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Abstract

The rapid urbanization and population growth have driven buildings to consume
a significant portion of the world’s energy, with expectations of further increases in
the future. Governments have responded by implementing measures such as rais-
ing energy prices and enforcing regulations for constructing energy-efficient build-
ings. Considering these efforts, advanced control techniques, including Model Pre-
dictive Control (MPC), have emerged as promising solutions for reducing energy
usage. However, conventional MPC models face challenges due to their reliance
on costly physical models. In contrast, data-driven approaches, leveraging histor-
ical building data to enhance energy efficiency and indoor comfort. Despite their
potential, these approaches face challenges such as high data requirements and
interpretability issues. Physics-informed Neural Networks (PINN) bridge the gap
between physics-based modeling and data-driven approaches, integrating phys-
ical principles into machine learning frameworks to improve prediction accuracy
and robustness. This thesis explores the application of PINN and other machine
learning methods for time series forecasting of energy consumption in buildings,
providing insights into their effectiveness and limitations. Through a comparative
analysis, it demonstrates the data efficiency of PINN and its potential for enhan-
cing energy management strategies in buildings.
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Sammendrag

Rask urbanisering og befolkningsvekst har drevet bygninger til å forbruke en bety-
delig del av verdens energi, med forventninger om ytterligere økninger i fremtiden.
Regjeringer har svart ved å implementere tiltak som å øke energiprisene og hånd-
heve reguleringer for å bygge energieffektive bygninger. Med tanke på disse innsat-
sene har avanserte kontrollteknikker, inkludert Model Pre- dictive Control (MPC),
blitt fremhevet som lovende løsninger for å redusere energiforbruket. Imidlertid
står konvensjonelle MPC-modeller overfor utfordringer på grunn av deres avhen-
gighet av kostbare fysiske modeller. I motsetning til dette, benytter datadrevne
tilnærminger historiske bygningsdata for å forbedre energieffektiviteten og innendørs
komfort. Til tross for deres potensial, står slike tilnærminger overfor utfordringer
som høye datakrav og tolkningsproblemer. Physics-informed Neural Networks (PINNs)
brobygger gapet mellom fysikkbasert modellering og datadrevne tilnærminger, og
integrerer fysiske prinsipper i maskinlæringsrammeverk for å forbedre prediksjons
nøyaktighet og robusthet. Denne avhandlingen utforsker bruken av PINN og an-
dre maskinlæringsmetoder for tidsrekkeprognoser av energiforbruk i bygninger,
og gir innsikt i deres effektivitet og begrensninger. Gjennom en sammenlignende
analyse demonstrerer den dataeffektiviteten til PINN og potensialet til å forbedre
energiforvaltningsstrategier i bygninger.
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Chapter 1

Introduction

Nowadays, the process of urbanization coupled with continuously growing popu-
lations has led to buildings consuming approximately 40 % of the world’s energy
production, with expectations of this consumption rate rising even further in the
near future. The government has implemented various measures to address the
growing demand for energy. For instance, they have raised energy prices and en-
forced stringent regulations for constructing more energy-efficient buildings. In
addition to costly measures like upgrading heating and cooling systems and im-
proving a building’s structure, advanced control techniques offer an alternative
for reducing energy usage. Model Predictive Control (MPC) is one such method
[1]. It involves utilizing a mathematical model of system dynamics to optimize
control actions based on cost considerations and comfort requirements within a
predictive timeframe.

In simulated scenarios [2–5] and real-world building settings [6–9], Model
Predictive Control (MPC) has proven to be an effective application, yielding not-
able energy savings over traditional control techniques. The conventional models
that are employed in the construction of Model Predictive Control (MPC) often
depend on physical concepts, like heat transfer and thermodynamics, as men-
tioned in [6–9]. It is possible to build these models using theoretical frameworks,
expensive excitation experiments, or a combination of both. It can be difficult to
justify investing in these models, though, because their creation and maintenance
are typically thought to be excessively costly. As such, this barrier might prevent
MPC from being widely used for commercial purposes in building environments.

