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Abstract

This master’s thesis focuses on identifying friction parameters in tree-shaped networks, spe-
cifically water distribution networks. An algorithm is developed based on analyzing network
trees with available measurements in the inlet and outlet only. The algorithm imports network
files and returns matrices that are used to calculate friction parameters. A simplified flow
model is used to derive parameter identification equations. Graph-theory techniques such as
breath first search and shortest path are used to produce friction parameter system matrices.
The results are successfully verified with simulations. Requirements for the network are that
the degree of internal nodes are larger then two, and that the network does not include cycles,
these criteria are suggested to be included in further work.

Additionally, the thesis explores the water network files of Orkanger Municipality to identify
opportunities to deploy an algorithm for calculating water friction parameters.

Finally, a leak detection algorithm based on an Adaptive Observer and Continuous Exten-
ded Kalman Filter is recreated and tuned. The leak detection algorithm is prepared to be used
on a section of the water network from Orkanger Municipality.
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Sammendrag

Denne masteroppgaven fokuserer på å identifisere friksjonsparametere i treformede nettverk,
særlig vannfordelingsnettverk. En algoritme utvikles basert på analyse av nettverkstrær med
målinger kun ved innløp og utløp. Algoritmen importerer nettverksfiler og returnerer matriser
som brukes til å beregne friksjonsparametere. En forenklet strømningsmodell brukes for å
utlede parameteridentifikasjonsligningene, grafteoriteknikker som bredde-først-søk og korteste
vei brukes for å produsere systemmatrisene. Resultatene verifises med simuleringer. Krav til
nettverket er at graden til interne noder er større enn to, og at nettverket ikke inneholder
sykler; disse kriteriene foreslås å håndteres i fremtidig arbeid.

I tillegg utforsker oppgaven vannnettverksfilene til Orkanger kommune for å identifisere
muligheten for å implementere en algoritme for beregning av friksjonsparametere.

Til slutt blir en lekkasjedeteksjonsalgoritme basert på en adaptiv estimator og et Kalman
filter implementert og justert på data. Lekkasjedeteksjonsalgoritmen forberedes til bruk på en
rør-seksjon fra vannnettverket til Orkanger kommune.

vii
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Chapter 1

Introduction

This master’s project will focus on friction parameter identification in water networks. Water
networks in Norway have among the highest levels of loss percentage in Europe, where some
water networks lost 40 % or more of the cleaned drinking water [1]. Norwegian Institute of
Public Health (FHI) estimated in 2019, that from a total drinking water production of 770
million m3, approximately 30 % was lost due to leaks in water networks, which is equivalent
to 210 million m3 [2]. One reason for the high loss percentage is the abundant water supply,
with minimal water treatment costs [3].

Access to water is one of the most basic human needs for health [4]. Fortunately, due
to increased focus on cost and sustainability, the European Commission has published good
practices for leakage management [5] to improve the efficiency of the use of water resources.
In addition, the United Nations (UN) sustainability goal 6 works to ensure access to water and
sanitation for all [4]. This is why the UN encourages governments to invest in water research
and development. [4]

Leak detection and techniques to locate the position of leaks are researched topics, and
many methods exist. Adegboye et al. [6] lists different leak detection methods used in oil and
gas pipelines; some methods can be used for both water networks and oil pipelines. Adegboye
divides the methods into exterior methods, visual methods and internal methods. Exterior
methods mainly use sensors on the external parts of the pipelines that can detect the leaked
fluid in the environment around the pipeline. Visual methods include humans, dogs or drones
to detect leaks visually, by inspection. The last category, internal or computational methods,
includes measurement instruments internally in the pipeline to monitor parameters such as
flow and pressure. The measured parameters are used together with analytics to determine
leakage.

This master project will use computational methods to identify leaks and a steady-state
approach to determine network friction parameters.

1
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1.1 Objective

The objectives of the master’s project is to perform parameter identification of water distribu-
tion networks. It will be divided into sub-objectives:

• Investigate how friction parameters can be estimated with a minimized number of avail-
able measurements in different tree-shaped networks.

• Given a tree-shaped network, design and implement an algorithm to identify and return
estimates of friction parameters of said network.

• Investigate how Orkanger Municipality network files can be used to find trees applicable
for friction parameter identification.

• Implement, and test leak the detection algorithm from Carrera and Verde [7] on data
from Orkanger Municipality.

1.2 Report Structure

This master’s thesis will consist of several chapters describing the work conducted. The intro-
duction will cover the background and objectives of the thesis. Subsequently, a chapter with a
literature review will present several methods used in the literature for parameter identifica-
tion and leak detection.

The theory chapter provides a theoretical foundation for the subsequent chapters. It in-
troduces the general theory of linear algebra, partial differential equations, flow models, and
conservation laws. It also briefly introduces adaptive observers and Kalman filters. The last
sections of the theory chapter cover graph theory and Epanet, which is a network modelling
tool.

The method is divided into three chapters. The first chapter consists of a deduction of
various tree networks of pipes and junctions; from simple networks to more complicated ones.
Each network is analysed in a steady state to deduce parameter equations that can be organised
in system matrices. The purpose is to find a generalized setup of system matrices that can be
used to identify the friction parameter in each pipe. The generalized setup shall be such that
it can be automated with an algorithm.

Following the deduction of system matrices for a general network, the next chapter will
consist of the method to automate the setup of system equations for an imported network tree.
This chapter uses the graph theory introduced in the theory to develop an algorithm that can
be used to import a general network, and return a set of matrices. In addition, the preparation
for the import of the water network file supplied by Orkanger Municipality is explained.

The last method chapter will go through a the leak detection algorithm from Carrera and
Verde [7]. The leak detection algorithm uses an adaptive observer to determine the friction
parameter for a section of pipe. When a leak is detected, a Continuous Extended Kalman filter
is used to determine the position of the leak, based on the friction factor from the adaptive
observer. Data from the experiment in [7] is used to tune and test the leak detection algorithm.
The chapter will also include an introduction to a section of Orkanger Municipality water
network that will be used to verify the performance of the leak detection algorithm.

The result chapter is divided into three main sections. The first section comprises the results
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from the steady-state analysis; different networks are imported to produce system matrices for
the friction parameter and the friction factors are calculated. Simulation tools are used to verify
the results. The second section gives the results from Orkanger Municipality water network
analysis. The final section comprises the results from the leak detection algorithm, it is tuned
and tested on data.

The last two chapters are the discussion and the conclusion.





Chapter 2

Literature Review

Billmann and Isermann [8] proposed a leak detection method for pipelines based on nonlinear
adaptive state observer. The method was primarily intended for use in transporting liquids and
gas in pipelines with measurements available at inlet and outlet. Their method uses a dynamic
model with an adaptive state observer and estimation of the friction coefficient with the least-
square method. This method is intended for a single leak.

Other more advanced techniques have come later, with the possibility of detecting several
leaks, such as frequency analysis and prediction error model by Torres et al. [9]. This model
requires excitation with a persistent input. Torres et al. [9] showed that leak parameters can
be identified at low frequencies.

Verde [10] designed and tested a multi-leak detection method by discretising the space
of the pipeline and evaluating residuals of several observers; together with a logic detection
function, multiple leaks can be detected and localised.

Another observers-based leak detection method is proposed by Aamo et al. [11], where an
adaptive observer is based on nonlinear hyperbolic partial differential equations with boundary
injection.

Aamo [12] proposed an adaptive observer with backstepping transformation, for a single
pipeline with measurement available at inlet and outlet. The adaptive observer design was fur-
ther developed by Anfinsen and Aamo [13] to include a branched pipe. The adaptive observer
for the branched pipe can estimate the total leak size and locate any number of point leaks as
long as they are sufficiently separated in time.

Wilhelmsen and Aamo [14] developed an adaptive observer, to complement on [12] and
[13], to include for loops in networks. With measurements at the junctions only, the observer
estimates the total leak size and position of any leak as long as the leaks are sufficiently spaced
in time.

Wilhelmsen and Aamo [15] further developed the adaptive observer in [13] to extend the
model for N + 1 branched pipe flows with a recursive procedure to find solutions to kernel
equations, where the kernel equations are used to update observer gains. Wilhelmsen and
Aamo [16] developed the design in [14] by constructing explicit solutions for the backstepping
kernel equations used to calculate observer gains.

5
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An Extended Kalman filter is another method of leak detection. Lesyshen [17] uses Exten-
ded Kalman filters to estimate states within the leakage by placing two artificial leak-states
within the model. The Extended Kalman filter will then estimate the position and magnitude
of one leak. Oven [18] used a model-based leak detection method with a Kalman filter where
the transmission line included a branch and two outlets.

Delgado-Aguiñaga et al. [19] used a Kalman filter based on a Linear Parameter Varying
System to avoid linearisation normally required by the Extended Kalman Filter. Like other
methods, flow and pressure measurements at the ends of the pipeline are needed. The Linear
Parameter varying model is derived from a nonlinear model.

Carrera and Verde [7] combined the use of an adaptive observer to determine the unknown
friction parameters, with an Continuous Extended Kalman filter to determine leak location in
a pipeline Carrera and Verde [7].



Chapter 3

Theory

This chapter introduces fundamental concepts, theories, and mathematical tools essential for
understanding and developing leak detection applications. It introduces partial differential
equations, finite difference methods, numerical differentiation, transient flow models, and flow
characteristics, which form the theoretical foundation for the practical applications discussed
in later chapters. The last part will introduce graph theory to be used to explore network trees,
and the network modelling and simulation tool Epanet will be introduced.

3.1 Partial Differential Equations

Partial differential equations or PDE is a group of mathematical equations that include a func-
tion of two or more independent variables, and the partial derivatives with respect to the
independent variables [20]. PDEs are used to formulate mathematical equations for physical
problems such as heat, fluid flow, and elasticity, where several variables are required to de-
scribe the behaviour.

3.1.1 Finite Difference method

One method to solve PDEs is the Finite difference methods [21]. They often consist of several
steps to complete the solution, including:

• Discretization of domain
• Replace derivatives with approximations
• Replace exact solutions with approximations
• Solving the system

3.1.2 Numerical Differentiation

Given a "smooth" function f (x), meaning the function has continuous derivatives over some
domain [22], the derivative of f is defined as:

f
′
(x) = lim

h→ 0

f (x + h)− f (x)
h

(3.1)

7
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where h is the step size. By removing the limit and setting h as a fixed step, we get the forward
difference method [21].

f
′
(x)≈

f (x + h)− f (x)
h

(3.2)

And when applied to a PDE function α(z, t) with h = ∆z the resulting approximations is:

∂ α(z, t)
∂ z

≈
αzk+1

(t)−αzk
(t)

∆zk
(3.3)

where zk is the starting point and zk+1 is the next point.

3.2 Transient Flow Models

The transient flow models are constructed using rules of conservation of both mass and mo-
mentum [23, p. 16]. These rules/equations will be presented in this sub-chapter based on
equations derived in [24].

3.2.1 Flow Characteristics

There are a number of ways to characterize flow, with given conditions; some important terms
are listed below [24, p. 2].

• Steady flow

◦ Pressure and velocity at a point are constant.

• Unsteady flow

◦ Pressure and velocity at a point change over time.

• Transient flow

◦ The conditions that occur when the flow changes from one steady state to another.

3.2.2 Continuity Equation

The continuity equation is derived with the law of conservation of mass to a given control
volume [24, pp. 39–42]. It is derived with respect to slightly compressible fluid in a con-
duit/pipe with linear elastic walls. The continuity equations are given as:

∂ p
∂ t
+ V

∂ p
∂ x

+ ρ a2 ∂ V
∂ x

= 0 (3.4)

where V is flow velocity, t is time, x is distance, p is pressure, and ρ is the water density. In
addition, a2 is defined as:

a2 =
K
ρ

1+ D K
e E

(3.5)

where K = dp
dρ/ρ , is the bulk modulus of elasticity of fluid, D is diameter of circular con-

duit/pipe, e the thickness of conduit/pipe walls and E is the E-modulus of conduit/ pipe.
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3.2.3 Momentum Equation

The momentum equation is derived with the application of Reynolds Transport Theorem,
Newton’s second law of motion and Darcy-Weisbach friction equation [24, pp. 43–45]. The
momentum equation is given as:

∂ V
∂ t
+ V

∂ V
∂ x
+

1
ρ

∂ p
∂ x
+ g sinθ +

f V |V |
2 D

= 0 (3.6)

where V is flow velocity, t is time, x is distance, p is pressure, and ρis the water density. In
addition, f is defined as the Darcy-Weisbach friction factor.

3.2.4 Simplified Equations

Both the continuity equation Equation (3.4) and the momentum equation Equation (3.6) can
be simplified. The acceleration terms (V ∂ p

∂ x and V ∂ V
∂ x ) are small compared to other terms and

can therefore be neglected [24, p. 48]. Likewise, the slope term sinθ is often small and can be
neglected. Another common practice in hydraulic engineering is to rewrite flow velocity V as
volumetric flow Q, these two variables are related through:

Q = VA (3.7)

where A is the area of the cross-section. Similarly, the pressure variable p is replaced with
piezometric head H, these two variables are related through:

p = ρg(H − h) (3.8)

where h is the relative elevation. By taking Equation (3.7), Equation (3.8) and the simpli-
fication stated above into Equation (3.4) and bringing along Equation (3.6) the following
equations is obtained:

g A
∂ H
∂ x
+
∂Q
∂ t
+

f Q |Q|
2 D A

= 0 (3.9a)

∂ H
∂ t
+

a2

g A
∂Q
∂ x
= 0 (3.9b)

where a is the wave velocity. The set of simplified Equation (3.9) are known as semi-linear,
hyperbolic, partial differential equations [24, p. 59].

3.2.5 Steady State

If one is to assume that there are no changes in piezometric head and volumetric flow, i.e.
Equation (3.9) are at steady state. Thus ∂ H

∂ t = 0 and ∂Q
∂ t = 0, it yields:

g A
∂ H
∂ x
+

f Q |Q|
2 D A

= 0 (3.10a)

a2

g A
∂Q
∂ x
= 0 (3.10b)
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Assessing Equation (3.10a) and approximating the derivatives with Equation (3.3), and isol-
ating for ∆H one is left with the Darcy-Weisbach equation [24, p. 49]:

∆H =
f ∆x Q2

2 g D A2
(3.11)

where ∆H is the difference of piezometric head over a pipe with length ∆x , also called
J(Q(z, t)) [25], and f is a friction function. The second part of Equation (3.9) yields that
there is no change in flow Q over the distance of the pipe [24, p. 49].

