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Preface

This report is the resulting product of a master’s thesis at the Department of Engineer-
ing Cybernetics at the Norwegian University of Science and Technology (NTNU). The
thesis is part of a larger SLAM robot project led by Tor Onshus, who has been my super-
visor and has assisted me throughout the thesis. The SLAM robot project aims to establish
multiple cooperative ground robots and drones to map and localize unknown areas. Be-
cause all technology development should strive to contribute to making the world a better
place for all creatures, a goal is for the project to align with one or more of the United
Nations’ Sustainable Development Goals (SDGs). Particularly Goal 3: ”Good Health and
Well-being” and Goal 15: “Life on Land” are aligned in this project. Cooperative SLAM
robots can rescue individuals in need in challenging environments where human operation
is difficult. Additionally, such a system is valuable for investigating areas in a sustainable
manner, supporting research on how to care for and restore nature.

Tor Onshus has provided invaluable guidance in determining the direction of my thesis
and has offered advice on the content, level of detail, and structure of the report. The de-
velopment and writing of the report have been completed solely by me.

Thank you to everyone who has supported me through this master’s thesis and through
five years of hard work towards this end goal.




Summary and conclusion

This master’s thesis is part of a SLAM robot project aimed at developing cooperat-
ing robots for mapping and localization of unknown areas. In this thesis, existing mobile
ground robots are used. These robots already have significant functionality implemented,
so the goal of this thesis is to improve existing functionalities as well as implementing new
ones. The thesis primarily focuses on collision and obstacle avoidance for these mobile
ground robots. Additionally, several smaller improvements were made. The main files
used for collision and obstacle avoidance in the robot code were cleaned up and slightly
restructured. This cleanup resulted in the deletion of a significant number of unused code
lines, making these files more readable. However, the robot code would still benefit from a
more thorough cleanup. Furthermore, a test program was successfully created to verify the
functionality of the robots, assisting those who repair the robots when they have malfunc-
tioning hardware. The resulting test program was of great help in robot repairs. Lastly, the
work done in this thesis was merged with contributions from other students working on
the SLAM robot project, to ensure cohesive progress.

A collision avoidance version was implemented in the specialization project [Eidsnes
(2023)] that was written as a build up to this master thesis. This version serves as the
initial collision avoidance version in this thesis. Two additional versions were developed,
and all three versions were tested in four tests designed to reveal each version’s strengths
and weaknesses. Each version was scored based on the robot’s ability to avoid crashing
into obstacles and to reach the target position when no obstacles were present. Version 2
performed the best and received the highest score. Subsequently, the obstacle avoidance
functionality was investigated. For the robot to navigate around obstacles, it is crucial that
it stops upon approaching one. Since Version 2 of collision avoidance performed the best,
it was used as the baseline for implementing the obstacle avoidance algorithms.

In the specialization project [Eidsnes (2023)], two obstacle avoidance algorithms were
designed but not implemented. These two algorithms, along with one additional algo-
rithm, were adjusted/developed, implemented, and tested in a different test set designed to
reveal strengths and weaknesses in obstacle avoidance.

As mentioned, Version 2 of collision avoidance performed the best overall in the tests and
was therefor the baseline for implementing the obstacle avoidance algorithms. However,
Version 2 does not perform perfectly. The robot sometimes crashes when approaching
small obstacles or when not approaching obstacles head-on. Additionally, it sometimes
stops when no obstacles are in front of it. These problems are mainly due challenges
with the robot having a turning sensor tower, resulting in blind spots between each sensor.
Furthermore, the nRF board that contains the robot software appears to have a capacity
problem, which forces a solution where the sensor tower skips a degree each time it turns,
to avoid software crashes. This weakens the robot’s ability to detect obstacles.
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Since the obstacle avoidance algorithms use Version 2 of collision avoidance, the same
issues persisted after implementing the obstacle avoidance algorithms. From the testing
of the obstacle avoidance algorithms, it was clear that Algorithm 2 most often led the
robot to the target. However, there were a few instances where the robot failed to nav-
igate around obstacles and reach the target. Additionally, the algorithm is inefficient as
the robot stops every 20 degrees to check if it has turned enough to start moving forward,
rather than turning the necessary degrees to start moving along the obstacle. Another is-
sue is that the robot sometimes unexpectedly oscillates back and forth at the same position.

A third algorithm, Algorithm 3, was also created. Algorithm 3 is a further development
of Algorithm 2, but testing revealed that it has many unexpected behaviors that cause the
robot to crash in situations where it normally would not and generally behaves unpre-
dictably. Algorithm 3 is expected to be more efficient than Algorithm 2 if these issues are
resolved.

For future work, Version 2 should be further improved for better collision avoidance. Al-
ternatively, a completely new collision avoidance system could be implemented using dif-
ferent sensors. For the obstacle avoidance algorithms, either Algorithm 2 should be further
developed or Algorithm 3 should be fixed before further development. Whatever solution
is chosen, the algorithm should be improved to increase efficiency.
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Sammendrag og konklusjon

Denne masteroppgaven er skrevet som en del av et "SLAM-robot-prosjekt” som har
som mal a utvikle samarbeidende roboter for bruk til lokalisering og kartlegging av ukjente
omrader. I denne oppgaven er allerede eksisterende bakkeroboter brukt. Disse robotene
har allerede mye funksjonalitet implementert, sd méalet for denne oppgaven er & forbedre
eksisterende funksjonalitet i tillegg til & implementere ny. Hovedfokuset i denne oppgaven
er kollisjons- og hindringsunngaelse for robotene. I tillegg er flere sma forbedringer gjen-
nomfgrt. Filene i robotkoden som er mest brukt i kollisjons- og hindringsunngéelse ble
ryddet opp i og noe omstrukturert. Denne opprydningen resulterte i sletting av et bety-
delig antall ubrukte kodelinjer, noe som gjorde disse filene mer lesbare. Imidlertid vil
robotkoden fortsatt kunne dra nytte av en grundigere opprydning. Videre ble et testpro-
gram laget for a bekrefte at robotene fungerer etter & ha vert pa reparasjon pa grunn av
hardware-feil. Det resulterende test programmet var til stor hjelp ved robotreparasjoner.
Til slutt ble resultatene fra denne oppgaven integrert med arbeid utfgrt av andre studenter
som ogsa jobber med "SLAM-robot-prosjektet”. Dette ble gjort for & sikre en helhetlig
fremdrift og samarbeid pa tvers av prosjektet.

En kollisjonsunngéelsesversjon ble implementert i prosjektoppgaven [Eidsnes (2023)] som
ble skrevet som en oppbygning til denne masteroppgaven. Denne versjonen er den fgrste
versjonen i denne oppgaven. To nye versjoner ble sa utviklet, og alle tre ble testet i et
testsett laget for & avdekke styrker og svakheter i hver av versjonene. Hver versjon ble
tildelt poeng basert pa robotens evne til & unnga a krasje inn i hindringer, i tillegg til evnen
til & la veere & stoppe nar det ikke er hindringer i veien. Versjon 2 gjennomfgrte testene
pa best mate totalt sett og ble dermed tildelt flest poeng. Videre ble hindringsunngaelse
utviklet. For at roboten skal kunne komme seg rundt hindringer er det vesentlig at den
stopper for den krasjer inn i hindringen. Versjon 2 ble derfor startpunktet for hindring-
sunngéelsesalgoritmene.

I prosjektoppgaven [Eidsnes (2023)] ble to hindringsunngaelsesalgoritmer designet, men
ikke implementert. Disse to algoritmene, i tillegg til en nyutviklet algoritme, ble rev-
idert/utviklet, implementert og testet i et annet testsett designet for a avdekke styrker og
svakheter i hindringsunngaelse.

Som nevnt, presterte Versjon 2 av kollisjonsunngéelse best totalt sett i testene og ble derfor
brukt som grunnlag for implementering av hindringsunngaelsesalgoritmene. Imidlertid er
ikke Versjon 2 perfekt. Roboten krasjer noen ganger nar den mgter sma hindringer eller
nar den mgter hindringer pé skra. I tillegg stopper den noen ganger nar det ikke er noen
hindringer foran den. Disse problemene skyldes hovedsakelig utfordringer med at roboten
har et roterende sensortarn, noe som resulterer i blindsoner mellom hver sensor. Videre ser
det ut til at nRF-kortet som inneholder robotprogramvaren har et kapasitetsproblem, noe
som tvingte frem en lgsning hvor sensortarnet hopper over en grad hver gang det roterer,
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for & unnga programvarekrasj. Dette svekker robotens evne til & oppdage hindringer.

Siden hindringsunngéelsesalgoritmene brukte Versjon 2 av kollisjonsunngéelse, vedvarte
de samme problemene etter implementeringen av hindringsunngéelsesalgoritmene. Fra
testingen av hindringsunngéelsesalgoritmene var det klart at Algoritme 2 oftest ledet roboten
til malet. Imidlertid var det noen tilfeller hvor roboten ikke klarte & navigere rundt hin-
dringer og na malet. I tillegg er algoritmen ineffektiv ettersom roboten stopper hver 20.
grad for & sjekke om den har rotert nok til & begynne a bevege seg fremover, i stedet for
a rotere de ngdvendige gradene i én bevegelse for den kan begynne & bevege seg langs
hindringen. Et annet problem er at roboten noen ganger uventet svinger frem og tilbake pa
samme sted.

En tredje algoritme, Algoritme 3, ble ogsa utviklet. Algoritme 3 er en videreutvikling
av Algoritme 2, men testing avslgrte at den har mye uventet oppfgrsel som far roboten til
a krasje 1 situasjoner der den normalt ikke ville gjort det og generelt oppfgrer seg uforut-
sigbart. Algoritme 3 forventes & veere mer effektiv enn Algoritme 2 hvis disse problemene
blir 1gst.

For fremtidig arbeid bgr Versjon 2 forbedres ytterligere for bedre kollisjonsunngéelse.
Alternativt kan et helt nytt kollisjonsunngaelsessystem implementeres ved hjelp av andre
typer sensorer. For hindringsunngéelsesalgoritmene bgr enten Algoritme 2 videreutvikles
eller Algoritme 3 fikses fgr videre utvikling. Uansett hvilken Igsning som velges, bgr
algoritmen forbedres for a gke effektiviteten.
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Introduction and Previous Work

1.1 Description of the SLAM-robot project

The majority of the following part (1.1 Description of the SLAM-robot project) is directly
taken from the specialization project that was written as a build-up to this master’s thesis
[Eidsnes (2023)]. Only a few adjustments were made.

The SLAM-robot project by Tor Onshus has been going on for many years and many
students have done their specialization project and master thesis on this project. The
project consists of several robots and six of them have been used, more or less, in this
project. The different robots will be referred to as DK 1 to 6, named after the nRF52840
DK development board used in all robots, throughout this project. The oldest robots (DK1,
DK2 and DK3) have plastic chassis while the newer generation of the robots has a metal
chassis (DK4, DKS and DK6), but except from that they are approximate copies of the
older ones. The robots communicate with a server through the network protocol MQTT.
The goal of this SLAM robot project is to have several cooperating autonomous ground
robots and drones for localization and mapping of unknown areas. The ground robots
are built in two layers for housing all the components. It has two wheels and additional
ball casters in front and in the back which keeps the robot balanced while still allowing
movement in all horizontal directions. One of the robots used throughout the project is
shown in Figure 1.1. The rest of this introduction will describe the SLAM-robot project at
a detail-level that covers what is needed to understand the upcoming parts of the report.

1.1.1 Hardware

The main components of the robots are marked in Figure 1.1. The lower layer of the robot
mainly contains two batteries and motors for each of the two wheels. The upper layer con-
tains a motor driver, a nrf development board, a hardware shield that provides additional
connectors to components and a rotating sensor tower.
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Sensor tower

nRF development board ‘

Figure 1.1: One of the robots in the SLAM-robot project.

The nRF52840 DK is a development kit from Nordic Semiconductor and is the brain
of the robot. All changes in the robot code are pushed to this board and trough the connec-
tors on the hardware shield stacked on top, it controls all functionality of the robot.

The sensor tower contains four infrared (IR) distance sensors pointing in separate di-
rections, 90 degrees from each other. The sensor tower is mounted on a servo motor
allowing the sensor tower to turn around its own axis. SLAM algorithms in the server then
process sensor data, from each degree in all 360 degrees around the robot, to create a map.

1.1.2 SLAM

Simultaneous localization and mapping (SLAM) consider the ability of a mobile robot,
when placed in an unknown area, to build a consistent map of the environment and si-
multaneously localize itself within the map. [Khairuddin et al. (2015)] The robots in this
project use the sensor data from the four infrared sensors on the sensor tower. The server
runs the sensor data through SLAM algorithms and creates a map of the area as it moves
thorough.

1.1.3 Server

The robot receives targets (positional coordinates) from the server and then attempts to
reach this target. That is, from the server one can give the robot a position (target) where
the robot is desired to go to. Additionally, the server is responsible for creating a map to
visualize the area which it is located in. Prior to the start of this project, several servers has
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1 Introduction and Previous Work 1.1.4 Communication between robot and server

been created. One written in Java, one in C++, one simpler server written in Python and a
final one in Golang. The one written in Python does not contain mapping functionalities
which means it can only be used to give the robot new targets. The C++ server was written
to replace the Java server because C++ is a more used programming language among the
students participating in this SLAM robot project. Finally, another student working on
the SLAM robot project created a new server as his specialization project. This server
is written in Golang and requires less installations than the C++ server. Additionally, it
can run from macOS in addition to Windows without any hassle. Since the Golang server
contains the same functionality as the C++ server and is easier to install and use, it was
decided to use the Golang server in this master’s thesis. To learn more about the Golang
server read [Klose (2023)]. As mentioned, the robots send the IR-data to the server and
the server uses this data to create a map.