The data-driven approaches are quickly growing because they avoid the short-
comings of traditional RC models by using only building historical data, hence ad-
dressing the aforementioned constraints of conventional RC models. In addition
to deep learning techniques like Long Short-Term Memory (LSTM), convolutional
Neural Networks (CNN), and Artificial Neural Networks (ANN), the often-used
learning-based model includes traditional machine learning techniques like Sup-
port Vector Regression (SVR), Random Forest (RF), and XGBoost [10, 11]. Be-
cause of the rapid development of smart buildings, which produce vast amounts
of data throughout the course of their lives, these techniques have garnered signi-

1



2 SA.Mohimanianpour@NTNU: Advancing Building Energy Efficiency with PINN

ficant attention. A learning based MPC for real-time building control was presen-
ted by [12]. In addition to increased energy efficiency, there was a noticeable
improvement in indoor thermal comfort. However because this model’s perform-
ance is heavily dependent on the caliber and quantity of historical data, it cannot
be used for buildings that are still in the design stage or lack sufficient important
data. Since this model only uses historical data, the quantity and quality of the
data are crucial. In [13], data-driven models were developed using data spanning
weeks, months, and years. As fresh data is collected and accumulated over time,
the model’s parameters can be continuously changed for improved prediction per-
formance. In addition to the size of the training dataset, researchers have also
looked into the importance of the prediction horizon length, considering factors
like computational cost, prediction accuracy, and control performance [14, 15].
[16] utilized learning-based Model Predictive Control (MPC) to forecast indoor
temperature and supply/return water temperature for residential AC systems, ex-
ploring various prediction horizons. Furthermore, methods like autoencoder, gen-
erative adversarial networks, and transformations are employed to enhance model
robustness and prediction accuracy when dealing with limited data. Despite their
ease of development and deployment in building control systems, these learning-
based models still face challenges such as high data requirements, interpretability
issues, and limitations in generalization ability.

In forecasting the time series data of energy consumption in a building, sev-
eral methods can be employed, each with its strengths and limitations. Seasonal
Autoregressive Integrated Moving Average (SARIMA) models are a classical stat-
istical approach widely used for time series forecasting. SARIMA models are ef-
fective at capturing seasonal patterns and trends in the data by incorporating
autoregressive, differencing, and moving average components. By explicitly mod-
eling seasonal differences and autocorrelation, SARIMA models can provide good
forecasts for energy consumption in buildings with recurring seasonal variations
[17–21].

Prophet Forecasting Model is another time series forecasting method. Util-
izing the benefits of Prophet’s adaptable and user-friendly framework enhances
the accessibility and precision of energy consumption forecasting. By incorpor-
ating seasonality, holidays, and trend components, Prophet can capture complex
patterns inherent in energy consumption data, making it well-suited for forecast-
ing tasks. Moreover, Prophet’s ability to handle missing data and outliers, along
with its customizable parameters for uncertainty estimation, further enhances its
utility in energy consumption prediction. Additionally, Prophet’s scalability and
ease of implementation make it particularly attractive for practical applications in
building energy management systems [22–26] With its proven performance and
user-friendly interface, Prophet stands as a valuable asset in the arsenal of tools
for accurately forecasting energy consumption in buildings, facilitating informed
decision-making and efficient energy management strategies.

On the other hand, Long Short-Term Memory (LSTM) networks are a type
of Recurrent Neural Network (RNN) architecture specifically designed to cap-



Chapter 1: Introduction 3

ture long-term dependencies and temporal dynamics in sequential data. LSTM
networks excel in capturing complex patterns and temporal relationships in time
series data, making them well-suited for energy consumption forecasting in build-
ings. LSTM networks can effectively capture dynamic changes in energy consump-
tion over time, such as daily and seasonal variations, occupancy patterns, and
weather conditions [18, 27–30]. Moreover, traditional feedforward neural net-
works, also known as regular neural networks, offer another approach to time
series forecasting. These networks learn complex relationships between input fea-
tures and energy consumption through multiple hidden layers of neurons. While
not explicitly designed for temporal modeling like LSTM networks, regular neural
networks can still capture nonlinear patterns and dependencies within the data.
However, they may struggle to capture long-term dependencies and temporal dy-
namics as effectively as LSTM networks, particularly in scenarios with noisy or
sparse data [31–36].