∂Q
∂ x
= 0 (3.12)

3.3 Linear Algebra

Modelling mathematical problems or equations describing reality often leads to having sim-
ultaneous linear equations. This system of equations can be set up as matrices and solved
with numerical linear algebra [26, p. 19]. An example of a set of equations with n known
relationship is:

ai,1 x1 + ai,2 x2 + ...+ ai,n xn = bi for i = 1,2, ..., n (3.13)

where ai,n are coefficients for unknowns xn. Having n linear equations for n unknowns x j ,
where j = 1,2, ..., n, the problem can be rewritten to the matrix form as:

Ax = b (3.14)

where all coefficients ai, j have been gathered in the matrix A. When the size of A is n× n, it
is considered a square matrix [27, p. 277]. A linear system is considered consistent if one or
more solutions exist, or inconsistent if no solutions exist [27, p. 277]. Conditions for solving
Ax = b is that A has full rank or A is non-singular[26, p. 19], i.e:

rank(A) = n, An×n, n ∈ R (3.15)

meaning the inverse of A exists. For a number k < n, where rank(A) = k, A is singular. When
having a non-singular matrix A, the solution to Equation (3.14) will be:

x = A−1 b (3.16)

3.3.1 Linear Least Squares

For systems that have m> n conditions, i.e. more equations than unknowns, the matrix A will
be rectangular (m× n) [27, p. 258] and the system is overdetermined. It may not be possible
to determine a unique solution x that solves Equation (3.14). One way of solving inconsistent
systems is by choosing x̄ that minimizes the error E = ||Ax − b|| [28, p. 154], also called
the least squares solution of x. [26, p. 22]. One way of finding least square solution x is by
multiplying Equation (3.14) with AT , giving:

AT Ax̄ = AT b (3.17)
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where AT A will return a square, symmetric coefficient matrix [28, p. 155]. Equation (3.17) is
called the normal equation in statistics. If:

rank(A) = n (3.18)

then columns of A is linear independent, then AT A is non-singular. The solution of the normal
equation is:

x̄ = (AT A)−1AT b (3.19)

3.4 Adaptive Observer

Modelling, monitoring or controlling a system requires information about the said system. That
information can come from measurements from sensors or from known parameters such as
lengths and masses. However, not all information is available, and unmeasurable disturbances
are unknown; cost or technical constraints may be causes for other unknowns in a system [29,
p. 1]. This is what the Observer is for, by re-constructing information not directly available.
This section will focus on Adaptive Observers, which is finding an adaption law to have a con-
vergence of the observer when parameters are unknown [29, p. 211]. The system is described
with a state-space model:

ẋ(t) = f (Θ, x(t), u(t), t) + g(x(t), u(t)) Θ

y(t) = h(x(t))
(3.20)

where x is the states, y measurements, u inputs and Θ the unknown parameters is assumed
to be constant. f , g and h are non-linear functions. However, the system can be transformed
to the canonical observer form if Θ is assumed known [29, p. 217]:

ẏ = α(y,ζ,ν) + β(y,ζ,ν)Θ

ζ̇= Z(y,ζ,ν)
(3.21)

G. Besancon [29, p. 217] has proposed an adaptive state observer for Equation (3.21)
where || ŷ − y|| → 0 and ||ζ̂− ζ|| → 0 as t →∞:

˙̂y = α(y, ζ̂,ν) + β(y,ζ,ν)Θ̂− ky( ŷ − y)
˙̂
ζ= Z(y, ζ̂,ν)
˙̂Θ = −kΘβ

T (y,ζ,ν)( ŷ − y)T
(3.22)

where ky > 0, kΘ > 0 and where ||Θ̂−Θ|| → 0 if β is persistently exciting and β̇ is bounded.
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3.5 Kalman Filter

The Kalman filter is an algorithm to estimate the state of a linear, or non-linear system [30].
The filter is named after publications of R.E Kalman [31] and is an efficient recursive filter
that can reconstruct unmeasured states and/or remove noise from measurements of estimates
of the states [32, p. 408]. In general, the Kalman filter estimates states of a system ( x̂) in
discrete time, converging the estimates to the state (x) by means of the measurements (y).
The discretized linear system model is used to define the discrete-time Kalman filter:

x[k+ 1] = Ad x[k] + Bdu[k] + Ed w[k] (3.23a)

y[k] = Cd x[k] + Ddu[k] + ε[k] (3.23b)

where w is the zero-mean Gaussian process noise, and ε is the zero-mean Gaussian measure-
ment noise [32, p. 409]. x are the states and y the measurements. The system matrices A, B,
E, C and D are assumed constant. However, they might change with each time step. The equa-
tions of the algorithm can be split into two groups: time equations and measurement update
equations [30, p. 4]. Time update equations are predicting into the future to obtain an estimate
of the states and error covariance, while the measurement update equations are correting the
estimates by means of the measurements. The time update equations (predictor) are:

x̂−[k+ 1] = Ad x̂k + Bdu[k] (3.24a)

P−[k+ 1] = Ad P[k]AT
d + EdQET (3.24b)

where x̂− and P− are priori estimate of state and estimate of error covariance. x̂ and P is
posteriori state estimate and estimate of error covariance. The measurement equations are:

K[k] = P−[k+ 1]C T
d

�

Cd P−[k+ 1]C T
d + Rd

�−1
(3.25a)

x̂[k] = x̂−[k] + K[k](y[k]− Cd x̂−[k]− Ddu[k]) (3.25b)

P[k] = (I − K[k]Cd)P
−[k](I − K[k]Cd)

T + K[k]Rd K T [k] (3.25c)

where Qd is covariance matrices for process noise and Rd is covariance matrices for measure-
ment noise. K matrix is referred to as Kalman Gain. Measurement noise matrix R is usually
measured before implementation, while the process noise matrix Q is chosen by tuning [30,
p. 6]. The initialization of the Kalman filter is not described in this report.

3.5.1 Extended Kalman Filter

For non-linear systems, the Extended Kalman filter or EKF has to be applied. A non-linear system
in discrete time is described as:

x[k+ 1] = x[k] + hf (x[k], u[k], 0) (3.26a)

y[k] = h(x[k], u[k]) (3.26b)

where f (x , u, w) and u(x , u) are non-linear functions. w and ε are white Gaussian process noise
and white Gaussian measurement noise respectively. The EKF is a Kalman filter linearised about
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the current estimate and covariance [30, p. 7]. Similarly to the Kalman filter, the equations for
the extended Kalman filter algorithm can be grouped into time equations [32, p. 412]:

x̂−[k+ 1] = x̂ + hf ( x̂[k], u[k], 0) (3.27a)

P̂−[k+ 1] = Ad[k]P̂AT
d [k] + Ed[k]Qd[k]E

T
d [k] (3.27b)

and measurement equations

K[k] = P̂−[k]C T
d [k]
�

Cd P̂−[k]C T
d + Rd[k]
�−1

(3.28a)

x̂[k] = x̂−[k] + K[k] (y[k]− h[k]( x̂ − [k], u[k])) (3.28b)

P̂[k] = (In − K[k]Cd[k]) P̂
−[k] (In − K[k]Cd[k])

T + K[k]Rd[k]K
T [k] (3.28c)

where the Jacobians are used to define the discrete-time system matrices:

Ad[k] = In + h
∂ f (x[k], u[k], w[k])

∂ x[k]

�

�

�

�

x[k]= x̂[k],w[k]=0
(3.29a)

Ed[k] =
∂ f (x[k], u[k], w[k])

∂ x[k]

�

�

�

�

x[k]= x̂[k],w[k]=0
(3.29b)

Cd[k] =
∂ h(x[k], u[k])
∂ x[k]

�

�

�

�

x[k]= x̂[k]
(3.29c)

where In is the identity matrix of size n. While it is easy to establish stability and convergence
for the Kalman filter, the EKF loses those properties due to the linearization [32, p. 412]. Any
modelling inaccuracies may result in divergence. In some applications, convergence of the EKF
may only be possible if the function f and h are weakly non-linear or have initialization close
to the solution [33].

3.5.2 Continuous Extended Kalman Filter with Increased Convergence Domain

Similarly to the discrete-time extended Kalman filter, the Continuous Extended Kalman filter
has problems with divergence [33]. There have been developed models with increased conver-
gence domain of the estimation. Reif et al. [33] developed such a model based on a non-linear
system:

ẋ(t) = f (x(t), u(t)) (3.30a)

y(t) = h(x(t), u(t)) (3.30b)

where x is the state, u input, y measurements. Both f and h are non-linear functions. With
the following observer model:

˙̂x = f ( x̂(t), u(t)) + K(t)[y(t)− hx̂(t)] (3.31)

where K is the Kalman gain and x̂ the state estimates. A Riccati differential equation is intro-
duced to calculate gain:
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Ṗ(t) = (A(t) +ηI) P(t) + P(T )
�

AT (t) +ηI
�

− P(t)C T (t)R−1C(t)P(t) +Q (3.32a)

K(t) = P(t)C T (t)R−1 (3.32b)

where Q and R are positive definite matrices for noise covarince matrices, and η > 0. Matrices
A and C is the jacobian of f and h:

A(t) =
∂ f ( x̂(t), u(t))

∂ x
(3.33a)

C(t) =
∂ h( x̂(t))
∂ x

(3.33b)
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3.6 Graph Theory

A graph is a structure to encode pairwise relationships among a set of objects [34, p. 73]. A
graph comprises of nodes (or vertex) V and edges E. Nodes are connected by edges. A simple
graph G is defined as [35, p. 148]:

• G = (V, E) where:

◦ V is a finite set, called vertices of G
◦ E is a two-element subset of V

The edge e ∈ E is represented as a subset of V : e = {u, v} for some u, v ∈ V where u and
v are the ends of e. Graphs may be directed or undirected. In a directed graph, G′, the graph
consists of a set of nodes V and a set of directed edges E′. Each edge e′ = (u, v) in E is ordered,
changing of e′ to e′ = (v, u) will produce a different graph. [34, p. 73]. Directed graphs are
used to encode asymmetric relationships between nodes, while undirected graphs represent
symmetric relationships between the nodes [34].

Nodes and edges may correspond to physical objects, or, in other cases, one or both are
abstractions [34, p. 74]. An example of a physical object graph is cities and roads, where cities
are the nodes and roads are the edges. An example of a graph with abstractions is a social
network, where people are the nodes and the relationships are the edges.

Edges between nodes may be weighted or unweighted, where the weight can represent, for
example, a cost of transportation between two nodes or a distance between two cities [35,
p. 177].

One of the key operations of graphs is finding paths from node to node, by traversing the
nodes connected by edges [34, p. 76]. An example of a path is how to travel from one city to
another by using the roads and visiting interconnecting cities on the route. Paths are denoted
P and can either be a sequence of nodes, or edges (edgepath). If a path in a graph starts and
ends at the same location, it is said that the graph contains a cycle [34, p. 76]. By analysing
the Figure 3.1, the path P = {1, 2,4, 3,1} forms a cycle.

Figure 3.1: Example of undirected, unweighted graph G with a cycle.

The graph G in Figure 3.1 can be represented with nodes V = {1,2, 3,4, 5} and edges E =
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{1, 2,3,4, 5}. Where the edges e ∈ E can be represented as a two-element subset of V such
that the graph G can be written as:

G =

�

1 1 2 3 4
2 3 4 4 5

�

(3.34)

The degree of the node is another parameter to note. The degree is a number of how many
edges are connected to a specific node [35, p. 150]. In Figure 3.1, the degree of node 1 is two.
It is denoted as:

d(1) = 2 (3.35)

3.6.1 Trees

A tree is a special form of undirected graph which does not contain cycles and is connected [34,
p. 77]. A graph is connected if there is a path from u to v for every pair of nodes u and v. Trees
are often rooted in a specific node, such that all other nodes and edges are moving outward
from the root. In Figure 3.2 the root is in node 1. If a graph has one or more trees, it is defined
as a forest [35, p. 172].

Figure 3.2: Example of tree, rooted in node 1.

Given the rooted three in Figure 3.2 some terminology can be introduced. In the path P =
{1, 2,5} node 2 and 5 are children of node 1. Node 2 is a parent to node 5, and a child of
node 1. If a node has no children it is a leaf [35, p. 173]. The tree used in the example above
consists of a root and 2 levels, or layers, where nodes V = {2, 3,4}make up the first layer, and
V = {5,6} makes up the second layer.
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3.6.2 Shortest Path between Two Single Nodes

The problem of finding the shortest path from node u to node v can be solved with different
types of algorithms dependent on the type of graph [36]. For directed and undirected graphs
with unweighted edges, without cycles, breadth first search or BFS can be used to find the
shortest path. The BFS algorithm searches the graph from the starting node s. It inspects all
neighbour nodes, and for each of the neighbour nodes, it visits all unvisited neighbours. The
algorithm does not stop until all reachable nodes have been visited [37].

Algorithm 1: Breadth First Search
Input: Start node s
Output: Order in which nodes are discovered and finished
Function BFS(s):

star tnode← s;
discovernode← s;
Initialize nodel ist as a queue with s as its only element;
while nodel ist is not empty do

get C from nodel ist;
forall outgoing edges E from node C, connecting to node V do

if V is a new node then
mark V as discovered;
append V to nodel ist;

else if V is a previously discovered node then
mark V as discovered;

else if V is a finished node then
do nothing;

end
end
mark C as finished;

end
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As seen in Figure 3.3, the BFS algorithm searches layer by layer, outward from the starting
node.

(a) BFS algorithm step 1, discover
neighbors of root.

(b) BFS algorithm step 2, discover neighbor nodes of dis-
covered nodes.

(c) BFS algorithm step 3: continuing to explore neighbor
nodes untill finnished.

Figure 3.3: BFS algorithm steps 1 to 3.

By altering the algorithm 1 to stop at node v, the returned path will be the shortest path from
u to v.
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3.7 Epanet

This section will give an introduction to the Epanet platform. Epanet is a software applica-
tion solution used for modelling drinking water systems. It is a free, public domain software
developed by the United States Environmental Protection Agency (U.S EPA) [38]. In Epanet,
users can model water distribution systems as collections of links connected to nodes. Junc-
tions, tanks and reservoirs are nodes, while links represent pipes, pumps and valves. The water
distribution system can be exported as a .INP file consisting of all information necessary to re-
construct the network.

The .INP file structure is retrieved from the documentation of Epanet [39]. The file itself
is organized in sections separated by keywords enclosed in square brackets. The keywords can
be seen in Table 3.1.

Network Components System Operation Water Quality Options Network Map / Tags
TITLE CURVES QUALITY OPTIONS COORDINATES
JUNCTIONS PATTERNS REACTIONS TIMES VERTICES
RESERVOIRS ENERGY SOURCES REPORT LABELS
TANKS STATUS MIXING BACKDROP
PIPES CONTROLS TAGS
PUMPS RULES
VALVES DEMANDS
EMITTERS

Table 3.1: .INP file keywords, divided into types.

Data stored in each section varies depending on the keyword; it may consist of one or several
lines of data. Examples of data from .INP file can be seen in Figure 3.4. Comments can be
added individually to the data with the semicolon operator if needed.

(a) Datalines from keyword: JUNCTIONS.

(b) Datalines from keyword: PIPES.

Figure 3.4: Example: Datalines from .INP file.

The modelling of networks Epanet will be explained in Section 5.5.





Chapter 4

Parameter Identification at Steady
State in Various Network Trees

This chapter will discuss the parameter identification of various rooted network trees, without
cycles, in steady state. All the trees will be rooted in node 1. The chapter begins with a single
section and builds upon that to find a generalized set of parameter equations. The chapter ends
with a general method to find the parameter equations for a general network. This method is
able to be implemented as an algorithm.

