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Original problem description

The mapping of an indoor maze is carried out by the cooperation of ground robots and a quad-
copter that hovers above the maze. For this purpose, an embedded camera module with integrated
image processing to recognize the walls of the maze as well as an ultrasonic sensor system to mea-
sure the position of the drone has been developed previously. The map of the maze is created
on a central server, where the ground robots and later the quadcopter will send their measured
data.
The position of the quadcopter has previously been calculated by using merely ultrasonic sensors
that measure the distance to the surrounding walls of the indoor room. The resulting estimate
is quite accurate, but an IMU should be integrated to improve the position estimate based on
orientation and acceleration data. The resulting position should be used as reference for the
camera module to extract the position of the maze walls. The central server must be modified
so that both the image data from the quadcopter as well as the data from the ground robots are
taken into account when creating the map of the labyrinth.

• Integration of the existing software for the ultrasonic sensor and the camera module into
one system to be used on a quadcopter

• Integration of an IMU into the system to improve the position estimate

• Modifying the communication of the quadcopter system and the server, where the quad-
copter sends the position estimate and processed image data, and the server links the
received data with the data from the ground robots to generate a joint map of the maze

ii



Summary and conclusion

This thesis is a contribution to the ‘Simultaneous Localisation and Mapping Project’, in which
several robots map an indoor environment, or more precisely a maze. The aim was to develop
a data processing module for a quadcopter to map the area from above. The module provides a
pose estimate for the quadcopter and contains a camera to process images of the maze. It also
enables communication with a server so that collaboration with other robots is possible and the
processed data can be visualised on a map.

The module is based on the nRF52840 development kit from Nordic Semiconductors, which
controls the connected sensors and communicates wirelessly with the server via Thread. Previous
work includes a distance measurement system in which ultrasonic sensors are attached to a case
to determine the distance to the environment. In addition, a camera module has also been
developed that takes pictures on command and extracts the position of the edges of the objects
it captures. The robot code that controls the other robots in the project was also available and
was used as a basis to establish communication with the server.

After merging the two systems, the previous algorithms were adapted and their performance
was improved. An inertial measurement unit (IMU) was integrated and a position estimation
algorithm based on the sensor data was developed. The orientation was determined using different
methods based on the IMU’s gyroscope data. The extended Kalman filter processed the distance
data from the ultrasonic sensors and the orientation provided by the IMU to provide a state
estimate relative to the initial position. The resulting system is divided into several tasks that
are scheduled using FreeRTOS.

The tests analysed the accuracy of the distance sensors and compared the methods used to
determine the module orientation. The response of the system when mapping a simple structure
was also analysed, first in a stationary environment where the position is given by the server,
then based on the pose estimate of the Kalman filter. The tests show that a rough map of the
environment can be successfully created and the correct communication between the tasks of the
system and the server was confirmed
Limitations of the system were bypassed during the tests. These include the slow processing
speed of the camera, which limits the movement periods. The angle dependency of the ultrasonic
sensors led to limitations regarding the surrounding spatial structure.

In the future, the module will be attached to a quadcopter that flies over a maze to map it while
co-operating with other robots within the maze.

To summarise, it can be said that the planned objectives have been achieved. The ultrasonic
sensors were combined in a single module with the camera, an IMU was added and communica-
tion with the server was established. The tests show that the connection between the different
components of the system works and that a rough map of an indoor area can be created.
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Notation

Throughout this thesis the notation will follow some basic rules. These rules, all used variables
and parameters, as well as the most relevant abbreviation and acronyms will be described in this
chapter.

Basic Rules

In order to make the reading of this thesis as comfortable as possible for readers the code de-
scription and mathematical notation follow same basic rules that are listed here:

• Scalar functions are written as lowercase, non-bold letters. The discrete time index is k
while the continuous time is indicated with the letter t.

• Vectors are displayed using bold, lowercase letters, such as the state of a system xxx.

• Matrices are represented as uppercase, bold letters.

• Gaussian distributed variables follow the notation x ∼ N (µ, σ2) where µ is the mean of x
and σ2 the variance.

• File names and tasks are notated in slanted teletype font such as task_pose_estimator.c
and specific functions are represented by the upright teletype font, e.g getDistance().
Newly defined datatypes are written in slanted font, like ultrasonic_distance_t.

Symbols

Symbol Meaning

a Acceleration

d Distance measurement

e Error

E[x] Expectation operator

f Frequency

f() Motion model function

FFF Jacobian of the motion model with respect to the system state

g Gyroscope data

g() Observation model function

GGG Jacobian of the observation model with respect to the system state

Hr Relative humidity

K Number of samples
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Notation

Symbol Meaning

KKK Kalman gain

N Dimension of a vector

nnn Measurement noise

PPP Covariance matrix of state estimate

qqq Quaternion vector

QQQ Covariance matrix of process noise

RRR Covariance matrix of measurement noise

T Temperature

treturn Return time of a sound signal

p(x) Probability density of variable x

v velocity

vvv Inputs of a system

vsound Speed of sound

www Process noise

x x-coordinate

x̂xx Posterior state estimate

x̌xx Prior state estimate

y y-coordinate

yyy Measurements (for state estimation)

z z-coordinate

µ Mean

ΣΣΣ Covariance matrix

θ Heading of the module

Θ Pitch rotation

Ψ Yaw rotation

Φ Roll rotation

Abbreviations and Acronyms

Meaning

ACK Acknowledgement (I2C protocol)

BLE Bluetooth Low Energy

x



Meaning

CPHA Clock Phase (SPI mode configuration)

CPOL Clock Polarity (SPI mode configuration)

CPU Central Processing Unit

CS (or SS) Chip Select (SPI line)

DK Development Kit

DMP Digital Motion Processor (of ICM-20948 IMU)

DoF Degrees of Freedom

EKF Extended Kalman Filter

FIFO First In First Out

FPS Frames Per Second

GPIO General Purpose Input/Output

GSD Ground Sample Distance

GUI Graphical User Interface

I2C Inter Integrated Circuit protocol

ID Identity

IDE Integrated Development Environment

IEKF Iterated Extended Kalman Filter

IMU Inertial Measurement Unit

IR Infra-Red

LIDAR Light Detection and Ranging sensor

LiPo Lithium Polymer battery

MISO Master In Slave Out (SPI line)

MOSI Master Out Slave In (SPI line)

MQTT(-SN) Message Queue Telemetry Transport (for Sensor Networks)

NTNU Norwegian University of Science and Technology

PCB Printed Circuit Board

PDF Probability Density Function

PWM Pulse Width Modulation signal

RAM Random Access Memory

RTOS Real Time Operating System

R/W̄ Read not Write bit (I2C protocol)

SCLK Serial Clock (SPI line)

SCL Serial Clock (I2C line)

SDA Serial Data (I2C line)
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Meaning

SDK Software Development Kit

SES Segger Embedded Studio IDE

SLAM Simultaneous Localisation and Mapping

SoC System on Chip

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

USB Universal Serial Bus

VS Visual Studio

WiFi Wireless Fidelity
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1 Introduction

Motivation

The mapping of an environment is an essential task to ensure safe access to deserted or unsafe
areas. Often, rescuers are put in harm’s way when attempting to rescue victims without knowl-
edge of the surroundings and potential hazards. Autonomous robots can be used to map the
area before entering it to gain information about possible obstacles and risks. Mapping robots
can also be useful when exploring unknown areas that are inaccessible to humans (e.g. caves). A
system for mapping such environments requires low energy consumption to be able to penetrate
far into the field, wireless communication to provide real-time updates on the current status and
preferably a low cost solution as loss of equipment is not unlikely. Circumstances such as poor
visibility should also be taken into account.
As these situations are very complex, a more restricted use case is analysed in this thesis, which
can, however, serve as a basis for the scenarios described. The focus of this work is on mapping
an indoor maze. The map enables the user to find the optimal route to a destination or can serve
as a basis for other autonomous tasks that use the map as a location reference. In this case, the
low power requirements and low-cost hardware are less crucial, but still highly desirable for the
system to be viable.

Problem statement

This work is part of the "SLAM Robot Project" at the Department of Cybernetics at the Nor-
wegian University of Science and Technology (NTNU). It was launched in 2004 and has since
been regularly expanded by students from the department. Co-operating robots are used to
autonomously map an indoor labyrinth. The low-end robots send their recorded position and
measurement data wirelessly to a central server via MQTT-SN/Thread. The server creates the
map and can be used to send command instructions to the robots. In addition to several two-
wheeled ground robots that map the maze from the inside, a drone will be used to provide
additional information about the entire maze structure from above. While this project is being
carried out, there are four functioning ground robots that communicate via a Golang-server.
This work focusses solely on the development of a module for data acquisition, processing and
distribution for a quadcopter. The module developed here will eventually be mounted on the
underside of a quadcopter and will also be responsible for controlling the drone in future work.
Previous work for the quadcopter includes a module with four ultrasonic sensors (type HC-SR04)
to measure the position of the drone (June 2022, [6]) and a camera module, using an OpenMV
Cam M7, that takes images and extracts line segments from them (December 2022, [23]). Both
modules are based on the nRF52840 System On Chip (SoC) from Nordic Semiconductor.
The aim was to merge these modules into a single system, integrate an inertial measurement unit
(IMU) (ICM-20984) into the system, improve the state estimate and establish a communication
link with the Golang-server. The data from the ultrasonic sensors is processed to provide the
coordinates of the module while the IMU measures its orientation, fully characterising the pose
of the module. The pose is sent to the camera, which processes the image locally and calculates
the global position of the image pixels. The lines from the image are extracted and the global
coordinates are first sent to the nRF52 and then to the central server via MQTT-SN/thread.
The server merges these lines with the data collected by the ground robots and creates a unified
map of the maze.
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Chapter 1. Introduction

Sustainability

The United Nations’ 17 Sustainable Development Goals adopted in 2015 are intended to ensure
the sustainable development of our planet. It is the policy of NTNU that all research should
contribute to these goals.
This work contributes to goal number 9, which describes the need to "build resilient infrastructure,
promote inclusive and sustainable industrialization and foster innovation" [22]. The development
of an energy-efficient embedded system for mapping indoor areas and the associated automation
of otherwise tedious processes will promote both innovation and sustainable industrialisation.

Structure of the report

This report begins with an overview of the theoretical background of real-time systems, serial
communication, state estimation (focusing on the extended Kalman filter) and the MQTT-SN
and Thread protocol. This is followed by a description of the hardware components and software
environment used for this project. Their main features are listed and their role in the overall
project is illustrated and an overview of the structure of the developed code is given. The previous
work is summarised, including its unresolved problems. The implementation process and details
are then presented. This includes the merging of the previously developed modules (both on
the hardware and software side) and the integration of the IMU. The improvement of the state
estimation through an extended Kalman filter, the modification of the communication with the
OpenMV-Cam and the set-up of the communication with the central server are also presented.
The test setup and their executions are described in chapter 6. The test results are discussed in
chapter 7. Finally, ideas for further work are presented in chapter 8.
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2 Theory

This chapter presents the theoretical background, specifying the principles and algorithms rele-
vant to this thesis. The requirements and functionality of real-time systems are described and
important features of FreeRTOS are mentioned. Since the design is subject to power and hard-
ware constraints, the term embedded system is explained. In addition, the implemented serial
communication protocols SPI and I2C are described. The theory of state estimation, includ-
ing the extended Kalman filter algorithm, is presented. The Thread and MQTT-SN network
architecture is also described.

2.1 Real time systems

"A real-time system is any information processing activity or system which has to respond to
externally generated input stimuli within a finite and specifiable delay." This is Young’s definition
of a real-time system from 1982 [26]. As the definition states, the main goal of a real-time system
is to behave in a predictable manner so that deadlines are not violated and calculated results are
valid for defined periods of time. For example, when sensor data is collected, we need to ensure
that the algorithms work with valid data so that the results are conclusive. There are different
levels of time constraints for data and tasks [24]:

Hard constraints If a system cannot complete a task within a hard time frame, this leads to
catastrophic errors such as environmental damage or, in the worst case, loss of life. These
deadlines must therefore always be met. An example would be the control of a drone’s
rotors to ensure that the drone does not crash over a densely populated area. (See Figure
2.1a)

Firm constraints The result of these tasks no longer has any value once the deadline has passed.
This is often the case with outdated sensor data. (See Figure 2.1b)

Soft constraints If the time limit has a soft constraint, it means that the data is still valid after
the deadline has passed, but loses value. For example, when communicating with a server,
the immediate transfer is often not important, but the data could be less relevant as time
goes on. (See Figure 2.1c)

Depending on the time constraints of a task, it is assigned a criticality level. The levels can be
categorised into safety-critical, mission-critical and non-critical tasks. Safety-critical tasks are

(a) Hard real-time (b) Firm real-time (c) Soft real-time

Figure 2.1: Value of the result as a function of the response time t for types of real time systems.
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Chapter 2. Theory

usually tasks that prevent the loss of human life or tasks that protect the system, e.g. if they
are subject to hard constraints. If the purpose of the task contributes to the objective of the
mission, e.g. to collect data, it would be categorised as mission critical. All other tasks fall into
the category of non-critical tasks.

In order to structure the system code, it is divided into several tasks, each of which fulfils a
specific function. This can be done by using several processes or threads. Each process has its
own data set, including the program code and the stack. It also has a process control block,
which contains an identifier, status, priority and program counter [25].
Threads are entities that exist within a process. They share the program code and data with
other threads of a process, but have their own registers and their own stack. Switching between
threads is faster than between processes, as not all data needs to be restored. It also follows that
it is easier to communicate between threads and synchronise them as they share data. However,
there is less protection between threads, which can lead to unintentional interference between
them.
Only one process at a time can be executed by the processor, while the others have to wait. The
status of a process describes which queue the process is in. In simple systems, there are three
main system states: running, blocked (waiting for an event) or ready for execution. The running
process is selected out of the ready queue by a scheduler. Semaphores, mutexes or queues can
be used to forward messages between tasks and to protect memory areas during read and write
operations. Real-time operating systems (RTOS) are implemented to integrate these operations
into a system. FreeRTOS is one of these operating systems, which was developed for systems
with limited resources. These terms are further explained in the following paragraphs.

2.1.1 Scheduler

The scheduler is the instance that decides which process or thread is executed by the processor
over time. Scheduling can be either preemptive or non-preemptive. An example of the execution
of methods representing each technique is shown in Figure 2.2. With a preemptive scheduler, a
process is executed for a certain period of time and then interrupted by the scheduler. While
a new process is selected, the state of the current process is saved and it is moved to the end
of the ready queue. The interruption can be caused by the arrival of a new process, a periodic
interruption by a timer or a system call. In a non-preemptive environment, a running task cannot
be replaced by the scheduler unless it finishes, yields or gets blocked [25].
One of the most common preemptive scheduling algorithms is called Round Robin. Here, each
process is assigned a time slice, after which it is replaced by the process that has been in the
ready queue the for the longest time.
If tasks have different levels of criticality, each process can be assigned a priority. Each priority
is then assigned its own queue in the ready queue of the system states. When deciding which
process should be executed next, the scheduler first checks the queues with a higher priority
before moving on to the lower priorities. If the higher priority tasks are scheduled at a too high
rate, the system is not able to execute the lower priority tasks. This occasion is called ’starvation’
and needs to be prevented by ensuring reasonable execution times and task frequencies.
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2.1 Real time systems

Figure 2.2: Illustration of scheduling algorithms (blue: running, green: ready). The first third
shows the arrival time and time needed to finish tasks A, B and C. An example of how
the tasks are scheduled with the non-preemptive scheduling algorithm called Shortest
Process Next and the preemptive scheduling algorithm Round Robin is shown under-
neath.

2.1.2 Inter process communication

For synchronisation and information exchange between threads, methods, such as semaphores,
mutexes or the message passing via queues, can be used [25].
If two threads try to access the same data at the same time, they can interfere with each other.
When one thread reads while the other one writes to the same memory region, the result may
depend on the order of thread execution. This is also known as a race condition. The memory
area must therefore be protected while writing and reading. Semaphores are values that are linked
to memory areas to ensure their protection. If a thread attempts to access the memory area,
it can reduce the value of the semaphore and thus block the area (wait operation). Any other
thread attempting to access this area changes to the "blocked" status during the wait operation.
As soon as the thread has completed its operation, it increases the value of the semaphore (signal
operation) to release the memory area and grant other threads access.
Mutexes are types of semaphores with the concept of ownership. They can therefore be used
to bind a memory region to a specific thread, so that only the thread that locks the mutex can
unlock it again. While semaphores can also be used for signaling between threads, mutexes are
solely used to protect shared resources.
Queues are to pass messages between threads. A thread can attach messages to a queue that is
read by another thread. Usually, a FIFO queue (First In First Out) is implemented here.

2.1.3 FreeRTOS

FreeRTOS is a small, open-source real-time operating system [10]. Due to its small size, it is
often used for embedded systems running on microcontrollers. As in most simple operating
systems, only one task (equivalent to one thread) is executed at a time. The tasks have
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no knowledge of the scheduler’s activity. Each task is assigned a priority between 0 and a
user-defined maximum priority. The scheduler can work either preemptively (with round robin)
or co-operatively (non-preemptive). When using the preemptive scheduler, a timer interrupt is
required to re-evaluate which task is currently being executed with each timer tick. The task
model comprises four states: ready, running, blocked and stopped. A task can be blocked if it is
waiting for an external event or by calling vTaskDelay().
FreeRTOS uses queues (commands: xQueueSendToBack() and xQueueReceive()),
semaphores (commands: xSemaphoreTake() and xSemaphoreGive()) and mutexes
(xSemaphoreCreateMutex()) for communication between processes. The capacity of the
queue is defined when the queue is created (xQueueCreate()).