Physics-Informed Neural Network (PINN) represents a powerful paradigm
that bridges the gap between traditional physics-based modeling and data-driven
approaches. In PINN, knowledge of the underlying physical principles governing
a system is integrated into the machine learning framework, enabling more accur-
ate and robust predictions, particularly in scenarios with limited or noisy data. By
incorporating known physical laws, constraints, and relationships as a part of the
learning process, PINN methods enhance model interpretability, generalization,
and transferability. These techniques find widespread applications across vari-
ous domains, including fluid dynamics, climate modeling, materials science, and
engineering [37–44], offering valuable insights into complex phenomena while
leveraging the efficiency and scalability of modern machine learning algorithms.

The purpose of this thesis can be outlined as follows:

• Using real-world data on energy consumption of a building located in the
south of Norway, two physics-informed neural networks are applied in mak-
ing predictions over longer periods.
• A comparative analysis between the PINN and other machine learning meth-

ods applied for time series predictions.
• Moreover, it is illustrated that training these physics-informed neural net-

work architectures is a more data-efficient process, requiring less training
data compared to conventional neural networks without physics-based con-
straints.

First, the theoretical foundations is considered in "Section 2: Mathematical
Modeling Section", explaining the thermal model of a building and the mathem-
atical framework for modeling. The core of this thesis lies on "Physics-Informed
Neural Network (PINN)" methodologies, explored in detail in Chapter 3. In Chapter
4, alternative machine learning methods such as SARIMA, PFM, and LSTM are ap-
plied. In Chapter 5, "Results and Discussions," significant insights obtained from
real-world building datasets are presented, detailing the data cleaning procedures
and the results derived from each predictive model. The key findings drawn from
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the preceding chapters are brought together and summarized in Chapter 6.



Chapter 2

Mathematical Modeling

2.1 Thermal Model of a Building

The 2-state resistance-capacitance network model (2R2C) [45] is being utilized
for modeling of thermal behavior of a building, Figure 2.1.

Figure 2.1: The resistance-capacitance network of the building thermal model

The cooling capacity, Qc , for a building is expressed as

Qc = ṁCp (Ts − Tr) (2.1)
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ṁ+

� 1
CrRra

γ
Cr

1
Cr

0 1−α
Cm

1−β
Cm

�

·





Ta
G
Ig



 .

(2.2)

where Tm is the temperature of the building’s lumped thermal mass; Cr and
Cm are the thermal capacitances of the room and the thermal mass respectively;
Ta is defined as the ambient temperature; Rra and Rrm are the thermal resistances
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between the room and the ambient, and between the room and the thermal mass
respectively; G, γ and Ig are designated as the solar irradiance, the solar irradi-
ance absorption factor and the internal heat gain, respectively. It is worth noting
that Tm represents a hidden state of the system that cannot be directly observed
and, in many instances, is notably challenging to approximate. Consequently, this
modeling strategy results in a partially observable model of the building. Given
Eq. (2.1), Eq. (2.2) is simplified as [46],
�
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(2.3)

To guarantee that the room temperature stays within predetermined bounds, the
following assumption is considered:

Aphyx
f =







0 : Tr,A > Tmax
r

Qc,1 : Tmin
r ≤ Tr,1 ≤ Tmax

r
Q̇max

c : Tr,A < Tmin
r

, (2.4)

where uphys
i is the actual power consumption [46]. To solve Eqs. (2.3) and (2.4),

it’s necessary to have a precise estimation of the hidden state (Tm) as well as
accurate measurements of external factors like G and Ig . However, obtaining
precise estimates and measurements in practice is challenging, resulting in ap-
proximate solutions. Additionally, building parameters such as the conductivity of
various walls can change over time due to degradation, introducing bias into the
model [46]. Consequently, directly modeling a household using these equations
is a complex and costly endeavor that can result in biased and suboptimal control
strategies.

