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Abstract

A new approach to produce optimal porous mesostructures and at the same
time optimizing the macro structure subject to a compliance cost functional
is presented. It is based on a phase-field formulation of topology optimization
and uses a local volume constraint (LVC). The main novelty is that the ra-
dius of the LVC may depend both on space and a local stress measure. This
allows for creating optimal topologies with heterogeneous mesostructures en-
forcing any desired spatial grading and accommodating stress concentrations
by stress dependent pore size. The resulting optimal control problem is
analysed mathematically, numerical results show its versatility in creating
optimal macroscopic designs with tailored mesostructures.
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1. Introduction

The last decade has seen a fast development of additive manufactur-
ing (AM) techniques from rapid prototyping to a versatile tool for indus-
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trial manufacturing. Its layer-by-layer building technique allows for creating
lightweight components of nearly arbitrary shapes. In addition to printing
elaborate outer shapes an important trend in AM is the creation of porous
infill structures. Compared to fully filled structures, depending on topol-
ogy, size and density, these cellular structures can achieve a wide range of
properties for different purposes (see [1] and the references therein). A high
surface to volume ratio improves heat transfer efficiency, large numbers of
internal pores are used for acoustic or thermal insulators. Cell structures are
known to deform at relatively low stress levels and are thus useful for energy
absorbtion and vibration damping. Moreover, they show a better design ro-
bustness with respect to load variation and local material deficiencies [2] and
a significantly increased stability with respect to buckling [3].

For an overview of multi-scale topology optimization see [4]. A well es-
tablished two-stage procedure to create components with mesostructures is
to begin with a topology optimization of the design space subject to a global
volume constraint to obtain an optimal macroscopic material distribution.
Then, in a second step, the solid material is replaced with an infill structure,
which can be homogeneous, graded or heterogeneous, build of regular cells or
of pores with varying density as in [5]. See also [6] for an overview of strut-
node mesostructures. In [7] the interior material distribution is determined
via Voronoi diagrams leading to irregular honeycomb-like cell structures, pri-
oritizing the strength-to-weight ratio. Another way to design infill is to use
rhombic structures. They offer the geometric advantage of bounded over-
hangs, which in turn ensure printability of the structures, as shown in [8].
In [9] hierarchical lattice structures create light weight structures where sub-
structures share a common lattice geometry pattern. In general, structures
with fillet joints and gyroid shapes are advantageous as compared to common
truss structures. According to [1] they allow for an easy powder removal, do
not require support structures during printing, have a high surface area and
a relatively high strength in comparison to the low material usage.

In [3], a porous, less dense inner structure is coated by a more dense
outer structure, which may lead to more cost-efficient 3D printing [10]. The
separation into inner and outer structure takes place via a two-step smoothing
and projecting process. In the realm of 3D printing one can think of the inner
material as infill. This approach is compared with anisotropic coating and
infill in [11]. More on the projection method can be found in [12]. This is
built upon by incorporating optimized infill in [13].

The aforementioned two-stage procedures will necessarily provide at most
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sub-optimal configurations. A first strategy for a joint optimization of macro-
scopic shape and a homogeneous pore-like mesostructure has been considered
in [2] based on the combination of a global and a local volume constraint.
The concept of local volume constraints is also employed in [14] and [15] to
achieve specific local material accumulations. In [16] a spatially varying local
volume constraint is defined, which allows for designs with bulk and porous
regions.

A different approach has been taken in [17], where a phase-field - based
topology optimization approach is used to create optimized topolgies with
graded density structures by introducing an additional mesoscopic density
variable.

The aim of this paper is to provide a unified approach to produce optimal
porous mesostructures while at the same time optimizing the macro structure
subject to a compliance cost functional. Our approach is based on a phase-
field formulation of topology optimization (see also, e.g.,[18], [19], [20], [21])
and uses a local volume constraint (LVC). In comparison to previous works
the main novelty is that the radius of the LVC may depend both on space
and a local stress measure. Thereby our concept provides a versatile tool for
creating optimal topologies with heterogeneous mesostructures enforcing any
desired spatial grading and accommodating stress concentrations by stress
dependent pore size.

The paper is organized as follows. Section 2 describes the resulting op-
timal control problem. The state equation is a Hellinger Reissner model
for mechanical equilibrium allowing to obtain both displacement and stress
simultaneously by solving a saddle point problem, which leads to a more
accurate stress computation. This is numerically advantageous over the
commonly used pure displacement model because of the considered stress
dependent local volume term. The control problem is analyzed in Section 3,
where existence of a solution is shown and first order optimality conditions
are derived. The effects of the local volume constraint can be seen in Section
4, where numerical examples are presented.

2. Problem formulation

2.1. Notation

Let Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain and denote its
boundary by Γ. In case of a Dirichlet boundary ΓD ⊂ Γ the notation

H1
D

(
Ω,Rd

)
:=
{
ξ ∈ H1

(
Ω,Rd

)
| ξ = 0 on ΓD

}
3



is used.
The L2 scalar product is denoted by (·, ·)L2 . Duality pairings for a normed
space V and its dual V ∗ are written via 〈·, ·〉V ∗,V , where the subscript will
be dropped when it is clear which spaces are meant.
We denote the set of all symmetric d×d matrices by Sd. The Frobenius inner
product for second order tensors M,N ∈ Sd is defined by the pairwise sum
of element-products

M : N :=
d∑

i,j=1

MijNij

and their norm via |M| := (M :M)
1
2 .

For a fourth order tensor C, the product CM is defined as

[CM]ij :=
d∑

k=1

d∑
l=1

CijklMkl.

2.2. The state equation – mechanical equilibrium, linear elasticity

Using the displacement u : Ω→ Rd, the linearized strain tensor

E(u) :=
1

2

(
∇u+∇uT

)
is defined. The distribution of material in Ω is described by a phase-field ϕ
with

0 ≤ ϕ(x) ≤ 1 a.e. in Ω.

Here, ϕ = 0 describes void and ϕ = 1 represents areas containing material.
In a physically accurate setting each point in space either does or does not
contain material, i.e. ϕ ∈ {0, 1}, leading to a sharp transition. However,
in the realm of optimization a smooth transition between material and void
is desired in order to calculate derivatives. This is achieved by explicitly
allowing impure phases, i.e. states with 0 < ϕ < 1 such that the sharp
interface is replaced with a mushy transition zone.

Assuming that the material under consideration behaves linearly elastic
the relationship between stress σ and strain E(u) is governed by Hooke’s law

σ = C (ϕ) E (u) , (1)

where C(ϕ) is the fourth order stiffness tensor, which has to satisfy the
symmetry conditions

Cijkl = Cklij = Cjikl = Cijlk,
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moreover we demand:

Assumption A1. C(·) has continuously differentiable components and its
inverse C−1(·) is globally Lipschitz continuous with Lipschitz constant LC−1 .
The derivative (C−1)

′
(·) is also globally Lipschitz continuous with Lipschitz

constant L(C−1)′ . There exist positive constants
¯
Λ, Λ̄,

¯
Θ, Θ̄,Λ′,Θ′ such that

for all M,N ∈ Sd \ {0} and all ϕ, ω ∈ R, the following relationships hold:

(i)
¯
Λ |M|2 ≤ C (ϕ)M :M≤ Λ̄ |M|2 ,

(ii)
¯
Θ |M|2 ≤ C−1 (ϕ)M :M≤ Θ̄ |M|2 ,

(ii) |C ′ (ϕ)ωM : N| ≤ Λ′ |ω| |M| |N | ,
(iv)

∣∣(C−1)′ (ϕ)ωM : N
∣∣ ≤ Θ′ |ω| |M| |N | .

