k, and electricity 
is exported to other nodes). The line flows are deter-
mined from these using power transmission distribu-
tion factors (see, e.g., Burr Metzler (2000) for a 
thorough description).

The ISO’s problem for the representative day d 2
D can be stated as the following linear program.

max
ykd, zijkd

X

k2K
wkdykd (13a) 

s:t: −
X

k2K
PTDFkaykd � T−

a ð/−
adÞ 8a 2 A

(13b) 
X

k2K
PTDFkaykd � Tþa ð/þadÞ 8a 2 A (13c) 

X

i2I, j2R
zijkd � q

X

i2I, j2J
zijkd ðwkdÞ 8k 2 K (13d) 

zijkd solve ð14Þ for all i 2 I, (13e) 

where wkd is a congestion-based wheeling fee for 
node k 2 K in day d 2 D and R � J is the set of 
renewable energy sources. The wheeling fee is the 
unit price the producers have to pay to the ISO for 
selling electricity at node k, and the price that the 
ISO pays to the producer for each unit of electricity 
produced at node k, and the prices of buying and 
selling electricity in a node are assumed to be the 
same. The variables in parentheses to the right of 
each constraint are the corresponding dual variables.

Constraint (13d) states that the ISO has to choose 
such transmission values that the renewable produc-
tion share in each node is at least q, decided by the 
top-level regulator. We assume that the ISO has no 
mechanism for influencing the producers to, for 
example, increase their renewable share. This 
assumption results in a weak trilevel structure 
(Definition 2.1). Instead of directly influencing the 
producers, the optimistic bilevel assumption 
described earlier results in the ISO “choosing” the 
best (in terms of (13a)) equilibrium solution for the 
bottom-level problems that satisfies (13d).
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3.3. Oligopoly of the producers

We next consider the lower-level optimisation prob-
lems for a set of energy firms i 2 I ¼ f1, :::, nFg: We 
start by presenting these problems formulated for a 
bilateral market where electricity producers sell dir-
ectly to consumers, which turns out to be the sim-
pler case, and then proceed to add arbitragers to 
arrive at a POOLCO market model where the pro-
ducers instead sell their electricity to a central auc-
tion. The POOLCO model more accurately 
represents the Nordic system and is thus used in the 
case study in Section 4.2. For a detailed discussion 
on different market types, we refer the reader to Ilic 
et al. (1998).

Let us first assume that at this lower level, these 
nF firms constitute the entire market. Each firm has 
a production capacity in some of the nodes k 2 K 
and can bilaterally sell their electricity directly to 
any of the nodes. For production, the producers 
have a set of energy sources j 2 J: Our formulation 
for this producer level follows the ideas in Hobbs 
(2001).

In this first model without arbitragers, every firm 
i 2 I decides on its sales and production for each 
node k 2 K and day d 2 D, taking into account lin-
ear inverse demand functions pkdðs1kd, :::, snFkdÞ ¼

akd − bkd
PNF

i¼1 sikd with price intercept akd > 0 and 
slope bkd > 0: These parameters are assumed to 
vary per day, representing the changes in demand. 
Recall that sikd is the amount of electricity sold by 
producer i to node k in day d, and the market price 
at node k thus depends on the sum of the sales of 
all firms into node k.

Additionally, each producer i 2 I has maximum 
production levels zmax

ijkd determined by their installed 
production capacity. For wind and solar power, the 
maximum production level depends on the repre-
sentative day d. Each producing firm solves the 
profit-maximisation problem

max
sikd, zijkd

X

k2K

 

akd − bkd

X

i02I
si0kd

� �
sikd −

X

j2J
cijkzijkd

− ðsikd − zijkdÞwkd

!

(14a) 
s:t: zijkd � zmax

ijkd ðkijkdÞ 8j 2 J, k 2 K (14b) 
X

k2K
sikd ¼

X

j2J, k2K
zijkd ðhidÞ (14c) 

zijkd, sikd � 0, (14d) 

where cijk is the marginal production cost for firm i 
in node k with fuel type j, composed as the sum of 
a firm-specific cost �ijk and an emissions cost gijkx, 
depending on the carbon tax x determined by the 
regulator.