2.2 Mathematical Framework For Modeling Decision Mak-
ing

A frequently employed framework for representing problems involving sequential
decision-making is Markov Decision Process (MDP). This methodology encapsu-
lates decision-making scenarios wherein the outcome of a decision is influenced
by both the current state and the action taken, with the subsequent state being
probabilistically determined. MDPs find extensive application across various do-
mains, including robotics, finance, healthcare, and artificial intelligence, due to
their ability to effectively model uncertain and dynamic environments.

MDPs offer a clear framework for addressing the challenge of learning through
interaction to achieve a specific objective. Within this framework, the entity re-
sponsible for learning and making decisions is referred to as the agent, while
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everything external to the agent, encompassing the surroundings, is termed the
environment. These components engage in ongoing interaction, Figure 2.2, with
the agent making choices and the environment reacting to these choices, thereby
presenting the agent with new circumstances. Additionally, the environment provides
rewards, which are numerical values that the agent endeavors to maximize over
time by selecting appropriate actions.

Figure 2.2: The agent–environment interaction.

More precisely, the interaction between the agent and the environment oc-
curs at discrete time steps, denoted by t = 0, 1,2,3, and so forth. At each time
step t, the agent is provided with some representation of the environment’s state,
denoted as x t , based on which it selects an action, denoted as A. Subsequently,
after one time step, partly due to its chosen action, the agent receives a numerical
reward, denoted as R, and transitions to a new state, denoted as x t+1. In a fully
observable environment, this interaction can be described as:

x t+1 = f (x t , At , wt) , (2.5)

where wt represents the stochasticity in the system and is considered as an inde-
pendent random variable. Moreover, f is a state transition function which shows
a mapping between current and new states. Data-driven approaches simplify the
task into a supervised learning scenario with a set of training data, including
{(x1, A1, w1, x2) , . . . , (xN , AN , wN , xN+1)}.

With Stochastic Gradient Descent (SGD), the cost function is defined as fol-
lows:

min
θ

1
N

N
∑

i=1

(xi+1 − fθ (xi ,Ai ,wi))
2 (2.6)

It’s worth noting that Eq. 2.6 describes a scenario wherein a system is fully observ-
able, meaning complete state information is available for predicting subsequent
states. However, real-world systems, such as thermal models for buildings, are
typically only partially observable, where certain state parameters are inaccess-
ible or cannot be directly measured. In such instances, direct utilization of Eq.
2.6 proves impractical due to the incomplete information from observed states.
To address this challenge, [12] proposes a strategy where observed variables in a
building’s thermal model could include room temperature or actual power con-
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sumption, while a hidden parameter could represent the temperature of the build-
ing’s thermal mass, which is difficult to directly measure or estimate. In order to
compensate for the absence of this hidden parameter, the proposal suggests using
a series of past room temperature measurements instead of a single observation.
This engineered feature aims to mitigate the issue of partial observability in the
system.

For partially observable MDPs, the state space (X ) is comprised of two parts:
the observable component (X obs) and a feature-engineered component (X f ), form-
ing X = X obs × X f [40]. With this assumption, the next observable state (x obs

i ) is
computed as

bx obs
i+1 = fθ (xi , Ai ,wi) ,

min
θ

1
N

N
∑

i=1

�

x obs
i+1 − fθ (xi , Ai ,wi)

�2 (2.7)

The behavior of the system can be estimated by employing either ordinary or par-
tial differential equations. Thus, the general differential equation for the system
can be written as

DΩ
�

xobs
i ,Ai ,zi ,zi+1,wi

�

= 0, (2.8)

where zi and Dω are the hidden state parameters and a generic differential oper-
ator in the physical section, respectively. In the following section, the process of
integrating an MDP with a building’s thermal model to develop physics-informed
machine learning is shown.



