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A B S T R A C T

Semicontinuous distillation is a separation technique used to purify multicomponent mixtures with low to
medium throughput. This research addresses the problem of designing a Data-driven Model Predictive Control
(MPC) approach that enables minimizing the Total Annualized Cost (TAC) of the semicontinuous process
per tonne of feed processed while maintaining the required product purity. In lieu of typically unavailable
first principles models, the manuscript demonstrates the implementation of data-driven technique using data
collected from an Aspen Plus Dynamics simulation as a test bed. A subspace model identification technique is
adapted to develop a multi-model framework to capture the dynamic behavior of the process and then utilized
within a Shrinking Horizon MPC (SHMPC) scheme, to achieve the required objective. The simulation results
demonstrate a lowering of the TAC/tonne of feed by 11.4% compared to the traditional PI setup used in the
previous studies.
1. Introduction

Despite its energy-intensive nature, distillation remains the most
important unit operation for separation in the chemical process in-
dustry. A significant amount of the plant’s operating and capital cost
is attributed to the distillation process (Kiss, 2014). This is particu-
larly evident in the separation of mixtures containing three or more
components, where both capital and operating cost are very high.
Much research has been done in the past to reduce the operating and
capital cost of the multicomponent separation process. For instance, the
dividing wall column is one of the process intensification techniques
that has been explored in previous studies (Dejanović et al., 2011;
Yildirim et al., 2011) to minimize capital cost for multi-component sep-
aration. Semicontinuous distillation is another process intensification
technique in which one or more middle vessels are integrated with
a single distillation column for the separation of a multi-component
mixture (Phimister and Seider, 2000a,b). The semicontinuous process
has multiple modes of operation, namely charging, processing, and dis-
charging. The main motivation behind the semicontinuous distillation
process (Adams and Seider, 2008; Wijesekera and Adams, 2015; Adams
and Seider, 2005) is to reduce the capital cost required for purifying
n-component mixtures (n ≥ 3) compared to a conventional continuous
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process for small to medium production rates. Semicontinuous distilla-
tion has been adopted for various simulated separation processes like
ternary non-azeotropic distillation, azeotropic distillation, extractive
distillation, pressure swing distillation, and distillation with chemical
reaction (Adams and Pascall, 2012; Adams and Seider, 2009, 2006;
Monroy-Loperena and Alvarez-Ramirez, 2004; Phimister and Seider,
2000c).

Semicontinuous processes are complex, dynamic, and have a cyclic
behavior with three modes of operation. The design, tuning, and con-
figuration of the control structure heavily impact the performance and
TAC/tonne of feed processed of the semicontinuous distillation system.
Variables that contribute to the operating cost portion of the TAC/tonne
of feed processed include the service cost provided by chilled water to
the condenser and the service cost provided by steam to the reboiler.

The initial studies with semicontinuous distillation columns focused
on using the traditional PI controller setup in various configurations.
Phimister and Seider (2000a,b) studied the performance of three widely
proposed binary distillation control configurations on a semicontinuous
process. The three configurations were LV configuration, (L/D)(V/B)
configuration and DB configuration. The variables L, V, D and B rep-
resent reflux rate, boilup rate, distillate flowrate and bottom flowrate
respectively and they are manipulated to control the product purities
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in these configurations. Even though it is usually inoperable for a
traditional continuous binary distillation column, the DB configuration
easily outperformed the remaining configurations for a semicontinuous
system. The reason for not implementing a DB configuration on the
binary distillation column is the overflow of liquid drums due to the
interactions present between level controllers. But in the presence of
a full liquid side draw, the sump and reflux drum do not overflow
in the semicontinuous system. In the proposed DB configuration, the
distillate and bottom products are controlled by manipulating distillate
and bottom flowrates, the reflux drum and reboiler sump level are
controlled using feed flowrate to the column and reboiler heat duty
respectively, and condenser pressure is controlled by manipulating
condenser heat duty.

This DB controller configuration formed a base system for the
controller configurations proposed in subsequent research works. First,
Adams and Seider (2009, 2008, 2006) proposed ideal side draw recov-
ery (ISR) arrangement to improve this DB configuration by introducing
a feed-forward model-based control for the sidestream and effectively
demonstrated this configuration for semicontinuous reactive extraction,
reactive distillation, and production of ethyl lactate. Then Pascall and
Adams (2013) studied various control systems design themselves in
much more comparative detail, and found ways of improving it, but
ultimately still relied on a largely PI control structure with simple
model-based feed-forward control for the sidestream. Finally, Madab-
hushi and Adams (2018) proposed a modified ideal side draw recovery
(MISR) arrangement to improve the sidestream control but still kept
the same PI-based structure.

More advanced techniques such as model predictive control (MPC)
have been utilized extensively in the literature (Martin et al., 2013;
Porfírio and Odloak, 2011; Richalet, 1993; Huang and Riggs, 2002) for
binary distillation columns. MPC (Eaton and Rawlings, 1992; Garcia
et al., 1989) makes use of a dynamic model of process which optimizes
the input to the system based on the objectives specified.

The classical MPC approach (Foss and Cong, 1999) proposed in the
earlier studies made use of first principle models to build a dynamic
model of the distillation process. Building a first principle model using
MESH equations (Singh et al., 2013) is highly complex and may be
difficult to develop and maintain in practice. As an alternative, a neural
network model could be utilized as a data-driven modeling scheme;
however the utility of Artificial Neural Network models to capture the
process dynamics while avoiding the problem of overfitting continues
to be an active research focus. Hence a linear modeling technique is
considered in this work to avoid overfitting. One such linear data-
driven technique is subspace identification (Qin, 2006) where a Linear
Time Invariant (LTI) model is developed between the input and output
of the process. Subspace Identification has been previously used to
successfully model continuous (Kadali et al., 2003; Pour et al., 2010)
and batch (Corbett and Mhaskar, 2016) processes. Previous research
has demonstrated successful application of data-driven MPC for vari-
ous industrial processes like rotomolding (Chandrasekar et al., 2022),
polymerization (Corbett et al., 2014), distillation (Jalanko et al., 2021)
and bioreactor (Sarna et al., 2022).