The first term in (14a), involving the sales varia-
bles sikd represents the revenue from selling electri-
city to different nodes k 2 K: The nodal price is 
pkd ¼ akd − bkd

P
i2I sikd: The cost of producing 

energy is cijk. The producers pay a wheeling fee wkd, 
which is determined by the transmission network 
congestion and paid to the ISO. In this hub-network 
model, the wheeling fee is also what the ISO pays 
the producers for producing extra energy in each 
node k.

Constraint (14b) states that production cannot 
exceed capacity zmax

ijkd and constraint (14c) states that 
for each producer, the total sales must equal total 
production. It is easy to see that the objective func-
tion (14a) is concave for bkd > 0 and the constraints 
are affine. Thus, the bottom-level problem (14) has 
the same structure as the quadratic problems dis-
cussed in Section 2.4.

Finally, we include a market-clearing constraint
X

i2I
sikd −

X

i2I, j2J
zijkd ¼ ykd ðwkdÞ 8k 2 K, d 2 D:

(15) 

This constraint is similar to constraint (14c), 
which instead considers the difference between sales 
and production for each producer i 2 I: We adopt 
the Bertrand assumption used in Hobbs (2001): the 
system operator sees the wheeling fees as fixed, 
instead of using market power to affect their values. 
In order to achieve this, the market-clearing con-
straint (15) is considered outside the system oper-
ator and producer problems, appearing “separately” 
in the final single-level formulation, effectively 
becoming a top-level constraint.

3.3.1. Extending the producer oligopoly: including 
arbitrage
We are interested in modelling the Nordic market 
and, to achieve that, we extend the bilateral market 
model represented by (14) into a POOLCO model. 
In a POOLCO market model, it is assumed that the 
producers sell their electricity to a central auction 
where the price is determined based on the amount 
of sold electricity and network congestion. Burr 
Metzler (2000) and Hobbs (2001) show that a bilat-
eral market with arbitragers is equivalent to a 
POOLCO market, assuming Cournot competition. 
Arbitragers are bottom-level players who have no 
production capacity, but they instead make their 
profits by exploiting the price differences between 
nodes, buying cheap electricity and selling it to 
nodes with a higher price. They act as price-takers 
and thus do not anticipate their effect on the price 
pkd. The arbitrager’s problem is

max
a

X

k2K
ðpkd − wkdÞakd (16a) 
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s:t:
X

k2K
akd ¼ 0 ðpH

d Þ, (16b) 

where akd is the amount of electricity sold by the 
arbitrager to node k in day d and the price at node 
k 2 K depends on the sales from the producers and 
the arbitragers, thus becoming pkd ¼ akd − 
bkdð

P
i2I, j2J sikd þ akdÞ: We can trivially obtain the 

KKT conditions of (16), a linear maximisation prob-
lem (recall that the arbitragers are price-takers, and 
pkd is thus treated as a constant). The KKT condi-
tions (17d) and (17e) are necessary and sufficient 
for optimality and adding them to (14), we obtain

max
sikd, zijkd, aikd

X

k2K

 

akd − bkd

X

i02I
si0kd þ aikd

� �� �
sikd

−
X

j2J
cijkzijkd − ðsikd − zijkdÞwkd

!

(17a) 
s:t: zijkd � zmax

ijkd ðkijkdÞ 8j 2 J, k 2 K (17b) 
X

k2K
sikd ¼

X

j2J, k2K
zijkd ðhidÞ (17c) 

akd − bkd

X

i02I
si0kd þ aikd

� �
¼ pH

id þ wkd 8k 2 K

(17d) 
X

k2K
aikd ¼ 0 (17e) 

zijkd, sikd � 0, (17f) 

where aikd is the net amount of power sold in node 
k by the arbitrager(s), and pH

id, the dual variable 
associated with the arbitrager constraint, is the price 
at the central auction H. Both aikd and pH

id are 
indexed over the different producers i 2 I, to high-
light that each producer can influence these values 
with their decisions and to avoid decision variables 
shared by players. This would result in a generalised 
Nash equilibrium problem (Facchinei and Kanzow, 
2010) that would be computationally more challeng-
ing. However, the values aikd and pH

id are the same 
for all producers at equilibrium, as shown in 
Appendix C, and the approach of having separate 
variables for each producer is thus valid. Constraint 
(17d) can be therefore written as pkd − wkd ¼ pH

id:

That is, including arbitragers results in the pro-
ducers selling their electricity to the central auction 
at the hub price pH

id (or simply pH
d at equilibrium), 

which is the sum of the price pkd at node k 2 K and 
the wheeling fee wkd paid to the system operator. 
Constraint (17e) states that since the arbitragers 
have no production capacity, their net sales amounts 
must be zero. The objective function is still concave 
after adding the arbitrage variables, and the new 
constraints are affine. Burr Metzler (2000) shows 
further substitutions and simplifications to the 

producer and system operator problems, which are 
shown in Appendix C, along with the resulting 
model that is used for the computational experi-
ments in Section 4.

4. Computational experiments

To illustrate the performance of the trilevel opti-
misation framework in a realistic problem setting, 
we solve the trilevel model described in the previous 
section, using randomly generated instances of vary-
ing sizes. The data used in these computational 
experiments mimic the data in the case study of 
Belyak et al. (2023), whose data are from the 
ENTSO-E Transparency Platform (Hirth et al., 
2018) and are further described in Section 4.2. The 
computational experiments were performed using 
eight CPU threads and 16GB of RAM. All code 
were implemented in Julia v1.7.3 (Bezanson et al., 
2017) using the Gurobi solver v10.0.0 (Gurobi 
Optimization, LLC, 2022) and JuMP v1.5.0 
(Dunning et al., 2017) and are available in (github. 
com/gamma-opt/trilevel-energy).

4.1. Comparing formulations

We compare the performance of the two single-level 
reformulations, the LCP-based reformulation from 
Gabriel, et al. (2022) (Section 2.3) and our strong 
duality reformulation (Section 2.4) by solving 50 
randomly generated problems with two producers, 
five energy sources, three nodes, and three represen-
tative days. This problem size was chosen as the 
base case because it seems to be large enough to 
make the problems challenging to solve, but small 
enough for them to be mostly solvable within a 
time limit of 1 h.

The results are presented in Figure 1, and the 
main observation here is that the novel strong dual-
ity formulation is faster in most cases. In Figure 1, 
markers below the diagonal (dashed line) corres-
pond to such cases. In 13 instances, the formulation 
of Gabriel, et al. (2022) did not find an optimal 
solution in an hour while our strong duality formu-
lation did. One major issue with both models com-
pared here is that usually the first feasible solutions 
are found at the end of the solution process, and 
most of the solution time is spent on improving the 
dual bound without finding any feasible solutions. 
Nevertheless, changing solver parameters to empha-
sise finding feasible solutions was not found to have 
a major impact on performance.

As discussed in Section 2.5, the strong duality 
formulation results in fewer constraints than the 
reformulation in Gabriel, et al. (2022). Recall that in 
our models, complementarity constraints are 
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formulated as SOS1 constraints. The model sizes in 
the base case test problems are presented in Table 1, 
and out of the two, our strong duality model is 
smaller, except for having one more quadratic SOS1 
constraint to represent the strong duality constraint 
(11i). In our model, all non-complementarity quad-
ratic constraints are inequality constraints, while in 
the LCP-based model, there is one quadratic equal-
ity constraint (the first one in (6h)).

Next, we analyse how problem size affects solu-
tion times by varying either the number of pro-
ducers, energy sources, nodes, and representative 
days from the base case, one parameter at a time. 
The results are presented in Figure 2. The medium- 
sized cases in each subfigure are similar to each 
other, which is expected as the problem sizes are 
the same. Varying the number of producers or 
energy sources seems to have only a small effect on 
the solution times while changing the number of 
nodes has a far stronger effect. The effect of the 
number of representative days is stronger than that 
of the number of producers and energy sources but 
seems to be weaker than that of the number of 
nodes.