1.1.4 Communication between robot and server

For communication between the server and the robots, the network protocol MQTT is
used. The MQTT protocol is built up of two types of network entities, a message broker
and clients. The clients subscribe to the specific topics that they want to receive messages
from. The clients publish messages to the MQTT broker. The broker forwards the mes-
sages to the clients subscribing to the specific topic. [EMQX-Team (2023)] This means
that the broker only provides the robots and the server, which are the clients, messages
from topics relevant for them. A Raspberry Pi serves as the MQTT broker. A nRF USB
Dongle is connected to the Raspberry Pi which allows communication between the nRF
board (robot, client) and the Raspberry Pi (broker) through Thread networking. The server
communicates with the broker by connecting to the Raspberry PI WiFi. Figure 1.2 shows
two constructed examples of how the clients and the broker communicate using topics in
MQTT.

Example 1

Broker

Raspberry Pi

Publish IR-data

q

Publish to topic: IR-data

Subscribe to topic: IR-data

i

Broker

Raspberry Pi

Publish Target position

J

Publish to topic: Target pos.

Subscribe to topic: Target pos.

L

Figure 1.2: Two constructed examples of how the clients and the broker communicates using topics
in MQTT.
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1.1.5 Robot software and functionality

The robot software is written in C and FreeRTOS is used to run multiple tasks (processes)
concurrently. FreeRTOS is an open-source real time operating system made for microcon-
trollers. FreeRTOS has been adapted to work with more than 40 microcontroller archi-
tectures, including the architecture of the nRF52840 DK used in this project [Fre], which
allows for real time multi-threading of the task in the robot code. The different tasks with
their functionalities are as follows:

Position estimation task: The position estimation task is responsible for estimating
the position of the robot in real time. It does so using motor encoders combined with
an IMU.

Position controller task: The position controller task is responsible for running
a PID controller for each motor and setting a speed reference. The task uses the
position estimated in the position estimation task and the target (where the robot is
determined to go) to calculate the speed reference for the motors.

Motor speed controller task: The motor speed controller task is responsible for
controlling the speed of the motors and does so by using information from the motor
encoders in a PID controller to keep the movement of the robot smooth.

Sensor tower task: The sensor tower task is responsible for controlling the position
and the sensor readings from the sensor tower. As mentioned earlier, the sensor
tower is mounted on a servo motor. At the start of this thesis, the sensor tower
operated in the following manner: When the robot was stationary, the tower would
rotate one degree at a time, back and forth between 0 and 90 degrees. In Figure 1.3
the four sensors at the sensor tower are numbered. By following sensor one, it is
possible to see that sensor one goes from pointing straight forward (0 degrees) to
pointing straight to the left (90 degrees) before is starts tuning back. The rotating
sensor tower provides the mapping task with IR data from all 360 degrees around
the robot. The behavior of the sensor tower was modified during the course of this

thesis.

Figure 1.3: The sensor tower is turning back and forth between 0 and 90 degrees.
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* Mapping task: The mapping task is responsible for creating line segments using the
IR data and publishing it for the server to use it to create the map of the environment.

1.2 Previous work: Specialization project

Prior to this master thesis, a specialization project on the same topic, in the same SLAM
robot project, was carried out. In the project a collision avoidance version was developed
and the report shows the resulting behaviour and addresses challenges with this version.
Additionally, two algorithms for obstacle avoidance were designed and discussed (not
implemented or tested). This specialization project is the starting point of this master thesis
and is briefly described in the following parts. For more details read [Eidsnes (2023)].

1.2.1 Collision avoidance

Prior to the specialization project, the SLAM robots were programmed such that the sensor
tower was only spinning while the robot was standing still. When the robot was driving the
sensor tower was standing still with one designated sensor pointing straight forward. The
idea was to have the sensor pointing forward, detecting upcoming obstacles. This idea
was further developed and tested throughout the specialization project, and is the initial
collision avoidance version in this master’s thesis.

From the specialization project it is clear that this version is limited by the sensor tower
standing still while driving. The IR sensors on the sensor tower has a small angular range,
meaning that the sensor only detects obstacles straight in front of them. This means that,
because of the sensor tower standing still with one sensor pointing forward, only obstacles
straight in front of the robot would be detected while driving.

Another problem with the initial version are the cases illustrated in Figure 1.4. This is
a result of the sensor tower spinning while the robot standing still and checking for obsta-
cles immediately after receiving a new target. That is, the sensor tower is always spinning
while the robot is standing still and as soon as it receives a new target, the sensor tower
turns into driving position (one designated sensor pointing forward). Additionally, as soon
as the target is received, the robot checks for obstacles. The time of this software process
is way shorter than the time it takes for the sensor tower to physically move into position.
This results in the two cases:

1. Case 1: The robot has an obstacle at its left and the detecting sensor is (in this
moment) pointing to the left when the robot receives a new target. The robot imme-
diately goes into driving state and begins checking for obstacles. This happens way
faster than the time it takes for sensor tower to go into position, which results in the
robot interpreting the obstacle at its left as an obstacle in the collision sector. The
robot therefor refuses to move forward.

2. Case 2: The robot has an obstacle at in front and the detecting sensor is (in this
moment) pointing to the left when the robot receives a new target. The robot imme-
diately goes into driving state and begins checking for obstacles. Since the detecting
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sensor does not detect any obstacles (since it is pointing to the left) the robot starts
moving forward and crashes into the obstacle.

These two cases are illustrated in Figure 1.4. Read [Eidsnes (2023)] for further explana-
tion.

Driving direction/
front of robot

Direction of detecting I
IR-sensor Casel | Case 2

I Obstacle |

Figure 1.4: In case 1 the detecting IR-sensor is pointing to the left towards an obstacle and the
robot is therefor told that it will crash if it starts moving forward even though it has free lane ahead.
In case 2 the detecting IR-sensor is pointing to the left where there are no obstacles, and the robot
is therefor told that it has free lane even though it does not. Figure and caption is retrieved from
[Eidsnes (2023)].

The conclusion from the Specialization project [Eidsnes (2023)] was as follows: For the
robot to be able to also detect obstacles that are not straight in front of the robot/the de-
tecting sensor, and additionally to avoid the two cases described above, the sensor tower
needs to turn constantly. The information about the surroundings should be stored such
that the collision avoidance does not depend on only the current sensor readings which are
limited to a very narrow area.

1.2.2 Obstacle avoidance algorithms

In addition to development and testing of the collision avoidance method, two algorithms
for obstacle avoidance were designed. The first algorithm, Algorithm 1, is shown in Figure
1.5. This algorithm is inspired by [Baras et al. (2019)]. In this paper Baras et al. uses a
simple decision algorithm for the robot to decide when to stop and which direction to turn
when approaching an obstacle. The algorithm presented in Figure 1.5 is similar, but does
not chose whether to turn left or right, it always turns left. The robot turns 90 degrees left
if it approaches an obstacle and moves in this direction until there are no obstacle in the
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1 Introduction and Previous Work 1.2.2 Obstacle avoidance algorithms

direction of the target, then the robot turns and moves in the direction of the target until it
reaches the target or it approaches a new obstacle. To sum up; after the robot approaches
an obstacle and has turned to the left and started moving, it will always either turn left, if
it meets a new obstacle, or if there are no obstacles visible in the direction of the target,
it will turn towards the target. Otherwise it will continue to drive straight forward. (The
figure retrieved directly from the specialization project contained errors/shortcomings: it
did not show what happens if the robot approaches a new obstacle after it has turned 90
degrees to the left. Therefor Figure 1.5 is a revised version of the original figure. This
revised figure corresponds more correctly to the description of the algorithm and the ex-
pected path determined in the specialization project.)

Turn
towards
target

Obstacle
in target
direction

Reached target

No
Obstacle in
Move front
forward

Turn 90°
left

Move
forward

Obstacle in
front

<

es.

N

Yes

Figure 1.5: Obstacle avoidance algorithm. Algorithm 1. Retrieved from Specialization project, but
an error is resolved. [Eidsnes (2023)]

The path of the robot is expected to be as shown in Figure 1.6 after implementing Algo-
rithm 1. For some obstacles, this simple algorithm is expected to work, but in other cases
not. Case 2 shows an example of a scenario where this algorithm is expected to not lead
the robot to the target. The robot drives towards the target until it meets the obstacle, it
then turns to the left and moves forward until it meets the other wall of the obstacle. It
then turns to its left again and starts moving. After moving for a while in this direction the
robot no longer detects any obstacles in the target direction and therefor turns towards the
target. The robot will then meet the target again and will be stuck in the corner like case 2
in Figure 1.6 shows.

Because of the shortcoming revealed in case 2 in Figure 1.6, another, more complex algo-
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Straight path between
== == start and target

Case1 | Case2

=== Path of robot

. Obstacle

»

o

Figure 1.6: Expected path for Algorithm 1.

rithm was designed. This algorithm, Algorithm 2, is shown in Figure 1.7. As the figure
shows, the robot moves towards the target until it either reaches it or approaches an obsta-
cle. If it approaches an obstacle, it turns 90 degrees either to the right or to the left and
continues to move in the new direction until it either approaches a new obstacle or there
are no obstacle 90 degrees back in the direction it drove before it approached the obstacle.
For example, if the robot approaches an obstacle and it is possible to turn left, it turns 90
degrees left. Then it starts moving forward and does so until the robot either has no obsta-
cle on its right or until it approaches a new obstacle. In the case where it drives forward
until there are no obstacle on the robot’s right, the robot turns right and once again keeps
moving in this direction until it either approaches an obstacle or has a free lane to its right.
On the other hand, if it approaches a new obstacle (or the same, but at a different place) it
turns to the left. The robot moves in this pattern until it reaches the straight path between
the starting point and the target, but now further away from the starting point than when it
first approached the obstacle. This behaviour is visualized in Figure 1.8 which shows the
expected path of the robot with Algorithm 2 implemented.

Remember, the algorithms were not implemented or tested in the specialization project
and Figure 1.6 and 1.8 only shows the expected behaviour and not actual robot behavior.

The results and conclusion from the specialization project makes the starting point for this
master thesis.
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Problem Description

From the work carried out in the specialization project described in Chapter 1.2 it was
concluded that the collision avoidance of the SLAM robots needed further improvements.
In addition there is a wish for the robots to be able to drive around an obstacle to reach a
target given behind it. Furthermore, there was a need for a simple test program to verify
the robot’s functionality after repairs. Therefore, the problem description for this master’s
thesis is as follows:

* Clean up and restructure the files relevant for collision and obstacle avoidance
in the robot code to make implementation easier.

¢ Create a simple test program for use when the robots are repaired from damage
at a workshop. The test program should be easy to manage for people with
limited knowledge about the SLAM robot project and should give an indication
on whether the robot is functioning or not.

¢ Improve the SLAM robots’ collision avoidance functionality such that the robot
stops when it approaches obstacles of different shapes and sizes.

¢ Implement the two algorithms designed in the specialization project. Use the
results to further improve the obstacle avoidance functionality.

* Merge work done on the SLAM robot project by different students and gather
the newest and relevant software for the SLAM robot project such that it is
easier to navigate through the project for coming students.

10



Project Overview and Chapter
Outline

To give the reader an overview and to make it easier to follow along when reading the
report, this overview has been created. Below follow a short summary of the work done
during this master’s thesis and then an overview of the coming chapters.

3.1

10.

Project overview: Short summary of what has been
done

. Code in relevant files has been cleaned up and restructured.
. A test program for use after hardware changes/reparations, has been created.
. Improvement of collision avoidance by developing two new versions.

. Obstacle avoidance algorithms designed in the specialization project has been ad-

justed/revised.

. These two obstacle avoidance algorithms has been implemented in addition to de-

velopment and implementation of a third algorithm.

. Tests of the initial and the two new collision avoidance versions has been conducted.
. All three obstacle avoidance algorithms has been tested.
. The resulting robot behaviour has ben visualized in plots.

. The work done has been merged with the work done of other students working on

the SLAM-robot project.

The work done has been documented by writing this report.

11



3 Project Overview and Chapter Outline 3.2 Chapter outline for the rest of the report

3.2 Chapter outline for the rest of the report

¢ Chapter 4 Method and Tools:
This chapter describes the execution of this master’s thesis and details how the re-
sults are carried out. The software tools used in this master’s thesis, both for im-
plementing functionalities in the SLAM robots, but also to present the work in the
report, are described. In addition, the test strategy used to carry out results are pre-
sented here.

* Chapter 5 Minor Improvements:
The main goal for the master’s thesis is to improve collision avoidance and imple-
ment obstacle avoidance, but as described in the problem description (Chapter 2),
there are some additional improvements that have been implemented. The devel-
opment and implementation of these additional improvements are described in this
chapter.

* Chapter 6 Collision Avoidance:
This chapter contains all the documentation of one of the main goals which is to
improve the collision avoidance functionality. The chapter first presents brief the-
ory exploration of the topic, collision avoidance and examining its relevance to the
project at hand. The chapter is then divided into sections separated by the three
different collision avoidance versions. For each version it is further divided this
way:

— Development and Implementation:
Describes the software development of the collision avoidance version and
how these software changes is intended to give new/changed functionalities to
the robots.