In the following an example of a stiffness tensor fulfilling these assump-
tions is constructed assuming isotropic and homogeneous material behaviour.
First, for M∈ Sd the tensors in material and void are defined as

CmatM := λ1 tr(M)I + 2λ2M and
CvoidM := ε20CmatM

for a small ε0 > 0. The constants λ1, λ2 ∈ R+ are called Lamé parameters.
This definition warrants 0 6= |Cvoid| � |Cmat|, which ensures low stiffness in
void, but avoids degeneracy.

The aim is to extend C(ϕ) to the whole domain, accounting for interfacial
regions between material and void. For ζ > 0, p̃ ≥ 1 a transition function is
defined via

s(x) :=


0 for x < 0
xp̃ for 0 ≤ x ≤ 1
sr(x) for 1 < x ≤ 1 + ζ
1 + ζ for x > 1 + ζ,

where sr is a monotone C1,1-function such that s is in C1,1. We are using
p̃ = 3, which is often done in the SIMP approach to encourage the creation
of pure phases, see [22]. An example plot of such a function can be seen in
Figure 1. The elasticity tensor for the whole domain is defined via

C(ϕ) := s(ϕ)Cmat + (1− s(ϕ))Cvoid.

To proof that this tensor fulfills Assumption A1, one follows the argu-
ments in [19, Chapt. 2.2]. The main idea is that by using s(ϕ), the stiffness
tensor becomes bounded.
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Figure 1: Bounded transition function s(x).

For M∈ Sd the inverse of the material tensor has the form

C−1
matM =

1

2λ2

M− λ1

2λ2(3λ1 + 2λ2)
tr(M)I.

One gets

C−1 (ϕ) =
(
s(ϕ) + ε20 − ε20s(ϕ)

)−1
C−1

mat.

To describe mechanical equilibrium we use a mixed formulation, the so-
called Hellinger-Reissner formulation, see [23, Chapt. VI]. While in the pure
displacement variant the stress tensor σ has to be retrieved via differentiation
from Hooke’s law (1), it is kept in the Hellinger-Reissner formulation as a
state variable, which allows for a numerically more accurate computation of
stresses.

With a surface load f ∈ L2
(
Γf ,Rd

)
acting on a part of the boundary

labeled Γf and outer normal vector n, we consider the strong formulation of
the static mechanical equilibrium problem of linear elasticity,

− div σ = 0 in Ω (2a)

σ − C (ϕ) E (u) = 0 in Ω (2b)

u = 0 on ΓD (2c)

σ~n = f on Γf (2d)

σ~n = 0 on Γ \
(
ΓD ∪ Γf

)
. (2e)

Via the L2 scalar product the weak formulation is written compactly as
the Hellinger-Reissner saddle point problem.
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Definition 2.1. The pair (u, σ) ∈ H1
D

(
Ω,Rd

)
×L2

(
Ω,Sd

)
is a weak solution

of (2), if it satisfies the Hellinger Reissner saddle point problem(
C−1 (ϕ)σ, η

)
L2 − (η, E (u))L2 = 0 ∀η ∈ L2

(
Ω, Sd

)
(3a)

− (σ, E (v))L2 = −
∫

Γf

f · vdω ∀v ∈ H1
D

(
Ω,Rd

)
. (3b)

2.3. The phase-field approach to structural topology optimization

Topology Optimization is concerned with the optimal distribution of ma-
terial in a domain Ω. Without restrictions the solution of the optimal con-
trol problem would be trivial: The stiffest structure is produced by setting
ϕ ≡ 1 on Ω, i.e. covering the whole domain with material. To make the
problem at the same time mathematically more interesting and more rele-
vant from an engineering point of view, we constrain the fraction of mass to
be retained. To this end we introduce the volume fraction m ∈ (0, 1) and
impose the global volume constraint∫

Ω

ϕdx = m|Ω|,

where |Ω| denotes the Lebesque measure of the domain Ω. The admissible
set is defined as

Gm :=

{
ϕ ∈ H1 (Ω,R) | 0 ≤ ϕ (x) ≤ 1 a.e. in Ω and

∫
Ω

ϕdx = m|Ω|
}
.

The objective is to find a material distribution ϕ ∈ Gm and a correspond-
ing solution of the elasticity problem (u, σ) such that the mean compliance

F (u) :=

∫
Γf

f · udω (4)

is minimized. However, this minimization problem does not necessarily have
a solution as explained in [24]. The regularity of the solution is not en-
sured. In computational examples this can lead to a checkerboard solution.
Checkerboarding is the frequent occurrence of jumps between material and
void, which is not desirable, see [25]. The ill-posedness can be alleviated
by adding a perimeter regularization which was proposed by [26]. In the
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phase-field formulation the latter is approximated by the Ginzburg-Landau
functional, see, e.g., [27].

Eε (ϕ) :=

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx, (5)

with the interface width parameter ε > 0 and ϕ ∈ H1 (Ω,R) ∩ L∞(Ω,R).
The first term penalizes transitions between material and void through the
gradient of the material distribution. The second term contains a potential
ψ ∈ C1,1 (R,R) with ψ ≥ 0, ψ(0) = ψ(1) = 0 to penalize impure phases. A
commonly used potential is the double well potential

ψ̃ (ϕ) :=
1

4
((ϕ− 1)ϕ)2 =

1

4

(
ϕ2 − ϕ

)2
. (6)

Here we opt for the double obstacle potential

ψ (ϕ) := −1

2
(ϕ− 1)ϕ+ ψc(ϕ),

where ψc is the convex indicator function

ψc(ϕ) :=

{
0 if 0 ≤ ϕ ≤ 1

∞ otherwise.

Their plots can be seen in Figure 2.

Remark. Both of these potentials have their advantages and drawbacks.
The double well potential is differentiable everywhere on R, which is advan-
tageous from an analytic viewpoint. However, from a numerical perspective
it does not ensure that ϕ stays within [0, 1] almost everywhere. It is the op-
posite for the double obstacle potential: Since this part of the penalty term
gets arbitrarily large for ϕ outside of [0, 1], an optimal solution ϕ will only
contain values within this interval. On the other hand, it is not differentiable
outside of (0, 1) and only subdifferentials exist in 0 and 1. The choice of
potential influences the space in which ϕ lies. When considering the double
well potential, we use ϕ ∈ H1(Ω,R), whereas in case of the double obstacle
potential we even have ϕ ∈ H1(Ω,R) ∩ L∞(Ω,R).

The macroscopic phase-field based topology optimization problem then
amounts to minimizing a weighted sum of compliance (4) and Ginzburg-
Landau functional (5) subject to the state system (3) and the control con-
straint ϕ ∈ Gm. A typical result for the macroscopic cantilever structure is
depicted in Figure 3(b).
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(a) Double well potential
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(b) Double obstacle potential

Figure 2: Two commonly used potentials

(a) Fixed on the left, force applied on the right hand
side.

(b) Only global volume constraint imposed.

(c) Only local volume constraint imposed. (d) Both global and local volume constraint imposed.

Figure 3: phase-field topology optimization of cantilever beam with local and global volume
constraints. The compliance values are in (b) 2.78, in (c) 2.26 and in (d) 3.58.
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2.4. Local volume constraint for porous mesostructures

The goal of this paper is to develop a strategy for coupling the macroscopic
optimized topology with an optimal mesoscopic infill structure. To this end
we now introduce two new parameters which will govern the meso-structure.
The radius r defines the typical length scale of the desired meso-structure
and the local volume fraction µ the fraction of material present in a local
cell. As mentioned earlier, the global volume constraint can be enforced
as an equality constraint since minimizing compliance strives for the stiffest
structure. However, the local volume constraint only demands that at most a
fraction µ ∈ (0, 1) of material is used in local meso-cells thereby allowing for
macroscopic voids in the component. This can be described as a pointwise
inequality constraint, i.e.∫

Br(x)

χςΩ(q) (ϕ (q)− µ) dq ≤ 0 for x ∈ Ω.