In an earlier effort, Meidanshahi et al. (2017) data-driven MPC was
implemented on a semicontinuous distillation column and compared
with an already established PI controller configuration based on the
cost analysis. The MPC controller was operated only during the process-
ing mode. For the remaining two modes (charging and discharging),
the process was switched to operate under the PI controller configu-
ration. The semicontinuous distillation process operation, by design,
goes through different modes of operation. Recent results Ubene and
Mhaskar (2023) proposed a multi-model framework using subspace
identification for batch operations where an individual model is built
for each mode of operation and connected using a PLS connector model.
Such approaches have so far not been adapted for semicontinuous
operation.
2

The present work proposes a multi-model-based MPC to enable
uninterrupted implementation of MPC and thus improve closed-loop
performance. The rest of the paper is structured as follows: Section 2
describes the semicontinuous process and the simulation environment
to generate the data, and reviews the subspace identification. Section 3
presents the proposed framework to build a multi-model state-space
model and shrinking horizon model predictive control (SHMPC) for-
mulation. The results of the process performance under both MPC
and traditional PI configurations are shown in Section 4. Finally, the
conclusion of this work is presented in Section 5.

2. Preliminaries

In this section, first, the semicontinuous process description and its
simulation environment are described and then an overview of existing
subspace identification of batch process.

2.1. Process description

A typical semicontinuous distillation process is performed in three
modes of operation, charging, processing, and discharging. During
charging mode, the mixture to be separated is fed to the middle vessel.
Once the content in the middle vessel reaches 90% of the middle vessel
height, the feed stream control valve is turned off, and the processing
mode starts. In the processing mode, the mixture from the middle vessel
is fed to the distillation column at a higher flowrate. The high volatile
component and low volatile component are collected as distillate and
bottom products. The sidestream from the column is always recycled
to the middle vessel. As time proceeds, the sidestream enriches the
middle vessel with the intermediate volatile component (component
B). Once the desired composition of component B is reached in the
middle vessel, the process is switched to discharging mode by turning
on the discharge valve situated at the bottom of the middle vessel.
During the discharging mode, the content present in the middle vessel
is drained out. This marks the end of the separation of a batch through
a semicontinuous distillation column. The same process is repeated for
the remaining batches of feed. In this way, the components present in
the entire mixture are separated. By avoiding n − 2 distillation columns,
the semicontinuous distillation column is used as an alternate way to
purify n-components present in the mixture by reducing the capital
costs compared to conventional distillation column setup for low to
medium throughputs. In an effort to avoid startup and shut down of
the column during the process, a certain amount of liquid is always
maintained in the middle vessel (at some safe lower-limit that ensures
the feed never stops to the column). The comparison of conventional
and semicontinuous process setup for the separation of n-component
mixture is shown in Fig. 1.

The semicontinuous separation of an equimolar mixture of hexane,
heptane and octane (HHO) is considered as the case study for this
work. The design data for the column and middle vessel are taken
from Wijesekera and Adams’s (2015) work on the separation of the
quaternary mixtures and were adapted appropriately for this ternary
mixture separation. The design is done so products are separated to
their desired purities of 95 mol% of hexane, heptane, and octane re-
spectively. The condenser pressure of the column was designed to be at
1.013 bar and a pressure drop of 0.0068 bar at all the following stages.
In our nomenclature, stage 1 is the condenser and the last stage is the
reboiler. The column diameter was designed to be 3 ft. with an active
tray area of 80%. The total middle vessel molar holdup at the start of
a cycle is considered to be 100 kmol. Some of the required design data
of the system is presented in Table 1. More detailed information on the
simulation of the hexane, heptane and octane system can be found in

the previous publication (Madabhushi and Adams, 2020).
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Fig. 1. (a) Conventional distillation column setup (b) semicontinuous distillation column setup for the purification of n-component mixtures.
Table 1
Key column design data for the separation of HHO mixture.

Design parameters Value

Ternary mixture Hexane, heptane and octane
Composition (mole frac.) 0.33, 0.34, 0.33
Number of stages (𝑁𝑠) 40
Feed stage location (𝑁𝑓 ) 25
Sidestream draw location (𝑛𝑠) 14
Area of tray (m2) 0.657
Area of reflux drum (m2) 2.350
Area of reboiler sump (m2) 2.746
Condenser (stage 1) pressure (bar) 1.013
Stage pressure drop (bar) 0.0068
Weir height (m) 0.0508
Weir length (m) 0.6644

2.2. Simulation environment of the semicontinuous process

As described in Section 2.1, the semicontinuous process of hex-
ane, heptane, and octane separation requires one middle vessel and
a distillation column to separate the individual components in this
mixture. Pascall and Adams (2013) proposed a control configuration
where the purity of distillate and bottom products were controlled by
3

Table 2
The manipulated and controlled variables of the process. CC = Composition controller,
LC = Level controller, PC = Pressure controller, FC = Flow controller, Hliq. = Height
of Liquid, comp. = component.

Controller Manipulated variables Controlled variables

Distillate CC Distillate flowrate Distillate composition
Bottom CC Bottom flowrate Bottom composition
Condenser PC Condenser heatduty Condenser Pressure
Drum LC Feed flowrate to the column Hliq. in Reflux drum
Sump LC Reboiler heat duty Hliq. in reboiler sump
Sidestream FC Sidestream comp. flowrate Sidestream flowrate

their corresponding flowrates, the reflux drum and reboiler sump levels
were controlled by the feed flow rate to the distillation column and
reboiler heat duty respectively, the condenser pressure is controlled by
condenser heat duty. Fig. 2 illustrates the current control structure in
use. Table 2 displays the manipulated and controlled variables of all
six PI controllers.