We can also see that the number of problems 
that were not solved to optimality within the time 
limit is affected by the number of nodes and repre-
sentative days, but not by the number of firms or 
energy sources. Additionally, the novel strong dual-
ity model finds an optimal solution more frequently 
than the previous formulation. As predicted in 

Section 2.4, the larger number of complementarity 
constraints in the LCP formulation (Table 1) proves 
to be computationally challenging, and the smaller 
strong duality model is solved faster.

4.2. Case study: a five-node Nordic energy 
system

The case study in Belyak et al. (2023) considers five 
nodes, representing Finland, Sweden, Norway, 
Denmark, and the combined Baltic countries 
(Estonia, Latvia, and Lithuania). There are five pro-
ducers, each owning production capacity in one of 
the five nodes. Nine different energy sources are 
available, consisting of five conventional sources: 
nuclear, coal, gas (closed- and open-cycle) and bio-
mass, and four renewable sources: solar, hydro, 
onshore, and offshore wind. Additionally, we con-
sider three representative days of renewable gener-
ation availability factors and demand curves. Recall 
that in our model, the top-level regulator makes 
their decisions independent of the day considered, 
that is, the carbon tax and minimum renewable 
share are constant across different representative 
days. These representative days are obtained in 
Belyak et al. (2023) by performing hierarchical clus-
tering on demand, price, and renewable availability 
data.

Day 1 is a winter day with higher demand, low 
solar availability, and medium wind availability. 
Days 2 and 3 have a lower demand with day 2 rep-
resenting a windy day with medium solar availabil-
ity, and day 3 representing a sunny day with low 
wind availability. The details of the hierarchical clus-
tering process can be found in Belyak et al. (2023).

In Figure 3, the production portfolio (a weighted 
average over the representative days) is presented 
for a model with no carbon tax (i.e., the regulator 
heavily prefers maximising production over mini-
mising emissions) and a carbon tax of 23 e/ton 
(enough to remove nearly all emissions). Compared 
to the baseline with no carbon tax, this 23 e/ton tax 
decreases the total production by 2.8%. In this 
example, these carbon tax values are achieved by 
setting the weight parameter r in the top-level 
objective (12a) to 0.8 and 0.4, respectively.

Because of the substantial hydropower production 
capacity in the Nordic system, particularly in 
Norway and Sweden (IRENA, 2023), the renewable 

Figure 1. Solution times for the two formulations on 50 ran-
dom instances with 2 producers, 5 energy sources, 3 nodes, 
and 3 representative days. If one of the methods failed to 
find a solution within 3600 s, an orange marker is used, and 
the marginal distributions on the right and top sides exclude 
unsolved instances.

Table 1. Model sizes for the two reformulations.
Strong duality (this article) LCP (Gabriel et al., 2022)

Variables 678 949
Affine constraints 306 757
Quadratic constraints 100 100
Affine SOS1 288 648
Quadratic SOS1 100 99
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share of production is large even without a carbon 
tax. A part of the increase in hydropower usage 
when the carbon tax is introduced comes from 
decreasing onshore wind production. This is a con-
sequence of the simplified nature of the model and 
data, as the operational costs for both hydropower 
and onshore wind power are zero, resulting in mul-
tiple optima and indifference for the producers to 
use one or the other, as long as the production cap-
acity of neither is exceeded. This artefact of the 
model could be easily removed by, e.g., setting the 
operational cost of either energy source to a small 
positive number instead of zero, causing the pro-
ducers to prefer the cheaper source. However, this 
would imply an artificial preference for one source 
over the other. The only significant source of emis-
sions is coal, and introducing a carbon tax of 23e/ 

ton removes all coal from the portfolio, bringing in 
a small amount of closed-cycle gas power instead. 
The closed-cycle gas production occurs in the 
Baltics for day 1, and to understand this emergence 
of gas better, we must examine the transmission 
network in Figure 4.