To minimize the number of available sensors, it is assumed that internal measurements,
such as the head, are unknown, while measurements of the root and leaves are available (inlet
and outlet). The term internal refers to not root and non-leaves nodes.

4.1 Base Case: a Single Section

The first case to be evaluated is a single section of pipe. With two nodes (|V | = 2) and one
edge connecting the nodes (|E|= 1). As seen in Section 3.2.5, with the steady state conditions,
i.e. the flow and pressure rates are zero, ∂Q(z,t)

∂ t = 0 and ∂ H(z,t)
∂ t = 0, the governing PDEs are

reduced to ODEs:

∂ H
∂ z
+

f Q |Q|
2 g D A2

= 0 (4.1a)

a2

g A
∂Q
∂ z
= 0 (4.1b)

with distance z as the independent variable. The second term in Equation (4.1a) is replaced
with J(Q(z, t)) giving:

∂ H(z, t)
∂ z

+ J(Q(z, t)) = 0 (4.2a)

a1
∂Q(z, t)
∂ z

= 0 (4.2b)
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where a1 =
a2

g A, a is the velocity of the pressure wave, A is the area of the cross-section for
the specific of pipe, and g is the gravitational acceleration. As seen in Equation (3.11) the
term J(Q(z, t)) is the hydraulic gradient, and can be calculated with f Q |Q|

2 g D A2 . However, other
functions for J(Q(z, t)) have been suggested by Rojas et al. [25], among other an equivalent
quadratic function:

J(Q(t),θ )) =
f Q |Q|

2 g D A2
= θQ2(t) (4.3)

where θ is the simplified friction parameter. Equation (4.3) is inserted into Equation (4.2a),
Equation (4.2b) is equal to zero and disappears. This results in one remaining equation:

θ (Q(z, t))2 +
∂ H(z, t)
∂ z

= 0 (4.4)

The simplified Equation (4.4) will now be used on a single section. The single section is illus-
trated in Figure 4.1, where L1 is the total length and θ1 is the friction parameter for the edge.
In terms of graph theory, the network tree has two nodes and one edge, where node 1 is the
root and node 2 is a leaf.

Figure 4.1: Base case: Single section, two nodes, one edge.

The partial derivative of Equation (4.4) is integrated over the full length of the section to
remove the partial differential (∂ z):

∫ L1

0

�

θ1 Q(t)2 +
∂ H(z, t)
∂ z

�

dz

=

∫ L1

0

�

θ1 Q(t)2
�

dz +

∫ L1

0

�

∂ H(z, t)
∂ z

�

dz

=

�

θ1 Q(t)2 z

�L1

0

+

�

H(z, t)

�L1

0

= θ1 L1 Q(t)2 + (H(L1, t)−H(0, t))

(4.5)

where H(L1, t) = H2(t) and H(0, t) = H1(t). Without leaks in the section, the flow at the
inlet will be equal to the flow at the outlet, i.e. Q(t) = Q1(t) = Q2(t). The (t) is removed for
simplicity, which results in one equation:

θ1 L1 Q2 + (H2 −H1) = 0 (4.6)

Equation (4.6) is solved with respect the θ1.
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θ1 =
1
L1

H1 −H2

(Q1)2
(4.7)

where length L1 is typically known, and if the flow and head pressures are measured, the
friction parameter for a single section of pipe can be calculated with Equation (4.7).

4.2 Case 1: Two Layers, Three Nodes, Two Edges

The network from the base case is expanded, adding one more layer as seen in Figure 4.2. The
resulting network has three nodes (|V | = 3) and two edges (|E| = 2), where node 3 is a leaf
or end node.

Figure 4.2: Case 1: Three nodes, two edges, one leaf.

The sections are individually solved, and that will result in one equation per section. Similar to
the base case in Section 4.1, the equations are integrated over each section to find steady-state
equations for the parameters θ1 and θ2.

∫ L1

0

�

θ1 (Q1)
2 +
∂ H(z, t)
∂ z

�

dz (4.8a)

∫ L2

0

�

θ2 (Q2)
2 +
∂ H(z, t)
∂ z

�

dz (4.8b)

The resulting equations after integration:

θ1 L1 (Q1)
2 +H1(L1, t)−H1(0, t) = 0 (4.9a)

θ2 L2 (Q2)
2 +H2(L2, t)−H2(0, t) = 0 (4.9b)

where H1(L1, t) = H2(t), H1(0, t) = H1(t), H2(L2, t) = H3(t) and H2(0, t) = H2(t). The
equations are simplified by substituting the corresponding H ’s and removing the (t).

θ1 L1 (Q1)
2 +H2 −H1 = 0 (4.10a)

θ2 L2 (Q2)
2 +H3 −H2 = 0 (4.10b)

Equation (4.10a) is solved with respect to H2:

H2 = H1 − θ1 L1 (Q1)
2 (4.11)

Then, Equation (4.11) is put into Equation (4.10b) to remove H2. Simultaneously, the head
pressures are moved to the right-hand side:
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θ1 L1(Q1)
2 + θ2 L2(Q2)

2 = H1 −H3 (4.12)

One is left with one equation with two unknowns, i.e. the system is undetermined. One possible
way to solve the system from Equation (4.12) is to have multiple sets of data. Adding one more
set of data, with the index of the data in the superscript:

θ1 L1(Q
1
1)

2 + θ2 L2(Q
1
2)

2 = H1
1 −H1

3 (4.13a)

θ1 L1(Q
2
1)

2 + θ2 L2(Q
2
2)

2 = H2
1 −H2

3 (4.13b)

The equations can now be put into matrices on the form AΘ = H, with Θ = [θ1,θ2]:

�

L1(Q1
1)

2 L2(Q1
2)

2

L1(Q2
1)

2 L2(Q2
2)

2

��

θ1
θ2

�

=

�

H1
1 −H1

3
H2

1 −H2
3

�

(4.14)

the system is solvable, if A is invertible, i.e rank(A)= 2. The solution would then be Θ = A−1H.
It can be noted the matrix A is invertible if each of the flow measurements is sufficiently different
from each other. However, in a steady state without leaks, the flow into the section will be equal
to the flow out of the section. Updating the A matrix with Q1 = Q2 and analysing it becomes
evident that the rank will never be larger than 1, as there will always be a relationship between
a first and second column in the constants L#.









L1(Q1
1)

2 L2(Q1
1)

2

L1(Q2
1)

2 L2(Q2
1)

2

...
...

L1(Qk
1)

2 L2(Qk
1)

2









�

θ1
θ2

�

=









H1
1 −H1

3
H2

1 −H2
3

...
Hk

1 −Hk
3









(4.15)

That means that the two sections should be treated as one and that the base case can be used
to find a common θ for the two sections. The case where the sections shall be treated as one
single section can be recognised with the degree of a node being two (d(V ) = 2).
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4.3 Case 2: Two Layers, Four Nodes, Three Edges, Two End Nodes

The next case to be investigated is a network tree with four nodes (|V | = 4), three edges
(|E| = 3) and two leaves. There are two layers in the network. The network can be seen in
Figure 4.3. There is a slight modification to the network figure compared to previous network
figures, Q is moved from the node to the edge, in contrast with the previous cases (Sections 4.2
and 4.3) where Q was illustrated on the nodes. The movement is based upon the assumptions
∂Q
∂ x = 0 (continuity of mass), i.e. the flow at the inlet is equal to the flow at the outlet.

Figure 4.3: Case 2: Four nodes, three edges, two end-nodes, two layers.

The procedure remains similar to the previous cases, the sections are individually integrated:

∫ L1

0

�

θ1 (Q1(t))
2 +
∂ H(z, t)
∂ z

�

dz (4.16a)

∫ L2

0

�

θ2 (Q2(t))
2 +
∂ H(z, t)
∂ z

�

dz (4.16b)

∫ L3

0

�

θ3 (Q3(t))
2 +
∂ H(z, t)
∂ z

�

dz (4.16c)

Solving each equation gives:

θ1 L1 (Q1(t))
2 +H1(L1, t)−H1(0, t) = 0 (4.17a)

θ2 L2 (Q2(t))
2 +H2(L2, t)−H2(0, t) = 0 (4.17b)

θ3 L3 (Q3(t))
2 +H3(Lb, t)−H3(0, t) = 0 (4.17c)

Where H1(L1, t) = H2, H1(0, t) = H1, H2(L2, t) = H3, H2(0, t) = H2, H3(Lb, t) = H4 and
H3(0, t) = H2. For simplicity the heads (H(L#, t)) in Equation (4.17) are replaced with their
respective node heads (H#), and (t) is omitted:

θ1 L1 (Q1)
2 +H2 −H1 = 0 (4.18a)

θ2 L2 (Q2)
2 +H3 −H2 = 0 (4.18b)

θ3 L3 (Q3)
2 +H4 −H2 = 0 (4.18c)
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Equation (4.18a) is solved with respect to H2:

H2 = H1 − θ1 L1 (Q1)
2 (4.19)

It is noted that the Equation (4.19) for H2 is equal to H2 found in Section 4.3. Equation (4.19)
is inserted into Equations (4.18b) and (4.18c):

θ1 L1(Q1)
2 + θ2 L2Q2

2 = H1 −H3 (4.20a)

θ1 L1(Q1)
2 + θ3 L3Q2

3 = H1 −H4 (4.20b)

The equations can now be put into matrices on the form AΘ = H, with Θ = [θ1,θ2,θ3]:

�

L1(Q1)2 L2(Q2)2 0
L1(Q1))2 0 L3(Q3)2

�





θ1
θ2
θ3



 =

�

H1 −H3
H1 −H4

�

(4.21)

As A is ( 2× 3) matrix, it is not invertible, at most rank(A) = 2. Therefore, a minimum of two
datasets is required. The superscript is introduced again for indexing the different sets of data.
A system with k ∈ (0,∞) dataset of measurements would look like:





















L1(Q1
1)

2 L2(Q1
2)

2 0
L1(Q1

1))
2 0 L3(Q1

3)
2

L1(Q2
1)

2 L2(Q2
2)

2 0
L1(Q2

1))
2 0 L3(Q2

3)
2

...
...

...
L1(Qk

1)
2 L2(Qk

2)
2 0

L1(Qk
1))

2 0 L3(Qk
3)

2

























θ1
θ2
θ3



 =





















H1
1 −H1

3
H1

1 −H1
4

H2
1 −H2

3
H2

1 −H2
4

...
Hk

1 −Hk
3

Hk
1 −Hk

4





















(4.22)

With k > 1, the matrix A is rectangular and the solution to Θ may be inconsistent. Therefore
the solution to Θ would be the least square solution:

Θ̄ = (AT A)−1AT H (4.23)

Each dataset k must exhibit significant differences to have the full rank of A (rank(A) = 3).
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4.4 Case 3: Two layers, Five Nodes, Four Edges, Three end-nodes

From Section 4.2 and Section 4.3, it is evident that multiple sets of data are required to de-
termine the friction parameterΘ. Therefore, the superscription of the dataset index is included
from the beginning. The step of initial setup and integration over each section, is omitted from
this section. The network tree in case 3 has |V |= 5 number of nodes, |E|= 4 number of edges
and |Vleaves| = 3 number of leaves, and can be seen in Figure 4.4. Case 3 is an extension of
case 2 with one additional edge connected to node 2.

Figure 4.4: Case 3: Five nodes, 4 edges, three end-nodes.

The steady-state system equations are derived from one set of data, k = 1:

θ1 L1 (Q
1
1)

2 +H1
2 −H1

1 = 0 (4.24a)

θ2 L2 (Q
1
2)

2 +H1
3 −H1

2 = 0 (4.24b)

θ3 L3 (Q
1
3)

2 +H1
4 −H1

2 = 0 (4.24c)

θ4 L4 (Q
1
4)

2 +H1
5 −H1

2 = 0 (4.24d)

Equation (4.24a) is expressed for head in node 2, H1
2 , and inserted in Equation (4.24b), Equa-

tion (4.24c) and Equation (4.24d). Head pressures H# is moved to the right-hand side:

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 = H1
1 −H1

3 (4.25a)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 = H1
1 −H1

4 (4.25b)

θ1 L1 (Q
1
1)

2 + θ4 L4 (Q
1
4)

2 = H1
1 −H1

5 (4.25c)
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with k ∈ (0,∞) number of sets of data, the system matrices for AΘ = H will be:





















L1 (Q1
1)

2 L2 (Q1
2)

2 0 0
L1 (Q1

1)
2 0 L3 (Q1

3)
2 0

L1 (Q1
1)

2 0 0 L4 (Q1
4)

2

...
...

...
...

L1 (Qk
1)

2 L2 (Qk
2)

2 0 0
L1 (Qk

1)
2 0 L3 (Qk

3)
2 0

L1 (Qk
1)

2 0 0 L4 (Qk
4)

2





















︸ ︷︷ ︸

A







θ1
θ2
θ3
θ4







︸ ︷︷ ︸

Θ

=





















H1
1 −H1

3
H1

1 −H1
4

H1
1 −H1

5
...

Hk
1 −Hk

3
Hk

1 −Hk
4

Hk
1 −Hk

5





















︸ ︷︷ ︸

H

(4.26)

As A1 is 3 × 4 matrix, the matrix is not invertible. With one set of data, the rank is at most:
rank(A)= 3. Therefore, a minimum of two datasets is required (k = 2). With k > 1, the matrix
A is rectangular and the solution to Θ may be inconsistent. Therefore the solution to Θ would
be the least square solution: Each dataset k must exhibit significant differences to have the full
rank of A (rank(A) = 4).

4.5 Case 4: Two Layers, j Nodes, i Edges

The next case is a generalization of the network with two layers. The purpose is to find a
general system matrix for two layered networks. Layer two consists of nodes and edges:

Vlayer 2 = {3,4, . . . , j} (4.27a)

Elayer 2 = {2,3, . . . , i} (4.27b)

where:

j ∈ [5, (5+m)], m ∈ (0,∞)
i ∈ [4, (4+m)]

The network tree will be explored to find system equations for a network with a growing second
layer. The total number of nodes is |V | = 4+m and the total number of edges is |E| = 3+m,
while the number of leaves will is |Vleaves|= 2+m.

The steady-state system equations are derived for 1 set of data, k = 1 and can be seen in
Equation (4.28):

θ1 L1 (Q
1
1)

2 +H1
2 −H1

1 = 0 (4.28a)

θ2 L2 (Q
1
2)

2 +H1
3 −H1

2 = 0 (4.28b)

θ3 L3 (Q
1
3)

2 +H1
4 −H1

2 = 0 (4.28c)
...

θi Li (Q
1
i )

2 +H1
j −H1

2 = 0 (4.28d)
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Figure 4.5: Case 4: Two layers, j nodes, i edges.

The head pressures are moved to the right-hand side:

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 = H1
1 −H1

3 (4.29a)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 = H1
1 −H1

4 (4.29b)
...