Recently, Madabhushi and Adams (2018) proposed a modified ideal
side draw recovery (MISR) arrangement to improve the performance of
the process under PI configuration. This study looked at the particular
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Fig. 2. PI controller configuration of a semicontinuous process. CC = Composition
controller, LC = Level controller, PC = Pressure controller, FC = Flow controller.

structure of the model-based feed-forward control for sidestream con-
trol setpoint trajectory and found this arrangement performed better
than the previously proposed control structure. In their configuration,
the setpoint of the sidestream controller was given by Eq. (1) below:

𝑆𝑀𝐼𝑆𝑅(𝑡) =
𝐹𝑀𝑉 ,𝐵(𝑡)
𝑥𝑆,𝐵(𝑡)

(1)

where 𝑆𝑀𝐼𝑆𝑅(𝑡) is the setpoint of the sidestream controller. 𝐹𝑀𝑉 ,𝐵(𝑡)
s the intermediate volatile component B flowrate in the feed to the
istillation column, and 𝑥𝑆,𝐵(𝑡) is the composition of intermediate
olatile component in Sidestream flow. The modified ideal side draw
ecovery configuration is used in the current work to generate the
rocess data.

A dynamic simulation of the semicontinuous process is utilized as
he test bed. To simulate the process, a steady-state simulation of a
emicontinuous process is first developed in Aspen Plus V12.1 and then
onverted to a pressure-driven dynamic simulation using Aspen Plus
ynamics V12.1. The inputs and outputs of the process are specified in
able 2. Like most dynamic simulators, Aspen Plus Dynamics requires
he user to provide a consistent initial state (or enough information to
olve for one), and then the solver can integrate the dynamic equations
nd advance the simulation dynamically. However, semicontinuous
istillation systems are so complex that the only practical way to
chieve any near-consistent initial state is to use a steady-state solution
ound with Aspen Plus. Once simulated, the semicontinuous distillation
rocess functions takes a few cycles to reach a cyclical behavior with
ach cycle initially being somewhat different from the next in terms of
he trajectories of the state variables, cycle times, and product qualities.
n most cases however, these cycles tend to converge, with three to four
ycles typically being sufficient. For analysis purposes, it is common
o run ten cycles just to make sure that the system has converged.
ence, the first ten cycles are ignored and the data from the start of the
1th cycle is considered for this work. There have been other attempts
n the literature to avoid this approach by solving for the cycles of
emicontinuous distillation systems directly, but that method works
ith simplified models with a small number of equations (Madabhushi
nd Adams, 2020).
4

To generate data after cyclical behavior has been established, a
pseudo-random binary signals (PRBS) is introduced to the setpoint
trajectories of the Condenser Pressure and Reboiler sump level con-
trollers. Since the motive behind this work was to demonstrate the
key aspects of a multi-model framework and develop MPC architecture
using a multi-model framework for semicontinuous distillation, the
current simulation data does not consider the measurement noise.
The integrated economics options available in Aspen V12.0 is used
to compute the total capital cost associated with the semicontinuous
distillation process. Equipment cost and Installation cost of the process
are calculated based on book chapter 10 (Adams, 2018).

2.3. Subspace identification

In traditional subspace algorithm, a single model is developed to
capture the dynamics of the process using obtained input–output data
of the process. The traditional modeling approach is as follows: a
dynamic state-space model is built between the Condenser Pressure
setpoint (𝐶𝑜𝑛𝑑𝑆𝑃 ) and Bottom flow control valve opening percentage
(𝑏𝑣𝑎𝑙) as the inputs and rate of distillate (𝑅𝑂𝐷), rate of the bottoms
product (𝑅𝑂𝐵), condenser heat duty (𝐶𝐻𝐷), reboiler heat duty (𝑅𝐻𝐷),

iddle vessel composition of component heptane (𝑚𝑣𝑐𝑜𝑚𝑝), distillate
urity (𝑥𝑑 ), and bottom purity (𝑥𝑏) as the outputs. The inputs and
utputs for the present process are shown in Eq. (2).

𝐼𝑛𝑝𝑢𝑡 =
[

𝐶𝑜𝑛𝑑𝑆𝑃 𝑏𝑣𝑎𝑙
]

𝑢𝑡𝑝𝑢𝑡 =
[

𝑅𝑂𝐷 𝑅𝑂𝐵 𝐶𝐻𝐷 𝑅𝐻𝐷 𝑚𝑣𝑐𝑜𝑚𝑝 𝑥𝑑 𝑥𝑏
] (2)

To obtain a dynamic state-space model, a deterministic subspace
dentification technique is considered. The identification problem in-
olves tuning the optimal number of states and obtaining the model
atrices by fitting the state-space model to the input–output data that

s obtained from Aspen Plus Dynamics simulations.
The identified model takes the following form:

𝐾+1 =𝐴𝑥𝐾 + 𝐵𝑢𝐾 (3a)

𝑦𝐾 =𝐶𝑥𝐾 +𝐷𝑢𝐾 (3b)

here 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑙×𝑛, 𝐷 ∈ 𝑅𝑙×𝑚 are the associated sys-
em matrices and 𝑥𝐾 denotes the state vector, 𝑛 represents the number
f states, 𝑚 denotes the number of inputs, 𝑙 denotes the number of
utputs, 𝑢𝐾 denotes the inputs of the model and 𝑦𝐾 denotes the outputs
f the model at the 𝐾th time step.

There are various other subspace algorithms available in the litera-
ure which are designed to handle noise in the data, such as canonical
ariate analysis (CVA) (Larimore, 1990), the numerical algorithm for
ubspace state-space system identification (N4SID) (Van Overschee
nd De Moor, 1994), and the multivariable output error state-space
lgorithm (MOESP) (Shi and MacGregor, 2001). These techniques have
ot been explored in the current manuscript since the data used here
s purely from simulations and is noise-free.

emark 1. In the data generation phase, the PRBS is introduced
n the reboiler level controller to overcome the simulator stability
ssue associated with the open-loop bottom composition configuration.
witching a controller configuration to an open-loop system causes
aterial imbalance and leads to instability in the aspen simulation of

he semicontinuous process.