The first representative day has the highest net-
work usage with large amounts of electricity trans-
mitted from Norway to Finland through Sweden. 
With the carbon tax, the importance of transmission 
is further highlighted as the hydropower capacity in 
Norway is used for lowering overall prices under 
high demand and low production from both solar 
power and high-emission sources. The differences 
between representative days 2 and 3 are more sub-
tle, but we can see, e.g., the reliance on wind power 
in Denmark: in the low-wind day 3, the carbon tax 

Figure 2. Cumulative distribution functions of solution times for the two formulations with 1–3 producers, 4–6 energy sour-
ces, and 2–4 nodes and representative days. For each problem size, 50 instances are generated and solved.

Figure 3. Weighted average electricity production portfolio over the five nodes and three representative days.
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results in Denmark importing a significant amount 
of electricity from Norway, compared to the high- 
wind day 2. On the first day with a carbon tax of 23 
e/ton, both lines connecting the Baltic countries to 
the rest of the system are at their capacity, explain-
ing why the Baltic countries start using gas power 
after a carbon tax is introduced. This illustrates the 
complex interplay between the three levels that is 
captured by our model.

5. Conclusions

In this article, we propose a novel formulation for 
trilevel optimisation problems focusing on energy 
systems planning with environmental considera-
tions. Additionally, we characterise the notion of 
weak and strong trilevel structures and compare the 
computational performance of the novel strong 
duality-based reformulation in this article and the 
LCP-based reformulation in Gabriel, et al. (2022).

The computational results are encouraging, as we 
are able to solve the case study to optimality within 
a few minutes despite the fact that both single-level 
reformulations considered are non-convex problems. 
However, we note that preliminary experiments 
with seemingly small extensions to the model, such 
as adding ramping constraints (limiting the change 
in production between consecutive periods) to the 
producer problem made the problem computation-
ally intractable. The small size of the case study is 
indicative of the very challenging (non-convex) 
nature of these problems, and the authors note that 
the reformulations and solution methods in this 

article should be viewed as one of the first steps 
towards an efficient solution framework for trilevel 
problems.

For the results in this article, an off-the-shelf 
solver is used, which is useful to ensure a low bar-
rier-to-entry for using the developed formulation. 
However, we believe that the computational per-
formance can be increased considerably using speci-
alised solution methods like column-and-constraint 
generation (Dvorkin et al., 2018). Notably, ideas 
such as bilevel branch-and-bound (Fischetti et al., 
2018) and convex hull reformulations of the middle- 
level feasible region (Santana and Dey, 2020) may 
be explored in the context of the problems pre-
sented in this article. In addition, the model could 
also be extended to consider transmission and/or 
production capacity expansion over multiple time 
periods, especially if computationally more efficient 
reformulations and solution methods are developed.

Despite the outstanding computational challenges, 
we show that the novel reformulation improves 
computational performance compared to the previ-
ous formulation (Gabriel, et al., 2022), and we show 
that the framework can be applied to a setting rep-
resenting the Nordic electricity market, and results 
on the effect of carbon tax can be obtained. A limi-
tation of the formulation approach presented in this 
article and that originally proposed by Gabriel, et al. 
(2022) is that they require a weak trilevel structure. 
In practice, relevant problems may instead have a 
strong trilevel structure, precluding the use of these 
reformulations. Thus, further research is needed on 

Figure 4. Transmission grid usage with different carbon taxes and representative days. The size of an arrow is proportional to 
the flow on the line and the colour of an arrow represents congestion: black arrows correspond to lines operating at their 
limit. The nodes are FI¼ Finland, SE¼ Sweden, NO¼Norway, DK¼Denmark, BA¼ Baltic countries.
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developing (heuristic) solution methods for prob-
lems with a strong trilevel structure.
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Appendix A. Reformulation of a bottom-level 
LCP with a positive semi-definite M

Cottle et al. (2009) show that if the matrix M is positive 
semi-definite (PSD), all solutions to the LCP

0 � z? qþ Nxxþ NyyþMz � 0, (A1) 

can be obtained as the following polyhedral set:

fz 2 Rnz
�0 : qþ Nxxþ NyyþMz � 0,
ðqþ Nxxþ NyyÞTðz − �zÞ ¼ 0,
ðM þMTÞðz − �zÞ ¼ 0g,