To assure that the integrand is evaluated only for q ∈ Ω, we have introduced
the smoothed characteristic function χςΩ ∈ C2

0

(
Rd
)

of the domain Ω, such
that for any ς > 0 we have χςΩ(x) = 0 if x /∈ Ω and χςΩ(x) = 1 if dist (x,Γ) ≥ ς
with a smooth transition in between. The gradient of χςΩ exists and is globally
bounded by Cς > 0, i.e.

|∇χςΩ(x)| ≤ Cς ∀x ∈ Rd. (7)

In the present paper we have chosen to rewrite the inequality constraint
as a penalty function. Using the positive part function [x]+ = max{x, 0} and
a proper scaling, we introduce the LVC penalty term using the radius r as

V (r, ϕ) :=

∫
Ω

[
1

rd

∫
Br(x)

χςΩ(q) (ϕ (q)− µ) dq

]2

+

dx. (8)

If the local volume fraction is restricted by µ in the whole domain, one cannot
expect a larger value for the global volume fraction, m. Thus, it is sensible
to choose µ ≥ m. In case of equality, the whole domain will be filled with
mesoscale structures and holes. For a detailed parameter study we refer to
Section 4, however Figure 3 already anticipates some findings, comparing
the results with macroscopic holes due to a global volume constraint (b)
with a purely porous structure caused by the LVC without enforcing the
global one (c) and a combination of both constraints (d) leading to a porous
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mesostructure with macroscopic holes. In (d) the parameters µ = 0.6 and
m = 0.4 were used.

A distinctive feature of this approach is that it easily allows for extensions
to create a wealth of different inhomogeneous mesostructures. Introducing a
space dependent radius one can easily generate graded porous structures and
adding a spatial dependency of µ, also the local material can be controlled.
For results in this direction we refer again to Section 4.

However, we can even go one step further. From the results depicted in
Figure 3 we see that introducing a porous mesostructure to a macroscopically
optimized structure deteriorates its compliance. As a remedy, we allow for
inhomogeneous mesostructures by introducing a stress dependency of the
radius. This leads to bone-like structures (see, e.g., [28]) and an improved
compliance.

Instead of assuming a dependency on stress together with an explicit
spatial dependency, to avoid technicalities we drop the latter and confine
ourselves to considering the radius r and thereby the length-scale of the
mesostructure to be stress dependent. Since the radius is bounded by the
domain diameter, we demand:

Assumption A2. The radius r : Sd → R>0, σ 7→ r (σ) is a smooth function,
globally bounded in C1 with 0 < rmin ≤ r(σ) ≤ rmax <∞ ∀σ ∈ Sd and

|Dσr (σ)| ≤ C ∀σ ∈ Sd.

In view of this assumption, the local volume constraint V (r (σ) , ϕ) as
defined in (8) acts both as a state and control constraint.

Finally we are in a position to formulate the phase-field based two-scale
topology optimization problem subject to penalty parameters γ, α ∈ R+:

(CP)


min J (u, σ, ϕ) := F (u) + γEε (ϕ) + α

2
V (r (σ) , ϕ)

over (u, σ, ϕ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
× Gm

s.t. (u, σ) is the weak solution of the state equation, see

Definition 2.1.

3. Analysis of the optimal control problem

3.1. Analysis of the state system

The following lemma is a particular formulation of Brezzis splitting the-
orem.
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Lemma 3.1 (Existence of a solution). Let Assumption A1 hold true. For a
given phase-field ϕ ∈ L∞(Ω,R) and generic right hand sides F ∈ L2

(
Ω,Sd

)
,

G ∈
(
H1
D

(
Ω,Rd

))∗
there exists a unique weak solution (u, σ) ∈ H1

D

(
Ω,Rd

)
×

L2
(
Ω, Sd

)
of the saddle point problem

(C−1 (ϕ)σ, η)L2 − (η, E (u))L2 = 〈F, η〉 ∀η ∈ L2
(
Ω,Sd

)
− (σ, E (v))L2 = 〈G, v〉 ∀v ∈ H1

D

(
Ω,Rd

)
.

The following a priori estimate holds for (u, σ)

‖u‖H1
D(Ω,Rd) + ‖σ‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd) + C2‖G‖(H1

D(Ω,Rd))
∗ ,

with positive constants C1, C2.

Proof. The crucial step is to show the inf-sup-condition, which can be done
using Korn’s second inequality

inf
v∈H1

D(Ω,Rd)
sup

η∈L2(Ω,Sd)

(η, E (v))L2

‖η‖L2(Ω,Sd)‖v‖H1
D(Ω,Rd)

≥ inf
v∈H1

D(Ω,Rd)

‖E (v)‖2
L2(Ω,Sd)

‖E (v)‖L2(Ω,Sd)‖v‖H1
D(Ω,Rd)

= inf
v∈H1

D(Ω,Rd)

‖E (v)‖L2(Ω,Sd)

‖v‖H1
D(Ω,Rd)

Korn

≥ c > 0.

The rest follows from Brezzis Splitting Theorem, see [23, p. 132].

Theorem 3.2 (Well-Posedness of the state system). Let Assumption A1
hold true. For a given phase-field ϕ ∈ L∞(Ω,R) there exists a unique weak
solution (u, σ) ∈ H1

D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the Hellinger Reissner linear

elasticity system such that Definition (2.1) is fulfilled.
Furthermore, for two controls ϕi ∈ L∞(Ω,R) and corresponding states

(ui, σi), i = 1, 2 there exists a constant c > 0 such that

‖σ1 − σ2‖L2(Ω,Sd) ≤ c ‖ϕ1 − ϕ2‖L∞(Ω,R) .

Proof. Set 〈G, v〉 := −
∫

Γf
f · vdω. Using Hölder’s inequality, Poincaré-

Friedrichs inequality and the trace theorem it can be seen that G ∈
(
H1
D

(
Ω,Rd

))∗
.

The first statement of the theorem follows from Lemma 3.1.
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For the second part, we subtract the state equations (3) for ϕ1, ϕ2 and
obtain(
C−1 (ϕ1) (σ1 − σ2), η

)
L2 − (η, E (u1 − u2))L2 = −

((
C−1 (ϕ1)− C−1 (ϕ2)

)
σ2, η

)
L2

− (σ1 − σ2, E (v))L2 = 0.

Note that with 〈F, η〉 := − ((C−1 (ϕ1)− C−1 (ϕ2))σ2, η)L2

|〈F, η〉| ≤ LC−1 ‖ϕ1 − ϕ2‖L∞(Ω,R) ‖σ2‖L2(Ω,Sd) ‖η‖L2(Ω,Sd) ,

thus F ∈ L2
(
Ω,Sd

)
. The bilinear forms are the same as in Lemma 3.1, hence

we can directly deduce

‖σ1 − σ2‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd)

≤ C1LC−1 ‖ϕ1 − ϕ2‖L∞(Ω,R) ‖σ2‖L2(Ω,Sd)

≤ c ‖ϕ1 − ϕ2‖L∞(Ω,R) ,

with a constant c > 0.

Definition 3.3 (Control-to-state Operator). Theorem 3.2 defines a function,
known as the control-to-state operator, which maps the phase-field ϕ to the
unique weak solution (u, σ) of the elasticity problem

S : L∞(Ω,R)→ (u, σ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
.

