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Abstract

The utilisation of cameras as guiding sensors for state estimation has become in-
creasingly prevalent during the last two decades with methods such as visual odo-
metry (VO), visual-inertial odometry (VIO) and simultaneous localisation and map-
ping (SLAM). Existing implementations for these methods are typically computa-
tionally demanding and unsuitable for nanoscale drones (≤ 10 cm in diameter and
≤ 50 grams in weight). Due to these platforms’ reduced computational resources
and power budget, a different mindset is required for the design and implementation
of these methods. This master’s thesis presents a bare-metal implementation for a
visual-inertial odometry pipeline running on a microcontroller with a clock speed of
1 GHz. The implementation is constructed under tight memory and runtime require-
ments, requires 3 MB of RAM and is tested against the EuRoC dataset. It achieves
comparable runtime performance and accuracy to state-of-the-art implementations
on more performant hardware.
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Sammendrag

Bruken av kameraer som veiledende sensorer for tilstandsestimering har blitt stadig
mer utbredt de siste to tiårene med metoder som visuell odometri (VO), visuell-
inertiell odometri (VIO) og simultan lokalisering og kartlegging (SLAM). Eksist-
erende implementasjoner for disse metodene er typisk beregningskrevende og uegnet
for nanoskala-droner (≤ 10 cm i diameter og ≤ 50 gram i vekt). På grunn av disse
plattformenes reduserte beregningsressurser og strømbudsjett kreves det en annen
tankegang for designet og implementasjonen av disse metodene. Denne masteropp-
gaven presenterer en "på-metallet"-implementasjon for visuell-inertiell odometri som
kjører på en mikrokontroller med en klokkehastighet på 1 GHz. Implementasjonen
er konstruert under strenge krav til minne og kjøretid, krever 3 MB hurtigminne og
er testet mot EuRoC-datasettet. Implementasjonen oppnår en kjøretid og nøyaktighet
som er sammenlignbar med de mest avanserte implementasjonene som kjører på mer
ytelsessterk maskinvare.
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Chapter 1
Introduction

This introductory chapter will present the motivation behind this master’s thesis and
its problem statement. It will also review the relevant literature in the academic field
before listing the contributions this thesis has made.

1.1 Motivation

Autonomous robots have become increasingly prevalent in various industries over the
last few decades, from the early developments targeted towards military use and space
exploration to automotive, agriculture, and consumer electronics such as drones. Due
to the increasing capabilities made possible by more performant computational units,
autonomous robots have been able to push the boundaries into more advanced and
complex tasks. To perform these tasks, there has been an increasing need for an ac-
curate representation of their state and the environment they operate in, popularly
called state estimation.

The use of cameras as guiding sensors for state estimation has become more
and more relevant in recent years as they have become cheaper, smaller, lighter, and
better. The early work, however, dates back to the 1980s [10–12]. A range of highly
accurate methods [13–21] has been developed to perform state estimation with visual
data for use in environments where other sensors — such as GNSS (global navigation
satellite system) receivers — are unsuitable. State estimation with visual data is often
referred to as visual odometry (VO), where the name relates to how wheel odometry
is used for state estimation of rovers. Methods have also been developed to include
auxiliary sensors such as inertial measurement units (IMUs) [13–15], referred to as
visual-inertial odometry (VIO). Moreover, during the last decade, there has been an
ongoing push into incorporating maps of the environment into these methods [17–
21], where the system uses the map to recognise where it has previously been. This
is popularly called SLAM (simultaneous localisation and mapping).

Processing visual input and performing state estimation is inherently computa-
tionally expensive, and the popular state-of-the-art implementations require perform-
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Chapter 1 — Introduction

Figure 1.1: Teledyne FLIR’s Black Hornet drone [22].

ant hardware. In the search for enabling more intelligent and more autonomous nano-
scale robots and drones (≤ 10 cm in diameter and ≤ 50 grams in weight), which
can perform inspections, aid search and rescue and accompany military operations
in tightly confined areas, these implementations are mainly unsuitable due to the
smaller weight and power budgets which the required compute units for these imple-
mentations do not fit within. This master’s thesis seeks to explore an implementation
of state estimation with cameras differently, closely related to a statement made by
Zhang et al. [23]:

We argue that scaling down VIO to miniaturised platforms (without sac-
rificing performance) requires a paradigm shift in the design of percep-
tion algorithms, and we advocate a co-design approach in which al-
gorithmic and hardware design choices are tightly coupled.

1.2 Problem Statement

Enabling state estimation with cameras on miniaturised platforms requires a great
concern of exploiting compute units to their fullest extent due to the complexity and
computational expensiveness of the algorithms. The compute units suitable on these
miniaturised platforms are not necessarily conventional processors, but rather micro-
controller units (MCUs), field programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs). Typically, microprocessing units (MPUs) are

2
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utilised within the bigger — but still small-scale — robotic domain, with examples
ranging from the NVIDIA Jetson family and Raspberry Pi to Hardkernel Co., Ltd.’s
ODROID. These compute platforms, despite their name, are crossing into the domain
of conventional processors: running conventional operating systems such as Ubuntu,
having multiple cores with clock speeds well above 1 GHz and requiring a significant
amount of power compared with what is available in the domain of miniaturised ro-
botics. Furthermore, these devices are often used due to the implementations for the
popular state-of-the-art methods for VO, VIO and SLAM — as well as other soft-
ware utilised in the domain of robotics — have been designed to run on conventional
operating systems.

FPGAs are programmable logic circuits, enabling the creation of application-
specific hardware for a given task and are often used for prototyping new hardware
solutions. They are also used for simulation or as accelerators due to their inher-
ent parallel processing capabilities. Whereas FPGAs can be re-programmed, ASICs
cannot. Application-specific integrated circuits — as given by their name — are de-
signed with a specific use case in mind at the hardware level and are often used as
accelerators for a greater system of compute units. ASICs can often result from a
prototype initially developed with an FPGA. The size, amount of power and com-
putational power of FPGAs and ASICs are thus dependent on the application. Still,
being inherently programmed or designed for a specific application, they can achieve
great performance at smaller power consumption levels, with the loss of not being
general purpose and often having to be accompanied by other compute units.

Microcontroller units share many similarities with MPUs, being general-purpose
compute units programmed in software rather than hardware. However, they reside in
a different domain than MPUs regarding hardware complexity, software complexity,
power consumption, size and price. MCUs are often used in applications requiring a
general-purpose, low-power, real-time and cheap control unit, with applications ran-
ging from the automotive industry and the space industry to home appliances. Unlike
MPUs, MCUs do not run conventional operating systems. They are programmed dir-
ectly, popularly called bare-metal. This firstly makes it easier for MCUs to abide by
real-time constraints — which is crucial in control applications — due to not having
the concern of a scheduler kicking in irregularly. Secondly, this makes it easier to
take greater advantage of the hardware than what is often possible on MPUs, allow-
ing for greater control over how memory is used and where data should be placed
in memory. MCUs are generally less powerful, smaller and require less power. Their
clock speed typically ranges from tens of MHz to 1 GHz for the most performant
MCUs, with RAM ranging between a few kilobytes to a few megabytes.

3



Chapter 1 — Introduction

This master’s thesis explores what can be made possible in the domain of state
estimation with cameras when the implementation can take greater advantage of the
hardware it runs on. It explores the use of MCUs for monocular VIO based on the
following arguments:

• MCUs make it easier to take full advantage of the hardware compared with
MPUs and use less power.

• MCUs are more general-purpose than FPGAs and ASICs, allowing for easily
including other aspects such as navigation and control, as well as being able to
draw inspiration from the vast amount of existing software within the field of
robotics.

• VIO is generally more accurate and robust than VO and less computationally
expensive than SLAM.

Thus, the problem statement this master’s thesis seeks to explore is how to enable
VIO on miniaturised platforms, using MCUs through tightly-coupled software-hardware
considerations in the implementation, where the use case is smaller and more autonom-
ous drones.

1.3 Related Work

This section will outline the related work to the problem statement of this thesis, fo-
cusing mainly on the MCU, ASIC and FPGA domains. The ideas from the ASIC and
FPGA domains are highly applicable despite the vastly different hardware platforms.
This section will also compare state-of-the-art VIO methods.

1.3.1 MCU Solutions

He et al. [24] proposed a VO method based on an RGB-D (colour and depth) cam-
era, where an STM32F767ZI with a 216 MHz Cortex-M7 and 512 KB of RAM is
used. The proposed visual odometry solution runs at 33 FPS with an image resol-
ution of 320 × 240. It utilises a modified edge-based detection algorithm, lookup
tables, sparse-to-dense tracking scheme instead of image pyramids and a thoroughly
minimised data representation within the non-linear solver to meet the MCU’s hard
compute and memory requirements. Even with these optimisations and approxima-
tions, the algorithm has comparable performance with other VO algorithms, such as
ORB-SLAM [19] (without loop closure enabled), at the cost of just 355 KB of RAM
usage.

Moreover, in Decroon et al.’s [25] work, they proposed a flapping wing robot
which utilises an onboard stereo vision system based on the STM32F405 micro-
controller. The microcontroller has a 168 MHz ARM Cortex-M4 core and 192 KB
of RAM. The vision system is used for obstacle avoidance on the robot to achieve
collision-free flight. The proposed method utilises 128× 96 images and can process
them at ∼ 11 Hz. That said, the vision system is not used for state estimation, it is
used as a strategy in blind flight: The robot does not know where it is but can avoid
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obstacles.
Somewhat related is also the Fünfiiber nano-drone project [26], where Müller

et al. proposed an open-source nano-drone platform based on the PULP platform.
However, the work is a proposition for a general-purpose computing platform for
nano-drones, not necessarily a specific solution for VIO, VO or SLAM. The preval-
ent use of MCUs in other academic works is mainly as auxiliary compute units for
control, requiring an extra conventional processor for state estimation [27, 28].

Contrary to the work by He et al., the work in this thesis is based on visual-inertial
odometry, using a colour-based camera and an IMU. This thesis also separates itself
from the work by Decroon et al. as a system targeted towards state estimation rather
than obstacle avoidance.

1.3.2 ASIC and FPGA Solutions

Within the ASIC and FPGA domain, there is a wide range of academic work [29–
33]. The work by Suleiman et al. [29] on the Navion chip stands out as one of the
most promising ASIC solutions for VIO. They heavily utilise the sparsity of the es-
timation problem, lossy compression of the image data, pre-integration of the IMU
measurements between keyframes and tightly packing of feature track data to reduce
computational cost and memory usage, achieving a VIO pipeline consuming 854 KB
of RAM with a trajectory error of 0.28%. The chip consumes, on average, 2 mW
whilst running the VIO pipeline on 752×480 stereo images from the EuRoC dataset
[9] at 20 FPS.

1.3.3 Industrial Solutions

In the industry, there are products such as Teledyne FLIR’s Black Hornet, which
has capabilities for vision-based navigation in GNSS-denied environments, e.g. in-
doors [34]. The hardware utilised on the Black Hornet is not public information, but
it serves as an example of an equivalent platform for which this master’s thesis is
situated around.

1.3.4 Comparison of State-Of-The-Art Methods

Delmerico and Scaramuzza [35] outlined a benchmark comparison study on the pop-
ular state-of-the-art methods for monocular VIO. The methods were compared on the
following platforms:

• A conventional consumer laptop with a quad-core 2.8 GHz Intel Core i7 pro-
cessor.

• The Intel NUC, a small form factor desktop computer with a dual-core 3.1 GHz
Intel Core i7 processor.

• The Up Board, a single-board computer with a quad-core Intel Atom processor
operating at 1.44 GHz.

• The ODROID XU4, an embedded system-on-chip with a quad-core 1.3 GHz
ARM Cortex-A7 MPU and a quad-core 1.9 GHz ARM Cortex-A15 MPU.
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Delmerico and Scaramuzza found that the state-of-the-art methods that stood out
in low computational cost were SVO+MSF [16, 36], SVO+GTSAM [16, 37, 38],
ROVIO [14], OKVIS [15] and MSCKF [13].

SVO (fast Semi-direct monocular Visual Odometry) [16] is one of the fastest
monocular VO methods in the field. However, due to the inherent unobservability of
the scale of a scene in monocular VO [39], it requires a way to make the scale ob-
servable. This is similar to how humans and animals with front-facing eyes perceive
depth better than animals with side-facing eyes. To alleviate this in the comparison
study, the method was bundled with the use of an IMU (which can render the scale
observable given sufficient excitation of the system) with two frameworks for sensor
fusion: the Multi-Sensor Fusion framework [36] and GTSAM [38]. These two vari-
ants demonstrate the two popular ways of doing sensor fusion: filter-based or factor
graph-based. SVO+GTSAM was shown to be the most accurate method among those
mentioned. However, SVO+MSF and SVO+GTSAM require a lot of memory, one of
the scarcest resources on MCUs, rendering them less feasible for such a platform.

ROVIO (Robust Visual-Inertial Odometry) [14] is a robo-centric method for VIO
with a filter-based sensor fusion framework. Compared with the other methods men-
tioned, it is accurate for higher-end platforms but requires high clock speeds.

OKVIS (Open Keyframe-based Visual-Inertial SLAM) [15] is a non-linear
optimisation-based method that can operate on both stereo and monocular cameras.
It is generally more accurate than ROVIO but has a much higher required processing
time per camera frame.

MSCKF (Multi-State Constraint Kalman Filter) [13] is a filter-based method for
VIO, where the geometric constraints occurring from observing a point in a scene
from multiple different viewpoints are exploited to estimate the position and orient-
ation of the system. MSCKF’s computational complexity is linear in the number of
features observed and has a low memory footprint whilst requiring a small amount of
processing time per frame, making it one of the more suitable methods to explore on
an MCU platform. That said, it is not one of the most accurate methods.

1.4 Contributions

This master’s thesis will not outline a new VIO method. It will draw inspiration
from the LARVIO project [2, 3] and the OpenVINS project [4]. Both these projects
are MSCKF implementations and utilise a computationally less expensive frontend
(the component processing the visual input). The frontends are based on FAST [40,
41] and Lucas-Kanade [42] for feature extraction and tracking instead of SIFT [43],
which is the method utilised in the original paper by Mourikis and Roumeliotis [13].

That said, even though this master’s thesis draws inspiration from these imple-
mentations, their ideas are heavily adapted by the constraints imposed by a hardware
platform with less computational power and resources, with various modifications
and optimisations influenced by these constraints. This master’s thesis’s primary con-
cern is tightly coupled software-hardware implementation details, which the reader
should keep in mind throughout the rest of this thesis.
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The work in this thesis builds upon the work of the author’s specialisation project
[1], where a frontend for a VIO pipeline was constructed based on the FAST feature
extractor and the pyramidal Lucas-Kanade feature tracker. The implementation was
tested on the NXP i.MX RT1160 MCU using the EuRoC dataset [9]. Thus, this thesis
will mainly focus on the development of the backend (which fuses the IMU data
with the camera data). The main contributions of the preceding specialisation project
were:

• A SIMD accelerated FAST feature extractor implementation (section 8.3.1).
• A memory-conservative pyramidal Lucas-Kanade feature tracker implementa-

tion which does not require two full image pyramids (section 8.3.2).

The main contributions of this thesis are:

• A highly memory-conservative BRIEF descriptor implementation where a sep-
arate copy of the image is not required (section 8.3.3).

• A multi-region allocator with prioritisation for fast memory access (section 8.4.2).
• A tightly coupled software-hardware optimised MSCKF-based backend (sec-

tion 8.4).

The code associated with the specialisation project and this master’s thesis can be
found on GitHub [44].

1.5 Outline

The rest of this thesis is outlined as the following. Chapters 2-7 summarises the rel-
evant background theory. Chapter 8 outlines the choice of the hardware platform,
a review of the frontend components made in the preceding specialisation project
among adaptions and additions and the implementation details of the backend. It also
outlines the runtime and memory optimisations made in the backend.

Chapter 9-11 presents how the pipeline was tested against the KITTI flow 2015
dataset [7, 8] and the EuRoC [9] dataset, accompanied by the results and a discussion.
Chapter 12 presents the conclusion and further work.
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Chapter 2
Rigid Transformations

This chapter will briefly outline the theory behind 3D rotations and 3D rigid trans-
formations, using the special orthogonal group SO(3), the 3-sphere group S3 and the
special Euclidean group SE(3).

2.1 Rotation Matrices

3×3 rotation matrices represent orientation around the origin of the three-dimensional
Euclidean space R3 and reside under the special orthogonal group of dimension 3:
SO(3). Rotation matrices are unitary, yielding that the vectors forming the basis of
the matrix are orthogonal. This gives the rotation matrices the following properties:

|R|= ±1 R−1 = RT (2.1)

With rotation matrices, a vector xb in frame b can be rotated to frame a by means of
matrix multiplication:

xa = Rabxb (2.2)

where the subscript for the rotation matrix is read right-to-left: from frame b to
frame a. Composition of rotations with rotation matrices is given by multiplying the
matrices together:

Rac = RabRbc (2.3)

2.2 Quaternions

Quaternions are four-dimensional components residing in the S3 group. They are de-
noted by q =
�

η εT
�T
=
�

w x y z
�T

, where η ∈ R is the scalar part and
ε ∈ R3 is the imaginary part. The full theory behind them is out of scope for this
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work (a more comprehensive guide can be found in the work by Solà [45]), but the
following will underline the needed components for this thesis. Note that this thesis
uses the Hamilton convention, where the quaternions have right-handedness and rep-
resent local to global rotation. Moreover, it should be noted that when quaternions
are used for spatial rotation, they are assumed to be unit quaternions with a norm of
one.

2.2.1 Multiplication

Multiplication of two quaternions is represented with the ⊗ operator, and given by:

q1 ⊗ q2 =

�

η1η2 − εT
1 ε2

η2ε1 +η1ε2 + ε1 × ε2

�

(2.4)

As with rotation matrices, the product qac = qab ⊗ qbc represents the composition
of rotating from frame c to frame b with the rotation from the frame b to the frame
a. Quaternion multiplication is not commutative: q1 ⊗ q2 ̸= q2 ⊗ q1. Quaternion
multiplication can also be expressed as two equivalent matrix products:

q1 ⊗ q2 = [q1]Lq2 q1 ⊗ q2 = [q2]Rq1 (2.5)

where:

[q]L =







w −x −y −z
x w −z y
y z w −x
z −y x w






[q]R =







w −x −y −z
x w z −y
y −z w x
z y −x w






(2.6)

If the real part of the quaternion is zero, this result becomes:

[q]L =

�

0 −εT

ε [ε]×

�

[q]R =

�

0 −εT

ε −[ε]×

�

(2.7)

2.2.2 Rotation Using Quaternions

Given a vector xb in frame b, the rotation bringing the vector to frame a is given by
the following quaternion product:

xa = qab ⊗ xb ⊗ q−1
ab = Rabxb (2.8)

where a slight abuse of notation is used: implicitly assuming that when xb is used in
the quaternion product, it represents the four-dimensional vector given by

�

0 xbT
�T

.
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2.2.3 The Derivative of a Quaternion

For a given axis-angle representation with the rotation angle α2 and axis λ, the qua-
ternion is defined as:

q=

�

cos α2
λ sin α2

�

(2.9)

which for small angles can be approximated as (where δθ := λα):

q=

�

1
λα2

�

=

�

1
1
2δθ

�

(2.10)

For an infinitesimal duration, one can treat rotation as additive:

ω= lim
δt→0

δθ

δt
(2.11)

This is utilised to express the derivative of the quaternion:

q̇= lim
δt→0

q(t +δt)− q(t)
δt

= lim
δt→0

q⊗δq− q
δt

= lim
δt→0

q⊗
��

1
δθ
2

�

−
�

1
0

��

δt

= lim
δt→0

q⊗
�

0
δθ
2

�

δt

=
1
2

q⊗
�

0
ω

�

(2.12)

where the third step follows from the fact that −q = q ⊗
�

−1
0

�

. The derivative can

be represented as a matrix product by utilising the right matrix product from equa-
tion (2.7):

Ω(ω) :=

�

0
ω

�

R
=

�

0 −ωT

ω −[ω]x

�

(2.13)

which yields:

q̇=
1
2
Ω(ω)q (2.14)
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2.3 Homogeneous Transformations

3D homogeneous transformations are combined 3D rotations and 3D translations
residing in the special Euclidean group of dimension 3: SE(3). Homogeneous trans-
formations give an elegant way to represent both the orientation and the position
(the pose) of an object in 3D space or the rotational and translational transforma-
tion between frames in 3D space. This is done by expressing every point in the 3D
Euclidean space by a four-dimensional homogeneous vector:

x̃=
�

x y z 1
�T ∈ R4 (2.15)

The transformation is then defined by the 4×4 homogeneous transformation matrix:

Tab =

�

Rab ta
ba

01×3 1

�

(2.16)

where the notation for the translation should be read as the translation vector from
frame a to frame b, expressed in frame a. This allows for transforming a vector in
frame b to frame a by matrix multiplication:

x̃a = Tabx̃b = Rabxb + ta
ba (2.17)
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Chapter 3
Visual-Inertial Odometry

Visual-inertial odometry concerns the problem of estimating the ego-motion of an
agent based on acceleration and angular velocity measurement from an IMU fused
with image data from a camera. In a VIO pipeline, a distinction is made between the
frontend and the backend. The frontend processes the image, whereas the backend
processes the information extracted by the frontend and fuses the information with
the measurements from the IMU.

3.1 Frontend

A frontend can either work indirectly or directly on the image data. An indirect fron-
tend uses the pixel intensities to build descriptors of certain areas in the image, here
called features. These descriptors are used to match features across multiple images.
A direct frontend also extracts features from certain areas of interest but does not
build descriptors. The feature tracking/matching is done by means of optical flow,
where the corresponding matched feature in another image is found by searching in
a local area around where the feature was in the original image. The distinction can
therefore be summarised as the following: an indirect frontend builds descriptors of
the image data to match features, whereas a direct frontend directly matches features
by using the pixel intensities.

3.2 Backend

The backend in a VIO pipeline can mainly take two forms: filter-based and factor
graph-based. Arguably, the main difference between filter-based backends and factor
graph ones is the horizon they operate on. Filter-based backends only relate the next
estimate to the previous estimate. In contrast, a factor graph keeps a range of estim-
ates in its graph, which all can contribute to refining the estimate of the current state
and correcting previous states. This can result in filter-based methods being less ro-
bust than factor graph-based backends at the benefit of being less computationally
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demanding.
Visual-inertial odometry methods are bound to drift since there is no long-term

data association for features. SLAM alleviates this by keeping a long-term map of
the features seen in particular keyframes. Thus, when the pipeline recognises that it is
currently at a location where it has been before, it can correct the drift accumulated
in its trajectory, as seen in figure 3.1. SLAM is, however, relatively computationally
demanding.

Figure 3.1: Demonstration of loop-closure in SLAM, where the agent finds itself in
a location it has observed before and can correct the drift in its estimates. The red
line is the estimate and the green line is the actual trajectory.

3.3 Scale Ambiguity

In a visual odometry method, where no IMU is utilised, the scale of the scene is not
observable [39]. Thus, the trajectory can only be correct up to a scale factor. Certain
methods require the scale to be initialised during initialisation. This can be problem-
atic if the scale is not observable throughout the rest of the estimation pipeline, as
drift in the scale can occur. Visual-inertial odometry alleviates this by utilising an
IMU. With sufficient excitation of the system, the scale can be rendered observable
due to having a scale-correct estimate of how far the agent has travelled between
camera frames.
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Chapter 4
Computer Vision Fundamentals

Computer vision is the field of utilising digital cameras to perceive and draw in-
formation out from the surrounding world. As image sensors have become cheaper,
smaller and better throughout the last few decades, research in the use of computer
vision has increased drastically. The use of digital cameras is heavily motivated by
the vast amount of information they provide compared to other sensors such as GNSS
receivers, IMUs and simpler LIDARs, giving them a tremendous amount of useful
applications. This section will outline some of the fundamentals in computer vision,
mainly the idealised lens model, how geometric constraints can be imposed between
different camera frames, distortion, extracting features and tracking features over a
range of images.

4.1 The Pinhole Camera Model

The pinhole camera model resembles the early works towards photography: the cam-
era obscura. A pinhole (here denoted by an aperture) lets light in from a scene which
is projected to an image plane, as seen in figure 4.1. The length from the aperture
to the image plane is the focal length, f . This section will outline the basics of the
pinhole camera model. For a more comprehensive examination, the work by Szeliski
[46] is highly relevant.