Chapter 3

Physics Informed Neural
Network

In contrast to traditional Neural Networks (NNs), the principles of thermal dynam-
ics are incorporated into a fully connected neural network structure, resulting in
Physics-Informed Neural Network (PINN), Figure 3.1. These PINNs can be trained
using real-world data.

Figure 3.1: Workflow of PINN.

This network is designed to forecast future observations, such as zone tem-
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perature and thermal load demand (x obs
i+1), as well as the temperature of lumped

thermal mass (zi), based on current observations, which include current and past
zone temperatures (x i), external weather data (wi), actions of the energy system
(Ai), and system parameters (Ω). DΩ denotes a general differential operator in the
physical domain. To integrate physics-based knowledge into a conventional neural
network, the loss function is typically reformulated as shown in Eq.3.1 [47].

LOSS = LNN +λ ·Lphys

LNN =
1
N

N
∑

i=1

�

x obs
i+1 − bx

obs
i+1

�2

Lphys =
1
N

N
∑

i=1

�

DΩ
�

xobs
i ,Ai ,zi ,zi+1,wi

��2

(3.1)

Here, Lnn signifies the prediction discrepancies of conventional neural networks,
while Lphys indicates the physics loss, which connects the network to physical
laws and existing knowledge. λ is a regularization term that determines the level
of physical knowledge usage. In the conventional neural network, λ is set to zero.

Based on formulation mentioned above, two different models of physics in-
formed neural networks were proposed by [46].

3.1 Model 1: PhysNet

Figure 3.2 depicts a structure consisting of two modules, Encoder and Dynamics
modules. The Encoder module is defined by the parameters θL , while the Dynam-
ics module is characterized by θd [46].

The high dimensional, feature-engineered state input component (x f
i ) is en-

coded into a low dimensional latent representation (zi) by the encoder module,
which generates a bottleneck. The network’s dynamics module then uses this lat-
ent representation, action (Ai), and other exogenous information (wi) in conjunc-
tion with observable state information (x obs

i ) to forecast the system’s next observ-
able state (x obs

i+1) [46]. Therefore, the forward pass of this network can be written
as follows:

zi = gθL

�

x f
i

�

,

bx obs
i+1 = hθL

�

zi , x obs
i+1, Ai ,wi

�

,
(3.2)

As mentioned in [46], with this design, the prediction of the latent representation
(zi) is one of the parameters that determines the next observable state prediction.
This guarantees that information about the system dynamics will be included in
the encoded representation that is retrieved from this network.
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Figure 3.2: PhysNet Structure.

3.2 Model 2: PhysRegMLP

A somewhat normal fully connected neural network topology is applied with the
incorporation of physics knowledge based on Eq. 3.2. The complete state rep-
resentation action, and exogenous data make up this architecture’s inputs. The
network concurrently predicts a latent representation and the future observable
state using these inputs. Due to the identity activation function used by the out-
put layer, the outputs (x obs

i+1 and zi) are linear combinations of the output from the
network’s final hidden layer (sθ ) [46]. Therefore, the forward pass of this network
can be expressed as follows:

zt = g1sθ (x i , Al , wl) + g2,

x̂obs
i+1 = h1sθ (x i , Al , wl) + h2.

(3.3)

where g1, g2, h1 and h2 are matrices. As clarified by [46] for this model, it is
not possible to derive the predictions for the future observable state using the de-
rived latent representation and this parameter sharing. This implies that there’s
a chance this latent representation doesn’t have enough details on the system
dynamics. But because of the laws of physics, the latent representation—which
depicts the system’s hidden parameters—is physically significant. Due to this, the
physics module in this instance serves as a regularization term that directs the
network to concurrently learn the system’s dynamics and a few latent represent-
ations.
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Figure 3.3: PhysRegMLP Structure.