Lemma 3.4. Under Assumption A1 the control-to-state operator is Fréchet-
differentiable. Its derivative at ϕ ∈ L∞(Ω,R) in direction ω ∈ L∞(Ω,R) is
given by

S ′(ϕ)ω = (u∗, σ∗),

where (u∗, σ∗) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
is the unique weak solution of the

linearized system

(C−1 (ϕ)σ∗, η)L2 − (η, E (u∗))L2 = − ((C−1)′ (ϕ)ωσ, η)L2 ∀η ∈ L2
(
Ω,Sd

)
− (σ∗, E (v))L2 = 0 ∀v ∈ H1

D

(
Ω,Rd

)
(9)

and (u, σ) is the unique weak solution of the Hellinger Reissner system, see
Definition (2.1).
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Proof. Calculate the linearized system by computing derivatives ∂
∂ϕ

(·)ω of

(3), which yields(
C−1 (ϕ)σ∗, η

)
L2 − (η, E (u∗))L2 = −

(
(C−1)′ (ϕ)ωσ, η

)
L2 =: 〈F, η〉

− (σ∗, E (v))L2 = 0.

Applying Assumption A1 (iv) and Hölder’s inequality to 〈F, η〉, one re-
ceives

|〈F, η〉| ≤Θ′‖ω‖L∞(Ω,R)‖σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd), thus F ∈ L2
(
Ω,Sd

)
.

Lemma 3.1 then shows existence of a unique solution

(u∗, σ∗) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
.

Now we define

ur := uω − u− u∗ ∈ H1
D

(
Ω,Rd

)
and σr := σω − σ − σ∗ ∈ L2

(
Ω,Sd

)
,

where (uω, σω) is the solution to the state system (3) corresponding to ϕ+ω.
Subtracting the linearized system (9) and the state system from the one
corresponding to the control ϕ + ω, we see that (ur, σr) satisfy the saddle
point problem(

C−1 (ϕ)σr, η
)
L2 − (η, E (ur))L2 = 〈F, η〉 ∀η ∈ L2

(
Ω,Sd

)
− (σr, E (v))L2 = 0 ∀v ∈ H1

D

(
Ω,Rd

)
,

where

〈F, η〉 :=−
([
C−1 (ϕ+ ω)− C−1 (ϕ)− (C−1)′ (ϕ)ω

]
σω, η

)
L2

−
(
(C−1)′ (ϕ)ω(σω − σ), η

)
L2 .

The two terms of |〈F, η〉| are investigated separately. Using Taylor’s the-
orem for the first term it holds that∣∣∣([C−1 (ϕ+ ω)− C−1 (ϕ)−

(
C−1

)′
(ϕ)ω

]
σω, η

)
L2

∣∣∣
≤ ‖C−1 (ϕ+ ω)− C−1 (ϕ)−

(
C−1

)′
(ϕ)ω‖L∞(Ω,R)‖σω‖L2(Ω,Sd)‖η‖L2(Ω,Sd)

≤ 1

2
L(C−1)′‖ω‖2

L∞(Ω,R)‖σω‖L2(Ω,Sd)‖η‖L2(Ω,Sd).

14



Applying Assumption A1 (iv) and Theorem 3.2 to the second term leads
to∣∣((C−1)′ (ϕ)ω(σω − σ), η

)
L2

∣∣ ≤ Θ′ ‖ω‖L∞(Ω,R) ‖σω − σ‖L2(Ω,Sd)‖η‖L2(Ω,Sd)

≤ Θ′ ‖ω‖2
L∞(Ω,R) ‖η‖L2(Ω,Sd).

Thus, F ∈ L2
(
Ω,Sd

)
and via Lemma 3.1 it holds for (ur, σr) that

‖ur‖H1
D(Ω,Rd) ≤ C1‖F‖L2(Ω,Sd) ≤ c ‖ω‖2

L∞(Ω,R) ,

‖σr‖L2(Ω,Sd) ≤ C1‖F‖L2(Ω,Sd) ≤ d ‖ω‖2
L∞(Ω,R) ,

with positive constants c and d, which proves the Fréchet-differentiability.

3.2. Existence of an optimal control

Lemma 3.5. Under Assumptions A1, A2 and with f ∈ L2
(
Γf ,Rd

)
the

optimal control problem (CP) has a solution.

Proof. Let the admissible set be defined by

Fad := { (u, σ, ϕ) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
× Gm , (u, σ) = S(ϕ) }

Note that the compliance F in the optimization problem (CP) can be
rewritten using Definition 2.1. Applying Assumption A1 (ii) shows that

J (u, σ, ϕ) =
(
C−1 (ϕ)σ, σ

)
L2 + γ

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx

+
α

2

∫
Ω

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]2

+

dx

has a lower bound on the non-empty set Fad. Thus the infimum

inf
(u,σ,ϕ)∈Fad

J (u, σ, ϕ)

exists. We take a minimizing sequence

{(uk, σk, ϕk)} ⊂ Fad, k ∈ N

i.e.,
lim
k→∞

J (uk, σk, ϕk) = inf
(u,σ,ϕ)∈Fad

J (u, σ, ϕ) .

15



First note that {ϕk} ⊂ Gm implies

‖ϕk‖L∞(Ω,R) ≤ 1

and thus {ϕk} is uniformly bounded in L∞ (Ω,R). According to Assumption
A1 and taking into account that the potential term and the local volume
constraint term are positive, we get

J (uk, σk, ϕk) ≥
γε

2

∫
Ω

|∇ϕk|2 dx.

Via Poincaré’s inequality we have

γε

2
‖ϕk‖2

H1(Ω,R) ≤
γε

2
‖ϕk‖2

L2(Ω,R) +
γε

2
‖∇ϕk‖2

L2(Ω,R)

=
γε

2

∫
Ω

|ϕk|2 dx+
γε

2

∫
Ω

|∇ϕk|2 dx

≤ γε

2
|Ω|+ J (uk, σk, ϕk)

and therefore we receive uniform boundedness of {ϕk} in H1 (Ω,R).
From Lemma 3.1 it is known that

‖uk‖H1
D(Ω,Rd) + ‖σk‖L2(Ω,Sd) ≤ C2‖G‖H1

D(Ω,Rd) = C2‖f‖L2(Γf ,Rd).

Thus the sequences {uk} and {σk} are bounded in H1
D

(
Ω,Rd

)
and L2

(
Ω,Sd

)
,

respectively.
Hence we can extract weakly convergent subsequences, still indexed with

k such that

uk ⇀ u in H1
D

(
Ω,Rd

)
σk ⇀ σ in L2

(
Ω, Sd

)
ϕk ⇀ ϕ in H1 (Ω,R) .

By Sobolev embedding, we infer

ϕk −→ ϕ strongly in L2 (Ω,R) ,

and, possibly extracting a further subsequence indexed in the same way, we
also get

ϕk(x) −→ ϕ(x) a.e. in Ω.
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Thus, we can conclude
ϕ ∈ Gm.

For symmetry reasons, we have

(C−1(ϕk)σk, η)L2 = (σk, C
−1(ϕk)η)L2 .

Using Lebesgue’s dominated convergence theorem yields strong convergence
of {C−1(ϕk)η} in L2

(
Ω,Sd

)
, from which we can conclude

(C−1(ϕk)σk, η)L2 −→ (C−1(ϕ)σ̄, η)L2 ∀η ∈ L2
(
Ω,Sd

)
.

Consequently, (ū, σ̄, ϕ̄) fulfills the saddle point problem (3) and thus, we have

(ū, σ̄, ϕ̄) = S(ϕ).

Next, we show that the sequence {σk} converges strongly in L2
(
Ω,Sd

)
,

i.e.

lim
k→∞
‖σk − σ̄‖2

L2(Ω,Sd) = 0. (10)

Applying Assumption A1 (ii) leads to

¯
Θ‖σk − σ̄‖2

L2(Ω,Sd) ≤
(
C−1 (ϕk) (σk − σ̄) , σk − σ̄

)
L2

=
(
C−1 (ϕk)σk − C−1 (ϕ̄) σ̄, σk − σ̄

)
L2

+
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
L2

= (E (uk)− E (ū) , σk − σ̄)L2

+
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
L2

=

∫
Γf

f · (uk − ū)dω +
((
C−1 (ϕ̄)− C−1 (ϕk)

)
σ̄, σk − σ̄

)
L2 .