For convenience, a virtual image plane is used to represent the image in front
of the aperture. This construct is however purely a mathematical representation. As
the image in the image plane will be flipped upside down and inverted, the virtual
image plane alleviates this by representing the image in front of the aperture at the
focal length distance. A given world 3D coordinate x =

�

X Y Z
�T

thus maps to

the virtual image plane camera coordinate x∗ =
�

x y
�T

by using similar triangles:

x = f
X
Z

y = f
Y
Z

(4.1)
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[X , Y, Z]T

Virtual
image
plane

Image
plane

Principal
point/

Aperture

f

x⃗
y⃗

u⃗

v⃗

Figure 4.1: The pinhole camera model, where a virtual image plane is used to rep-
resent the scene in front of the aperture. Here,

�

X , Y, Z
�T

is a point in 3D space. x⃗
and y⃗ form the basis for the 2D space (in meters) where the projected point appears
on the virtual image plane. u⃗ and v⃗ form the basis for the same plane represented in
pixels.

x∗ is given in meters, which can be transformed to pixel coordinates by means of
scaling and translating:

u= sx x + cx v = sy y + cy (4.2)

Here (sx , sy) is the pixel width and height density per meter and (cx , cy) is the prin-
cipal point offset. The principal point offset is determined by the principal axis, the
line which is perpendicular to the image plane and passes through the aperture. The
principal point offset is thus given by the intersection point of the principal axis and
the image plane. Representing the pixel coordinates as homogeneous coordinates,
ũ=
�

ũ ṽ w̃
�T

, the projection is given by:

ũ= Kx=





f sx 0 cx
0 f sy cy
0 0 1









X
Y
Z



 (4.3)

The inhomogeneous representation is thus given by (u, v) = ( ũ
w̃ , ṽ

w̃). K is popularly
called the camera’s intrinsic matrix. Furthermore, for convenience with SE(3) op-
erations where homogeneous 3D coordinates are utilised, a projection matrix P is
needed:
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ũ= KPx̃=





f sx 0 cx
0 f sy cy
0 0 1









1 0 0 0
0 1 0 0
0 0 1 0











X
Y
Z
1






(4.4)

Further in the theory, the notation (u, v) = π(x̃) will be utilised as a shorthand for
the projection mapping homogeneous 3D coordinates to pixel coordinates, given by
equation (4.4) and de-homogenisation. The notation (u, v) = π(x) will likewise be
utilised if x is not homogeneous, given by equation (4.3) and de-homogenisation.

4.2 Epipolar Geometry

Epipolar geometry describes the geometric relationship between two perspective cam-
eras or between two images taken with a perspective camera at different viewpoints.
As seen in figure 4.2, the epipolar geometry defines the epipolar plane: the plane
spanned out from the origin of the left camera frame, right camera frame and an
arbitrary observed 3D point which is seen from both cameras.

cl
x

z

y

cr

x

rcl
xcl

ecl

rcr
xcr

ecr

xz

y

Figure 4.2: Two camera frames observing the same point in a 3D scene, where the
plane formed by cl , x and cr is the epipolar plane.

The baseline is given by the line joining the two camera frames cl and cr . Further-
more, the epipolar lines are where the epipolar plane intersects the image planes, here
denoted in red. The epipoles are where the baseline intersects the image planes, here
denoted ecl

and ecr
.

Observing the same 3D point from two different camera frames yields geometric
constraints on the transformation from cr to cl . These constraints are summarised in
a 3 × 3 matrix called the essential matrix. Let the transformation from frame cr to
frame cl be given by the following:
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Tcl cr
=

�

Rcl cr
tcl
cr cl

0 1

�

∈ SE(3). (4.5)

where tcl
cr cl

is the vector describing the baseline going from cl to cr and Rcl cr
is the

rotation from frame cr to frame cl . The normal vector of the epipolar plane can then
be described by the cross product of the homogeneous coordinate of the ray pointing
towards x in frame cl and the baseline vector: r̃cl

xcl
× tcl

cr cl
. Furthermore, as r̃cr

xcr
lies in

the epipolar plane, it must be perpendicular to the normal vector when expressed in
frame cl :

(r̃cl
xcl
× tcl

cr cl
) · (Rcl cr

r̃cr
xcr
) = 0 (4.6)

Utilising that a× b= [a]×b= −aT [b]×, this result becomes:

(r̃cl
xcl
)T [tcl

cr cl
]×Rcl cr

r̃cr
xcr
= 0 (4.7)

where the essential matrix is defined as Ecl cr
:= [tcl

cr cl
]×Rcl cr

, and thus encodes the
transformation between the frames. The inverse representation is given by the trans-
pose: Ecr cl

= ET
cl cr

. When utilising pixel coordinates, the fundamental matrix can be
used to describe the relationship between the frames:

(ũcl
xcl
)T Fcl cr

ũcr
xcr

(4.8)

where Fcl cr
:= K−T

cl
Ecl cr

K−1
cr

, Kcl
is the left camera’s intrinsic matrix and Kcr

is the
right camera’s intrinsic matrix.

Given known intrinsic matrices and point correspondences between two frames,
the essential matrix can be computed from e.g. the 8-point algorithm [47, 48]. If
the problem is over-determined, the essential matrix can be found by least-squares
optimisation and singular-value decomposition. Furthermore, singular-value decom-
position can also be used to extract the transformation the essential matrix encodes.
This will yield 4 solutions for the transformation. The correct solution can be found
by transforming the points into the scene and finding the solution which results in the
points being in front of both camera frames.

Once the essential matrix is found, it can be useful for finding new correspond-
ences. Given a feature represented by a homogeneous pixel coordinate ũcr

xcr
, the ho-

mogeneous representation of the epipolar line in the left image is given by: l̃cl =
Fcl cr

ũcr
xcr

. The corresponding pixel in the left frame must then lie along this line, rep-
resented by:

l̃=





a
b
c



 ⇒ ax + b y + c = 0 (4.9)
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4.3 Triangulation

If a given feature is observed in multiple images with sufficient motion between
where the images were captured, triangulation can be used to find an estimate for
the 3D position of the feature. Let the given 3D position in the camera frame ck be
denoted by pck . The relation to the 3D position of the feature in an anchor frame ca
is then given by:

pck = R(qckca
)pca + pck

ckca
(4.10)

where qckca
and pck

ckca
denotes the known or estimated orientation and translation from

frame ca to frame ck, respectively.

ca
x

z

y

ck

x
z

y

ck+1

x

xz

y

Figure 4.3: Three camera frames observing the same feature, where there are slight
imperfections due to uncertainty in the camera model. The goal of the triangulation
is to minimise the area spanned by the observation rays, to find a good estimate for
the point x.

Equation (4.10) can then be written as the following:
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pck = Z ca



R(qckca
)





X ca

Z ca
Y ca

Z ca

1



+
1

Z ca
pck

ckca





= Z ca



R(qckca
)





α

β

1



+ρpck
ckca





= Z ca





hk1(α,β ,ρ)
hk2(α,β ,ρ)
hk3(α,β ,ρ)





(4.11)

where α = X ca

Z ca , β = Y ca

Z ca and ρ = 1
Z ca . This leads to the following measurement

relation for the 3D position of feature pck when de-homogenising:

z∗k =





��Z ca hk1(α,β ,ρ)
��Z ca hk3(α,β ,ρ)
��Z ca hk2(α,β ,ρ)
��Z ca hk3(α,β ,ρ)





=

�hk1(α,β ,ρ)
hk3(α,β ,ρ)
hk2(α,β ,ρ)
hk3(α,β ,ρ)

�

(4.12)

By then minimising the squared norm of the error between the observed coordinate
and the triangulated coordinate, pca can be found:

pca = argmin
α,β ,ρ

(||zk − z∗k||
2
2) (4.13)

To minimise the squared norm, Levenberg-Marquardt [49] can be utilised. Other
methods also exist, such as Gauss-Newton. That said, Levenberg-Marquardt can be
more robust and offer better convergence as it works as a blending function between
standard gradient descent and the Gauss-Newton method [50]. For better conver-
gence, an initial guess for the triangulated point has to be made, which can be found
as the solution to a least-squares problem with the observation in the anchor frame
and the observation in the camera frame ck. During the minimisation, the jacobian
of the residual rk = zk − z∗k with respect to α, β and ρ is used to find the steepest
descent. It is given by:

∂ rk

∂ [ρ,β ,ρ]
=

∂ rk

∂ hk(ρ,β ,ρ)
∂ hk(ρ,β ,ρ)
∂ [ρ,β ,ρ]

(4.14)

where:
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∂ rk

∂ hk(ρ,β ,ρ)
= −

� 1
hk3(α,β ,ρ) 0 − hk1(α,β ,ρ)

hk3(α,β ,ρ)2

0 1
hk3(α,β ,ρ) −

hk2(α,β ,ρ)
hk3(α,β ,ρ)2

�

(4.15)

∂ hk(ρ,β ,ρ)
∂ [ρ,β ,ρ]

= R(qckca
)





1 0 0
0 1 0
0 0 0



+
�

03×1 03×1 pck
ckca

�

(4.16)

The minimisation can then be done as a combined problem where N observations
are related to the anchor frame, imposing a range of constraints on the features in the
anchor frame, as shown in equation (4.17) and illustrated in figure 4.3.

r=





rk
...

rk+N−1



 (4.17)

Finally, when a triangulation for the feature is found in the anchor frame, it can be
transformed into the world frame using the known or estimated transformation from
the anchor frame to the world frame.

4.4 Distortion

Image distortion occurs when there is a deviation from the straight line assumption
of the perspective camera model: that a straight line in the scene is represented as a
straight line in the image. This can occur due to deviations from the assumed per-
spective model and the physical aspect of the lens and sensor of a camera. If not
considered, the direct correspondence between a pixel and an observed point in the
scene cannot be made.

Distortion can be irregular or occur in patterns. Commonly, radial and tangential
distortion is assumed to be the main contributing factors of the distortion [46, 51, 52].
The image can be undistorted as a whole or the distortion model can be included as
an extra step in the camera model. Calibration of the camera has to be performed to
find the coefficients which determine the distortion.

4.4.1 Radial Distortion

Radial distortion is radially symmetric around the principal point of the sensor. Straight
lines in the scene are warped to appear curved in the image, with increasing effect fur-
ther from the principal point. Radial distortion is often classified into two main types:
barrel distortion and pincushion distortion, which can be observed in figure 4.4.

In barrel distortion, pixels are warped outwards increasingly from the principal
point. For pincushion distortion, the opposite is true. Radial distortion, due to radial
symmetry, is modelled after a polynomial. Let (xu, yu) be undistorted de-homogenised
normalised image coordinates. The distorted normalised image coordinates (xd , yd)
are then given by the model in equation (4.18) [55].
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(a) Barrel distortion, from [53]. (b) Pincushion distortion, from [54].

Figure 4.4: Examples of radial distortion.

�

xd
yd

�

= (1+ k1r2 + k2r4 + · · ·+ knr2n)

�

xu
yu

�

(4.18)

Here r =
Æ

x2
u + y2

u and ki are the radial distortion coefficients. In barrel distor-
tion, the coefficients ki will typically be positive, whereas they will be negative for
pincushion distortion. However, this depends purely on how the distortion model is
defined. If the distortion model is defined as the product of the distortion and the
distorted pixel, ki would typically be negative for barrel distortion and positive for
pincushion distortion. The number of distortion coefficients is up to the implementa-
tion, but care has to be taken into consideration to not over-fit the model to the data
used during calibration.

4.4.2 Tangential Distortion

Tangential distortion occurs when the camera sensor is not parallel to the camera lens,
which can be observed in figure 4.5. The tangential distortion can be modelled after
equation (4.19) [55].

Sensor Lens

Figure 4.5: Camera and lens not being parallel results in tangential distortion.
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�

xd
yd

�

=

�

xu
yu

�

+

�

2p1 xu yu + p2(r2 + 2x2
u)

2p2 xu yu + p1(r2 + 2y2
u )

�

(4.19)

Here p1 and p2 are the tangential distortion coefficients.

4.4.3 Combined Radial-Tangential Distortion

Combined radial-tangential distortion can be modelled after the Brown-Conrady model
[55, 56], as shown in equation (4.20).

�

xd
yd

�

= (1+ k1r2 + k2r4 + · · ·+ knr2n)

�

xu
yu

�

+

�

2p1 xu yu + p2(r2 + 2x2
u)

2p2 xu yu + p1(r2 + 2y2
u )

�

(4.20)

The inverse of equation (4.20) has no analytic form, however numeric approximations
can be found with iterative methods [57].

4.5 Feature Extraction & Tracking

Feature extraction is the process of finding distinct features in an image (typically
corners or areas of an image with strong gradients). Often, a blur is applied before
the feature extraction to remove noise from the image. Feature tracking/matching is
the process of finding a given feature extracted in image Ik in image Ik+1. This can be
observed in figure 4.6. The number of features to extract and track/match is up to the
implementation. Extracting more features can increase robustness for the rest of the
estimation pipeline, but has the downside of increased computational cost. Moreover,
if the feature extraction is done with a low threshold for the distinctiveness of the
features — yielding features which can be hard to track/match — more excessive
outlier rejection might be necessary for the tracker/matcher.

Figure 4.6: Feature extraction and tracking/matching between two images with
slightly different viewpoints (images are from the EuRoC dataset [9]).

Feature extraction and tracking pipelines are generally split into two main categor-
ies: direct or indirect. Moreover, each category can operate on the visual input in a
sparse or dense manner. The distinction between sparse and dense is the amount of
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data considered. A sparse method will only concern itself with certain areas of the
image, whereas a dense method typically operates on a much greater part of the im-
age or possibly the whole image. In this theory section, only sparse methods will be
discussed.

4.5.1 Indirect Sparse Methods

An indirect method extracts features from two images and builds descriptors — iden-
tifiers — for these features. It matches features seen in the two images by finding
features with the same descriptor.

Let the matched feature be given by the pixel coordinate pair uck−1 and uck in
camera frame ck−1 and ck, respectively. Furthermore, the estimated pixel coordinate
in frame ck, given by the corresponding feature pair pixel coordinate in frame ck−1
and the unknown transformation Tckck−1

, is given by: ûck = π(Tckck−1
π−1
�

uck−1
i )
�

. The
re-projection error — the error between the estimated and the observed feature pixel
coordinate — can then be used to find the transformation from N matched features,
as shown in equation (4.21).

Tckck−1
= argmin

Tck ck−1

N
∑

i=0

�

�

�

�ûck
i − uck

i

�

�

�

�

2
(4.21)

Examples of indirect sparse feature extractors and matchers are SIFT (scale-invariant
feature transform) [43], SURF (speeded up robust features) [58] and ORB (oriented
FAST and rotated BRIEF) [59]. Both SIFT and SURF are scale and rotation invariant
methods, which makes them quite robust. SURF was invented with inspiration from
SIFT, trying to alleviate that SIFT is rather computationally demanding. However,
SURF also suffers from being one of the most computationally demanding feature
extractors in speed and memory usage. Both are based on approximating the Lapla-
cian of Gaussian filter (which works as a blob detector). SIFT uses image gradi-
ents around a feature to build descriptors, whereas SURF uses wavelet responses of
patches around the feature. ORB utilises FAST [40, 41] for feature extraction and
rotated BRIEF [60] to build descriptors. FAST works directly on the pixel intensities
without filtering, making it one of the fastest feature extractors. BRIEF descriptors
are built by representing a patch of pixel intensities around the feature as a binary
string. The Hamming distance — the number of positions at which the bits are dif-
ferent in two binary strings — can then be used to compare the similarity of two
arbitrary features. ORB can be an order of magnitude faster than SIFT and SURF, to
a minimal cost of less robustness [61].

4.5.2 Direct Sparse Methods

A direct method will also extract features, but descriptors are not constructed. Rather,
the transformation between camera frame ck−1 and ck is found by utilising the pixel
intensities directly, hence the name. The photometric error is minimised rather than
the re-projection error, as shown in equation (4.22).
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Tckck−1
= argmin

Tck ck−1

N
∑

i=0

�

�

�

�Ick
�

π(Tckck−1
π−1(uck−1

i )
�

− Ick−1
�

uck−1
i

��

�

�

�

2
(4.22)

Here I(u) is the pixel intensity value in the image for the pixel coordinate u. The
transformation of the pixel coordinates in the two images is represented by a rigid
transformation in SE(3). However, an affine warp can also be applied.

4.5.3 The Distinction Between Indirect & Direct Sparse Methods

The mathematical difference between an indirect and a direct method lies in the fact
that a direct method will not necessarily perform explicit matching. Meaning, it does
not need features from frame ck since the only ones used are those from frame ck−1.
The direct methods are typically more efficient and have the benefit that all inform-
ation in the image can be exploited. That said, they can be less robust than indirect
methods when there is a great baseline or when scale and rotation must be considered.
Direct methods can alleviate this by imposing small movements between consecutive
camera frames. Moreover, a light-varying scene or exposure changes can also be-
come problematic for direct methods, where histogram equalisation of the image can
alleviate this to a certain degree.

4.5.4 Features From Accelerated Segment Test

Features from accelerated segment test or FAST is a feature extractor created by Ros-
ten and Drummond [40, 41]. It can be utilised in a direct frontend pipeline or an
indirect pipeline with an additional descriptor algorithm, as with ORB. It builds on
the principle of checking intensities around a candidate pixel to determine if that
candidate is a feature.

p
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Figure 4.7: FAST pattern. Courtesy of Rosten [62].
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Given the pixel intensity I(u) for a pixel coordinate u, let u be determined a feature
if there are 9 consecutive pixels within the FAST pattern around the pixel which all
are either less than I(u)− t or greater than I(u)+ t. t is denoted the threshold and can
be adjusted accordingly to allow for more features to be detected by keeping t low
or having a stricter test by keeping t big. This can be seen in figure 4.7, where there
are 9 consecutive pixels from index 14 to index 6 which all are greater than the pixel
candidate tested.

FAST is an efficient method as it allows for quickly rejecting candidates. The
requirement of 9 consecutive pixels allows assumptions to be made which can reject
candidates with few operations. Mainly, a possible solution needs to include at least
one of the pixels opposite each other (e.g. pixel 1 and pixel 9, pixel 5 and pixel
13 etc.), as seen in figure 4.7. If both pixels opposite to each other are within the
threshold given by [I(u)− t, I(u)+ t], the candidate cannot possibly be a feature. This
can be done incrementally for each opposite pixel pair, which yields 8 operations for
quickly rejecting a pixel before a more thorough test has to be done to check for
consecutiveness.

FAST is one of the most efficient feature extractors, but can suffer from poor
robustness as it is not invariant to scale and rotation. It does not require much memory
compared to SIFT and SURF, which use multiple instances of the image at various
levels of scale and blur.

4.5.5 Lucas-Kanade

Figure 4.8: Demonstration of optical flow tracking, from [63].

The Lucas-Kanade [42] algorithm is a direct feature tracking method (often called
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optical flow), which tracks features over a sequence of images. This can be seen
in figure 4.8, where pixels are tracked in a sequence of images from cars along a
motorway. One can e.g. see that the feature registered in the headlight of the front-
most Subaru has been tracked as it has driven along from the top of the bridge.

The fundamental idea behind the algorithm is based on the optical flow equation,
where it is assumed that the intensity consistency assumption holds. The intensity
consistency assumption assumes that a pixel’s intensity will not change between two
images, even though its spatial location change.

I(x , y, t) = I(x +δx , y +δ y, t +δt) (4.23)

A pixel’s intensity in the image is represented by the spatial and temporal locations.
The original pixel location and a delta thus yield the same pixel in the second image.
With the assumption that the movement of the pixel is small, the pixel intensity in the
second image can be represented by a first-order Taylor series expansion:

I(x +δx , y +δ y, t +δt) = I(x , y, t) +
∂ I
∂ x
δx +

∂ I
∂ y
δ y +

∂ I
∂ t
δt

0=
∂ I
∂ x
δx +

∂ I
∂ y
δ y +

∂ I
∂ t
δt

(4.24)

Dividing by δt yields:

0=
∂ I
∂ x
δx
δt
+
∂ I
∂ y
δ y
δt
+
∂ I
∂ t
δt
δt

0=
∂ I
∂ x

vx +
∂ I
∂ y

vy +
∂ I
∂ t

(4.25)

where (vx , vy) represents the flow vector: the pixel displacement from the first image
to the second image. The partial derivative of the image with respect to x and y
are given by horizontal and vertical gradients computed from convolving the image
Ik with derivative kernels (e.g. Sobel or Laplacian) [46]. The partial derivative with
respect to time is simply given by the difference of intensity values divided by δt.

Convolution of an image by a kernel G is represented mathematically by I ∗ G.
The operation is performed by sliding a kernel over the image where each entry the
kernel overlaps is multiplied with the corresponding entry in the kernel and summed
together. An example can be seen in the following illustration, where the image is
convoluted with a 3× 3 horizontal Sobel kernel to detect the edge (where the intens-
ities go from 0 to 1) in the image. To have the same input size and output size, a
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border has to be applied to the input, typically through extrapolation.
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Convolution with Sobel kernels thus represents spatial differentiation as it extracts
changes in intensity. In this example, only change in the x direction is extracted, but
the same can be done vertically — in the y direction — by the vertical Sobel kernel.
The Sobel kernels are given by:

Gx =





−1 0 1
−2 0 2
−1 0 1



 Gy =





1 2 1
0 0 0
−1 −2 −1



 (4.26)

The intuition behind the time derivative of an image can be built from the following
formal definition of a derivative:

∂ I(x , y)
∂ t

= lim
δt→0

I(x , y, t +δt)− I(x , y, t)
δt

(4.27)

As images are captured at discrete time points, both t and δt can be deemed to
represent integer values. Thus, the time derivative between two successive frames
then becomes:

∂ I(x , y)
∂ t

=
I(x , y, t + 1)− I(x , y, t)

1
= I(x , y, t + 1)− I(x , y, t)

(4.28)

Lucas-Kanade assumes that the displacement — or flow — is uniform within a small
neighbourhood of a pixel, often denoted as a patch. The number of pixels to include
in the patch is up to the implementation. More pixels can increase robustness, but will
also introduce extra computational cost. If the patch is too big, the assumption that
the flow is uniform might become less valid. Commonly, patch sizes of 7× 7, 9× 9,
11×11, 13×13 or 15×15 are used, but this heavily depends on the setting at hand.
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For brevity, let:

Ix(u) :=
∂ I(u)
∂ x

= I(u) ∗Gx (4.29)

Iy(u) :=
∂ I(u)
∂ y

= I(u) ∗Gy (4.30)

It(u) :=
∂ I(u)
∂ t

= I(u, t + 1)− I(u, t) (4.31)

Here u = (x , y). The constraint of equation (4.25) in the neighbourhood around the
pixel can then be written as:

Ix(u1)vx + Iy(u1)vy = −It(u1)

Ix(u2)vx + Iy(u2)vy = −It(u2)

...

Ix(un)vx + Iy(un)vy = −It(un)

(4.32)

In matrix form, the constrains are given by Av= b:

A=







Ix(u1) Iy(u1)
Ix(u2) Iy(u2)

... ...
Ix(un) Iy(un)






v=

�

vx
vy

�

b=







−It(u1)
−It(u2)

...
−It(un)






(4.33)

The system is over-determined due to having more equations than unknowns. There-
fore, Lucas-Kanade introduces a least-squares representation by pre-multiplying with
AT :

AT Av= AT b

v= (AT A)−1AT b
(4.34)

Equation (4.34) can then be written as:

�

vx
vy

�

=

� ∑

i Ix(ui)2
∑

i Ix(ui)Iy(ui)
∑

i Ix(ui)Iy(ui)
∑

i Iy(ui)2

�−1 �−
∑

i Ix(ui)It(ui)
−
∑

i Iy(ui)It(ui)

�

(4.35)

S := AT A is the structure tensor of the image at the pixel candidate. As Harris, Steph-
ens et al. formulated for the Harris-Stephens corner detector [64] and Shi and Tomasi
formulated for the Shi-Tomasi corner detector [65], the eigenvalues of the structure
tensor contains information about the properties of the feature candidate. If either
eigenvalue is significantly larger than the other, the pixel candidate lies on an edge,
whereas if both eigenvalues are small, then the region is uniform. If both eigenvalues
are large and approximately the same magnitude, the pixel candidate is defined as a
corner where displacement in both x and y yields a change in intensity. This can be
seen in figure 4.9.
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It is firstly necessary that the structure tensor is invertible and that both eigen-
values of the structure tensor abide by the constraint of λ1 ≥ λ2 > 0. Secondly, the
requirement of λ1≫ 0 and λ2≫ 0 as well as λ1

λ2
< D, where D is some not too large

threshold, will yield better feature candidates.

λ2

λ1

λ1 ≈ 0
λ2 ≈ 0

Uniform
region

λ2≫ λ1
Edge

λ1≫ λ2
Edge

λ1 ≈ λ2
λ1≫ 0,λ2≫ 0

Corner

Figure 4.9: Eigenvalues of the structure tensor. If the eigenvalues are both ≫ 0
and somewhat equal in magnitude, then there are strong gradients in the x and y
direction. This yields that the patch is situated around a corner as there will be a
non-insignificant change in intensity when traversing along the x and y direction. If
only one of the gradients is≫ 0, then there is a strong gradient in either the x or y
direction, yielding that the patch is situated around an edge. If the eigenvalues are
small, the patch is uniform with no strong gradients.