.3.1. Subspace quality model
Often there are key variables of interest in a process that are

equired to meet a desired specification by the end of the batch. These
re commonly known as quality variables, and are commonly found in
atch processes. One way to incorporate these quality variables is to
elate them to the batch states at the end of the batch (Corbett and
haskar, 2016).
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Although, the process under investigation is not a batch process, we
do have few key variables like weight-averaged distillate and weight-
averaged bottom purity, which act as quality variables in our case, and
hence the above-mentioned technique can be used to model and control
the quality variables. Specifically, they can be used to relate the states
at the final time step of the sequence to the quality variables, using a
Partial Least Squares (PLS) regression model represented as:

𝑞 = 𝛽𝑥𝑒𝑛𝑑 (4)

where 𝑥𝑒𝑛𝑑 is the state variable at the end of a batch, and 𝑞 is the quality
variable vector of the process at the end of a batch.

3. Proposed approach

In this section, the multi-model subspace identification and im-
plementation of the multi-model structure in MPC formulation are
described.

3.1. Multiple state-space model identification

As previously mentioned, the semicontinuous distillation process
has three distinct modes of operation. In the conventional subspace
algorithm approach (Moonen et al., 1989), a single model is fit on
the entire input–output sequence to capture the dynamics of all three
modes. However, in the present work, a novel multi-model identifica-
tion algorithm has been proposed. This section describes the proce-
dure for constructing separate models for the various modes without
encountering discontinuities during mode switching.

One way of constructing data-driven multiple models, when the
information about the mode switching criteria is given, is to split
the data appropriately and apply the modeling algorithm (subspace
identification in this case) on each of the data sets. However, doing
so might not guarantee the continuity of the model states across the
switch points. For example in the case of state-space models, there is
no guarantee that the states of one mode are aligned with those of the
next mode (due to the non-uniqueness of the state space representation)
since the identification of each of the models is done independently
on each of the data sets. Given this, there exist two alternatives tried
in the literature; one, to find the appropriate similarity transformation
matrix and ensure that all the models are in the same state-space
domain (Verdult and Verhaegen, 2004), or to build a model connecting
the two state spaces across the switch points (Ubene and Mhaskar,
2023) that can be used when moving from one mode to the other.

For the first case, obtaining the similarity transformation requires
sufficient amount of data during the switch-over operation, and this
cannot always be guaranteed in the plant. For the present case for in-
stance, the switch occurs instantaneously. For the second case, although
the overall modeling strategy gives better prediction accuracy than a
single model, designing an MPC with such a modeling framework could
get quite cumbersome and can get restrictive in terms of the kinds
of MPC that can be designed. Hence, we present a modified subspace
identification algorithm which can directly give multiple models with-
out the issue of discontinuity in state-space, which in turn omits the
requirement of additional connector models.

In the proposed approach, first, the deterministic subspace algo-
rithm is applied on the input–output data. The way these algorithms
work is first they generate the underlying state sequence for the entire
time series, and then extract the model matrices 𝐴, 𝐵, 𝐶, 𝐷 using
egression on Eq. (3a) (Moonen et al., 1989). In the proposed approach,
fter the state sequences are generated, they are split and categorized
ased on the mode of operation. It must be noted that the entire data
s labeled before hand, using information from other variables from
he simulation. In the semicontinuous distillation process, the mode
ransition is based on the composition of IVC in the middle vessel and
he height of liquid in the middle vessel. Using these two variables,
5

tate sequence and entire data are categorized based on their modes of p
Table 3
Comparison of normalized RMSE value using traditional and modified subspace
algorithm.

Normalized RMSE Traditional algorithm Modified algorithm

Rate of distillate 0.16 0.15
Rate of bottoms 0.10 0.09
Condenser heat duty 0.19 0.17
Reboiler heat duty 0.19 0.17
Middle vessel composition 0.33 0.07
Distillate purity 0.30 0.20
Bottom purity 0.30 0.18

operation. Subsequently, the model matrices are extracted from each
of the mode using regression as mentioned above. While this might
seem intuitive after the fact, applying the split after the formation of
state sequence and not directly on the data and then forming the state
sequences ensures that all the individual models lie on the same state-
space domain, hence mitigating the discontinuity problem. The entire
modeling strategy is shown in Fig. 3

The database of the semicontinuous process is generated as ex-
plained in Section 2.2 of the semicontinuous process. As mentioned
earlier, the data are generated under the closed-loop performance of a
semicontinuous process with the PI controllers. In this work, a sequence
of PRBS with various time periods is added to the nominal setpoint
trajectory of the condenser pressure controller and reboiler level con-
troller from the 11th to 30th cycle (the first 10 cycles represent the
simulation settling; see Section 2.2 for a detailed reasoning). These two
controllers manipulate the heat duties of the condenser and reboiler.
The changes in the heat duty variables ensure we get a wide range of
operational data. The data generated from cycles 11–30 are used as a
training dataset to build the model.

The testing dataset is generated by changing the setpoint of the
condenser pressure controller and reboiler level controllers to a value
other than nominal setpoints (single step change) and letting it simulate
for 10 additional cycles (cycles 31–40). The model is validated against
the testing datasets to check the performance of the predicted model.

For operation of the semicontinuous column after the training is
over, the initial state of the state-space model 𝑋0 is unknown. To find
the initial state estimate of the process, a Luenberger observer is used.
The Luenbeger observer is of the following form:

𝑦𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘 (5a)

̂𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐿(𝑦𝑘 − 𝑦𝑘) (5b)

where 𝐿 is the observer gain, 𝑥𝑘 is the state estimate, 𝑢𝑘 and 𝑦𝑘 are
he input and output of our process at time instance ‘k’ and 𝑦𝑘 is the
stimated output of the process using the state-space model at time
nstance ‘k’. The observer is designed in such a way as to make sure
𝐴 – 𝐿𝐶) is within the unit circle and stable.