For the first term it was used that the triples (ϕk, uk, σk) and (ϕ̄, ū, σ̄)
both fulfill the saddle point problem (3) with η = σk − σ̄ and v = uk and
v = ū, respectively. Utilizing Lebesgue’s dominated convergence theorem
once again we obtain (10).

Finally, we are in a position to prove

J (ū, σ̄, ϕ̄) ≤ lim inf
k→∞

J (uk, σk, ϕk) .
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For the first term of

J (ū, σ̄, ϕ̄) =

∫
Γf

f · ūdω + γ

∫
Ω

ε

2
|∇ϕ̄|2 +

1

ε
ψ (ϕ̄) dx

+
α

2

∫
Ω

[∫
Br(σ̄)(x)

χςΩ(q) (ϕ̄ (q)− µ) dq

]2

+

dx

this is clear because of the weak convergence of {uk}.
Moreover, ∇ϕk ⇀ ∇ϕ̄ implies ‖∇ϕ̄‖ ≤ lim infk→∞‖∇ϕk‖. Convergence

of the double-well potential is guaranteed by pointwise convergence of {ϕk},
the continuity of the potential ψ on the bounded set Gm and the dominated
convergence theorem.

It is left to show that∫
Ω

[F (ϕk, σk(x), x)]2+ dx −→
∫

Ω

[F (ϕ̄, σ̄(x), x)]2+ dx, (11)

with

F (ϕ, σ, x) :=

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq.

Applying Assumption A2 and Hölder’s inequality readily gives

|F (ϕk, σk(x), x)| ≤ |Br(σ(x))| ≤ νdr
d
max,

where the constant νd only depends on the spatial dimension d. In view of
(10) and Assumption A2, we can extract a subsequence such that r(σk(x))→
r(σ̄(x)) for almost every x ∈ Ω.

Now we prove pointwise convergence of F (ϕk, σk(x), x) almost every-
where in Ω utilizing the notion of symmetric difference of two sets A,B, i.e.,

18



A∆B := (A \B) ∪ (B \ A).

|F (ϕk, σk(x), x)−F (ϕ̄, σ̄(x), x)|

=

∣∣∣∣∣
∫
Br(σk)(x)

χςΩ(q) (ϕk (q)− µ) dq −
∫
Br(σ̄)(x)

χςΩ(q) (ϕk (q)− µ) dq

+

∫
Br(σ̄)(x)

χςΩ(q) (ϕk (q)− µ) dq −
∫
Br(σ̄)(x)

χςΩ(q) (ϕ̄ (q)− µ) dq

∣∣∣∣∣
≤
∫
Br(σk)(x)∆Br(σ̄)(x)

|χςΩ(q) (ϕk (q)− µ)| dq +

∫
Br(σ̄)(x)

|χςΩ(q) ((ϕk − ϕ̄) (q))| dq

≤ νd
∣∣r(σk(x))d − r(σ̄(x))d

∣∣+

∫
Br(σ̄)(x)

|χςΩ(q) ((ϕk − ϕ̄) (q))| dq −→ 0.

A further application of Lebesgue’s dominated convergence theorem yields
(11).

Finally one arrives at

−∞ < inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) ≤ J (u, σ, ϕ)

≤ lim inf
k→∞

J (uk, σk, ϕk)

≤ lim
k→∞

J (uk, σk, ϕk)

= inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) ,

which proves that

J (u, σ, ϕ) = inf
(u,σ,ϕ)⊂Fad

J (u, σ, ϕ) .

Thus (u, σ, ϕ) is a solution to problem (CP).

3.3. First-order optimality conditions

3.3.1. Preliminaries

The radius of the local volumes is dependent on the local stresses. To-
wards deriving the adjoint equation for the stress, the ∂

∂r
derivative has to be
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calculated as part of the chain rule. For that the following transformation φ
will be employed

φ : B1 (0)→ Br (x)

q = φ (y) = ry + x

Dφ (y) = rI

detDφ (y) = rd

∂φ

∂r
= y.

Applying this transformation to the inner integral of the local volume con-
straint yields

F (r, x) =
1

rd

∫
Br(x)

χςΩ(q) (ϕ (q)− µ) dq

=
1

rd

∫
φ(B1(0))

χςΩ(q) (ϕ (q)− µ) dq

=
1

rd

∫
B1(0)

χςΩ(φ (y)) (ϕ (φ (y))− µ) |detDφ (y)| dy

=

∫
B1(0)

χςΩ(φ (y)) (ϕ (φ (y))− µ) dy.

Equivalently the following term can be transformed via∫
B1(0)

χςΩ(φ (y))∇ϕ (φ (y)) ydy =
1

rd+1

∫
Br(x)

χςΩ(q)∇ϕ (q) (q − x) dq,

where y = (q − x)/r was used. This is used to calculate the DrF derivative

DrF (r, x) =

∫
B1(0)

[χςΩ(φ (y))∇ϕ (φ (y)) +∇χςΩ(φ (y))ϕ (φ (y))]
∂

∂r
φ (y) dy

=

∫
B1(0)

[χςΩ(φ (y))∇ϕ (φ (y)) +∇χςΩ(φ (y))ϕ (φ (y))] ydy

=
1

rd+1

∫
Br(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] (q − x) dq.

Next, the derivatives of the LVC term are calculated. The ∂V
∂σ

derivative
will be needed when deriving the adjoint equation. The results from the
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transformation together with the chain rule lead to

∂V

∂σ
τ =

∫
Ω

2F+
∂F

∂r
Dσr (σ) : τdx = 2

∫
Ω

c̃ (ϕ, r(σ), σ) Dσr (σ) : τdx,

with

c̃ (ϕ, r(σ), σ) :=

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+(

1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

)
.

The Fréchet derivative ∂V
∂ϕ
ω will be needed when deriving the variational

inequality

∂V

∂ϕ
ω =

∫
Ω

2F+
∂F

∂ϕ
ωdx

=

∫
Ω

2

[∫
Br(σ)(x)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

∫
Br(σ)(x)

χςΩ(q)ω (q) dqdx

Fubini
=

∫
Ω

2

∫
Ω

[∫
Br(σ)(x)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

χBr(σ)(x) (q)χςΩ(q)dx ω (q) dq

= 2

∫
Ω

∫
Ω

[∫
Br(σ)(q)

χςΩ(ξ) (ϕ (ξ)− µ) dξ

]
+

χBr(σ)(q) (x)χςΩ(x)dq︸ ︷︷ ︸
=:G(σ,ϕ,x)

ω (x) dx

= 2

∫
Ω

G (σ, ϕ, x)ω (x) dx.

(12)

After using the chain rule, Fubini’s theorem was applied.

3.3.2. Derivation of first order optimality conditions

The adjoint problem is derived formally using the Lagrange function L
with Lagrange multipliers (p, τ), i.e.

L =

∫
Γf

f · udω + γEε (ϕ) +
α

2
V (r (σ) , ϕ)

+
(
C−1 (ϕ)σ, τ

)
L2 − (τ, E (u))L2 − (σ, E (p))L2 +

∫
Γf

f · pdω.

21



By calculating the ∂L
∂u

and ∂L
∂σ

derivatives using results of Section 3.3.1, we
get the saddle point problem of the adjoint system

(C−1 (ϕ) τ, η)L2 − (η, E (p))L2 = −α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)L2

− (τ, E (v))L2 = −
∫

Γf
f · vdx (13)

for all η ∈ L2
(
Ω,Sd

)
and v ∈ H1

D

(
Ω,Rd

)
.