2.1.4 Embedded systems

An embedded system is a computer system that is defined and optimised for the execution of a
specific task [25]. Embedded systems are usually part of a larger system consisting of multiple
components, including sensors. They are often constrained by hard or soft real-time requirements,
have limited memory and run on limited power sources such as batteries. In contrast, open
systems for general computing, such as a typical desktop PC, are designed to be flexible, to fulfil
high performance requirements and do not have strict power and size limitations.

2.2 Serial Communication

When designing an embedded system, all components, such as sensors and processors, must be
wired to a common power supply. To enable data transfer between the components, they are
connected to each other via communication buses. At board level, the most commonly used
method is direct serial communication, where a master controls communication with one or more
slave controllers. The Serial Peripheral Interface (SPI) and the Inter-Integrated Circuit (I2C)
protocol are two of such interfaces for synchronous data transmission [7].

2.2.1 SPI

SPI is a simple, synchronous communication interface with four bus lines: MOSI (Master Out
Slave In), MISO (Master In Slave Out), SCLK (Clock) and CS (Chip Select). It can be configured
so that a master controller, which has control the over the clock, can be connected to several
slave devices. The slave selection is determined by the CS line, not by an address as is usually
the case. It is a full duplex protocol, which means that the data flows simultaneously in both
directions. The data rate of the interface depends on the capabilities of the master and slave
controllers. Rates between 125 kbps and 16 Mbps are usually supported.
SPI communication functions like a cyclic shift register. A block of 8 bits is loaded into the
register of the master. With each clock cycle, one bit of the master register is shifted out to
the slave via the MOSI line and one bit of the slave register is transferred to the master via the
MISO line. After eight clock cycles, the data is completely exchanged between the master and
slave (see Figure 2.3).

During a write operation, the master can simply ignore the received byte. When reading from
the slave, the master must send a dummy byte in order to receive the slave’s data. SPI has

6



2.2 Serial Communication

(a) Initial condition (at 0 clock cycles)

(b) After 3 clock cycles

(c) Final condition (after 8 clock cycles)

Figure 2.3: SPI operating principle: The master and slave shift registers are first filled with their
respective data (Figure a). After 3 clock cycles, three of the master bits are shifted
into the slave register and 3 slave bits are shifted into the master register (Figure
b). After 8 clock cycles, the data transfer is complete and the registers have been
exchanged (Figure c).

four operating modes, which are defined by two configuration bits: The clock polarity CPOL
determines the idle state of the shift clock, the clock phase CPHA decides the clock edge at
which data is to be sampled. The SPI modes are shown in the Table 2.1.

CPHA = 0 CPHA = 1

CPOL = 0

CPOL = 1

Table 2.1: The sampling position of the clock signal (in orange) is shown for each of the four SPI
modes used.

2.2.2 I2C

I2C is another serial protocol that uses only two wires, which are, however, bidirectional: SDA
(Serial Data) and SCL (Serial Clock). It is a synchronous interface using a clock frequency of
100 kbits/s in standard mode and 400 kbits/s in fast mode, so it is generally slower than the SPI
interface. Another difference to SPI is that I2C can have several master controllers. A master
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Figure 2.4: Data transfer using the I2C protocol. The levels of the SDA and SCL line during the
start and stop condition, acknowledgement and data transfer are illustrated [12].

is defined by the device that controls the clock and initiates and terminates the communication,
while the slave is the device that is addressed. To enable multi-master arbitration, the devices
can only pull the lines down. Therefore, the state of the bus lines is defined by passive pull-up
resistors that set them high when not in use.
Each I2C-compliant device has been given a 7-bit (or 10-bit) address for identification. In a
network, all addresses must be unique to ensure error-free communication.

The operation is defined by the level of the lines (illustrated in Figure 2.4). When the lines
are idle, both are in the high state. The master signals the start of a transmission on the line
by pulling SDA to low while SCL remains high. Vice versa, the stop condition is signalled by
releasing SDA while SCL is high. All other transmitted bits are sampled on the rising edge of
SCL and must therefore be placed on SDA while SCL is low. After each 8-bit data transmission,
the receiver confirms the information by sending an acknowledgement (ACK). This is indicated
by releasing the SDA line while SCL is low.
When writing to a slave register, the master must first send the address of the slave, followed by
a read or write bit (R/W̄), which is 0 for writing. After this has been acknowledged by the slave,
the address of the slave register is sent, followed by the respective data. Most devices allow a
burst transfer, so that several registers can be written during the same procedure. So, if more
than one byte of data is sent, the slave automatically increases the register address so that the
following registers can be modified too.
When reading from the slave, the initial procedure is the same. The bit R/W̄ is set to 1 to
indicate the read operation. The master sends the address of the register and then releases the
line. The slave responds by sending the corresponding data. If burst transmission is activated, it
continues to send the data of the following registers until the master terminates the connection.

2.3 State estimation

The state of a robot defines the position and orientation of all its body parts. The state variables
can be determined by analysing the structure and kinematics of the robot. When the robot
moves, the state changes. Therefore, a motion model that models the movement of the robot is
used to calculate the next state of the robot. Sensor data, such as distance measurements, are
used to correct the estimated state (observation model).
The state estimation problem is defined as follows: "The problem of state estimation is to come up
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2.3 State estimation

with an estimate, x̂xxk, of the true state of a system, at one or more timesteps, k, given knowledge
of the initial state, x̌xx0, a sequence of measurements, yyy0:K , a sequence of inputs vvv1:K , as well as
knowledge of the system’s motion and observation models" [4]. Additionally, the uncertainty of
the resulting estimate should be quantified.

2.3.1 Probability distributions

System models must be analysed from a probabilistic point of view. Every measurement in a
system is influenced by noise, sensors have limitations and models are inaccurate. Therefore,
any estimate that is calculated from these measurements is uncertain and must be expressed
as a probability density function (PDF) p(xxx), where xxx is a vector of dimension N . As it is
difficult to model PDFs directly with a computer, approximate values, such as their moments,
are used instead. The more moments are calculated, the better the PDF is characterised. The
first moment is the mean value, µµµ, and the second central moment is the covariance matrix, ΣΣΣ:

µµµ = E[xxx] =
∫ b

a
xxx p(xxx) dx (2.1)

ΣΣΣ = E[(xxx−µµµ)(xxx−µµµ)T] =
∫ b

a
(xxx−µµµ)(xxx−µµµ)T p(xxx) dx (2.2)

If the dimension N = 1, the covariance matrix is called the variance σ2, where σ is the standard
deviation. Since computers cannot handle infinite amounts of data required to calculate actual
integrals, they use the sample mean and the covariance. The integral is replaced by a sum over
the number of samples K and the result is divided by K or K − 1 for the covariance. The third
and fourth moments are referred to as skewness and kurtosis. These are however rarely used.
To represent the noise, Gaussian probability functions are used. The multivariate Gaussian
PDF, where xxx ∈ RN is given by equation 2.3. As shown in the equation the distribution is fully
characterised by its mean and covariance, therefore we write: xxx ∼ N (µµµ, ΣΣΣ).

p(xxx|µµµ, ΣΣΣ) = 1√
(2π)N detΣΣΣ

exp(−1
2(xxx−µµµ)T ΣΣΣ−1(xxx−µµµ)) (2.3)

An important property of Gaussian PDFs is that when two of these PDFs are multiplied, the
normalized result is also a Gaussian PDF (see Figure 2.5). This is utilised when fusing information
in state estimation algorithms. Most methods for state estimation are based on Bayes’ rule (see
equation 2.4, 2.5). Looking at this from the perspective of the state estimation problem, p(x)
can be expressed as the prior density without including data, p(x|y) as the posterior density
(including data), while p(y|x) represents the sensor model.

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (2.4)

p(x|y) = p(y|x)p(x)
p(y) (2.5)
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Figure 2.5: The normalized product of two Gaussian PDFs is also a Gaussian PDF where the
resulting mean is between the original mean values [4].

2.3.2 System Model

A system is characterised by its motion and observation model. For non-linear systems, these
are described by equation 2.6 and 2.7, respectively.

xxxk = f(xxxk−1, vvvk, wwwk), k = 1...K (2.6)
yyyk = g(xxxk, nnnk), k = 0...K (2.7)

K is the maximum time and k is the discrete-time index. The system state is denoted by xxxk, the
system input is vvvk and the process noise is wwwk ∼ N (000, QQQk). The observation model takes into
account the measurement yyyk and the measurement noise nnnk ∼ N (000, RRRk).
Both models can be simplified for linear systems.

2.3.3 Extended Kalman Filter

The extended Kalman filter (EKF) recursively determines the estimate of the state using a
linearised version of the non-linear motion and observation models in an online procedure. The
EKF works with the knowledge of the initial state x̌xx0 and its uncertainty P̌PP 0, the inputs vvvk, the
covariance of the process noiseQQQk as well as the measurements yyyk and their associated covariance
RRRk at time k. Previous and future inputs or measurements are unknown, only the previous state
estimate xxxk−1 is relevant. This works as long as the stochastic process fulfils the Markov property
(illustrated in Figure 2.6). It states that for a current state, the PDF of future states can be
characterised without knowledge of other past states and are therefore independent of the older
states [4].

Since the system model is non-linear, some assumptions and approximations must be made in
order to estimate the state of the system. First of all, both the belief function for xxxk and the
noise variables are constrained to be Gaussian.

p(xxxk| x̌xx0, vvv1:k, yyy0:k) = N (x̂xxk, P̂PP k) (2.8)

This is necessary in order to obtain a quantifiable result when applying Bayes’ equations. As
described above, the product of two normally distributed variables is also Gaussian and can
therefore be fully described by its mean and covariance. This is not true for most other PDFs,
so this assumption is necessary to obtain a realisable estimator.
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2.3 State estimation

Figure 2.6: Markov property: It is shown that the current state xxxk only depends on xxxk−1, vvvk and
wwwk not xxxk−2 or older states. The system model is used, which is described in section
2.3.2. [4]

To simplify the the motion and observation model, they must be linearised around the current
state estimate x̂xxk−1:

fff(xxxk−1, vvvk, wwwk) ≈ x̌xxk +FFF k−1(xxxk−1 − x̂xxk−1) +www′
k (2.9)

ggg(xxxk, nnnk) ≈ y̌yyk +GGGk(xxxk − x̌xxk) +nnn′
k (2.10)

where

x̌xxk = fff(x̂xxk−1, vvvk, 000) y̌yyk = ggg(x̌̌x̌xk, 000) (2.11)

FFF k−1 = ∂fff(xxxk−1, vvvk, wwwk)
∂xxxk−1

∣∣∣∣∣
x̂xxk−1, vvvk,000

GGGk = ∂ggg(xxxk, nnnk)
∂xxxk

∣∣∣∣∣
x̌xxk,000

(2.12)

www′
k = ∂fff(xxxk−1, vvvk, wwwk)

∂wwwk

∣∣∣∣∣
x̂xxk−1, vvvk,000

wwwk nnn′
k = ∂ggg(xxxk, nnnk)

∂nnnk

∣∣∣∣∣
x̌xxk,000

nnnk (2.13)

QQQ′
k = E[www′

kwww
′
k

T] RRR′
k = E[nnn′

knnn
′
k

T]. (2.14)

Here, the current state estimate is given by the posterior, which is denoted by a (̂.). By passing
the posterior belief of the previous state through the linearised motion model, the prior belief is
obtained, which is represented by a (̌.). The estimate of the measurement is calculated by passing
the prior state through the linearised observation model.
The Kalman filter works as follows: The current posterior state x̂xxk is calculated based on the
prior state estimate x̂xxk−1 and the associated covariance matrix P̂PP k−1. First, the prior belief is
obtained in the prediction step. This step is called prediction because we only use the current
inputs vvvk into the system to estimate the next state of the system. The prior belief is then
corrected by calculating the estimated measurement from this belief and comparing it to the
actual measurement (merge). The result is the posterior estimate x̂xxk. The uncertainty of the
predicted and the corrected state are expressed by the corresponding covariance matrices P̌PP k and
P̂PP k. This procedure is illustrated in Figure 2.7.
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Figure 2.7: Operating principle of the Kalman filter: If the previous state x̂xxk−1 passes through the
motion model, the predicted state x̌xxk is obtained. If the measured state is multiplied
by x̌xxk, the posterior estimate x̂xxk is obtained. All PDFs are assumed to be Gaussian.
[4]

When this is expressed in equations, the process is also divided into prediction and correction.
The prediction equations are shown in equation 2.15 and 2.16 and the corrector equations in 2.18
and 2.19. The Kalman gain weights the correction against the prediction using the uncertainty
of both. It is given by equation 2.17.

P̌PP k = FFF k−1P̂PP k−1FFF
T
k−1 +QQQ′

k (2.15)
x̌xxk = fff(x̂xxk−1, vvvk, 000) (2.16)
KKKk = P̌PP kGGG

T
k (GGGkP̌PP kGGG

T
k +RRR′

k)−1 (2.17)
P̂PP k = (111−KKKkGGGk)P̌PP k (2.18)
x̂xxk = x̌xxk +KKKk(yyyk − ggg(x̌xxk, 000)) (2.19)

The EKF can diverge wildly, become biased or inconsistent as we linearise around the mean of
the estimated state, not the true state. So if the estimated state deviates too far away from the
true state, incorrect assumptions are made. The performance can deteriorate even further if the
actual belief function is further away from the assumed normal distribution.

Other nonlinear state estimators

To improve the estimate from the EKF, the iterated extended Kalman filter (IEKF) can be used.
The correction step is performed several times using a linearised version of the observation model
around a working point xxxop,k ← x̂xxk. While the EKF does not correspond to a defined value of
the real posterior, the IEKF converges to a local maximum of the true posterior.
Other filters for non-linear recursive estimation, such as the Sigmapoint-Kalman filter or the
particle filter, are not considered in this thesis as they are difficult to implement in a low-level
programming language such as C. Both filters are not based on linearisation, but on sampling,
which can lead to more accurate results.
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Figure 2.8: Euler angle "1-2-3" sequence: The initial coordinate system is shown in blue. The
first rotation results from the rotation around the z-axis by the value of Ψ (in red).
The second transformation is a rotation by Θ around the resulting y-axis (green).
The last transformation in black results from the rotation around the x-axis by the
factor Φ. [8]

2.3.4 Three-Dimensional Geometry

If the estimation takes place in a three-dimensional space, as is the case with a flying object,
special aspects must be taken into account. The 3D position of an object is classified by six
degrees of freedom (DoF): 3 in translation (x,y,z) and 3 in rotation. Several different methods
can be applied to represent the orientation.
Rotations are usually expressed using rotation matrices. A 3x3 rotation matrix has 9 parameters,
but only 3 DoF and 6 constraints, as the individual vectors are orthonormal to each other (the
inverse of the matrix is equal to its transpose).
Alternatively, Euler angles can be used to describe the rotation. There are various sequences
that specify the order of rotation. The 3-1-3 sequence is characterised by three angles ψ, γ, θ.
The rotation ψ takes place around the original 3rd axis, the rotation γ around the intermediate
1st axis and the rotation θ around the transformed 3rd axis. Another sequence is given by the
"roll-pitch-yaw" or "1-2-3" sequence. The "Yaw" rotation Ψ takes place around the original 3rd
axis, the "Pitch" rotation Θ around the 2nd axis in between and the "Roll" rotation Φ around
the transformed 1st axis. This is shown in the Figure 2.8. Although Euler angles have only three
parameters and could therefore be assumed to be perfectly suited to express the rotation in the
pose, they unfortunately suffer from singularities. For example, if γ = 0 and the 3-1-3 sequence
is used, the other two angles cannot be uniquely determined as they refer to the same axis.
Another representation for rotation are unit quaternions qqq ∈ R4. In contrast to the Euler angles,
they are independent of the order of the transformations and are therefore easier to handle.

qqqTqqq = 1 (2.20)
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The four parameters of a quaternion can be calculated by specifying an axis of rotation with unit
length specified by x, y, z and an angle α that specifies the rotation around the axis. The result
of the equation 2.21 then provides the quaternion value (q0 + q1i+ q2j + q3k).

qqq = cos(α/2) + sin(α/2)(xi+ yj + zk) (2.21)

When rotating an arbitrary point ppp = (x1x2x3) by the specified angle around the specified axis,
we must calculate

ppp→ qqq · ppp · qqq−1 (2.22)
= (q0 + q1i+ q2j + q3k)(x1i+ y1j + z1k)(q0 − q1i− q1j − q3k) (2.23)

to obtain the coordinates of the rotated point. Calculations with quaternions are based on
special mathematical principles, which are described, for example, in chapter 6 of the book [4].
Quaternions have 4 parameters for 3 DOF, so that this representation is also not optimal for the
visualisation of rotation in 3D space. The Euler angles of the 1-2-3 sequence can be computed
from the quaternions as follows [8]:

Φ

Θ

Ψ

 =


arctan 2q0q1 + 2q2q3

q2
0 − q2

1 − q2
2 + q2

3

arcsin 2q0q2 − 2q1q3

arctan 2q0q3 + 2q1q2
q2

0 + q2
1 − q2

2 − q2
3

 (2.24)

2.4 Thread, MQTT and MQTT-SN

Wireless communication methods are used to transmit data over long distances and to exchange
information with multiple devices. Cables restrict the freedom of movement of robots and are
therefore unsuitable for most cases. This section introduces a low-power wireless network called
Thread. It defines the data transfer, the network architecture and the roles of the network devices
and is part of the network layer. Application layer protocols, such as MQTT, operate above the
network layer. They define the communication flow between the connected devices. MQTT-SN
is a special version of MQTT for sensor networks, both are presented here.

2.4.1 Thread network

Thread is a low-power, low-latency mesh networking protocol designed for wireless Internet-of-
Things applications [18]. It runs on the 2.4 GHz frequency like other commonly used protocols,
including WiFi and Bluetooth LE. Thread networks are scalable and do not depend on a central
router, so there is no single point of failure. The network nodes themselves can act as routers
depending on the active network structure. This and the most relevant other roles that network
nodes can fulfil are shortly described:

Router The router nodes are responsible for forwarding messages between network devices. They
are enabling other nodes to join the network and keep their transceiver enabled at all times.