θ1 L1 (Q
1
1)

2 + θi Li (Q
1
i )

2 = H1
1 −H1

j (4.29c)

The system matrices for AΘ = H will be:









L1 (Q1
1)

2 L2 (Q1
2)

2 0 0 . . . 0
L1 (Q1

1)
2 0 L3 (Q1

3)
2 0 . . . 0

... 0 0
.. . 0

L1 (Q1
1)

2 0 0 0 . . . Li (Q1
i )

2








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A1













θ1
θ2
θ3
...
θi












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Θ

=









H1
1 −H1

2
H1

1 −H1
3

...
H1

1 −H1
j








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H1

(4.30)

where matrix A1 have data from the first set, (k = 1). The number of rows in A1 are equal to
the number of leaves, and the number of column is equal to the number of edges, making the
size of A1 = (|Vleaves| × |E|). Θ is of size (|E| × 1) and H1 is of size (|Vleaves| × 1). When using
k ∈ (0,∞) datasets, the individual matrices of Ak and Hk will be stacked upon each other. A
and H will have the form:

A=









A1

A2

...
Ak









, and: H =









H1

H2

...
Hk









(4.31)

With k > 1, the matrix A is rectangular and the solution to Θ may be inconsistent. There-
fore, the solution to Θ would be the least square solution: Each dataset k must exhibit signi-
ficant differences for the rank(A) = |E|.
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4.6 Case 5: Three Layers, Two Edges per Node

For case 5 there is added one more layer to the network tree. Each node of the tree has two
edges, with the exception of the root and leaves, which only have one node. For this network
there are |V | = 6 nodes, |E| = 5 edges and |Vleaves| = 3 leaves. An illustration of the network
can be seen in Figure 4.6:

Figure 4.6: Case 5: Three layers, two edges per node.

The network in case 5 can be seen as a combination of two trees from case 2 Section 4.3. The
method for deriving the steady-state equations remains the same, and the system of equations
will be:

θ1 L1 (Q
1
1)

2 +H1
2 −H1

1 = 0 (4.32a)

θ2 L2 (Q
1
2)

2 +H1
3 −H1

2 = 0 (4.32b)

θ3 L3 (Q
1
3)

2 +H1
4 −H1

2 = 0 (4.32c)

θ4 L4 (Q
1
4)

2 +H1
5 −H1

4 = 0 (4.32d)

θ5 L5 (Q
1
5)

2 +H1
6 −H1

4 = 0 (4.32e)

The internal head pressure measurements from node 2, H2, and node 4, H4, will be removed
as it is assumed unknown. Therefore Equation (4.32a) is solved with respect to H2:

H1
2 = H1

1 − θ1 L1 (Q
1
1)

2 (4.33)

Equation (4.32c) is solved with respect to H4:

H1
4 = H1

2 − θ3 L3 (Q
1
3)

2

H1
4 = H1

1 − θ1 L1 (Q
1
1)

2 − θ3 L3 (Q
1
3)

2 (4.34)

Inserting Equation (4.33) and Equation (4.34) into Equation (4.32):

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 = H1
1 −H1

3 (4.35a)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ4 L4 (Q
1
4)

2 = H1
1 −H1

5 (4.35b)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ5 L5 (Q
1
5)

2 = H1
1 −H1

6 (4.35c)
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The system matrices AΘ = H will be:
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
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θ3
θ2
θ4
θ5


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3
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H1
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


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H1

(4.36)

With k = 1, the matrix A is rectangular and the solution toΘmay be inconsistent. Therefore
the solution to Θ would be the least square solution: Each dataset k must exhibit significant
differences for the rank(A) = |E|.
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4.7 Case 6: Three Layers, Nodes in Layer Two has j1 and j2 Nodes

The next case to be investigated is case 6. The first two layers are similar to Section 4.3.
However, there is added one more layer as seen in Figure 4.7. Layer three consists of nodes
and edges:

Vlayer 3 = {5, . . . , j1, 6, . . . , j2} (4.37a)

Elayer 3 = {4, . . . , i1,5, . . . , i2} (4.37b)

where:

j1 ∈ [7, (7+m)], m ∈ (0,∞)
j2 ∈ [7+m), ((7+m) + n], n ∈ (0,∞)
i1 ∈ [6, (6+m)]

i2 ∈ [6+m), ((6+m) + n]

The network will be explored to find system equations for a network with a growing third layer.
The total number of nodes is |V |= (6+m+ n), the total number of edges is |E|= (5+m+ n),
and the total number of leaves is |Vleaves|= (2+m+ n). It is noted that if m = 1 the degree of
node 3 will be two (d(3) = 2). This will lead to a similar case as seen in Section 4.2, where the
columns in the A matrix will be linearly dependent, and the rank will be less than the number
of Edges, therefor if m = 1, the edges 3 and 5 must be treated as one single edge. The same
note is applicable for n= 1.

Figure 4.7: Case 6: Three layers, where j1, j2, i1 and i2 are seen in Equation (4.37).
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The method for deriving the steady-state equations remains the same, and the system of
equations will be:

θ1 L1 (Q
1
1)

2 +H1
2 −H1

1 = 0 (4.38a)

θ2 L2 (Q
1
2)

2 +H1
3 −H1

2 = 0 (4.38b)

θ3 L3 (Q
1
3)

2 +H1
5 −H1

4 = 0 (4.38c)

θ4 L4 (Q
1
4)

2 +H1
5 −H1

3 = 0 (4.38d)
...

θi1 Li1 (Q
1
i1)

2 +H1
j1 −H1

4 = 0 (4.38e)

θ5 L5 (Q
1
5)

2 +H1
6 −H1

4 = 0 (4.38f)
...

θi2 Li2 (Q
1
i2)

2 +H1
j2 −H1

4 = 0 (4.38g)

The internal pressures heads H2, H3 and H4 are removed from the set of equations. The re-
maining equations are:

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 + θ4 L4 (Q
1
4)

2 = H1
1 −H1

5 (4.39a)

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 + θi1 Li1 (Q
1
i1)

2 = H1
1 −H1

j2 (4.39b)

... (4.39c)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ5 L5 (Q
1
5)

2 = H1
1 −H1

6 (4.39d)
... (4.39e)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θi2 Li2 (Q
1
i2)

2 = H1
1 −H1

j2 (4.39f)

The system equations are now organized into system matrices AΘ = H, due to the large size
of the system, the A1 matrix is split into A1

1 and A1
2:
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(4.40)

A2 =


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(4.41)
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where A1
1 is of size (|Vleaves| × |Vinternal |). By |Vinternal | is meant number of nodes that are

non-root and non-leaves. A1
2 is square and of size (|Vleaves| × |Vleaves|). Combined the system

matrices are:
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1 A1

2
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︸ ︷︷ ︸
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


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H1
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...

H1
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H1

1 −H1
6

...
H1

1 −H1
j2



















︸ ︷︷ ︸

H1

(4.42)

The combined matrix A1 is rectangular and of size (|Vleaves|× |E|). The least-square solution Θ̄
exist if rank(A) = |E|, which requires k ≥ 2.

4.8 Case 7: Four Layers, Two Edges per Node

The last network tree to be explored is based on the network tree in Section 4.6 and extended
with one more layer, making it four layers in total. There are two edges per internal node. The
total number of nodes is |V | = 8, the total number of edges |E| = 7, the number of internal
nodes |Vinternal | = 4, and the total number of end nodes is |Vleaves| = 4. The network can be
seen in Figure 4.8:

Figure 4.8: Four layers, two edges per node.

The method for deriving the steady-state equations remains the same, and the system of equa-
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tions will be:

θ1 L1 (Q
1
1)

2 +H1
2 −H1

1 = 0 (4.43a)

θ2 L2 (Q
1
2)

2 +H1
3 −H1

2 = 0 (4.43b)

θ3 L3 (Q
1
3)

2 +H1
4 −H1

2 = 0 (4.43c)

θ4 L4 (Q
1
4)

2 +H1
5 −H1

4 = 0 (4.43d)

θ5 L5 (Q
1
5)

2 +H1
6 −H1

4 = 0 (4.43e)

θ6 L6 (Q
1
6)

2 +H1
7 −H1

6 = 0 (4.43f)

θ7 L7 (Q
1
7)

2 +H1
8 −H1

6 = 0 (4.43g)

The internal pressure H2, H3 and H4 is removed from the set Equation (4.43), and we are left
with equations:

θ1 L1 (Q
1
1)

2 + θ2 L2 (Q
1
2)

2 = H1
1 −H1

3 (4.44a)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ4 L4 (Q
1
4)

2 = H1
1 −H1

5 (4.44b)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ5 L5 (Q
1
5)

2 + θ6 L6 (Q
1
6)

2 = H1
1 −H1

7 (4.44c)

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ5 L5 (Q
1
5)

2 + θ7 L7 (Q
1
7)

2 = H1
1 −H1

8 (4.44d)

Due to the large size of the system, the A matrix i split into A1 and A2

A1
1 =







L1 (Q1
1)

2 0 0
L1 (Q1

1)
2 L3 (Q1
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2 L5 (Q1
5)

2

L1 (Q1
1)

2 L3 (Q1
3)

2 L5 (Q1
5)

2






(4.45)

A1
2 =







L2 (Q1
2)

2 0 0 0
0 L4 (Q1

4)
2 0 0

0 0 L6 (Q1
6)

2 0
0 0 0 L7 (Q1

7)
2






(4.46)

where A1
1 is of size (|Vleaves| × |Vinternal |) and A1

2 is square and of size (|Vleaves| × |Vleaves|).
Combined the system is:
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(4.47)

The combined matrix A1 is rectangular and of size (|Vleaves|× |E|). The least-square solution Θ̄
exist if rank(A) = |E|, which requires k ≥ 2.



36

4.9 Generalization of Network Trees

The previous sections in Chapter 4 have shown how to derive network equations of many
variants of network trees. This has led to a proposal for a generalization of the system matrices
(AΘ = H) for a network of arbitrary size, which will be introduced in this section.

There will be one equation per leaf, where each equation holds the terms of the edges and
nodes from the root to the leaves. It is explained with an example from Section 4.8, looking
at Equation (4.44d):

θ1 L1 (Q
1
1)

2 + θ3 L3 (Q
1
3)

2 + θ5 L5 (Q
1
5)

2 + θ7 L7 (Q
1
7)

2 = H1
1 −H1

8 (4.48)

Here, it can be seen that; the left-hand side of the equal sign contains terms related to the
edgepath from node 1 (root) to node 8 (leaf). Each term is the friction parameter from the edge
multiplied with the length of the edge, and multiplied with the squared of the flow through
the edge. On the right-hand side of the equation is the difference in head pressure from node
1 (root) to node 8 (leaf).

The matrix A is to be built up by two matrices A1 and A2, such that A= [A1, A2]. Where the
first column in A1 consists of the terms of the friction parameter (θ) related to the edge of the
root. The other columns of a will consist of the terms related to the friction parameter (θ) for
the internal nodes of the network, i.e., not a leaf or end node. As seen when deriving equations,
the head measurements for the inner nodes can be removed. While the flow measurements
are kept for the edges, they can also be described with the sum of the root flow and the flow
from leaves. The size of A1 is (|Vleaves| × |Vinternal |).

A2 is to be square and only with elements on the diagonal. The elements of the diagonal are
the terms of the friction parameters (θ) of the edges connected to the leaves. The size of A2 is
(|Vleaves|×|Vleaves|). Combining the two matrices into A will give a matrix of size (|Vleaves|×|E|).
Each row of the system matrices will consist of elements from the shortest path from the root
to the leaf, or end node.

The Θ will consist of all friction parameters θ and is of size (|E|×1). The matrix H will be
the head pressure of the root, minus the corresponding head pressure of the end node. H has
the size (|Vleaves| × 1).

For k ∈ (0,∞) sets of data, the matrices would be stacked upon each other:

A=









A1
1 A1

2
A2

1 A2
2

...
...

Ak
1 Ak

2
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, and: H =
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
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Hk









(4.49)

The least-square solution Θ̄ exist if rank(A) = E, which may require k ≥ 2.



Chapter 5

Automated System Matrix Generation
of Water Network Trees

The setup of system matrices AΘ = H is automated with an algorithm using the generalization
of network trees uncovered in Section 4.9, and with the use of graph theory from Section 3.6.
The system matrices can be further processed in Matlab by first modelling the water network
in Epanet, exporting this model, and running the algorithm. The junctions will be represented
as nodes V, and pipes will be represented as edges E. The algorithm will use a combination of
available Matlab algorithms for graph theory and customise it to iterate through each node,
add symbolic variables to measurements such as head-pressure H and flow Q, and add friction
parameters θ to each edge. The algorithm will return system matrices A, Θ and H. The general
flow of the algorithm can be seen in Figure 5.1.

Figure 5.1: Flow chart: Algorithm to import and analyse network trees.

37



38

5.1 Step 1: Import Network Tree

The first step is to import the network tree as .INP file to Matlab. The "import network" process
reads the .INP file of the network system and creates a Matlab structured array that groups
data into data containers, such as junctions and pipes. The pipe data contains each pipe’s start
node, end node, and length and will form the basis of the network graph-object. Not all of
the keywords available in the .INP file structure (Table 3.1) are imported; at minimum, the
keywords of junctions and pipes must be imported.

5.2 Step 2: Find Leaves

The next step is to find the leaves or end nodes. The leaves are found by iterating through the
graph’s nodes and finding nodes with degree one (d(V ) = 1). All of the nodes are checked
except the root, or start node. If the degree of a node is 1, the node is stored in a list. A counter
is initialized at zero and incremented for every leaf that is found. Pseudocode of step 2 can be
seen in Algorithm 2:

Algorithm 2: Find leaves
Data: Graph G
Result: Number of end-nodes, and list of end-node ID
star t_node← 1;
end_nodes← 0;
End_nodes_I D← [];
for i← 1 to height(G.Nodes) do

if i == start_node then
continue;

end
if degree(G, i) == 1 then

end_nodes← end_nodes+ 1;
End_nodes_I D.append(G.Nodes.Name[i]);

end
end

5.3 Step 3: Shortest Path

As the system matrices are strongly dependent on both the path and edgepath from the root
to the leaves, the next step is to use the shortest path [36] algorithm to find and store paths
and edgepaths from start node, to all leaves. The list of leaves is passed from step 2 to step 3.
The pseudocode of step 3 can be seen in Algorithm 3.
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Algorithm 3: Finding Paths, Distances, and Edgepaths.
Data: Graph G, start_node, End_nodes_ID
Result: Paths_struct, Edgepaths_struct
Paths← struct();
Edgepaths← struct();
Distances← [];
for i← 1 to length(end_nodes_ID) do

end_node← end_nodes_ID[i];
[Path, D, Ed gepath]← shortestpath(G, start_node, end_node);
Paths_struct(i).Path← Path;
Edgepaths_struct(i).Edgepath← Edgepath;
Distances(i)← D;

end

The distance is stored, however it is not further processed as the information of the length
of each edge is already stored in the graph-object.

5.4 Step 4: Generate System Matrices

When all paths and edgepaths for all leaves are found, the last step is to create the system
matrices. As discussed in Section 4.9, the A matrix is built from two matrices, A1 and A2. The
two matrices is constructed step by step. The final system equations are extracted from the
information gathered in the previous steps and with the knowledge from Section 4.9. As an
example, the Equation (4.44d) is highlighted in red in the matrices below, and in Figure 5.2
the system equation would be:

θ1 L1 Q2
1 + θ2 L2 Q2

2 + θ3 L3 Q2
3 + θ4 L4 Q2

4 = H1 −H8 (5.1)

A1 =


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2 0
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3
L1 Q2

1 L2 Q2
2 L3 Q2

3




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


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Figure 5.2: Shortest path node 1 - node 8.