With optical flow, it is absolutely essential that sub-pixel intensity values are calcu-
lated to provide a robust estimate of the neighbourhood of the feature candidate when
the flow vector is applied. This can be done by means of bilinear filtering. Let a pixel
coordinate be given by the following:

x = x0 +αx y = y0 +αy (4.36)

where (x0, y0) represent the integer part of the coordinate and (αx ,αy) represents
the fractional part. The intensity value in an image is then given by:

I(x , y) = (1−αx)(1−αy)I(x0, y0) +αx(1−αy)I(x0 + 1, y0)+

(1−αx)αy I(x0, y0 + 1) +αxαy I(x0 + 1, y0 + 1)
(4.37)
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The Lucas-Kanade algorithm can be applied iteratively to make a more robust estim-
ate of the flow. The flow vector is then updated during each iteration. The algorithm
will terminate when the change in the flow vector is below a given threshold. With
this, the time derivative has to be re-calculated for the new estimate of the pixel co-
ordinate in the second image, as the intensities of the patch around the feature will be
given by I(ui + v). This will thus require bilinear filtering.

Lucas-Kanade assumes the pixel displacement is small between two images. This
can become error-prone for greater camera movements. To alleviate this, image pyr-
amids can be constructed where the images are downscaled at each level, as seen in
figure 4.10. At the upper levels of the image pyramid, greater pixel displacements will
be downscaled, so the assumptions of Lucas-Kanade are to a greater extent applic-
able. The displacement at each level is then propagated downwards in the pyramid,
upscaled and used as a constant bias, so the relative displacement at each level is
small.

Figure 4.10: Demonstration of an image pyramid, from [66].

The iterative Lucas-Kanade algorithm with image pyramids can be examined in al-
gorithm 1 (where an image at time instant k is represented by Ik). In the algorithm,
the vector gp stores the displacement from the previous level p + 1 upscaled by 2,
representing the constant bias carried over from each level.
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Algorithm 1 Iterative Lucas-Kanade algorithm with image pyramids

Input: Ik
p y r , image pyramid from image Ik

Input: Ik+1
p yr , image pyramid from image Ik+1

Input:
�

u1 u2 ... un
�

, feature’s neighbourhood pixel coordinates (including it-
self)

Input: P, number of pyramid levels
Input: ε, threshold for change in flow vector
Output: v, flow/displacement vector from feature in Ik to feature in Ik+1

1: for p← P − 1 to 0 do
2: gp← [0, 0]
3: end for

4: for p← P − 1 to 0 do
5: I k

p ← I k
p y r[p]

6: I k+1
p ← I k+1

p yr [p]

7: for i← 0 to N do
8: Ik

x(ui)← Ik
p(ui) ∗ Gx

9: Ik
y(ui)← Ik

p(ui) ∗ Gy
10: end for

11: v← [0, 0]
12: δv← [0, 0]

13: S←
�
∑

i Ik
x(ui)2
∑

i Ik
x(ui)Ik

y(ui)
∑

i Ik
x(ui)Ik

y(ui)
∑

i Ik
y(ui)2

�

14: while ||δv||2 > ε do
15: for i← 0 to N do
16: It(ui)← Ik+1(ui + v+ gp)− Ik(ui)
17: end for

18: b∗←
�

−
∑

i Ik
x(ui)It(ui)

−
∑

i Ik
y(ui)It(ui)

�

19: δv← S−1b∗

20: v← v+δv
21: end while

22: if p > 0 then
23: gp−1← 2(v+ gp)
24: else
25: v← g0 + v
26: end if
27: end for
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4.5.6 Binary Robust Independent Elementary Features

BRIEF (binary robust independent elementary features) [60] is a feature descriptor
based on building a binary string of the image data around a given feature. As shown
by Calonder et al., BRIEF vastly outperforms SURF [58] when it comes to compu-
tational time, with an equivalent recognition rate. It should be mentioned that BRIEF
is neither scale nor rotation invariant. However, there exist variants of BRIEF which
are rotation invariant, e.g. ORB.

Hamming distance is used to compare the descriptors, such that a feature in one
image can be matched with a feature in another image. This idea can also be used to
reject track outliers. Given e.g. a direct pipeline where the track of a feature diverges,
the descriptor of the feature in image frame Ik can be compared with the descriptor
in frame Ik+1 to detect the divergence.

The binary string is built from a pattern on a patch around the feature, where the
pattern is given by a set of N pixel coordinate pairs (u,v). Let the patch around the
feature be given by P. The following intensity test then gives each bit in the descriptor:

τ(P;u,v) :=

�

1 if P(u)< P(v)
0 otherwise (4.38)

yielding that the binary string can be constructed from:

η(P) :=
N
∑

i=1

2i−1τ(P;ui ,vi) (4.39)

Calonder et al. examined several different patterns and strategies for increasing the
recognition rate of the descriptor, showing that blur greatly contributes to the ro-
bustness of hard-to-match features. Relying on a random pattern was also shown to
increase the robustness, preventing over-fitting to a specific type of neighbourhood
around a feature. As mentioned, the pattern is constructed from a set of pixel co-
ordinate pairs (u,v), where the pattern can look something like what is shown in
figure 4.11. Typically, the set of pixel pairs is constructed from sampling a uniform
or Gaussian distribution.

u1

v1

u2

v2

u3

v3

u4

v4

Figure 4.11: Example of a BRIEF pattern.
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To compare descriptors, the Hamming distance is utilised. It is given by the number
of different bits in the descriptor strings and can be found by a logical XOR followed
by counting the number of bits set after the XOR. An example of a Hamming distance
of 4 can be seen in figure 4.12.

1

0

0

0

1

1

0

1

1

0

1

1

0

0

1

0

Figure 4.12: Demonstration of the Hamming distance for two 8-bit descriptors.

Rotated BRIEF

To make BRIEF rotation invariant, the moment of the patch can be utilised (note here
that (u, v) is a single pixel coordinate in the patch P, where the centre of the patch is
given by o= (0, 0)):

mpq =
∑

u,v

upvqI(u, v) (4.40)

This can be used to find the "centre of intensity" in the patch:

c=
�

m10

m00
,

m01

m00

�

(4.41)

A metric for the rotation of the patch can then be formed by means of the angle
between the line segment between c and o and a horizontal line spanning out from c,
as shown in figure 4.13.

o

c
θ

Figure 4.13: Angle between the centre of intensity and the origin of the patch.

The angle can then be constructed from the following:

θ = atan2
�

m01

m00
,

m10

m00

�

= atan2 (m01, m10) (4.42)
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where the last equality comes from the fact that 1
m00

acts solely as a scale factor for
the vector c. θ can then be used to rotate the patch to a canonical representation,
making the descriptor rotation invariant.
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Chapter 5
Probabilistic State Estimation

At the core of a visual-inertial odometry backend, a probabilistic state estimation
framework will reside. The objective of the framework is to utilise the measurements
in the pipeline to provide an estimate, x̂, which is as close to the true state x as pos-
sible, as well as providing an estimate of the uncertainty of the estimate. This section
will outline the basics of probability theory, the normal distribution, the chi-squared
distribution as well as derive the Kalman Filter and the Extended Kalman Filter,
which is used to estimate the state for linear and non-linear systems, respectively.

5.1 Basic Probability Theory

A stochastic variable x is modelled in the probability theory as a variable abiding
some probability density function (PDF). The PDF is a continuous function mapping
the likelihood of which observations one can make of x , denoted by p(x = x ′),
where x ′ is the realisation of x . The cumulative distribution function, here denoted

by P(x ≤ x ′) =
∫ x ′

−∞ p(x = x ′)d x ′, signifies the probability of x being less than
the value x ′. Thus, the probability of x residing within the interval a to b is given
by P(a ≤ x ≤ b) = P(x ≤ b) − P(x ≤ a). The PDF must abide by the constraint
that
∫∞
−∞ p(x = x ′)d x ′ = 1, meaning that there must be a 100% chance that when

all outcomes are considered, the stochastic variable will fall somewhere in that given
range of all its possible outcomes.

Stochastic variables are often parametrised by their expected value, and their vari-
ance, σ2. The expected value follows the definition of a weighted average and can be
understood as the most likely outcome of the stochastic variable x .

E[x] =
∫ ∞

−∞
x ′p(x = x ′)d x ′ (5.1)

Furthermore, the variance is given by the stochastic variable minus the expected
value, squared, as shown in equation (5.2). It can be understood as a measure of the
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P(a ≤ x ≤ b)

a b
x ′

p(x = x ′)

Figure 5.1: The PDF of a log-normal distribution. The integral of the interval a to b
yields the probability of finding x within that region.

spread in the outcomes of the stochastic variable x . Moreover, the standard deviation
of x , denoted σ, is given by the square root of the variance.

σ2 := E[(x −E[x])2] =
∫ ∞

−∞
(x ′ −E[x])2p(x = x ′)d x ′

=

∫ ∞

−∞
(x ′2 − 2x ′E[x] +E[x]2)p(x = x ′)d x

=

∫ ∞

−∞
x ′2p(x = x ′)d x ′ −E[x]

∫ ∞

−∞
2x ′p(x = x ′)d x ′

+E[x]2
∫ ∞

−∞
p(x = x ′)d x ′

=

∫ ∞

−∞
x ′2p(x = x ′)d x − 2E[x]2 +E[x]2

=

∫ ∞

−∞
x ′2p(x = x ′)d x ′ −E[x]2

(5.2)

5.2 The Normal Distribution

The normal distribution is a continuous probability distribution whose PDF follows
a bell curve. The normal distribution is often also called the Gaussian distribution,
and the names will be used interchangeably in this thesis. It is symmetric around its
expected value(s) and is widely used within state estimation and various applications
of probability theory due to its abundance in the world. The abundance comes from
the central limit theorem, which states that given a sufficiently large sample of a given
population with an expected value µ and a standard deviation σ, the sample average
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tends towards a normal distribution. For a given sensor such as an accelerometer, the
central limit theorem thus states that the error between the actual acceleration and the
measured acceleration tends towards a normal distribution, which is a widely used
assumption for state estimation within robotics.

µ−σ µ µ+σ
x ′

p(x = x ′)

Figure 5.2: The PDF of a normal distribution centred around the mean µ with a
variance σ2 = 1

The PDF of the normal distribution is given by:

p(x = x ′) =
1

σ
p

2π
e−

1
2 (

x′−µ
σ )

2
(5.3)

A particular stochastic variable x being normally distributed is denoted by x ∼
N (µ,σ2), parametrised by its expected value µ and variance σ2. The standard nor-
mal distribution is given by a normal distribution with mean 0 and variance of 1:
N (0, 1). Furthermore, a linear combination of normally distributed stochastic vari-
ables is also normally distributed, as well as the joint probability of multiple normally
distributed stochastic variables.

The multidimensional stochastic normal variable x∼N (µ,Σ) is given by a range
of scalar normally distributed stochastic variables, where µ =

�

µ1 µ2 . . . µN
�T

and the covariance Σ follows the same definition as for the variance, just with vec-
tors instead of scalars. The covariance matrix captures the individual variance of each
scalar stochastic variable and the cross-correlation between them. Thus, if the vari-
ables are independent, the covariance matrix reduces to a diagonal matrix with the
respective independent stochastic variables’ variance along the diagonal.

Σ := Cov[x,x] = E[(x−E[x])(x−E[x])T ] (5.4)

The PDF for a multidimensional stochastic normal variable is given by:

p(x= x′) =
1
p

(2π)n|Σ|
e−

1
2 (x
′−µ)TΣ(x′−µ) (5.5)

For a given linear mapping y = Ax, the stochastic multidimensional variable y will
be distributed according to N (Aµ,AΣAT ), which can be derived from the definition
of the expected value and covariance, as shown in equation (5.6) and equation (5.7).
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x ′1

x ′2

Figure 5.3: The joint PDF of a two-dimensional normally distributed stochastic vari-
able.

E[y] = E[Ax] = AE[x] = Aµ (5.6)

E[(Ax−E[Ax])(Ax−E[Ax])T ] = E[(Ax−AE[x])(Ax−AE[x])T ]

= E[A(x−E[x])(x−E[x])T AT ]

= AE[(x−E[x])(x−E[x])T ]AT

= AΣAT

(5.7)

5.3 The Chi-Squared Distribution

The Chi-Squared, or χ2, distribution is defined as a stochastic variable consisting of
the sum of k squared standard normal stochastic variables:

Q =
k
∑

i=0

z2
i zi ∼N (0,1) (5.8)

A χ2 distribution is parameterised by the degrees of freedom k, which directly relates
to how many normal stochastic variables there are in the sum.
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1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

x ′

p(x = x ′)

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 5.4: The PDF of a χ2 distribution with different degrees of freedom.

5.3.1 The Mahalanobis Distance Test

Due to the abundance of normally distributed stochastic variables, the Mahalanobis
distance test [67] is useful for determining how well a realisation of a set of stochastic
normal variables matches the distribution. For a given N -dimensional stochastic vari-
able x∼N (x̂,P), it is defined as:

D2 = (x− x̂)T P−1(x− x̂)∼ χ2(N) (5.9)

As D2 is χ2 distributed, its realisation can be tested against the confidence interval
for a χ2 variable with N degrees of freedom, yielding a statistic which can remove
outliers that do not fit the hypothesis given by x and its associated mean and covari-
ance. This can be observed in figure 5.5, where a 90 % confidence interval is used.
The test would pass for any value between x ′l and x ′r .

90 % of outcomes appear in this interval

x ′l x ′r

0.1

0.2

0.3

x ′

p(x = x ′)

Figure 5.5: 90 % confidence interval for a χ2 distribution with 3 degrees of freedom.
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5.4 The Kalman Filter

The Kalman Filter [68] is a recursive algorithm estimating the state of a linear system
based on a mathematical model of the system and measurements which can be related
to the states in the system. The Kalman Filter assumes both measurements and the
process model being affected by noise, where the optimality of the filter relies on the
noise being Gaussian and zero-mean.

The filter is built as a Markov chain, where the likelihood of the next state only
depends on the previous state. This can be observed in figure 5.6, where the state of
the system is represented in a graph and z are the measurements taken at each time
step for x .

xk−2 xk−1 xk xk+1

zk−2 zk−1 zk zk+1

Figure 5.6: Graph demonstrating recursive probabilistic state estimation, such as the
Kalman Filter.

5.4.1 State Representation & Dynamics

Let the discrete system dynamics be given by the following:

xk+1 = Axk +Buk +wk wk ∼N (0,Q)

zk = Hxk + vk vk ∼N (0,R)
(5.10)

Here, A propagates the state to the next time step along with the input matrix B and the
input uk. The state is modelled after a multidimensional Gaussian: xk ∼ N (x̂k,Pk),
where Pk is the covariance matrix of the stochastic variable xk, denoting the uncer-
tainty in the error between the actual value and the estimated value. Furthermore, it
is assumed that some white additive Gaussian noise process affects the model (due
to e.g. model uncertainties). It is also assumed that the process noise is uncorrelated
with the state, meaning E[xkwk] = E[xk]E[wk]⇒ Cov[xk,wk] = 0. The measure-
ment is related to the state by the measurement matrix H. The measurement is also
populated by a white additive Gaussian noise process vk ∼N (0,R), where xk and vk
are uncorrelated.

(5.11)
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5.4.2 Prediction Step

The Kalman Filter will predict the state of the system based on the system dynamics
outlined in equation (5.10). The Gaussian xk+1 is a linear sum of Gaussian stochastic
variables, making itself a Gaussian. Here the notation x−k+1 signifies that this is an a
priori estimate.

E[x−k+1] = E[Axk +Buk + nk]

= AE[xk] +Buk +E[nk]

= Ax̂k +Buk + 0

= Ax̂k +Buk

(5.12)

P−k+1 = E[(Axk +Buk + nk −E[x−k+1])(Axk +Buk + nk −E[x−k+1])
T ]

= E[(Axk +��Buk + nk −Ax̂k −��Buk )(Axk +��Buk + nk −Ax̂k −��Buk )
T ]

= E[(Axk + nk −Ax̂k)(Axk + nk −Ax̂k)
T ]

= E[AxkxT
k AT +AxknT

k −Axkx̂T
k AT

+ nkxT
k AT + nknT

k − nkx̂T
k AT

−Ax̂kxT
k AT −Ax̂knT

k +Ax̂kx̂T
k AT ]

= E[(Axk −Ax̂k)(x
T
k AT − x̂T

k AT )]

+�����E[AxknT
k ] +������E[nkxT

k AT ] +E[nknT
k ]−������E[nk]x̂

T
k AT −�����Ax̂kE[nT

k ]

= E[(Axk −Ax̂k)(Axk −Ax̂k)
T ] +E[nknT

k ]

= AE[(xk − x̂k)(xk − x̂k)
T ]AT +Q

= APkAT +Q
(5.13)

In the derivation for the covariance, the cancellations come from the assumption that
xk and nk are uncorrelated, such that E[xknT

k ] = E[xk]E[nT
k ] = E[xk] ·0. Moreover,

also given by the mean of nk being 0, its covariance is given by E[nknT
k ], which can

be confirmed from equation (5.4). This yields that:

x−k+1 ∼N (Ax̂k +Bu,APkAT +Q) (5.14)

This concludes the prediction step of the Kalman Filter.

5.4.3 Update Step

By definition, the covariance of the state is given by:

Pk = E[(xk − x̂k)(xk − x̂k)
T ] (5.15)

Let the a posteriori predicted state be given by the a priori plus a correction term
— denoted by Kk+1 (which is the Kalman gain) — multiplied with the difference
between the measurements and the predicted measurements.
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x̂k+1 = x̂−k+1 +Kk+1(zk+1 −E[ẑ−k+1])

= x̂−k+1 +Kk+1(Hxk+1 + vk+1 −Hx̂−k+1)

= x̂−k+1 +Kk+1H(xk+1 − x̂−k+1) +Kk+1vk+1

(5.16)

This error in the state estimate is then given by:

δxk+1 = xk+1 − x̂k+1

= xk+1 − x̂−k+1 −Kk+1H(xk+1 − x̂−k+1)−Kk+1vk+1

= (I−Kk+1H)(xk+1 − x̂−k+1)−Kk+1vk+1

(5.17)

Substituting equation (5.17) into the definition of the covariance matrix of xk+1 yields
the following. The cross correlations between the measurement noise vk and xk+1 and
the terms relating to E[vk] = 0 have been cancelled implicitly in the derivation.

Pk+1 = E[((I−Kk+1H)(xk+1 − x̂−k+1)−Kk+1vk+1)

((I−Kk+1H)(xk+1 − x̂−k+1)−Kk+1vk+1)
T ]

= E[((I−Kk+1H)(xk+1 − x̂−k+1)(xk+1 − x̂−k+1)
T (I−Kk+1H)T ]

+E[Kk+1vk+1vT
k+1KT

k+1]

= (I−Kk+1H)P−k+1(I−Kk+1H)T +Kk+1RKT
k+1

(5.18)

The trace (the sum along the main diagonal) of the covariance matrix corresponds
directly with the error in the state. The covariance matrix is by definition positive
semi-definite. Thus, for the error to be minimised, the partial derivative of the trace
of Pk+1 is taken with respect to the Kalman gain and evaluated at where the derivative
is 0.

Pk+1 = (I−Kk+1H)P−k+1(I−Kk+1H)T +Kk+1RKT
k+1

= (I−Kk+1H)P−k+1(I−HT KT
k+1) +Kk+1RKT

k+1

= (P−k+1 −Kk+1HP−k+1)(I−HT KT
k+1) +Kk+1RKT

k+1

= P−k+1 − P−k+1HT KT
k+1 −Kk+1HP−k+1

+Kk+1(HP−k+1HT +R)KT
k+1

(5.19)

tr(Pk+1) = tr(P−k+1)− tr(P−k+1HT KT
k+1)− tr(Kk+1HP−k+1)

+ tr(Kk+1(HP−k+1HT +R)KT
k+1)

= tr(P−k+1)− 2tr(Kk+1HP−k+1)

+ tr(Kk+1(HP−k+1HT +R)KT
k+1)

(5.20)

Here, the fact that the trace of a given matrix is equal to its transpose has been utilised
to combine the trace of P−k+1HT KT

k+1 and Kk+1HP−k+1. The derivative of the trace can
then be taken:
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∂ tr(Pk+1)
∂ Kk+1

=
�
�
�

�
�∂ tr(P−k+1)

∂ Kk+1
−
∂ 2tr(Kk+1HP−k+1)

∂ Kk+1

+
∂ tr(Kk+1(HP−k+1HT +R)KT

k+1)

∂ Kk+1

= −
∂ 2tr(Kk+1HP−k+1)

∂ Kk+1

+
∂ tr(Kk+1(HP−k+1HT +R)KT

k+1)

∂ Kk+1

= −2(HP−k+1)
T + 2Kk+1(HP−k+1HT +R)

(5.21)

where ∂ tr(AB)
∂ A = BT and ∂ tr(ABAT )

∂ A = 2AB has been utilised. This yields that the optimal
Kalman gain, given by the derivative being 0, is:

Kk+1 = (HP−k+1)
T (HP−k+1HT +R)−1

= P−k+1HT (HP−k+1HT +R)−1 (5.22)

where P−k+1 = (P
−
k+1)

T due to the covariance matrix by definition being symmetric.
The updated covariance matrix can then be rewritten according to:

Pk+1 = P−k+1 − P−k+1HT KT
k+1 −Kk+1HP−k+1

+Kk+1(HP−k+1HT +R)KT
k+1

= P−k+1 − P−k+1HT KT
k+1 −Kk+1HP−k+1

+ P−k+1HT

((((((((((((((((

(HP−k+1HT +R)−1(HP−k+1HT +R)KT
k+1

= P−k+1 −������
P−k+1HT KT

k+1 −Kk+1HP−k+1

+������
P−k+1HT KT

k+1

= P−k+1 −Kk+1H)P−k+1

= (I−HT KT
k+1)P

−
k+1

(5.23)

This concludes the needed steps for updating the filter:

Kk+1 = P−k+1HT (HP−k+1HT +R)−1 (5.24)

x̂k+1 = x̂−k+1 +Kk+1(zk+1 −Hx̂−k+1]) (5.25)

Pk+1 = (I−Kk+1H)P−k+1 (5.26)

5.4.4 Intuitive Sense

The Kalman Filter effectively behaves as a blending function between the process
model, which propagates the state, and the measurements which correct the state.
During the prediction step the uncertainty in the estimates grows and in the update
step, this uncertainty is reduced with the help of the measurement.
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Predicted
state

Fused
state Measured

state

x ′

p(x = x ′)

Figure 5.7: Fusion of the prediction and the measured state.

5.4.5 Summary

The Kalman Filter can be summarised by the equations shown in table 5.1.

Initialise with initial estimate x0 ∼N (x̂0,P0)

Prediction step x̂−k+1 = Ax̂k +Bu
P̂−k+1 = APkAT +Q

Update step Kk+1 = P−k+1HT (HP−k+1HT +R)−1

x̂k+1 = x̂−k+1 +Kk+1(zk+1 − Hx̂−k+1)
Pk+1 = (I−Kk+1H)P−k+1

Table 5.1: Summary of the Kalman Filter.

5.5 The Extended Kalman Filter

The Extended Kalman Filter is an extension of the Kalman Filter for non-linear sys-
tems. The process model and measurement function are linearised to provide a similar
prediction and update structure as with the Kalman Filter. For inertial navigation, a
regular Kalman Filter cannot be used due to the non-linearities in the system. This is
where the Extended Kalman Filter comes to aid.

Note that in the following derivation, the continuous-discrete version of the filter
will be discussed, where the prediction step is derived continuously and the update
step happens at fixed intervals and is thus discrete. The notation x(t) is used to denote
a continuous variable, whereas xk is the discrete version.
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5.5.1 State Representation & Dynamics

The system dynamics are given by the non-linear function f(x(t),u(t)) and the meas-
urement prediction function is given by h(xk):

ẋ(t) = f(x(t),u(t)) + g(x(t),w(t)) w(t)∼N (0,Q(t))

zk+1 = h(xk+1) + vk+1 vk+1 ∼N (0,R)
(5.27)

where w(t) is a Weiner process with incremental covariance and independent incre-
ments between time intervals and g is a function mapping the noise to the state.

5.5.2 Prediction Step

By utilising the expected operator on the dynamics, a representation of the a priori
dynamics of the system can be found. The a priori state at time step k+1 can then be
found by the solution to this differential equation with the initial condition x̂(tk) = x̂k
(note that E[g(x(t),w(t)] = 0 as x(t) and w(t) are uncorrelated).