(A2) 

where �z is a solution to the LCP.
Hence, the middle-level problem can be rewritten as

miny, z�0 d>2 yþ e>2 z (A3a) 
s:t: A2xþ B2yþ C2z � a2 (A3b) 

qþ Nxxþ NyyþMz � 0 (A3c) 

ðqþ Nxxþ NyyÞ>ðz − �zÞ ¼ 0 (A3d) 

ðM þM>Þðz − �zÞ ¼ 0: (A3e) 

We observe that (A3d) includes a bilinear term 
y>N>y z in an equality constraint. This is a non-convex 
constraint, precluding the direct use of KKT conditions 
for obtaining an optimal solution to (A3). However, for 
problems with a weak trilevel structure, Ny ¼ 0 and 
these bilinear terms vanish. In the next theorem, we 
assume Ny ¼ 0.
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Theorem A.1. Let M be a positive semi-definite matrix. 
Then, ðx�, y�, z�Þ is an optimal solution of Problem (3)
with middle level (4) if and only if ðx�, y�, z�, �z�Þ is an 
optimal solution of the problem

minx, y, z, �z c>1 xþ d>1 yþ e>1 z (A4a) 
s:t: A1xþ B1yþ C1z � a1 (A4b) 

�z 2 arg min
z0�0

fz0>ðqþ NxxþMz0Þ :

qþ NxxþMz0 � 0 ðbÞg,
(A4c) 

y, z 2 arg min
ŷ, ẑ�0

fd>2 ŷ þ e>2 ẑ :

qþ NxxþMẑ � 0 ðdÞ

ðqþ NxxÞ>ðẑ − �zÞ ¼ 0 ðfÞ

ðM þM>Þðẑ − �zÞ ¼ 0 ðgÞ

A2xþ B2ŷ þ C2ẑ � a2 ðcÞg,
such that ð�z�Þ>ðqþ Nxx� þM�z�Þ ¼ 0:

(A4d) 

See Theorem 6 in Gabriel et al. (2022) for a proof of 
this result as well as related theoretical aspects of the gen-
eral form of the problem.

The two nested optimisation problems in (A4) are a 
convex QP (A4c) and an LP (A4d). Hence, the KKT con-
ditions of both problems are necessary and sufficient for 
optimality and the two inner problems can be replaced by 
their necessary and sufficient KKT conditions, leading to 
the single-level reformulation (6).

Appendix B. Formulating the dual of a QP 
with affine constraints

Given a quadratic program with affine constraints
min

zi

1
2

z>i Fizi þ ei3ðxÞ>zi (B1a) 

s:t: Ci3zi � ai3ðxÞ ðpiÞ (B1b) 
zi � 0 ðsiÞ, (B1c) 

where we assume Fi is a positive semi-definite (PSD) 
symmetric matrix, the Lagrangian of the problem is

Lðzi, si, piÞ ¼
1
2

z>i Fizi þ ei3ðxÞ>zi þ p>i ðai3ðxÞ − Ci3ziÞ

− s>i zi,
(B2) 

where pi and si are non-negative Lagrange multipliers or 
dual variables. The first-order optimality condition is thus

rzi Lðzi, si, piÞ ¼ Fizi þ ei3ðxÞ − C>i3pi − si ¼ 0 (B3) 

and rearranging (B2) gives us
1
2

z>i Fizi − z>i C>i3pi þ z>i ei3ðxÞ − z>i si þ ai3ðxÞ>pi, (B4) 

which, using the first-order condition −Fizi ¼ −C>i3pi þ

ei3ðxÞ − si, becomes

−
1
2

z>i Fizi þ ai3ðxÞ>pi: (B5) 

Maximising Eq. (B5), subject to the first-order opti-
mality condition for zi and treating si as a slack variable 
and removing its explicit representation from the problem 
results in the Lagrangian dual formulation

max
pi, zi

−
1
2

z>i Fizi þ ai3ðxÞ>pi (B6a) 

s:t: C>i3pi − Fizi � ei3ðxÞ (B6b) 
pi � 0: (B6c) 

Appendix C. Further substitutions for the 
middle and bottom levels

The producer model can be further simplified using the 
substitution sikd ¼

P
j2J zijkd, removing the sales variables 

and the balance constraint (17c). For a further reduction, 
the remaining equality constraints (17d) and (17e) can be 
used to solve for a and pH.