5.5 Epanet Network Tree Analysis Setup

Epanet is used to generate to .INP files and to verify the results of the solution to friction para-
meter steady state analysis. Therefore, this section will give an introduction to the modelling
and simulation in Epanet.

Figure 5.3: Example Epanet network analysis. Head pressure can be seen at each node, and
flow on the edges.

The hydraulic head loss in Epanet can be calculated with three formulas: Hazen-Williams,
Darcy-Weisbach or Chezy-Manning [40]. As the steady-state analysis in this paper is similar to
the Darcy Weisbach equation, this will be chosen as a reference. More information on the hy-
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draulic models in Epanet can be found in [41]. When a network is modelled in Epanet, several
parameters must be adjusted. Epanet assumes that all pipes are full at all times. There has to
be a reservoir, i.e., a source of water to supply the network. A pump can be connected to the
reservoir, or the reservoir can be raised above the network to provide head pressure. The latter
will be used in this project.

Below are the parameters for edges and nodes (pipes and junctions). The list does not fully
cover all of Epanet’s parameters.

• Node Input

◦ Base demand. This is a parameter for the flow demand of the junction. [l/s].
◦ Elevation. To set the height of each node, the default is 0. [m]
◦ Demand Pattern. The demand at each node for every hour of the simulation can be

pre-configured, enabling extended time-based analysis

• Node Output

◦ Actual demand. Actual flow demand to node. [l/s]
◦ Total head. [m]
◦ Pressure. If elevation is set to zero; head and pressure will be equal. [m]

• Edge Input

◦ Length. Length of each edge. [m]
◦ Diameter. Inner diameter of pipe. [mm]
◦ Roughness. Parameter to determine headloss in pipes. [mm]

• Edge Output

◦ Flow. Flow through the section. [l/s]
◦ Unit Headloss. Headloss through the Edge. [m]
◦ Friction factor. [−]

• Reservoir Input

◦ Total head. Parameter to adjust the head to network. [m]

• Reservoir Output

◦ Net Inflow. The sum of flows into the reservoir. Negative if water flows out of the
reservoir. [l/s]

◦ Elevation. Reservoir elevation is calculated based on the total head. [m]
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5.5.1 Comparing Friction Factor f from Epanet with Friction Parameter θ from
Steady State Analysis

Epanet can return the friction factor of each node, while the developed algorithm will re-
turn the friction parameter θ . Therefore, a formula to compare the calculated friction para-
meter θ and the simulated friction factor f is established. The Darcy Weisbach equation Equa-
tion (3.11) and θ for a single section of pipe Equation (4.7) is used, and the two equations
can be seen below.

∆H =
f ∆x Q2

2 g D A2
(5.2a)

∆H = θ L (Q)2 (5.2b)

where ∆x = L and a1 = gA. The two equations are put together and solved for f:

f L Q2

2 g D A2
= θ L (Q1)

2

f
2 g D A2

= θ

f = 2 g D A2 θ

(5.3)

where D is the diameter of each pipe and A is the area of the cross-section.

5.6 Orkanger Municipality Network Analysis

As part of the project, Orkanger Municipality has sent the water distribution network as .INP
file. The network file is to be analysed with the purpose of finding opportunities for the al-
gorithm introduced in Chapter 5. As previously seen in Section 3.7, the network file contains
information about junctions and pipes stored in keywords. Junctions will be represented as
nodes V, and pipes will be represented as edges E. After the network file is imported to Mat-
lab, the networks will be stored as graph-objects for further analysis. The result is presented in
Section 7.1.



Chapter 6

Recreation of Leak Detection
Algorithm

This chapter consist of the methodology of the leak detection algorithm from Carrera and Verde
[7]. The leak detection algorithm is recreated for the purpose of testing data from Orkanger
Municipality. The main ideas and models are presented and implemented in this chapter. In
addition, a section is dedicated to introduce the test data from Orkanger Municipality.

6.1 Transient Flow Model

The network tree for the system model can be seen in Figure 6.1, Le is the unknown distance
from node 1 to the point of the leak.

Figure 6.1: One section of pipe, unknown leak location Le.

The system model is based on the two PDEs from Section 3.2.4, Equation (3.9):

1
a1

∂Q(z, t)
∂ t

+
∂ H(z, t)
∂ z

+ J(Q(z, t)),θ ) = 0 (6.1a)

∂ H(z, t)
∂ t

+ a2
∂Q(z, t)
∂ z

= 0 (6.1b)

where a1 = g Ar and a2 =
a
a1

. The hydraulic gradient is chosen to be:

J(Q(z, t)),θ ) = θ Q(z, t)2 (6.2)

43



44

where θ is the friction parameter for the section of pipe. It is assumed that measurements of
head pressure and flow rates at the inlet and outlet of the section (H1, H2,Q1,Q2) are known
or available. The pipe section is broken into two sections, first from node 1 to Le, and from
node 2 to V2. The partial derivatives of each section are numerically approximated with theory
from (Section 3.1.2) over the length of the two sections, and three equations remain:

1
a1

∂Q1(t)
∂ t

+
HLe
(t)−H1(t)

Le
+ J(Q1(t)),θ ) = 0 (6.3a)

∂ He(t)
∂ t

+ a2

Q2(t) +QLe
(t)−Q1(t)

Le
= 0 (6.3b)

1
a1

∂Q2(t)
∂ t

+
H2(t)−HLe

(t)

L − Le
+ J(Q2(t)),θ ) = 0 (6.3c)

The time-derivatives are isolated at the left-hand side and inserting the hydraulic gradient
from Equation (6.2) into the system model from Equation (6.3):

Q̇1(t) =
a1

Le

�

H1(t)−HLe
(t)
�

− a1θ Q1(t)
2 (6.4a)

ḢLe
(t) =

a2

Le

�

Q1(t)−Q2(t)−Q le(t)
�

(6.4b)

Q̇2(t) =
a1

L − Le

�

HLe
(t)−H2(t)
�

− a1θ Q2(t)
2 (6.4c)

6.2 Estimating Friction Factor Parameter θ

An adaptive observer is used to estimate the friction parameter θ for the section. The system
model in Equation (6.4) is rewritten to the canonical form (Equation (3.21)), defining input
u, output y and unknown parameters to be estimated Θ as:

y =

�

Q1
Q2

�

, u=

�

H1
H2

�

, and: Θ =

�

θ

HLe

�

(6.5)

returning the system model for the adaptive observer:

ẏ =

� a1
Le

u1

− a1
L−Le

u2

�

︸ ︷︷ ︸

α(y,u,t)

+

�

−a1 y2
1 − a1

Le

−a1 y2
1

a1
LLe

�

︸ ︷︷ ︸

β(y,t)

Θ (6.6)

The friction parameter θ is then estimated with adaptive observer from Equation (3.22):

˙̂y = α(y, u, t) + β(y, t)Θ̂− ky( ŷ − y)
˙̂Θ = −kΘβ

T (y, u, t)( ŷ − y)T
(6.7)

where ky > 0, kΘ > 0 and where ||Θ̂−Θ|| → 0 if β is persistently exciting and β̇ is bounded.
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6.3 Estimating Leak Location Le

The purpose of this section is to introduce an EKF (Section 3.5.2) for estimation of the leak
location Le given a constant friction parameter θ . The state x , inputs u and measurements y
are defined as:

x =







Q1
Q2
HLe

Le






, u=

�

H1
H2

�

, and: y =

�

Q1
Q2

�

(6.8)

Further, it is assumed that the dynamic of the pressure at leak location, HLe
, is slower than

the dynamic of the flow measurements Q1 and Q2 (ḢLe=0) Carrera and Verde [7]. Giving the
augmented system model based on Equation (6.4) and state Le = 0:

ẋ =









a1
x4
(u1 − x3))− a1θ x1

a1
L−x4

(x3 − u2))− a1θ x2

0
0









, and: y =

�

1 0 0 0
0 1 0 0

�

︸ ︷︷ ︸

C

x (6.9)

This model is the basis for the EKF:

˙̂x = f ( x̂(t), u(t)) + K(t)[y(t)− C x̂(t)] (6.10)

where K is calculated from the solution of Equation (3.32a) as described in Section 3.5.2.
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6.4 Leak Detection Algorithm

Figure 6.2: Flow chart leak
detection algorithm.

The previous sections give the basis for the leak detection algorithm
from Carrera and Verde [7]; this section will introduce how the al-
gorithm for estimating the location of leak Le is organized. A flow-
chart of the algorithm can be seen in Figure 6.2. Conversion of ana-
logue data in discrete time is neglected in this flowchart. However,
more information is found in the report Carrera and Verde [7].

The algorithm will estimate the friction parameter with the ad-
aptive observer introduced in Section 6.2. Every iteration, the leak
algorithm will determine if there is a leak detected based on the
difference in flow measurements:

||Q1 −Q2||< ϵ1 (6.11)

where ϵ1 is a tunable threshold parameter. If a leak is detected, the
friction parameter θ is locked, and the EKF is started to estimate
the leak location Le. When the error of the measured states and the
estimated states is below a threshold parameter ϵ2 the leak location
is returned:

e1 = ||Q1 − Q̂1||

e2 = ||Q2 − Q̂2||
e1 + e2 < ϵ2

(6.12)

6.4.1 Initialization and Tuning Parameters

The adaptive observer and the EKF must be tuned for optimal per-
formance. Regarding the adaptive observer, ky and kθ are tunable
parameters. In addition, the states have to be initialized.

The EKF also has parameters that need tuning. Covariance
matrices Q and R must be tuned after performance. In addition,
the parameter η > 0, and states initialized.

The remaining algorithm parameters can be seen in Table 6.1.
Matlabs built-in solver for differential equations, ode45 [42], is
used.

Parameter Value Unit Description
L 163.15 m Overall length
D 0.076 m Diameter of inner pipe
∆ H 2.25 m Height difference H1 and H2
g 9.81 m/s2 Gravitational acceleration
a 1330 m/s Pressure wave velocity

Table 6.1: Parameter for experiment data.
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6.5 Preparation of Data from Orkanger Municipality for Leak De-
tection Algorithm

Orkanger municipality has agreed to test the leak detection algorithm with data from a water
network section stretching from Orkanger sentrum (Nyhavna) to Kjøra. This section will be
considered as one section. A simplified map of the network can be seen in Figure 6.3.

Figure 6.3: Simplified network map; Nyhavna - Ofstad - Kjøra. Blue lines illustrates pipes. Map
from Kartverket [43].

The section starts at Nyhavna, where head pressure and flow measurements are measured
(Q1 and H1). From Nyhavna, the pipe is submerged until it reaches Ofstad; here, the line goes
onshore, and a branch is led off to supply the residents living there. Both head pressure and
flow are measurements at Ofstad. The main pipe continues submerged from Ofstad until it
reaches Kjøra, with a new set of sensors measuring head pressure and flow (Q2 and H2). All
available measurements can be seen in the simplified Figure 6.4.
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Figure 6.4: Nyhavna - Kjøra, instrumentation diagram.

Not all measurements seen in Figure 6.4, are available, and will not be used in the leak
detection algorithm. The branch at Ofsted will be treated as a leak (QLe

), with a known distance
L1 from Orkanger. Table 6.2a shows what sensors from Orkanger Municipality that are used
in the algorithm and their respective variable names. ∆h is the height difference between
Nyhavna sensors and Kjøra sensors.

Sensor name Variable name Location
PA088 PT01 H1 Nyhavna
PA088 FT96-701 Q1 Nyhavna
PV150 PT01 H2 Kjøra
PV150 FT97-701 Q2 Kjøra
MV126 FT65-701 QLe

Ofstad

(a) Orkanger measurements.

Parameter Value Unit
L1 8 196 m
L2 6 567 m
L 14 764 m
D 140 mm
∆h 8 m

(b) Parameters Orkanger.

Table 6.2: Variables and parameters Orkanger.



Chapter 7

Results

The result chapter is divided into three sections; The first section will focus on the algorithm
developed in Chapter 5, where different water network trees will be used as input, simula-
tion data generated and compared to the least square estimates. The second section is de-
voted to the results of the investigation of the Orkanger water network files. The third sec-
tion will demonstrate tuning and testing of the dynamic leak detection algorithm discussed in
Chapter 6.

7.1 Parameter Identification Matrices from Network Tree Algorithm

The algorithm for the automated setup of water network trees is tested on cases solved theor-
etically in Chapter 4, and the data is compared to simulated values from Epanet. The simulated
flow and head values is used to populate the matrices and calculate a least square estimate of
the friction parameter. Three cases will be discussed, case 1 (with two data from two sources),
case 2 and case 5.

7.1.1 Case 1: Numerical Values to Calculate Friction Parameter Based on Exper-
iment Data

As seen in Chapter 6, the Verde test experiment and the Orkanger network trees may be charac-
terised as case 1, with three nodes and two edges. The deduction of the network in Section 4.2
showed that there cannot be one unique friction parameter pr edge. The system matrices, in
this case, will be one single equation. The friction parameter θ is calculated with said Equa-
tion (4.7); thereafter, a model of case 1 is constructed in Epanet with matching data from the
experiment.
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Figure 7.1: Experiment flow and head pressure data: Q1 and H1 measured at inlet, Q2 and H2
measured at outlet.

The friction parameter is calculated using average flow (Q1) and head (H1 and H2) from
t = 75 to t = 100 where the flow is reasonably stable. The experiment data was collected
at 10 Hz, making it 250 measuring points that were used in the calculation. To have com-
parable data between manual calculations and Epanet, the friction factor f is calculated with
Equation (5.3). A plot of the experiment data can be seen in Figure 7.1.

Q1 = 13.0861 · 10−3 [m3/s]

H1 = 20.0143 [m]

H2 = 5.5116 [m]

θ = 517.2955 [s2/m6] (7.1a)

f = 0.0159 [−] (7.1b)
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The network is modelled in Epanet with similar values for flow and head to calculate the
friction factor. The simulated network can be seen in Figure 7.2. A reservoir is added in front
of the section and head pressure at node 1 is adjusted to H1. The demand on node 3 is set to
Q1. Other parameters, such as the lengths and inner diameter of the pipe, are also replicated
with the actual values from Table 6.1. The head pressure at node 3 is lastly adjusted with the
roughness parameter. Both edges 1 and 2 are set with the same value of roughness. The head
loss over edge 4, the section from the reservoir to node 1, is minimized by setting roughness
to zero and having a large diameter pipe.

Figure 7.2: Case 1: Epanet model of Verde experiment.

With these parameters set, Epanet calculates a friction factor f = 0.016, which is similar
to the manual calculation in Equation (7.1). The result will be discussed in Chapter 8.

7.1.2 Case 1: Numerical Values to Calculate Friction Parameter Based on Ork-
anger Data

The data from Orkanger can be seen in Figure 7.3. Due to data quality issues, the overall setup
explained in Chapter 6, could unfortunately not be used. This section will shortly explain the
issues with the data.