˙̂x−(t) = E[f(x−(t),u(t)) + g(x−(t),w(t))]

= f(x̂−(t),u(t))
(5.28)

Moreover, let the first order Taylor expansion of f(x(t),u(t)) and g(x(t),w(t)) around
the a priori estimate for the state be given by:

f(x(t),u(t))≈ f(x̂−(t),u(t)) +
∂ f(x(t),u(t))
∂ x(t)

�

�

x(t)=x̂−(t)
︸ ︷︷ ︸

F(t)

δx(t)

≈ f(x̂−(t),u(t)) + F(t)δx(t)

(5.29)

g(x(t),u(t))≈ g(x̂−(t),w(t)) +
∂ g(x(t),w(t))
∂w(t)

�

�

�

x(t)=x̂−(t)
︸ ︷︷ ︸

G(t)

δw(t)

≈ g(x̂−(t),w(t)) +G(t)(w(t)−E[w(t)])
≈ g(x̂−(t),w(t)) +G(t)w(t)

(5.30)

This allows for the linearised dynamics of the error-state around the a priori estimate
to be denoted as:

δ̇x(t) = ẋ−(t)− ˙̂x−(t)

≈(((((((
f(x̂−(t),u(t)) + F(t)δx(t) +(((((((g(x̂−(t),w(t))

+G(t)w(t)−(((((((
f(x̂−(t),u(t)) −(((((((g(x̂−(t),w(t))

≈ F(t)δx(t) +G(t)w(t)

(5.31)

This linear time-varying stochastic differential system has the solution (see [69],
chapter 4.3):
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δx(t) = Φ(t, tk)δx(tk) +

∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ (5.32)

where Φ(t, tk) is the transition matrix of the system, given by the following (see [70],
chapter 12.2):

Φ(t, tk) = exp
�

∫ t

tk

F(τ)dτ
�

(5.33)

which fundamentally encodes the (closed-form) solution to the differential equations
of the linearised system, allowing for propagating the covariance from one time point
to another. The transition matrix can be found analytically by integrating the error-
state dynamics. If there is no closed-form analytical solution, numerical integration
can for example be used to approximate Φ(t, tk) by the solution of the derivative of
equation (5.33):

Φ̇(t, tk) = F(t)Φ(t, tk) (5.34)

Φ(tk, tk) = I (5.35)

The a priori covariance of x−(t) by definition is then given by equation (5.36).
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P−k+1(t) = E[δx(t)δx(t)T ]

= E[(Φ(t, tk)δx(tk) +

∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ)

(Φ(t, tk)δx(tk) +

∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ)T ]

= E[Φ(t, tk)δx(tk)δx(tk)
TΦ(t, tk)

T ]

+E[(
∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ)(

∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ)T ]

= Φ(t, tk)E[δx(tk)δx(tk)
T ]Φ(t, tk)

T

+E[(
∫ t

tk

Φ(t,τ)G(τ)w(τ)dτ)(

∫ t

tk

w(τ)T G(τ)TΦ(t,τ)T dτ)]

= Φ(t, tk)Pk(tk)Φ(t, tk)
T

+E[
∫ t

tk

Φ(t,τ)G(τ)w(τ)w(τ)T G(τ)TΦ(t,τ)T dτ]

= Φ(t, tk)Pk(tk)Φ(t, tk)
T

+

∫ t

tk

Φ(t,τ)G(τ)E[w(τ)w(τ)T ]G(τ)TΦ(t,τ)T dτ

= Φ(t, tk)Pk(tk)Φ(t, tk)
T

+

∫ t

tk

Φ(t,τ)G(τ)Q(τ)G(τ)TΦ(t,τ)T dτ

(5.36)

where the cross-correlations between δx(t) and w(t) have been cancelled implicitely
since they are independent. The fifth step of combining the integrals comes from Itô
isometry (see [71], lemma 3.1.5). Furthermore, the final step comes from the defini-
tion of the covariance: E[w(t)w(t)T ] = E[(w(t)−E[w(t)])(w(t)−E[w(t)])T ] =
Cov[w(t),w(t)] = Q(t).

This concludes the necessary components needed to predict the filter. However,
to express them in discrete time, a shorthand notation x−k := x−(tk) and P−k := P−k (tk)
is introduced. The prediction step can then be summarised as the following:

x̂−k+1 =

∫ tk+1

tk

f(x̂−(t),u(t))d t + x̂k (5.37)

P−k+1 = Φ(tk+1, tk)PkΦ(tk+1, tk)
T

+

∫ tk+1

tk

Φ(tk+1,τ)G(τ)Q(τ)G(τ)TΦ(tk+1,τ)T dτ
(5.38)
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5.5.3 Update Step

The measurement prediction function has to be linearised around the current estimate
to use the same framework as in the Kalman Filter to find the Kalman gain:

h(x−k+1)≈ h(x̂−k+1) +
∂ h(x−k+1)

∂ x−k+1

�

�

�

x−k+1=x̂−k+1
︸ ︷︷ ︸

Hk+1

δxk+1 (5.39)

yielding that the residual used in the update of the filter must be on the following
form:

zk+1 − ẑ−k+1 = h(xk+1) + vk+1 − h(x̂−k+1)

≈����h(x̂−k+1) +Hk+1δxk+1 + vk+1 −����h(x̂−k+1)

≈ Hk+1δxk+1 + vk+1

(5.40)

The rest of the steps in the filter update are identical to the Kalman Filter.

5.5.4 Summary

The Extended Kalman Filter can be summarised as the following:

Initialise with initial estimate x0 ∼N (x̂0,P0)

Prediction step x̂−k+1 =
∫ tk+1

tk
f(x̂−(t),u(t))d t + x̂k

Find the error-state transition matrix Φ(tk+1, tk)
P−k+1 = Φ(tk+1, tk)PkΦ(tk+1, tk)T

+
∫ tk+1

tk
Φ(tk+1,τ)G(τ)Q(τ)G(τ)TΦ(tk+1,τ)T dτ

Update step Hk+1 =
∂ h(x−k+1)
∂ x−k+1

�

�

�

x−k+1=x̂−k+1

Kk+1 = P−k+1HT
k+1(Hk+1P−k+1HT

k+1 +R)−1

x̂k+1 = x̂−k+1 +Kk+1(zk+1 −Hk+1x̂−k+1)
Pk+1 = (I−Kk+1Hk+1)P−k+1

Table 5.2: Summary of the Extended Kalman Filter.
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Chapter 6
Multi-State Constraint Kalman Filter

The MSCKF [13] is a VIO algorithm based on a EKF-based backend. It keeps a
sliding window of N augmented IMU poses in its state vector, relating a set of feature
tracks to these augmented IMU poses which are appended to the state vector at every
camera frame. The feature tracks are used to triangulate the features’ position in 3D,
which is used as constraints on the sliding window of IMU poses.

In the following sections the IMU frame is given by b, the world frame is given
by w and the camera frame is given by c. The derivations in this chapter deviate
from the traditional MSCKF implementation by utilising the Hamilton convention for
quaternions, rather than the Shuster/JPL convention. The reader is advised to examine
[45] for a comparison between the two conventions. Moreover, the IMU state (and the
corresponding error-state) deviates from the original representation given in Mourikis
and Roumeliotis [13] by including the camera-IMU extrinsics — which was proposed
by Li and Mourikis for MSCKF 2.0 [72] — and the time offset between the camera
and the IMU measurements.

6.1 State Representation

6.1.1 IMU State Vector

The continuous IMU state vector is given by:

ximu =
�

qT
wb vwT

b pwT
b bbT

g bbT
a qT

cb pbT
cb td
�T

(6.1)

where qwb is the quaternion describing the orientation from the IMU frame to the
world frame, vw

b and pw
b is the velocity and position of the IMU frame expressed in

the world frame, bb
g and bb

a are the biases affecting the gyroscope and accelerometer
in the IMU frame, qcb and pb

cb are the camera-IMU extrinsics and td is the time offset
between camera and IMU measurements. The time offset is assumed to be constant.
The biases are modelled as Weiner processes, where the increments are driven by
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Gaussian noise: wb
wa ∼N (03×1,Qwa) and wb

wg ∼N (03×1,Qwg). The corresponding
continuous IMU error-state is given by:

δximu =
�

δθ T
wb δvwT

b δpwT
b δbbT

g δbbT
a δθ T

cb δpbT
cb δtd
�T

(6.2)

For the linear translations, linear velocity and biases, standard error definition is util-
ised: δx = x− x̂, where x̂ is the estimated value. For the quaternions, the quaternion
product is utilised: q = δq ⊗ q̂ ⇒ δq = q ⊗ q̂−1, where δq represents the global
angular error. The error-quaternion is given by the following, where λ is the axis of
rotation, α is the rotation along the axis and where the small angle assumption is
used:

δq=

�

cos(α2 )
λ sin(α2 )

�

≈
�

1
1
2δθ

�

(6.3)

Here δθ := λα. Thus, δθ is the minimal representation of the error-quaternion.

6.1.2 Full State Vector

N IMU poses are included in the full state vector at a given time-step k. These poses
represent where the features currently tracked in the pipeline were observed spatially,
and thus form a sliding window, as previously discussed. Note that in the following
equations, the notation xk denotes a specific discrete time point, given by x(tk).

xk =
�

xT
imuk

qT
wb1

pwT
b1

... qT
wbN

pwT
bN

�

(6.4)

The full error-state vector is thus given by:

δxk =
�

δxT
imuk

δθ T
wb1

δpwT
b1

... δθ T
wbN

δpwT
bN

�

(6.5)

6.1.3 Covariance Definition

The covariance for the state xk at a particular time step k is given by:

Pk =

�

PI Ik
PIAk

PT
IAk

PAAk

�

(6.6)

Where PI Ik
is the 22 × 22 covariance matrix for the IMU state, PAAk

is the 6N ×
6N covariance matrix for the N IMU augmented poses’ state and PIAk

is the cross-
correlation between the IMU state and the augmented IMU poses’ state.

6.2 Sensor Models

6.2.1 Accelerometer Sensor Model

The sensor model for the accelerometer is assumed to be populated with Gaussian
noise. Furthermore, the model accounts for the bias and the gravity vector, where the
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bias is assumed to be a Weiner process. The accelerometer measures specific force in
the body frame, which includes the opposite normal force caused by gravity.

ab
m = ab −R(qwb)

T gw + bb
a +wb

a wb
a ∼N (03×1,Qa) (6.7)

Here ab
m is the measured acceleration, ab is the true acceleration given in IMU frame,

g w =
�

0 0 −g
�

is the gravity vector expressed in the world frame and wb
a is the

noise affecting the measurement. This can be rearranged to:

ab = ab
m +R(qwb)

T gw − bb
a −wb

a (6.8)

which in the world frame becomes:

aw = R(qwb)(a
b
m − bb

a −wb
a) + gw (6.9)

6.2.2 Gyroscope Sensor Model

The sensor model for the gyroscope is also assumed to be populated with Gaussian
noise and a bias following a Weiner process:

ωb
m =ω

b
wb + bb

g +wb
g wb

g ∼N (03×1,Qg) (6.10)

Hereωb
m is the measured angular velocity,ωb

wb is the true angular velocity and wb
g is

the noise affecting the measurement. This can be rearranged to:

ωb
wb =ω

b
m − bb

g −wb
g (6.11)

6.3 IMU State Dynamics

The measurement models yield the following continuous dynamics for the IMU state:

q̇wb =
1
2

qwb ⊗ (ωb
m − bb

g −wb
g) (6.12)

v̇w
b = R(qwb)(a

b
m − bb

a −wb
a) + gw (6.13)

ṗw
b = vw

b (6.14)

ḃb
g =wb

wg
(6.15)

ḃb
a =wb

wa
(6.16)
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q̇cb = 04×1 (6.17)

ṗb
cb = 03×1 (6.18)

ṫd = 0 (6.19)

The camera-IMU extrinsics and time offset td are kept static in the dynamic model,
as stated in [72].

6.3.1 Nominal Dynamics

Applying the expected operator on the IMU state yields the nominal state:

˙̂qwb =
1
2

q̂wb ⊗ (ωb
m − b̂b

g) (6.20)

˙̂vw
b = R(q̂wb)(a

b
m − b̂b

a) + gw (6.21)

˙̂pw
b = v̂w

b (6.22)

˙̂bb
g = 03×1 (6.23)

˙̂bb
a = 03×1 (6.24)

˙̂qcb = 04×1 (6.25)

˙̂pb
cb = 03×1 (6.26)

˙̂td = 0 (6.27)

6.4 IMU Error-State Dynamics

6.4.1 Angular Error-State Dynamics

The following derivations can also be found in [45], chapter 7.1.2. Let ω̂b
wb =ω

b
m −

b̂b
g and δωb

wb = −δbb
g −wb

g , where δbb
g is the error between the true bias and the

estimated bias. With this, the true angular rate can be written asωb
wb = ω̂

b
wb+δω

b
wb.

Furthermore, q̇wb can be expressed in two ways:
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d
d t
(δqwb ⊗ q̂wb) =

1
2

qwb ⊗ωb
wb

⇒ δ̇qwb ⊗ q̂wb +δqwb ⊗ ˙̂qwb =
1
2
δqwb ⊗ q̂wb ⊗ωb

wb

⇒ δ̇qwb ⊗ q̂wb +
1
2
δqwb ⊗ q̂wb ⊗ ω̂

b
wb =

1
2
δqwb ⊗ q̂wb ⊗ωb

wb

(6.28)

By utilising thatωb
wb = ω̂

b
wb+δω

b
wb, such that 1

2δqwb⊗ q̂wb⊗ωb
wb−

1
2δqwb⊗ q̂wb⊗

ω̂b
wb =

1
2δqwb ⊗ q̂wb ⊗δωb

wb, this results in:

δ̇qwb ⊗ q̂wb =
1
2
δqwb ⊗ q̂wb ⊗δωb

wb (6.29)

Right-multiplying by q̂−1
wb yields:

δ̇qwb =
1
2
δqwb ⊗ q̂wb ⊗δωb

wb ⊗ q̂−1
wb

=
1
2
δqwb ⊗δωw

wb

(6.30)

Expanding yields (utilising equation (2.13)):

�

0
δ̇θ wb

�

= 2δ̇qwb

= δqwb ⊗δωw
wb

= Ω(δωw
wb)δqwb

=

�

0 −δωwT
wb

δωw
wb −[δωw

wb]×

��

1
δθ wb

2

�

+O(||δθ wb||2)

(6.31)

This results in a scalar and vector representation:

0= −δωwT
wb
δθ wb

2
+O(||δθ wb||2) (6.32)

δ̇θ wb = δω
w
wb −

1
2
[δωw

wb]×δθ wb +O(||δθ wb||2) (6.33)

Neglecting the higher order terms and assuming [δωw
wb]×δθ wb ≈ 0 results in the

following, where δωb
wb = −δbb

g −wb
g has been utilised:

δ̇θ wb ≈ δωw
wb

≈ R(q̂wb)δω
b
wb

≈ −R(q̂wb)(δbb
g −wb

g)

≈ −R(q̂wb)δbb
g −R(q̂wb)w

b
g

(6.34)
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6.4.2 Linear Velocity Error-State Dynamics

The following derivations can also be found in [45], chapter 7.1.1. As stated in equa-
tion (6.9), the true acceleration is given by:

aw = R(qwb)(a
b
B +δab

B) + gw (6.35)

Where ab
B := ab

m − b̂b
a and δab

B := −δbb
a − wb

a such that ab
B + δab

B = ab
m − bb

a −
wb

a . Furthermore, for convenience in the derivations, let the true rotation matrix be
denoted by: R(qwb) = (I+ [δθ wb]×)R(q̂wb) +O(||δθ wb||2), where the higher order
terms are neglected in the following derivations. This yields two representations for
v̇:

˙̂vw
b +δv̇w

b ≈ (I+ [δθ wb]×)R(q̂wb)(a
b
B +δab

B) + gw

R(q̂wb)a
b
B +��g

w +δv̇w
b ≈ (I+ [δθ wb]×)R(q̂wb)(a

b
B +δab

B) +��g
w

�����R(q̂wb)a
b
B +δv̇w

b ≈�����R(q̂wb)a
b
B +R(q̂wb)δab

B + [δθ wb]×R(q̂wb)a
b
B + [δθ wb]×R(q̂wb)δab

B

δv̇w
b ≈ R(q̂wb)δab

B + [δθ wb]×R(q̂wb)(a
b
B +δab

B)

Assuming [δθ wb]×R(q̂wb)δab
B ≈ 0 and applying [δθ wb]×R(q̂wb)ab

B = −[R(q̂wb)ab
B]×δθ wb

results in:

δv̇w
b ≈ R(q̂wb)δab

B − [R(q̂wb)a
b
B]×δθ wb (6.36)

which fully expanded becomes:

δv̇w
b ≈ −[R(q̂wb)(a

b
m − b̂b

a)]×δθ wb −R(q̂wb)δbb
a −R(q̂wb)w

b
a (6.37)

6.4.3 Bias Error-State Dynamics

For gyroscope and accelerometer bias, the error-state derivative is given by:

δ̇b
b
g = ḃb

g −
˙̂bb

g =wb
wg
− 03x1 =wb

wg
(6.38)

δ̇b
b
a = ḃb

a −
˙̂bb

a =wb
wa
− 03x1 =wb

wa
(6.39)

6.4.4 IMU Error-State Dynamics

From the previous derivations, the full error-state dynamics for the IMU state is given
by:

δ̇θ wb ≈ −R(q̂wb)δbb
g −R(q̂wb)w

b
g (6.40)

δv̇w
b ≈ −[R(q̂wb)(a

b
m − b̂b

a)]×δθ wb −R(q̂wb)δbb
a −R(q̂wb)w

b
a (6.41)
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δṗw
b = δvw

b (6.42)

δ̇b
b
g =wb

wg
(6.43)

δ̇b
b
a =wb

wa
(6.44)

δ̇θ cb = 03x1 (6.45)

δ̇p
b
cb = 03x1 (6.46)

˙δtd = 0 (6.47)

This yields that the continuous error-state dynamics can be written on the following
form (note that previously, the dependence on time has been omitted to save space in
the notation):

δ̇ximu = F(t)δximu +G(t)wimu(t) (6.48)

where wimu(t) =
�

wbT
g (t) wbT

a (t) wbT
wg
(t) wbT

wa
(t)
�T

. F(t) and G(t) are given
by:

F(t) =

























03×3 03×3 03×3 −R(q̂wb) 03×3 03×7

−[R(q̂wb)(ab
m − b̂b

a)]× 03×3 03×3 03×3 −R(q̂wb) 03×7
03×3 I3×3 03×3 03×3 03×3 03×7
03×3 03×3 03×3 03×3 03×3 03×7
03×3 03×3 03×3 03×3 03×3 03×7
03×3 03×3 03×3 03×3 03×3 03×7
03×3 03×3 03×3 03×3 03×3 03×7
01×3 01×3 01×3 01×3 01×3 01×7

























(6.49)

G(t) =























−R(q̂wb) 03×3 03×3 03×3
03×3 −R(q̂wb) 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3
01×3 01×3 01×3 01×3























(6.50)
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6.5 Prediction Step

6.5.1 Predicting the Nominal State

To find an a priori estimate x−imuk+1
, numerical integration is used (in particular Runga-

Kutta, see Appendix B). The augmented IMU states are assumed to be static and not
propagated.

6.5.2 Predicting the Covariance

Following the derivations made in section 6.4.4, the error-state dynamics are now on
a form which can be used for finding the transition matrix Φ(tk+1, tk) and predicting
the covariance. The reader should be aware that this is in fact a time-varying sys-
tem, due to the noise affecting the measurements. Thus, one has no basis for stating
that a time-shift of the dynamical system will represent the same system given an
identical state, as the noise cannot be assumed to hold an identical value. In other
words F(tk) ̸= F(tk+1) given identical estimates, since noise is affecting ab

m. A rep-
resentation on the following form has to be found (equation (5.32)):

δximuk+1
= Φ(tk+1, tk)δximuk

+

∫ t

tk

Φ(t,τ)G(τ)wimu(τ)dτ (6.51)

Note that in the system, this equation is not utilised directly. This is simply due to
the fact that there is not a need to evaluate it explicitly; it is only required to find
the transition matrix which makes this realisation true so that the a priori covariance
matrix can be predicted. The transition matrix for this particular system is found to
be the following, as shown in [2]:

Φ(tk+1, tk) =

























I3×3 03x3 03x3 Φθ bg
03×3 03×3 03×3 0

Φvθ I3x3 03x3 Φvbg
Φvba

03×3 03×3 0
Φpθ ∆tI3x3 I3×3 Φpbg

Φpba
03×3 03×3 0

03×3 03×3 03×3 I3×3 03×3 03×3 03×3 0
03×3 03×3 03×3 03×3 I3×3 03×3 03×3 0
03×3 03×3 03×3 03×3 03×3 13×3 03×3 0
03×3 03×3 03×3 03×3 03×3 03×3 13×3 0
01×3 01×3 01×3 01×3 01×3 01×3 01×3 1

























(6.52)

where (∆t denotes the time between tk and tk+1):
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Φθ bg
= −R(q̂wb)
�

∆tI3×3 +
1
2
∆t[θ ]×
�

(6.53)

Φvθ = −
�

v̂w−
b − v̂w

b − gw∆t
�

×
(6.54)

Φvbg
=
�

− p̂w−
b + p̂w

b + v̂w−
b ∆t −

1
2

gw∆t2
�

×
R(q̂wb) (6.55)

+
�

−
1
2

p̂w−
b +

1
2

p̂w
b +

1
2

v̂w−
b ∆t −

1
6

gw∆t2
�

×
R(q̂wb)[θ ]× (6.56)

Φvba
= −R(q̂wb)
�

∆tI3×3 +
1
2
∆t[θ ]×
�

(6.57)

Φpθ = −
�

p̂w−
b − p̂w

b − v̂w
b∆t −

1
2

gw∆t2
�

(6.58)

Φpbg
=
�

−
1
6

gw∆t3
�

×
R(q̂wb) (6.59)

+
�1

4
p̂w−

b ∆t −
1
4

p̂w
b∆t −

1
24

gw∆t3
�

×
R(q̂wb[θ ]× (6.60)

Φpba
= −

1
6

R(q̂wb)∆t2
�

3I3×3 + [θ ]×
�

(6.61)

and where θ is given by the following:

θ =
1
2

�

ω̂b
wb(t tk

) + ω̂b
wb(tk+1)
�

∆t +
1

12

�

ω̂b
wb(tk)× ω̂

b
wb(tk+1)
�

∆t2 (6.62)

The covariance for the IMU state can then be propagated according to equation (5.38),
where an approximation for the integral is made:

P−I Ik+1
= Φ(tk+1, tk)PI Ik

Φ(tk+1, tk)
T

+

∫ tk+1

tk

Φ(tk+1,τ)G(τ)Q(τ)G(τ)TΦ(tk+1,τ)T dτ

≈ Φ(tk+1, tk)PI Ik
Φ(tk+1, tk)

T

+Φ(tk+1, tk)G(tk)Q(tk)G(tk)
TΦ(tk+1, tk)

T∆t

(6.63)

The whole a priori covariance matrix is thus propagated according to the following
[13]:

P−k+1 =

�

P−I Ik+1
Φ(tk+1, tk)PIAk

PAIk
Φ(tk+1, tk)T PAAk

�

(6.64)

where one can notice that the cross-correlation is affected by the transition matrix,
but the variance for the augmented IMU states is kept static.