Formally we arrive at the strong form of the adjoint problem

− div τ = 0 in Ω
τ = C (ϕ) E (p)− αc̃ (ϕ, r(σ), σ)C (ϕ)Dσr (σ) in Ω
p = 0 on ΓD
τn = f on Γf ,
τn = 0 on Γ \

(
ΓD ∪ Γf

)
.

Theorem 3.6 (The adjoint problem is well-posed). Let Assumptions A1 and
A2 hold true. For given ϕ ∈ H1 (Ω,R)∩L∞ (Ω,R) and (u, σ) ∈ H1

D

(
Ω,Rd

)
×

L2
(
Ω, Sd

)
there exists a unique weak solution (p, τ) ∈ H1

D

(
Ω,Rd

)
×L2

(
Ω, Sd

)
of the adjoint problem such that (13) is fulfilled.

Proof. Define

〈F, η〉 : = −α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)L2

〈G, v〉 : = −
∫

Γf

f · vdx.

Applying Hölder’s inequality and Assumption A2 leads to

|〈F, η〉| = |α (c̃ (ϕ, r(σ), σ)Dσr (σ) , η)L2|

= α

∣∣∣∣∣
∫

Ω

[
1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+(

1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] (q − x) dq

)
Dσr (σ) : ηdx

∣∣∣∣∣
≤ α

∣∣∣∣∣
[

1

r(σ)d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

]
+

∣∣∣∣∣∣∣∣∣∣ 1

r(σ)d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] (q − x) dq

∣∣∣∣∣C‖η‖L2(Ω,Sd).
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Noting that the first terms are independent of η and bounded (see proof
of in Lemma 3.9) one receives F ∈ L2

(
Ω,Sd

)
.

Additionally, as in Theorem 3.2, we get G ∈
(
H1
D

(
Ω,Rd

))∗
and the result

follows from Lemma 3.1.

Definition 3.7 (Reduced Cost-Functional). The cost functional J (u, σ, ϕ)
can be viewed as being only dependent on the control ϕ, which defines the
reduced cost-functional j (ϕ)

J (u, σ, ϕ) = J (u (ϕ) , σ (ϕ) , ϕ) =: j (ϕ) .

To prove the differentiability of the occuring Nemytskii operators, we
apply a result found in [29, Thm. 3.12]. We are using a variant found in [30,
p. 204], which is stated here:

Lemma 3.8. Let a bounded and measurable set E ⊂ Rn be given, and
assume that ϕ = ϕ(x, y) satisfies the Carathéodory condition. Let the Ne-
mytskii operator Φ(y) := ϕ(·, y(·)) map Lp(E) into Lq(E) for 1 ≤ q ≤ p <∞.
The operator Φ is for q <∞ automatically continuous if it maps Lp(E) into
Lq(E). In addition, let the partial derivative ϕy(x, y) exist for almost every
x ∈ E, and assume that the Nemytskii operator generated by ϕy(x, y) maps
Lp(E) into Lr(E). If 1 ≤ q < p <∞ satisfies the condition

r =
pq

p− q ,

then Φ is Fréchet differentiable from Lp(E) into Lq(E), and we have

(Φ′(y)h) (x) = ϕy(x, y(x))h(x).

Lemma 3.9. The reduced cost-functional j : H1 (Ω,R) ∩ L∞ (Ω,R)→ R is
Fréchet-differentiable. The derivative in direction ω ∈ H1 (Ω,R)∩L∞ (Ω,R)
is given by

j′ (ϕ)ω =
(
(C−1)′ (ϕ)ωσ, τ

)
L2 + γ

∫
Ω

ε∇ϕ · ∇ωdx

+ γ

∫
Ω

1

ε
ψ′ (ϕ)ωdx+ α

∫
Ω

G (σ, ϕ, ·)ωdx,

where (u, σ) is the weak solution of the elasticity system according to Defi-
nition 2.1, (p, τ) is the weak solution of the adjoint system, see Theorem 3.6
and G (σ, ϕ, ·) stems from Section 3.3.1.
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Proof. The function J is defined as

J : H1
D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
×H1 (Ω,R) ∩ L∞ (Ω,R)→ R.

Note that via the chain rule one formally gets

j′ (ϕ)ω =
∂J

∂u
u∗ +

∂J

∂σ
σ∗ +

∂J

∂ϕ
ω, (14)

where (u∗, σ∗) = S ′(ϕ)ω stems from Lemma 3.4 . Since continuous partial
derivatives imply Fréchet-differentiability, they are examined here. The first
one is

∂J

∂u
u∗ =

∫
Γf

f · u∗dω = (τ, E (u∗))L2 , (15)

where the second equation of the adjoint system (13) was used with v := u∗.
Towards calculating the second term, we look at

r : Sd → R+, σ 7→ r (σ) .

According to Assumption A2 the function r is globally bounded. Therefore
we can define the Nemytskii operator with 0 < δ < 0.5 as

Φr : L2
(
Ω,Sd

)
→ L2−δ (Ω,R+) , σ 7→ r (σ (·)) .

Towards proving Fréchet differentiability of Φr, we look at the Nemytskii
operator ΦDσr induced by Dσr. Again, via Assumption A2

‖ΦDσr (σ)‖L∞ ≤ C a.e. in Ω ∀σ ∈ L2
(
Ω,Sd

)
.

We can define the associated Nemytskii operator ΦDσr to Dσr as

ΦDσr : L2
(
Ω,Sd

)
→ L

2(2−δ)
δ

(
Ω,Sd

)
, σ 7→ Dσr (σ (·))

Thus, according to Lemma 3.8, the Nemytskii operator Φr is Fréchet
differentiable from L2

(
Ω, Sd

)
to L2−δ (Ω,Sd) with Φ′r (σ) = ΦDσr (σ), where

(Φ′r (σ) : τ) (x) = Dσr (σ(x)) : τ(x) for σ, τ ∈ L2
(
Ω,Sd

)
.

As a next step we are looking at G := F 2
+, where F was defined in

Section 3.3.1
G : Ω× R× R→ R
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We infer that G is globally bounded, which follows from

|F (x, r, ϕ)| ≤ C

for almost every x ∈ Ω and for all (r, ϕ) ∈ L2−δ (Ω,R>0) × H1 (Ω,R) with
0 < rmin < r < rmax <∞. This holds true since

|F (x, r, ϕ)| =
∣∣∣∣∣ 1

(r(σ))d

∫
Br(σ)(x)

χςΩ(q) (ϕ (q)− µ) dq

∣∣∣∣∣
≤ 1

(r(σ))d

∫
Ω

|ϕ(q)− µ| dq

≤ 1

rdmin

(
‖ϕ‖L1(Ω,R) + µ |Ω|

)
.

(16)

Then we can define the Nemytskii operator

ΦG : L2−δ (Ω,Sd)×H1 (Ω,R)→ L2−2δ
(
Ω,Sd

)
, (r, ϕ) 7→ G (·, r (·) , ϕ (·)) .