— Results:
Presents the resulting behaviour of the robots for the version, after it has been
implemented. The version is systematically tested by conducting the tests de-
scribed in Chapter 4. That is, the plots presented in this part shows how the
robot behaves, when the version described in Development and Implementa-
tion is uploaded to the nrf-board, and the robot is undergoing the tests de-
scribed in Chapter 4.

Finally, the chapter contains a discussion part that discusses the results presented.

¢ Chapter 7 Obstacle Avoidance:
This chapter follows the exact same structure as the previous chapter (Chapter 6).
In this chapter, theory on obstacle avoidance is examined before development and
implementation, results and discussion on the three different obstacle avoidance al-
gorithms, are presented.

¢ Chapter 8 Further work:
This final chapter discusses what can be done to further improve collision and ob-
stacle avoidance on the SLAM robots.

12



Method and Tools

Parts of this chapter (4.1, 4.2, 4.5 and 4.6.) are mainly retrieved directly from the spe-
cialization project that was written as a build-up to this master’s thesis [Eidsnes (2023)].
Some small adjustments were made and additional sentences were added.

4.1 Software changes using SEGGER

The changes in the robot code was done in SEGGER Embedded Studio which is an in-
tegrated development environment for microcontrollers using C or C++ [SEG]. SEGGER
provides simple uploading of new code to the nRF board by USB connection.

4.2 Tracking robot movement using OptiTrack:

In Figure 1.1 in Chapter 1.1.1 there is an object marked "Marker for OptiTrack™ in the
picture of the robot. Each robot carries five of these markers and the motion capture sys-
tem OptiTrack uses them to track the robots’ movement. Multiple cameras positioned in
a square above the floor capture data by tracking these markers. This setup accurately
records the robot’s position within the camera-visible area. The position data can be ex-
ported in several formats. In this project the position data is exported to a MATLAB file.

4.3 Test strategy for collision avoidance

Four tests were developed to show the resulting behavior of the robots after implementing
new versions of collision avoidance. The goal was to develop different tests to reveal the
robot behavior in various scenarios. For all four tests the robot was placed approximately
at (x=0,y=0) and one or more obstacles were placed at approximately (x=150, y=0). The
robot was given a target 150cm straight ahead. For three out of four tests, one or more
boxes were placed in front of the robot. For the remanding test the obstacle was a cylinder

13



4 Method and Tools 4.3 Test strategy for collision avoidance

with a diameter of approximately 10cm. The robot was initialized between each attempt,
meaning that the starting point of each attempt is (x=0, y=0) internally in the robot. This
was done to make it easier to drive it 150cm straight forward. Since the precision of the
robot’s position estimation might drift when it is turning around, it would be challenging
to give it the wanted target without initializing between each attempt. The four tests are

illustrated in Figure 4.1 and described below.

e Test 1: The first test shows the behaviour when the robot drives ”straight” towards
a box.

* Test 2: The second test shows when the robot drives towards a angled box, meaning
that the wall which the robot approaches, reaches diagonally approximately between
(x=800,y=0) and (x=1200, y=60).

¢ Test 3: For the third test the robot drives toward a significantly smaller obstacle, the
cylinder.

¢ Test 4: For the last test, the robot drives between two boxes. For the three first
tests the goal is to test the ability of the robot to stop and hence avoid crashing into
the obstacle. For the last test, on the other hand, the goal is to test the ability to
ignore obstacles that are not in the robots collision sector and hence drive between
the obstacles all the way to the given target position. When the robot is within a
radius of 15cm around the target, the target is reached. All the attempts showed for
Test 4 in the results parts in Chapter 6 are attempts where the robot had a clear path
to the target.

¥ Target
Test 1 Test 3 Ideal path

g x g O x

Test 2 Test 4

l:» % l.» 2 3

Figure 4.1: The four tests developed to test the robots’ collision avoidance functionality.
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4 Method and Tools 4.4 Test strategy for obstacle avoidance

All the plots presented in the results part for each collision avoidance version in Chap-
ter 6, are from the robots undergoing the four tests described above.

4.4 Test strategy for obstacle avoidance

To test the obstacle avoidance functionality, four new tests were developed. Similarly
as for collision avoidance, the goal was also here to develop tests that could reveal the
robots behaviour for varying scenarios. In these four tests, the robot was positioned and
initialized at approximately at (0,0), with the target set at 170-200cm straight ahead. For
all four tests a successful attempt is if the robot reaches the target (15cm radius around the
target). The tests are illustrated in Figure 4.2 and described below.

e Test 1: The first test reveals the behaviour of the robot when there is a rectangular
obstacle between the starting point and the target.

Test 2: The second tests reveals the behaviour of the robot when it approaches an
obstacle shaped as the letter ”L”, but rotated and flipped (see Figure 4.2). The robot
drives “into the L” such that is has the obstacle both in front, but also on its left.

Test 3: In the third test the robot is given a target behind two obstacles, one cir-
cular obstacle with a diameter of approximately 29cm and wall with a length of
approximately 60cm.

Test 4: The last test reveals the behaviour of the robot when it has to drive past and
between several obstacles of different shapes and sizes. See Figure 4.2.

¢ Target
Test3 Ideal path

Test 1

Figure 4.2: The four tests developed to test the robots’ obstacle avoidance functionality.
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4 Method and Tools 4.5 Visualizing position data using MATLAB

All the plots presented in the results part for each of the algorithms in Chapter 7, are from
the robots executing the four tests described above. For all the tests for both collision and
obstacle avoidance, the robots named DK4, DK5 and DK6 were used.

In addition to testing the ability of the robot reaching the target, it would be interesting
to evaluate the efficiency of the different algorithms. This could have been done measur-
ing the time the robot uses to reach the target in each successful attempt, but because the
robot has major problems with spinning, this would not provide any useful information.
That is, the robot sometimes stops moving forward or turning around while the wheels are
still spinning. By using time as a measurement of the efficiency of the algorithms would
therefor depend on the robot not spinning. Therefor the efficiency of the algorithms will be
evaluated by looking at the robot paths. This means that this will not be a analytic result,
but will only be based on the impression from looking at the different robot paths in the
plots.

As mentioned, the robot was placed approximately at (x=0,y=0) in both of the test sets.
However, the placement of the robot, was purposely random inside a reasonable range
around the origin and not at the exact (0,0) position. This was done to see how it be-
haves when it approaches the different obstacles from different angles. This means that
the results from the different test can not be compared one to one, but should be viewed
as an indication. For more valid results, a determined number of positions should have
been chosen and for each version test the robots would have started from these determined
positions. However, this would be extremely time consuming considering that the robots
would have to be moved manually to the exact position between each run and additionally
the OptiTrack would have to be calibrated often. Therefor it was concluded that to run the
robot from random positions close to (0,0) would give sufficient results to see a path for
this master’s thesis.

4.5 Visualizing position data using MATLAB

The position data exported from OptiTrack is plotted using MATLAB. All figures in the
results parts in both Chapter 6 and 7 with labeled x- and y-axis in mm precision, con-
tain position data from OptiTrack and are plotted using MATLAB. Only the lines labeled
”Robot path” are position data while all the other elements are added onto the plots to be
able to interpret the result. The size of the obstacles might seem to change in size from
one to another plot. This is partly because two different boxes of slightly different sizes
are used, but the main reason is because the plots are scaled differently. Additionally, in
some of these plots it looks like the robot has driven through an obstacle. This is caused by
the robot moving the obstacle after crashing into it, while the obstacle is only plotted at its
initial position. Note that the path shown is the middle of the front of the robot, meaning
that the width of the robot is not directly visible in the plots. The robot is approximately
15cm wide and since the plot is only from a point on the front of the robot, it can be hard
to see if the robot crashed or not. Therefor all plots are commented such that it is clear if
the robot crashed or not, especially in cases where it is hard to understand from the plot.
Note that, because the OptiTrack system has not been calibrated during the testing. Some
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4 Method and Tools 4.6 Creating illustrations

of the plotted trajectories were shifted, such that they did not correspond correctly to the
other plots or the obstacles plotted into the figures. Because of this, a note from every
attempt was written down during the testing. This way it was discovered if the plot did not
correspond to the behaviour noted during testing. In such cases the plots were adjusted.
This means that some of the trajectories in the plots are adjusted due to lack of calibration,
which might be an error source.

4.6 Creating illustrations

Understanding the robots and their functionalities can be hard for anyone that has not
been working with the system. Therefor it has been a great focus on creating illustration
for the reader to better understand the issues discussed in this report. All the figures,
excluding the MATLAB plots, are created using either Lucidchart, or different Microsoft
Office software. Some of the figures include photos. These are captured with a mobile
phone during the project.

* Lucidchart:
The figures shaped as diagrams are created in the free version of the diagram appli-
cation Lucidchart.

* Microsoft Office software:
The figures with illustrations specific for this master’s thesis are created using the
Microsoft Office software, mainly PowerPoint.

4.7 ChatGPT

The free Al system, ChatGPT is used as a tool for both development and report writing.
The use is described below:

* Development: Throughout the development process, when the robot acted unex-
pectedly or encountered issues like code crashes or compilation errors, ChatGPT
was sometimes consulted for assistance. Sometimes, specific code snippets were
provided for analysis, with a desire to get help finding the underlying problem.
Other times, broader questions were given, seeking advice on debugging strategies
and best practices.

* Visualizing data: When plotting position data using MATLAB, ChatGPT was used
to help writing syntactically correct code to ensure the desired format of the plots.

* Report writing: After completing a chapter of the report, ChatGPT was used as a
helpful tool for rewriting poorly formulated sentences or clarifying messages that
were difficult to understand.

It is important to note that ChatGPT did not directly contribute to the development work.
Instead, it was only used as a tool to facilitate the implementation of developed logic
and functionality, as well as to assist in data visualization and report writing. ChatGPT
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4 Method and Tools 4.7 ChatGPT

helped making sure code was syntactically correct for data plotting and provided assistance
in refining already-written sentences for the report. However, it did not independently
generate any code or text.
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Minor Improvements

5.1 Code clean up

From the specialization project [Eidsnes (2023)] described in Chapter 1.2, it was con-
cluded that the code needed a clean up to make it easier to develop new functionality. The
code is very much characterized by the fact that many different people have worked on it
over many years. Several different outdated servers and position estimation methods were
still present in the code. For this master’s thesis there are mainly two files relevant and
therefor these were prioritized in the clean up. The clean up was mostly removing unused
variables and if states that was no longer relevant. An example of unused code is a piece
from the file task_pose_controller. Before the clean up this piece was as shown below:

if (idleSendt == false) {
NRF_LOG_INFO(”controller sending idle”);
//TODO: send_idle () ;
idleSendt = true;

}

if (USE_SPEED.CONTROLLER) {
set-motor_speed_reference (0, 0);
} else {

motor_brake () ;

}
lastMovement = MOVE_STOP;

xQueueSend(qScanStatus , & lastMovement, 0); // Send the current
movement to the scan task
// display_text_on_line (4,” Reached target”);

kk
# Set output

sk k sk

% sk % 3k K % ok 3 f

8k ok ok ok *
if (PUBLISH_POSITION_CONTR
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5 Minor Improvements 5.2 Test program

double timeSinceStartup = ticksSinceStartup = 1.0 /
configTICK_RATE_HZ ;

controllerMsg .time = timeSinceStartup;

controllerMsg .x = xhat;

controllerMsg.y = yhat;

controllerMsg . theta = thetahat;

controllerMsg .uLeft = uLeft;

controllerMsg.uRight = uRight;

publish (”v2/robot/NRF.5/controller”, &controllerMsg , sizeof(
controllerMsg), 0, 0);

}

if (USE-SPEED_CONTROLLER) {
set_motor_speed_reference (uLeft, uRight);

} else {

motor_-movement_switch (uLeft, uRight);
}

After the clean up the resulting code was as follows:

set_motor_speed_reference (0, 0);

lastMovement = MOVE_STOP;

xQueueSend (qScanStatus , & lastMovement, 0); // Send the current
movement to the scan task

}

[ sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk K K sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok
#* Set output

st s ok sk sk ok sk sk ok sk sk sk sk sk sk st sk s ok sk sk st sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok sk /

set_motor_speed_reference (uLeft, uRight);

As shown, this piece of code was reduced from 36 lines to 10, by just deleting lines and it
did not change the functionality of the robot. Such deletions were done in the files relevant
for collision and obstacle avoidance, which resulted in more readable and manageable
code.

5.2 Test program

The robots used in the SLAM robot project are rather delicate, and due to their regular use
by new individuals each year, they are prone to occasional damage. To prevent excessive
time spent on repairs by students using the robots for their projects and theses, the Depart-
ment of Engineering Cybernetics provides workshop assistance for this purpose. However,
since the workshop personnel have limited knowledge about the SLAM robots, a test pro-
gram was developed. The aim of this test program is to provide a straightforward code
to upload to the nRF-board, which can determine if the hardware is functioning properly
or not. Another crucial aspect is that this program does not necessitate a connection with
the server, which means that the workshop does not have to set up the server or have the
broker available to run this program. The program works as follows:

1. The sensor tower turns 90 degrees
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5 Minor Improvements 5.3 Merging work

2. The robot drives 50 cm straight forward
3. The sensor tower turns back to initial position

With this program, workshop personnel can upload it to the nRF-board after hardware
repairs to verify if the robot is now operational. The program has been successfully used at
the workshop several times after robot repatriations throughout the duration of this thesis.