A state-space model of order 10 and Hankel rows 13 was found to
ufficiently capture the dynamic of output variables associated with the
rocess using the modified algorithm shown in Fig. 3. The comparison
f the predictive behavior of the traditional subspace algorithm and the
odified algorithm is shown in Figs. 4(a)–6. From Fig. 6 it is noticeable

hat the modified algorithm captures the dynamics of the middle vessel
eptane composition better than the traditional algorithm. Predicting
he accurate trend of the middle vessel heptane composition is very
mportant as this is used in the MPC architecture to reduce the cycle
ime. The normalized RMSE value (Table 3) of all outputs except middle
essel composition is almost the same for both traditional and modified
lgorithms but the main difference is observed in the middle vessel
omposition prediction. The RMSE value of a variable is normalized
o range of the respective variable.

emark 2. During processing mode, the dynamic behavior of the
rocess is determined by the distillation column and middle vessel



Computers and Chemical Engineering 186 (2024) 108711S.P. Aenugula et al.
Fig. 3. Proposed algorithm for multiple state-space model.
whereas, in the charging and discharging mode, most of the dynamics
of the process are associated with the middle vessel behavior. The pro-
cessing mode contributes to 85% of the process cycle time (process data
points). The traditional approach does not have enough information
to differentiate between each mode of operation, hence the prediction
ability of the traditional approach is limited (because of high processing
mode data points compared to charging and discharging mode). One
could attempt to put more ‘weight’ on the error associated with the
middle vessel, but a single model approach would do that across all
operation. On the other hand, in the case of multi-model approach,
since the data of each mode of operation are segregated, the multi-
model approach has enough information to differentiate the modes
of operation and capture the dynamic of the process better than the
traditional approach.

The next step is to predict the quality variables. In this work,
average distillate and average bottom purity are considered quality
variables. A point to be noted is during charging and discharging mode,
no bottoms or distillate streams are drawn. Hence, only the average
distillate and bottom purity of the processing mode are predicted. The
average distillate and bottom purity of charging and discharging modes
are not predicted as no products are drawn during these two modes.

The average product purity is defined as the total amount of product
collected throughout the processing mode divided by the respective
product’s total flowrate collected during the processing mode. The
average distillate and bottom purity are shown in Eqs. (6a) and (6b)
below:

𝑎𝑣𝑔.𝑥𝑑 =
∫ 𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝐷𝑥𝑑 × 𝑑𝑡

∫ 𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝐷 × 𝑑𝑡
(6a)

𝑎𝑣𝑔.𝑥𝑏 =
∫ 𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝐵𝑥𝑏 × 𝑑𝑡

∫ 𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝐵 × 𝑑𝑡
(6b)

where 𝑎𝑣𝑔.𝑥𝑑 and 𝑎𝑣𝑔.𝑥𝑏 represents the average distillate and average
bottom purity of a particular batch respectively. (∫ 𝑡=𝑡𝑒𝑛𝑑 𝐷𝑥 × 𝑑𝑡) and
6

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡 𝑑
(∫ 𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝐵𝑥𝑏 × 𝑑𝑡) represents the total amount of distillate products and
bottom products collected throughout the processing mode respec-
tively. Similarly, (∫ 𝑡=𝑡𝑒𝑛𝑑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡
𝐷 × 𝑑𝑡) and (∫ 𝑡=𝑡𝑒𝑛𝑑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡
𝐵 × 𝑑𝑡) represents the total

distillate and bottom flowrates collected during the processing mode.
The limits of 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡 = 𝑡𝑒𝑛𝑑 represent the time at the start and end
of the processing mode of a batch respectively and the quality variable
is given as:

𝑞 =
[

𝑇 𝑜𝑡𝑎𝑙 𝐷𝑥𝑑 𝑇 𝑜𝑡𝑎𝑙 𝐵𝑥𝑏 𝑇 𝑜𝑡𝑎𝑙 𝐷 𝑇 𝑜𝑡𝑎𝑙 𝐵
]

(7)

Figs. 7(a)–7(b) show the subspace modeling technique can capture
the trends of quality variables. In the MPC design, product specifica-
tions for these variables are included as hard constraints.

In summary, simulations show that the dynamics of the semicontin-
uous process are well captured by the proposed multi-model approach,
setting the stage for a model predictive control implementation.

3.2. MPC configurations on semicontinuous distillation process

In the proposed configuration, the MPC directly manipulates the
bottom valve opening percentage and setpoint of the condenser pres-
sure controller to optimize the semicontinuous system performance.
Here, MPC indirectly manipulates the condenser heat duty by act-
ing as a cascade controller to the condenser pressure controller. This
configuration is shown in Fig. 8.

3.2.1. Shrinking horizon model predictive control formulation
The next part of this work in controlling semicontinuous process is

to integrate the developed data-driven (multiple state-space technique
explained in Section 3.1) model within a shrinking horizon MPC to
demonstrate a reduction in the TAC per tonne of feed processed,
computed as:

TAC = Annual Operating Cost +
Total Capital Cost
Payback Period

Total Capital Cost(USD) = Equipment Cost + Installation Cost (8)
Payback Period = 3 Years
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Fig. 4. The output behavior of (a) rate of Distillate (b) rate of bottom predicted by
multimodeling framework and traditional subspace algorithm. Blue solid line represents
process data, black dotted line represents the traditional algorithm approach, red dashed
line represents multimodeling framework.

Total Operating Cost(USD) = 𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 + 𝑄𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟(USD) = Amount of condenser cooling heat × Cost of service
𝑄𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟(USD) = Amount of reboiler heat × Cost of service provided

(9)
where 𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 and 𝑄𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 represent the cost of cooling service pro-
vided to the condenser by chilled water and the cost of heating service
provided to the reboiler by steam respectively. Since the capital cost
does not change between MPC and PI configurations, this work empha-
sizes reducing the total operating cost of the process. The processing
mode constitutes 85% of the process cycle time.

In the Shrinking Horizon MPC, the prediction horizon (𝑃 ) of the
processing mode is chosen as the average length of the processing
mode under the PI configuration plus 50-time instances as a buffer,
in recognition of the fact that cycle time may be (and is) different
under the MPC. During discharging and charging mode, the liquid is
fed/discharged at a constant flow rate to the middle vessel. Therefore,
for discharging and charging modes, the cycle length remains the same
in both MPC and PI configurations. The prediction horizon (𝑃 ) of the
discharging mode and charging mode is the length of the respective
mode under PI configuration plus 5-time instances. The control horizon
7

(𝑁) for all three modes is chosen to be 5-time instances.
Fig. 5. The output behavior of (a) condenser heat duty (b) reboiler heat duty
predicted by multimodeling framework and traditional subspace algorithm. Blue solid
line represents process data, black dotted line represents the traditional algorithm
approach, red dashed line represents multimodeling framework.