End devices End devices only connect to a single router and do not forward messages. They
can turn their transceiver off, to save energy. End devices that are router eligible can be
promoted to a router when a new node close to them tries to join the network.
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2.4 Thread, MQTT and MQTT-SN

Leader The leader manages all routers in a network. It distributes configuration information
between the network nodes.

Border Router The border router configures the network for external connectivity. It can forward
messages between a Thread network and a non-Thread network, like WiFi or Ethernet.

Thread uses IPv6. The ID of an end device is a combination of the ID of the router and the child
ID from the router’s perspective.

2.4.2 MQTT

The Message Queuing Telemetry Transport (MQTT) protocol is based on a publish/subscribe
procedure. The central server, also known as the broker, manages the connection to all devices in
the network, processes subscription requests from clients and distributes the published messages
to clients that have subscribed to the corresponding topic. Clients can publish and subscribe to
topics in the network. The topic is defined by the topic name. The names can be structured
in levels by inserting a slash "/" in the name to add subtopics and organise the communication.
The server forwards all published messages of a topic to clients who have subscribed to the topic
as well as the respective subtopics.

2.4.3 MQTT-SN

MQTT for sensor networks (MQTT-SN) is a low-power version of MQTT. MQTT-SN does not
require TCP support like MQTT and can therefore be used with serial protocols such as Thread.
An MQTT-SN gateway is created so that devices from underlying networks that use different
protocols can communicate via MQTT. The gateway enables the nodes of the underlying network
(like Thread) to connect to the same broker as the MQTT nodes and communicate with each
other as if they were part of the same network. This is illustrated in Figure 2.9.

Gateway discovery

When a new client attempts to establish a connection to an MQTT-SN network, it must send an
advertise or search gateway message. When the message is received, the gateway responds with
a gateway info message confirming the connection.

Topic registration

The MQTT-SN protocol stipulates that topics must be registered before information is published
on the respective topic. While only the topic name is published in MQTT, a 2-byte topic ID is
used in MQTT-SN. When translating between the MQTT and MQTT-SN networks, the topic
ID and name must be exchanged. To register a topic, the client sends a registration message
to the gateway, specifying both the topic name and the topic ID. This is confirmed by the
gateway’s ’registration acknowledged’ response.
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Figure 2.9: Illustration of the MQTT-SN network connection with the MQTT network clients.
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3 System Description

This chapter presents the components used for the quadcopter module and the hardware required
for communication with the server. Their main features and their purpose in the overall system
are explained. The IDEs for programming the modules and other software tools used during
the work are introduced. Finally, the structure of the quadcopter code developed as part of
this work is presented. The implemented tasks and their interconnection are described. Since
a large number of components and software applications are involved, Figure 3.1 schematically
summarises which hardware is controlled by which software application.

Figure 3.1: Overview of the hardware components and the software used to program them.

3.1 Hardware

The microcontroller used for the ground robots and the quadcopter module is the nRF52840
development kit from Nordic Semiconductor. All sensors are connected to it via the pins provided
by the module. The four ultrasonic sensors (HC-SR04) measure the distance to the left, right,
front and bottom of the module. The DHT22 is a digital humidity and temperature sensor used
to calculate the speed of sound. The images are recorded by the OpenMV Cam, which also
processes them locally. The ICM-20948 Inertial Measurement Unit is used for calculating the
orientation of the module. Detailed information on the individual sensors can be found below.
A Raspberry Pi with the nRF52840 Dongle serves as a border router for forwarding messages
between the nRF52 and the Golang-server. Their main purpose is briefly explained at the end
of this section.
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nRF52840 Development Kit (DK)

The nRF52840 from Nordic Semiconductor is a system-on-chip (SoC) designed for ultra-low
power applications. It contains an Arm Cortex M4F CPU (32-bit) running at 64 MHz. Wireless
communication protocols with frequencies of 2.4 GHz such as Bluetooth Low Energy (BLE) and
Thread are supported. The device has 1 MB flash memory and 256 kB RAM. The peripherals
include serial communication interfaces such as I2C, SPI, UART, 5 separately configurable timers
and analogue-to-digital converters (ADC) [16].
The nRF520840 Development Kit (DK) integrates the SoC and can be powered via a micro USB
cable, a LiPo battery cell or by connecting an external power source that supplies between 1.8 and
3.6 volts. The DK has 48 configurable GPIO pins [3]. The main programme, called ’quadcopter
code’ runs on the nRF52, which controls all connected devices and establishes and maintains the
connection to the server.

HC-SR04

The HC-SR04 ultrasonic sensor measures the distance using acoustic waves. Distances from 2 cm
to 400 cm can be detected with an accuracy of ± 3 mm for distances under 1 m [9]. The four
pins include power supply (5 V), trigger, echo and ground. It can measure distances reliably as
long as the measurement angle is less than 15°. If it is larger, the sound waves are reflected in a
different direction, resulting in an invalid measurement. The distance is calculated by measuring
the return time treturn of the triggered signal:

d = treturn · vsound
2 (3.1)

The time is multiplied by the speed of sound and the result is halved, as the signal travels twice the
distance (forwards and backwards). As the sensor uses low-frequency waves, a measuring period
of 60 ms is required to avoid interference. Four ultrasonic sensors are connected to the DK, which
measure the distance to the left, right, front and bottom of the module. The measurements serve
as a position reference.

DHT22

The DHT22 (or AM2303), a digital sensor for relative humidity and temperature, is used for
temperature measurement. The sampling time is 2 seconds with a temperature accuracy of
±0.5° C. The device is supplied with an input voltage of 3.3 to 5.56 V and has one data port
[2]. The sensor is connected to the DK and was previously used to measure the temperature and
humidity in order to calculate the speed of sound required for the ultrasonic measurements.

OpenMV Cam M7

The OpenMV Cam M7 is a low-energy camera module with an STM32F765VI ARM Cortex M7
processor that can execute basic computer vision algorithms. The processor runs at a frequency
of 216 MHz and has 512 KB RAM and 2 MB flash memory. The maximum image resolution of
the OV7725 image sensor is 640x480 for greyscale images at a rate between 75 FPS and 150 FPS
depending on the resolution. The camera can be connected and programmed via USB and has a
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serial interface for SPI (54 Mb/s), I2C and CAN (up to 1 Mb/s). The pins are 5 V-tolerant with
3.3 V output.
The camera module is connected to the DK. It captures images on command and processes them
to extract the line segments. It then calculates the global coordinates of the lines based on the
originally transmitted position and returns them to the DK.

ICM-20948

The ICM-20948 Inertial Measurement Unit (IMU) is used to determine the orientation of the
module. This low-power 9-axis motion measurement device developed by IvenSense comprises
a 3-axis gyroscope, a 3-axis accelerometer, a magnetometer, a compass and a digital motion
processor (DMP). The DMP offloads computation from the host processor and the provided data
can be accessed via the FIFO buffer. The sensor can be connected via I2C (up to 400 kHz) or
SPI (7 MHz). The operating voltage range is between 1.71 V and 3.6 V [12].

Raspberry Pi Model 3 B+

The Raspberry Pi is used as a Thread Border Router. It is the communication hub between the
robots (using Thread and MQTT-SN) and the central server (connected via WiFi using MQTT).
It uses a 1.4 GHz, 64-bit quad-core processor and can communicate via WIFI, Bluetooth 4.3,
BLE and Ethernet [19]. The operating system is loaded via a micro SD card.

nRF52840-Dongle

The nRF52840-Dongle is a USB dongle to support wireless communication protocols such as
BLE, Thread or Zigbee [17]. It is connected to the Raspberry Pi via USB and enables the a
communication link between the robots (nRF52) and the Raspberry Pi.

3.2 Software

This section contains a brief description of the software used in this work. They are used either
to program the hardware, to create data logs, to develop algorithms or to track the changes made
during development. Both the features and the intended use of the software are explained.

Segger Embedded Studio

Segger Embedded Studio (SES) is an IDE for the development of embedded systems [20]. Version
5.66 of SES for ARM was used in this work for programming the nRF52. The IDE has integrated
project management and options for executing and debugging the programme when the device is
connected to the J-Link software via USB. The debugging options include the use of breakpoints
or the ability to print values on the debugging terminal. A log file can be created in which the
terminal data is saved in order to extract data from the system.
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nRF Connect for Desktop

nRF Connect is a tool framework developed by Nordic Semiconductor which contains specific
software for their products. It includes a programmer with which .hex files of compiled programs
can be flashed directly to the connected hardware. This is used to test supplied examples that
implement specific functions or to flash the nRF52840-Dongle with the appropriate software.
nRF Connect also provides a toolchain manager that is required to install the nRF Connect
SDK.

nRF Connect SDK

The nRF Connect SDK is a software development kit for Nordic Semiconductor products that can
be used as an extension in Visual Studio Code (VS Code). It is based on the Zephyr RTOS and
can be used as an alternative to Segger Embedded Studio [15]. It is easy to use and implements
up-to-date software development tools. The memory layout of the connected hardware can be
viewed and programmes can be flashed directly or uploaded in debugging mode.

OpenMV IDE

The OpenMV IDE is used for programming the OpenMV Cam. The tool contains a serial
terminal for debugging as well as an frame buffer viewer and a histogram display. The frame
buffer displays the recorded images and can also contain processed image data. To run the code,
the camera must be connected to the computer via USB. When the "Connect" and "Play" buttons
are pressed, the currently open main file is uploaded to the camera. If the code for the camera
is divided into several files, the non-"main" files must be loaded manually into the file folder of
the connected openMV Cam.

Jlink RTT-Viewer

The Jlink RTT viewer is used to create logs of the output data of the nRF52. These can also be
created with SES, but debug mode must be activated for this. The debug mode leads to delays
in data acquisition, which can be problematic when recording real-time data published at high
frequencies.

MatLab

MatLab was used to analyse and visualise data and to develop the extended Kalman filter algo-
rithm. MatLab from MathWorks is a programming platform and language that contains numerous
functions for data processing and has very good documentation. As vector data can be easily
processed in Matlab, it is used to design algorithms before they are implemented in C. When
comparing the output data of both versions, it is easier to recognise errors in the C version.
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GitHub

GitHub is mainly used for version control and code documentation. Being able to revert to
previous versions of the code to find errors proved very useful. Furthermore, branches can be
created when working on different aspects of the code at the same time or implementing new
features. The entire SLAM robot project, including the robot code and the Golang-server, is
published on GitHub, which has been helpful for comparing the developed code with the work
of other students.

3.3 Code structure

The quadcopter code is based on the Golang-server version of the robot code, the software
for controlling the ground robots. It is written in C and was developed with SES. The code
is uploaded to the nRF52 DK, to which the ultrasonic sensors and the IMU are connected.
The system operates on FreeRTOS and is divided into several tasks. Some of these tasks
originate from the original robot code, others have been adapted or newly created. The
tasks communicate via queues and use mutexes to protect shared data from interference by
other tasks. The scheduler operates on a frequency of 1024 Hz and the vTaskDelay function
is used to define the frequency of the tasks based on the last tick value from the scheduler.
The structure of the final version of the quadcopter code is presented in the following description.

main.c The main function initialises the tasks of the system. It defines the stack sizes of the
tasks, their priorities, initialises semaphores and starts the task execution and the FreeR-
TOS scheduler. The threads relevant for this work are: task_mqttsn, task_imu_data,
task_distance_meas, camera_mapping and the task_pose_estimator. The previously
used task_sensor_tower, which was mentioned during the description of the workflows,
was replaced by the IMU and distance measurement tasks. The task_pose_controller
and task_motor_speed_controller used in the robot code are not relevant as the quad-
copter module is not yet connected to a drone and therefore no control is established.

task_mqttsn.c This task initialises and maintains the MQTT-SN and Thread connection to
the server and was only minimally adapted in the course of this work. The topic names
are defined and the subscription and publishing procedure is implemented. During the
initialisation of the connection, other tasks must wait if they require access to the server.
As soon as a new message arrives from the server, it can be retrieved via queues with the
corresponding topic handle. Other tasks can send messages by accessing the respective
publishing functions.

task_sensor_tower.c The sensor tower is a rotating tower with infrared sensors that the ground
robots use to measure the distance to their surroundings. The task collects the IR mea-
surements and controls the rotation of the tower. The measurements are sent to the server
as an update message.
Since the quadcopter does not use the tower, the quadcopter version used this task at the
beginning of development to perform the IMU and ultrasonic measurements. However, due
to the incompatible measurement rates, the sensors were assigned separate tasks. Therefore,
this task was removed from the system.
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task_imu_data.c This task is used to retrieve the IMU data. In the course of this work, three
different methods for obtaining the measurements were implemented, which can be selected
at the top of the task. One of these methods is based on the previous robot code, which
defined the measurement process in the position estimation task. After the IMU connection
has been initialised and configured, the sensor is calibrated. During calibration, the steady-
state offset of the sensor measurements is acquired by calculating the average value of 300-
1000 samples. This bias is then removed from the gyroscope and acceleration readings
and the readings are stored in a local variable. The sum of the gyroscope data, which
corresponds to the angle of the module, is also recorded. The task uses the ICM_20948.c
driver, which defines all the functions required to access the IMU data as well as the i2c.c
driver to connect to the IMU. It is scheduled every 40 ticks which corresponds to a frequency
of approximately 25 Hz.

task_distance_meas.c The ultrasonic sensors are controlled in the distance measurement task.
The task initialises the sensor pins, the timer, the data and accesses the speed of sound.
It also defines the period of a measurement cycle (250 ticks) in which all four sensors are
accessed. The HC_SR04.c driver provides the measurement functions and the local variable
for saving the obtained data.

camera_mapping.c The camera mapping task is not based on the code from the ground robots
but on other previous work. It uses the newly defined spi.c driver to access the OpenMV
camera. The communication procedure with the camera is defined such that the position
of the module is sent to the camera and the position of the line segments of the captured
snapshots are obtained. The position of the module is specified either by the estimated
position from the pose estimation task or by a message sent by the user of the server.
When line segments arrive from the camera, they are transmitted directly to the server.

task_pose_estimator.c In this task the acquired sensor data from the ultrasound sensors and
IMU is used to estimate the position of the module. After initializing the pose estimate and
the static variables of the EKF, the estimator waits for the IMU to finish calibrating. It
uses this time to calculate the initial distance to its surroundings, so that future estimates
can be described relative to the origin. Once the calibration is finished, the newest sensor
data is acquired and the extended Kalman filter defined in the ekf.c file is executed.
The ekf.c reuses parts of the Kalman filter used by the ground-robots and accesses the
matrix_operations.c file. The resulting state is saved and an update message is send to
the server. The task runs at a frequency of 25 Hz.

Other files The files defines.h and parts of functions.c are used to convert angles between
degrees and radians. The globals.h file defines the queues and mutexes. The pins of
all connected sensors are specified in the robot_config.h as well as global variables and
modes that can be configured. The files are based on the predefined robot code and have
only been slightly modified.

In addition to the quadcopter code, the Golang-server code and the OpenMV-code was also
adapted. The original structure is explained in the next chapter and the changes are described
in the chapter on implementation. However, the underlying structure of these programs remains
identical.
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4 Previous Work

This thesis is based on earlier work carried out by Master’s students from the Department of
Engineering Cybernetics at NTNU. The SLAM robot project, in that this work is embedded, has
been carried out since 2004. The aim is to map a maze (in an indoor area) by using co-operating
robots. For the majority of the project, ground robots were used to map the labyrinth from the
inside. These are two-wheeled robots originally based on the programmable robots from LEGO®.
Their components were replaced piece by piece and the software was continuously optimised un-
til the current version of the robot code with the nRF52 DK as processor was reached. At the
moment four of the six available ground robots are operational.
The server, which serves as the communication and control platform between the robots and
the user of the system, was also adapted during the course of this project. The current server,
which is implemented in the "go" programming language and is referred to as Golang-server, was
developed by W. Klose in 2023 [13]. Older versions of the server were implemented in Java and
C++ and were communicating with the robots via BLE. A variety of different tasks were realised
with these robots, including line tracking, obstacle avoidance, autonomous backtracking, etc.
In autumn 2021, the idea was formed to integrate a drone into the project, which would hover
above the maze and process images of the maze. Jonas Øygard Bjerke [6] was the first to work
on the idea. He researched methods for estimating the position of a quadcopter. In particular,
the distance to the ground is required so that the images can be linked to a position in space.
For this, Bjerke used the ultrasonic sensors described in the previous chapter. His work was later
improved by Kristian Gulaker [14], who also integrated a communication link to the C++ server
used in 2022.
In a separate project carried out by Marcus Steffensen Vormdal [23], an image processing algo-
rithm was implemented using the OpenMV Cam. The camera was connected to the nRF DK
so that the processed data can be transmitted. The module containing the ultrasonic sensors,
the development of the camera and the setup of the golang server are discussed in more detail
in this chapter. Specific focus lies on the software and hardware implementation details, as they
are further improved or adjusted in the course of this thesis.

4.1 Ultrasonic sensors

Jonas Øygard Bjerke has developed a module based on ultrasonic sensors that enables it to
measure the distance to its surroundings. The aim is to place this module under a quadcopter
that takes images of the labyrinth with a camera and can estimate the placement of the images
based on the distance measurements.
To achieve this, Bjerke first analysed different types of sensors in his specialisation project at
NTNU [5]. The sensors were compared in terms of their sensing range, accuracy, measurement
frequency, cost and availability. Since infrared (IR) sensors do not have a sufficient measuring
range and LIDAR sensors, although very suitable for long range, precision and high frequency
measurements, fail in the price category, Bjerke decided to use the available HC-SR04 ultrasonic
sensors. The decisive factors for this decision were the low price, the efficiency and the measuring
range. Other advantages of ultrasonic sensors are that they are not affected by smoke or dust
like light sensors.
Problems can occur when measuring distances to angled or soft surfaces, as the sound is reflected
or absorbed. This was confirmed in the tests carried out with OptiTrack, a motion capture
system. Scenarios such as the rising up and down of the sensor, the reaction when aligned with
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soft surfaces and the measurement of distance through a net hanging from the ceiling were tested.
The sensor was first addressed with an Arduino board and later connected to the nRF52 DK. A
driver for the ultrasonic sensors was implemented in Segger Embedded Studio by using a timer
that measures the return time of the transmitted sound signal.