5.3 Merging work

Other students have also contributed to the SLAM robot project. To ensure continuous
progress, the work completed by different students needed to be integrated, ensuring that
the project moves forward cohesively across all the directions explored in the various the-
ses. The objective is to provide future students with a clear path to continue the work,
avoiding divergent threads leading in different directions. This task involved merging
changes made in the robot code, gathering improvements and implementing new function-
alities into a unified codebase. Additionally, efforts were made to ensure that the Golang
server functions seamlessly for both ground robots and drones.
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Collision Avoidance

In this chapter the developed collision avoidance functionality is presented. Based on the
theory presented below (6.1) three versions of collision avoidance has been developed,
implemented and tested. For each of the versions, the development and implementation is
described before the resulting robot behaviour is presented.

To show the resulting robot behavior from the collision avoidance implementation, four
different tests are done for each version. The test method and strategy are explained in
Chapter 4. For easier interpretation of the results, a score from 0 to 10 is given for each
test. This means that, in all four tests, the ten attempts are either successful or failed, and
the number of successful attempts gives the score. The requirements for a successful at-
tempt depends on the test.

Remember that, as discussed in Chapter 4, when interpreting the plots in the results sec-
tion for all versions, it is crucial to bear in mind that the robot is approximately 15 cm
wide, while the robot path shown in the figures corresponds to a point in the middle of
the front of the robot. Consequently, while the robot path in the figures may appear clear
of obstacles, it is important to consider the robot’s width, as it may have collided despite
the seemingly clear path. Each attempt is commented to provide clarity on whether the
robot crashed, especially if it’s not directly visible from the figures. Additionally, there
are instances where it appears as though the robot passed through an obstacle. This occurs
because the robot sometimes moves the obstacle when it crashes into it, while it is not
visible in the plot that the obstacle has been moved.

6.1 Theory

For unmanned automated vehicles, such as the robots in the SLAM robot project, sensors
registering the environment are crucial. Different types of sensors are used for obstacle
detection, including radar, ultrasonic, cameras, LIDAR and IR. Each sensor type has its
own advantages and disadvantages. Radar lacks fine resolution but performs well in chal-
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6 Collision Avoidance 6.2 Initial version

lenging visibility conditions, such as bad weather. Ultrasonic sensors are cost-effective
and good in short-range detection. Cameras provide a comprehensive view of the environ-
ment but are limited by visibility conditions. LIDAR offers high-resolution, long-distance,
360-degree detection but struggles in harsh environments, particularly with low-reflective
obstacles. [ Yu and Marinov (2020)]

The robots in the SLAM robot project are equipped with a sensor tower of four infrared
(IR) distance sensors, as described in Chapter 1.1. Distance measurement with the IR sen-
sors is therefor chosen as the solution used for obstacle detection and collision avoidance
in this project. The advantage of using IR sensors is that they work in the dark, provide
high resolution, and are low cost. However, IR sensors are limited by their poor light tol-
erance and the fact that the range of the area the sensors detect is limited, creating blind
spots between the sensors. [ Yu and Marinov (2020)] [Ismail et al. (2016)]

For the collision avoidance versions presented in the upcoming parts the turning sensor
tower is used to measure the distance between the robot and obstacles around it. The al-
ready implemented position controller task stops the motor when the sensor tower task
(see Chapter 1.1.5) decides that the robot is too close to an obstacle.

6.2 Initial version

6.2.1 Implementation and development

Chapter 1.2 describes the collision avoidance version developed in the specialization project,
which is the initial version in this thesis. This version has a static sensor tower while driv-
ing.That is, the sensor tower is positioned into the driving position with one designated
sensor pointing straight forward. When this sensor detects an obstacle closer to the robot
than the allowed collision threshold, the robot stops. The development and implementation
of this version is described in [Eidsnes (2023)].

6.2.2 Results

To be able to evaluate the collision avoidance versions developed and implemented as part
of this master’s thesis, this initial collision avoidance version is tested the same way as the
versions developed in this thesis. The following figures show the behaviour of the robot
with the initial collision avoidance version in the four different tests.

The first figure, Figure 6.1, illustrates the resulting paths for the ten attempts in Test 1.
The robot is positioned at a reasonable radius from (x=0, y=0) and given a target 150 cm
straight ahead. In this test, an attempt is considered successful if the robot does not crash.
Upon examining the robot paths in Figure 6.1, it’s evident that the robot moves towards
the obstacle and stops when it comes close to it, except for attempts 1, 4, and 10. In these
instances, the robot stops early, despite being distant from the obstacle. For attempts 2, 3,
5, 7, and 9, the robot does not stop until it is very close to the obstacle. Considering the
width of the robot when it approaches the obstacle in attempts 9, it is clear that the robot
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6 Collision Avoidance 6.2.2 Results

was dangerously close to crashing with its front left corner. Since the sole criterion for
success in this test was for the robot not to crash, the initial version is awarded a score of
10 points in Test 1.
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Figure 6.1: Test 1 for Initial Version: 10 attempts where the robot drives more or less head-on
towards a box.

Figure 6.2 shows the paths of the robot for Test 2. In this test, the robot advances towards a
diagonally placed box. Only two of the attempts resulted in the robot avoiding a collision
in this scenario. In attempt 10, the robot stops after traveling approximately 30 cm instead
of approaching the obstacle closely before stopping. It’s noteworthy that the only attempt
where the robot drives all the way up to the obstacle but stops in time is attempt 7. In
this case, the robot approaches the obstacle at a corner of the box, indicating that it detects
the part of the obstacle closest to it, directly in front. Consequently, the initial version is
assigned a score of 2 points in Test 2.

In Test 3 the robot drives towards a cylinder with a diameter of approximately 10cm. Fig-
ure 6.3 shows the path of the robot for all 10 attempts. In this test the robot stops early
in attempt 1 and stops close to the obstacle in attempt 6. Robot path 6, which is the only
attempt it does not crash or stop early, shows that the robot approaches the obstacle more
straight on than many of the other attempts. Similar to Test 1, the best attempt is a path
where the robot approaches head-on to the part of the obstacle that is closest to the robot.
For the rest of the attempts the robot crashes. The initial version receives a score of 2
points in Test 3.
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6 Collision Avoidance

6.2.2 Results

Figure 6.2: Test 2 for Initial Version
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Figure 6.3: Test 3 for Initial Version: 10 attempts where the robot drives towards a small cylinder.
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6 Collision Avoidance 6.3 Version 1

In the fourth and last test, the robot was to drive between two boxes. Figure 6.4 shows
the paths for all 10 attempts. The criteria for success in this test was for the robot to reach
the target (radius of 15cm). From the figure it is clear that most of the attempts were suc-
cessful, but for attempt 4, 6 and 10 the robot stopped early. This gives the initial version a
score of 7 in Test 4.
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Figure 6.4: Test 4 for Initial Version: 10 attempts where the robot is to drive between two boxes.

6.3 Version 1

6.3.1 Implementation and development

As the results from the initial version shows, the robot often crashes into the obstacle when
the obstacle is small or when it does not approach the obstacle straight on. It also stops
early in many attempt even though there are no obstacles in front of the robot. Addition-
ally, it was concluded in [Eidsnes (2023)] that the sensor tower needs to turn constantly
to be able to improve the collision avoidance functionality. A new version was therefor
developed. The main steps of the development and the functionality of collision avoidance
Version 1 are described below:

1. The sensor tower was set to always turning.

2. The function checking for obstacles, check_for_collision, was modified so that, in-
stead of only checking one specific sensor, it takes in the sensor number as input and
checks if there is an obstacle within the the determined threshold or not.
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6 Collision Avoidance 6.3.1 Implementation and development

. An array of 360 boolean elements, as exemplified in Table 6.1, was created. The

sensor tower has four sensors, each with a limited angular range, resulting in blind
spots between sensors. During each iteration of the sensor tower task, the updated
check_for_collision function is executed for all four sensors. This process is used
to determine if any sensor detects an obstacle. The robot’s current angle, combined
with the sensor tower’s current angle and the sensor number, is used to calculate the
angular position of the obstacle. If an obstacle is detected, the element correspond-
ing to that specific degree of the obstacle’s position is set to true.

’ trueg \ true; \ trues \ \ falsessg

Table 6.1: An example of the array in Version 1 that keeps obstacle information.

. In each iteration, the sensor tower task checks the elements in the array within a 60-

degree range in front of the robot (-30 to 30 degrees relative to the robot’s current
position). If any of these elements in the array is set to true, it indicates that there is
an obstacle in the collision sector.

. In addition to the sensor tower task, the position controller task also plays a role

in collision avoidance. When the position controller receives a new target, it first
checks if the robot needs to rotate to align itself towards the target. If rotation is
required, it notifies the sensor tower task that it is about to start turning. During
this rotation, the sensor tower task temporarily stops registering obstacles. This is
due to the robot’s position estimation not being sufficiently accurate. Once the robot
completes its rotation, it notifies the sensor tower task and requests confirmation on
whether it is safe to start forward movement. The sensor tower task then checks the
array for any obstacles in the path and communicates the result back to the position
controller task. If it is not safe to proceed, the robot remains stationary and awaits
a new target. Conversely, if it is safe, the position controller allows the robot to
start moving forward and instructs the sensor tower task to resume monitoring for
obstacles and notify the position controller task if an obstacle appears in the collision
sector.

. The sensor tower task then updates and examines the collision sector for obstacles in

each iteration. If the array storing obstacle information registers an obstacle (true)
at two or more elements within the collision sector, the position controller task is
alerted. Subsequently, the position controller stops the robot. The necessity for mul-
tiple “true” readings within the collision sector comes from the occurrence of false
positive readings by the sensors, where they detect obstacles that are not present.
Without this redundancy, the robot would be prone to stopping early, as observed in
the initial version, where the robot stopped early in many instances.

. Finally, the sleep time between each iteration in the sensor tower task was reduced,

resulting in a faster rotation of the sensor tower. Additionally, the maximum speed
of the robot was decreased. These adjustments aimed to reduce the likelihood of the
robot entering the collision area (closer to the obstacle than the chosen threshold)
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6 Collision Avoidance 6.3.2 Results

while the obstacle is in a blind spot between the sensors. This issue is discussed
further in Chapter 6.6.3.

6.3.2 Results

The upcoming figures show the results for the same four tests as when testing the initial
version, now with Version 1 uploaded to the nrf board.

The resulting robot paths for Test 1 are shown in Figure 6.5. Attempts 7, 9, and 10 result
in crashes, while for the remaining attempts, the robot avoids crashing into the obstacle.
Hence, Version 1 receives a score of 7 points in Test 1.
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Figure 6.5: Test 1 for Version 1: 10 attempts where the robot drives more or less head-on towards a
box.

The attempts in Test 2 are shown in Figure 6.6. For attempt 1, 5, 7, and 10, the robot stops
successfully, while the rest of the attempts end in a crash. Note that most of the failed
attempts occur when the robot approaches the obstacle at an angle, as seen in path 2, 3, 4,
and 8. Conversely, the successful attempts 5 and 10 approach the obstacle almost straight
on. Version 1 receives a score of 4 on Test 2.

For Test 3, 3 of the attempts end in success. Figure 6.7 shows that all robot paths except
from path 1, 5 and 9, end in the robot crashing into the cylinder. On Test 3, Version 1
therefor receives a score of 2 points.
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6.3.2 Results

Figure 6.6: Test 2 for Version 1:
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Figure 6.7: Test 3 for Version 1: 10 attempts where the robot drives towards a small cylinder.
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6.4 Version 2

In the last test for Version 1, the robot reaches the target for all 10 attempts. Figure 6.8
shows that all the robot paths leads within the radius of 15cm around the corresponding

target. Hence, Version 1 scores 10 points in Test 4.
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Figure 6.8: Test 4 for Version 1: 10 attempts where the robot is to drive between two boxes.

Note that none of the attempts in all four test for Version 1, results in the robot stopping

early.

6.4 Version 2

6.4.1 Development and implementation

From the tests, it became evident that Version 1 had significant shortcomings. The pri-
mary issue with Version 1 is its tendency to collide with obstacles located within blind
spots, where they are not visible to the sensors when they enter the collision threshold
(too close). This occurs despite increasing the speed of the sensor tower and decreas-
ing the robot’s speed in an attempt to avoid this problem. Unfortunately, the delay be-
tween iterations of the sensor tower task could not be further reduced without risking soft-
ware crashes. Moreover, the robot’s speed was reduced until its movement was no longer
smooth. Despite these adjustments, the robot still occasionally crashed due to blind spots
between the sensors. As mentioned, this problem is further examined in Chapter 6.6.3 and

illustrated in Figure 6.16.
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6 Collision Avoidance 6.4.1 Development and implementation

It’s clear that despite efforts to address the issue in Version 1, the problem is still present.
Therefor a new version, depending less on the speed of the sensor tower, was developed.
Below are the main steps and functionality of collision avoidance Version 2:

1. The sensor tower was set to move 2 degrees in each iteration instead of just 1. This

way the turning speed of the sensor was increased while still allowing the program
the required delay.

. A new 2D array to store obstacle information was created. Instead of only keeping

a true/false values in the array, the position (x,y) of the obstacle observed is stored.
The new 2D array contains of 60 elements, meaning that element O represents 0, 2
and 4 degrees, element 1 represents 6, 8 and 10 (because the sensor tower moves 2
degrees in each iteration) and so on. Table 6.2 shows the structure of the array. The
reason it does not contain 360 elements, is due to capacity challenges. When one of
the sensors detects an obstacle, the sensor tower task calculates the x and y position
of the obstacle using the IR distance measurement, combined with the robot position
estimate.

xhatObstacle yhatObstacleg
xhatObstacle; yhatObstacle,

xhatObstaclesg | yhatObstaclesg

Table 6.2: The 2D array used to store obstacle information in Version 2.