Fig. 6. Predicted comparison of middle vessel heptane composition by traditional
algorithm (black dotted line) and multi-model framework (red dashed line) with process
data (blue solid line).
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Fig. 7. The quality model prediction of (a) average distillate purity (b) average bottom
purity by subspace quality model framework (red + marker). Blue 𝑥 marker represents
rocess data.

Fig. 8. MPC configuration proposed in this work.
8

In the semicontinuous process, electricity is primarily used for
pumping fluids and producing chilled water through a cooling tower.
The formulation mentioned in Eq. (8) already accounts for the elec-
tricity consumed in the production of chilled water. Moreover, the cost
of electricity used for pumping fluids is negligible in comparison to the
overall operating cost. These two considerations collectively lead to the
exclusion of the electricity cost of the semicontinuous process in the
total operating cost formulation for this work.

When formulating the SHMPC for the processing mode of a semi-
continuous system, it is essential to consider that the control system
must fulfill the following characteristics:

1. The average distillate and bottom purities at the end of the pro-
cessing mode need to be greater than the desired specifications
which are 0.95 in this work.

2. The manipulated inputs (condenser pressure setpoint and bottom
valve opening) from the MPC controller should be within the
operating range.

3. The Aspen Plus Dynamics simulation fails when there is a drastic
change in the magnitude of successive inputs. Hence a hard con-
straint is implemented on change in the magnitude of successive
inputs (this is in line with requiring control equipment such as
valves to be not moved around too much too quickly).

4. Minimize the operating cost per tonne of feed processed. The
operating cost calculation is explained in Eq. (9). A point to
be noted is the amount of tonne of feed processed is indirectly
proportional to the time taken by the process to complete a
cycle. Hence, the operating cost of the process and the cycle
time of the process are minimized separately in an effort to
reduce the total operating cost per tonne of feed processed. The
cycle time minimization is achieved by minimizing the sum of
squared errors between middle vessel heptane composition and
heptane desired purity which is 0.95. This forces the process to
attain the processing mode switch to happen faster than the PI
configuration

The first three characteristics are implemented as hard constraints in
MPC formulation of processing mode. Characteristic 4 is included as
soft constraints in the objective function of MPC formulation. The
characteristic of MPC formulation of charging and discharging mode
is shown below,

1. Minimize the sum of squared errors between process products
(distillate and bottom) purity and their desired purity which is
0.95.

To implement the proposed control scheme on the Aspen Plus
Dynamics simulation, MATLAB is connected to Aspen Plus Dynamics
using VBA connecting software. VBA acts as a communication tool in
this work. VBA accesses the MPC function file in MATLAB to generate
the current input action and store it on the Excel sheet. Then the
current input which is stored in Excel is passed to Aspen Plus Dynamics
simulation to generate the output of the process. The control action
is calculated and implemented at every 0.03 h time instance through
MATLAB — Aspen interface using VBA [Fig. 9]. At a sampling instance,
the optimal input trajectory is computed by solving the optimization
problem described in Eqs. (10) and (11).

The cost of chilled water and cost of steam is chosen as 4.2 USD/GJ
services and 4.5 USD/GJ services according to Ref. Deng et al. (2023).
The condenser cooling heat and reboiler heat are predicted by the mod-
ified subspace algorithm. The average distillate and average bottom
purity are predicted by the quality variable model.

As explained in the previous section, during the implementation of
MPC, initial state estimates are required (�̂�0). To estimate the initial
state, a Luenberger observer (Eq. (5b)) is utilized. As the process
measurements become available, the observer is updated until the

output predictions converge to the measured outputs. So, the process is
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Fig. 9. VBA-MATLAB-Aspen communication.

Fig. 10. Comparison of time taken by MPC (red slashed line) and PI (black dotted
line) configurations for cycle 11–20.

first operated under PI controllers for the first ten cycles and the MPC
controller is switched on at the start of the 11th cycle.

The MPC formulation of the processing mode is as follows:

min
𝑈

𝑃−1
∑

𝑖=0
((𝑚𝑣𝑐𝑜𝑚𝑝 − 0.95)𝑇𝑄(𝑚𝑣𝑐𝑜𝑚𝑝 − 0.95) + TOC)𝑖

Subject to:

̂𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑦𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘
𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, ∀ 0 ≤ 𝑘 ≤ 𝑁 − 1

𝛥𝑢min ≤ 𝛥𝑢𝑘 ≤ 𝛥𝑢max, ∀ 1 ≤ 𝑘 ≤ 𝑁 − 1

𝛥𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1
𝑢𝑘 = 𝑢𝑁−1, ∀𝑁 ≤ 𝑘 ≤ 𝑃 − 1

𝑎𝑣𝑔.𝑥𝑑 ≥ 0.95

𝑎𝑣𝑔.𝑥𝑏 ≥ 0.95

(10)

where 𝐴, 𝐵, 𝐶, and 𝐷 represent the state-space matrices of the pro-
cessing mode determined by the proposed multi-model framework, 𝑥𝑘
and 𝑦𝑘 represent the estimated state estimates and predicted output
at time instance ‘k’ using the multi-model framework, 𝑚𝑣𝑐𝑜𝑚𝑝 is the
middle vessel composition of heptane, 𝑇𝑂𝐶 is the operating cost per
9

hour which is calculated according to the Eq. (9), 𝑎𝑣𝑔.𝑥𝑑 and 𝑎𝑣𝑔.𝑥𝑏
are the average of distillate and bottom purity at end of the processing
mode.