Bjerke continued work on the ultrasonic sensors in his master’s thesis in spring 2022 [6]. It
focussed on improving the previous implementation, measuring the accuracy of the ultrasonic
sensors, designing and 3D printing a case for the ultrasonic sensors and the nRF52 DK, and
integrating the system into the robot code so that a connection to the Java-server could be
established. To improve distance measurements, the DHT22 temperature and humidity sensor
was integrated into the system. With the measured temperature T and the extracted relative
humidity Hr, the speed of sound required for the distance measurements can be calculated by an
approximation 4.2.

vsound =
√
Cp
Cv

R

M
T (4.1)

≈ 331.4 + 0.606 · T + 0.0124 ·Hr (4.2)

Cp is the specific heat at constant pressure, Cv is the specific heat at constant volume, R is the
universal gas constant and M is the molecular weight of the gas. OptiTrack is also used here to
determine the accuracy of the sensors. The tests showed that the measurement error ± is 3 cm,
where it is less than 1 cm 85 % of the time. If the module remains stationary, the error is less
than 1 cm.

Hardware

Bjerke developed a case to hold the sensors in place. The housing contains four ultrasonic
sensors, the temperature and humidity sensor and the nRF52 microcontroller. A voltage divider
on a breadboard is also connected to reduce the input voltage for the ultrasonic sensors from 5 V
to 3.4 V. The case was printed from polylactic acid (PLA), has a length of 15.5 cm and weighs
about 249 g, including all components. A picture of the case can be seen in Figure 4.1.

Software

As part of Bjerke’s implementation was the connection to the Java-server, the resulting code was
based on the robot code for the ground robots. These functions integrated the ultrasonic and
temperature sensors:

• The HC_SR04.c file is the driver for the HC-SR04 sensor. It contains functions for timer
initialisation and a separate getDistance function for each of the four ultrasonic sensors.
In addition, a function for reading the data from the DHT22 sensor is implemented and
the function find_speed_of_sound for calculating the speed of sound is defined.

• The main.c file initialises the ultrasonic and temperature sensor pins, starts the timer for
the ultrasonic measurements and calls the find_speed_of_sound function.
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Figure 4.1: Case for the quadcopter module developed by Bjerke [6].

• The SensorTowerTask.c initialised in the main function has been adapted to include the
ultrasonic measurements. The measurements of the IR sensors used by the ground robots
have been replaced by the getDistance function. The task sends an update message to
the Java-server containing the four distance measurements instead of the four IR values.
The rest of the code remained the same as the original version of the robot code.

Other work

Bjerke’s design was improved by Kristian William Macdonald Gulaker in his specialisation project
in autumn 2022 [14]. The system was adapted so that it can communicate with the C++-server
via Thread and the integration of an IMU was considered theoretically. A description of the
structure and the connection to the thread border router using the Raspberry Pi Model 3 B+
and the nRF52 Dongle is provided. The MainComTask, which handles communication with the
servers, has been extended and is described in detail in Gulaker’s report. Possible state variables
and measurement models for IMU integration are specified and suggestions are made on how
they can be integrated with the ultrasonic sensors:
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• Roll and pitch are assumed to be zero, the pose only specifies the x, y and θ (heading)
position.

• If the distance of the quadcopter to its surroundings exceeds 4 m, the system must rely
solely on the integrated IMU measurements, which are less accurate and drift.

• The ultrasonic measurements are invalid if they hit the wall at an angle, so in this case the
IMU measurements must also be favoured.

Gulaker suggested that the next steps to improve the quadcopter system are to include an IMU,
improve the cabling of the housing developed by Bjerke and integrate a camera into the system.

4.2 Camera

To create a map of the labyrinth from above, the quadcopter must be equipped with a camera.
For this purpose, Marcus Vormdal designed a system with the nRF52 DK and the OpenMV
Cam M7 in his specialisation project in autumn 2022 [23]. The aim was to extract the line
segments from an image, which ideally represent the labyrinth walls, calculate the position of
the lines based on the position of the module and return the segments to the nRF52 DK. The
OpenMV Cam was chosen as the camera as it contains a processor. The nRF52’s limited memory
prevents it from processing high-resolution images, and it must adhere to certain time constraints
when scheduling safety-critical tasks, which would be exceeded if computationally intensive image
processing algorithms were applied at the same time. The nRF52 DK was chosen as the host
controller as the module should later be integrated into Bjerke’s design.

4.2.1 OpenMV-code

The code that is executed by the OpenMV Cam was developed in the OpenMV IDE and is
referred to in this paper as OpenMV-Code. It runs locally on the camera and can be viewed and
updated by connecting the camera to the PC via USB. After the camera has received a capture
command and extracted the position from the command, it starts the line extraction with the
help of a Line Segment Detector (LSD). The camera sensor is calibrated and a snapshot is taken.
The image is divided into segments, which are processed individually to find line segments within
them. The lines are appended to a buffer after the lines that are too short have been removed.
The image has been analysed segment by segment, so the lines need to be merged and matched
afterwards. As this procedure is beyond the scope of this thesis, it will not be explained further,
but can be found in chapter 4 of Vormdal’s report [23]. For each of the resulting lines, the global
coordinates are calculated based on the position of the camera. They are displayed in the frame
buffer of the IDE and returned to the host processor.

Transformation into global coordinates

The global coordinates of the lines are calculated using the Ground Sample Distance (GSD),
which describes the scale between the pixel and the real distance. The GSD is calculated from
the pixel pitch p, the distance between the camera and the ground plane H and the focal width
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f of the camera:
GSD = p ·H

f
(4.3)

While p and f are constants, H is given by the received z position. The scaled coordinates
are mapped to the global coordinate system using a homogeneous transformation matrix, which
contains the translation and rotation of the image. When applying the algorithm, objects that
protrude from the base surface result in an error that is proportional to the protrusion. Vormdal
tested the accuracy of the transformation at different angles and heights and calculated the error
between the real positions and the calculated distances. The results show that the calculated
lengths of the segments exceed the real lengths, so the GSD was reduced by 8.7 % at H = 150 cm
and by 5 % at H = 120 cm to compensate for the error. The final results showed an error of max.
3.5 %.

4.2.2 Interface with nRF52

The camera is connected to the nRF52 DK via SPI. This requires four communication lines as
well as a ground connection. The OpenMV Cam is configured as a slave, while the nRF52 is
the host that initiates the transmissions. Both the slave and the host are configured to use SPI
mode 0 and expect the most significant bit (MSB) first. The clock frequency is set to 4 MHz.
The cable connection is shown in Figure 4.2.

Figure 4.2: Wiring diagram of the connection of the OpenMV CAM M7 and nRF52840 DK used
by Vormdal [23].

The camera driver on the nRF52 DK was programmed with the nRF Connect SDK in Visual
Studio Code. It is not integrated into a larger system and is therefore the only task that runs
on the microcontroller. First, the SPI connection is configured and initialised with the Zephyr
SPI driver. The driver then enters a while loop in which, depending on the "waiting" variable, a
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Figure 4.3: Structure of the communication procedure defined by Vormdal between the nRF52
and the OpenMV Cam. The yellow and grey arrows correspond to the capture mes-
sage, the green arrows indicate the "Don’t Care" message and the orange arrows
illustrate the camera’s response. The internal processes of the components are de-
scribed next to the blue arrows, which represent the elapsing of time.

"don’t care" message or a capture command with the position of the module is sent. The position
is a fixed string defined in the code. After each transmission, the programme waits 100 ms before
re-evaluating the "waiting" variable.
The new message is simply copied to a transmission buffer in order to send it to the camera. A
received message appears in the receive buffer and is evaluated in the code. When the camera
receives the capture command, it responds with a REC message (recording). If the REC message
is recognised in the receive buffer, the driver sets the waiting variable to true so that the don’t
care message is sent. When the camera has finished processing, it first responds with a line
message indicating the number of lines and then sends the lines one after the other. The driver
on the nRF52 sets the wait variable to false as soon as the first line message is recognised and
stores the expected number of lines in a count variable. When the line segments are received,
the count is reduced and the coordinates are converted into integer variables and output to the
console. The communication procedure is illustrated in Figure 4.3.

4.2.3 Limitations

Possible sources of error were highlighted in Vormdal’s report:

• The labyrinth segments protrude out of the ground plane, therefore the GSD is offset, which
leads to errors.
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• The error of the GSD increases with the distance to the ground plane. This is due to the
wide field of view of the curvature of the camera lens. To correct this error, the image
would have to be cropped, which leads to a loss of information.

• The runtime of the algorithm for matching and merging is strongly influenced by the number
of detected segments. This can lead to a long delay, which can violate the desired time
specifications.

• The delay between messages during SPI communication is very high and can slow down
the entire system.

4.3 Golang Server

The Golang-server is responsible for forwarding messages between the cooperating robots and
the user and creates the map of the environment based on the incoming data messages. It
replaces the previously used Java- and C++-servers and is integrated into the latest version
of the robot code. The connection between the robots and the Golang-server is realised via
MQTT/MQTT-SN/thread. The server must connect to the Border Router WiFi generated by
the Raspberry Pi to access the Broker of the network. The WiFi access data is specified in the
Table 4.1.

WiFi Password

BorderRouter 12345678

Table 4.1: WiFi access data of the Raspberry Pi border router.

Connection setup

The setup of the Raspberry Pi is described in Gulaker and Andersen’s report [14],[1] . Gulaker
and Andersen have set up the connection with the C++-server, but since both the C++-server
and the Golang-server use the Thread/MQTT network, the setup can be adopted here. The
Raspberry Pi with the nRF52840 Dongle is used as a thread border router. The robots send
messages via the thread network layer and the MQTT-SN application layer to the Raspberry
Pi, which forwards them via MQTT to the WiFi network to which the server is connected. The
network connection between the robots, Raspberry Pi and server is illustrated in Figure 4.4.

The Raspberry Pi is configured with an image specially developed by Nordic Semiconductor
for the border router and connected to a local router via Ethernet. The dongle is flashed
by Nordic with a .hex file to receive the thread messages and is connected to one of the
Raspberry Pi’s USB slots. To configure the Raspberry Pi, one must connect to the Border-
Router WIFI via ssh: ssh pi@10.42.0.1. The IP address of the broker is specified in the file
paho-mqtt-sn-gateway.conf .
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Figure 4.4: Network overview showing communication protocol and components, inspired by [1].

Server-code structure

The golang-server was developed by Klose [13]. As the name of the server suggests, it is pro-
grammed in the programming language "go". To compile the server, fyne must be downloaded
and installed. The server can be started by navigating to the src code folder and entering go
build . and go run . in the command line. When the connection to the BorderRouter WiFi is
established, the server’s GUI opens in a separate window. The position of the robot is initialised
in the GUI and the received data is visualised in the mapping window. In addition, the received
messages are displayed in the command line. The GUI can also be used to send commands
(positions) to the connected robots. As parts of the server were modified in the course of this
work, the original structure of the server code is briefly outlined here.

• The main.go file defines the internal and external channels for forwarding messages between
the server layers and the robots. The backend is initialised and mqtt communication is
started. As soon as the connection is established, the graphical user interface is opened so
that the map and command interface is displayed.

• The gui files specify the structure and appearance of the map and the server’s user interface.
The user interface includes a tab for initialising the robot, an automatic command tab and
a manual command tab. In each of the tabs, x, y and θ can be specified in centimetres or
degrees. Another row of tabs below shows the connected robots.

• The processing of the received data and the updating of the robot status and the map is
carried out by the server backend. It accepts several channels as input and processes the
data depending on the status of the channels. The initialisation and command messages
specified in the user interface are processed here. If the automatic command is activated,
the backend finds the robot that is closest to the specified position and sends this position
it. If a manual command is entered by the user, the message is sent to the specified robot.
When the update message is received from the robots, indicating the position and the
measured distance from the IR sensors of the ground robots, the state of the robot is
updated. The map is updated to show both the new position of the robot and the measured
distance in the form of a line from the robot to the specified distance value. The line is
generated using the Bresenham algorithm, which calculates the pixels on the line based on
the start and end position of the line in pixels. The received message is also printed on the
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terminal.

• The communication via mqtt is defined in the mqtt.go file. It contains the publish and
subscribe functions. The Subscribe function is called by the main file at the start of
communication in order to subscribe to the update message. The ThreadMqttPublish
function transfers the messages set by the backend. The adv message handler for processing
the update messages is also defined here. The message is unpacked, attached to the incoming
message channel and printed on the console.

• The parameters broker name, port, mapsize as well as gui parameters are defined in the
configuration.go file. The incoming and outgoing message types and their structure as
well as the robot status are specified in the types.go file.
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The aim of this thesis is to merge Vormdal’s camera system and Bjerke’s ultrasonic sensor system
into a single module, to establish communication with the Golang-server and to integrate an
IMU and develop a state estimation algorithm. The limitations and suggestions to improve the
systems described in the last chapter were taken into account during the design phase. The
resulting module is to be carried by a quadcopter in later projects. The problem was addressed
by first separately testing the camera and ultrasonic module described in the last section. Initial
problems encountered during this phase are described in the first section of this chapter. After the
first tests of the system were successful, their hardware was merged and the IMU was connected
to the module. The procedure and the resulting system are described in the second section.
To enable communication with the server, the current version of the robot code of the ground
robots is used as the basis for the software integration. Both Vormdal’s code and that of Bjerke’s
system were integrated into this code. The modifications to the ultrasonic sensor software, the
server connection and the camera code are presented section by section. Finally, the integration
of the IMU and the implementation of the EKF for state estimation are explained.

5.1 Separate systems - Initial problems

The first problem encountered when trying to access Bjerke’s system was determining the ap-
propriate version of Segger Embedded Studio to compile the code. The latest version of SES is
version 8.10, but it turned out that version 5.66 was used in the project. If a newer version is
used, the IDE cannot compile the code due to linking errors. This is mentioned here as a note
for those who continue this work in the future so they do not waste time configuring the code
setup.
After fixing this issue, the module was connected to the PC and the software was uploaded.
The next problem was that the calculation of the speed of sound vsound was not successful and
the system got stuck in an endless loop. It turned out that the temperature sensor (DHT22)
was not responding. This was bypassed temporarily by using a fixed value of vsound = 343 m/s
and thus disregarding the sensor. As a result the code executed without errors and the distance
measurements of the sensors could be accessed. At least all except for the upper sensor. It was
assumed that this was due to a faulty wire, so it was decided to fix this during the hardware
merge of the systems, as it was planned to replace all wires anyway.
Installing the software required for the camera and setting up Vormdal’s system was straight-
forward. The nRF Connect SDK for VS Code was used instead of SES in this case. Both the
camera and the nRF52 DK were connected to the PC via USB. After starting the camera and
nRF software in the correct order (first nRF, then camera), messages were successfully trans-
ferred between the modules. Problems occurred when capturing images of complex structures,
which caused the camera to run out of memory and crash while processing the images. There
were also occasional errors in the transmission of the line segments, which caused the camera
programme to freeze. However, as the system was working sufficiently, the merging procedure
was initiated. How these problems were resolved later is described in section 5.4.
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5.2 Hardware: Merging and resulting problems

The first step to merge the systems is to include the OpenMV Cam (and an IMU for later use)
in the case designed by Bjerke, presented in section 4 and shown in Figure 4.1. Each of the four
ultrasonic sensors has a power and ground connection to the DK, and is is accessed by an input
(trigger) pin and output (echo) pin. The DHT22 sensor is connected to power and ground and
uses a bidirectional line for data exchange.
The connection of the OpenMV Cam to the nRF52 DK used by Vormdal has been shown in Figure
4.2. It includes a power and ground connection, as well as four wires for the SPI communication:
MOSI, MISO, SCLK and SS. The wiring diagram showing the connection of the sensors to the
DK after the merging is shown in Figure 5.1.

Figure 5.1: Wiring diagram after merging the camera and ultrasonic sensor systems and including
the IMU.

The camera was mounted in the centre of Bjerke’s housing. Both the SPI connection to the
camera and the trigger inputs for the ultrasonic sensors originally used PINs 28-31 of the nRF52
DK. The trigger pins of the ultrasonic sensors were therefore moved to pins 12-15 to free up
the connection for the camera. Additionally, an IMU has been included (description in section
5.6). It was originally planned to connect it to pins 7-10 via SPI, but due to problems with
the driver implementation, it was connected via I2C and pins 26 and 27 instead. The voltage
divider on the breadboard was replaced by a card in which the resistors of the voltage divider are
soldered to the inputs (see Figure 5.2c). WAGO clamps connect the sensors and the camera to
the power supply in order to occupy fewer pins of the DK (see Figure 5.2b). The assembly of the
hardware itself was carried out by Rune Mellingseter, a technician in the electronics laboratory
of the Department of Engineering Cybernetics. An image of the modified module can be seen in
Figure 5.2.
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(a) Voltage divider card (b) Wago Clamp

(c) Modified module

Figure 5.2: New components and modified case for the quadcopter module.
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Problems

When testing the modified module, a problem with the power supply was discovered. The
ultrasonic sensors were not providing any measurement data as opposed to before the merge, so
an oscilloscope was used to test the connection. As all four sensors were not responding at all, it
was concluded that the power was the problem. Initially it was assumed that the USB connection
was not providing enough power to supply all the sensors together. Therefore, an external power
supply was connected to the Wago clamps as an interim solution. After using this for a while, it
turned out that the Wago clamps were simply not connected to the 5 V and ground pin of the
DK. Connecting them solved the problem so that an external power supply is no longer needed.
The problem with the upper ultrasonic sensor has been resolved during the merge.
There were also some problems with the new camera connection. Transmitted messages were
faulty and could not be decoded. As it turned out, the problem was due to both the ground
connection and the wires used for the SPI connection. The ground wire had a pin which was too
short on the side of the camera, so there was no contact. The other wires either had the same
problem or were not suitable for a high frequency communication link.
The problems with the temperature sensor were not solved by using new cables. The inputs and
outputs were analysed with an oscilloscope and no response signals could be detected. The sensor
is most likely defective. Methods to work around this problem by using other available sensors
are discussed az the end of chapter 5.3.