. If there is already an obstacle position registered at the array index corresponding

to the angle where the obstacle is observed, the existing reading is replaced by the
new one. If no obstacles are observed for five readings in a row, the element at
the index corresponding to the angle from two iterations ago is deleted. Having
five false readings in a row guarantees that no obstacles are registered at the array
index corresponding to the current angle minus twice the degree increment (since
the sensor tower skips a degree in each iteration). To better understand this dele-
tion process, see the illustration in Figure 6.9. The deletion mechanism ensures that
incorrect readings are removed and eliminates obstacle positions that no longer cor-
rectly correspond to the robot’s estimated position due to drift in the robot’s position
estimation.

. Finally the redundancy from Version 1 was changed. Instead of requiring two or

more of the elements within the collision sector to be within the collision threshold,
for the robot to stop, it now does at least two IR-readings in each iteration (each
servo motor position) and if these two are consistent (differ very little), the distance
to the obstacle is calculated to be the average between these two reading. This
average distance is then used to calculate the position of the obstacle. If the two
readings are not consistent (significant deviation between the two readings), another
IR-reading is done. New readings are done until there are two matching readings in
a row.
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[ Obstacle array (with index) Readings that need to be false to delete data
[ IR- reading at angle atindex corresponding to current angle-2.2

Iteration 0

Iteration 1

Iteration 2

Figure 6.9: An illustration of the deletion process. The red area shows the five last IR-readings. If all
of these false, it its guaranteed to be safe to delete the stored obstacle position at index corresponding
to the current angle (the angle furthest to the right in the red area) minus 2. For iteration 1 it is safe
to delete the data at the index corresponding to 8°- 4°=4°, which is index 0. For Iteration 2, the data
should be deleted at index 1 if five false readings in row has occurred.

6.4.2 Results

The upcoming figures show the resulting robot paths when the four tests described in
Chapter 4.3 (the same as for the previous versions) were carried out with Version 2 up-
loaded to the nRF-board.

Figure 6.10 shows the robot paths for the 10 attempts in Test 1. Robot path 10 shows
that the robot is extremely close to crashing, but stops just in time to avoid it. Considered
the width of the robot and the angle it approaches the obstacle in attempt 2 and 7, the
robot is also here close to crashing with its front right corner. For all attempts except from
attempt number 3, the robot avoids crashing into the obstacle. Robot path 3 shows that the
robot in this case hits the corner of the obstacle with its front right corner. Hence, Version
2 receives a score of 9 points in Test 1.

For Test 2 of Version 2, two attempts end in a crash and for the rest the robot stops before
hitting the obstacle. By studying the angle the robot approaching the obstacle in attempt
5, one can see that the front right corner of the robot is very close to crashing, but it stays
clear. For attempt 8 on the other hand, the same corner of the robot, crashes into the top
corner of the obstacle, while for attempt 4 it crashes into the wall of the obstacle. Un-
like the initial version, Version 2 prevents crashes in most attempts, even when the robot
approaches the obstacle at varying angles. Robot path 2, 5 and 10 are examples of the
robot approaching the obstacle less orthogonal, but still manage to stop in time. Version 2
therefor scores 8 points on Test 2.
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Figure 6.10: Test 1 for Version 2: 10 attempts where the robot drives more or less head-on towards
a box.
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Figure 6.11: Test 2 for Version 2: 10 attempts where the robot drives towards an angled box.

Figure 6.12 shows the resulting paths for the attempts with the small cylinder, Test 3. The
figure clearly shows that attempt 2, 4 and 7 end in a crash, but additionally by studying
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6 Collision Avoidance 6.5 Summary and comparison

robot path 3 it is also possible to see that this attempt also ends in failure considering
the width of the robot. For the remanding attempts the robot manages to avoid crashing.
It’s worth noting that in several successful attempts, the robot’s path directs it towards the
edges of the obstacle, which contrasts with the behavior observed in the previous versions.
Robot path 5, 6 and 8 are such examples. Test 3 therefor results in 7 points.
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Figure 6.12: Test 3 for Version 2: 10 attempts where the robot drives towards a small cylinder.

For the final test, Test 4, all attempts except attempt 4, 5 and 7, ends in success. Figure
6.13 shows that robot path 5 and 7 ends far away from the target, while path 4 are closer to
its target, but just outside the 15cm radius. The remaining paths lead all the way into the
15cm radius of their targets. Hence, Test 4 results in 7 points for Version 2.

6.5 Summary and comparison

As described, the three different versions are rated by a score from 0 to 10, in each of the
four tests. Figure 6.14 shows the scores for all tests gathered in a diagram. The initial
version scores the best in Test 1 with 10 points, meaning that this version did not crash
into the wall orthogonal to the robots angle (approximately). On the other hand, it got the
worst score in both Test 2 and 3. The robot only avoided crashing twice when approaching
the diagonal wall and the small cylinder, while for Test 4 it shares the worst score with
Version 2. The ”winner” of Test 4 is Version 1 as it gets full score on this particular test,
meaning that it ignores the obstacles outside the collision sector in all the attempts. For
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Figure 6.13: Test 4 for Version 2: 10 attempts where the robot is to drive between two boxes.

Test 2 and 3, Version 1 crashes less often than the initial version, but still more often than
Version 2. Version 2 is the best at avoiding crashing into both the diagonal box and the
small cylinder, but does not get the highest score for neither Test 1 or 4.

The test scores for the different versions shows that they have different strengths and weak-
nesses, but by adding the scores from each test together, Version 2 receives a significantly
higher total score than the two previous version. Figure 6.15 shows that the initial version
receives a total score of 21 points, Version 1 receives a score of 24, while Version 2 scores
30 out of 40 possible points.

In addition to the tests there are a few problems related to the different versions that were
hard to generalize in a test, but still should be considered when choosing which version is
the best. One of the main problems with the initial version is illustrated in Figure 1.4 in
Chapter 1.2. If the sensor was pointing to the left when receiving a target straight ahead,
the robot could either refuse to drive forward because of an obstacle to the left or it could
drive and crash because into an obstacle in front of it because the sensor was pointing to
the left where there was a free lane. This problem was resolved with Version 1 by having
the tower turning constantly and saving information for all 360 degrees around the robot.
Instead of relaying the one current reading from a determined sensor, it relies on readings
from readings from all 360 degrees around the robot.

From the results on the tests and from the additional improvements described, Version
2 was chosen to serve as the baseline for the Obstacle avoidance development.
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Figure 6.15: The figure shows the total score each version received throughout the testing.
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6 Collision Avoidance 6.6 Discussion

6.6 Discussion

6.6.1 Error sources

As mentioned in Chapter 4 the results should be viewed as an indication instead of a final
conclusion. There are several issues that prevents the results from being fully polite.

» The placement of robot during testing, as mentioned in Chapter 4, was random, but
close to the origin. Some attempts might benefit from fortunate placement, giving
the robot a higher chance of success if it starts from specific positions. Additionally,
only 10 attempts in each test were conducted. To ensure accuracy, additional tests
should be conducted. More systematic testing is necessary, with the robot starting
from the same positions for each version/algorithm to validate the results.

* The real time motion capture system, OptiTrack, that was used to document the
robot behaviour was never calibrated during the testing. When plotting the resulting
robot paths, it was discovered that some of the plots appeared to be shifted out of the
correct position. Some of the trajectories were therefor moved to fit the experienced
behaviour. This is a major error source. The OptiTrack system should have been
calibrated before the testing to avoid this error source. Additionally, it would have
been better if also the obstacles were tracked by OptiTrack than having them plotted
manually into the plots. It was hard to measure the exact position of the obstacles in
the testing area, which means that the position of the obstacles in the plot does not
have millimeter precision. Additionally, when the robot crashed into the obstacle, it
was difficult to move the obstacle back at the exact position it had before the crash
occurred.

¢ Precision of the robot estimate drifts off, which makes it hard to evaluate some of
the attempts (this is even more relevant in the obstacle avoidance tests). To test
and evaluate the collision and obstacle avoidance algorithms isolated, it would be
beneficial to have the underlying robot functionality to work as desired. When that
is not the case, it might be hard to know if it is the algorithm that is failing or if it is
other underlying issues. This is further discussed in the upcoming parts and also in
the obstacle avoidance discussion (Chapter 7.6).

6.6.2 Initial version

Starting out with the initial version developed in [Eidsnes (2023)], there is no doubt that
this suffers from having a stationary sensor tower. For Test 1, where the robot drives
straight towards a box, this version has no problems, but as soon as the obstacle changes
into either a smaller object or that it does not approach it straight on, the initial version is
in big trouble. Since the one detecting sensor is pointing straight forward at all times when
the robot is moving, it cannot detect obstacles outside of the detecting area of this single
sensor. This is why the robot crashes in most of the attempts in Test 3. However, in Test
2 the sensor detects the obstacle, but the measured distance is not to the point closest to
the robot. This results in the robot believing that the obstacle is further away than it is at
the point closest to the robot. Additionally, as illustrated in Figure 1.4 in Chapter 1.2, the
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6 Collision Avoidance 6.6.3 Version 1

initial version sometimes behaves problematic when the robot receives a new target while
the detecting sensor is pointing to the left. This might lead the robot to reject moving for-
ward when it should move or that it starts moving forward even though there is an obstacle
in front of it, this is due to the detecting sensor pointing in a different direction than the
driving direction.

Another weaknesses of the initial version is that it stops when it is has a clear path to-
wards the target. For all of the tests, except Test 3 (small cylinder), the robot has one or
more cases where the robot stops without approaching obstacles. For Test 2 it does so on
one attempt, while for Test 2 and 4 it does so on three of the attempts. The version is
implemented such that when the detecting sensor detects an obstacle that is closer to the
robot than the collision threshold allows, the robot stops. This means that if the sensor
does one misreading, this can lead to the robot stopping even though it should not.

6.6.3 Version 1

For Version 1, the results from Test 1 was worsened. The robot only manages to stop in
time in 7 out of 10 attempts. For the three attempts that ended in a crash, the problem
illustrated in Figure 6.16 occurred. Since this version only stores either true or false for
each degree around the robot, the robot sometimes ends up in the situation where one sen-
sor passes the obstacle while the distance is still larger than the collision threshold, but
after this sensor passes, the obstacle ends up in a blind spot between the sensors, and when
the next sensor detects the obstacle, the robot has already passed the threshold and might
crash due to that. The same problem appears in Test 2 and 3. The robot crashes into the
obstacle when the robot crosses the threshold while the obstacle is in a sensor blind spot.
As discussed in Chapter 6.3.1, efforts were made to avoid this issue during implementation
by increasing the speed of the sensor tower and reducing the speed of the robot. The in-
tention was to prevent the robot from being able to enter the collision threshold area while
the obstacle was in the blind spot. However, as demonstrated, the problem persisted.

An alternative solution that was not attempted, is adjusting the collision threshold vari-
able. By increasing this variable, the robot would not be allowed to approach the obstacle
as closely as it currently does. Consequently, this adjustment would reduce the likelihood
of the robot crashing while the obstacle is in the blind spot, as the distance to the obstacle
would be greater when it enters the blind spot. However, it is advantageous for the robot
to be able to maneuver close to obstacles, particularly for obstacle avoidance, but also to
be able to navigate through narrow passages. This aspect will be further discussed in the
discussion part on obstacle avoidance (Chapter 7.6).

On the other hand, Version 1 had some successful attempts in both Test 2 and 3, and
in oppose to the initial version, some of these occurred when the robot was not approach-
ing the obstacle straight on. Because the sensor tower is no longer static while driving, the
robot is able to register more obstacles than the ones straight in front of the robot.

Additionally, for Version 1, redundancy was implemented. At least two readings within
the collision sector had to be true for the robot to stop. This resulted in Version 1 getting
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Figure 6.16: The blind spot problem. If the robot approaches the obstacle such as shown in the
figure, the obstacle ends up in a blind spot as the robot surpasses the collision threshold where it
should stop. Note that this is only an illustration and the dimensions in the figure are not precise.

full score in Test 4, which means that the robot reached the target for all 10 attempts when
it had a free lane towards it. However, the redundancy might also have negative impact on
the results in Test 3. When the robot approaches the small cylinder, the number of sensor
readings of the cylinder will be limited simply by the size of it. This means that if the
obstacle is only visible for the sensor at two degrees, there is no room for misreadings.
The redundancy might therefor have a negative effect here.

Overall, Version 1 scores better than the initial version due to the non stationary sensor
tower, but at the same time, because the tower is constantly turning, it has a problem with
blind spots between each sensor which results in a number of crashes.

6.6.4 Version 2

Version 2 gets the highest total score in the collision avoidance tests. By storing the po-
sition of the obstacles registered, the robot is less prone to the blind spot problem shown
in Figure 6.16. The robot is no longer dependent on the reading to be within the collision
threshold to execute on it. If the IR-sensor does a reading that is outside the collision
threshold and then moves such that the obstacle goes into the blind spot, the robot is able
to stop in time because it now checks if the position of the obstacle is within the distance
of the collision threshold from the current robot position. This has great impact on the
results in Test 1, 2 and 3. Additionally, it’s noteworthy that even more successful attempts
(compared to Version 1) occur when the robot is not approaching the obstacle head-on.
This version is the best at stopping for obstacles even when the robot’s approach is not
straight on.
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However, Version 2 still seems to encounter the blind spot problem a few times. The
reason might be that the IR-readings are less exact the longer the distance to the obstacle
is. This has not been verified, but from observations this might seem to be the reason. A
solution to the blind spot problem for Version 2 (that stores the position of the obstacle)
and that would still allow keeping the collision threshold small, could be to have the speed
controller to slow down the speed of the robot as it gets closer to an obstacle. This would
increase the number of readings to verify the position of the obstacle, but it still requires
the readings from further away to be roughly correct for the speed controller to know that
the robot should slow down.