We have the necessary and sufficient KKT conditions  

akd − bkd

X

i02I
si0kd þ aikd

� �
¼ pH

id þ wkd8k 2 K (C1) 

X

k2K
aikd ¼ 0 (C2) 

of the arbitrager’s problem, and with the substitution 
P

j2J zijkd ¼ sikd, we get  

akd − bkdðZkd þ aikdÞ ¼ pH
id þ wkd8k 2 K (C4) 

X

k2K
aikd ¼ 0, (C5) 

where Zkd ¼
P

i2F, j2J zijkd: In matrix form, we get  

Qd 1
1> 0

� �
aid
pH

id

� �

¼
ad − QZd − wd

0

� �

, (C7) 

where Qd is a square diagonal matrix with the element on 
the kth row and column being bkd and 1 is a vector of 
ones. It can be shown that

Qd 1
1> 0

� �−1

¼
Ld hd
h>d ĥd

� �

, (C8) 

where

ĥd ¼
1

P
k2K b−1

kd
hkd ¼ b−1

kd ĥd

Ld
k, k ¼ ĥdb

−1
kd
P

k02Knk b
−1

k0d

Ld
k, k0 ¼ −ĥdb

−1
kd b

−1

k0d, k 6¼ k0:

This results in the solution

aikd ¼ hkdZd − Zkd −
X

k02K
ðak0d − wk0dÞLd

k, k0 (C9) 

pH
id ¼

X

k2K
ðakd − wkdÞhkd − Zdĥd, (C10) 

where
Zd ¼

P
i2I, j2J, k2K zijkd

Zkd ¼
P

i2I, j2J zijkd:

It can be seen that the values of aikd and PH
id are the 

same for each firm i 2 I and we can drop the index i. 
Burr Metzler (2000) shows that the arbitrage amounts 
correspond to the transmission values: akd ¼ ykd.
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These substitutions result in the problem formulation

max
zid

X

k2K
ðakd − wkdÞhkd − Zdĥd

� �
Zid

−
X

j2J, k2K
cijk − wkdð Þzijkd (C11a) 

s:t: zijkd � zmax
ijkd ðkijkdÞ 8j 2 J, k 2 K (C11b) 

zijkd � 0 (C11c) 

and we can see that the substitutions do not change the 
concavity of the objective function: the quadratic term for 
producer i 2 I is ĥdZ2

id: Finally, the sales variables sikd are 
also eliminated from the market-clearing constraint, 
resulting in

hkdZd − Zkd þ
X

k02K
ðak0d − wk0dÞLd

kk0 ¼ ykd ðwkdÞ 8k 2 K:

(C12) 
The formulation (C11) can be converted into an LCP 

by using the KKT optimality conditions. The combined 
KKT conditions of (C11) for all producers i 2 I are

0 � zd?Bdzd þ kd þ qz
d � 0 (C13a) 

0 � kd? − zd þ zmax
d � 0, (C13b) 

where qz
ijkd ¼ −

P
k2Kðakd − wkdÞhkd þ ðcijk − wkdÞ and Bd 

is a PSD matrix with

Bdðijk, i0j0k0Þ ¼ 2ĥd i ¼ i0
ĥd i 6¼ i0,

(

making the bottom level an LCP with a PSD coefficient 

matrix Bd I
−I 0

� �

: This makes the problem setting suitable 

for the method described in Section 2.3, but we will con-
tinue by presenting the strong duality approach to this 
problem.