The data received for head H2 (MV126 PT01) is right before the branch to Ofstad, and not
at the Kjøra location. The data from flow sensor Q2 is placed right after the branch to Ofstad
(MV126 FT99-706); the actual water flow at Kjøra is unknown. Looking at the plot of the data
Figure 7.3, H2 is about 10 m larger than H1. That is not correct, as the pressure should drop,
not increase, over the section from Nyhavna to Ofstad. The finding was shared with Orkanger
to see if the sensors had been calibrated correctly. A bias was discussed as the reason for the
higher head at Ofstad, however, while the head sensor at Nyhavna (PA088 PT01) and the head
sensor at Kjøra (PV150 PT01) are located at∆h= 8, the head sensor at Ofstad (MV126 PT01)
is approximately at ∆h = 0. As the sensors are both placed at the same height it is not the

Sensor name Variable name Location
PA088 PT01 H1 Nyhavna
PA088 FT96-701 Q1 Nyhavna
MV126 PT01 H2 Ofstad
MV126 FT99-706 Q2 Ofstad
MV126 FT65-701 QLe

Ofstad

Table 7.1: Orkanger measurements updated.
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reason for the bias.
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Figure 7.3: Data Orkanger: Flow and head pressure.

Looking at Figure 7.3, it can be seen that the flow Q1 is changing from around zero l/s
to between 2.5− 3l/s with a recursive interval of approximately 2500 seconds lasting about
1000 seconds each. This behaviour was discussed with Orkanger representatives and they
explained that it was due to a filling schedule for a height reservoir used to keep pressure
and supply for consumers at Kjøra. When the reservoir is filled, the head H2 at Ofstad drops
with approximately 5m. This is reasonable behaviour and comperable to the behaviour in the
experiment data in Figure 7.1. The head H1 at Orkanger, on the other hand, is without a head
drop. This indicates that H1 and H2 are decoupled, while there should, in reality, have been a
significant head drop also at H1 when the filling of the reservoir starts. This was also discussed
with representatives from Orkanger, and it was investigated at the location; There is installed
a check valve right after the sensor, before the pump that supplies the network. Therefore, H1
does not read the correct head. A check valve is a valve where the flow can only pass one way.
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Other alternative head transmitters are considered at the time this thesis was written.
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Figure 7.4: Data Orkanger: Flow in/out.



54

7.1.3 Case 2 Verification

Case 5 introduced in Section 4.3 is modelled in Epanet and exported as a network file. The
network file is imported to Matlab. The roughness on each edge is set to 0.1, and the diameter
of the sections is set to 110mm. The demand on end nodes is set according to Table 7.2:

Node ID Demand [l/s]
3 7.0
4 6.0

Table 7.2: Initial flow demand case 2.

After running the algorithm the graph and network matrices in Figure 7.5 are produced.

(a) Epanet model, with flow on edges, and head on nodes.

(b) Network tree graph model Matlab. (c) Resulting Network Matrices.

Figure 7.5: Case 2: Epanet model, parameter matrices and graph plot.

The values of C# in Figure 7.5c are equivalent to L# for each edge; the numerical values
are stored in the graph object for each of the edges so that they can be retrieved when needed.
As seen in Section 4.3, with only one set of data, the matrice A will be rank-deficient. That is
also confirmed by numerical calculations with flow figures from Table 7.2; The rank of A = 2
with only one dataset, A has size (2× 3). It is evident that the maximal rank is 2. Therefore,
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the least square solution of Θ must be used. A1 and A2 matrices can be seen below:

A1 =

�

0.0154 0.0098 0
0.0154 0 0.0087

�

, A2 =







0.0154 0.0098 0
0.0154 0 0.0087
0.0156 0.0092 0
0.0156 0 0.0097






(7.2)

To have varying data from Epanet to be used in the parameter calculations, demand patterns
are constructed. The patterns used in Epanet for simulating case 2 can be seen in Table 7.3. The
base demand of the node is multiplied by the multiplier at each step. Node 1 gets multiplier
pattern 1, and node 2 gets multiplier pattern 2.

Time Period 1 2 3 4 5 6 7 8 9
Multiplier pattern 1: 1.0 0.97 0.95 0.92 0.90 0.95 1.02 1.05 1.1
Multiplier pattern 2: 0.9 0.95 1.02 1.05 1.1 1.0 0.97 0.95 0.92

Table 7.3: Demand pattern table for nodes.

The resulting friction parameter Θ̄ and friction factor f with 9 sets of data (k = 9) are:

Θ̄ =





113.5238
108.5263
111.3286



 , f =





0.0221
0.0212
0.0217



 (7.3)

Figure 7.6 shows the plot of Θ̄ and friction factor f with growing number of data set. The
last plot in the figure shows the friction factor derived from Epanet. As seen on the last plot
the friction factor from Epanet is changing with flow and head. The result will be discussed in
Chapter 8.

fEpanet =





0.0213
0.0223
0.0232



 (7.4)



56

2 3 4 5 6 7 8 9

Number of samples

108

109

110

111

112

113

114

Friction Paramter  (Least Square Solution)

1

2

3

2 3 4 5 6 7 8 9

Number of samples

0.02

0.021

0.022

Friction Factor "f" (Least Square Solution)

f
1

f
2

f
3

2 3 4 5 6 7 8 9

Hour

0.02

0.021

0.022

0.023

0.024
Friction Factor "f" from Epanet

f
1

f
2

f
3

Figure 7.6: Case 2: Friction parameter and friction factor.



Chapter 7: Results 57

7.1.4 Case 5 Verification

Case 5 introduced in Section 4.6 is also modelled in Epanet and exported as a network file. The
network file is imported to Matlab. The roughness on each edge is set to 0.1, and the diameter
of the sections is set to 110mm. The demand on end nodes is set according to Table 7.4:

Node ID Demand [l/s]
4 7.0
5 6.0
6 5.0

Table 7.4: Initial flow demand.

After running the algorithm the graph and network matrices in Figure 7.7 are produced.

(a) Epanet model, with flow on edges, and head on nodes.

(b) Network tree graph model Matlab. (c) Resulting network matrices.

Figure 7.7: Case 5: Epanet model, parameter matrices and graph plot.

The values of C# in Figure 7.7c are equivalent to L# for each edge; the numerical values
are stored in the graph object for each of the edges so that they can be called upon if needed.
As seen in Section 4.6, with only one set of data, the matrice A will be rank-deficient. That is
also confirmed by numerical calculations with flow figures from Table 7.4; The rank of A =
3 with only one dataset, A has size (3× 5). Therefore, the least square solution of Θ must be
used.



58

A1 =





0.0310 0.0255 0.0075 0 0
0.0310 0.0255 0 0.0159 0
0.0310 0 0 0 0.0198



 (7.5)

To have varying data over to get more datasets, demand patterns are constructed. The
patterns used in Epanet for simulating case 5 can be seen in Table 7.5. The base demand of
the node is multiplied by the multiplier at each step. Node 1 gets multiplier pattern 1, node 2
gets multiplier pattern 2 and node 3 gets multiplier pattern 3.

Time Period 1 2 3 4 5 6 7 8 9
Multiplier pattern 1: 1.0 0.97 0.95 0.92 0.90 0.95 1.02 1.05 1.1
Multiplier pattern 2: 0.9 0.95 1.02 1.05 1.1 1.0 0.97 0.95 0.92
Multiplier pattern 3: 1.05 1.1 1.0 0.97 0.95 0.92 0.9 0.95 1.02

Table 7.5: Demand pattern table for nodes.

The resulting friction parameter Θ̄ and friction factor f with 9 sets of data (k = 9) are:

Θ̄ =











112.4049
106.3710
110.7014
112.6397
108.4459











, f =











0.0219
0.0207
0.0216
0.0220
0.0211











(7.6)

Figure 7.8 shows the plot of Θ̄ and friction factor f with growing number of data set. The
last plot of the figure shows the friction factor derived from Epanet. As seen on the last plot
the friction factor from Epanet is changing with flow and head. The result will be discussed in
Chapter 8.

fEpanet =











0.0208
0.0215
0.0232
0.0229
0.0228











(7.7)
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Figure 7.8: Case 5: Friction parameter and friction factor.
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7.2 Orkanger Municipality Water Network

The Orkanger Municipal water network is imported to Matlab and plotted as a graph object.
Two network files are received and investigated; the two files will be referred to as File 1 and
File 2, respectively.

There were significant differences between the two networks from the two files. File 1
contained |V1| = 2233 nodes and |E1| = 2435 edges. File 2 contained |V2| = 16522 nodes
and |E2|= 15868 edges. Both files were opened in Epanet. The plots of both File 1 and File 2
water networks can be seen in Figure 7.9. The black circles are junctions and the black lines
are edges.

(a) File 1: Epanet water network plot. (b) File 2: Epanet water network plot.

Figure 7.9: Epanet plot of File 1 and File 2. There are similarities between the two water
networks. The edge going out and upwards from the cluster is the section from Nyhavna to
Ofstad and onwards to Kjøra.

The graph plot of the two figures can be seen in Figure 7.10a and Figure 7.10b. An obser-
vation when plotting File 2 was that it contained several more disconnected graphs compared
to File 1. The graphs will be discussed in Chapter 8.
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(a) File 1: The water network consists of a few non-connected graphs. The
graph in the bottom left comprises most of the nodes. Some of the graphs are
trees; some are graphs with cycles.

(b) File 2: The water network consists of many non-connected graphs. The
graph in the bottom left comprises most of the nodes. Many of the graphs are
trees that comprise only a few nodes.

Figure 7.10: Graph-object plots of the two water network files from Orkanger.
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The two network files contained different keywords (Table 7.6). The keywords are in the
correct order relative to the two network files.

File 1 File 2
Title Title

Junctions Options
Reservoirs Junctions

Tanks Pipes
Pipes Pumps

Coordinates Valves
Valves Curves
Pumps Coordinates

VSD_pumps Vertices
Demands
Pattern
Status

Controls
Mixing

Reactions
Energy
Times
Report
Options

Table 7.6: File 1 and File 2 available keywords.

The available information found in the keywords for the two network files will be discussed
in Chapter 8.
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7.3 Dynamic Leak Algorithm

The leak detection algorithm was deployed using experiment data provided by Carrera and
Verde [7]. The purpose is to tune and verify its basic performance. After the initial tuning, it
was to be deployed using the data from Orkanger.

7.3.1 Verification and Tuning on Verde-experiment Data

The overall setup is explained in Chapter 6. As seen in Table 6.1, there is a height difference
between the two head pressure sensors. This difference is compensated for by adding the
height difference to the second measurement of head pressure: H2 = H2+∆H. The data from
the experiment is passed through a lowpass filter to remove high-frequency noise. After tuning,
the gain for the adaptive observer was set to:

ky = 7

kΘ = 5.5 · 109 (7.8)

The following covariance matrices and η were chosen for the EKF:

Q =







1 0 0 0
0 1 0 0
0 0 1 · 108 0
0 0 0 1 · 108






, R=

�

1 0
0 1

�

, and: η= 0.1 (7.9)

Figures 7.11 to 7.13 shows the plots of the resulting data. The performance of the leak
detection algorithm will be discussed in Chapter 8. The threshold parameter to decide if there
was a leak (ϵ2) is set to 1.5 · 10−6.
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Figure 7.11: Leak detection algorithm: adaptive observer leak location

As seen on the plot in Figure 7.11, there are two occasions where the threshold is met and
leak location is reported. That is, at t = 221.8 and t = 279.9. The respective location of the
leaks are reported as Le = 65.275m and Le = 61.030m. The actual location of the leak is at
65m. As seen in Figure 7.13, at approximately t = 170s, the adaptive observer state values
are frozen and passed to the EKF. At that time, the friction parameter was estimated to be:
θ = 519.
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The EKF was zero until the leak was detected. The actual flow and head measurements are
presented standalone in Figure 7.1. It can be seen that the leak was initiated at approximately
t ≈ 170 s, as ∆Q > 0. The leak detection was manually triggered by analysing the flow plots.
The method suggested in Carrera and Verde [7] was not used.
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Figure 7.12: Leak Detection Algorithm: Flow data from adaptive observer and EKF compared
in the same plot.
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7.3.2 Orkanger Data

Due to bad data quality, the leak detection algorithm could not be deployed using data from
Orkanger at this point in time. The data is explained in Section 7.1.2.





Chapter 8

Discussion

This chapter will discuss the method and the results presented in previous chapters.

8.1 Friction Parameter Identification of Network Trees in Steady
State

As seen in the Section 7.1, the network tree algorithm returns matrices for parameter identific-
ation for an imported network file. The matrices is built upon equations based on the simplified
flow model, with the assumptions seen in Section 3.2.4. There are some requirements for the
models that are imported that need to be complied with when modeling a network; All internal
nodes must be of higher degree than two (d(V ) > 2). If the degree is one, it is either a leaf
or a root. If the degree is two the produced A matrix will not be able to achieve rank equal to
number of edges. A proposal to avoid the issue is for the algorithm to recognize such nodes
and combine edges to form a single section. The implication of combining sections has not
been investigated further, one would expect that the sections shall have equal inner diameter,
as the inner diameter of the sections is used to calculate friction factor f . That is something
that needs investigated in further work.

No cycles in the graph is another important requirement. As the algorithm is designed
for rooted network trees, it is a prerequisite for the algorithm. However, this version of the
network tree algorithm does not check for cycles. Therefor it is important to be made aware
of that the results with a network file with cycles would be invalid. In addition to not having
cycles, the network tree must only contain the nodes and edges to be parameter identified.
For example, reservoirs and pumps must be removed from the network file or added after the
matrices are produced.

As seen the resulting matrices is generated based on the network file. Therefor the naming
convention (ID’s) is important for the nodes and edges. If the ID’s of the network model change,
the resulting matrices will also change correspondingly. Therefore, it is advised that the net-
work modelling must be done accurately and with the end product in mind. The matrices may,
of course, be manipulated after they are produced. As the algorithm uses the shortest path
from a start node to all leaves, it is important to declare the correct start node, other start
nodes may result in invalid system matrices.
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After the matrices are produced, sets of data, either measured in a real network or sim-
ulated values, should be used to verify that the A matrix’s rank is bigger than the number of
edges to ensure that the least square solution exists. The current algorithm requires that head
and flow measurements exist for the root, and the leaves. As it stands, the A matrices have
flow measurements from all edges implemented; these flow measurements are sums of flow
measurements of the root and the leaves of the network and can be simplified. However, this
must now be done manually by the user.

The implementation of the algorithm could most likely have been improved. A observation
made during initial programming was that the edges in the graph-object produced by Matlab
does not always have the same ID as the nodes and edge from the imported network file.
Therefore, several lines of code are used to keep the IDs consistent from the imported network
file, to the resulting matrices.

8.1.1 Verification of Friction Parameter Θ Case 1

The steady-state friction parameter was verified with three different network scenarios. The
first case, showed in Section 7.1.1, had a similar friction factor, fEpanet = 0.016, for the Epanet
model, and fss = 0.0159 ≈ 0.016 for the steady-state parameter model with input of average
flow Q̄ and head H̄ from the experiment data. The friction parameter was θss = 517.3 [s2/m6].
The friction parameter from the Adaptive Observer (θdyn) is slightly higher, with θdyn = 519 [s2/m6].
The corresponding friction factor fdyn is calculated with Equation (5.3):

fdyn = θdyn · 2gDA2 = 0.0159 (8.1)

corresponding to fdyn ≈ 0.016, which equals the friction factor of both steady-state calculated
and Epanet.