The initial version is still the best in Test 1 where the robot approaches a box straight
on. The initial version scored 10 points while Version 2 scored 9 point in Test 1. It should
be noted that the one crash for Version 2 in Test 1 is when the robot drives towards the
upper corner of the box, while for the initial version non of the robot paths leads towards
any of the corners. The attempt for Version 2, where the robot drives towards the corner,
might be more like the attempts in Test 3 (small cylinder) since the robot can only register
the obstacle to its right. The fortunate starting positions in Test 1 for the initial version,
therefor might be the reason for the top score.

In Test 4, Version 1 scores better than Version 2. Version 1 has no problem reaching any
of the targets when it drives between the obstacles in Test 4, while Version 2 stops before
reaching the target in 3 attempts. The good results for Version 1 in Test 4 was probably
a result of the redundancy implemented. Because of frequent software crashes, changes
had to be done in Version 2 to be able to store the position of the obstacles instead of only
boolean values. One of the changes was that the sensor tower was set to move 2 degrees
in each iterations. This implies that the robot now checks for obstacles at every second
degree. Additionally, the array storing obstacle information had to be decreased to only
storing 60 positions instead of 360. This reduction implies that if Version 2 were to use
the same redundancy method as Version 1, it would require two obstacle positions stored
in the array to be within the collision sector and within the collision threshold. Since each
element in the array is separated by a minimum of 6 degrees, the two positions would also
be separated by 6 degrees. Consequently, the robot would never stop for an obstacle that
covers less than six degrees of the sensor view. Hence, this redundancy method could no
longer be used and therefor a new one was implemented. The new redundancy compares
two IR-reading in the same iterations. Apparently this method led to more early stops than
the redundancy in Version 1.

6.6.5 Sensor tower and nrf-capacity

In general, the sensor tower system makes collision avoidance challenging. The fact that
the robot can only “’see” a fraction of the environment at a time, means that good accuracy
in the sensor readings is required to avoid collisions. It needs to be guaranteed that every
time one sensor does a reading inside the collision sector, there is no possibility that the
robot will crash into an obstacle at this angle while this angle is in the blind spot. This is
huge challenge and this requirement is not fully fulfilled in any of the collision avoidance
versions presented in this report. Additionally, the nrf-board seem to have limited capacity.
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When trying to store positions for all 360 degrees around the robot in Version 2, software
crashes occurred frequently. Even when removing all calculations and only adding 0’s as
both x and y values into the array, the code seem to crash. A lot of experimenting with
different solutions were done, but none of them allowed more than 60 elements in the
array storing obstacle positions. There is no guarantee that these problems do not come
from software/implementation errors, but from the debugging done, no implementation
errors causing this issue was found. The full robot code uploaded to the nrf-board is huge
and relatively unorganized. There might be unknown real-time dependencies in the code
causing the problem. A thorough clean up of the robot code could possibly solve several
of the problems with software crashes and might allow more advanced collision avoidance.

Another possibility to improve the collision avoidance functionality is to use a camera
instead if IR-sensors. This would require a study of methods using camera to detect obsta-
cles and a completely new implementation.
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Obstacle Avoidance

In this chapter the developed obstacle avoidance functionality is presented. The three al-
gorithms presented are based on the theory presented below (7.1). The same way as for
the collision avoidance versions in Chapter 6, this chapter is divided such that for each ob-
stacle avoidance algorithm, the development and implementation is described before the
resulting robot behaviour is presented.

The robot behaviour for the three upcoming algorithms is revealed from the four tests
illustrated in Figure 4.2 and described in Chapter 4. The resulting robot paths are shown in
the upcoming results parts for each Algorithm. In oppose to the tests for collision avoid-
ance, the robot executes each test five times instead of ten. This was decided because each
test takes longer than for collision avoidance, and additionally the plots are more messy
which makes it harder to follow each path if there are many paths in each plot. The three
algorithms will be rated with a score from 0 to 5 depending on how many of the attempts
result in success. All three algorithms are using collision avoidance Version 2 to detect
obstacles, meaning that the limitations of Version 2 is still present in the testing of all
three algorithms. Since the collision avoidance results are already evaluated, a successful
attempt in the upcoming results is therefor only dependent on the robot reaching its target
and any collisions are ignored. The robot has reached the target if it stops within a radius
of 15 cm around the given target.

7.1 Theory

The subject of ’Obstacle avoidance for mobile robots” is a broad field, with many different
approaches used to address the problem in various scenarios. The methods used to achieve
effective obstacle avoidance depend on the robot’s hardware, software capabilities, and
anatomy. The robots in the SLAM robot project and their equipment are described in
Chapter 1.1.
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7 Obstacle Avoidance 7.2 Algorithm 1

One possible approach to obstacle avoidance is to roughly divide the field into two dif-
ferent techniques: path planning and reactive behavior. [Kuncheyv et al. (2006)]

* Path planning techniques uses the information available to plan a route for the
robot. [Kuncheyv et al. (2006)]

¢ Reactive behaviour, on the other hand, use real time sensor data to make choices
on the fly. [Kunchev et al. (2006)]

A path planning method requires information about the environment to work. This in-
formation is often limited. The purpose of the SLAM-robot project is to develop mobile
robots that can explore an unknown area and create a map of it. Since path planning al-
gorithms uses information about the environment, the method to be used in this project
can not rely heavily on path planning techniques. Additionally, the robot is equipped with
relatively simple hardware and from experience, it is know that the capacity of the nRF-
board is limited. Hence, the obstacle avoidance algorithm needs to be simple enough for
it to work with the robots.

For a pure reactive method, on the other hand, the robot is unlikely to reach the desired
target as it does not plan where to go, but only reacts to sensor information. This is why
most obstacle avoidance methods are a hybrid between path planning and reactive tech-
niques. [Kunchev et al. (2006)]

The collision avoidance functionality (Version 2) described in the previous chapter (Chap-
ter 6.4) serves as the foundation for the obstacle avoidance functionality. The robot reacts
by stopping when it approaches an obstacle (Chapter 6.4.2 shows that it is not working
in all cases). This reactive behavior is a crucial component of obstacle avoidance. The
goal for the upcoming part is to implement a solution where the robot finds a way around
the obstacle once it has reacted when approaching it. This entails using the environmental
information it has now retrieved (i.e., the detection of the obstacle) to plan a path around
it—a path planning technique.

The upcoming parts in this chapter uses the algorithm presented in Figure 1.5 (Algorithm
1) in Chapter 1.2, as a starting point. As described in Chapter 1.2 this algorithm was in-
spired by [Baras et al. (2019)]. [Peng et al. (2015)] employ a similar approach, where the
robot’s reference direction is towards the target, but when detecting obstacles, it plans a
new direction based on the density of obstacles in different directions. The further de-
velopment of Algorithm 1 into Algorithm 2 and Algorithm 3 is inspired by [Peng et al.
(2015)] as well as [Baras et al. (2019)]. All three algorithms mainly use reactive meth-
ods but incorporate path planning to determine the direction to move and, sometimes, the
distance to move after the robot has reacted to the environment (detected an obstacle).

7.2 Algorithm 1

Algorithm 1 is the first and most basic algorithm. This algorithm was first designed in
[Eidsnes (2023)] which is summarized in Chapter 1.2 and further development in this
section.
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7.2.1 Development and implementation

The first and simplest algorithm is shown in Figure 1.5 in Chapter 1.2 where additionally,
the expected behaviour is described. The robot is not expected to perform perfectly, but
due to the uncertainty surrounding the capacity of the nrf-board, it was decided to imple-
ment this algorithm. This algorithm is simple which gives the robot a higher chance of
handling it. The main steps of the implementation and the functionality of Algorithm 1 is
listed below:

1. The robot was set to turn 90 degrees to the left when it approaches an obstacle and
notify the sensor tower task that it now needs to know if the lane towards the target
is free, in addition to watch out for obstacle coming up in the driving direction of the
robot. The position controller uses equation 7.1 and 7.2 to give a new intermediate
target.

aTargt = xhat + 3 - cos(thetahat + 7/2) (7.1)
yTargt = yhat + 3 - sin(thetahat 4+ w/2) (7.2)

2. For the sensor tower task to determine which direction to look for a free lane, it needs
to know the target’s position. An initial attempt was made to provide the sensor
tower task directly with the target’s position (X, y), but this resulted in unexpected
outcomes. Therefor, the position controller now provides the sensor tower task with
the angle of the target relative to the current robot angle. The sensor tower task then
uses this information to calculate the target’s position.

3. After the sensor tower task is notified, and has determined the position of the fi-
nal target, it continuously checks for free lane towards the target and watches out
for upcoming obstacles. When one of these two occurs, the position controller is
notified.

4. If the notification from the sensor tower task says that there is a free lane towards
the target, the robot turns towards it and moves forward until it either reaches it or
approaches a new obstacle. If the robot reaches the intermediate target it will also
turn towards the target and either go forward towards it or turn 90 degrees to the left
if there is an obstacle in the target direction.

5. If the robot still has not reached the final target after 20 tries it stops and waits for a
new target. The number tries are defined as the number of times the robot stops for
an obstacle.

During the execution of the tests presented in Chapter 4.4 it was discovered that Al-
gorithm 1 did not work as expected. After the robot had turned left when approaching
an obstacle, it did not check for free lane in the target direction. Rather, the direction it
checked seemed to be random each time it turned left. Since this was not discovered before
the final testing, and because this was the algorithm that was expected to perform worst, it
was decided to not start debugging to fix the error. Instead it was decided to make a quick
change to be able to interpret the results. The robot was therefor set to check for free lane
90 degrees to its right after turning left, but still turning towards the target each time it
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has a free lane on its right. Because of this change, the robots behaviour was expected
to be even poorer than what is shown in Figure 1.6 in chapter 1.2. The actual algorithm
implemented during the final tests and the behavior that is revealed by the plots in the
upcoming results part, is the algorithm shown in Figure 7.1.

Turn
towards
target

No.

Yes

A

Obstacles at
-9Q°

Reached target

No

Obstacle in
front

Move
forward

Move
forward

Obstacle in
front

Yes

_  No— Yes.

Figure 7.1: Algorithm 1. Because of an error in the implementation of the Algorithm 1 discovered
during the final testing, a quick change was done. This is the actual implemented algorithm at time
of testing.

7.2.2 Results

The upcoming figures show the resulting robot behaviour for Algorithm 1.

Figure 7.2 shows the resulting robot paths for the 5 attempts in Test 1. For all of the
five attempts the robot stops close to the corresponding targets giving Algorithm 1 a score
of 5 in Test 1. Note that for some of the attempts there are accumulations on the path. One
example is on path 4. At the position where path 4 (green) crosses path 2 (pink), there are
an accumulation on path 4. This pattern shows that the robot has turned 90 degrees to the
left and then turned towards the target multiple times (it is oscillating) before it continued
towards the target (and the obstacle). The same is visible twice on path 3 before the robot
turned 90 degrees left after approaching the obstacle and also towards the end of path 5.

In Test 2, Algorithm 1 performs significantly worse than in Test 1. The paths are shown in
Figure 7.3. Only for attempt 4, the robot stops within the 15 cm radius around the target.
However, for attempt 2 and 3 the robot thinks it has reached the target. In these attempts,
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Figure 7.2: Test 1 for Algorithm 1: 5 attempts where the robot is to drive around a single box.

the server (described in Chapter 1.1.3) reported that the robot had reached the given tar-
get. When the robot is turning back and forth many times the position estimation drifts
off and therefor the target position no longer correspond to the position estimation. The
robot stops far away from the target in both attempt 2 and 3, while the server shows that
it has reached the target. In attempt 1 and 5 the robot ends up stuck in the corner of the
obstacle and stops after the maximum attempts of reaching the target, is reached. Hence,
Algorithm 1 ends up with a score of 1 point in Test 2.

Figure 7.4 shows the resulting paths for Algorithm 1 in Test 3. The robot reaches the 15
cm radius around the target only in attempt 4. However, for attempt 2, 3 and 5 the robot
thinks it has reached the target, such as described for Test 2. For attempt 2 and 5, the
ending position is not too far off the actual target position. Half a point is therefor given
in these two attempts. In attempt 1 the robot drives back and forth close by the second
obstacle until it reaches the maximum number of attempts of reaching the target. Hence,
Algorithm 1 ends up with a score of 2 points in Test 3.

The results for the final test for Algorithm 1 is shown in Figure 7.5. Similar behaviour as in
Test 3 is revealed, but here, none of the attempts end in success. The robot drives back an
forth around the obstacles and the robot stops after maximum attempts, far away from the
target for all of the attempts, except from attempt 3. Path 3 shows that the robot manages
to pass the obstacles, but drives too far after passing the last one. The server revealed that
the robot thinks it stopped at the target in this case and since it is not too far off, half a
point is given. Algorithm 1 gets 0.5 points in Test 4.
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Figure 7.3: Test 2 for Algorithm 1: 5 attempts where the robot is to drive around a a ”L” shaped
obstacle.
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Figure 7.4: Test 3 for Algorithm 1: 5 attempts where the robot is to drive past tow obstacles, cylinder
and a wall.
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Figure 7.5: Test 4 for Algorithm 1: 5 attempts where the robot is to drive through/around a labyrinth
of different obstacles.