5.3 Modifications of code for ultrasound sensors

To combine the software of Bjerke’s ultrasonic sensor module, the camera and the server com-
munication, the latest version of the robot code used for the ground robots serves as basis. The
code has been modified to accommodate the quadcopter application and all the features of Bjerke
and Vormdal’s work were integrated into this code. In this section, the integration of Bjerke’s
code (i.e. Gulaker’s code) into the robot code as well as all modifications made to improve the
measurements and code structure are presented.

Integration of ultrasonic sensor code in overall system

Including the code for the ultrasonic sensors into the robot code was unproblematic as it was
based on an earlier version of it. The driver for the HC-SR04 ultrasonic sensors HC-SR04.c and
HC-SR04.h were copied to the application folder and the definition of the sensor pins was added
to the robot_config.h file. Since Bjerke uses one of the timers to measure the response of the
ultrasonic sensors, timer 2 was reassigned for this purpose. It was originally used as a generator
for the PWM signal for the ground robot’s motor, which is not used by the quadcopter. The
initialisation of the sensor pins and the start of the timer were called in the main file in Bjerke’s
code. To make the code more concise, an initialisation function HC_SR04_Init was added, which
implements this functionality and is called before the task used for the ultrasonic measurements
is started.
At the beginning of the development process, the measurements of the ultrasonic sensors were
accessed in the task_sensor_tower , as Bjerke had implemented it. However, when implement-
ing the algorithm for position estimation, the measurements were outsourced to a separate task
dedicated to this purpose. This was done due to the long measurement cycle for each ultrasonic
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sensor of up to 60 ms. Considering that four ultrasonic sensors need to be addressed, the entire
cycle is 240 ms.
The algorithm for determining the state estimate and accessing the IMU data should run at a
much higher frequency, so including the distance measurements in one of their tasks would slow
down the system and starve other tasks in the system. The starvation is caused by the need
to access the ultrasonic sensors with high priority so that the timer interrupt, which measures
the return time, can be evaluated quickly. All lower priority tasks will starve if the frequency
of the task is higher than the time required to execute the task once. By moving the ultrasonic
measurements to a separate task with a slower frequency and a priority of 4 (highest priority,
which both the IMU task and the position estimator task have), the starvation problem was
solved.
However, when testing the system, the distance measurements were still very noisy and numer-
ous invalid values were received. Initially, it was suspected that there was a problem with the
measurement frequency, causing the signals to interfere with each other. After testing various
settings and seeing no improvement in performance, an attempt was made to give the task a
higher priority, in this case 5. This fixed the invalid measurements so that they could be accessed
reliably. A description of the tests evaluating these conditions is given in the next chapter 6.

Measurement functions

In Bjerke’s version of the code, the ultrasonic measurements are accessed by calling a
getDistance function, which is defined individually for each of the 4 ultrasonic sensors. The
functions are called one after the other with a delay between the individual measurements. The
delay is necessary to ensure that the sound waves decay before a new measurement is started.
Since the four functions implement exactly the same thing for each sensor and only control
different pins, they have been replaced by a single function that receives the trigger pin, the
echo pin and the data pointer for the results as input.
While the original functions returned an 8-bit integer value, the new function getDistance
returns the structure ultrasonic_distance_t that contains both the floating point distance value
and a valid bit (see Table 5.1). The data is invalid if it takes too long to register the reflected
signal. This is the case if the object in front of the ultrasound is more than 4 m away or if the
sound hits the object at an angle so that the signal is reflected in a different direction. The
result is also invalid if the resulting distance is less than 2 cm according to the specification of
the sensor [9].

ultrasonic_distance_t float distance

bool valid

ultrasonic_data_t ultrasonic_distance_t front

ultrasonic_distance_t left

ultrasonic_distance_t right

ultrasonic_distance_t top

Table 5.1: Data structures for saving distance measurements.

Another function getUltrasonicData has been added that calls the getDistance function
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Figure 5.3: Distances between sensors and camera origin.

for all sensors in a row with a delay of 10 ms in between and saves the result in another data
structure ultrasonic_data_t. In addition, the distance of each ultrasonic sensor to the centre
of the camera lens is added to the measurements so that they refer to a common origin point
(see Figure 5.3). The value of the distance measurements is also stored in a local static variable
and protected with a mutex during the write process. Each task can access this variable by
calling the getDistanceMeasurement function. This way, the value can be updated by a task
that calls the getUltrasonicData function (in our case, the task_distance_meas) and by
another task that accesses the measurement using the getDistanceMeasurement function (e.g
the task_pose_estimator).

Integration of Timer

Before implementing a separate task for distance measurement, an attempt was made to address
the ultrasonic sensor via a timer with a fixed frequency. At that time, it was assumed that the
20 Hz measurement frequency mentioned in Bjerke’s report would apply to each sensor individ-
ually, not to all sensors together. As this did not work, the code was discarded, but as it took
some time to implement, it is mentioned in this section.
Timer 3 was configured to run at a frequency of 500 kHz, which corresponds to one tick every
2 µs. To do this, the prescaler register is set to 5 so that the timer base frequency of 16 MHz is
divided by 25. To obtain a measurement frequency of 20 Hz per distance sensor, the timer must
be reset after 25000 counts. Since the sensors use the same timer to measure the return time of
the sound wave, they are started at different intervals. Therefore, four capture compare registers
are set to 6250, 12500, 18750 and 25000 so that the four distance measurements (front, left, right,
top) start at equal intervals (25000/4 = 6250). When the timer reaches the counter reading of a
comparison register, a flag is set in the timer interrupt handler and the distance measurement is
executed.
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Speed of sound

As mentioned in section 5.1 and 5.2, the temperature sensor for calculating the speed of sound did
not work. As a temporary solution, the default value of vsound = 343 m/s at room temperature
is used instead, but it is questionable whether this can be a permanent solution. Table 5.2
shows how strongly the distance measurements are influenced by a change in temperature. The
distance difference itself is about 4 cm at a maximum distance of about 4 m when the temperature
is changed from 16 to 22 °C. This is quite a long distance considering that these measurements
are used as a positional reference for mapping a structure. However, it can be assumed that the
temperature value in an indoor space is relatively constant, so the fixed value can be adjusted
accordingly.

Temperature Speed of sound Distance [m] Distance [m] Distance [m]
[°C] [m/s] treturn = 23 ms treturn = 10 ms treturn = 4 ms
16 341.096 3.923 1.705 0.682
19 342.914 3.944 1.715 0.685
22 344.732 3.964 1.724 0.689

Table 5.2: Speed of sound and distance values for specified signal return times at temperatures
between 16 and 22 °C. The calculations are based on equation 4.1 and 3.1 and a
humidity of HT = 0 g/m3.

The IMU and the nRF52 itself also contain a temperature sensor, but this is merely used to
measure the die temperature of the chip. They are therefore only relative sensors that measure
the temperature difference and not the absolute temperature. They have an accuracy of about
±5°C, which makes them unsuitable for our purpose. No new sensor has been purchased yet, so
the code is working with the fixed value for now. If another sensor of type DHT22 is used in
the future, the variable DHT_ACTIVE can be set in the robot_config.c file to use the original
temperature measurement procedure.

5.4 Modifications of camera

As described in the section 4.2, the camera code is divided into two systems. One part of the
code (OpenMV code) executes image processing software on the camera itself, while the other is
the driver that connects the camera module to the nRF52 and processes the data locally. The
camera driver was developed with the nRF Connect SDK and not with SES. As the systems are
based on different operating systems and libraries, the driver could not be integrated directly
with the robot code. The setup of the new driver and the changes made to the communication
and structure of Vormdal’s code to integrate the system with the server are presented in this
section.

5.4.1 Driver setup in SES

The camera driver initialises the SPI connection with the camera and defines the communication
procedure. When designing the new driver in SES, the original communication sequence which
was presented in Figure 4.3 was first implemented. The spi connection with the camera is defined
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by the driver spi.c and spi.h , which uses the library nrfx_spim.h . Here, an initialisation
function specifies the parameters of the connection, e.g. the pins used, the spi mode and the
transmission frequency. These parameters were adopted from the previous driver.
A transmission data buffer and a receive data buffer are required for sending messages with the
nrfx driver. Data transmission is implemented in the spi_transmit function, which copies the
command to the transmit buffer and sends it to the slave. If the transmission is not successful,
an error message is issued. Incoming messages are processed by the spim_event_handler. If
the receive data buffer contains data, it is printed for debugging purposes and the function
camera_message_receive for decoding the message is called. During the first task setup using
the new spi driver, no changes had to be made to the OpenMV-code and the messages could be
transmitted successfully. However, the errors in the original version have not been resolved.

5.4.2 Integration into system

Having added the camera driver to the quadcopter code in SES and achieved the same perfor-
mance as Vormdal’s version with nRF Connect, plans were made on how to integrate the camera
with the server and the other tasks of the system. Since the camera is not similar to any of the
existing tasks in the robot code, a new FreeRTOS task called camera_mapping was designed.
The task has a priority of 2, as the mapping is not safety-critical.

Inputs

The camera expects a position command, which is needed to calculate the global coordinates of
the pixels. Therefore, the input of the task must be the current position of the module. Vormdal
used fixed position strings, as communication with a server or distance sensors were not integrated
at that time. This is not the case in this project, so two ways of determining the position have
been implemented.
The first version uses the current estimated pose from the task_pose_estimator , which is
constantly updated. To avoid interference with the estimation task, a mutex is used when reading
the data. The other option is to use a command sent by the server that returns the x, y values. The
z coordinate is obtained from the position estimate, which corresponds directly to the measured
distance of the upper ultrasonic sensor. The direction θ is set to a fixed value in the code. Later,
a third mode was implemented that uses the server command to trigger a record message but
uses the state estimate from the estimator task.
The resulting position is then transformed to the camera’s coordinate system by swapping the x
and y coordinate. The capture command that is sent to the camera is generated by rounding the
floating point values of the position, converting them into a character string and concatenating
the character strings. The resulting message format is "CAP x, y, z, theta".
If the current estimate is used, the camera automatically captures new images once it has finished
processing the previous one. When the server is used, the camera waits for the next message
from the server in the meantime.

Output

After receiving the position, the camera takes a snapshot of the area under the module and
processes it to extract the line segments of the image. The global coordinates of the start and
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end pixels of each line are calculated based on the transferred position. If the recorded structure
is a maze, the position of the labyrinth walls is determined in this way. The extracted lines are
sent back to the camera_mapping task.
In the previous version of the code, the driver only printed each line message on the console.
Here we want to send the lines to the server so that it can add them to the map created by the
ground robots. Therefore, the output of the camera task is an MQTT-SN message containing
the coordinates of each received line.
Initially, this was implemented by counting the received line messages and storing them in a
buffer. When the expected number of lines is captured, the bundle is sent together to the server.
This has been changed as the buffer has a limited size and it is easier to send the messages directly
after receiving each line individually. However, the buffer structure is retained in the code so
that it can be used in future work if required. Before the line is transmitted, the coordinates are
transformed back into the module’s coordinate system.

Task Setup

The camera_mapping task first initialises the SPI connection. Depending on the mode used,
either the current position is transmitted continuously or a run command is transferred until a
new position arrives from the server. In continuous mode, the camera accesses a queue to wait
until the pose estimation is ready at the start of the task. The task must transmit messages
regularly, otherwise the slave cannot respond with data. The communication structure for both
operating modes is shown in Figure 5.4 and explained in the next section.

5.4.3 Modification of communication structure

In order to enable error-free communication with the camera and improve the performance of the
system, adjustments had to be made to the driver structure and the OpenMV code (as illustrated
in Figure 5.4). The reasons for the changes are explained in this section.

Modified communication structure

To resolve the errors that occur during communication with the camera, the communication
procedure has been adapted. As shown in Figure 4.3, the camera responds with a REC message
upon receiving the record command, and the driver goes into wait mode and sends idle messages
(don’t care). The problem that led to occasional system crashes was that the REC message
interfered with the LIN messages, so that the first line message could not be processed by the
driver and the next record command was not sent. The camera expects a new valid command
shortly after sending the last line message, and if this does not arrive, the system crashes. The
fault must have been a problem with remaining data in the transmission buffers. As this problem
could not be resolved, it was decided to remove the REC response.
As a result, the waiting mode was removed and the capture messages are transmitted continu-
ously. The link between the capture command and the received line message is established by a
change in the line message format. The new format contains the position string from the capture
command. The resulting message is "x1, y1, x2, y2, plin, xpos, ypos, zpos, θpos", where p is the
line angle Φ. As the SPI transmission is fast, the few additional bytes do not affect the time
specifications and only the buffer size for incoming messages needs to be adjusted. Due to the
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(a) Communication setup when position estimate from pose estimator task is used.

(b) Communication setup when position is send from the server.

Figure 5.4: New communication setup between server (left), nRF52 (centre) and OpenMV Cam
(right) using either the estimated pose (5.4a) or the command message from the
server (5.4b). The dark blue arrows indicate the progress of time. The operations
performed on each system are described next to the blue arrows, and the messages
sent between the components are shown in light blue (server messages), green (run
message), yellow and grey (capture commands) and orange (line messages). The
yellow capture command is highlighted in contrast to the grey ones, as it is the one
to which the camera responds.

41



Chapter 5. Implementation

stable communication, the delay between the transmitted messages could also be reduced from
100 ms to 50 ms.
When using the position estimate as a position source, it makes sense to send the recording
command continuously with an updated position. In this way, there are no delays in the system
and the camera always works with the latest position. This structure is shown in Figure 5.4a.
When using the position sent by the server, the camera only needs to take snapshots when such
a message arrives. In the meantime, it should remain in a standby state. As described above,
errors occur if no valid message is sent to the camera. Therefore, the RUN message had to be
added. It is similar to the "Don’t Care" message, but the OpenMV code has been adapted to
recognise it and loop while waiting for the next capture command. A capture message is sent
until all processed line messages have been received. It is then replaced by the RUN message
until a new server command arrives. The resulting new communication structure is shown in
Figure 5.4b.

Modifications of OpenMV-code

These changes also led to changes to the OpenMV code. However, these only affect the commu-
nication structure. The image processing methods such as line extraction, matching and merging
have not been modified.

• As described above, the OpenMV code has been adapted so that it accepts the RUN
message. A local run variable is set here to ensure that the main loop does not get stuck.

• The changed format of the line message leads to an increase of the transmission buffer size.
The position from the capture message is appended to the line message by concatenating
the character strings of the values.

• In the original version, the image sensor is calibrated before each image is captured. Pa-
rameters such as the pixel format, image size, contrast and brightness are set. To avoid
delaying the operation, the function is called when waiting for a new command.

• As the system is likely to move during the process, the image must be taken as soon as
possible after receiving the position report for the position to remain valid. The original
code calculated offsets and parameters before a snapshot was taken, causing a significant
delay of about 2 s. This has been corrected so that the image is captured before any other
processing begins, reducing the delay a little.

• When sending the line messages, the code inserted delays of 100 ms between each line and
1000 ms after sending all lines. These delays are halved to reduce the overhead.

• In the original version, an offset was added to the camera position, which was used to test
the design. This was set to zero as the transferred position refers to the centre of the camera
lens.

5.5 Modifications of server connection

The connection to the Golang-server via MQTT-SN/thread has already been established in the
robot code that serves as the basis for this project. The new goal is to display the line segments
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extracted from the image captured by the camera at the correct position on the map. The other
ground robots will publish their data on the same server and the map will take their data and
the quadcopter’s lines into account when creating the map. The task_mqttsn has barely been
changed, only the topics and message formats have been adapted. The server’s backend and mqtt
message processing were modified to handle both the ground robot messages and the new line
messages. To enable communication with the server, the hardware had to be set up in the right
way.

Hardware setup

The hardware for the connection to the server consists of the Raspberry Pi Model 3B+ and the
nRF52840 USB dongle. When in range of the WiFi generated by the Raspberry, it is possible to
connect to it using the credentials given in the Table 4.1. If the setup used by the ground robots
(Pi1) is available, the server will find the broker and can run without any problems. As this
was not always the case, the Raspberry Pi (Pi2) configured by Gulaker served as a substitute.
While Pi1 configured the broker address as 127.0.0.1, Pi2 connects to the IP 137.135.83.127.
By changing the file /etc/paho-mqtt-sn-gateway.conf on the Raspberry Pi, the IP can be
adjusted, but the password used to connect to Pi2 has been lost. To avoid resetting the Pi2, the
host file C:\Windows\System32\drivers\etc\hosts can be edited under Windows. If the line
"137.135.83.127 slam" is inserted, the server connects to the correct broker. Alternatively, the
server configuration file can also be changed. The variable Broker must then be set to this IP.