6.6 State Augmentation

The full state vector is augmented with the current pose when a new image is cap-
tured. The augmented pose is constructed from the current IMU state according to:
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q̂wbk
= q̂wb p̂w

bk
= p̂w

b (6.65)

Furthermore, the covariance matrix is augmented according to:

Pk←
�

I(22+6N)×(22+6N)
J

�

Pk

�

I(22+6N)×(22+6N)
J

�T

(6.66)

The jacobian J is given by the partial derivative of equation (6.65) with respect to the
estimated nominal state vector x̂:

J :=
∂
�

q̂T
wbk

p̂wT

bk

�T

∂ x̂

=

�

I3×3 03×3 03×3 03×13 03×6N
03×3 03×3 I3×3 03×13 03×6N

�

(6.67)

6.7 Measurement Model

For the Extended Kalman Filter update, the measurement model should be on the
following form (as derived in equation (5.40)):

r= Hδx+ v (6.68)

Where v ∼ N (0,R) is the measurement noise and H is the measurement jacobian
matrix. To derive this expression, let f j represent a particular feature seen in N j aug-
mented IMU frames, and let the total amount of features be M . Furthermore, let the
camera frame ck be related to the given augmented IMU frame bk at time step k by
the camera-IMU extrinsics, as shown in equation (6.69). Note that the camera-IMU
extrinsics are tied to a given time step k, as they are estimated in the filter.

qwck
= qwbk

⊗ q−1
ck bk

pw
ck
= pw

bk
+R(qwbk

)pbk
ck bk

(6.69)

Let the measurement be given by the de-homogenised 3D coordinates of the feature,
pw

f j
, in the camera frame ck:

z j,k =
1

Z ck
j

�

X ck
j

Y ck
j

�

+ v j,k (6.70)





X ck
j
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The index j represents the particular feature and the index k represents the camera
frame ck where it was seen. It is assumed that the noise follows a Gaussian distribu-
tion: v j,k ∼N ([0,0]T ,σ2

imI2×2). This leads to the following residual:

r j,k(z j,k) = z j,k − ẑ j,k (6.72)

6.7.1 Residual Linearisation

Let z j,k = ẑ j,k + δz j,k. Furthermore r j,k(ẑ j,k) = 0 by definition. Linearising the re-
sidual with respect to the estimated measurement evaluated at the state estimate and
the estimate for the feature position yields:
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(6.73)
For convenience in the derivations, the jacobian Hx̂ j,k

is partitioned into Hx̂ j,k ,q̂wbk
,

Hx̂ j,k ,p̂w
bk

, Hx̂ j,k ,q̂ck bk
and Hx̂ j,k ,p̂

ck
ck bk

which are with respect to the augmented IMU state

orientation, augmented IMU state position and orientation extrinsics and translation
extrinsics, respectively:
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The derivation for the jacobian of a given product R(q)T v with respect to q can be
found in equation (A.2), Appendix A.
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The derivation for the jacobian of a given product R(qcb)R(qab)T va with respect to
qcb and the jacobian of R(q)v with respect to q can be found in equations (A.1)
and (A.3), Appendix A.
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(6.77)

In summary, the jacobian Hx̂ j,k
is then given by:

Hx̂ j,k
=
h

02×15 Hx̂ j,k ,q̂ck bk
H

x̂ j,k ,p̂
bk
ck bk

02×1 . . . Hx̂ j,k ,q̂wbk
Hx̂ j,k ,p̂w

bk
. . .
i

where the elements besides the jacobian with respect to the augmented IMU state are
filled with zeros and are dependent on how many augmented states there currently
are in the state vector. The jacobian with respect to the feature position is given by
equation (6.78).
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Ẑ

ck
j
−

Ŷ
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(Ẑ
ck
j )

2






R(q̂ck bk

)R(q̂wbk
)T

(6.78)

When the jacobians are stacked for all observations and features, the residual be-
comes:

r≈ Hx̂δx+Hp̂ f







δpw
f0

...
δpw
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+ v (6.79)

6.7.2 Finding Estimates for the Feature Positions

The jacobians require estimates for the feature positions pck
j in the respective camera

frames (and also pw
j , which can be found by transforming the estimate of pck

j by the
estimated transformation between the camera frames and the world frame). These
estimates are found by means of triangulation, following the method and derivations
outlined in section 4.3.

6.7.3 Null-Space Projection

From the estimate of the feature positions p̂w
f0

, ..., p̂w
fM

, the jacobians in the residuals
can be numerically evaluated with the use of the current state estimate:

r≈ Hx̂δx+Hp̂ f







δpw
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+ v (6.80)
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As δpw
f j

and δx are correlated (equation (4.10)), another residual is defined based
on projecting to the null-space of Hp̂ f

. The projection removes the correlation by
effectively cancelling the terms related to δpw

f j
, which is motivated by the desire of

having zero error in the feature position. Restricting to the null space of the matrix is
an effective way to limit the solution to the parameters which yield this configuration.

Let AT be a unitary matrix of the left null-space of Hp̂ f
, composed from the

singular value decomposition of the matrix and the rightmost columns of U from the
decomposition (see [73], chapter 7.4, example 6). This yields:

rn = AT Hx̂δx+

�
�

�
�

�
�
��

AT Hp̂ f
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+AT v

= AT Hx̂δx+AT v

= Hx̂,nδx+ vn

(6.81)

Here Hx̂,n := AT Hx̂ and vn := AT v. The matrix Hp̂ f
is of dimension 2M × 3 and has

full column rank, yielding the left null-space being (2M −3)×2M following that for
the left null-space nullity(Hp̂ f

) = dim(HT
p̂ f
)− rank(Hp̂ f

). Thus, the amount of rows
in Hx̂,n and vn will be 2M − 3. Furthermore, after projecting onto the null-space and
since A is unitary and thus semi-orthogonal, the noise will be distributed after the
following:

vn ∼N (0(2M−3)×1,ATσ2
imA)

∼N (0(2M−3)×1,σ2
imI(2M−3)×(2M−3))

(6.82)

This concludes the measurement prediction linearisation, such that the residual is on
a form equivalent with equation (5.40).

6.8 Update Step

The filter goes through an update step if one of the following conditions are true when
a new image is captured:

• There are features which have been tracked past the maximum track length.
• There are features which have gone out of the frame (out of the image).
• The sliding window is at maximum capacity and an augmented IMU state and

the corresponding features which were tracked at that given time step need to
be marginalised,

6.8.1 Outlier Rejection

Before the entries in the residual rn are utilised in an update, they undergo a Ma-
halanobis distance test (section 5.3.1):

D2 = (z− ẑ)T P−1(z− ẑ)∼ χ2(2M) (6.83)
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However, the residual is on the following form for the EKF update (note that as
δx and vn are uncorrelated, the covariance of the residual is simply the sum of the
covariance for δx and vn):

Hx̂,nδx+ vn ∼N (0(2M−3)×1,Hx̂,nPHT
x̂,n +σ

2
imI(2M−3)×(2M−3))) (6.84)

yielding that the squared Mahalanobis distance becomes:

D2 = (δx)T (Hx̂,nPHT
x̂,n +σ

2
imI(2M−3)×(2M−3)))

−1(δx)∼ χ2(2M − 3) (6.85)

The realisation of D2 is then compared against a confidence interval for a χ2 distrib-
uted stochastic variable with 2M − 3 degrees of freedom.

6.8.2 QR Decomposition

During the update, a QR decomposition is performed on the rectangular matrix Hx̂,n
in order to reduce the computational cost:

Hx̂,n =
�

Q1 Q2
�

�
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0

�

(6.86)

Q1 and Q2 are unitary, yielding that the transpose is equal to the their respective
inverses. The residual can thus be written as:
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QT
1 rn = THx̂,n

δx+QT
1 wn (6.89)

Here, the residual QT
2 rn is only noise and can be discarded. Let rQ := QT

1 rn and
wQ := QT

1 wn, where the noise becomes distributed according to:

wQ ∼N (0rows(QT
1 )

,QT
1σ

2
imI(2M−3)×(2M−3)Q1)

∼N (0rows(QT
1 )

,σ2
imIrows(QT

1 )×rows(QT
1 )
)

(6.90)

The finalised residual after null-space projection and QR decomposition thus be-
comes:

rQ = THx̂,n
δx+wQ (6.91)

which is on the form needed for the EKF update (equation (5.40)).

66



Chapter 6 — Multi-State Constraint Kalman Filter

6.8.3 Updating the Filter

The Kalman gain can then be computed according to:

Kk+1 = P−k TT
Hx̂,n
(THx̂,n

P−k TT
Hx̂,n
+σ2

imIrows(QT
1 )×rows(QT

1 )
)−1 (6.92)

This renders the correction to the nominal state accessible via:

x̂k+1 = x̂−k ⊕Kk+1rQ (6.93)

where ⊕ here is defined as regular addition for all parts of the state except the orienta-
tions, where the quaternion product is utilised. The a posteriori covariance is updated
according to (equation (5.26)):

Pk+1 = (I−Kk+1Hk+1)P
−
k+1 (6.94)

This concludes the update step of the filter.

6.9 Observability

In the original paper for MSCKF by Mourikis and Roumeliotis [13], the linearised
system model utilised in the EKF can proven to be inconsistent, as Li and Mourikis
[74] stated:

By analyzing the observability properties of the linearized system model
employed by the EKF, we prove that the MSCKF is inconsistent, i.e.,
that the covariance matrix of the estimation errors is larger than that
computed by the filter [...]. In turn, this inconsistency leads to inaccurate
state updates and ultimately a loss of accuracy.

Qiu et al. [3] utilises first-estimate jacobians to alleviate for the observability incon-
sistency in LARVIO, which are given by means of the a priori estimate, as shown in
equation (6.52) and the following entries within the transition matrix.

6.10 Stationary Detection & Update

In order to alleviate drift when the system is stationary, a stationary detection can
be used to swap the update step of the filter for a stationary situation. The station-
ary detection is based on whether the tracked features have sufficient movement
between multiple images or not. If they do not, the system is assumed stationary
and the stationary update is utilised. Since the full state vector consists of augmented
IMU poses, these can be used to enforce constraints between the two last augmented
IMU frames.

Note that in the following, the main constraint is given by the velocity of the IMU
state being zero and the auxiliary constraints are given by the last two augmented
IMU poses having identical position and orientation. The reader should also note that
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the noise has been excluded in order to ease the derivation, and will appear in the
final linearised residual. The constraints are given by:

zvw
b
= vw

b = 03×1

zqwbk
= qwbk

⊗ q−1
wbk−1

=
�

1 0 0 0
�T
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(6.95)

which has the following nominal behaviour when applying the expectation:
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(6.96)

This allows for forming residuals between the true constraints and the expected ones.
The velocity residual for the IMU state is given by the following:
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= δvw
b

(6.97)

whereas the orientation residual between the last two augmented IMU states is given
by:
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(6.98)

Here, the constraint that zqwbk
= qwbk

⊗ q−1
wbk−1

=
�

1 0 0 0
�T

has been used to
cancel the terms related to qwbk

and qwbk−1
. Furthermore, the small angle assumption

of error-quaternions from equation (6.3) has been utilised. Disregarding the real part
of the error-quaternion in the residual yields:

rθ wbk
=
−δθ wbk

+δθ wbk−1

2
(6.99)
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The position residual between the last two augmented IMU states is given by:

rpw
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− ẑpw

bk

= pw
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− (p̂w
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− p̂w
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)

= δpw
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(6.100)

It should be noted that since zpw
bk
= 03×1 by the definition of the constraint, the term

can be dropped. The error-state formulation is given here to relate the residual to the
error-state when the jacobian is derived.

The preceding residuals can be utilised to form the basis for a residual on the
standard EKF form, r = Hδx+ v, where the jacobian with respect to the error-state
is given by:
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(6.101)

This yields that the update step for the stationary case is given by the following,
where the assumed noise for the residual is given by vz ∼N (09×9,Rz):

rz = Hzδx+ vz (6.102)

This allows for the calculation of the Kalman gain and the correction of the states to
be done in the same way as outlined in table 5.2.
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Chapter 7
Microcontroller Fundamentals

MCUs (microcontroller units) are small processors with usually a single core and
far less memory (ranging from usually a few kilobytes to a few megabytes) than
conventional consumer processors. Their ALUs (arithmetic logic units) have sizes
of 8 bits, 16 bits or 32 bits, meaning the ALU can operate on 8-bit, 16-bit or 32-bit
numbers. Registers are the data containers within the processor where the data from
the memory is loaded into before the processor can perform arithmetic or operations
on the data. The size of the registers follows the size of the ALU. Register access time
can be assumed to be negligible compared to memory access. An 8-bit architecture
does not limit MCUs from operating on 32-bit integers and floating point numbers,
but more registers and instructions have to be used. Conventional processors usually
have 64-bit ALUs.

Figure 7.1: The 8-bit AVR128DB48 microcontroller from Microchip, from [75].

MCUs will generally use static memory (SRAM), which will retain its content as
long as power is supplied. With dynamic memory (DRAM), which is typically found
in consumer processors, the memory must be continuously refreshed. This makes it
possible for the clock frequency of MCUs to not necessarily have a lower boundary.
Some MCUs, such as the ATTiny85 by Microchip, have a specification which allows
a minimum value of 0 Hz for the provided clock signal. Thus, MCUs have the func-
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tionality to be clocked fairly low to consume as little power as possible due to the
staticness of the memory and, thus also the staticness of the state of the system. This
is commonly used for remote sensing applications where the system has to operate
for as long as possible on battery power. The upper bound on the clock frequency
for MCUs typically ranges from tens to hundreds of MHz. To the author’s know-
ledge at the writing of this master’s thesis, the maximum clock speed achieved by a
microcontroller is 1 GHz.

Due to the limited amount of memory and processing speed, MCUs are typically
used for a single purpose or a rather finite set of purposes. That does not necessarily
limit MCUs to computationally inexpensive tasks. The higher end MCUs with clock
speed up to hundreds of MHz can perform quite computationally intensive tasks such
as running small neural networks. They are also quite common in applications with
hard real-time requirements, as timing of tasks on MCU can be done extremely pre-
cisely.

MCUs typically have capabilities for peripheral access with protocols such as
UART (universal asynchronous receiver-transmitter), I2C (inter-integrated circuit),
USB (universal serial bus) and CAN (controller area network). They are popularly
used within everything from the automotive industry, to home appliances, to the space
industry to supporting functions within consumer electronics.

Due to their limited program memory, MCUs do not run full-fledged operating
systems. Small kernels exist, such as the FreeRTOS project [76] (typically occupying
5 KB - 9 KB of program memory). However, these projects can also be considered to
reside under the bare-metal umbrella. The FreeRTOS kernel can be seen as a sched-
uler for different tasks, where mutexes, semaphores, notifications and message buf-
fers are provided. Projects such as FreeRTOS allow for concurrency (and parallelism
if there are multiple cores) with real-time constraints for MCUs.

7.1 Instruction Set

Microcontroller units usually have a RISC (reduced instruction set computer) archi-
tecture. The instruction set ranges over fewer instructions than available on CISC
(complex instruction set computer) architectures. Examples of RISC are the Cortex-
M and Cortex-A architecture designs provided by ARM, the AVR architecture by
Microchip (formerly ATMEL), and RISC-V. An example of a CISC architecture is
x86, found in Intel’s and AMD’s processors, which are ubiquitous in the conventional
computer domain (laptops and desktops). A RISC architecture is simpler and can, to
a greater extent, utilise pipelining (a way for the processor to prepare to run the next
instruction before the current instruction is completed). In contrast, a CISC archi-
tecture can perform some specific operations in fewer clock cycles due to its greater
instruction set.
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7.1.1 Floating Point Instructions

Some MCUs (e.g. some variants of ARM Cortex) can do floating point arithmetic
with a dedicated FPU (floating point unit). Floating point arithmetic is computa-
tionally expensive and can be significantly alleviated by these dedicated units. Such
MCUs have an extension to their instruction for floating point instructions.

7.1.2 Single Instruction Multiple Data

SIMD instructions allow the processor to operate on more than a single element of
data within one clock cycle. For a 32-bit microcontroller, SIMD allows operations on
four 8-bit integers or two 16-bit integers in a single instruction. Such instructions can
significantly improve performance if used with care.

The main idea of this can be seen in Figure 7.2, where four byte additions are
done simultaneously. The difference here with 32-bit addition can be observed in the
second column, where the carry of the addition of the leftmost bit is not propagated
to the byte in the first column. SIMD instructions thus operate on multiple elements
independently.

00000011 10000000 00010000 00001010

00010000 10000000 00101000 00000011+

00010011 00000000 00111000 00001101=

Figure 7.2: Demonstration for a SIMD add instruction, where the 4 bytes from two
32-bit integers are added independently.

The SIMD instruction extension for ARM Cortex MCUs allows for a range of ele-
mentary operations: addition, subtraction, bit-shifts and multiplication. The element-
ary operations are mainly split into instructions for signed or unsigned integers and
whether they should saturate the result or allow overflow. In figure 7.2, and overflow
occurred in the second byte, but this can be prevented by using the saturating variant
of the SIMD instruction, where the result would have been 11111111 instead. Fur-
thermore, within the instruction set extension, there are more specialised instructions
which do multiple elementary operations within one SIMD instruction. An example
of this is the UHADD8 instruction, which does 4 unsigned additions before halv-
ing the result for each addition. The instruction is read as Unsigned Halved Addition
8-bit, and is given by algorithm 2.

It should be stated that operating with SIMD instructions is not done by passing
four and four bytes to the instructions. They operate on 32-bit integers, so the data
has to be packed sequentially in memory.
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Algorithm 2 Demonstration of the UHADD8 SIMD instruction. Note that the nota-
tion [x : y] is used here to signify the bits from y to x .

Input: A, first group of bytes
Input: B, second group of bytes
Output: R, result

1: R[7 : 0]← A[7:0]+B[7:0]
2

2: R[15 : 8]← A[15:8]+B[15:8]
2

3: R[23 : 16]← A[23:16]+B[23:16]
2

4: R[31 : 24]← A[31:24]+B[31:24]
2

7.2 Memory

MCUs have the ability for supporting a range of memory configurations. The com-
mon factor however is usually a Harvard architecture, where the instructions of the
program and the data are located in separate memory units. Usually, the memory is
located close to the processor, meaning the memory is spatially close to the processor
and not outside a possible cache. This allows the memory to be accessed quickly and
often operate on the same frequency as the processor. Such memory is often referred
to as TCM (tightly-coupled memory).

The program instructions are usually placed in non-volatile FLASH memory.
However, there are exceptions to this. Some MCUs have the option to place both
instructions and data in TCM as well as having the option to decide which parts of
the program that is placed in FLASH memory.

SRAM is used for volatile memory such as TCM. SRAM is fast, but requires
more physical space and is costlier than DRAM. The use of slower DRAM in con-
ventional computers is alleviated by a range of caches (often SRAM) between the
processor and the DRAM. This is also the case for the MCUs which have capabilities
for external DRAM.

The width of the memory bus and the frequency it operates on will determine how
quickly data can be loaded into the processor. These can vary: the bus width of TCM
can be 64 bits even though the architecture is 32-bit, which speeds up retrieval of data
and instructions. The clock speed of the memory bus can be to some degree — in a
microcontroller setting at least — up to the application to define. Some MCUs have
the ability to have several clock domains, which determine the speed of the buses and
the peripherals the processor accesses. An example of this can be seen in figure 7.3,
where there are three main domains: D1, D2 and D3. Within these domains, there
are different buses, e.g. AHB (Advanced High-performance Bus), APB (Advanced
Peripheral Bus) and AXI (Advanced Extensible Interface), which can be clocked
differently.
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Figure 7.3: Clock tree of the STM32H747 MCU, from [77].

7.2.1 Cache

Cache alleviates slower memory that is not tightly coupled with the processor (both
for instructions and data). In the microcontroller domain, the cache size can be in
the range of a few tens of kilobytes. The cache will attempt to predict what memory
the processor will access in the future, by spatial and temporal locality. Meaning,
access to one address location is likely to be followed by access to adjacent memory
addresses (e.g. iterating through a list) and access to one address location is likely to
repeat within a short period of time (e.g. loop counters).

When the prediction fails, a cache miss occurs. The processor then has to wait
for the memory to be retrieved. This is an area where significant optimisations can
be made. Structuring programs around playing along with the cache and reducing
the amount of cache misses can have a great effect on the performance of a program.
This comes from the aspect that in modern computers, memory access can be a rather
significant bottleneck. An example of this process can be seen in figure 7.4, where a
read operation is outlined.

Write operations are similar, where the data can be written to the cache and either
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written to the memory instantly, called write-through, or the data is written to the
memory at a later point in time when the whole cache block is replaced, called write-
back. Write-through is simpler and maintains cache consistency, but it comes at the
cost of write operations requiring more time. Write-back on the other hand reduces
the amount of write operations to the memory, but comes of the cost of cache in-
consistency. This can become problematic if the application utilises functionality for
moving data without involving the CPU, called direct memory access. If DMA is util-
ised to move data from a peripheral unit to memory, the cache has to be invalidated
for the respective addresses of the data, forcing the cache to grab the data from the
memory when the processor reads it. Conversely, in order to force the cached data to
be written to memory before a DMA operation, the cache is cleaned for the respective
addresses.

Cache

Cached?

Return cached
data

Retrieve data
from external

memory

Yes No

CPU

Data
request

Data

External
memory

Data
request

Data

Figure 7.4: Flow chart of a read operation with cache.

7.2.2 Memory Layout

During the compilation and linkage of a program, different sections are defined. A
program’s global data will be either placed in the sections called bss (block started
by symbol) or data, based on if the data is uninitialised or not. The code is placed in
text. During runtime, variables allocated by the program either reside on the stack or
the heap. Variables placed on the stack will be automatically popped from the stack
when the scope of the given variable is left. Variables placed on the heap are up to
the program to free explicitly.

For MCUs, there is a great deal of flexibility for where segments of code and
data are placed. E.g. a particular function might be explicitly defined to reside in the
ITCM (instruction tightly-coupled memory) of the microcontroller instead of external
flash. The heap might be defined to reside on external RAM or within the DTCM
(data tightly-coupled memory). An example of a memory map layout can be seen in
figure 7.5, where the different data sections are defined with their respective address
range. In this example, the physical locations of the memory regions are not specified,
but they are arbitrary; they can reside in TCM or external RAM by their respective
definitions in the linker file of the program.
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Stack
0x5FFF

Heap
0x3000-0x3FFF

Data
0x1000-0x2FFF

BSS
0x0000-0x0FFF

Figure 7.5: Example memory map layout. Note that the stack grows downwards in
this example, which is the default behaviour on ARM Cortex-M.

If the stack grows into the other sections of the memory, a stack overflow occurs.
This will not necessarily raise an error on MCUs, and can cause severely off-spec
behaviour in the program. This can be detected by running compile-time analysation
on the program and statically declaring most of the data. Furthermore, reducing the
depth of function calls can also alleviate a growing stack. Before every function call,
the stack frame is pushed onto the stack. The stack frame contains the current values
of the registers, input values to the function and the address of the next instruction.
This makes it possible for the processor to return to the state it was in after the func-
tion is executed. Having many nested function calls thus increases the required size
of the stack.

If the program attempts to dynamically allocate more memory than is left avail-
able on the heap, the allocator will return a null pointer, which also causes havoc. In a
conventional operating system, this would cause the program to crash, not propagat-
ing the error to the rest of the operating system. However, for MCUs, the whole
application will either jump to a fault handler or continue in an undefined manner,
forcing a reset of the whole system necessary. Therefore, the use of dynamic alloca-
tion on MCUs is a delicate topic, often disabled in its entirety or used with extreme
care.

7.3 Interrupts

Interrupts are pieces of code that are executed when a specific condition occurs. This
can be when an ADC (analogue to digital converter) conversion is done, a byte is
received over UART, or a timer has finished counting to an arbitrary value. The code
associated with interrupts is defined in Interrupt Service Routines (ISRs) and can
be called by the processor at any time during the execution of the main program,
given that the condition for the interrupt is fulfilled. When this happens, the processor
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interrupts the current execution of the program and jumps to the interrupt service
routine, returning to where it was in the program after executing the code in the ISR.

7.4 Multi-Core Processing

A simple way to do multi-core processing on MCUs can be achieved by means
of message passing. Typically, this is solved by having a dedicated messaging unit
(MU), which will notify the respective cores through an interrupt when a message
arrives. In this way, events can be raised that notify the other cores about starting a
specific task. Various implementations build on this concept, e.g. eRPC (embedded
remote procedure call) and RPMsg (remote processor messaging). For implement-
ations such as eRPC and RPMsg, dedicated shared memory areas accessible from
all cores are defined. These memory regions make it possible to store the messages,
which then can be read from the other cores after a message interrupt occurs. An
example of message passing can be seen in figure 7.6, where the main core notifies
the second core about starting a task. When the second core has finished its task, it
will notify the main core.

Core 0 Core 1

Start task

Start task

Finished task

Figure 7.6: Multi-core message passing.

A conventional system based on threads is harder to replicate. This is due to having
to do context switching if more threads than cores are spun up. Moreover, certain
memory regions might only be accessible from certain cores, and the capabilities of
the different cores might vary.
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Implementation

This chapter outlines the decisions made regarding the hardware platform and the
implementation details for the frontend and the backend of the VIO pipeline.

8.1 Hardware

In a VIO pipeline, a substantial amount of data has to be processed in the frontend.
Doing this at an acceptable frame rate requires a decent clock speed and a sufficient
amount of fast memory. Modern processors alleviate access to slower memory with
the use of cache. However, for microcontrollers, a far more suitable approach is to
have a decent amount of memory tightly coupled with the processor — within the
cache line — where access time is much quicker, and the memory operates at the
same frequency as the processor.