7.3 Algorithm 2

7.3.1 Development and implementation

Because of the expected shortcoming of Algorithm 1 discussed in Chapter 1.2 and shown
in Figure 1.6, Algorithm 2 was designed in the specialization project [Eidsnes (2023)].
Additionally, the results presented for Algorithm 1 reveals insufficient behaviour which
advocates moving on with a new algorithm. Figure 1.7 in Chapter 1.2 shows Algorithm 2.
While implementing, some adjustments were made as it seemed more convenient. Addi-
tionally, inspiration from [Peng et al. (2015)] contributed to the decision of doing changes
on Algorithm 2. The adjusted Algorithm 2 is shown in Figure 7.6. Instead of first checking
if it is possible to go left and if not it checks if it is possible to go right, it now turns left
until it is possible to start moving forward. Additionally, the robot only turns 20 degrees at
a time. That is, when the robot approaches an obstacle, it now turns 20 degrees left regard-
less if it it possible to move in this direction or not. This means that if it is not possible to
move in this direction, it turns another 20 degrees to its left, and does so until it is possible
to start moving forward. This is the implemented version and the results presented later in
the results section show the robot behaviour with this algorithm implemented.
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7.3.1 Development and implementation
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Figure 7.6: Adjusted version of Algorithm 2. Algorithm 2 designed in the specialization project
[Eidsnes (2023)] and that is shown in Figure 1.7 in Chapter 1.2, was adjusted during implementation.

This is the implemented Algorithm 2.

The changes/additional steps to move on from Algorithm 1 and implement Algorithm 2 is

therefor:

1. Just as in Version 1, when the robot approaches an obstacle it turns left, notifies the
sensor tower task and starts moving forward. However, the sensor tower task starts
checking for a free lane to the right instead of in the target direction.

. In an attempt to keep the robot driving close to the obstacle, it only turns 20 degrees

instead of 90 degrees when it approaches an obstacle. The robot turns 20 degrees
both when it turns left and right. This means that after entering the obstacle avoid-
ance loop, the robot is given a new intermediate target in the direction of 20 degrees
to the right when the lane is free from obstacles in this direction. Hence, the inter-
mediate target when the robot approaches an obstacle is the equations 7.3 and 7.4,
and afterwards when the lane is free 20 degrees to the right the intermediate target
will be 20cm in this direction such as shown in equation 7.5 and 7.6.

xTargt = xhat + 3 - cos(thetahat + w/6)
yTargt = yhat + 3 - sin(thetahat + 7 /6)

(7.3)
(7.4)
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aTargt = xhat + 0.2 - cos(thetahat — 7/6) (7.5)
yTargt = yhat + 0.2 - sin(thetahat — w/6) (7.6)

3. After the robot has turned 20 degrees to the right because of a free lane in this
direction, it will drive 20cm such as equation 7.5 and 7.6 implies. When the robot
reaches this intermediate target, the same target will be given again. The robot will
continue going 20 degrees to the right and 20cm forward until it either approaches a
new obstacle or the robot is back on the straight path between the starting point and
the target, but now further away from the starting point than when it first entered the
obstacle avoidance loop.

4. If a line was drawn between the starting point and the target, this would be what
here is referred to as “the straight path between the start and the target”. When the
robot is back on this straight path, it turns towards the final target and drives towards
it.

The expected path for Algorithm 2 shown in Figure 1.8 in chapter 1.2 is still valid with the
changes done in the algorithm. The figure can be useful to look at when trying to interpret
Algorithm 2.

7.3.2 Results

This section presents the resulting behaviour of Algorithm 2.

Figure 7.7 shows the resulting paths for Algorithm 2 in Test 1. The robot succeeds in
all the five attempts. In attempt 3 the robot crashes into the obstacle and the robot stops
further away from the target than for the other attempts, which suggests that the position
estimation has drifted off. However, the robot still stops within the 15 cm radius from
the target. In the rest of the attempts the robot stops close to the target. Note that when
the robot drives close to the obstacle before turning left, it tends to make a larger detour
around the obstacle. This applies particularly to path 4. On the other hand, path 2 shows
the attempt where the robot turns left furthest away from the obstacle and the path shows
that this is the attempt where the robot drives closest to the obstacle. Algorithm 2 receives
a score of 5 points in Test 1.

In the second test the robot manages to get around the obstacle in 4 out of 5 attempts.
The resulting paths are shown in Figure 7.8. In attempt 1, the robot turns left early when
approaching the obstacle and turns left again when it approaches the upper part of the
obstacle. Unexpectedly it turns approximately 260 degrees, while it should have stopped
turning after approximately 100 degrees. Path 1 shows that the robot then end up on the
straight path towards the target, which allows the robot to turn towards the target (see
Chapter 7.3.1 for explanation of this requirement). The robot approaches the obstacle
again and turns left, but here robot gets stuck oscillating until it has used the maximum
number of attempts. The rest of the attempts end in success. However, the robot takes
some unexpected large detours around the upper left corner of the upper part of the obsta-
cle. Algorithm 2 receives a score of 4 points in Test 2.
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Figure 7.7: Test 1 for Algorithm 2: 5 attempts where the robot is to drive around a single box.
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Test 2 for Algorithm 2: 5 attempts where the robot is to drive around a a ”L” shaped
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Figure 7.9 shows the resulting paths for Algorithm 2 in Test 3. In this test, all the attempts
are successful. The paths in the figure show that the robot drives all the way around the
first obstacle until it reaches the straight path between the starting point and the target, but
on the other side of the first obstacle. It then turns towards the target and moves forward
until it approaches the second obstacle. Finally it drives around the second obstacle and
reaches the 15c¢m radius around the target. In attempt 2 the robot stops at the border of the
15cm radius, but a full point is still given. Algorithm 2 ends up with a score of 5 points in
Test 3.
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Figure 7.9: Test 3 for Algorithm 2: 5 attempts where the robot is to drive past tow obstacles, cylinder
and a wall.

In the final test, the robot reaches the target in 3 out of 5 attempts. Figure 7.10 shows the
robot paths for Algorithm 2 in Test 4. Path 1 and 2 shows that the robot drives between
the circular and the upper obstacle and then all the way around the circular one until it is
back on the straight path towards the target. In attempt 2, the robot had a free lane towards
the target between the two smaller obstacles, while in attempt 1 the robot takes a slight
detour to avoid the lower small obstacle before it finally turns towards the target. On the
other hand, the rest of the paths shows that the robot does not manage to drive between the
circular and the upper obstacle and therefor makes its way all the way around the upper
obstacle. In attempt 3 the robot makes an unexpected large detour around the upper obsta-
cle, but manages to reach the target. However, in attempt 4 and 5, the robot ends up driving
around the upper obstacle and not reaching the straight path towards the target. For these
attempts to end in success the robot would have had to either start off driving between the
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circular and the lower obstacle, or it would have to approach the circular obstacle after
driving around the upper one, such that it would drive to the bottom side of the circular
obstacle and then meet the straight path towards the target. Algorithm 2 scores 3 points in
Test 4.
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Figure 7.10: Test 4 for Algorithm 2: 5 attempts where the robot is to drive through/around a
labyrinth of different obstacles.

7.4 Algorithm 3

7.4.1 Development and implementation

Algorithm 2 performed significantly better than Algorithm 1, but is still relatively inef-
ficient. To make the obstacle avoidance more efficient, it was decided to further develop
Algorithm 2 by letting the robot decide which direction it is best to turn when it approaches
an obstacle, similarly to what was done in [Peng et al. (2015)]. This resulted in Algorithm
3 which is shown in Figure 7.11 and the implementation steps are listed below:

1. The sensor tower task notifies the pose controller when the robot is approaching an
obstacle, but now, instead of just notifying about the obstacle, it additionally tells if
the robot should turn left or right. As the sensor tower task discoverers the obstacle,
it also checks the angular range from -60 to 0 and 0 to 60 degrees in the array keeping
obstacle information and includes information about which direction (left or right)
there were less obstacle readings, which is the direction the robot should turn.
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7.4.2 Results

The direction determined when the robot approaches the obstacle, does not change

until it has left the obstacle avoidance loop. That means, if the robot approaches an
obstacle and the density of obstacle readings are less at the angles -60 to 0 degrees,
than from O to 60 degrees, the determined direction is right. Every time the robot
approaches a new obstacle, within the loop, it will always turn right, which also
means that after turning right, the sensor tower task will continuously check for free
lane 90 degrees to the left. The robot will continue in this pattern until it is back
on the straight path between the starting point and the target, the same way as in

Algorithm 2.
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Figure 7.11: Algorithm 3. The resulting algorithm after further developing from Algorithm 2.

7.4.2 Results

This section presents the resulting behaviour of the robot with Algorithm 3 implemented.

Figure 7.12 shows the resulting robot paths for Algorithm 3 in Test 1. For attempt 1, 2
and 3 the robot drives around the obstacle and reaches the target without any major prob-
lems. Path 1 and 3 show that the robot chooses to drive left around the obstacle while path
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2 shows that the robot chooses to go right. In attempt 5 the robot goes right, but crashes
into the lower left corner of the obstacle a couple of times before it manages to go around.
This results in poor position estimate, causing the robot to stop outside the 15cm radius
around the robot, but since it is not too far off, half a point is given for attempt 5. Attempt
4, on the other hand, is completely unsuccessful. The robot takes an unexpected turn to
the right in the very beginning and when it approaches the obstacle it gets stuck oscillating
in the same position. Algorithm 3 gets a score of 3.5 in Test 1.
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Figure 7.12: Test 1 for Algorithm 3: 5 attempts where the robot is to drive around a single box.

In the second test, the robot chooses, in attempt 4, to go left and therefor takes a detour
around the upper part of the obstacle, while in attempt 2, 3 and 5, the robot chooses to go
right which is a smarter choice. This is shown in Figure 7.13. In attempt 1, the robot loops
without getting around the obstacle. It turns too much left and ends up on the straight path
towards the target a couple of times before it gets stuck oscillating in the position where
the path ends. In attempt 5 the robot crashes into the left corner of the lower part of the
obstacle and such as in Test 1, the position estimate gets poorer resulting in the robot stop-
ping outside the 15cm target radius. Also in this case, this gives half a point. Algorithm 3
receives 3.5 points in Test 2.

Figure 7.14 shows the resulting robot paths for Algorithm 3 in Test 3. In attempt 1 and
4 the robot reaches the target. Path 1 shows that the robot chooses to go right around
both of the obstacles. However, path 4 shows that the robot goes left around the circular
obstacle all the way around until it is back on the straight path. Then it turns towards the
target and chooses to go left again when it approaches the second obstacle. In both these
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Figure 7.13: Test 2 for Algorithm 3: 5 attempts where the robot is to drive around a a ”L” shaped
obstacle.

attempt the robot chooses the smartest direction. In attempt 3 the robot goes to the right
around the first obstacle and turns towards the target when it is back on the straight path.
When it approaches the second obstacle it turns left. From studying path 3 it looks like it
would have been smarter for the robot to turn left in both of the cases. Additionally, the
robot does not seem to notice the second obstacle when it has already passed it. The robot
crashes into the obstacle on the back (on the right side of it) and tries to drive trough it
for a while until it turns towards the target. Also in this case this results in poor position
estimation, but half a point is given. In attempt 3 and 5 the robot crashes into the second
obstacle several times and when it finally passes the obstacle it start to crash into the back
of the same obstacle. Also in these attempts it seems like the robot, unexpectedly, does not
register the obstacle. Algorithm 3 receives a score of 2.5 points in Test 3.

Also in the final test, Test 4, the robot has some unexpected behaviour. Figure 7.15 shows
that the robot crashes in attempt 4 and 5. In attempt 4, the robot crashes into the back of
the upper small obstacle, but ends up on the straight path towards the target and eventu-
ally reaches the target. For attempt 5 on the other hand, the robot crashes into the lower
obstacle and does not seem to have registered it since it tries to drive trough the obstacle.
For the rest of the attempts, the robot reaches the target successfully. Path 1 shows that
the robot takes a left around the circular before it drive between the smaller ones. Path 2
shows that the robot takes a right, before it takes a left to avoid the lower smaller obstacle.
Finally path 3 shows that the robot takes a right both around the circular and finally around
the lower smaller obstacle. Algorithm 3 scores 4 points in Test 4.
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Figure 7.14: Test 3 for Algorithm 3: 5 attempts where the robot is to drive past tow obstacles,
cylinder and a wall.
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Figure 7.15: Test 4 for Algorithm 3: 5 attempts where the robot is to drive through/around a
labyrinth of different obstacles.
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7.5 Summary and comparison

For all four tests, all three algorithms has been rated by a score from 0 to 5 points based
on the number of successful attempts. Figure 7.16 shows an overview of the scores given
to the various algorithms in each of the four tests. For Test 1, Algorithm 1 and 2 gets full
score while Algorithm 3 scores 3.5 out of 5. In Test 2, on the other hand, Algorithm 1
only scores 1 single point while Algorithm 2 scores 4 points and Algorithm 3 receives 3.5
points. Also Algorithm 1 has the poorest score in both Test 3 and 4, where it scores 2 and
0.5 points respectively. Algorithm 2 gets full score in Test 3 and 3 points in Test 4, while
Algorithm 3 only scores 2.5 in Test 3, but gets the best score with 4 points in Test 4. This
means that Algorithm 1 scores poorly on all tests except Test 1. Algorithm 2 gets the best
score on Test 1 (together with Algorithm 1), Test 2 and Test 3. Algorithm 3 scores the
poorest in Test 1, but has the best score in Test 4.
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Figure 7.16: The figure shows the score for each version in all four tests.