We have to show that DrG is globally bounded, which follows from

|DrF (x, r, ϕ)| ≤ C

for a.e. x ∈ Ω and for all (r, ϕ) ∈ L2−δ (Ω,Sd)×H1 (Ω,R), which holds true
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since

|DrF (x, r, ϕ)|

=

∣∣∣∣∣ 1

(r(σ))d+1

∫
Br(σ)(x)

[χςΩ(q)∇ϕ (q) +∇χςΩ(q)ϕ (q)] · (q − x) dq

∣∣∣∣∣
≤ 1

(r(σ))d+1

∫
Br(σ)(x)

|χςΩ(q)∇ϕ (q)| rmaxdq

+
1

(r(σ))d+1

∫
Br(σ)(x)

|∇χςΩ(q)ϕ (q)| rmaxdq

≤ 1

(r(σ))d+1

∫
Ω

|∇ϕ (q)| rmaxdq

+
1

(r(σ))d+1

∫
Ω

|∇χςΩ(q)ϕ (q)| rmaxdq

≤ 1

(r(σ))d+1
‖∇ϕ‖L2(Ω,Rd)rmax

+
1

(r(σ))d+1
‖∇χςΩ‖L2(Ω,Rd)‖ϕ‖L2(Ω,R)rmax

≤ 1

rd+1
min

(1 + Cς) ‖ϕ‖H1(Ω,R)rmax,

where we inserted (7) and Assumption A2. Then we can define the Nemytskii
operator induced by DrG via

ΦDrG : L2−δ (Ω,Sd)×H1 (Ω,R)→ L
4−6δ+2δ2

δ (Ω,R) ,

(r, ϕ) 7→ Dr (G (·, r (·) , ϕ (·))) .

Looking at (12) and following the arguments in (16), we also see that DrG is
globally bounded. Therefore, again via Lemma 3.8, the Nemytskii Operator
ΦG is Fréchet differentiable from L2−δ (Ω,Sd) × H1 (Ω,R) to L2−2δ

(
Ω,Sd

)
with derivatives(

∂ΦG

∂r
(r, ϕ) s

)
(x) = DrG (x, r(x), ϕ(x)) s(x),(

∂ΦG

∂ϕ
(r, ϕ)ω

)
(x) = DϕG (x, r(x), ϕ(x))ω(x),
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where DrG = 2F+DrF and DϕG = 2F+DϕF were calculated in Section
3.3.1.

We can write

V (σ, ϕ) =

∫
Ω

ΦG (Φr (σ) , ϕ) dx

and via the chain rule for Fréchet derivatives we get

∂V

∂σ
(σ, ϕ) τ =

∫
Ω

∂ΦG

∂r
(Φr (σ) , ϕ) Φ′r (σ) : τdx

=

∫
Ω

DrG (·, r (σ (ϕ)) , ϕ)Dσr (σ) : τdx, and

∂V

∂ϕ
(σ, ϕ)ω =

∫
Ω

∂ΦG

∂ϕ
(Φr (σ) , ϕ)ωdx.

Applying the results from Section 3.3.1 the second term of (14) is calculated
as

∂J

∂σ
σ∗ = α

∂V

∂σ
σ∗ = α

∫
Ω

∂ΦG

∂r
(Φr (σ) , ϕ) Φ′r (σ) : σ∗dx

= α (c̃ (ϕ, r(σ), σ) Dσr (σ) , σ∗)L2

= −
(
C−1 (ϕ) τ, σ∗

)
L2 + (σ∗, E (p))L2 ,

(17)

where the definition of Section 3.3.1 was inserted and the first equation of
the adjoint system (13) was used with η := σ∗.

Adding (15) and (17) together and applying system (9) of Lemma 3.4
with η := τ and v := p we get

∂J

∂u
u∗ +

∂J

∂σ
σ∗ = (τ, E (u∗))L2 −

(
C−1 (ϕ) τ, σ∗

)
L2 + (σ∗, E (p))L2

=
(
(C−1)′ (ϕ)ωσ, τ

)
L2 .

Via Section 3.3.1 we receive

∂J

∂ϕ
ω = γ

∫
Ω

ε∇ϕ · ∇ω +
1

ε
ψ′ (ϕ)ωdx+ α

∫
Ω

G (σ, ϕ)ωdx.

Since these partial derivatives are continuous, they can be assembled to

j′ (ϕ)ω =

∫
Ω

(C−1)′ (ϕ)ωσ : τdx+ γ

∫
Ω

ε∇ϕ · ∇ωdx

+ γ

∫
Ω

1

ε
ψ′ (ϕ)ωdx+ α

∫
Ω

G (σ, ϕ, x)ωdx.
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For the readers convenience, the first-order optimality conditions are sum-
marized in a theorem.

Theorem 3.10 (First-order necessary optimality conditions). Under As-
sumptions A1, A2 and with f ∈ L2

(
Γf ,Rd

)
there exists an optimal con-

trol ϕ̄ ∈ Gm. For any optimal control ϕ̄ there exists a unique solution
(ū, σ̄) ∈ H1

D

(
Ω,Rd

)
× L2

(
Ω,Sd

)
of the state equation and a unique solu-

tion (p̄, τ̄) ∈ H1
D

(
Ω,Rd

)
× L2

(
Ω, Sd

)
of the adjoint equation, such that the

following variational inequality is satisfied:

j′ (ϕ̄) (ϕ− ϕ̄) =

∫
Ω

(C−1)′ (ϕ̄) (ϕ− ϕ̄)σ̄ : τ̄dx+ γ

∫
Ω

ε∇ϕ̄ · ∇(ϕ− ϕ̄)dx

+ γ

∫
Ω

1

ε
ψ′ (ϕ̄) (ϕ− ϕ̄)dx+ α

∫
Ω

G (σ̄, ϕ̄, x) (ϕ− ϕ̄)dx

≥ 0 ∀ϕ ∈ Gm.

4. Numerical results

4.1. Preliminaries

The implementation took place in FEniCS. For references, see [31] and
[32]. We are using a gradient descent method which would be an L2 gradient
flow on the continuous level, i.e.,∫

Ω

∂tϕω dx = −j′(ϕ)ω

and discretize the left-hand side to solve the problem iteratively. For more
details see [33]. The inequality constraints are handled via the Primal Dual
Active Set Method. For a detailed description of the macroscopic phase-field
topology optimization algorithm we refer to [21].

The joint optimization of macroscale and mesoscale structures in this pa-
per and specifically the evaluation of the LVC represent an additional com-
putational burden that needs to be dealt with. To speed up the computation
adaptive meshing was implemented together with a diffusion step after each
mesh refinement step. For an efficient evaluation of the LVC term the code
was parallelized via the multiprocessing package, which is part of the Python
Standard Library. A further important requirement for an efficient solution
is the scaling of penalty terms in the cost functional. The LVC term is nor-
malized by its maximum value, i.e. V (r, ρ) with ρ : Ω → R, ρ (x) = 1. A
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more detailed explanation of adaptivity, multiprocessing and normalization
is planned for a forthcoming paper.

As suggested in [34], the factor γ in front of the Ginzburg-Landau regu-
larization is updated in each iteration step such that the ratio between the
compliance and Ginzburg-Landau term

cGL :=
γk+1Eε (ϕk)

F (uk)

stays fixed independent of k. Thus γk+1 is chosen via

γk+1 = cGL
F
(
uk
)

Eε (ϕk)

Throughout this paper cGL is set to 0.2.
For reasons of efficiency, the transition zone between material and void

is only gradually narrowed during the course of iterations. To this end the
Ginzburg-Landau parameter ε, which is related to the interface width, is
updated according to the current minimum cell diameter hmin whenever the
mesh has been refined, i.e., we choose

ε = 2hmin.

4.2. Definition of the stress dependent radius

As a starting point we choose the von Mises stress as a scalar stress
measure. Assuming plane stress, it is defined as

σv =
√
σ2

1 − σ1σ2 + σ2
2.

There are various ways to define the stress dependency of r. For a pronounced
transition we have chosen to multiply a base radius r0 by a factor a > 1 in
areas where the von Mises stress is larger than a set threshold value σ̂v, i.e.

r (σ) ≈
{
r0 if σv ≤ σ̂v

ar0 else .