MQTT-SN task and communication

The mqtt-sn task manages the connection to the server. Essentially, the task searches for
an open gateway, topics are registered and subscribed to. The topic names, the associ-
ated message format and the message ID are defined in the task header file. The function
mqttsn_client_is_connected can be called by other tasks to check whether the gateway has
been found and communication is ready. The publish_update function can be used to send a
position update message to the server and the publish_line function to send a line message to
the server. The line message was implemented by Andersen, a former student working on the
ground robots [1]. Although other topics are also registered by the task_mqttsn , they are not yet
recognised by the Golang-server. The only outgoing messages from the server are the controller
and initialisation messages. They can be accessed by accessing the corresponding queue, which
is found by calling the function get_queue_handle.
As described in the previous section, the controller message is used by the server to send a posi-
tion string to the camera_mapping task. This is done in the server’s graphical user interface by
opening the Manual tab and specifying the desired position. For this purpose, a new command
topic command_topic_cam is defined in the robot_config file using the line topic identifier
and added to the initialisation procedure of the task_mqttsn . The camera driver accesses the
command topic queue to see if there are any new messages. The publish_update function is
used by the ground robots to send their measurements to the server. This topic was initially
reused by the quadcopter code to send the ultrasonic sensor data to the server and debug the
sensors instead of printing the values on the debugging console in SES. In the final version of
the code, the estimated position is transmitted via this message. To send the line messages to
the server, the topic and message format defined by Andersen has been changed (see new format
in Table 5.3). The publish_line function is called when each line segment is received from the
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camera.

Datatype Value Number of bytes

uint8_t identifier 1

int16_t xdelta 2

int16_t ydelta 2

int16_t thetadelta 2

coordinate_t startPoint 4

coordinate_t endPoint 4

int16_t thetaLine 2

Table 5.3: Format of the line message: The 1-byte message identifier (0x04) is followed by the
pose data at which the image was captured (x, y, θ). The start and end points of
the line messages both contain the int16 x and y value of the associated point. The
angle Φ of the line (thetaLine) is transmitted by the camera and is therefore also
included in the line message. The angles are transmitted in degrees, the coordinates
in centimetres.

Server code

The Golang-server code described in section 4.3 had to be adapted to process the line message.
The processing of the update message was used as a reference for the implementation, as the
procedure is comparable. The changes to the original code are listed here:

• A data structure has been added to the types.go file that specifies the format of the line
message.

• A lineMsgUnpacking structure has been added to the mqtt.go file, which specifies the
number of bits for each element of the line message. The lineMessageHandler unpacks
the message, saves it in the lineMsg structure and prints the received line on the server’s
terminal. The subscribe function has also been modified. In addition to the update message,
it takes a lineMsg channel as input, subscribes to the line message topic and specifies its
handler. The successful subscription is displayed on the terminal.

• The line message is processed in the backend.go file. It is added as input for the
ThreadBackend. The first line message registered by the server enables the initialisation
of the position offset. After initialisation, it is possible to send update messages to this
topic. The position of all lines that are received afterwards are displayed relative to the
initialised position. The display on the map is done using a modified version of the existing
addLineToMap function. The map indices (pixels) of the start and end points are calculated
and the already implemented Bresenham algorithm is used to calculate the point positions
that characterise the entire line. The resulting points are printed on the map as obstacles
in black colour.

• The main.go file initiates the lineMsg channel. It is included when the ThreadBackend
and Subscribe functions are called.
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The procedure for accessing the server is not altered: When the server code is executed, the
graphical user interface and the terminal in which the received messages are displayed will open.
When the quadcopter publishes messages on the update or line topic, the initialisation of the
robot position for these topics is activated. The robot is added to the map and updated when
new messages are received. A control message can be sent to the robot by selecting the "Manual"
tab and specifying the topic. The x, y position may be set in the corresponding fields and will
be transmitted to the robot.

5.6 Integration of IMU

By establishing the connection with the server, the process of hardware and software merg-
ing between of ultrasonic sensor module, the camera and the Golang-server has been com-
pleted. In order to obtain the correct position of the module and the image lines, the ultra-
sonic sensor data needs to be processed and a measure of orientation must be added to the
system. The orientation is obtained by integrating the ICM-20948 Inertial Measurement Unit
into the quadcopter module. This IMU was already used by the ground robots, so the connec-
tion was partly provided by the files ICM_20948.c , ICM_20948.h , ICM_20948_ENUMERATIONS.h
and ICM_20948_REGISTERS.h . As part of the expansion with additional functions, these files
were modified and the file ICM_20948_DMP.h was added. The connection to the IMU and the
implemented options for retrieving and processing the data are described in this section.

5.6.1 Reused functions

The original driver for the IMU provided the I2C connection (i2c.c and i2c.h) as well as read
and write functions for initialising the IMU registers and accessing the gyroscope and accelerom-
eter data registers. The gyroscope provides the angular velocity around the x, y and z axes of
the module and the accelerometer provides the acceleration along the three axes (see Figure 5.5).
The connection of the IMU and the processing of the raw measurement data was adapted for the
quadcopter.

Figure 5.5: Polarity of axes for gyroscope and accelerometer of the ICM-20948 module [12].
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Connection

The original plan was to connect the IMU to the nRF52 DK via SPI. Due to problems with the
integration of the SPI driver for the IMU and the realisation that an I2C driver for this IMU is
already included in the robot code, the connection interface was changed to I2C. Pin 27 of the
DK is connected to the SCL line and pin 26 to SDA (see circuit diagram 5.1). As these are the
same pins that are used to connect the IMU in the ground robots, the addressing in the code did
not have to be changed. Only structural changes were made to the I2C driver, such as adjusting
the buffer lengths, moving the pin definitions to the robot_config file and removing obsolete
functions from the header file.

Raw Measurement Data

The ground robots use the raw data from the gyroscope and accelerometer to determine the pose
of the robot. The IMU was therefore included in the task_pose_estimator.c file. In the code
of the quadcopter, a separate task called task_imu_data was defined for this purpose. During
the development process, three modes for accessing the IMU data were integrated.
The first mode is more or less identical to the already existing procedure and uses the originally
given functions. The IMU is initialised by selecting the clock source, activating the raw data
interrupt, configuring the accelerometer and gyroscope and activating the low-pass filters for the
sensor data. The sampling rates and scales for the sensors were experimented with, but otherwise
no changes were made to the initialisation function.
Before the sensor data is analysed, the IMU is calibrated. One thousand samples of the x, y and
z acceleration and gyroscope data are summed up. The average is calculated and saved as an
offset. When the calibration is complete, the estimator task is notified by a queue message and
the normal operation of the IMU is resumed. Each time a new sample is ready, the offset is
subtracted from the data and the result is filtered using a window function, setting values below
a threshold to zero. This is done to reduce the drift of the module. Different values for the
threshold of the window function are tested and compared in chapter 6. The result is stored in a
local variable that can be accessed via functions defined in the file ICM_20948.c and is protected
with a mutex. In addition, the gyroscope data is multiplied by the sampling period, converted
into radians and added to the sum of the previous values. The result represents the angle relative
to the stationary position during calibration. The task is configured to run at a period of 40 ticks
(≈ 40 ms).
One disadvantage of using these raw measurements is that the data must be read at a sufficient
frequency. If the frequency is lower than the sampling rate set when initialising the sensors, data
is skipped and the orientation estimate loses precision. In addition to the lack of accuracy, the
drift of the IMU is also a major problem when precise orientation data is required. Another
problem encountered during the implementation of the state estimation task is that the tasks
interfere with each other. When the priority of the distance measurement task was increased to
5 to ensure accurate distance data was obtained, it was observed that the calculated heading was
incorrect. The task_imu_data has a priority of 4, but when this is also increased, the distance
measurements again lose precision. To overcome this problem, other options for accessing the
IMU data were investigated. The IMU datasheet mentions an internal processor, the DMP, which
uses a FIFO buffer and it was decided to test this.
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5.6.2 Digital Motion Processor

The Digital Motion Processor (DMP) is a processor embedded in the ICM-20948 that is used
for "offloading computation of motion processing algorithms from the host processor" [12]. It
calibrates the accelerometer and gyroscope in the background and can process the data to pro-
vide quaternions. The results of the DMP can be accessed via the FIFO buffer registers. This
method is being investigated because a high-frequency measurement method is advantageous
when integrating the data to obtain the orientation from an IMU. The use of the FIFO buffer
also enables the data to be accessed at a lower frequency which might solve the problem with
the task interference. Access to quaternion data has also aroused interest, as many orientation
calculations are based on quaternions or Euler angles. How exactly the processing is implemented
and which algorithms are used by the internal processor is unfortunately not mentioned in the
datasheet, but curiosity demanded that this method should be examined further.
The DMP has not yet been implemented, which is probably due to the very poor documenta-
tion. Although the existence and benefits of the DMP are mentioned in the IMU datasheet,
the registers and memory files needed to configure the DMP are not provided. The manufac-
turer Ivensense provides an implementation of the DMP, but it is very difficult to follow and
cannot be used without serious adaptations to the environment. As this problem is known, sev-
eral users have uploaded a simplified version of the DMP configuration to GitHub. The version
provided by SparkFun [21] includes partial support for the DMP. The DMP has been integrated
into the quadcopter code by implementing the necessary functions from the SparkFun library
while translating them from C++ to C. The functions are added to the file ICM_20948.c and
the data structures and variables for accessing the registers of the DMP are given by the file
ICM_20948_DMP.h provided by the library. The most important functions are briefly described
here:

DMP Initialization The initialisation function was translated directly from the library. It is quite
complex and several other functions had to be implemented to configure specific elements
of the sensor. In addition to selecting the clock source and configuring the interrupts, the
accelerometer and gyroscope are activated and their sampling rate is configured. The DMP
firmware is loaded by copying the binary data of the file icm20948_img.dmp3a.h into the
memory of the IMU. The gyroscope and accelerometer scale is set in the DMP’s internal
memory, as are other parameters for configuring the sensors.

Enable Sensors This function selects which sensors are activated and what type of data should
be published in the FIFO buffer. The options include the compass, the gyroscope, the
accelerometer, the game rotation vector and the orientation sensor. The game rotation
vector and the orientation sensor provide quaternions. The memory registers for data
output control, data ready status and control memory registers are set.

DMP Setup This is the function used to initiate the IMU with the DMP. The I2C driver and the
DMP are initialised, the acceleration sensor and the gyroscope or the game rotation vector
sensor are activated. The respective sensor period is selected and the FIFO and DMP are
activated and reset.

Read data If the DMP is properly initialised and the sensors are activated, the data can be read
from the FIFO buffer. The FIFO count register is examined to determine whether data
is present. The type of data provided is specified by the header, the first element in the
FIFO. For some sensors, the accuracy of the sensors and the calibration data are included.
The function saves the data provided in a data structure and sets a flag if further data is
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available in the buffer.

Process output Quaternions are retrieved when the game rotation vector or the orientation
sensor is activated. This function calculates the Euler angles from the quaternions using
the equation 2.24 and returns the result in a data structure.

Integration in IMU Data task

As already mentioned, 3 different modes for accessing the IMU data were implemented in the
task. The first mode was described in the previous section, the other two modes use the data
provided by the DMP. While the second mode accesses the acceleration and gyroscope data
published by the DMP, the third mode uses the orientation sensor to work with the processed
data in form of Euler angles.
Instead of the IMU_Init function, the DMP_Setup function is used to configure the sensors. If the
second mode is used, the offset value of the acceleration and gyroscope data is calculated in the
same way as in the first mode, except that the FIFO buffer is accessed and the values are read
until the buffer is empty. The same applies to the normal operation. The data is saved and can
be accessed in the same way as in the first mode.
The third mode uses a different method, as the angles are returned instead of the angular velocity.
The system waits until the results are stable and the resulting values are stored as an offset. The
acquisition of the values is unproblematic, but the results are erroneous. Although angle values
are returned and the drift of the angles is within an acceptable range, the system does not scale
them correctly. If only the yaw angle is analysed, rotating the module by 90° results in an angular
change of about 55°. A further rotation of 90° results in a change of 120°. The roll value also
changes if the module is only rotated in the x, y plane, which should not happen. Due to the
lack of documentation, it is difficult to find the source of the error. Since only the heading θ is
needed and roll and pitch are assumed to be zero, the Euler angles are not necessarily needed,
so this mode is disregarded when implementing the pose estimator and the second option is used
instead.

5.7 State Estimation

The integration of the IMU provides access to a measure of the orientation and the change in
position. Together with the distance of the ultrasonic sensors, the results are used to estimate
the pose of the module. The estimation is performed using an extended Kalman filter, which was
developed in Matlab and later integrated into the task_pose_estimator . The resulting pose
is sent to the server and used by the camera to calculate the global position of the extracted
lines.

When designing the filter the ideas suggested by Gulaker in as were described in section 4.1
were taken into account. The angular dependency of the ultrasound sensors ware problematic,
as the ultrasonic distance is only valid for a measurement angle of ±15 degrees. This means that
if the sensor is not aimed straight at a wall, the measurements are distorted. This effect was
only discovered during the tests of the first version of the filter. The results were too noisy and
the filter simply could not work with the distance data in this way. The filter was therefore
revised and a different model, which is described here, was implemented. It is very limited by
the requirement that the ultrasonic measurements are only used when the estimated angle is
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between -10° to 10°, 80° to 100°, -80° to -100° and -170° to 170°. This requires a rectangular
room structure. The calibration must be carried out with a direct, straight gaze at a wall, so that
the angle is correctly initialized at zero degrees. The estimation of the angle must also be very
precise in order for this model to work. The acceleration data serves as a backup if the distance
values are compromised and to improve the estimate.
The resulting model is described in the next section. This is followed by a description of the
implementation process and the structure of the task_pose_estimator .

(a) x, y, θ orientation of the pose. (b) z orientation.

Figure 5.6: Pose of the quadcopter.

5.7.1 Model

The state of the system provides a measure of the position x, y, z and the heading θ of the
quadcopter (see Figure 5.6). As Gulaker suggested before, roll and pitch of the module are
neglected and assumed to be zero. The acceleration data is used to determine the change in
position and must be integrated twice. Therefore, the velocities vx, vy, vz and the angular velocity
vθ were added to the state variables. The resulting linear motion model is given in equation 5.1.

xkxkxk =



xk

yk

zk

θk

vx,k

vy,k

vz,k

vθ,k



=



1 0 0 0 dt 0 0 0

0 1 0 0 0 dt 0 0

0 0 1 0 0 0 dt 0

0 0 0 1 0 0 0 dt

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

FFF k−1

xxxk−1 +wwwk (5.1)

The variable dt is the rate of the estimation task. If the angle is fed into the system instead of
the angular velocity, the value in row 4, column 8 must be set to zero.
The observations of the systems include the acceleration ax, ay, az, the angle or angular ve-
locity gx and the distance from the module to the front, left, right and top (or bottom)
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dfront, dleft, dright, dtop. It is assumed that the distances refer to a common point on the mod-
ule and that they are zero if the measurement angle is not within the valid range. The pose is
estimated relative to the origin (0,0,0,0). The distance values from the origin position are given
by dfront, o, dright, o, dleft, o and dback, o. Even if the distance measurements are only valid within
a narrow angular range, the angle still has an effect on the recorded distance. This has been
incorporated into the resulting observation model

yyyk =



ax,k

ay,k

az,k

gx,k

dleft,k
dfront,k
dright,k
dtop,k


=



vx,k

vy,k

vz,k

vθ,k

lleft(xk, yk, θk, do)
lfront(xk, yk, θk, do)
lright(xk, yk, θk, do)

z


+nnnk (5.2)

where

lleft(xk, yk, θk, do) =



(dfront, o − x) sin θ −100 < θ < −80
(dleft, o − y) cos θ −10 < θ < 10
(dback, o + x) sin θ 80 < θ < 100
(dright, o + y) cos θ 170 > θ < −170
0 otherwise

(5.3)

lfront(xk, yk, θk, do) =



(dright, o + y) sin θ −100 < θ < −80
(dfront, o − x) cos θ −10 < θ < 10
(dleft, o − y) sin θ 80 < θ < 100
(dback, o + x) cos θ 170 > θ < −170
0 otherwise

(5.4)

lback(xk, yk, θk, do) = lfront(xk, yk, θk − 180, do) (5.5)
lright(xk, yk, θk, do) = lleft(xk, yk, θk − 180, do). (5.6)

5.7.2 Extended Kalman Filter

Since the observation model is non-linear, the extended Kalman filter algorithm has been used to
update the state of the system. The observation model is linearised by calculating its derivative
with respect to the current state xxx. The resulting Jacobian matrix is:
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GGGk =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
∂lleft
∂x

∂lleft
∂y 0 ∂lleft

∂θ 0 0 0 0
∂lfront

∂x
∂lfront

∂y 0 ∂lfront
∂θ 0 0 0 0

∂lright
∂x

∂lright
∂y 0 ∂lright

∂θ 0 0 0 0

0 0 1 0 0 0 0 0



(5.7)

Based on these equations, the EKF was initially implemented in MatLab. The system was tested
with measurement data obtained from a log file generated with the J-Link RTT Viewer. Once
the desired performance was achieved, the algorithm was translated into C and implemented in
the ekf.c and ekf.h files. The C code is based on the extended Kalman filter functions used in
the robot code, but has been modified to reflect the new model.
When initialising the Kalman filter, the constant matrices QQQ,RRR and FFF k−1 as well as the constant
part of the GGGk matrix are defined. The variance matrices QQQ and RRR contain variances www and nnn on
their diagonal, which were adjusted during the tests of the system. The initial uncertainty PPP is
initialised as an identity matrix, all other matrices and vectors, including the pose, are initialised
with zeros. When the algorithm is executed, it is split into two parts:
The first part calculates the predicted state x̌xxk using the motion model FFF k−1 (5.1) and the
equation 2.15. The second part is based on the observations. The expected measurements and
their derivatives are calculated as a function of the angle θ̌k predicted in the first step. The
measured distances yyyk are filtered in the same way, so that they are zero, when the angle is out
of their measurement range. As soon as the predicted measurement and GGGk are set, the Kalman
gain is calculated. To determine the inverse, an algorithm is used that decomposes the Cholesky
matrix and back-substitutes the corresponding vector which was provided by the robot code.
Finally, the predicted state and its covariance are determined with the equation 2.18 using the
measured distance, the estimated distance and the Jacobian of the observation model GGGk.