A VGA image has a resolution of 640×480 pixels. With a bit depth of 8 bits, this
results in 307.2 KB of data per image frame. Furthermore, for the frontend to be able
to process image data of this size on, e.g. a frame rate of 20 Hz, the microcontroller
has to be able to — at an absolute minimum — process 640×480×20= 6, 144,000
data points per second. For each data point, there will be extra instruction cost, e.g.
blurring the image with convolution has to be done before feature extraction to re-
move noise from the image. Separable convolution has an algorithmic runtime of
O(w×h×2N), where w is the width of the image, h is the height of the image, and N
is the kernel size. However, the instruction count will be a multiple of this algorithmic
runtime as it does not account for loading the data into the registers and increment-
ing loop counters in addition to the actual multiplication of the kernel and the image
values. With e.g. a kernel size of 3, 6 multiplications have to be performed for separ-
able convolution. In addition, one can assume that 6 load instructions are needed to
bring the data into the registers, accompanied by a store instruction to write the result
into memory. Moreover, loop counters have to be updated (assuming at a minimum
2 instructions for this, one for incrementing the loop counter and one for branching).
This results in: 640× 480× 20× (6+ 6+ 1+ 2) = 92,160, 000 instructions. This
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example is solely for one part of a VIO pipeline, emphasising that a clock frequency
ranging well above a few hundred MHz is needed for such a pipeline to work under
these specifications.

The backend in a VIO pipeline has to operate on a decent amount of floating-point
data, e.g. for matrix multiplication. To do the matrix multiplication fast, as with the
frontend, there should also be enough fast memory to alleviate memory access time.
Moreover, as previously discussed, floating point arithmetic is also quite expensive
without a dedicated FPU. It can thus be argued to be a rather hard requirement for
a microcontroller doing VIO at an acceptable frame rate. This concludes that for a
microcontroller to be able to run a VIO pipeline at an acceptable frame rate, it needs:

• Clock speed ranging far above a few hundred MHz
• Sufficient amount of fast memory closely coupled to the processor
• An FPU

This master’s thesis bases its implementation on the NXP i.MX RT1170 microcon-
troller (particularly the NXP i.MX RT1170 evaluation kit), which is a dual-core mi-
crocontroller with a 1 GHz ARM Cortex-M7 and a 400 MHz ARM Cortex-M4. The
M7 has 512 KB of TCM, and the M4 has 256 KB of TCM. Moreover, the micro-
controller has 1.25 MB on-chip RAM, and the evaluation kit comes bundled with
64 MB external SDRAM running at 200MHz. The SDRAM and OCRAM are con-
nected to the cores’ cache, which is 32 KB and 16 KB for the M7 and M4 core,
respectively. The i.MX RT1170 has an FPU, as well as a GPU that can be used for
image processing acceleration. The evaluation kit also comes bundled with 16 MB of
non-volatile program memory. The NXP i.MX RT1170 is one of the most perform-
ant microcontroller units out on the market as of the writing of this master’s thesis,
and to the author’s knowledge, the only microcontroller which has broken the GHz
barrier in clock speed. Basing the implementation on the i.MX RT1170 was therefore
considered the most promising choice of hardware for this master’s thesis.

The Arduino Nicla Vision was initially considered, which shares many similarit-
ies with the i.MX RT1170 and is based on the STM32H7 microcontroller. It is not,
however, as performant as the i.MX RT1170. The specialisation project preceding
this master’s thesis was based on the i.MX RT1160, which can be considered as the
i.MX RT1170’s little brother. It was chosen due to chip shortage and long lead times
for the i.MX RT1170. Thus, for this master’s thesis, the associated code from the
specialisation project was ported over to the i.MX RT1170.

The i.MX RT1170 consists of two cores with the ARMv7E-M architecture, which
has capabilities for floating-point and SIMD instructions. The TCM of both cores
contains ITCM and DTCM, and the distribution can be adjusted such that, e.g. more
of the TCM is utilised for DTCM. However, this adjustment can only be made in
banks of 32 KB. A valid configuration for the M7-core’s TCM could be 64 KB for
ITCM and 448 KB for DTCM. The outline of the RAM can be seen in table 8.1.

As one can observe in table 8.1, the TCM operates on the processor’s clock speed,
whereas the OCRAM operates on the main bus frequency of 240 MHz. The slower
speed of the OCRAM is alleviated with cache and a wide bus width. The external
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RAM
Within

cache line
Accessible

from Size Bus frequency Bus width

M7 TCM Yes M7-core 512 KB
Core speed

(1 GHz) 64-bit/2x32-bit

M4 TCM Yes Both cores 256 KB
Core speed
(400 MHz) 2x32-bit

On-Chip
RAM No Both cores 1.25 MB

Main bus
frequency,
240 MHz

64-bit

External
SDRAM No Both cores 64 MB 200 MHz 16-bit

Table 8.1: Different types of RAM available on the i.MX RT1170 evaluation board.
Note that the TCM bus for the M7 core is 64-bit for instructions and 2x32-bit for
data, where there is one bus for odd-numbered data addresses and one bus for even-
numbered data addresses.

SDRAM is the slowest, with the lowest bus width. A write and read speed demon-
stration can be seen in table 8.2, where a test of reading and writing a 100 KB buffer
10 000 times was performed with memcpy. The cache on the M7 core of the i.MX
RT1170 is 32 KB, yielding that the cache had to be updated throughout the iterations
of reading as it does not have the capacity for the whole buffer.

RAM
Read without

cache
Read with

cache
Write without

cache
Write with

cache

M7 TCM 3.58 GB/s 3.58 GB/s 3.58 GB/s 3.58 GB/s

On-Chip
RAM 0.09 GB/s 0.60 GB/s 1.83 GB/s 1.83 GB/s

External
SDRAM 0.03 GB/s 0.18 GB/s 0.42 GB/s 0.43 GB/s

Table 8.2: Write and read speed for the different memories available on the i.MX
RT1170 evaluation kit. The cache was invalidated before each set of read operations
and cleaned after each set of write operations.

In this example, a write-through policy was used for the cache, which is why the
cache does not affect the write operations. Furthermore, one can see that the TCM is
unaffected by whether the cache is enabled due to being tightly coupled with the pro-
cessor and within the cache line. This also shows how much faster writing to memory
is than reading when the CPU operates on a higher frequency than the memory. When
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writing, the CPU issues the write command and can continue with the next instruc-
tion. However, when reading, the CPU has to stop and wait for the data, effectively
wasting clock cycles.

Table 8.2 also shows the effect of the bus width, where one can observe that for
the operations with the TCM, the CPU can seemingly read and write 4 bytes per
clock cycle. This is due to the 2x32-bit bus width of the TCM, enabling 4 bytes
on the bus simultaneously for every even/odd address. This is also prevalent when
comparing the SDRAM and the OCRAM. There is roughly a 3x data rate for reading
from the OCRAM when the cache is disabled, even though the two memories operate
on comparable frequencies.

8.2 Libraries Utilised

The implementation discussed in the following section uses Eigen [5] for linear al-
gebra and the Embedded Template Library (ETL) [6] for containers such as vectors.
The ETL replicates the standard library for C++ but focuses on compile-time known
sizes of its containers. Thus, an upper boundary for how much memory the imple-
mentation consumes can be found at compile-time.
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8.3 Frontend

The frontend developed in this thesis builds on the feature extractor and tracker
built in the preceding specialisation project — which was inspired by the frontend
in OpenVINS [4] — where FAST [40, 41] is utilised as the feature extractor and
Lucas-Kanade [42] with image pyramids is utilised for feature tracking. The choice
in the specialisation project to build the components for a direct method was due to
reducing the computational cost. It should be stated that the original implementation
of MSCKF by Mourikis and Roumeliotis [13] utilises SIFT, which is rather compu-
tationally demanding but can be more robust.

The following sections outline how the feature extractor and feature tracker were
built in the preceding specialisation project. It will also outline adaptions made to the
frontend to make it more robust against track outliers. Lastly, a high-level outline of
the frontend will be shown.

8.3.1 FAST

The FAST implementation constructed in the specialisation project became signi-
ficantly targeted towards the ARMv7E-M architecture of the microcontroller. Most
prevalent with the use of SIMD instructions to quickly scan through an image. Fur-
thermore, lookup tables were used to determine whether a given pixel was within
the FAST threshold. The images and the respective data associated with them were
stored in DTCM for fast memory access.

SIMD Rejection Test

It was found in the specialisation project that the rejection of candidate pixels was
one of the main bottlenecks, simply due to the sheer amount of data. As an image
resides naturally sequentially in memory, row after row, SIMD could be utilised. The
images have a bit depth of 8, yielding that SIMD could be used for operations on four
pixels in a single instruction. For the rejection of candidate pixels, this was utilised
such that a group of four pixels could be examined simultaneously. The main idea
can be seen in figure 8.1, where an excerpt from a feature candidate test with the
opposite pixel pairs at the top and bottom are shown. The idea of testing opposite
pixel pairs in the FAST pattern comes from the fact that one of the opposite pixel
pairs has to be outside the threshold range for the pixel to be a feature candidate, as
outlined in section 4.5.4. In figure 8.1, a FAST threshold of 50 is used, rendering that
the only pixel value in the pattern being outside the range of the corresponding centre
pixel intensity ± the threshold is the top right-most pattern pixel. The three left-most
candidates can thus be discarded without any further processing.

The gist of the SIMD candidate rejection test developed in the specialisation pro-
ject can be seen in algorithm 3, where a test of one of the opposite pixel pair groups,
denoted by the index i, is shown. Firstly, two 32-bit integers are constructed, which
take the current pixel pointer value converted to a 32-bit number (so that it essen-
tially is packed with 4 pixel candidates), here denoted C , and add/subtract a 32-bit
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110 120 125 120

Figure 8.1: Idea behind SIMD feature candidate test: processing groups of 4 pixels.
The four feature candidates in the middle are compared against the top row and then
against the bottom row. Here a FAST threshold of 50 is used. Only the right-most
pixel in the top row passes the test. The first three candidates can thus be discarded
without any further processing.

integer filled with the threshold at each byte. With this, one essentially has two 32-bit
integers with 4 pixel candidate values ± the threshold. The instructions used here are
UQADD8 and UQSUB8, which will clamp the value for each byte to an unsigned
value between 0 and 255.

After that, a check is performed for whether the pixel candidates plus the threshold
are not all at the maximum value. If they are, it does not matter what the pattern pixel
values are; they cannot be greater than 255, no matter what. If this is not the case,
the algorithm checks if the pattern pixels are greater than the pixel candidates plus
the threshold by means of subtraction. Meaning, if a given pattern pixel value minus
the candidate pixel value plus the threshold is greater than zero, it has passed the test.
Here the USUB8 SIMD instruction is used, which will set underflow flags within
the processor. If an underflow occurs (which happens if the pattern pixel value is
greater than the centre pixel plus the threshold), these can be read out with the SEL
instruction.

The SEL instruction with the associated parameters will return 0xFF for the sub-
tractions where underflow occurs and 0x00 otherwise, at the corresponding byte posi-
tions. This will thus result in the pattern pixels being above the threshold range having
their indices within the m+ mask filled with 0xFF. The same logic is performed for
the pattern pixels below the threshold range, as seen in lines 11 to 16. In the special-
isation project, it was found that doing two such checks for the top-to-bottom pattern
pixels and left-to-right pattern pixels yielded the most performant implementation,
ruling out most pixels.
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Algorithm 3 SIMD feature candidate test
Input: C , candidate pixels’ intensity (32-bit)
Input: P0 . . . P15, pattern pixel intensities (32-bit)
Input: i, pattern pixel index
Input: t, intensity threshold, repeated threshold at each byte (32-bit)
Output: m, mask determining if opposite pixel pairs are above or below threshold

range
1: C+ ← UQADD8(C , t)
2: C− ← UQSUB8(C , t)
3: m+ ← 0
4: m− ← 0

5: if C+ < 0xFFFFFFFF then
6: USUB8(Pi , C+)
7: m+ ← SEL(0xFFFFFFFF, 0x0)
8: USUB8(Pi+8, C+)
9: m+ ← m+ OR SEL(0xFFFFFFFF, 0x0)

10: end if

11: if C− > 0x0 then
12: USUB8(C−, Pi)
13: m− ← SEL(0xFFFFFFFF, 0x0)
14: USUB8(C−, Pi+8)
15: m− ← m+ OR SEL(0xFFFFFFFF, 0x0)
16: end if

17: m← (m+ OR m−)

Lookup Table Rejection Test

When a candidate passes the SIMD rejection tests, it will be evaluated further with a
lookup table test, where t is the FAST threshold.

Index Value
[0, 255− t) 1
[255− t, 255+ t) 0
[255+ t, 512) 2

Table 8.3: Lookup table used for rejection test.

The test is then based on using the lookup table with the following pseudocode:

l[255− I(pc) + I(pp)] (8.1)

where I(pc) is the pixel value of the candidate being examined, I(pp) is a pattern pixel
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value and l is the lookup table. An example with t = 100, a candidate pixel value of
116 and different pattern pixel values can be seen in table 8.4. In this example, the
first and third entries are outside the threshold range and should be examined further.

I(pp) 255− I(pc) + I(pp) Lookup Table Value Description
6 145 1 Below threshold range
40 179 0 Within threshold range

220 359 2 Above threshold range

Table 8.4: FAST pattern lookup table example

The lookup table allows for creating a mask for every opposite pixel pair by utilising
logical OR. The mask is then logically AND-ed with the rest of the pairs. If the
mask is 0 at any point after a lookup table test between two opposite pixel pairs, the
candidate can be rejected since at least one of them has to be outside the threshold
range for the candidate to be a potential feature. An excerpt of this can be seen in
algorithm 4. Note that in the implementation, the lookup table test happens on a per-
pixel basis and the pattern pixels were also stored in a lookup table for fast access.

Algorithm 4 Lookup table feature candidate test

Input: l, lookup table
Input: I, image
Input: pc , position of the candidate pixel
Input: p0 . . . p15, pattern pixel positions

1: m← l[255− I(pc) + I(p0)] OR l[255− I(pc) + I(p8)]
2: if m= 0 then
3: reject candidate
4: end if

5: m← m AND (l[255− I(pc) + I(p4)] OR l[255− I(pc) + I(p12)])
6: if m= 0 then
7: reject candidate
8: end if

9: . . .

If a given candidate passes all the lookup table tests, it will be examined in detail
for 9 consecutive pixels being either above or below the threshold range, using the
information from the lookup table test to know which condition to check for.
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Results From the Specialisation Project

The custom implementation of FAST from the specialisation project was tested against
OpenCV’s implementation, using the EuRoC dataset. The images in the EuRoC data-
set have a resolution of 752×480. The custom implementation was found to corres-
pond to OpenCV for 99.8% of the features with an average runtime of 4.962 ms for
an average of 86.4 features per image (using a FAST threshold of 80).

8.3.2 Lucas-Kanade

The algorithmic implementation of Lucas-Kanade from the specialisation project was
not implemented with specific dependence on the MCU’s instruction set, simply due
to there being fewer aspects of the algorithm which could be alleviated by e.g. SIMD.
That said, how the algorithm operated on memory and how to reduce the amount of
memory needed was explored to reduce the runtime and required memory.

The gist of the algorithm developed in the specialisation project can be inspec-
ted in algorithm 5. The implementation used image pyramids to increase robustness
(as outlined in section 4.5.5). However, in classical Lucas-Kanade implementations,
one usually constructs image pyramids for the two images with which the tracking
is done. An image pyramid with 5 levels of an image from the EuRoC dataset (at a
resolution of 752 × 480), where each level is halved in width and height from the
previous layer, requires

∑4
i=0

752
2i · 480

2i = 480,810 bytes (bit depth of 8). Thus, using
two such image pyramids for the two images would require 122.2% of the available
RAM on the M7 core (when excluding the memory reserved for the M4 core) on the
i.MX RT1160 (which was used in the specialisation project). Thus, the implement-
ation could not use this approach. In the specialisation project, the implementation
rather used local pyramids around the neighbourhood — the patches — of the fea-
tures. In the following, Pk

pyr is the patch pyramid of image Ik.

Algorithm 5 Lucas-Kanade pipeline

Input: Pk−1
pyr , patch pyramid from previous frame

Input: Ik, image from the current frame
Output: Pk

pyr, patch pyramid used in the next frame
Output: U=
�

u0 . . . uM
�

, list of features

1: Ik
pyr← CreateImagePyramid(Ik)

2: Ik
pyr← BlurImagePyramid(Ik

pyr)

3: U← TrackFeatures(Ik
pyr,P

k−1
pyr ) (according to algorithm 1)

4: Pk
pyr← ConstructPatchPyramid(Ik

pyr,U)

As seen in algorithm 1, section 4.5.5, the data of the patches from the first image
need not be re-sampled and are constant during the algorithm; they can thus be pre-
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computed from a set of features, which happens when the patch pyramid is construc-
ted (step 4 in algorithm 5). This allows only storing M LP2

s bytes of data from the first
image, where M is the number of features, L is the number of pyramid levels, and Ps
is the patch size. With a patch size of 7, 5 pyramid levels and N features, this results
in M · 5 · 72 = 245M bytes of data.

In the implementation from the specialisation project, borders around the patches
were used to allow convolution at the edge of the patch and sub-pixel accuracy
through bilinear filtering. This can be observed in figure 8.2, where the red square
is the patch, which needs the data in the blue square to apply the blur without shrink-
ing in size. However, since bilinear filtering is used, all the values in the blue square
need to be blurred, thus requiring an additional border during creation to not shrink
in size when convoluted, which in the illustration is the green square. Thus, the final
size of the patch will consist of the blue square, but the values within the green square
are only used during the initialisation of the patch.
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Figure 8.2: The structure of the patch with the borders.

Floating point numbers are needed for more accurate results when using bilinear fil-
tering, which led to 4 bytes per value in the patch. In addition, a sub-pixel coordinate
for the patch’s location had to be stored, resulting in an additional 2 floating point
numbers per patch. With this, the amount of bytes required for N patches with 5
pyramid levels became M · 5 · ((7+ 2)2 + 2) · 4= 1660M .

Results From the Specialisation Project

When compared with an OpenCV implementation, the custom implementation yiel-
ded the same track for 83% of the features over the whole EuRoC dataset, having
an average runtime of 23.8 ms for an average of 20.3 features. However, compar-
ing this way did not state how accurate the implementation in reality was. This was
not the case with the FAST implementation since there is a fixed set of rules for the
FAST pattern detection, which could be verified. Therefore, for this master’s thesis,
the Lucas-Kanade implementation was tested against the KITTI flow 2015 dataset [7,
8].
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Eigenvalue Rejection

Following the work in the specialisation project, an eigenvalue check was imposed
for the structure tensor to make the implementation more robust, as outlined in sec-
tion 4.5.5 and figure 4.9. However, as shown in the results given by figure 10.1 and
table 10.1, the custom implementation for Lucas-Kanade was found to be less robust
than OpenCV’s implementation. Some attempts with affine transformations within
the tracker were made to alleviate this, but they did not yield improved results.

8.3.3 Rotated BRIEF Outlier Rejection

In order to reject outliers, the frontend incorporates rotated BRIEF descriptors, mak-
ing it possible to detect when a track divergence occurs. The BRIEF implementation
uses a patch size of 31× 31 and a pattern size of 256 pixel coordinate pairs, yield-
ing a descriptor length of 256 bits. To still support extracting feature candidates near
the edges of the image, a reflected border around the image is often used, alleviating
that the patch can reach outside the boundary of the original image. An example of
this can be seen in Figure 8.3. Regularly, this is achieved by storing a separate image
with an appended border. This implementation of BRIEF separates itself from the
conventional implementations by doing on-the-fly reflection instead.

. . . 60 105 140 85 140 105 60 . . .

. . . 45 30 40 35 40 30 45 . . .

. . . 30 40 25 14 25 40 30 . . .

Image edge

Figure 8.3: Reflection demonstration, where the elements left of the edge are the
reflection of the elements right of the edge.

On-the-fly Reflection

Instead of storing an image with an appended border, this implementation of BRIEF
does on-the-fly reflection. This is motivated by the fact that the i.MX RT1170 does
not have enough memory for a separate image in the faster memory regions without
shuffling some of the other data the frontend and backend use around, yielding that
it would have had to be stored in SDRAM. By doing on-the-fly reflection, the im-
plementation can operate on the same image data as the rest of the frontend, which
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resides in DTCM. This makes computing the BRIEF descriptors faster even though
there is an extra instruction cost due to the on-the-fly reflection.

Let pr be the reflected coordinate and p be the original coordinate. Here, the
origin of the image is given by the top-left corner. Reflection along the left and top
edge in the image thus becomes:

pr = −p (8.2)

For the right and bottom edges of the image, the width and height of the image have
to be taken into consideration. Let W be the width and H be the height. Building from
the fact that the distance to the edge has to be equal for both points, the reflected point
becomes what is shown in equation (8.3) (note here that zero indexing is used, such
that the horizontal edge is given by x = W − 1 and the vertical edge is given by
y = H − 1).

�

W − 1
H − 1

�

− pr = p−
�

W − 1
H − 1

�

pr = 2

�

W − 1
H − 1

�

− p

(8.3)

By utilising equation (8.2) and equation (8.3), reflection can thus be done on-the-fly.
It should be stated that the extra instruction cost could yield this being in-favourable
for a much greater set of features. That said, the on-the-fly reflection is a small part of
the total amount of instructions, with the cost of 16 instructions per reflection. This
yields that in a hypothetical case where reflection happens for all the coordinates
of the BRIEF pattern, the total number of additional instructions would be 16 · M ·
512 = 8192M . Here M is the maximum number of features, and 512 comes from
the number of pixel coordinates in the BRIEF pattern.

Comparing this against pre-computing the image with an appended border —
with a required size of 31 pixels due to the patch size — the extra instruction cost
from constructing the borders becomes 2·752·31·16+2·480·31·16= 1222144 in-
structions. Here, the resolution of the images in the EuRoC dataset is used: 752×480,
and the multiplication by two reflects that a border has to be constructed for both ver-
tical and horizontal edges. Thus, roughly, this leads to ≈ 149 features. However, this
estimate is far from the truth, as it does not consider the extra clock cycles required
for copying over the rest of the image. Moreover, this also does not consider the
increased memory access time for the slower external SDRAM.

The on-the-fly reflection was tested against conventional pre-computing of the
reflected image (stored in SDRAM), with a maximum of 50 features in the frontend.
This reduced the computational time of the whole frontend (doing feature extraction,
tracking and outlier rejection with the BRIEF implementation) by 9 ms: from 31 ms
to 22 ms.
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8.3.4 High-Level Overview

The high-level overview of the frontend implemented can be observed in algorithm 6.
Note that when features are tracked, the features from the previous frame are implicit
in the patch pyramid Pk−1

pyr , as discussed in section 8.3.2. Here, D denotes the BRIEF
descriptors. Before features are tracked, the angular velocity between the previous
and the current camera frame is integrated to provide an estimate for where the fea-
tures are in the current frame. The other variables, which are not inputs or outputs,
reside in the frontend module. Moreover, as shown in the overview, feature extraction
considers the maximum amount of features allowed in the pipeline, denoted by Mmax.

Algorithm 6 High-level overview of frontend

Input: Ik, image at time step k
Input: Bk, IMU measurements between previous and current frame
Output: U=
�

u0 . . . uM
�

, list of feature observations

1: Ik
pyr← CreateImagePyramid(Ik)

2: Ik
pyr← BlurImagePyramid(Ik

pyr)

3: Rbk bk−1
← IntegrateIMUData(Bk)

4: U← TrackFeatures(Ik
pyr,P

k−1
pyr ,Rbk bk−1

)
5: U← FindInliersUsingBRIEF(U,D)

6: if Length(U)< Mmax then
7: Uk← ExtractFeatures(Ik, Mmax −Length(U))
8: D← D∪ConstructBRIEFDescriptors(Ik,Uk)
9: U← U∪Uk

10: end if

11: Pk
pyr← ConstructPatchPyramid(Ik

pyr,U)
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8.4 Backend

The backend implemented for the VIO pipeline is based mainly on the LARVIO [2,
3] project, which is an MSCKF implementation including a static initialiser, IMU-
camera extrinsics estimation, time stamp compensation and stationary detection.

8.4.1 High-Level Overview

The overview of the backend can be observed in algorithm 7, where Simu is the IMU
state, Saug is the set of augmented IMU states, and T is the set of feature tracks. Each
feature track contains a list of observations of the given feature. The feature obser-
vations passed from the frontend are not only coordinates; they have an identifier to
add the observation to the corresponding feature track.

Algorithm 7 High-level overview over the backend

Input: U, list of feature observations from frontend
Input: Bk, IMU measurements between previous and current frame

1: if not initialised then
2: (initialised,Simu)← AttemptStaticInitisliation(U,Bk)
3: end if

4: if initialised then
5: Simu← PropagateIMUState(Simu,Bk)
6: Saug← Saug ∪ Simu

7: T← AddFeatureObservations(T,U)
8: Saug← Saug \ FindUnusedStates(Saug,T)

9: if IsStationary(T) then
10: (Simu,Saug)← StationaryUpdate(Simu,Saug)
11: end if

12: Tupdate← FindFeatureTracksReadyForUpdate(T)
13: if Tupdate ̸= ; then
14: Sa← FindAssociatedAugmentedStates(Tupdate)
15: (Simu,Saug)←MeasurementUpdate(Simu,Saug,Sa,Tupdate)
16: end if

17: if Length(Saug) = Nmax then
18: Sl ← FindAugmentedStatesWithLeastMovement(Saug)
19: Ta← FindAssociatedFeatures(Sl)
20: (Simu,Saug)←MeasurementUpdate(Simu,Saug,Sl ,Ta)
21: end if
22: end if
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Static Initialisation

if not initialised then
(initialised,Simu)← AttemptStaticInitisliation(U,Bk)

end if

The backend initialises by means of static initialisation, requiring the system to be
stationary initially. The static initialisation was set to require at least 20 stationary
frames. It looks at the Euclidean distance between the feature observations at the first
frame and the current frame to determine whether the system is static. If the system
is not deemed static, the initialisation is reset.