Figure 7.17 shows the total score for each of the three algorithms. Algorithm 1 ends up
with a total score of 8.5 out of 20 possible points, Algorithm 2 ends up with a score of
17 points and Algorithm 3 which suffers from a lot of unexpected behaviour scores 13.5
points. This means that Algorithm 1 gets the lowest score while Algorithm 2 receives the
highest score by far.

The most important aspects of the algorithms is if the robot is able to reach the target.
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Algorithm 1 Algorithm 2 Algorithm 3

Figure 7.17: The figure shows the score for each algorithm in all four tests.

But, additionally, it is interesting to look at the efficiency of the robot in the successful at-
tempts. By looking at the different plots and analyzing the successful attempts, Algorithm
1 seems to be pretty efficient in Test 1, but as soon as the obstacle is different from a single
box, there is no doubt that Algorithm 1 is the least efficient one. In most of the successful
attempt in Test 2, 3 and 4, the robot has numerous turns without moving significantly to-
wards the target before it manages to drive around the obstacle. For both Algorithm 2 and
3, the robot drives long detours in some of the successful attempts to reach the target, but
Algorithm 3 seems to choose more efficient routes, especially in Test 2 and 4. This means
that, while Algorithm 2 is the best at leading the robot to the target, Algorithm 3 seems to
do it more efficiently in its successful attempts.

7.6 Discussion

7.6.1 Error sources

The error sources discussed in the collision avoidance discussion (Chapter 6.6.1) is just as
present in the obstacle avoidance as in the collision avoidance development and results.
The robot position estimation drift off is even more visible for the obstacle avoidance
tests, than they were for the collision avoidance tests. Additionally, the obstacle avoidance
algorithms, only have 5 attempts in each test. This number should be significantly higher
for more valid results.
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7.6.2 Algorithm 1

As expected, Algorithm 1 suffers from the fact that it does not follow the obstacle all the
way around before it turns towards the target. This causes the robot to move away from the
obstacle when it approaches it, but instead of following the obstacle completely around,
the robot often turns back towards the obstacle. After moving away from the obstacle, the
obstacle is no longer detected on the robot’s right side, allowing the robot to turn towards
the target, which only leads it back to the obstacle. This issue occurs in several of the
attempts in Tests 2, 3, and 4.

Because of the last minute change done during the final testing (see Chapter 7.2.1), Algo-
rithm 1 suffers from the robot oscillating at the same position. This is hard to see from
the plotted robot paths in the figures, but by studying the figures, it is possible to see some
accumulations some places on some of the paths. These accumulations occur from this
problem. The robot checks for a free lane at 90 degrees to its right, but turns towards
the target instead of turning 90 degrees. This causes the robot to sometimes turn towards
the target even though the lane in the target direction is not free from obstacles. The fact
that the lane is free 90 degrees to the right, does not imply that the lane is free towards
the target. It then turns 90 degrees to the left because of the obstacle still present in the
target direction. In some of the cases where this problem occurs, the robot turns back and
forth a couple of times before it moves forward in one direction, but in other cases it gets
stuck oscillating until it has used the maximum number attempts it has to reach the target.
Having the robot checking for a free lane in the same direction as it turns is essential to
avoid this problem.

Another problem that became clear during Test 2, 3, and 4 for Algorithm 1 was the robot’s
poor position estimation. In the attempts where half a point was given, the position esti-
mation indicated that the robot had reached the target, which did not correspond with the
target position in the physical test area. This was revealed by looking at the server. The
robot sends its estimated position to the server and the server shows the coordinates in
addition to position the robot on the map. It seems that in the cases where the robot has
a lot of turns, and the further it turns in each turn, the poorer the position estimation gets.
It is interesting that in most of these cases, the robot seems to be turning too much right
relative to the actual target position. The direction the robot is turning might determine
which direction the position estimate drifts, but this has not been investigated and is there-
for not the certain cause. However, this problem makes it hard to evaluate the performance
of the obstacle avoidance algorithm. The performance could might have been better if the
position estimation had been better.

On the other hand, Algorithm 1 performed well in Test 1. Where the robot meets a sin-
gle and rectangular shaped obstacle, the robot can relatively easily follow the wall it first
meets and turn right when it passes this wall. However, it is visible in the plot (Figure
7.2) that the robot turns right too early because it checks for a free lane 90 degrees to its
right instead of in the target direction. By having it check in the target direction, the robot
would probably take a few less turns on its way to the target.
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7.6.3 Algorithm 2

Algorithm 2 is significantly better than Algorithm 1. Only 3 attempts ended in failure,
which gave Algorithm 2 17 points, while Algorithm 1 only scored 8.5 point.

However, the robot seems to be less efficient in terms of time (in the successful attempts)
because it only turns 20 degrees at a time. The motor speed controller slows the motors
down to ensure that the robot stops at the correct angle, which adds time for each 20-degree
turn. This becomes increasingly time-consuming the further the robot needs to turn. On
the other hand, by having the robot turn more each time when it approaches an obstacle,
it would probably take lager detours around the obstacle. By having the robot turn more
each time it turns right, the robot would probably be more efficient, but still stick close to
the obstacle. However, this solution would approach a problem in some cases. By having
the robot turn for example 90 degrees to the right, the case in Figure 7.18 could occur. The
robot approaches an obstacle which is slightly to the left of the robot. The robot rotates
20 degrees to the left, and since the obstacle was slightly to the left for the robot when
it approached it, it is not visible 90 degrees to the right even after the robot has rotated.
The robot is therefor told to turn 90 degrees to the right even though it has not passed
the obstacle. This is why this solution would not work without further effort. A solution
where the robot checks how far it needs to turn to obtain a free lane before initiating the
turn, would be more efficient. Then, instead of stopping every 20 degrees, the robot would
the calculated number of degrees directly.

Step 1: Approaches obstacle Step 2: Turns 20° left Step 3: Free lane 90° to the right

)
.

®
a & ®

Figure 7.18: An illustration of the problem that would occur if the robot was allowed to turn fur-
ther to the right when there is a free lane, compared to its allowance for turning left when it first
approached the obstacle.

The robot tends to stay closer to the obstacle when it turns left further away from it, which
is logical as it may need additional turns to avoid collision when turning close to the obsta-
cle. This enhances efficiency and could justify increasing the collision threshold. However,
increasing the collision threshold would cause the robot to deviate from sticking closely to
the obstacle, which is also advantageous. As the results from Test 4 (Figure 7.10) shows,
the robot sometimes does not end up on the straight path towards the target when it does
not stick closely to the obstacle it first approaches.Allowing the robot to stick close to
the obstacle will also enable it to drive through narrow passages, which is also beneficial.
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Therefor, the solution discussed in the previous paragraph would be a better approach than
increasing the obstacle threshold.

To further enhance efficiency, the robot could be programmed to turn right upon encoun-
tering a free lane to its right, not only after turning left to avoid an obstacle, but for all in-
termediate targets along its path. Only at the first intermediate target following an obstacle
encounter, the robot awaits a right turn until it identifies a free lane to its right. However,
for following intermediate targets (until it approaches a new obstacle or the straight path),
the robot follows a repetitive pattern: it drives 20 cm forward in the direction of 20 de-
grees to the right. This often leads to unnecessary turns, as the robot may turn right even
when an obstacle is present. Consequently, it must then turn left again before proceeding
forward. However, always checking if the lane is free to the right, would result in cases
where the robot would turn right immediately after approaching the obstacle (before the
robot physically has had time to turn left). This may cause it to continuously turn right if
there are no obstacles in that direction. A solution where the robot is not allowed to turn
right before it has started to move along the obstacle would be required.

In the previous version there was a problem with the robot oscillating in the same po-
sition. By having the robot turning in the same direction it is checking for a free lane, the
problem was expected to disappear, but it did not. The number of incident of this problem
was reduced, but there are still some cases present in the test for Algorithm 2. Why this
problem is still present is unknown and should be investigated. Additionally, the robot has
some cases where it turns too far left before it starts moving forward. This suggests that
there are registered obstacles further left than there actually are obstacles, which is also
unexpected.

7.6.4 Algorithm 3

This version was expected to function similarly to Algorithm 2, with the added capabil-
ity to navigate around obstacles to the right if there are fewer obstacles in that direction.
However, Algorithm 3 showed a lot of unexpected behavior. These issues are likely due
to errors in its implementation. These issue needs further investigation. One particularly
strange behavior in Algorithm 3 is that collision avoidance seems to stop working in some
cases. This was particularly visible in Test 3 where the robot crashed into the back of the
second obstacle in two of the attempts.

Such as in the previous versions, the testing of Algorithm 3 also reveled poor position
estimation. The robot believes it has reached the target, but the actual target is far from
the position where the robot stopped. This issue occurred in all four tests. From the plots,
it appears that the estimation worsens whenever the robot crashes and after making nu-
merous turns. These observations are consistent with those made for Algorithm 1, which
reinforces the claim that more turns and crashes (which cause the robot to turn) worsen the
position estimation.

Considering that Algorithm 3 is a further development of Algorithm 2, it is strange that
Algorithm 3 never leads the robot all the way around the upper obstacle in Test 4, whereas
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Algorithm 2 did. There seems to be an unknown difference in the code. On the other hand,
this can be a coincidence that could be revealed by conducting more tests.

The robot stops (the code appears to crash) sporadically. This happens for all versions and
algorithms (both collision and obstacle avoidance), but it occurs more frequently when
obstacle avoidance is implemented. In general, Algorithm 3 exhibits a lot of unexpected
behavior, which needs to be fixed if this algorithm is to be used and further developed.
Algorithm 3 scored worse than Algorithm 2, but if these problems are fixed, this algorithm
is expected to be an improvement from Algorithm 2.

63



Further Work

8.1 Code clean up

As mentioned both in both discussions (Chapter 6.6 and 7.6) the robots suffer from unex-
pected software crashes. The robot code is big and unstructured and from Chapter 5.1 it
was revealed that it contained a lot of code that was not even in use. The revealed unused
code was removed, but the robot system would still benefit from having a more thorough
clean up. In addition to limit the risk of software crashes and allowing more advanced
code, such a clean up would also make it easier to discover implementation errors and
unknown real time dependencies in the code.

8.2 Calibration of OptiTrack

Before conducting new tests using the motion capture system OptiTrack, it is essential
to calibrate the system. This will minimize errors caused by shifting paths in the plots,
ensuring that they correspond accurately with each other and with the obstacles such as
observed during testing.

8.3 Collision and obstacle avoidance

For further work, Version 2 should be used and further developed as the chosen collision
avoidance version. This is the version used in the robot code with obstacle avoidance im-
plemented. For obstacle avoidance, Algorithm 2 performed the best, but it could be of
interest to investigate the issues for Algorithm 3 described in Chapter 7.6.4. By resolving
the issues, Algorithm 3 is expected to be the best obstacle avoidance algorithm. A robot
code with collision avoidance Version 2 and where obstacle avoidance Algorithm 2 can
be switched on and off (in the file robot_config.h) is provided in Tor Onshus’ Git project.
The robot code with Algorithm 3 implemented (without the ability to switch off the ob-
stacle avoidance) can be provided from Tor Onshus upon request. The issues discussed
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for Algorithm 1 in Chapter 7.6.2 is not seen as important to fix because Algorithm 2 and
3 is expected to be better even if these issues are resolved. Specific issues that should be
further investigated and improved are listed below:

* Find out why it is not possible for the robot to store obstacle positions for each 360

degree around the robot and why it will not allow the sensor tower to turn one degree
at a time. These issues are discussed in Chapter 6.6. The reason of these problems
might be lack of capacity on the nrf-board, which means that this could possibly be
resolved by a thorough code clean up. However, the problem might be something
completely different, but finding the error would also be easier after a clean up.

It would be interesting to have the speed controller slowing down the robot as it
moves closer to an obstacle. If the IR sensors does a reading of an obstacle from
far away and this reading is roughly correct, the sensors would be able to do more
accurate readings as it gets closer to the obstacle. If this was implemented success-
fully, it would allow the robot to drive closely to the obstacle which is beneficial,
especially for obstacle avoidance. This can possibly lead to the robot taking fewer
turns when passing the obstacles, which makes the poor position estimation affect
the behaviour to lesser extent.

For obstacle avoidance, a new solution should be implemented where the robot
checks all 180 degrees in the direction it is about to turn to determine how many
degrees it has to turn to find a free lane. Today’s solution where the robot turns 20
degrees at a time is time inefficient. By implementing this new solution the robot
will turn directly into the position where it has a free lane ahead and start moving
forward. If it is chosen to investigate the issues in Algorithm 3, this should be im-
plemented into the fixed version of Algorithm 3. If it is chosen to move further with
Algorithm 2, this solution should be implemented into Algorithm 2.

Through the tests of both collision and obstacle avoidance it was revealed that the
robot’s position estimation is poor. Improving the position estimation would im-
prove the robots behaviour in general, not only in collision and obstacle avoidance,
but interpretation of obstacle avoidance algorithms would be significantly easier if
this underlying problem was resolved.

Another alternative solution to improve collision and obstacle avoidance is to use
a camera instead of the IR sensors in these functionalities. This would require a
complete study on how that works and how to implement it.
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