The regularized Heaviside function

Hβ(x) =


0 if x < 0
10
β6x

6 − 24
β5x

5 + 15
β4x

4 if 0 ≤ x < β

1 if x ≥ β
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Figure 4: Local radius r(σ) as a function of the von Mises stress.

is used for a controlled and smooth transition between the two radii, i.e., we
define

r (σ) = (1 + (a− 1)Hβ(σv − σ̂v)) r0.

For r0 = 1 the behaviour of r(σ) is shown in Figure 4.
Note that r0 ≤ r (σ) ≤ ar0 =: rmax and via the chain rule we obtain

Dσr (σ) =
a− 1

2σv

r0

[
2σ1 − σ2 0

0 2σ2 − σ1

]
dHβ

dσv

(σv − σ̂v).

For the numerical examples β is set to σ̂v/10.

4.3. LVC mesh independence

For an efficient computation of the local volume constraint it is evaluated
on a coarser uniform grid, in the following referred to as the LVC mesh. The
mesh size is chosen in terms of the minimal radius r0 and the requirement
that the local volumes should cover the domain, i.e. Ω ⊂ ⋃

x

Br (x) defines an

upper bound for it.
In the example seen in Figure 5 the FEM mesh always has Nx = 200

points in x-direction. When using Nx = 36 instead of Nx = 200 for the LVC
mesh, one saves 96.5% of the computational effort for calculating the LVC
integrals. This does not introduce large errors, which can be seen in Table 1.
While the difference in results from Nx = 10 and Nx = 36 is quite noticeable,
for larger Nx values the results do not change significantly anymore.
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(a) Nx = 10 (b) Nx = 36

(c) Nx = 100 (d) Nx = 200

Figure 5: Once the LVC mesh reaches a certain fineness, the structure does not change
anymore. This allows for a faster computation of the LVC term.

Table 1: Influence of a coarser LVC mesh.

Figure 5 Nx F V #holes

(a) 10 2.29 0.0132 98
(b) 36 2.36 0.0116 206
(c) 100 2.41 0.0125 196
(d) 200 2.43 0.0138 191
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(a) µ = 0.1, #holes: 95 (b) r = 0.2, #holes: 22

(c) µ = 0.4, #holes: 264 (d) r = 0.08, #holes: 113

(e) µ = 0.7, #holes: 380 (f) r = 0.04, #holes: 406

(g) µ graded from 0.7 to 0.1, #holes: 256 (h) r graded from 0.2 to 0.04, #holes: 288

Figure 6: The parameter r controls the size of the holes, the parameter µ defines the local
material percentage.
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4.4. Parametric control of the mesostructure

As explained in Section 2.4, the mesostructure is governed by the local
volume fraction µ and radius r. The Ginzburg-Landau penalization strives
for minimizing interface curvature and number of interfaces thus preferring
coarser structures. We will see how the above-mentioned parameters influ-
ence the two-scale design.

Table 2: Influence of the parameters µ and r

Figure 6 µ r F V #holes

(a) 0.1 0.06 4.87 0.0704 95
(c) 0.4 0.06 2.90 0.0445 264
(e) 0.7 0.06 1.95 0.0427 380
(g) graded 0.7 to 0.1 0.06 3.00 0.0487 256

(b) 0.4 0.2 2.80 0.00696 22
(d) 0.4 0.08 2.36 0.00744 113
(f) 0.4 0.04 2.13 0.0154 406
(h) 0.4 graded 0.2 to 0.04 2.51 0.00369 288

In the following parameter study no global volume constraint is present.
With a local volume fraction µ = 0.1, as in Figure 6(a), the material dis-
tribution ϕ should not use more than 10% material in any local ball Br(x).
For this setting the structures are quite filigree with long thin beams. This
would not be beneficial when aiming to improve the buckling behaviour. As
µ is increased to 0.4 one notices a larger local material usage in Figure 6(c).
Especially in the center of the domain the individual beams become shorter
as more crossings appear, which can also be observed by an increase in the
number of holes. Increasing µ further to 0.7 leads to a perforated sponge-like
material with many small holes, see Figure 6(e).

This approach also allows for a grading of the parameter µ. A simple
grading in x-direction from µ = 0.7 on the left hand side to µ = 0.1 on the
right hand side is shown in Figure 6(g). One notices that as expected the
left hand side of the domain is similar to the left side of Figure 6(e), whereas
the right side is matches the design in Figure 6(a).

Another way to influence the mesostructure is via the radius r in the local
volumes Br(x). As the radius is decreased from 0.2 to 0.08 and 0.04, more
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Figure 7: Macroscopic optimization of an MBB beam.

Figure 8: Two-scale optimization with constant radius.

Figure 9: Two-scale optimization with stress dependent radius.

holes appear, which can be observed when comparing Figures 6 (b), (d) and
(f).

The radius can also be graded. For example in Figure 6(h) the radius
reaches from 0.2 on the left hand side to 0.04 on the right hand side. Again,
the left and right side of the domain correspond to the designs in (b) and (f)
for the constant radii.

The results are summarized in Table 2. To count the number of holes,
Betti numbers are computed using the CHomP software from the computa-
tional homology project, which is based on [36]. Note that only fully enclosed
holes count.

We remark that if the radius is chosen large enough such that Ω ⊂ Br (x)
for all x in Ω, the LVC term acts like a global volume constraint penalty
term.

4.5. Results for two-scale topology optimization

As the first example we consider the two-scale topology optimization of
an MBB beam. All calculations are done with at most 100 iteration steps,
the global material volume fraction is set to 40%. The number of degrees of
freedom in x-direction is 500. The compliance to Ginzburg-Landau relation
is set to 0.2.
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Table 3: Influence of a constant and a stress dependent radius.

Fig. α r F α * V #holes time

7 1109 4 74min
8 4× 10−7 0.04 1284 586853 318 594min
9 4× 10−7 graded 0.04 to 0.4 1171 21545 181 597min

Figure 7 depicts the result of the purely macroscopic topology optimiza-
tion. Figure 8 shows a two-scale optimization with a constant radius. As can
be checked in Table 3, the compliance of the two-scale structure with constant
mesostructure radius is increased by 15% as compared to the purely macro-
scopic structure. On the other hand, a two-scale optimization with stress
dependent radius (see Figure 9) leads to a design where the compliance is
only about 5% bigger as compared to the macroscopic case.

As a second example, a cantilever beam was examined. The structure
without a local volume constraint can be seen in Figure 3(b), the one for two-
scale optimization with constant radius in Figure 3(d), respectively. When in-
corporating the local volume constraint with the stress dependent radius de-
fined in Section 4.2, the structure in Figure 10 arises. The stress-dependency
leads to intricate structures with larger beams in areas of larger local stress.

The advantage of 3D printing is that complex parts, like the one seen in
Figure 10, can easily be extruded and directly manufactured. As a first step
towards 3D two-scale topology optimization Figure 11 depicts the extruded
2D result and its printed version.

5. Conclusion

The paper investigates a novel two-scale topology optimization concept
where the mesostructure can be homogeneous or spatially graded either by
imposing a predefined spatial size distribution or by considering a stress de-
pendent local radius. To this end, the Hellinger Reissner mixed formulation
was introduced to allow for a more precise stress calculation. From a de-
velopers point of view, the ease of implementation and the great speedup
of the LVC term calculation via multiprocessing are especially noteworthy.
For future 3D calculations further speedup is necessary. Solving the state
equation is currently a computational bottleneck, but tremendous speed up
can be achieved using GPU-accelerated geometric multigrid solvers, see [37].
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Figure 10: Two-scale optimization with stress dependent radius for the cantilever beam.

Figure 11: The extruded version of the optimized structure seen in Figure 10 (left) and
its printed counterpart (right).
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The filigree, porous structures created by our approach are better equipped
to deal with uncertainty or material failure.
Declarations of interest: none
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