5.7.3 Integration in the system

The EKF is integrated into the task_pose_estimator . It communicates with the other tasks in
the system via queues and uses sempahores when it accesses shared resources. When the task is
initialised, the EKF is initiated and the pose estimate is set to zero. As the filter cannot work
without the IMU data, it waits for the IMU calibration to be completed. In the meantime, the
origin distance dddo is determined by averaging the distance samples from the ultrasonic sensors.
As there is no sensor pointing to the back of the module, only 3 out of 4 origin distances can be
calculated.
As soon as the IMU has signalled that the data is ready via a queue, the state estimator checks
whether the connection to the server has been established. If this is not the case, the task waits.
If the connection to the gateway is established, the task notifies the camera_mapping task that
valid pose estimates are arriving and begins with the estimation.
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The task accesses the current samples of the ultrasound measurements dfront, dleft, dright, dtop. As
described in section 5.3, the distance data is already transformed to refer to the centre of the
camera lens, so no additional transformation is required here. A mutex is set before the data is
read in order to prevent interference with other tasks. If the measured angle is in the range of
90° or -90°, the ultrasonic data provided is used to determine the distance of the back from the
origin dback,o using the equation 5.8. Before entering the data into the Kalman filter, it is filtered
so that the previously determined distance is used if the data obtained is invalid.

dback,o = (dright,k + dleft,k) cos (90− θ)− dfront,o (5.8)

The acceleration data, the raw data from the gyroscope and the angle supplied by the
task_imu_data are retrieved in the same way. As the acceleration data has not been pre-
processed, it is multiplied by the sampling period of the state estimator and by the gravity
constant g = 9.81 m/s2. The result is added to the current velocity estimate to obtain the cur-
rent velocity input for the Kalman filter ax, ay, az. The angle or angular velocity (gx) has already
been processed in the task_imu_data , so these are not processed further.
The resulting measurement data is passed to the EKF which returns the pose estimate. The
estimate is stored in a variable so that the camera task can access it, and the position is sent to
the server every 20 cycles to update the map. The message uses the update topic as the line topic
is used by the camera_mapping task and the messages should be separated for now to better
analyse the system.
The task_pose_estimator has a priority of 4 and a period of 40 ticks which corresponds to a
frequency of approximately 25 Hz.
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This chapter analyses the quality of the state estimation algorithm and the accuracy of the
mapping. To achieve the best result, the sensor processing was optimised first. In the first
section of this chapter, the performance of the ultrasonic sensors is presented for different system
settings and sampling rates. It also looks at how the measurements behave when they are angled
towards a wall, as this had a significant impact on the design phase of the Kalman filter. The
precision of the IMU sensor in relation to the angle measurements is then examined, comparing
the different modes implemented as part of this work. The state estimation algorithm is evaluated
based on the optimal parameters determined during these tests. Subsequently, the line extraction
of the camera is tested in a stationary environment to see how well the mapping works under
optimal conditions. This chapter is concluded by showing how the mapping performs in a real
environment using the pose estimate.

6.1 Ultrasound sensors

The ultrasonic sensors are used to determine the distance to the module’s surroundings. The
highest possible accuracy should be achieved so that the extended Kalman filter can generate a
good estimate of the position of the quadcopter. The settings of the distance_meas task, which
include the frequency of the measurements and the priority of the task, as well as the delay
between consecutive measurements by different sensors, were analysed in the following tests.
The system was tested in terms of accuracy and reliability.

Measurement frequency and delay

First of all, it was necessary to determine the optimal measuring frequency of the ultrasonic
sensors. If the frequency is too low, the positioning system cannot work with the latest data,
which greatly affects the performance of the overall system. If the frequency is too high, the
measurements obtained may be invalid because the sound has not yet decayed before a new
measurement is started. The data sheet for the HC-SR04 sensors specifies the measurement
duration of 60 ms for one sensor. As there are four sensors, the time period for the distance
measurement task can be set to 240 ms or 250 ms to simplify the calculations. The time a
measurement takes varies as it depends on the distance the sound signal has to travel. During the
implementation phase, an attempt was made to incorporate a timer that starts the measurements
at a regular interval. This failed as it was assumed at this stage that the 16 measurements
per second corresponded to 16 measurements per sensor and not for all four sensors together.
However, by adding a delay between the completion of one measurement and the start of the next,
the same performance should be achieved as long as there is sufficient time for all measurements
to be completed within the tasks duration. For the test, the module was placed in a box and
all four sensors were activated. The length of the delay was varied and the results from the left
sensor are given in Figure 6.1.

With a delay of 1 ms, the distance fluctuates between 22.36 cm and 23.65 cm. The maximum
error during the measurement period is 1.45 cm. If the delay is increased to 2 ms, the average
error decreases, but some outliers can still be recognised. The delay of 5 ms provides good results
with a maximum error of 0.16 cm.
If the delay is increased to a very high value such as 40 ms, the performance decreases again as
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Figure 6.1: Distance of the left ultrasonic sensor with a delay of 1 ms (blue), 2 ms (red) and 5 ms
(yellow) to previous measurements. The frequency of the task is 250 ms, so that 240
measurements were recorded during the period of 1 minute. The task is not scheduled
with other tasks.

the tasks period is 250 ms and therefore most of the time is spent waiting. In the tested scenario,
the walls were very close to the distance sensor, so the return time was quite fast. If the system
is tested in a larger environment, the performance will probably already decrease at lower delays.
Therefore, the delay of 5 ms was chosen.

Angle

The next step was to investigate the effect that occurs when the sound signal hits the wall at an
angle. The measured distance, the actual distance and the error are shown in the Table 6.1. The
task duration is 250 ms and the measurement delay is 5 ms. Although all sensors were accessed,
only the data from the front ultrasonic sensor is analysed here. It can be seen that the error
gets worse with increasing angle and reaches a maximum of 3 cm at 45°. The variance of the
measurements is also highest at this angle. At 70° to 90°, the variance is rather high in as well,
even though the average error is very low. So, there does not seems to be a specific correlation
between variance of the measurements and the angle.

0° 10° 20° 45° 70° 80° 90°

dreal 27 27.5 28.8 33.2 25 23.6 23.3

µd,meas 26.891 27.844 27.85 36.427 23.69 24.056 23.384

σd,meas 0.0017 0.0057 0.0108 0.1740 0.0438 0.0461 0.0361

e -0.1095 0.3442 -0.9497 3.2271 -1.3076 0.4549 0.0839

Table 6.1: Mean, variance and error of the distance measurements at different angles. The period
of the task was 250 ms and the delay was 5 ms, with the task_distance_meas being
the only running task.
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(b) All tasks running, priority 4

0 10 20 30 40 50 60

Time [s]

22

23

24

25

26

27

D
is

ta
n
c
e
 [
c
m

]

(c) All tasks running, priority 5

Figure 6.2: Distances of the right (yellow), front (blue) and left (red) ultrasonic sensors in relation
to the origin of the camera lens. The tests are carried out under stationary conditions
and with different system settings. The purple line at 90 samples marks the end of
the IMU calibration and the start of the position estimator.

Scheduling with other tasks

When testing the state estimation algorithm, which is based on the distance measurements,
unexpected errors occurred. While the measurements of the sensors were very accurate when it
was the only running task, they deteriorated significantly when they carried out together with the
rest of the system. The measurement results for different task settings are compared in Figure
6.2.
For the test, the module was again placed in the box while pointing straight at the wall. The data
was collected for 1 minute in a stationary state and the task rate was set to 250 ms with a delay
of 5 ms between each measurement. The distance shown was already transformed to the origin
of the camera, so a distance of 5 cm for the left sensor corresponds to an invalid measurement of
zero as it is equal to the offset.
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Figure 6.2a shows the performance when the task_distance_meas is the only running task.
The measurements are very stable with an error of less than 1 cm. The state when the task is
running together with other tasks is shown in Figure 6.2a. Errors of up to 78 cm are received
and many invalid measurements are obtained. In particular, after the IMU has completed its
calibration, which is indicated by the purple line at 90 samples, the measurements regularly exceed
the expected distance or are invalid. The solution of this problem was to increase the priority
of the distance measurement task to 5. The results shown in Figure 6.2c are very similar to the
original measurements. The error is only slightly higher and only starts after the pose estimation
task begins its execution.

6.2 IMU

The IMU provides acceleration and gyroscope data. The Kalman filter uses both, but the gyro-
scope data is integrated beforehand to obtain the angle of the module. In this section, different
settings for processing the gyroscope data are analysed.

Frequency

Two different modes have been implemented for accessing the data. In both cases, the
task_imu_data runs at a frequency of 25 Hz (40 ticks period). So if the raw measurement
data is retrieved directly from the registers of the ICM-20948, a new measurement is recorded at
this frequency. When using the DMP, the sampled values are published in a buffer that can be
accessed with a lower period. The DMP can publish the gyroscope data at a maximum rate of
1.1 kHz, but the system is too slow to process this frequency. If the frequency is lowered to 275 Hz
or 220 Hz, the data can be accessed, but lower priority tasks will starve in the meantime. There-
fore, the frequency of 100 Hz was chosen for the gyroscope measurement values. The acceleration
data is published to the buffer at a frequency of 56 Hz as it is not directly integrated.

Window

Once the calibration of the IMU has been completed, the current angles can be calculated by
summing the gyroscope values. This integration leads to a drift in the angle. To reduce the
drift, a window function is used that excludes inputs below a certain threshold. Figure 6.3 shows
the drift of the angles over a period of 5 minutes when different window thresholds are applied.
During the tests, the module remained stationary. The graphs only show one test cycle, so they
do not represent the expected drift, but give an indication of how the drift is affected.
Nevertheless, conclusions can be drawn from the results. It can be seen that the drift is in most
cases lower when using the raw data than when using the DMP. This can be explained by the
lower frequency of raw data collection, as fewer samples correspond to less drift. The use of a
window function significantly improves the stability of the measurements. However, it must be
ensured that the window is not too large or in valid data will be lost. Then the change in angle
can no longer be reproduced accurately.

56



6.2 IMU

0 50 100 150 200 250 300

Time [s]

-2

-1

0

1

2

A
n
g
le

 [
d
e
g
]

(a) Raw data, f = 25 Hz
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(b) DMP, f = 100 Hz

Figure 6.3: Drift of the IMU under stationary conditions using the raw data (a) and the DMP
(b). The results for a window threshold of 0 deg/s (all data are accepted) are shown
in blue, for 0.01 deg/s in red and for 0.1 deg/s in yellow.

Precision

The accuracy of the calculated angles was analysed by positioning the module at different angles
and noting the respective measurement results. All tests were carried out with a window limit of
0.1 deg/s, as this provided good results in the previous test. The priority of the task_imu_data
also plays a role here. In the Table 6.2 you can see the measurements in raw data mode at
different angles.
The first row shows the results when the task priority is 5, the same as the distance_meas task.
There is an offset of 2° for an angle change of 90°. However, if the task is executed with this
priority, there are problems with the distance measurements, which become very unstable. The
second line shows what happens when the priority is set to 4. The measurements show a rather
large error of 13.2° with an angle change of 90°. In the last row it is shown that the DMP can
work reliably at priority 4. The processor ensures a precise measurement frequency and access
can be delayed without causing inaccuracies. The error is in most cases below 1°.

Mode Priority 10° 20° 45° 70° 80° 90° 180°

Raw data 5 9.5 18.9 44.5 67.3 77.9 88.6 173.4

Raw data 4 9.2 18.1 36 56.8 66.4 76.3 140.3
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Mode Priority 10° 20° 45° 70° 80° 90° 180°
DMP 4 9.7 19.6 44.7 71.9 82.1 90.9 176.8

Table 6.2: Measured angles in degrees using the raw data and DMP mode for data acquisition at
different positions.

As the module was placed by hand, small deviations of the angle from the desired value are to be
expected. As with drift, the response at different angles varies slightly between tests. The speed
of movement when carrying out the tests also influences the measurements.

6.3 Camera and server

A milestone of this work was the visualisation of the lines received from the camera on the
server’s map. In this section, the accuracy of the camera mapping is evaluated using the height
measured by the upper ultrasonic sensor and the x and y coordinates provided by the server’s
control message. By merging measurements at different positions, the correct transformation
from server to camera coordinates is also validated. In all tests, the task_pose_estimation and
the task_imu_data were disabled. The results represent the state that can be achieved with an
optimal pose estimate.

Test setup

The test setup for the camera is shown in Figure 6.4a. The module was attached to an overhanging
beam so that the camera points downwards towards a maze segment. The camera is located at
a height of 1.12 m, and the labyrinth segment is 53 cm wide, 42.8 cm long and 30 cm high at the
outer edges. The walls of the segments are 1.5 cm thick. For the first test, the segment was
placed directly under the camera (Figure 6.4b), for the second test it was moved forwards and
backwards (Figure 6.4c). During the tests, the nRF52 and the camera are connected to a PC so
that the images from the camera can be visualised in the OpenMV IDE and data can be accessed
for debugging purposes.
When the module was pointed downwards, problems with the camera connection were detected.
The camera system stopped responding from time to time. This problem already occurred during
the implementation and merging process, but should have been fixed by the new communication
structure. The errors are therefore most likely due to poor cable connections between the camera
and the nRF52.

Camera precision

The first test aimed to analyse the accuracy of the line extraction of a single image processed by
the camera. The position of the camera is sent via the server command and was set to (0,0). The
corresponding snapshot was exported from the framebuffer in the OpenMV IDE and is shown in
Figure 6.4b. The line data transferred to the server was extracted and displayed in MatLab (see
Figure 6.5). The length of each line is given in the legend next to the image.
The black line at the top represents the length of the box (40.11 cm) and has an error of 2.8 cm.
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6.3 Camera and server

(a) Test setup

(b) Image processed by camera at (0,0)

(c) Image processed by camera at (0,40)

Figure 6.4: Test setup of the camera measurements and images captured by the camera, which
were extracted from the OpenMV IDE during the tests.
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Figure 6.5: Lengths of transmitted line segments at origin position (0,0).
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The sum of the length of the light blue line and the dark orange line is 52.1 cm, which corresponds
to an error of 0.9 cm in width. The camera also extracts parts of the lower edges of the segment
and the shadow of the wall. These are represented by the dark blue, pink, dark red and medium
blue lines. Ideally, they should not have been recognised. It can be concluded that the accuracy of
the measurements is sufficient. As the test setup has shortcomings in terms of lighting conditions
and the straight positioning of the segment, better results were not expected.

Merging images

To see what results can be achieved when the system is based on an optimal pose estimate, the
same test setup was used. However, the line segment was moved in x and y directions, and the
position change was specified by the server message sent to the camera. In this way, from the
camera perspective, it looks as if the segment is stationary and the camera is moving. After each
movement of the segment, the position is sent, a picture is taken and the map is updated.
The results of the tests are shown in the Figures 6.6 and 6.7. As before, both the upper and
lower edges of the segment are recognised in the images at the origin. If the position is changed
by 10 cm in the y direction, the extracted lines overlap. The further the segment moves, the more
the bottom edges of the segment are recognised. At the end position (0.60), only the right edge
of the maze segment is in the image frame, so only the right wall is updated. In general, the
performance is quite good. Small errors are recognisable, but these were expected. The structure
of the maze segment is clearly discernible.
If the x position of the segment is changed, similar results are achieved. The bottom edges are
recognised at all five positions. Changing a direction by 90 degrees was also tested (see Figure
6.7f). It proved difficult to rotate the segment around the origin of the camera lens, so the
placement of the segment is not good. The map shows that the new image is shifted too much
to the left. However, it can be seen that the orientation transformation works as the segment is
rotated correctly on the map.

6.4 Pose estimate

The pose estimation is based on both the angle from the IMU data and the distance from the
ultrasonic sensors. The model described in the implementation chapter intended to use the
accelerometer data to determine the position, in addition to the distance data. Unfortunately,
the accelerometer data could not be processed correctly. The value of the integrated data was
constantly increasing, so that the estimate deviated greatly from the actual position. Therefore,
the accelerometer data was ignored in the tests and only the ultrasonic data was used to
determine the position.
The measurement model was also adjusted so that the derivation of the distance measurements
with respect to the heading was not taken into account. It led to a strong deviation of the
angle and was therefore ignored. The angle was determined using the DMP version of the
task_imu_data .
Figure 6.8 shows two different tests regarding the estimation. The module was placed inside the
maze segment and the distance to all three walls was measured. During the tests, the module
was moved in a rectangle given by lines drawn on the ground between the walls. This made
it possible to compare the results with the real position. The tests started and ended at the
bottom left corner of the box.
The first test estimated the position while the module was facing the front wall and did not
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(a) Initial position (0,0) (b) Position (0,10) (c) Position (0,20)

(d) Position (0,40) (e) Position (0,60)

Figure 6.6: Map shown on the server after each movement in positive y direction.

(a) Initial position (0,0) (b) Position (10,0) (c) Position (20,0)

(d) Position (30,0) (e) Position (40,0) (f) Position (0,0,90)

Figure 6.7: Map shown on the server after each movement in positive x direction (a)-(e) and
when the segment is turned by 90° (f).
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rotate. In the second test, the angle was changed. For this, a fourth wall was required at the
rear of the segment in order to be able to determine the distance to the rear during the rotation.
Therefore, another wooden wall was attached to the open side of the labyrinth segment. The
module was first moved along the x-axis, looking forwards. When it reaches the corner, it is
rotated 90° in the positive y-direction. This direction is maintained until the segment reaches
its starting position, where it is rotated back by 90°. This test was used to check the accuracy
of the angle estimation and the accuracy of the calculated distance between the origin and the
back of the module.
The variances of the model parameters used in the tests are given in Table 6.3. These were
selected based on the results of the tests for different settings.

x, y, z θ gx dfront, dleft, dright, dtop

Variance 0.0000001 m2 0.0001 deg2 0.01 deg2 0.001 m2

Table 6.3: Variances of the state and measurement variables as defined during the pose estimation
tests.