The MPC formulation during charging and discharging modes are
as follows,

min
𝑈

𝑃−1
∑

𝑖=0
((𝑥𝑑 − 0.95)𝑇 (𝑥𝑑 − 0.95) + (𝑥𝑏 − 0.95)𝑇 (𝑥𝑏 − 0.95))𝑖

Subject to:

�̂�𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑦𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘
𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, ∀ 0 ≤ 𝑘 ≤ 𝑁 − 1

𝛥𝑢min ≤ 𝛥𝑢𝑘 ≤ 𝛥𝑢max, ∀ 1 ≤ 𝑘 ≤ 𝑁 − 1

𝛥𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1
𝑢𝑘 = 𝑢𝑁−1, ∀𝑁 ≤ 𝑘 ≤ 𝑃 − 1

(11)

where, 𝐴, 𝐵, 𝐶, and 𝐷 represent the state-space matrices of the charg-
ing/discharging mode determined by the proposed multi-model frame-
work, 𝑥𝑑 and 𝑥𝑏 are the purities of distillate and bottom products, 𝑁
and 𝑃 are the control and prediction horizon of the MPC formulation,
𝑢 = [𝑢[0], 𝑢[1], 𝑢[2]… 𝑢[𝑁 − 1]]𝑇 are the set of decision variables
consisting of condenser pressure setpoint and bottom valve opening
percentage inputs at each sampling time instance over the control
horizon. 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are the lower and upper bounds of the operating
range of our inputs. The values of 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 in the processing mode
MPC formulation are [0.95, 0]𝑇 and [1.1, 100]𝑇 . The values of 𝛥𝑢𝑚𝑖𝑛 and
𝛥𝑢𝑚𝑎𝑥 in the processing mode MPC formulation are [−0.1,−22]𝑇 and
[0.1, 22]𝑇 . The minimum and maximum values of condenser pressure
setpoints are chosen to be within the operating range of the Aspen
Plus Dynamics simulation. The Aspen Plus Dynamics simulation crashes
out of this range. The value of tuning parameters 𝑄 is 15.5. The
reason for choosing the tuning parameter 𝑄 value of 15.5 is explained
in Section 4.1. Due to the structure of semicontinuous process, the
constraint of average heptane product purity greater than or equal to
0.95 in MPC formulation is eliminated. The switch from processing to
discharging mode occurs once the heptane composition in the middle
vessel hits 0.95 from below (so it is rising). Hence the process makes
sure that the average purity of the heptane product collected is always
greater than or equal to 0.95.

In charging and discharging mode, the distillate and bottom flow
rates are zero. Hence, instead of optimizing the TOC during these two
modes, we let the process build up the bottom and distillate purity to
0.95. This in turn assists to reduce the processing mode time (as men-
tioned earlier time taken to complete charging and discharging mode
cannot be lowered because of the constant liquid added/removed to the
middle vessel during MPC and PI configurations). During charging and
discharging mode, the values of 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are [0.95, 0]𝑇 and [1.1, 0]𝑇

and the values of 𝛥𝑢𝑚𝑖𝑛 and 𝛥𝑢𝑚𝑎𝑥 are [−0.1, 0]𝑇 and [0.1, 0]𝑇 .
The above-mentioned formulation is solved in MATLAB using the

non-linear programming solver fmincon. The Luenberger observer
within the MPC architecture helps to determine the state estimate at
the next time instance using the current input–output data obtained
from the process. The Luenberger observer is shown in Eq. (5b).

Remark 3. This particular work did not consider the effect of flooding
in the MPC formulation because the flooding is assumed to be taken
care of by the remaining PI controllers. In Meidanshahi et al. (2017),
the flooding is avoided by implementing a constraint on the vapor
velocity at the top and bottom trays of the column during the pro-
cessing mode MPC configuration. However, the current work focuses
on optimizing the performance of the semicontinuous process using
variables which are easy to measure in real-time. Future work will
consider utilizing inferential variables to monitor and control tower
flooding.
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Table 4
MPC performance for various tuning parameter value.

MPC versions Value of Q TAC per tonne of feed processed (USD)

Version1 180 65.8
Version2 85 65.5
Version3 35 65.4
Version4 28.3 65.3
Version5 28 65.3
Version6 20 64.8
Version7 17.5 64.7
Version8 15.5 64.1
Version9 14 64.1
Version10 12.7 64.1

Table 5
Split up of the Total Annualized cost per tonne of feed processed.

Name Traditional PI Proposed MPC

Tuning Parameters for MPC (Q) – 15.5
Average Condenser cooling heat (GJ/h) 1.224 1.223
Average Reboiler heat (GJ/h) 1.227 1.232
Runtime per year (h) 8000 8000
Cost of chilled water per year (USD/yr) 41 100 41 100
Cost of steam per year (USD/yr) 44 200 44 400
Total Operating Cost per year (USD/yr) 85 300 85 500
Total Capital Cost/Payback period (USD/yr) 337 000 337 000
Average cycle time (h) 13.1 11.6 (11.45%

lower)
Amount of feed processed (tonne) in a cycle 9.55 9.55
Amount of feed processed (tonne) in a year 5830 6590
TAC (USD) per metric tonne of feed
processed

72.4 64.1 (11.46%
lower)

Remark 4. Initially, the same MPC architecture was developed with
single subspace model instead of multi-model framework. Due to the
poor prediction of middle vessel composition variable by traditional
subspace algorithm, the MPC — single subspace model architecture
could not push middle vessel composition variable to 0.95 because of
which the switch between processing and discharging mode did not
happen, necessitating the design of the multi-mode MPC.

4. Simulation results

The proposed modeling and control strategy is demonstrated by im-
plementing on the semicontinuous process in the Aspen Plus Dynamics
simulation.

4.1. SHMPC formulation results

Recall that the first ten cycles of the process are discarded to wait
for the cycle stabilization, and the trajectories are considered from the
eleventh cycle. The performance of MPC and PI controller setups on
semicontinuous process are compared where the process is operated
for 8000 h/year. This is denoted as Case-1 where the price of utilities
is used according to what is mentioned in the reference book (Deng
et al., 2023).

The best value of 𝑄 is chosen based on the MPC controller’s perfor-
ance of reducing the TAC/tonne of feed processed best, resulting in a

alue of 𝑄 of 15.5. The simulation of MPC performance on various 𝑄
values is shown in Table 4.