3.3 Configurations of PINN

By applying a first-order Euler discretization technique, the continuous time state-
space equations in Eq. 2.3 can be reduced to a discrete-time Eq. 3.4.

�

Tr j+1
Tm,1+1

�

= a×
�

Tr
Tm

�

+ b×Qe + c×





Ta
G
Ig





=

�

−a11 a12
a21 −a22

��

Tr
Tm

�

+

�

b1
0

�

Q̇c +

�

c11 c12 c12
0 c22 c22

�





TA
G
Ig



 .

(3.4)

where parameters a, b, and c stand for the building’s physical knowledge,
which can be estimated using a pure data-driven model or computed using actual
building measurements. These parameters can be set to a specific value for the
estimation case and adjusted using on-site data during the training phase. As a
result, this model may function even in the absence of thermodynamics paramet-
ers. The loss function can be expressed as follows using this 2R2C model.

LNN =
1
N

N
∑

i=1

�

Tr,i − T̂r,1

�2
+

1
N

N
∑

i=1

�

Aphys
r,i − Âphys

r,i

�2

Lphys =
1
N

N
∑

t=1

�

Tm,i − T̂m,t

�2
.

(3.5)
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Using a 2R2C structure, the thermal mass temperature (Tm) can be computed as

Tm,i =
1

a12

�

Tr,i + a11 T̂r,1 − b1Q̇ i − c11Gt − c12 It − c13Ta,1

�

Tm,i =
τr,+1 −τr,i .

∆t
.

(3.6)

where Tm,i , the lumped thermal mass temperature of the state i, can be com-
puted using Eq. 3.6, and T̂r,i is the room temperature of the state i. The loss
function in Eq. 3.6 is therefore constrained by physical laws.

3.4 Neural network Architecture

Almost all machine learning algorithms follow the same framework for training
their models, Figure 3.4. As can be seen in this figure, this process is comprised
of the following parts:

• Data preprocessing: Data preprocessing is a crucial phase in the machine
learning process since the quality of the data and the information that can
be extracted from it directly influence how well our model can learn. First,
the rows that contain null values were dropped. Second, outliers are elimin-
ated by the use of box and whisker plots. The box and whisker plot method,
a valuable statistical tool, offers a visual representation of a dataset’s dis-
tribution, while also effectively identifying outliers. Central to this method
is interquartile range (IQR), depicted by the box, which encapsulates the
middle 50% of the data. Mathematically, IQR is calculated as the difference
between Third quartile (Q3) and First quartile (Q1), i.e.,

IQR=Q3 −Q1 (3.7)

The whiskers extend from the edges of the box to the minimum and max-
imum values within a range typically set at 1.5 times IQR. Formally, the
upper whisker limit is defined as

Qupper =Q3 + 1.5× IQR (3.8)

while the lower whisker limit is

Q lower =Q3 − 1.5× IQR (3.9)

Any data points lying beyond these limits are considered potential outliers.
These outliers, represented graphically, signify values significantly deviating
from most of the dataset, indicating possible anomalies or measurement
errors.
As mentioned in the previous section, there are two kinds of data, includ-
ing data-based learning and physics-based information, which have been
cleaned before applying neural network method.
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• Split cleaned data: Usually, data splitting is done to prevent overfitting, in
which a machine learning model fits the training data too well and is unable
to consistently fit new data. Given this situation, the data is divided into two
parts, training and test data. Next, a subset of the training data is used as
the validation data to compare the performance of several trained models.
This helps us to select the appropriate model class or hyper-parameters. For
our problem, we separate 24 data from the end of the series for the test and
10 percent from the end of the training data for validation.

image

Figure 3.4: Neural Network Training Flowchart.