If the system is determined static, the average of the measured accelerations from
the IMU measurements is calculated. This is used to construct the initial orientation
estimate by comparing it against the assumed world frame gravity vector. Moreover,
an initial bias for the angular velocity is estimated by the average measured angular
velocity during the static frames.

Propagating & Augmenting the State

Simu← PropagateIMUState(Simu,Bk)
Saug← Saug ∪ Simu

During the propagation step, the set of IMU measurements Bk between the previous
and current camera frames is processed. The propagation of the nominal IMU state is
done by means of Runga-Kutta numerical integration (Appendix B) and follows the
dynamics outlined in section 6.3. The IMU state covariance is propagated by finding
the error-state transition matrix, as outlined in section 6.5.2.

After the propagation, the current estimate for the IMU state Simu is augmented
into Saug according to section 6.6.

Adding Feature Observations & Removing Unused States

T← AddFeatureObservations(T,U)
Saug← Saug \ FindUnusedStates(Saug,T)

When new feature observations arrive, they are iterated through and added to the
feature tracks T. The backend operates with identifiers for the IMU state, yielding
that the set of feature observations will be associated with the current state when
added. This allows for checking if there are states which do not have any associated
features and can be removed to reduce computational cost.
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Stationary Detection & Update

if IsStationary(T) then
(Simu,Saug)← StationaryUpdate(Simu,Saug)

end if

Stationary detection is based on the same principle as the static initialisation, check-
ing for minimal movement for each feature in the feature tracks. The stationary up-
date follows the derivations in section 6.10.

Updating the Filter With Features

Tupdate← FindFeatureTracksReadyForUpdate(T)
if Tupdate ̸= ; then

Sa← FindAssociatedAugmentedStates(Tupdate)
(Simu,Saug)←MeasurementUpdate(Simu,Saug,Sa,Tupdate)

end if

Features are used to update the filter under the given conditions:

• There are features which have been tracked past the maximum track length and
can be triangulated.

• There are features which have gone out of frame (out of the image) and can be
triangulated.

If the feature has gone out of frame and cannot be triangulated, it will be discarded.
As previously mentioned, due to associating feature observations with augmented
IMU state identifiers, the associated states can be found. This is used to construct the
jacobian outlined in section 6.7.1 with the associated null-space projection. The filter
is then updated according to the derivations in section 6.8.

Pruning Augmented IMU States

if Length(Saug) = Nmax then
Sl ← FindAugmentedStatesWithLeastMovement(Saug)
Ta← FindAssociatedFeatures(Sl)
(Simu,Saug)←MeasurementUpdate(Simu,Saug,Sl ,Ta)

end if

A forced filter update is performed if the set of augmented IMU states is at the max-
imum allowed capacity for the sliding window. It is based on finding augmented
IMU states with little movement from a reference state. All the features observed
from these states are then used in the forced filter update.
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8.4.2 Adaptations & Optimisations

This implementation of an MSCKF backend separates itself from conventional im-
plementations by the following aspects:

• Explicitly placing heavily used data in fast memory regions
• Chaining the error-state transition matrix to reduce matrix multiplication
• Using a custom allocator for Eigen

Moreover, as with other implementations such as OpenVINS [4], the implementation
makes heavy use of the triangular functionality in Eigen to limit the computations
needed for symmetric matrices such as the state covariance matrix.

The following sections will demonstrate how these changes decreased the runtime
of the backend. The Machine Room 1 part of the EuRoC dataset [9] was used as a
baseline for the runtime of the backend (with a maximum of 50 features and a max-
imum sliding window of 15). The runtime of the static initialisation is omitted from
the analysis due to not happening on a frequent interval in the backend and being
a small contribution to the overall runtime. The backend had an initial RMSE of
≈ 0.42m and a final percentage error of 0.92% of the total track length.

The reader should be aware that BRIEF was not used for outlier rejection in the
frontend during these tests due to being incorporated into the implementation later.
This does not, however, have any implications on where the major bottlenecks in the
backend were. The initial runtime can be observed in table 8.5, where there was no
use of TCM.

Component Average Time (ms) Max Time (ms)
Propagating state 20 47
Augmenting state 0 3
Adding feature observations 0 1
Removing unused states 0 3
Stationary detection & update 0 5
Updating filter with features 30 342
Pruning augmented IMU states 1 82
Backend in total 53 442

Table 8.5: Initial runtime of the backend.

In the results, the great spikes in processing time occurred due to the filter update,
where QR decomposition and matrix multiplication were the two main contributors
to increased runtime.

It should be noted that due to how the timing was calculated, using the SysTick
component of the microcontroller instead of the DWT as was done with the frontend
in the preceding specialisation project, there are some slight inaccuracies which can
be observed with the total sum not being equal to the summed average of the compon-
ents as well as the restricted resolution to only 1 ms, which the reader should bear in
mind in the following sections. The reason for doing the timing this way was to have
nested timing: testing the range of components in the backend whilst also profiling
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the backend as a whole, which would not be possible with the DWT. This was not
deemed a problem for determining where optimisations had to be made, as the es-
timates provided a thorough insight into the bottlenecks. It should also be noted that
the total time of the backend not adding up to the individual components’ maximum
is due to the maximum of the individual components’ runtime happening at different
instances in time.

Explicitly Placing Heavily Used Data in Fast Memory Regions

The implementation stores the state covariance in DTCM as it is frequently used in
the backend. The total size of the DTCM configured for the implementation is 480
KB, where 752·480= 360960 bytes is reserved for the image being processed in the
frontend, and 32 KB is reserved for the stack. The total size of the state covariance is
given by:

T = (22+ 6N) · (22+ 6N) · 4 bytes (8.4)

where the IMU state occupies 22 entries and N is the number of augmented IMU
states, as outlined in section 6.1.3. Moreover, the size is multiplied by 4 due to using
32-bit floating point numbers. With a sliding window of N = 15, this results in a
maximum of:

T = (22+ 6 · 15) · (22+ 6 · 15) · 4= 50176 bytes (8.5)

which leaves 47616 bytes unused in DTCM. To use a static buffer with the Eigen
matrices, Eigen’s map functionality is used in the implementation. Incorporating this
resulted in the runtime which can be observed in table 8.6, where one can see the
main contribution to the decreased runtime came from the propagation step, where
the state covariance is heavily used in matrix multiplication. Furthermore, one can
also observe a decreased runtime for the components updating of the filter, where the
state covariance is also used.

Component Average Time [ms] Max Time [ms]
Propagating state 15 27
Augmenting state 0 2
Adding feature observations 0 1
Removing unused states 0 1
Stationary detection & update 0 4
Updating filter with features 28 338
Pruning augmented IMU states 1 62
Backend in total 46 396

Table 8.6: Runtime of the backend after placing the state covariance matrix in
DTCM
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Exploiting Symmetric Matrices

As with OpenVINS [4], this implementation makes heavily use of the triangular func-
tionality in Eigen to reduce matrix multiplication, effectively allowing to only calcu-
late the upper triangular part of a matrix and then mirroring the result for the lower
triangular part. Making use of this resulted in the runtime observed in table 8.7, where
one can observe this change affecting mainly the components related to the update
step of the filter.

Component Average Time [ms] Max Time [ms]
Propagating state 14 26
Augmenting state 0 2
Adding feature observations 0 1
Removing unused states 0 1
Stationary detection & update 0 4
Updating filter with features 19 216
Pruning augmented IMU states 0 31
Backend in total 35 262

Table 8.7: Runtime of the backend after placing intermediary matrix products in a
buffer in DTCM and using triangular matrix multiplication for symmetric matrices

Chaining the Error-state Transition Matrix to Reduce Matrix Multiplication

As outlined in the section 6.5, when the state covariance is predicted, the transition
matrix Φ(tk+1, tk) is calculated. The transition matrix has the following property (see
[70], lemma 1173):

Φ(tk+n, tk) = Φ(tk+n, tk+(n−1))Φ(tk+(n−1), tk+(n−2)) . . .Φ(tk+1, tk) (8.6)

The transition matrix between error-state estimates can thus be chained, allowing for
only needing to calculate the chain when propagating the covariance from a range of
IMU measurements between two camera frames. This allows for a single propagation
of the state covariance with the chained transition matrix instead of propagating it for
every measurement. With this, equation (6.63) becomes:

P−I Ik+n
= Φ(tk+n, tk)PI Ik

Φ(tk+n, tk)
T

+Φ(tk+n, tk)G(tk)Q(tk)G(tk)
TΦ(tk+n, tk)

T∆t · n
(8.7)

This reduces the amount of matrix multiplication when predicting the nominal state
and the covariance. The result from incorporating this into the implementation can be
seen in table 8.8, where one can observe that this change led to an 11 ms decrease in
runtime for propagating the state on average. This does yield a numerically different
system as a whole. However, this was found not to hurt the filter’s accuracy, achieving
an RMSE of 0.39 m and a final percentage error of 0.80% of the total track length,
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which was an improvement from the initial system. However, these values should be
taken with a grain of salt but show that the filter was behaving similarly. It should
also be noted that the maximum value of the filter increased, which came from the
slightly changed numerical values in the filter from time point to time point, leading
to changes in the update step of the filter.

Component Average Time [ms] Max Time [ms]
Propagating state 3 4
Augmenting state 0 2
Adding feature observations 0 1
Removing unused states 0 1
Stationary detection & update 0 4
Updating filter with features 19 261
Pruning augmented IMU states 0 34
Backend in total 24 284

Table 8.8: Runtime of the backend after using the transition matrix chain to reduce
matrix multiplication

Custom Allocator

The implementation uses a custom allocator prioritising for faster memory regions
for Eigen’s dynamic matrices. This significantly speeds up all use of Eigen in the
implementation. Regularly, the data for these matrices are stored on the heap. For
the implementation, this became problematic due to two reasons: both DTCM and
OCRAM have rather limited capacity (yielding that storing the heap in one of them
can result in running out of space) and storing the heap on the external SDRAM
results in slow access times for the matrix products. This implementation thus uses a
custom allocator to alleviate this. The proposed custom allocator allows for spanning
a heap over two distinct memory regions, which in the implementation is used to
prioritise allocations in DTCM and fallback to OCRAM.

The custom allocator is not a replacement for the system’s dynamic memory
(which the respective calls to malloc, realloc and free). Instead, the implementation
uses a modified version of Eigen that allows for calling an externally defined custom
allocator. This allows for not limiting the allocator to Eigen solely.

The allocator is built with redundancy in mind, allowing, as stated, to fall back
to slower memory with more capacity if the faster memory reaches full capacity. The
custom allocator is designed as a standard heap, allowing for allocating, reallocating
and freeing memory. Moreover, it is implemented as a doubly linked list of nodes
spanning over the two memory regions, which can be observed in figure 8.4.

The allocator is implemented after a first-fit strategy with splitting, where an al-
location will be placed in the first available/unused block when traversing the doubly
linked list, with a split of the block occurring after to maintain space efficiency. This
strategy mimics a best-fit strategy, where the block with the lowest capacity but still
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DTCM D1 D2 . . . DN

OCRAM O1 O2 . . . ON

Figure 8.4: Structure of allocator spanning over the two memory regions DTCM
and OCRAM, with a doubly linked list combining the blocks. The memory write
and access speed decreases downward. The used blocks are denoted in red, whereas
the unused blocks are denoted in blue. Note that the blocks here are of equal size,
which is only for illustration purposes, as the blocks can greatly vary in size.

enough space for the allocation is chosen. However, best-fit has to traverse the whole
doubly linked list due to this aspect. Both strategies have an algorithmic runtime of
O(n), whereas the first-fit will, on average, be lower. There are various other alloc-
ation strategies, but first-fit with splitting was chosen due to firstly being fast and
secondly being space efficient, which is one of the primary goals of the allocator:
placing as much of the data in DTCM. The first-fit with splitting strategy can be
observed in figure 8.5.

Allocation

1 2 3 . . .Find suitable
block

1 2 Allocation 4 . . .Insert &
make split

1 2 3 4 . . .Mark allocated
block as used

Figure 8.5: Search for available space for allocation in first-fit with splitting.

Functionality for merging blocks is also incorporated into the allocator to have greater
space efficiency, where neighbouring unused blocks are merged when a free occurs,
as demonstrated in figure 8.6. This prevents the heap from being split into smaller
and smaller pieces, converging to a state where larger allocations cannot happen.

When laid out in memory, each block needs metadata for the size of the data,
whether it is used or available for allocation and pointers for the previous and the
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1 2 3 . . .Free of block 2
is requested

1 2 3 . . .Block 2
is freed

1 . . .Block 1, 2 & 3
are merged

Figure 8.6: Merging unused blocks after a free.

next block. Since the architecture is 32-bit, each pointer occupies 4 bytes. The size
variable is 32-bit, and the boolean flag for whether the block is used or not is 8-bit.
However, due to alignment, which the compiler introduces for faster access times,
the boolean flag will be padded with 3 bytes. This results in the metadata for each
block being 16 bytes, which can be observed in figure 8.7. It should be stressed that
this metadata is stored along with the actual data in the respective memory regions.

Data . . .

0x0 0xF

Size

Currently
used flag

Padd-
ing

Previous
pointer

Next
pointer

Figure 8.7: Structure of a block.

For the allocations to not grow beyond the capacity of the allocator, it needs to have
the capacity within one memory region at least as big as the scope with the largest
amount of allocation. This was found by examining the matrix sizes, mainly during
the filter update, where the most dynamic data is allocated. Before the update step
of the filter, the jacobian Hx̂,n (equation (6.81)) and the corresponding residual rn is
constructed, both which can have a maximum of 2Mmax − 3 rows, where Mmax is
the maximum number of feature observations. Furthermore, the jacobian can have a
maximum of 22+ 6Nmax columns, where Nmax is the maximum allowed size of the
sliding window.

During the update step, a QR decomposition is performed if the number of rows
of the jacobian is greater than the number of columns, reducing the maximum num-
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ber of rows to N ∗max := 22 + 6Nmax (and reducing the allocated data) for both the
jacobian and the residual. With that being said, the resize will require an allocation
of the new resized data before the original data is moved to the resized data, with a
maximum size of N ∗max · N

∗
max for the jacobian and N ∗max for the residual. Here, this

updated jacobian is given by THx̂,n
and the corresponding residual is given by rQ (see

section 6.8.2). Furthermore, when the Kalman gain is computed, the inverse innova-
tion covariance is found (equation (6.92)):

Sk+1 = THx̂,n
P−k TT

Hx̂,n
+σ2

imIrows(QT
1 )×rows(QT

1 )
(8.8)

The calculation of the Kalman gain for when the maximum amount of memory is
used is then given by the procedure shown in algorithm 8.

Algorithm 8 Calculation of Kalman gain

1: S−1
k+1← Allocate(N ∗max, N ∗max)

2: Sk+1← THx̂,n
P−k TT

Hx̂,n

3: Sk+1← Sk+1 +σ2
imIN∗max×N∗max

4: S−1
k+1← Inverse(Sk+1)

5: Kk+1 = P−k TT
Hx̂,n

S−1
k+1

During step 2, two allocations occur: one for the transpose of THx̂,n
and one to store

the result itself. During step 3 one allocation occurs for IN∗max×N∗max
, as the addition is

performed in-place. However, during these steps, the intermediary matrices given by
the transpose and the identity are freed directly after the operation. As shown by the
indentation in algorithm 8, these allocations are placed within a nested scope, such
that Sk+1 is deallocated when this scope is left and only the allocated data of S−1

k is
left. Thus, to summarise for calculation of the innovation covariance, only two extra
matrix allocations of maximum size N ∗max · N

∗
max are active at any time.

During the calculation of the Kalman gain in step 5, the allocation of the data
for the Kalman gain itself, and the transpose of the measurement jacobian occurs.
The transpose is, however, freed instantly after the product is calculated. Thus, for
the calculation of the Kalman gain, the maximum allocated data at any time point is
given by 3 · N ∗max · N

∗
max.

Furthermore, when the state covariance is updated according to equation (6.94),
it is updated in-place, such that only one allocation for an intermediary product oc-
curs, with the same maximum size as the preceding matrices. At this point, both S−1

k+1
and Kk+1 are in scope, and only one extra matrix is allocated since the state covari-
ance is mapped to a buffer in DTCM residing outside the allocator, as discussed in
section 8.4.2. This yields again a maximum of 3 · N ∗max · N

∗
max.

This concludes that a rough upper bound for the capacity needed by the allocator
is given either by the allocated data before and during the QR decomposition or after.
In the following, the multiplication by 4 is needed as the matrices use 32-bit floating
point numbers. Moreover, due to the allocation happening during the resize in the
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QR decomposition, extra entries have to be added with the maximum sizes of for the
reduced jacobian THx̂,n

and the reduced residual rQ.

Amax = 4 ·max
�

max size(Hx̂,n) +max size(rn) +max size(THx̂,n
) +max size(rQ),

max size(THx̂,n
) +max size(rQ) + 3 · (N ∗max · N

∗
max)
�

= 4 ·max
�

(2Mmax − 3)(22+ 6Nmax) + (22+ 6Nmax)
2 + 2 · (22+ 6Nmax),

(N ∗max · N
∗
max) + N ∗max + 3 · (N ∗max · N

∗
max)
�

= 4 ·max
�

(2Mmax − 1)(22+ 6Nmax) + (22+ 6Nmax)
2,

4 · (22+ 6Nmax)
2 + (22+ 6Nmax)

�

(8.9)
The implementation uses a sliding window of 15 and a maximum number of features
in the frontend set to 50. However, to allow overlap between the frames, e.g. in the
edge case of all the current features going out of frame and the frontend extracting
50 new features in the same frame, the maximum size of the features in the backend
needs to be 2 · 50. However, this does not imply that the maximum size of e.g. the
measurement jacobian has to abide by this, as the number of tracked features will
still only be 50, and only tracked features are passed to the update step of the filter.
Thus, the maximum number of observations in total becomes Mmax = 50 ·15= 750.
This is thus the extreme case where 50 features have been tracked throughout the
whole sliding window, and all features pass the outlier rejection test (as discussed in
section 6.8.1). The rough estimate for the maximum needed capacity thus becomes:

Amax = 4 ·max
�

(2 · 750− 1)(22+ 6 · 15) + (22+ 6 · 15)2,

4 · (22+ 6 · 15)2 + (22+ 6 · 15)
�

= 4 ·max
�

180432,50288
�

= 721728 bytes

(8.10)

The reader should be aware that this is an estimate of the upper boundary, as some
small allocations are happening when for example the state is updated in the up-
date step of the filter. With that being said, the estimate given by Amax plus some
safety margin for alignment and other smaller allocations provides a rough idea of
the needed memory for the allocator. To get a more precise estimate, the update step
was performed with the maximum sizes for the measurement jacobian and the resid-
ual whilst recording the used capacity of the allocator, yielding an upper bound of
726996 bytes, not far from the calculated value of Amax.

It should, however, be emphasised that this estimate is for a continuous memory
region. If the primary memory region is less than this estimate, fragmentation will
occur over the two memory regions. That said, as long as the OCRAM section —
the secondary memory region within the allocator — has at least this capacity, the
allocator will not run out of memory.
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The runtime with the custom allocator can be observed in table 8.9, where it can
be seen that the custom allocator made the backend run 1.5x faster in average and
2.86x faster for the maximum case. Using the custom allocator did not change the
algorithm’s accuracy — as it should not — where the pipeline still had an RMSE of
0.39 m and a final percentage error of 0.80% of the total track length.

Component Average Time [ms] Max Time [ms]
Propagating state 4 5
Augmenting state 0 1
Adding feature observations 0 1
Removing unused states 0 1
Stationary detection & update 0 3
Removing lost features 11 76
Pruning augmented IMU states 0 29
Backend in total 16 93

Table 8.9: Runtime of the backend with the custom allocator.

This aspect of the implementation signifies how great a bottleneck memory can be
and how much there is to gain by utilising the faster memory regions for all they are
worth. It should be noted that to allow for most of DTCM to be used for the custom
allocator, the image data that the frontend uses was moved from DTCM to OCRAM.
This had, however, a negligible effect on the runtime for the frontend, increasing
from 21 ms on average to 22 ms and increasing from the maximum of 33 ms to 34
ms (with a FAST threshold of 80 and a maximum of 50 features).

This concludes the optimisations and adaptions made for the backend, yielding a
2.875x speed increase on average and a 4.258x speed increase in the maximum case
compared to the initial implementation.

8.5 Closing Remarks

The preceding sections conclude the implementation details, overviews and optimisa-
tions made to the VIO pipeline. That said, the reader should be aware that an update
rate for the backend was introduced into the implementation to limit the number of
calls to the backend. With this, the frontend would operate on a set frequency dictated
by the camera rate, whereas the backend could operate on an equal or an arbitrarily
lower frequency.
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Test Setup

9.1 Lucas-Kanade Implementation

The Lucas-Kanade implementation was tested against the KITTI flow 2015 dataset
[7, 8]. The images from the training dataset were used with the accompanying flow
vectors. The calculated ground truth was given by the extracted features’ position
in the first frame added with the flow vector. OpenCV’s FAST implementation was
used to have a common baseline for the extracted features, such that solely the Lucas-
Kanade implementation was tested. A FAST threshold of 75 was used, with a max-
imum of 30 iterations in the Lucas-Kanade implementation and a stationary threshold
for the tracking at 0.01. Furthermore, a maximum amount of features was set to 1000
to be able to extract all the features in the image at the given FAST threshold. The
following parts of the dataset were used:

• Images from the image 2 folder
• Flow vectors from the flow noc folder

9.2 Pipeline

The frontend and backend were tested against the EuRoC [9] dataset, using TCP/IP
to stream the images, IMU measurements and the ground truth over the 1 Gbit/s
Ethernet link of the i.MX RT1170 evaluation kit. The intrinsics and extrinsics for the
cam0 and imu0 sensors were used. The following folders were utilised for each part
of the dataset:

• Images: the cam 0 folder
• Ground truth: the state ground-truth estimate 0 folder, which provides ground-

truth for the position, orientation, velocity, gyroscope bias and accelerometer
bias

• IMU measurements: the imu 0 folder

Furthermore, an initialisation frame was set to the current ground truth pose when the
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filter initialised. With this, the estimate could be transformed into this initialisation
frame and operate from the same starting point as the ground truth.

Figure 9.1: The i.MX RT1170 evaluation kit, from [78].

The following metrics were used to evaluate the implementation:
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(9.1)

Here, δθ wbk
is the axis-angle representation of the error-quaternion δqwbk

= qwbk
⊗

q̂−1
wbk

. Moreover, the average normalised estimated error squared (ANEES) metric
was used, which is directly related to the Mahalanobis distance test (section 5.3.1).
Let δxk be a 3× 1 error-vector, then the ANEES is given by:

106



Chapter 9 — Test Setup

ANEES=
1
K

K
∑

k=0

δxT
k P−1δxk (9.2)

Here
∑K

k=0δxT
k P−1δxk ∼ χ2(3K), such that a confidence interval for the ANEES is

given by:

r1 =
1
K

F−1(
α

2
,3K) r2 =

1
K

F−1(
α

2
,3K) (9.3)

where F−1 is the inverse cumulative distribution function of the χ2 distribution and
α is the confidence level.

For the results in chapter 10, a FAST threshold of 80, a BRIEF threshold of 70
and a maximum of 50 features were used for the frontend. The backend operated on a
sliding window of a maximum of 15 augmented IMU states and an update frequency
set to half the frequency of the frontend. Furthermore, runtime results were calculated
using the SysTick module on the microcontroller, set to increment every millisecond,
yielding a resolution of 1 ms.
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9.2.1 Dataset Sections

The dataset sections are categorised by the following:

Section Description

Machine Hall 1 (MH 01)
Medium displacement, slow movements,
bright scene, good texture

Machine hall 2 (MH 02)
Equivalent with
MH 01

Machine hall 3 (MH 03)
Medium displacement, fast movements,
bright scene, good texture

Machine hall 4 (MH 04)
Large displacement, fast movements,
dimly lit scene

Machine hall 5 (MH 05)
Equivalent with
MH 04

Vicon room 1 1 (V1 01)
Small displacement, slow movements,
medium amount of rotation, bright scene

Vicon room 1 2 (V1 02)
Small displacement, fast movements,
high amount of rotation, bright scene

Vicon room 1 3 (V1 03)
Small displacement, fast movements, high amount
of rotations, motion blur, exposure changes

Vicon room 2 1 (V2 01)
Medium displacement, slow movements,
low amount of rotations, bright scene

Vicon room 2 2 (V2 02)
Medium displacement, fast movements,
high amount of fast rotations, bright scene

Vicon room 2 3 (V2 03)
Medium displacement, fast movements, high amount
of fast rotations, motion blur, bright scene

Table 9.1: The properties of the various dataset sections in EuRoC.