Unfortunately, the data from Orkanger could not be used to calculate friction parameters
for case 1. If there were data, it is expected that the friction parameter would not be equal to
the one calculated with the Verde data as the parameters such as length, diameter, flow, and
head are significantly different.

8.1.2 Verification of Friction Parameter Θ Case 2 and Case 5

The steady-state friction parameter calculation of case 2 and case 5 was also compared to fric-
tion factors from Epanet. However, unlike in case 1, there was no experiment data to compare.

Case 2 friction factor calculations from Epanet and the network algorithm did not give the
exact same results; there were some differences. The size of the fault due to the difference is
verified with Equation (3.11) by calculating head loss. Edge 3 of case 2 is chosen, as it had the
largest difference in friction factor.

The same parameters were used on the edge, as was used in Epanet: L = 300m, D =
110mm, and Q = 5.7 l/s (with multiplier 2, step 1). With friction factor from edge 3, f3,ss =
0.217, the corresponding head loss (∆H3, ss) is:

∆H3, ss =
L f Q2

2gDA2
= 1.0851 m (8.2)
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and with friction factor from epanet beeing f3, Epanet = 0.0232, the corresponding head loss
(∆H3, Epanet) is:

∆H3, Epanet =
L f Q2

2gDA2
= 1.1602 m (8.3)

The difference between the two head losses is 0.0750 m, which is minimal. However, it will
produce the wrong head pressure, which should be considered when modelling networks.

Similar comparisons for the friction factors in case 5 are not calculated in this thesis. How-
ever, as seen in Section 7.1.4, none of the calculated friction factors of the edges was equal to
the friction factor modelled in Epanet; they were equal to the second decimal.

8.1.3 Magnitude of Chosen Data Used in Verification

The magnitude of the measurement used as flow and head to verify the network model in
Epanet was based on the experiment data combined with the data from Orkanger. If the data
from Orkanger was usable, it should be used to verify different network scenarios. Alternat-
ively, research in the form of a literature review could be performed to find typical flow and
head values for industrial water consumers or private households. The multiplier table used to
simulate values in Epanet was choosen not to be larger then 1 ± 10 %. The reason was to keep
the flow values relatively stable. However, that did result in some variation in friction factors
that may been avoided if less variation in multiplier was chosen. The requirement for the flow
values are for the rank of A to be equal to number of edges.

8.2 Orkanger Municipality Network files

As seen in Section 7.2 the two network files received from Orkanger produced significantly
different graphs. One reason to the significant difference in the number of nodes and edges
between the two files is how the pipes have been modelled. For File 2, there are more curves to
the edges; every curve is approximated by multiple straight segments, leading to more nodes
and edges. Another difference between the two network files is the naming conventions. The
node and edge names were different, which makes it difficult to compare sections. And it will
make it hard to compare parameters if matrices were to be generated from the same sections.
The keyword Coordinates contains the north-east coordinates of each node. The keyword exists
in both File 1 and File 2. It may be used to compare the nodes between the network files.
However, it has not been tested in this project.

The network files contained very different keywords, which, in turn, means that they con-
tained different information. The steady-state network algorithm needs flow and head meas-
urements from the tree’s root and leaves to calculate the friction parameter Θ for the different
edges in the sub-tree. As seen in Table 7.6, neither File 1 nor File 2 contained specific informa-
tion about where/if sensors are placed. It is unsure if the files may be used to search for areas
where the steady-state network algorithm may be used; another approach would be to use
the experience of the representatives from Orkanger Municipality to find sections that may be
used. Similar to the approach of the Orkanger-Kjøra section.
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8.2.1 File 2: A large Number of Disconnected Graphs

The core issue of File 2 was the large number of disconnected graphs. This issue was investig-
ated to find a cause. One of the disconnected trees in the graph produced by File 2 was used
to find examples of node and edge IDs. File 2 was opened in Epanet to search for those IDs. It
was discovered that adding a new node to an edge requires a specific process; simply adding
the node to an existing edge to expand the network will produce a disconnected graph.

A simple network tree was created to verify the finding. When a node is added after the
completion of an edge, it does not automatically join the edges to the new node. To connect
the new node to the old edge, the edge has to be removed, and then the two new edges must
be added. Figure 8.1 shows the simplified network trees and the graphs produced by the two
trees using two different processes to add nodes.

(a) Correct process of adding nodes Epanet. (b) Incorrect process of adding nodes Epanet.

(c) Correct process of adding nodes graph. All
nodes in one tree

(d) Incorrect process of adding nodes graph. The
nodes are split into two trees

Figure 8.1: Two networks in Epanet produce different graphs.
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8.3 Leak Detection Algorithm

The leak detection algorithm performs well when tuned properly. However, slightly changing
parameters, such as changing the friction parameter from the one estimated by the adapt-
ive observer (θdyn), to the friction parameter estimated with the steady state analysis (θss),
produced very different estimated leak positions.

Running the leak detection algorithm with the exact same tuning parameters for the co-
variance matrices Q and R in the Extended Kalman Filter, and not changing the threshold
value ε2, but with the friction parameter from the steady state calculations, the leak location
algorithm gives an estimated leak location at Le = 75.38 at t = 221.8.

Running the leak detection algorithm again with the friction parameter from steady state
calculations (θdyn = θss), but increasing Q44 from 1 · 108 to 1 · 1010 gives an estimated leak
location Le = 63.544 at t = 203.6.

Divergence was also encountered when tuning both the adaptive observer and the exten-
ded Kalman filter. It is suggested to filter the data before using the leak detection algorithm, to
remove high frequency noise. As the test data was limited to a single time series, the extent of
the robustness of the tuning is unknown. It would be most interesting to test the leak detection
algorithm on actual data from Orkanger.

Although the friction parameter calculated with the steady state simplified formula (θss)
did not perform adequatly when used in the EKF on the test data, it should be investigated
further with more tests and different tuning; to possibly use the friction parameters calculated
from steady state data on larger trees, without using the adaptive observer to estimate the
friction parameters.

The threshold to detect leaks and transit from adaptive observer to the Extended Kalman
filter for the leak detection algorithm was not thoroughly tested in this master project and will
not be discussed.

8.3.1 Data from Orkanger

Unfortunately, for several reasons, no data from Orkanger could be used to test the dynamic
leak detection algorithm. The data itself was explained in Section 7.1.2. It was attempted to use
the data; one idea was to sum the flow from Kjøra and Ofstad and run the steady-state analysis
and the Adaptive Observer to compare friction parameters. However, with head H1 being lower
than H2, it would produce a negative friction parameter. Alternatively it was attempted to use
the section from Ofstad to Kjøra to calculate the friction parameter. However, the outlet head
H2 at Kjøra was not available.





Chapter 9

Conclusion

This master’s project aimed to identify friction parameters in tree-shaped water distribution
networks with minimal measurements available. An algorithm was developed with basis in
theoretical analysis of network trees and a simplified flow model. A prerequisite for the al-
gorithm is that head and flow measurements are available at the root and the leaves. The
algorithm successfully imports network files and generates system matrices where the friction
parameters can be calculated. Verification of the calculated friction parameters with simulated
friction factors were also conducted successfully. Suggestions for further development of the
algorithm for automated parameter identification of network trees is to investigate how graphs
with cycles can be included. Secondly it is suggested to include automated detection of nodes
with degree 2, (d(V )) = 2), such that the edges connected can be treated as one edge, and
a friction parameter for that edge can be calculated. The last suggestion is to make general
improvements to the implementation in Matlab.

Secondly, the master’s project has conducted an analysis of Orkanger Municipal water net-
work files to identify opportunities for friction parameters identification. As part of the invest-
igation, the network files were imported into Matlab and processed as graph-objects. It is con-
cluded that the network files need further processing before an algorithm can be deployed and
used. Suggestions for further processing of the water network files include reducing the num-
ber of disconnected graphs in file 2. The next suggestion is to develop algorithms to identify
and compare the IDs of nodes and edges in the two network files. It is suggested to collabor-
ate with Orkanger Municipal to include sensor information in the network files so it is easily
accessible.

Finally, the master’s project recreated the leak detection algorithm from Carrera and Verde
[7] and tuned it on experiment data. The results are promising, and the leak location was
identified with acceptable performance. It is noted that the leak detection algorithm is sensitive
to tuning parameters. The data from Orkanger was unfortunately unavailable. Suggestions for
further work related with the leak detection algorithm include deploying the leak detection
algorithm on data from Orkanger Municipal when it is available. Further it is suggested to
collaborate with Orkanger Municipal to investigate if other sections of their water network
meet the requirements for the leak detection algorithm.

73





Bibliography

[1] ‘Lekkasjer,’ Norsk Vann. (25th Aug. 2021), [Online]. Available: https://norskvann.
no/ledningsnett-og-teknologi/lekkasjer/ (visited on 28/05/2024).

[2] M. Steinberg, C. F. Nordheim, T. M. Lyngstad and K. Janak, ‘Rapportering av data for
vannforsyningssystemer i Norge for 2019,’ Folkehelseinstituttet, 2019. [Online]. Avail-
able: https : / / www . fhi . no / globalassets / dokumenterfiler / rapporter / 2020 /
rapport-om-vannforsyning-2019/vannverksrapport-for-2019.pdf.

[3] A. Flatin, A. Unhjem and K. J. Sola, ‘Experiences with leak detection and control,’
Norsk Vann BA, no. 171, p. 43, 30th Jun. 2009, ISSN: 1890-8802. [Online]. Available:
norskvann.no.

[4] Martin. ‘Water and sanitation,’ United Nations Sustainable Development. (), [Online].
Available: https://www.un.org/sustainabledevelopment/water-and-sanitation/
(visited on 28/05/2024).

[5] European Commission. Directorate General for the Environment., EU reference docu-
ment good practices on leakage management WFD CIS WG PoM: main report. LU: Pub-
lications Office, 2015. [Online]. Available: https://data.europa.eu/doi/10.2779/
102151 (visited on 28/05/2024).

[6] M. A. Adegboye, W.-K. Fung and A. Karnik, ‘Recent advances in pipeline monitoring
and oil leakage detection technologies: Principles and approaches,’ Sensors, vol. 19,
no. 11, p. 2548, Jan. 2019, Number: 11 Publisher: Multidisciplinary Digital Publishing
Institute, ISSN: 1424-8220. DOI: 10.3390/s19112548. [Online]. Available: https://
www.mdpi.com/1424-8220/19/11/2548 (visited on 28/05/2024).

[7] R. Carrera and C. Verde, ‘LabVIEW-based SCADA system for sequential leaks’ diagnosis
in pipelines,’

[8] L. Billmann and R. Isermann, ‘Leak detection methods for pipelines,’ Automatica, vol. 23,
no. 3, pp. 381–385, 1st May 1987, Number: 3, ISSN: 0005-1098. DOI: 10.1016/0005-
1098(87)90011-2. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0005109887900112 (visited on 22/02/2024).

[9] L. Torres, G. Besançon and C. Verde, ‘Leak detection using parameter identification,’
IFAC Proceedings Volumes, 8th IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes, vol. 45, no. 20, pp. 910–915, 1st Jan. 2012, ISSN: 1474-
6670. DOI: 10.3182/20120829- 3- MX- 2028.00070. [Online]. Available: https://

75

https://norskvann.no/ledningsnett-og-teknologi/lekkasjer/
https://norskvann.no/ledningsnett-og-teknologi/lekkasjer/
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2020/rapport-om-vannforsyning-2019/vannverksrapport-for-2019.pdf
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2020/rapport-om-vannforsyning-2019/vannverksrapport-for-2019.pdf
norskvann.no
https://www.un.org/sustainabledevelopment/water-and-sanitation/
https://data.europa.eu/doi/10.2779/102151
https://data.europa.eu/doi/10.2779/102151
https://doi.org/10.3390/s19112548
https://www.mdpi.com/1424-8220/19/11/2548
https://www.mdpi.com/1424-8220/19/11/2548
https://doi.org/10.1016/0005-1098(87)90011-2
https://doi.org/10.1016/0005-1098(87)90011-2
https://www.sciencedirect.com/science/article/pii/0005109887900112
https://www.sciencedirect.com/science/article/pii/0005109887900112
https://doi.org/10.3182/20120829-3-MX-2028.00070
https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://www.sciencedirect.com/science/article/pii/S1474667016348704


76

www . sciencedirect . com / science / article / pii / S1474667016348704 (visited on
29/05/2024).

[10] C. Verde, ‘Multi-leak detection and isolation in fluid pipelines,’ Control Engineering Prac-
tice, vol. 9, no. 6, pp. 673–682, 1st Jun. 2001, ISSN: 0967-0661. DOI: 10.1016/S0967-
0661(01)00026-0. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0967066101000260 (visited on 29/05/2024).

[11] O. M. Aamo, J. Salvesen and B. A. Foss, ‘OBSERVER DESIGN USING BOUNDARY IN-
JECTIONS FOR PIPELINE MONITORING AND LEAK DETECTION,’ IFAC Proceedings
Volumes, 6th IFAC Symposium on Advanced Control of Chemical Processes, vol. 39,
no. 2, pp. 53–58, 1st Jan. 2006, Number: 2, ISSN: 1474-6670. DOI: 10.3182/20060402-
4-BR-2902.00053. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S147466701635296X (visited on 22/02/2024).

[12] O. M. Aamo, ‘Leak detection, size estimation and localization in pipe flows,’ IEEE Trans-
actions on Automatic Control, vol. 61, no. 1, pp. 246–251, Jan. 2016, Number: 1 Confer-
ence Name: IEEE Transactions on Automatic Control, ISSN: 1558-2523. DOI: 10.1109/
TAC.2015.2434031. [Online]. Available: https://ieeexplore.ieee.org/document/
7109136 (visited on 26/02/2024).

[13] H. Anfinsen and O. M. Aamo, ‘Leak detection, size estimation and localization in branched
pipe flows,’ Automatica, vol. 140, p. 110 213, 1st Jun. 2022, ISSN: 0005-1098. DOI: 10.
1016/j.automatica.2022.110213. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0005109822000589 (visited on 22/02/2024).

[14] N. C. A. Wilhelmsen and O. M. Aamo, ‘Leak detection, size estimation and localiza-
tion in water distribution networks containing loops,’ in 2022 IEEE 61st Conference on
Decision and Control (CDC), ISSN: 2576-2370, Dec. 2022, pp. 5429–5436. DOI: 10.
1109/CDC51059.2022.9993208. [Online]. Available: https://ieeexplore.ieee.org/
document/9993208 (visited on 22/02/2024).

[15] N. C. A. Wilhelmsen and O. M. Aamo, ‘Explicit backstepping kernel solutions for leak
detection in branched pipe flows,’ IEEE Control Systems Letters, vol. 7, pp. 913–918,
2023, Conference Name: IEEE Control Systems Letters, ISSN: 2475-1456. DOI: 10.1109/
LCSYS.2022.3228952. [Online]. Available: https://ieeexplore.ieee.org/document/
9983797 (visited on 29/05/2024).