C.1. Strong duality reformulation of the 
trilevel electricity market model

Using the primal–dual conversion rules for quadratic pro-
grams summarised in Dorn (1960), the dual of the bot-
tom-level problem (C11) can be stated as

min
kijkd, zijkd

ĥdZ2
id þ

X

j2J, k2K
zmax

ijkd kijkd (C14a) 

s:t: − kijkd � ĥdðZd þ ZidÞ −
P

k2K hkdðakd − wkdÞ

þ ðcijk − wkdÞ ðzijkdÞ 8j 2 J, k 2 K
(C14b) 

zijkd, kijkd � 0: (C14c) 

As described in Section 2.4, we impose a strong duality 
constraint stating that the objective value of the dual 
(minimisation) problem is less or equal to that of the pri-
mal (maximisation) problem, and combine constraints 
(C11b)–(C11c), (C14b)–(C14c) and the strong duality 
constraint. A solution that satisfies these constraints must 
be optimal to (C11) and (C14). Notice that the inequality 
version of the strong duality constraint is convex (as 
opposed to an equality constraint between the primal and 
dual objective values), and the other constraints are 
affine.

Finally, we can write the primal and dual constraints 
and the strong duality constraint as  

zijkd � zmax
ijkd ðk0ijkdÞ 8i 2 I, j 2 J, k 2 K (C15a) 

−kijkd − ĥd Zd þ Zidð Þ � −
X

k2K
ðakd − wkdÞhkd

þ ðcijkd − wkdÞ ðz0ijkdÞ 8i 2 I, j 2 J, k 2 K

(C15b) 
X

i2I
ðĥdZ2

id þ ĥdZdZid þ
X

j2J, k2K
zmax

ijkd kijkd

−ð
X

k2K
ðakd − wkdÞhkdÞZid

þ
X

j2J, k2K
ðcijk − wkdÞzijkdÞ � 0 ð�dÞ

(C15c) 
zijkd, kijkd � 0, (C15d) 

where the strong duality constraints for all producers i 2
I have been combined into a single constraint (C15c) to 
reduce the number of constraints as suggested in Pineda 
et al. (2018).

The KKT conditions of the ISO problem (13) com-
bined with the constraints (C15) and the market-clearing 
constraint (C12) are  

0 � zijkd? k0ijkd − ĥdðZd þ ZidÞ þ ð2ĥd Zd þ Zidð Þ −
X

k2K
ðakd − wkdÞhkdþ

ðcijkd − wkdÞÞ�d − ðIðj 2 RÞ − qÞwkd � 0 8i 2 I, j 2 J, k 2 K

(C16a) 
0 � kijkd? − z0ijkd þ zmax

ijkd �d � 0 8i 2 I, j 2 J, k 2 K

(C16b) 
0 � z0ijkd? kijkd þ ĥdðZd þ ZidÞ −

X

k2K
ðakd − wkdÞhkd

þ ðcijkd − wkdÞ � 0 8i 2 I, j 2 J, k 2 K
(C16c) 

0 � k0ijkd? zmax
ijkd − zijkd � 0 8i 2 I, j 2 J, k 2 K (C16d) 

0 � /−
ad?T−

a þ
X

k2K
PTDFkaykd � 0 8a 2 A (C16e) 

0 � /þad?Tþa −
X

k2K
PTDFkaykd � 0 8a 2 A (C16f) 

0 � wkd?
X

i2I, j2R
zijkd − q

X

i2I, j2J
zijkd � 0 8k 2 K (C16g) 

0 � �d? −
X

i2I
ðĥdZ2

id þ ĥdZDZid þ
X

j2J, k2K
zmax

ijkd kijkd−
X

k2K
ðakd − wkdÞhkd

� �
Zid þ

X

j2J, k2K
cijk − wkdð ÞzijkdÞ � 0

(C16h) 
wkd ¼

X

a2A
PTDFkað/

þ
ad − /−

adÞ 8k 2 K (C16i) 

ykd ¼ −Zkd þ hkdZd þ
X

k02K
Ld

k, k0ðak0d − wk0dÞ 8k 2 K:

(C16j) 

The indicator term Iðj 2 RÞ is 1 if j 2 R, 0 otherwise, 
and the variables z0ijkd and k0ijkd are the dual variables of 
the primal and dual constraints from the producer level 
for the system operator problem, and � is the dual vari-
able for the strong duality constraint.
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