• Train model: In order to forecast the hourly energy usage, PINN is used.
• Evaluate model: The following performance metrics are used to assess

each model’s effectiveness: Mean Absolute Error (MAE), Mean Squared Er-
ror (MSE), Root Mean Squared Error (RMSE). Mean Absolute Error (MAE)
refers to the magnitude of difference between the prediction of an observa-
tion and the true value of that observation.

MAE=
1
n

n
∑

j=1

�

y j − ŷ j

�

. (3.10)
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The squared difference between the estimated and actual values is meas-
ured by Mean Squared Error (MSE).

MSE=
1
n

n
∑

j=1

(y1 − ŷ1)
2 (3.11)

Another measure used to determine the differences between the estimated
value and the actual value of the model is called Root Mean Squared Error
(RMSE). Root Mean Squared Error (RMSE) is defined as follows:

RMSE=

√

√

√1
n

n
∑

i=1

(y1 − y1)
2 (3.12)





Chapter 4

Other Machine Learning Methods

4.1 SARIMA

Seasonal Autoregressive Integrated Moving Average (SARIMA) model is frequently
used to predict seasonal time series. A Seasonal ARIMA (SARIMA) model assumes
multiplicative seasonality. In other words, this method combines an ARIMA model
with a seasonality factor. The equation is written as ARI MA(p, d, q)(P, D,Q)m,
where the first parenthesis shows ARIMA method’s parameters and the second
one shows SARIMA method’s seasonality factor, with m indicating the number of
time steps in a seasonal cycle. Figure 4.1 depicts the process of forecasting energy
consumption by using SARIMA model.

These steps are explained in the following.

1. Visualize data: Data visualization is required before applying machine learn-
ing methods to it, as it reveals patterns in the data, such as seasonality and
trends.

2. Augmented Dickey Fuller Test: SARIMA model can only be used for sta-
tionary time series. There are several methods used for this purpose. In this
thesis, Augmented Dickey-Fuller (ADF) was selected to apply to the data.
ADF test is an advanced model test in which the null hypothesis is a unit root
in an autoregressive model. The presence of unit roots in time series implies
that unexpected results might be uncovered during time series analysis. It
means that forecasting would be inaccurate. ADF can evaluate stationary
properties as well as handle more complex statistics.

3. Stationarize the time series data: If the series is non-stationary, it can be
converted into a stationary signal. Detrending, seasonality, and differencing
are three methods for rationalizing data sets. In general, the differencing
method, as used in this paper, is applied to data transformation and sta-
tionarization. If a signal St is non-stationary, it can be stationarized into a
stationary signal Tt using the following equation

Tt = St − St−1, (4.1)

17
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Figure 4.1: Flowchart of SARIMA method.

The signal Tt will not always be stationary despite these transformations.
Although it is infrequent, it can happen. In that case, if Tt is non-stationary,
the same transformation can be applied to the signal Tt .

4. ACF/PACF: Two graphs, ACF and PACF, can be used to make predictions
about the ARIMA parameters p, d, and q. Auto-correlation function (ACF)
provides the auto-correlation value for any lagging series of variables. This
means that it describes how well current values connect to previous values.
One of the ways to predict ARIMA parameters, p, d, and q, is the use of two
graphs: ACF and PACF. ACF is the comprehensive auto-correlation function,
which gives us the value of the autocorrelation of any series with lagged val-
ues. This means it describes how well present values relate to past values.
These values are plotted along with a confidence band to create an ACF plot.
Each time series has several components, including seasonality, trend, cyc-
licality, and residuality. In order to find correlations, ACF takes into account
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all of these factors, which is why it is called the complete auto-correlation
plot. Partial auto-correlation function (PACF) is a statistical measure that
captures the correlation between two variables after controlling for the ef-
fects of other variables. For example, if we are regressing a signal S at lag
t (St) with the same signal at lags t − 1, t − 2 and t − 3 (t − 1, St−2, St−3),
the partial correlation between St and St−3 is the amount of correlation
between St and St−3 that is not explained by their mutual correlations with
St−1 and St−2.