The results of the first test (see Figure 6.8a) show that the position estimate has a maximum
error of around 1.5 cm. There are some outliers, but the estimate is mostly very close to the
actual position. For the second test (see Figure 6.8b), two test runs are shown. In both tests,
there are some outliers with an error of 5 cm. However, the change in angle does not seem to
have a large impact on the measurements as they were performed in the lower right corner and
the lower left corner.
Overall, the performance of the state estimation is not outstanding, but sufficient considering
that an error of 1 cm can be expected from the ultrasonic sensors themselves and the system is
additionally affected by movements.
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(b) With angle change from 0° to 90°

Figure 6.8: Test of state estimation within the maze segment. Figure (a) shows the estimated
position along a square while pointing straight ahead at the x-wall. Figure (b) shows
two test trials of the estimation when changing the angle to 90° and back when
reaching the corners of the segment. The black square illustrates the actual position
along which the module was moved.
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6.5 Entire system

6.5 Entire system

Finally, the entire system was tested together. The camera operates with the estimated position
to calculate the coordinates of the lines that are displayed on the server. The tests were carried
out in a room with a width of 2.42 metres. A length of 2 m was not exceeded during the tests.
The room contained some elements protruding from the walls, such as windows, a heater and a
blackboard. The distance measurements are therefore affected by these circumstances. It can
lead to an error of up to 10 cm if the module measures the distance towards these elements instead
of the wall.

(a) Beam holding the module and laptop. (b) First test setup using a overturned table as
front wall.

(c) Second test setup, the maze segment is lo-
cated in the middle of the room.

(d) Third test setup trying to map multiple ob-
jects.

Figure 6.9: Test setups where the position estimate is used as position reference when creating a
map of the room.

The module was mounted on a beam so that the camera and the upper ultrasonic sensor have a
clear view of the floor. Both the camera and the module were connected to a laptop, which was
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also placed on the beam (see Figure 6.9a). This allows the person holding the beam to control
the programme.
The camera mode was set to continuous operation so that the next image is captured and pro-
cessed immediately after an image has been analysed. The parameters and settings of the position
estimator are the same as in the previous section. An attempt was made to keep the orientation
of the module close to zero so that the position determined by the ultrasonic sensors remains
valid throughout the test. The three test setups are shown in Figure 6.9b-d. In the first test, the
maze segment was placed in front of an upturned table so that the distance to the front sensor
was not affected by the protruding windows in the background. The module was moved forwards
and backwards and from left to right, but so that the table always remained in sight of the front
sensor.
The resulting map after a few frames each is shown in Figure 6.10. Comparing the first four
images, the left and right walls are quite well aligned. The mapping of the front wall is less
successful. Three lines are recognised here that are very close to each other, namely the outer
edge at the top, the inner edge at the top and the inner edge at the bottom. When moving
forwards, the outer edge at the bottom is also recognised. As these lines do not overlap perfectly
on the map, the result is a tangle of lines.
Figure 6.10e shows a case in which the module has measured the distance to the wall of the
segment and not to the floor. The distance is reduced from 120 cm to 90 cm, so that the size
of the segment is assumed to be smaller than it actually is and therefore appears shifted in the
map.

(a) First image (b) Same position after two more
images.

(c) Moved to the front.

(d) To the right. (e) And back again.

Figure 6.10: Resulting map of first test.
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The second test uses the setup in Figure 6.9c. Here, the maze segment was placed in the centre
of the room and the position estimate is based on the distance to the walls on the left, right and
front. The results are shown in Figure 6.11.
As can be seen, two robots are displayed on the map. The one that moves between the different
images is based on the position sent with the line messages from the camera. The other one should
represent the estimated position which is transmitted using the update topic on the server. This
obviously failed as the robot remains stationary. The error was that the server was expecting
the position in millimetres, while the position estimator was sending the position in centimetres.
This problem was fixed after the tests were performed.
The room was walked through twice and one to three snapshots were recorded at each position
at a height of approximately 120 cm. The fact that it takes a short time for a snapshot to be
taken after the position has been sent to the camera caused difficulties. The module must remain
stationary during this time and can only be moved while the image is being processed. An
attempt was made to take this into account during the tests, but it could not always be adhered
to. An example of this is shown in Figure 6.11e near the origin of the map. The module was
moved from the centre close to the front wall to the top left corner before the snapshot was taken.
Therefore, the line segments that should represent the left wall are displayed in the centre of the
room.

(a) Initial (b) Left (c) Front right

(d) Back right (e) After second circle

Figure 6.11: Resulting map of second test.

In the last test, an attempt was made to map the structure of smaller objects in addition to the
maze segment. This was not successful as the objects were too small and were filtered out during
image processing. The resulting map shows some independent lines in the room, but does not
depict the objects correctly. As the result is otherwise similar to the results of the second test, it
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is not shown here.
In general, it can be said that the mapping works as long as the objects are large enough. The
spatial structure and the maze segment are clearly recognisable in the map created in the second
and third test. If only one image was taken at one position, the mapping would probably improve
as the overlap would be reduced.
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7 Discussion

The objective of this work was to combine the previous work into a single system that can be
used to map a structure in an indoor environment and can be carried by a quadcopter. This
was achieved - with limitations. The performed tests clearly show that the estimated pose for
the camera is precise enough to process the images of the maze in such a way that a rough map
of the space can be created. The developed module is limited by several factors, which are now
mentioned to assess the expected performance of the system:

• The system is executed by a microcontroller with limited memory and limited processing
speed. This restricts the possibilities of what kind of algorithms can be implemented. The
fact that the entire system is written in C also makes it difficult to integrate complex
processing techniques. For example, vector and matrix calculations are very tedious to
implement, other than in Python, for example. Advanced state estimators such as the
iterated extended Kalman filter (IEKF) are also complicated to implement due to the
limited processing speed and the risk that the frequency of the estimator must then be
reduced.

• The ultrasonic sensors and the IMU are at the lower end of the price spectrum and therefore
only have limited capabilities. Whether ultrasonic sensors are even suitable for this task is
discussed in a section below, but it should be noted that it is a challenge to design a system
with components that are subject to both frequency and angle constraints.

• The hardware uses the standard development kit instead of a customised PCB for the
system, so that the sensors are connected to the pins on the DK using standard PCB jumper
cables. The WAGO clamps used as power distributors are also theoretically optimised for
thicker cables. These circumstances restrict the reliability of the connections, so that a lot
of time had to be spent debugging the hardware - especially the camera connection.

Given these limitations, the expectations of the system’s performance were limited. It was clear
that developing this embedded system would be a challenge, but one that was gladly embraced.
An attempt was made to offload as much processing as possible by utilising the DMP and internal
CPU of the OpenMV Cam to reduce the task volume of the microcontroller. This will hopefully
help when implementing the control of the quadcopter in future work.
Nevertheless, several errors were detected during the tests, which will be discussed in the next
sections. The advantages and disadvantages of using acoustic sensors for pose estimation and the
design decisions when integrating the IMU are critically evaluated after comparing the results
with previous work. Finally, possible consequences and limitations of the design for future work
are highlighted.

7.1 Comparison to results from previous work

The test results of the ultrasonic measurements and camera accuracy are compared with the
results of previous work presented in chapter 4. Although the developed system is based on this
work, it has been significantly extended so that differences should be discovered. Ideally, the
accuracy should have been improved by the integration of additional functions.

Bjerke has discovered an error of 1 cm in stationary tests and an error of 3 cm when moving the
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module based on the measured distance of the ultrasonic sensors. The actual position during the
tests was determined using a motion capture system, so it can be assumed that the results are
more accurate than the manually performed tests in this thesis.
The steady-state error when the task distance_meas is performed as part of the overall system
is between 0.16ċm and 1ċm. Therefore, the results match. If the data is used as part of the EKF
and the system is moved, the pose estimate based purely on this data is around 1.5 cm. Changing
the angle of the system increases the error to about 5 cm, which exceeds Bjerke’s measurements.
However, the average measurements have an error of less than 1.5 cm. The outliers shown in
Figure 6.8b could also have been caused by the inability to precisely follow the predetermined
line that defines the reference values in the corners of the box.
All in all, the results are similar and the average error has improved slightly.

The accuracy of the line lengths determined by the camera was around 3.5 % in Vormdal’s tests.
To achieve this percentage, the GSD was manually adjusted for different heights of the system.
The current code contains an offset of 30 cm from the z-coordinate to compensate for elements
protruding out of the GSD. Considering the results from Figure 6.5, the maximum error was
about 6 %. The system used the distance from the top ultrasonic sensor as the height instead of
the exact distance and did not adjust the GSD. Even though the error is worse than described
in Vormdal’s report, the error of 3 cm in one frame is acceptable.

7.2 Choice of ultrasound sensors for distance measurements

The use of acoustic sensors to determine the distance to the module’s surroundings definitely
had some disadvantages and complicated the design process of the state estimator. First of all,
the measurement frequency is very low. Four measurements per sensor per second is a very
low rate considering that the pose estimator operates at a frequency of 25 Hz. Normally, the
sampling rate of a sensor should be around 20 Hz to allow accurate measurements when a system
is moving. At the current measurement frequency, it is questionable whether the system can
provide accurate enough data to serve as a position reference for a quadcopter flying at higher
speeds. The frequency of access to the ultrasonic data could have been improved by assigning
a separate timer to each sensor. However, all timers would then be occupied and would not
be available for new tasks. In addition, the sound would interfere with the other measurements,
which - even though it has not been tested - would very likely lead to many invalid measurements.
Another problem is that the sound moves slowly. If the quadcopter is moving, the return signal
may not be recognised. Therefore, the position could only be detected when the quadcopter is
hovering at a stationary position.
The most troublesome property of the ultrasonic sensor is its angular dependence. This made
the development of the state estimator a laborious endeavour and led to undesirable limitations
with regard to the environment. One idea was to recognise the invalidity of the acquired data by
calculating the variance of the measurements. This was based on the idea that the reflections must
lead to more inconsistent data. However, the test to analyse the angular dependence showed a
higher variance even at small angles, so this idea was not pursued further. However, this test was
performed in a box. It would probably have been more meaningful to analyse the measurement
if it had been directed at a long wall. The corners of the box reflect the signal back to the sensor,
so the distance received is still quite accurate. If another test measuring the reaction against a
wall is successful (in the future), the possibility of using the variance to determine when the data
is valid could be considered.
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The main reason for choosing ultrasonic sensors was primarily the price of the sensors, which is
indeed very low. Another argument was that the distance can also be measured through smoke,
but since this is unlikely to be the case indoors and the camera algorithm would not work under
these conditions anyway, this is a very weak reason. Whilst it is interesting to develop systems
with higher limitations, consideration should be given to changing the sensor type. One idea
would be to use a LIDAR, even if this is quite expensive. The estimation of the pose would most
likely improve significantly.

7.3 Evaluation of IMU

A great deal of time and effort was invested in obtaining an estimate of the orientation from
the IMU. In particular, the integration of the DMP was complex and time-consuming. The
advantages and disadvantages of the DMP are discussed in this section.
The main reason for implementing the DMP was to outsource the data processing and to have
access to the quaternion vectors. What kind of data processing the DMP performs remains
unclear, and the quaternion vectors were not used in the final version because the scaling was
wrong - or simply not understood correctly. Ultimately, the DMP was used primarily because it
publishes the data on the FIFO buffer so that it can be accessed at a lower frequency. The same
could probably have been achieved by configuring the FIFO buffer so that the raw acceleration
and gyroscope data could be accessed through it without using the DMP. This was not considered
before the DMP was integrated.
The DMP requires a lot of memory from the nRF52, as an image of the internal memory must
be loaded into the IMU when the DMP is initialised. In addition, the register definitions in the
dmp header file alone comprise 700 lines of code and the functions for accessing the DMP are
implemented in 1500 lines of code. That is a lot of data for a minimal benefit. If the quaternions
had been used, it would have been worth it, as access to these is otherwise difficult to provide
and they can also be used to estimate the pitch and roll of the quadcopter. These parameters are
completely ignored in the current state estimator, but could be needed as the movement of the
quadcopter leads to a change in both parameters. For the current application, it must be said
that the DMP is overkill for the constrained environment.

Furthermore, the time needed to integrate the DMP to improve the orientation estimation would
have been better invested in processing the acceleration data. No accurate velocity could be
extracted from the data, so the state estimator has to rely solely on the ultrasonic data. The
additional information from the accelerator could have been used very well to compensate for the
low measurement frequency and the angular dependence of the ultrasonic sensors.

7.4 Limitations

The current system has the limitation that the area in which it is used must be rectangular and
should be surrounded by hard walls that do not absorb the sound. The module must be placed so
that it is pointing straight at a wall so that the angle used for the ultrasonic sensors is correctly
calibrated. One way to simplify the algorithm, remove the angle restriction for the ultrasonic
sensors and improve pose estimation would be to restrict the movement of the quadcopter so that
it is always facing forwards. As it has four rotors and can therefore fly in all directions without
turning, this could be a viable option.
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Another requirement is that the quadcopter hovers in a stationary position when the camera is in
operation. This is due to the long delay that exists in the camera between receiving the capture
command and the time the snapshot is taken. The ultrasound data should also be captured in a
stationary state as this would be more accurate.
The camera does not recognise objects shorter than about 20 cm when it is at a height of
120 cm. This can be configured in the OpenMV code settings. If the variable is reduced, image
processing takes longer and the processor could reach its limits. Another problem is the resolution
of the captured images, which is currently limited to 640 x 480 pixels. Small objects cannot be
recognised and exact line coordinates cannot be calculated if the height is too large. To improve
the resolution of the images, a newer version of the camera with significantly more RAM and
computing power could be considered. However, this will not help if the state estimation does
not improve as well.
The system should also be limited to process only one image at one position. The lines would
overlap less on the map so that the structures would be more clearly recognisable. Of course,
there would still be problems at the edges of the images, but overall the map would probably be
improved.
One final comment should be made regarding the hardware connections between the module’s
sensors: As noted with the camera connection during testing, the connections are not the most
reliable. Especially when you consider that the module is to be attached to a quadcopter. This
will be exposed to vibrations and stronger forces, it is questionable whether the module will hold
as it is designed now. It should therefore be considered to revise the structure of the case before
attaching it to a quadcopter.

-
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8 Further work and conclusion

There are several improvements that can be made to the final version of the presented module.
Some include new components, others modifications to the current hardware or changes on the
software side. These are presented in this chapter, followed by a brief conclusion.

8.1 Further Work

8.1.1 Hardware

The hardware of the module has worked so far, but some components should be replaced in the
future. For example, the DHT22 temperature sensor is broken and needs to be replaced. The
addressing for the sensor is already implemented and it is very cheap, so the integration should
be effortless. The error caused by the temperature change is not large, but should be taken into
account if possible.
The sockets for the pins on the OpenMV Cam M7 are not well connected and should also be
replaced to ensure that communication is not interrupted or fails, as was observed during the
tests. If the module is connected to a quadcopter, the housing should be improved and it should
be ensured that all connections between the modules are stable and not affected by the vibrations
of the drone. In addition, a battery should be added to the module so that it can be used as a
stand-alone system.
Consideration should also be given to installing the newer version of the camera (the OpenMV
Cam RT1062). It has significantly more memory so that images can be recorded and processed
at a higher resolution. This would result in a more accurate map, but this would only be of
benefit if the state estimation is also improved.

Distance sensors

Another way to improve the state estimation would be to use other sensors for distance mea-
surement. For example, a LIDAR could be used instead of the ultrasonic sensors to obtain more
accurate distance data. The low measurement frequency and the angle dependency of the ultra-
sonic sensors would then no longer be a problem. LIDARs have a higher measuring frequency,
can measure large distances and are very precise. To use the LIDARs to determine the position
of the module, 3 sensors should be connected (one pointing down, one pointing left and one
pointing right). One could also argue to use only two LIDARs (one pointing left, one point-
ing right) and keep one ultrasonic sensor for height measurement. Models can be purchased at
prices between 40$ and 150$, which is a considerable increase over the 5$ HC-SR04 sensors. The
‘Garmin LIDAR-Lite v4 LED’ [11] could be considered. It has the following features:

• 5 cm to 10 m range

• ± 1 cm accuracy, for measurements below 1 m to a 90 % reflective target

• I2C interface for accessing the measurement data in centimetres

• Frequency of 200 Hz
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Chapter 8. Further work and conclusion

As the results of this work show, satisfactory performance can also be achieved with the ultrasonic
sensors. If further work is to be carried out with them, a fourth ultrasonic sensor should be added
to the rear of the module. This would compensate for the errors of the front sensor, increase the
range of wall detection and simplify the state estimation algorithm. The disadvantage would be
that the measurement frequency of all ultrasonic sensors would be reduced even further.

8.1.2 Software

On the software side, several improvements can be made with regard to the state estimation.
Firstly, an attempt should be made to correctly process the acceleration data from the IMU and
include it in the EKF. If the module is connected to a quadcopter, the signals for controlling
the drone can also be used to further improve the state estimate, as the motion model could be
extended. Furthermore, it might be necessary to include roll and pitch orientation in the model
of the system.
The camera could be used to analyse the change between two images to extract a relative position
and angle change. However, before implementing such an algorithm, it should be analysed how
fast the system would react. The camera has a long delay when capturing an image, so it needs
to be investigated whether the resulting position change would still be valid once processing is
complete.
The system should also be tested together with the other ground robots. It would be interesting
to see whether cooperation them is possible.

8.2 Conclusion

All in all, the objectives stated at the beginning of this thesis have been achieved. The ultrasound
sensors were integrated into a single module with the camera, an IMU was added and the com-
munication with the Golang-server has been established. The tests show that the interconnection
between the different parts of the system work and that a rough map of an indoor area can be
created.
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