[16] N. C. A. Wilhelmsen and O. M. Aamo, ‘Explicit backstepping kernel solutions for leak
detection in pipe flow networks containing loops,’ in 2023 62nd IEEE Conference on
Decision and Control (CDC), ISSN: 2576-2370, Dec. 2023, pp. 5208–5215. DOI: 10.
1109/CDC49753.2023.10383406. [Online]. Available: https://ieeexplore.ieee.org/
document/10383406 (visited on 22/02/2024).

[17] R. M. Lesyshen, ‘Water transmission line leak detection using extended kalman filtering,’
Master thesis, University of Saskatchewan, 2005, 62 pp. [Online]. Available: http:
//hdl.handle.net/10388/etd-03242005-110841.

[18] S. Oven, ‘Leak detection in pipelines by the use of state and parameter estimation,’
Master thesis, NTNU, 2014, 62 pp. [Online]. Available: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/261148.

https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://www.sciencedirect.com/science/article/pii/S1474667016348704
https://doi.org/10.1016/S0967-0661(01)00026-0
https://doi.org/10.1016/S0967-0661(01)00026-0
https://www.sciencedirect.com/science/article/pii/S0967066101000260
https://www.sciencedirect.com/science/article/pii/S0967066101000260
https://doi.org/10.3182/20060402-4-BR-2902.00053
https://doi.org/10.3182/20060402-4-BR-2902.00053
https://www.sciencedirect.com/science/article/pii/S147466701635296X
https://www.sciencedirect.com/science/article/pii/S147466701635296X
https://doi.org/10.1109/TAC.2015.2434031
https://doi.org/10.1109/TAC.2015.2434031
https://ieeexplore.ieee.org/document/7109136
https://ieeexplore.ieee.org/document/7109136
https://doi.org/10.1016/j.automatica.2022.110213
https://doi.org/10.1016/j.automatica.2022.110213
https://www.sciencedirect.com/science/article/pii/S0005109822000589
https://www.sciencedirect.com/science/article/pii/S0005109822000589
https://doi.org/10.1109/CDC51059.2022.9993208
https://doi.org/10.1109/CDC51059.2022.9993208
https://ieeexplore.ieee.org/document/9993208
https://ieeexplore.ieee.org/document/9993208
https://doi.org/10.1109/LCSYS.2022.3228952
https://doi.org/10.1109/LCSYS.2022.3228952
https://ieeexplore.ieee.org/document/9983797
https://ieeexplore.ieee.org/document/9983797
https://doi.org/10.1109/CDC49753.2023.10383406
https://doi.org/10.1109/CDC49753.2023.10383406
https://ieeexplore.ieee.org/document/10383406
https://ieeexplore.ieee.org/document/10383406
http://hdl.handle.net/10388/etd-03242005-110841
http://hdl.handle.net/10388/etd-03242005-110841
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/261148
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/261148


Bibliography 77

[19] J. A. Delgado-Aguiñaga, V. Puig and F. I. Becerra-López, ‘Leak diagnosis in pipelines
based on a kalman filter for linear parameter varying systems,’ Control Engineering Prac-
tice, vol. 115, p. 104 888, 1st Oct. 2021, ISSN: 0967-0661. DOI: 10.1016/j.conengprac.
2021.104888. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0967066121001659 (visited on 29/05/2024).

[20] A. D. Polyanin, W. E. Schiesser and A. I. Zhurov, ‘Partial differential equation,’ Schol-
arpedia, vol. 3, no. 10, p. 4605, 10th Oct. 2008, ISSN: 1941-6016. DOI: 10.4249/
scholarpedia.4605. [Online]. Available: http://www.scholarpedia.org/article/
Partial_differential_equation (visited on 09/05/2024).

[21] A. Kværnø, ‘Partial differential equations and finite difference methods.,’ 11th Apr. 2020.
[Online]. Available: https://wiki.math.ntnu.no/_media/tma4130/2020h/pde.pdf
(visited on 20/03/2024).

[22] E. W. Weisstein. ‘Smooth function.’ Publisher: Wolfram Research, Inc. (), [Online]. Avail-
able: https://mathworld.wolfram.com/ (visited on 20/03/2024).

[23] C. Verde and L. Torres, Eds., Modeling and Monitoring of Pipelines and Networks, vol. 7,
Applied Condition Monitoring, Cham: Springer International Publishing, 2017, ISBN:
978-3-319-55944-5. DOI: 10.1007/978-3-319-55944-5. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-55944-5 (visited on 28/02/2024).

[24] M. H. Chaudhry, Applied Hydraulic Transients. New York, NY: Springer, 2014, ISBN:
978-1-4614-8538-4. DOI: 10.1007/978-1-4614-8538-4. [Online]. Available: https:
//link.springer.com/10.1007/978-1-4614-8538-4 (visited on 28/02/2024).

[25] J. Rojas, C. Verde and L. Torres, ‘Estimation of hydraulic gradient for a transport pipeline,’
Journal of Pressure Vessel Technology, vol. 143, no. 31801, 7th Oct. 2020, ISSN: 0094-
9930. DOI: 10.1115/1.4048322. [Online]. Available: https://doi.org/10.1115/1.
4048322 (visited on 10/05/2024).

[26] J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation. CRC Press, 1st Jan. 1990, 298 pp., Google-Books-ID: M9hTn3UAheQC, ISBN:
978-0-85274-319-5.

[27] E. Kreyszig, ADVANCED ENGINEERING MATHEMATICS, 10th. Columbus, Ohio: John
Wiley & Sons, Inc, 2011, 1283 pp., ISBN: 978-0-470-45836-5.

[28] G. Strang, LINEAR ALGEBRA AND ITS APPLICATIONS, Third. Massachusetts: Thomson
Learning, Inc, 1988, 516 pp., ISBN: 0-15-551005-3.

[29] G. Besançon, Nonlinear Observers and Applications. Springer-Verlag Berlin Heidelberg,
2007, 234 pp., ISBN: 978-3-540-73502-1. [Online]. Available: https://link.springer.
com/book/10.1007/978-3-540-73503-8 (visited on 09/05/2024).

[30] G. Welch and G. Bishop, ‘An introduction to the kalman filter,’ 2006.

[31] R. E. Kalman, ‘A new approach to linear filtering and prediction problems,’ Journal
of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1st Mar. 1960, ISSN: 0021-9223. DOI:
10.1115/1.3662552. [Online]. Available: https://doi.org/10.1115/1.3662552
(visited on 09/05/2024).

https://doi.org/10.1016/j.conengprac.2021.104888
https://doi.org/10.1016/j.conengprac.2021.104888
https://www.sciencedirect.com/science/article/pii/S0967066121001659
https://www.sciencedirect.com/science/article/pii/S0967066121001659
https://doi.org/10.4249/scholarpedia.4605
https://doi.org/10.4249/scholarpedia.4605
http://www.scholarpedia.org/article/Partial_differential_equation
http://www.scholarpedia.org/article/Partial_differential_equation
https://wiki.math.ntnu.no/_media/tma4130/2020h/pde.pdf
https://mathworld.wolfram.com/
https://doi.org/10.1007/978-3-319-55944-5
http://link.springer.com/10.1007/978-3-319-55944-5
http://link.springer.com/10.1007/978-3-319-55944-5
https://doi.org/10.1007/978-1-4614-8538-4
https://link.springer.com/10.1007/978-1-4614-8538-4
https://link.springer.com/10.1007/978-1-4614-8538-4
https://doi.org/10.1115/1.4048322
https://doi.org/10.1115/1.4048322
https://doi.org/10.1115/1.4048322
https://link.springer.com/book/10.1007/978-3-540-73503-8
https://link.springer.com/book/10.1007/978-3-540-73503-8
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552


78

[32] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition,
2nd ed. Trondheim: John Wiley & Sons, Inc, 2021, ISBN: 978-1-119-57505-4.

[33] K. Reif, F. Sonnemann and R. Unbehauen, ‘An EKF-based nonlinear observer with a
prescribed degree of stability,’ Autom., vol. 34, no. 9, pp. 1119–1123, 1998. DOI: 10.
1016/S0005- 1098(98)00053- 3. [Online]. Available: https://doi.org/10.1016/
S0005-1098(98)00053-3.

[34] J. Kleinberg and E. Tardos, Algorithm Design: Pearson New International Edition. Pearson
Education, 29th Aug. 2013, 828 pp., Google-Books-ID: ayOpBwAAQBAJ, ISBN: 978-1-
292-03704-2.

[35] S. G. Williamson and E. A. Bender, Lists, Decisions and Graphs. San Diego: University of
California, 2010, 261 pp. [Online]. Available: https://books.google.no/books?id=
vaXv_yhefG8C.

[36] ‘Shortest path between two single nodes - MATLAB shortestpath - MathWorks nordic.’
(), [Online]. Available: https : / / se . mathworks . com / help / matlab / ref / graph .
shortestpath.html (visited on 06/05/2024).

[37] ‘Breadth-first graph search - MATLAB bfsearch - MathWorks nordic.’ (), [Online]. Avail-
able: https://se.mathworks.com/help/matlab/ref/graph.bfsearch.html (visited
on 06/05/2024).

[38] O. US EPA. ‘EPANET.’ (24th Jun. 2014), [Online]. Available: https://www.epa.gov/
water-research/epanet (visited on 21/03/2024).

[39] ‘Units of measurement — EPANET 2.2 documentation.’ (), [Online]. Available: https:
//epanet22.readthedocs.io/en/latest/back_matter.html#command-line (visited
on 07/05/2024).

[40] ‘The network model — EPANET 2.2 documentation.’ (), [Online]. Available: https://
epanet22.readthedocs.io/en/latest/3_network_model.html (visited on 22/05/2024).

[41] ‘Analysis algorithms — EPANET 2.2 documentation.’ (), [Online]. Available: https:
//epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#analysis-
algorithms (visited on 24/05/2024).

[42] ‘Solve nonstiff differential equations — medium order method - MATLAB ode45 - Math-
Works nordic.’ (), [Online]. Available: https://se.mathworks.com/help/matlab/ref/
ode45.html (visited on 02/06/2024).

[43] ‘Norgeskart.’ (), [Online]. Available: https://www.norgeskart.no/#!?project=
norgeskart&layers=1005&zoom=10&lat=7040734.16&lon=246450.35 (visited on
03/06/2024).

https://doi.org/10.1016/S0005-1098(98)00053-3
https://doi.org/10.1016/S0005-1098(98)00053-3
https://doi.org/10.1016/S0005-1098(98)00053-3
https://doi.org/10.1016/S0005-1098(98)00053-3
https://books.google.no/books?id=vaXv_yhefG8C
https://books.google.no/books?id=vaXv_yhefG8C
https://se.mathworks.com/help/matlab/ref/graph.shortestpath.html
https://se.mathworks.com/help/matlab/ref/graph.shortestpath.html
https://se.mathworks.com/help/matlab/ref/graph.bfsearch.html
https://www.epa.gov/water-research/epanet
https://www.epa.gov/water-research/epanet
https://epanet22.readthedocs.io/en/latest/back_matter.html#command-line
https://epanet22.readthedocs.io/en/latest/back_matter.html#command-line
https://epanet22.readthedocs.io/en/latest/3_network_model.html
https://epanet22.readthedocs.io/en/latest/3_network_model.html
https://epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#analysis-algorithms
https://epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#analysis-algorithms
https://epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#analysis-algorithms
https://se.mathworks.com/help/matlab/ref/ode45.html
https://se.mathworks.com/help/matlab/ref/ode45.html
https://www.norgeskart.no/#!?project=norgeskart&layers=1005&zoom=10&lat=7040734.16&lon=246450.35
https://www.norgeskart.no/#!?project=norgeskart&layers=1005&zoom=10&lat=7040734.16&lon=246450.35



	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Objective
	1.2 Report Structure

	2 Literature Review
	3 Theory
	3.1 Partial Differential Equations
	3.1.1 Finite Difference method
	3.1.2 Numerical Differentiation

	3.2 Transient Flow Models
	3.2.1 Flow Characteristics
	3.2.2 Continuity Equation
	3.2.3 Momentum Equation
	3.2.4 Simplified Equations
	3.2.5 Steady State

	3.3 Linear Algebra
	3.3.1 Linear Least Squares

	3.4 Adaptive Observer
	3.5 Kalman Filter
	3.5.1 Extended Kalman Filter
	3.5.2 Continuous Extended Kalman Filter with Increased Convergence Domain

	3.6 Graph Theory
	3.6.1 Trees
	3.6.2 Shortest Path between Two Single Nodes

	3.7 Epanet

	4 Parameter Identification at Steady State in Various Network Trees
	4.1 Base Case: a Single Section
	4.2 Case 1: Two Layers, Three Nodes, Two Edges
	4.3 Case 2: Two Layers, Four Nodes, Three Edges, Two End Nodes
	4.4 Case 3: Two layers, Five Nodes, Four Edges, Three end-nodes
	4.5 Case 4: Two Layers, j Nodes, i Edges 
	4.6 Case 5: Three Layers, Two Edges per Node 
	4.7 Case 6: Three Layers, Nodes in Layer Two has j1 and j2 Nodes
	4.8 Case 7: Four Layers, Two Edges per Node
	4.9 Generalization of Network Trees

	5 Automated System Matrix Generation of Water Network Trees
	5.1 Step 1: Import Network Tree
	5.2 Step 2: Find Leaves
	5.3 Step 3: Shortest Path
	5.4 Step 4: Generate System Matrices
	5.5 Epanet Network Tree Analysis Setup
	5.5.1 Comparing Friction Factor f from Epanet with Friction Parameter  from Steady State Analysis

	5.6 Orkanger Municipality Network Analysis

	6 Recreation of Leak Detection Algorithm
	6.1 Transient Flow Model
	6.2 Estimating Friction Factor Parameter 
	6.3 Estimating Leak Location Le
	6.4 Leak Detection Algorithm
	6.4.1 Initialization and Tuning Parameters

	6.5 Preparation of Data from Orkanger Municipality for Leak Detection Algorithm

	7 Results
	7.1 Parameter Identification Matrices from Network Tree Algorithm
	7.1.1 Case 1: Numerical Values to Calculate Friction Parameter Based on Experiment Data
	7.1.2 Case 1: Numerical Values to Calculate Friction Parameter Based on Orkanger Data
	7.1.3 Case 2 Verification
	7.1.4 Case 5 Verification

	7.2 Orkanger Municipality Water Network
	7.3 Dynamic Leak Algorithm
	7.3.1 Verification and Tuning on Verde-experiment Data
	7.3.2 Orkanger Data


	8 Discussion
	8.1 Friction Parameter Identification of Network Trees in Steady State
	8.1.1 Verification of Friction Parameter  Case 1
	8.1.2 Verification of Friction Parameter  Case 2 and Case 5
	8.1.3 Magnitude of Chosen Data Used in Verification

	8.2 Orkanger Municipality Network files
	8.2.1 File 2: A large Number of Disconnected Graphs

	8.3 Leak Detection Algorithm
	8.3.1 Data from Orkanger


	9 Conclusion
	Bibliography