9.2.2 Memory Usage

The memory usage of the implementation was found by invoking the linker with the
--print-memory-usage flag.

9.2.3 Power Consumption

The power consumption was measured on the whole 3.3 V domain of the evaluation
kit. In particular, across the J41 jumper. The evaluation kit has dedicated measuring
points for the MCU and the FLASH power domains. However, this is not the case for
the SDRAM. It was therefore deemed better to measure the whole 3.3 V domain to
at least get a precise upper boundary, even though this upper boundary will be much
higher than for a dedicated PCB (printed circuit board) solution, where only the ne-
cessary components are included. The whole 3.3 domain spans the MCU, the external
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SDRAM, the various FLASH program memories, the two Ethernet transceivers, the
CAN transceiver, the Wi-Fi module, as well as other components.
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Chapter 10
Results

10.1 Lucas-Kanade

The following shows the pixel error from the tracking compared with the ground truth
from the KITTI flow 2015 dataset [7, 8]. The outliers for both implementations have
been omitted from the box plot to provide a clearer picture of the nominal behaviour
and can rather be deduced from table 10.1.
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Figure 10.1: Box plot comparing the proposed Lucas-Kanade implementation and
OpenCV’s Lucas-Kanade implementation.

Implementation 85% 95% 100%
Proposed ≤ 34.0 ≤ 85.4 ≤ 596.4
OpenCV ≤ 7.8 ≤ 57.4 ≤ 883.3

Table 10.1: Upper-level quantiles for the proposed Lucas-Kanade implementation
and OpenCV’s Lucas-Kanade implementation.
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10.2 Pipeline Runtime

Dataset
section

Average
[ms]

Max
[ms]

Average
FPS

Min
FPS # frames # frames

above 50 ms
MH 01 27.7 79 36.1 12.7 3254 9
MH 02 27.4 52 36.5 19.2 2508 5
MH 03 27.4 58 36.5 17.2 2652 10
MH 04 27.2 75 36.8 13.3 1999 15
MH 05 26.6 69 37.6 14.5 2244 9
V1 01 23.3 86 42.9 11.6 2831 3
V1 02 22.8 61 43.9 16.4 1688 5
V1 03 21.6 63 46.3 15.9 2113 3
V2 01 24.6 52 40.7 19.2 2255 1
V2 02 24.8 56 40.3 17.9 2323 3
V2 03 23.7 65 42.2 15.4 1839 4

Table 10.2: Runtime of the proposed pipeline (frontend + backend) on the dataset
sections in EuRoC.

Frontend Backend
Dataset section Average Max Average Max
MH 01 31.5 49 25.6 49
MH 02 30.0 48 23.2 48
MH 03 26.4 47 23.5 47
MH 04 24.5 48 21.5 48
MH 05 24.6 47 21.6 47
V1 01 15.4 44 13.0 44
V1 02 13.4 50 11.9 50
V1 03 10.8 48 9.8 48
V2 01 17.8 42 15.5 42
V2 02 16.1 45 14.4 45
V2 03 11.8 45 10.1 45

Table 10.3: Metrics for the number of features tracked in the frontend and number
of features used in the backend.
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Figure 10.2: Box plot summarising the runtimes for the pipeline in the different
dataset sections of EuRoC.

Comparision With State-Of-The-Art

The following comparisons are from Delmerico and Scaramuzza’s benchmark com-
parison paper [35] on state-of-the-art VIO methods. The hardware platform is an
ODROID XU4 with a quad-core 1.3 GHz ARM Cortex-A7 and a quad-core 1.9 GHz
ARM Cortex-A15 (Samsung Exynos 5 Octa), being one of the most similar architec-
tures to compare against due to the similar instruction set and somewhat comparable
clock speed.
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(a) Processing time per iteration of the
respective comparison pipelines.

(b) CPU utilisation as a percentage of a single
core for the respective comparison pipelines.

Figure 10.3: Runtime results for state-of-the-art VIO methods running on an
ODROID XU4 [35] (figures are from Delmerico and Scaramuzza’s public author
version of the paper [79]). Note that the proposed solution runs on one core.

10.3 Pipeline Accuracy & Filter Confidence

OROID

Quad-core 1.3 GHz A7
Quad-core 1.9 GHz A15

i.MX RT1170
EVK

1 GHz M7
400 MHz M4

Dataset
section

SVO
MSF MSCKF OK-

VIS
RO-
VIO

VINS
Mono

SVO
GTSAM Proposed

MH 01 0.22 0.47 0.15 0.36 0.13 0.15 0.28∗

MH 02 0.24 0.63 0.20 0.23 0.08 0.05 0.40*
MH 03 0.52 0.47 x 0.58 0.58 0.12 0.61
MH 04 2.28 0.64 0.42 0.81 0.12 x 1.02
MH 05 1.12 0.48 0.62 0.78 0.21 0.12 0.71
V1 01 0.43 0.21 0.09 0.15 0.11 0.07 0.55
V1 02 0.81 0.21 x 0.24 0.11 0.14 0.31
V1 03 x 1.52 x 0.20 0.11 x 0.70
V2 01 0.15 0.25 0.11 0.14 0.08 0.15 0.18
V2 02 0.46 0.19 0.26 0.17 0.06 x 0.22
V2 03 x 1.09 x 0.23 0.16 x 0.34

Table 10.4: Absolute translational RMSE in meters for every dataset section in
EuRoC compared with VIO pipelines running on an ODROID XU4 from Delmerico
and Scaramuzza’s benchmark comparison paper [35]. Sections in which the com-
pared methods were unable to finish the dataset section are given by x. For the i.MX
RT1170 Evaluation Kit, only the M7 core is utilised. *The pipeline initialised after
the section of movement in the start of MH 01 and MH 02.
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Dataset section Orientation
[deg]

Velocity
[m/s]

Gyroscope
bias [deg/s]

Accelerometer
bias [m/s2]

MH 01 3.20◦ 0.07 0.056◦ 0.085
MH 02 1.25◦ 0.06 0.051◦ 0.106
MH 03 2.95◦ 0.24 0.055◦ 0.064
MH 04 1.40◦ 1.98 0.049◦ 0.087
MH 05 1.81◦ 1.84 0.045◦ 0.075
V1 01 9.02◦ 0.89 0.173◦ 0.446
V1 02 2.50◦ 1.89 0.085◦ 0.064
V1 03 6.27◦ 1.60 0.169◦ 0.098
V2 01 1.42◦ 0.06 0.052◦ 0.063
V2 02 3.57◦ 0.09 0.107◦ 0.096
V2 03 3.48◦ 0.11 0.097◦ 0.062

Table 10.5: RMSE for orientation, velocity, gyroscope bias and accelerometer bias,
calculated according to equation (9.1).

Dataset
section

# of
samples

90%
confidence

interval

Posi-
tion

Orien-
tation

Velo-
city

Gyro-
scope
bias

Accele-
rometer

bias
MH 01 3254 [2.93, 3.07] 0.06 57.00 1.01 0.88 2.40
MH 02 2508 [2.92, 3.08] 0.13 4.02 0.91 0.26 5.67
MH 03 2652 [2.92, 3.08] 0.24 43.39 8.69 0.53 1.85
MH 04 1999 [2.91, 3.09] 0.61 5.54 650.00 0.23 4.75
MH 05 2244 [2.92, 3.09] 0.31 13.41 574.84 0.38 3.23
V1 01 2831 [2.92, 3.08] 0.22 440.02 214.49 6.08 451.41
V1 02 1688 [2.90, 3.10] 0.08 30.27 800.98 0.73 1.92
V1 03 2113 [2.91, 3.09] 0.38 205.69 489.45 1.94 9.02
V2 01 2255 [2.92, 3.09] 0.03 11.25 0.86 0.41 3.36
V2 02 2323 [2.91, 3.08] 0.04 76.95 1.72 4.27 35.00
V2 03 1839 [2.91, 3.09] 0.08 62.81 2.39 1.01 7.88

Table 10.6: ANEES calculated from the ground truth and the estimated state. Note
that this does not include the extrinsics, the time-stamp compensation and augmented
IMU states from the state vector due to there not being a ground truth for them.
The confidence interval is given by equation (9.3), where K is set to the number of
samples (number of camera frames after initialisation) and a 90% confidence level
was used. Each entry in the table is a 3 × 1 vector, where the axis-angle error was
used for the orientation.
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Figure 10.4: Box plot of Euclidean translation error for the proposed methods on the
different dataset sections of EuRoC.
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10.4 Example Trajectories
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10.5 Memory Usage

Region Used Capacity
FLASH 2202.9 KB 16256 KB
ITCM 3.2 KB 32 KB
Total 2206.1 KB/2.2 MB 16288 KB/15.9 MB
DTCM 469.3 KB 480 KB
OCRAM 1178.2 KB 1280 KB
SDRAM* 1451.4 KB 46875 KB
Total 3098.9 KB/3 MB 48635 KB/47.5 MB

Table 10.7: Code and data usage for the implementation. Code resides in FLASH
and ITCM, whereas data resides in DTCM, OCRAM and SDRAM. Here, 1 KB
= 1024 B and 1 MB = 1024 KB. *The reduced capacity for the SDRAM (it has
a capacity of 64 MB on the evaluation kit) comes from reserving parts of it for
the data streaming functionality during the tests. This is thus not directly related
to the memory required for the VIO pipeline. The code size of this functionality
is included in the FLASH entry in the table, yielding a smaller program size in an
implementation without this.

Comparison With State-Of-The-Art

Figure 10.9: Memory usage results for state-of-the-art VIO methods running on an
ODROID XU4 with 2 GB of memory (figure is from Delmerico and Scaramuzza’s
public author version of their benchmark comparison paper [79])
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10.6 Power Consumption

Running [mA] Idle [mA]
M7+M4 380 310
M7 350 280

Table 10.8: Power consumption of the whole 3.3 V domain of the i.MX RT1170
evaluation kit — including the various components on the board that are not util-
ised — whilst running the pipeline and idling. The two rows signify the difference
between when the M4 core is enabled (but not used for anything) and when it is dis-
abled.
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Discussion

This chapter summarises and discusses the results obtained from evaluating the Lucas-
Kanade implementation and the VIO pipeline as a whole.

11.1 Lucas-Kanade

From the results seen in figure 10.1 and table 10.1, the proposed implementation of
pyramidal Lucas-Kanade is far less robust than OpenCV’s implementation in general.
Both have a comparable median error, but the proposed implementation suffers from
larger quantiles.

The images within the KITTI dataset have a large baseline, which the proposed
implementation handles poorly. OpenCV’s implementation includes affine transform-
ation for warping the patches used in the tracking, increasing the robustness for large
baselines or heavy rotation. With that being said, a high camera frame rate can also
alleviate this, effectively circumventing the problem to a certain degree.

11.2 Pipeline Runtime

The proposed VIO pipeline achieves comparable runtime even though the hardware
it runs on is far weaker when compared with the ODROID XU4. With a maximum
of 86 ms per frame, the pipeline can run at a standard camera frame rate of 10 Hz.
Moreover, the results are from solely utilising the M7 core of the i.MX RT1170;
the second core was not used in the implementation. Only two of the state-of-the-
art methods tested on the ODROID XU4 have a CPU utilisation close to or lower
than 100 % (in other words, they only use one core): SVO+MSF and ROVIO. When
comparing the processing time for these two methods against the proposed solution,
it shows that it is comparable to ROVIO, whereas SVO+MSF is faster. With that
being said, the ODROID does operate at 30 % faster clock speed for the Cortex-A7
MPU and 90 % faster clock speed for the Cortex-A15 MPU.
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The processing times from figure 10.3a are calculated from the incoming camera
frame to when the state is updated. This is not the case in the proposed implementa-
tion, where the backend operates on half the frequency of the frontend (section 8.5).
Thus, the runtime would increase if the backend was set to operate on the same fre-
quency.

Furthermore, the maximum frame time largely depends on the number of feature
tracks in the backend. As shown in table 10.3, the average number of features is well
below the maximum allowed features set to 50, which is due to the relatively high
FAST threshold and the outlier rejection with BRIEF. This positively influences the
runtime but can make the whole pipeline less robust.

The proposed solution does not achieve realtime-ness on the EuRoC dataset,
where the camera frame rate is 20 Hz. In a real-world use case, the camera frame
rate thus has to be around 10 Hz, or frames have to be dropped. With that being said,
in the test case with EuRoC, few frames would have had to be dropped, which can
be observed in the last column of table 10.2 and in figure 10.2. This could, of course,
negatively impact the accuracy of the pipeline.

11.3 Pipeline Accuracy & Filter Confidence

The proposed pipeline has comparable accuracy to the state-of-the-art methods tested
on the ODROID XU4. Moreover, it does not lose track, such as OKVIS, SVO+MSF
and SVO+GTSAM. With that being said, it is definitely in the lower level of accuracy,
but comparable to the MSCKF implementation used by Delmerico and Scaramuzza
[35] and SVO+MSF.

For a more accurate implementation, the required processing time of the pipeline
would increase. That said, improving certain parts, such as making the Lucas-Kanade
tracker more robust, could greatly improve the accuracy and not necessarily have that
significant penalty on the needed processing time. More features and increased outlier
rejection with inverse Lucas-Kanade and RANSAC could also positively impact the
accuracy of the pipeline but will increase the required processing time.

In general, the pipeline struggles on the dataset sections with larger displace-
ment, such as MH 04 and MH 05, which might indicate some scale inaccuracy due to
little excitation of the system or inaccurate triangulation. It was observed that for sec-
tions where there occurred large displacements followed by back-tracing, the pipeline
would be able to arrive at the same starting point but had an increasing error during
the forward-displacement.

Moreover, MH 04 and MH 05 are dimly lit during certain parts of the trajectory.
This could be alleviated by histogram equalisation before the image is processed in
the frontend, but this would again increase the runtime. This is closely related to the
reduced accuracy for V1 03 — where exposure changes happen — making it harder
for the pipeline to track features across frames as it breaks with the Lucas-Kanade
assumption of intensity consistency.

The pipeline generally has more features to work with for the vicon room 2 part
of the dataset, seemingly increasing the accuracy compared with the vicon room 1
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part. The two parts are somewhat equivalent, yielding that the pipeline is sensitive to
a low amount of features (and possibly outliers which are not detected). It can thus
be argued that the pipeline can tackle large and fast rotations as long as the number
of features is relatively high.

11.3.1 Filter Confidence

From the ANEES observed in table 10.6, it can be seen that the filter, in general, is
too confident in its estimates for the orientation and the velocity. For the velocity, one
can observe that this happens particularly for MH 04, MH 05 and in the V1 part of the
dataset. This will naturally propagate to the position and indicates that the pipeline is
not as robust for quick and large displacements where, e.g. motion blur could also be
a factor. This further emphasises that a more robust feature tracker is needed.

The filter becomes highly overconfident in its orientation during the V1 part of
the dataset, which can be argued to be from the low feature count and having to rely
more on the IMU.

The high variety of the ANEES indicates that the filter is sensitive for different
environments, for which features are used and for various different movements. It
needs more tuning, and possibly the pipeline should be appended with components
for increased robustness.

11.4 Pipeline Memory Usage

From the memory usage observed in table 10.7 it can be argued that the pipeline
is relatively lightweight. It should, however, be emphasised that the implementation
does not fit within the DTCM and the OCRAM alone, yielding that external RAM
is required should the proposed solution be used with a custom PCB. Moreover, the
i.MX RT1170 does not have non-volatile program memory on the chip (ITCM is
volatile), rendering some external FLASH necessary.

The comparison presented in figure 10.9 shows that the state-of-the-art method
with the lowest upper bound for memory usage is ROVIO, at 10 % of the total ca-
pacity of the ODROID XU4. This yields ≈ 204.8 MB of memory usage (here 1 GB
= 10243 B). Thus, the proposed implementation requires roughly 68x less memory.
This estimate is highly uncertain because ROVIO is built around ROS (robot op-
erating system). Profiling the memory usage of the implementation does not solely
profile the VIO aspects but includes other parts of the system, which skews the result.

11.5 Pipeline Power Consumption

From the current consumption observed in table 10.8, it can be seen that a (rather
high) upper bound is given by ≈ 1.115 W when the pipeline is running (and only
using the M7 core). It should again be emphasised that this is for the whole 3.3 V
domain of the evaluation kit. The power consumption will naturally be lower for a
custom PCB with only the MCU, some external RAM and some external program
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memory. The difference in power consumption between when the system is running
the pipeline and when it is idling (but not clocked differently) is likely to come from
using the external Ethernet module on the evaluation kit; quite a significant amount
of data is transferred every second.

An exact estimate for the required power on the ODROID XU4 is hard to retrieve.
The user manual [80] states anywhere between 10 W and 20 W. Non-verified sources
claim an idle power consumption from 1.7 − 2.9 W. The data sheet for the chip it-
self (the Samsung Exynos 5 Octa) is under an NDA and not something the author
could retrieve. The author had to depend on non-verified sources estimating the max-
imum power ranging from 3 W to 4 W. As shown in figure 10.3, the CPU utilisation
is well below that of three cores for all methods except the particular implementa-
tion of MSCKF, yielding that the used power from the chip itself will be well below
this maximum value. Furthermore, throttling and adaptive clock frequency adjust-
ment will happen on a platform like the ODROID XU4. The chip itself can also
swap between the Cortex-A7 and the Cortex-A15 depending on the load, where the
Cortex-A7 is more efficient than the Cortex-A15. That said, when comparing the kits
themselves and nominal values, it is highly likely that the i.MX RT1170 evaluation
kit will require far less power than the ODROID XU4. For dedicated PCBs with the
i.MX RT1170 and the Samsung Exynos 5 Octa one only have the maximum power
ratings to work from, where the i.MX RT1170 — with a maximum of 437.025 mW
at 25◦C when both cores are enabled (see [81], table 13) — is more efficient. The
exact comparison can, however, only be verified with actual tests.

When compared against the Navion ASIC chip [29], the i.MX RT1170 in itself
will require far more power. The data sheet for the i.MX RT1170 specifies a max-
imum of 366.075 mW at 25◦C when only the M7 core at 1 GHz is enabled (table 14
in [81]). The Navion chip uses 2 mW when processing camera frames at 20 Hz. This
is expected, as an ASIC solution will naturally require far less power when designed
particularly for the problem at hand.

11.6 Closing Remarks

The proposed VIO pipeline can achieve comparable accuracy at comparable pro-
cessing times in light of state-of-the-art VIO methods running on the ODROID XU4.
It is likely to draw far less power, but it is hard to draw exact conclusions without
more tests. The pipeline is, however, sensitive to different environments and changes
in illumination. It would potentially be improved by a more robust feature tracker,
utilising more features and improving outlier rejection.
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This master’s thesis — built on the preceding specialisation project — has proposed
a MSCKF-based visual-inertial odometry pipeline running on a microcontroller. The
proposed pipeline has been tested on the EuRoC dataset, achieving comparable ac-
curacy and runtime to some of the state-of-the-art methods, with the requirement of
3 MB of RAM and at a potentially far lower power budget.

The implementation has explored algorithmic aspects to reduce the needed oper-
ations on data and utilises SIMD to operate on data faster. The major improvements
in runtime in the implementation stem from how the proposed VIO pipeline inter-
acts with memory and where the data the implementation utilises resides in memory.
The VIO pipeline greatly prioritises faster memory regions of the microcontroller
to achieve comparable runtime performance to state-of-the-art methods running on
comparable but much more performant hardware.

Furthermore, the implementation has explored how popularly used components
in state-of-the-art VIO methods can use less memory, with the use of patch pyram-
ids for Lucas-Kanade tracking from the specialisation project and the use of in-place
reflection for BRIEF. The implementation has also introduced a custom memory al-
locator spanning over two memory regions, which can be used to prioritise data for a
faster memory region whilst having redundancy in a slower memory region.

Further Work

Further work of the proposed VIO implementation resides mainly in improving the
robustness and accuracy, where a more robust pyramidal Lucas-Kanade tracker could
potentially greatly improve the accuracy of the pipeline. Furthermore, further work
could also explore how the pipeline could become more robust against exposure
changes, dimly lit scenes and motion blur.

This master’s thesis has not investigated incorporating guarantees for real-time
requirements, such as never lagging behind the camera frame rate. This is also an
aspect which could be explored in further work.

Whilst not mentioned, the author also explored utilising the GPU on the i.MX
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RT1170 for accelerated image processing. However, due to the tight coupling between
the provided GPU and display drivers, a solution for working solely with a frame buf-
fer in memory was not found. This was thus deemed as an area for future work.
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Appendix A
Jacobians of Rotations

In the following derivations, the global angular error is used, which coincides with
the theory in chapter 6.

Let the rotation of a vector vb in frame b to frame a be given by R(qab)vb. The
rotation axis is given by θ = φu, where φ is the angle and u is the axis of rotation.
Moreover, when θ → 0⇒ sin(φ)≈ φ, 1− cos(φ)≈ 0. The jacobian with respect to
qab is then given by:

∂R(qab)va

∂ qab
= lim
θ→0

(θ ⊕R(qab))va −R(qab)T va

θ

= lim
θ→0

(Exp(θ )R(qab))va −R(qab)va

θ

= lim
θ→0

((I3×3 + sin(φ)[u]× + (1− cos(φ))[u]2×)R(qab))va −R(qab)va

θ

≈ lim
θ→0

((���I3×3 +φ[u]×)R(qab))va −�����R(qab)va

θ

≈ lim
θ→0

[θ ]×R(qab)va

θ

≈ lim
θ→0
−
θ [R(qab)va]×

θ

≈ −[R(qab)v
a]×

(A.1)
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Let the rotation of a vector va in frame a to frame b be given by R(qab)T va. The
jacobian with respect to qab is then given by:

∂R(qab)T va

∂ qab
= lim
θ→0

(θ ⊕R(qab))T va −R(qab)T va

θ

= lim
θ→0

(Exp(θ )R(qab))T va −R(qab)T va

θ

= lim
θ→0

((I3×3 + sin(φ)[u]× + (1− cos(φ))[u]2×)R(qab))T va −R(qab)T va

θ

≈ lim
θ→0

((���I3×3 +φ[u]×)R(qab))T va −�����
R(qab)T va

θ

≈ lim
θ→0

([θ ]×R(qab))T va

θ

≈ lim
θ→0

R(qab)T [θ ]T×va

θ

≈ lim
θ→0
−

R(qab)T [θ ]×va

θ

≈ lim
θ→0

R(qab)Tθ [va]×
θ

≈ R(qab)
T [va]×

(A.2)
Let the rotation of a vector va in frame a to frame c be given by R(qcb)R(qab)T va.
The jacobian with respect to qcb is then given by:

∂R(qcb)R(qab)T va

∂ qcb
= lim
θ→0

(θ ⊕R(qcb))R(qab)T va −R(qcb)R(qab)T va

θ

= lim
θ→0

Exp(θ )R(qcb)R(qab)T va −R(qcb)R(qab)T va

θ

= lim
θ→0

(I3×3 + sin(φ)[u]× + (1− cos(φ))[u]2×)R(qcb)R(qab)T va −R(qcb)R(qab)T va

θ

≈ lim
θ→0

(���I3×3 + [θ ]×)R(qcb)R(qab)T va −((((((((
R(qcb)R(qab)T va

θ

≈ lim
θ→0

[θ ]×R(qcb)R(qab)T va

θ

≈ lim
θ→0
−
θ [R(qcb)R(qab)T va]×

θ

≈ −[R(qcb)R(qab)
T va]×

(A.3)

138



Appendix B
Runge-Kutta

Runge-Kutta is a numerical integration method to estimate the function y(tk), given
the known derivative ẏ(tk) = f (tk, y(tk)) and initial condition y0 = y(t0). In this
section, the fourth-order Runga-Kutta method will be outlined.

Let the step size between two consecutive frames k and k + 1 be given by ∆t,
then:

y(tk+1) = y(tk) +
∆t
6
(k1 + 2k2 + 2k3 + k4) (B.1)

where:

k1 = f (tk, yk) (B.2)

k2 = f (tk +
∆t
2

, yk +∆t
k1

2
) (B.3)

k3 = f (tk +
∆t
2

, yk +∆t
k2

2
) (B.4)

k4 = f (tk +∆t, yk +∆tk3) (B.5)

(B.6)
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