From Table 4, it is noticeable the performance of MPC on the
semicontinuous process saturates around versions 8, 9 and 10. Version
10

8 is chosen as the best MPC setup for this case. Next, the performance of
Table 6
Average product purity of PI and MPC configuration.

Name Average dis. purity Average bot. purity

Setpoint 0.95 0.95
PI setup 0.958 0.957
MPC setup 0.959 0.953

PI on the semicontinuous process is compared with best-case MPC per-
formance on the semicontinuous process. The capital cost of the process
is 1,010,000 USD. The total operating cost is calculated according to
Eq. (8). The entire split up of TAC/tonne of feed processed calculation
for PI and MPC controller configuration is shown in Table 5.

Table 5 shows the improvement of semicontinuous system perfor-
mance in reducing TAC/tonne of feed processed under MPC config-
uration over the PI controller configuration. The MPC reduces TAC
per tonne of feed processed by 11.46%. This is mainly attributed to
the condenser pressure setpoint (one of the manipulated variables)
value chosen by MPC. The MPC configuration also reduces the cycle
time by 11.45%. The cycle time comparison of PI and MPC controller
configurations for cycles 11–20 are shown in Fig. 10.

Remark 5. An interesting observation drawn from Fig. 10 is the ab-
sence of a repetitive cycle under MPC. This is due to the discretization
of the mode switch events in the VBA — Aspen Plus Dynamic setup.
Normally, these events happen dynamically in Aspen Plus Dynamic sim-
ulation with the help of the task function. However, while using a VBA
setup to pass input to process in the Aspen Plus Dynamic simulation,
the task function in the Aspen Plus Dynamic gets deactivated. Hence the
switch condition of the semicontinuous process has to be discretized to
include mode switch. This results in the absence of cyclic behavior of
the semicontinuous process under MPC configuration, and is essentially
an artifact of the simulation environment.

The average distillate and bottom purity of case-1 for both config-
urations are also shown in Fig. 11. In both configurations, the average
product purities are well above the desired specifications (see Table 6).

The comparison of the dynamic behavior (case-1) of manipulated
inputs between MPC and PI configurations for cycles 19 and 20 is
shown in Fig. 12. The distillate and bottom purity of case-1 for all three
modes of operation are shown in Fig. 13. There is a clear difference in
the behavior of the process under MPC and PI configuration which is
indicated in Figs. 14(a)–14(d). Taking a closer look at the MPC setup
(refer to Fig. 14(c)), it is evident that the peak value of the bottom
flowrate is achieved at the beginning of the cycle. In contrast, the PI
setup (refer to Fig. 14(d)) requires some time to reach this point, as it
needs to build up the bottom purity and draw out more liquid.

To illustrate the ability of the controller to handle variability in
market conditions, another case (case-2) is considered where the prices
of utilities are increased. In this case, the cost of the cooling service
provided by chilled water and the heating service provided by steam is
increased to 6.7 and 8.4 USD per GJ service respectively. In order to
achieve the optimal performance of case-2 under MPC configuration,
the MPC was fine-tuned. The tuning parameter (𝑄) of MPC formulation
for case-2 was found to be 28 and the MPC setup was simulated for 20
cycles. With the new formulation, the same VBA-Aspen-MATLAB setup
is used to communicate and control the process using the proposed
data-driven model predictive control approach. For this particular case
(case-2), the TAC per tonne of feed processed for PI and MPC configura-

tion is found to be 83.2 USD/t and 73.7 USD/t respectively. Even in the
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Fig. 11. Average distillate (avg. xd) purity of process (case-1) by (a) MPC configuration (b) PI configuration for cycle 19–20. Average bottom (avg. xb) purity of process (case-1)
by (c) MPC configuration (d) PI configuration for cycle 19–20.

Fig. 12. The condenser pressure setpoint (CondP SP) behavior (Case-1) of (a) MPC configuration (b) PI configuration for cycle 19–20. Bottom (Bot.) valve opening percentage
behavior (Case-1) of (c) MPC configuration (d) PI configuration for cycle 19–20.
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Fig. 13. Comparison of distillate purity behavior by MPC configuration (red slashed line) and PI configuration (black dotted line) for (a) processing (c) discharging (e) charging
for cycle 19–20. Comparison of bottom purity behavior by MPC configuration (red slashed line) and PI configuration (black dotted line) for (b) processing (d) discharging (f)
charging for cycle 19–20.
case-2 MPC outperforms PI configuration and reduces the TAC/tonne
of feed processed by 11.42%

An interesting point to note is MPC found that a condenser pressure
setpoint of 1.1 bar optimizes the process to perform better than the
traditional PI configuration. A condenser pressure setpoint of 1.1 bar
is the maximum operational range. Note that raising the condenser
pressure setpoint to 1.1 bar in the standard PI configuration would
not even be sought after if not for MPC. For both cases (case-1 and
2), TAC per tonne of feed processed for PI configuration with the
condenser pressure setpoint of 1.1 bar is found to be 64.7 USD/t and
74.3 USD/t. The cost value is slightly higher than the most effective
MPC setup for both case-1 (64.1 USD/t) and case-2 (73.7 USD/t). These
values show the proposed MPC configuration performs better than
the PI configuration with the condenser pressure setpoint of 1.1 bar
too.
12
5. Conclusion

In this work, the problem of improving the economic performance
of semicontinuous process using a data-driven, multiple model based
model predictive control design is addressed. To achieve this, first, a
multi-model subspace algorithm was designed. The dynamic behavior
of the semicontinuous process was captured by the proposed sub-
space algorithm better than the traditional subspace algorithm. The
semicontinuous process was controlled under MPC configuration to
reduce TAC/tonne of feed processed by manipulating the condenser
pressure controller setpoint and bottom valve opening percentage. For
this particular case study, it was found that the MPC can lower the TAC
per tonne of feed processed and cycle time by 11.4% compared to the
traditional PI setup of the semicontinuous process. Finally, the ability
of the MPC configuration to respond to market changes was illustrated
by considering a change in the service utility cost of cooling water
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nd heating steam. It was found that MPC performs better than the
raditional PI setup in responding to market changes.
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