St = φ1St−1 +φ2St−2 +φ3St−3 + ε (4.2)

whereφ1,φ2, andφ3 are coefficients and ε is the error. From the regression
formula above, PACF value between St and St−3 is the coefficient φ3. This
coefficient will give us direct effect of time-series St−3 to the time series St
because the effects of St−2 and St−1 are already captured by φ1, and φ2.
Estimate parameters for SARIMA model. ARIMA is a regression type equa-
tion in which the independent variables are lags of the dependent variable
or lags of the forecast errors. The equation for ARIMA is given as follows
[48]:

y
′
(t) = c +φ1.y

′

t−1 · · ·+φ.y
′

t−p + θ1.εt−1 · · ·+ θq.εt−q + εt , (4.3)

the equation contains three main terms:
Auto Regression (AR): This component involves regressing the time series
against its previous values, shown as yt−1, yt−2, etc. The order of this lag is
represented by p.
Integration (I): This component utilizes differencing to render the time
series stationary. The order of differencing is represented by d.
Moving Average (MA): This component involves regressing the time series
against residuals of past observations, represented as error εt−1, εt−2, etc.
The order of this error lag is represented by q.
In Eq. 4.3, y

′
(t) signifies the differenced series, φ1 is the coefficient of the

first AR term, p is the order of the AR term, θ1 is the coefficient of the
first MA term, q is the order of the MA term and εt is the error. ARIMA
does not support seasonal data. A seasonal ARIMA model is used when a
time series has a significant seasonal pattern. In addition to the three para-
meters mentioned in the previous section, p, d, q, SARIMA has four more
seasonal parameters (P, D,Q)m. The first three parameters account for Auto-
regressive Component (P), Difference Component (D), and Moving Average
Component (Q) at the seasonal level, and m is number of observations per
season which for our case is 12. The generalized form of SARIMA model
can be written as [49]:
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φp(B)−Φp

�

B5
� �

1− B5
�D · zt = θq(B) · θQ

�

B5
�

· at

φp(B) = 1−φ1B −φ2B2 − · · · −φpBp

Φp(B) = 1−Φ1B −Φ2B2 − · · · −ΦpB

θq(B) = 1− θ1B − θ2B2 − · · · − θpB9

θQ(B) = 1− θ1B − θ2B25 − · · · − θpB0s

(4.4)

where B is the backward shift operator which is used as follows

B.yt = yt−1. (4.5)

In other words, B, operating on yt , has the effect of shifting the data back
one period. Two applications of B to yt shifts the data back two periods.

B (B.yt) = B2.yt = yt−2 (4.6)

ARIMA models are employed with various parameter configurations for pre-
dicting electricity data. The model suggests that seasonal patterns can be
viewed as an ARIMA process, with m indicating the number of time steps per
seasonal cycle. The model recognised that neighboring time points can in-
fluence each other, either within the same season or across different seasons,
through typical temporal proximity. Identifying a SARIMA model is particu-
larly challenging compared to an ARIMA model because it requires address-
ing seasonal effects. Thankfully, the auto.arima() function in the forecasts
package can manage this complexity, treating it similarly to a standard AR-
IMA estimation task. As discussed earlier, there are good reasons to go with
automated parameter selection unless you have strong knowledge that sug-
gests you override the selected model determined by automated methods.
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4.2 Prophet Forecasting Model (PFM)

4.2.1 Architecture of PFM method

The workflow diagram of the model is shown in Figure 4.2.

Figure 4.2: Flowchart of PFM.

In this model, a time series is decompose in three different components, in-
cluding trend, seasonality, and holiday. They are combined in the following equa-
tion [50]:

y(t) = g(t) + s(t) + h(t) + εt . (4.7)

Here g(t) shows the overall trend of data is the trend function without any peri-
odic changes, s(t) represents periodic changes ( e.g., weekly and yearly seasonal-
ity), and h(t) represents the effects of holidays which is applicable when there is
irregular pattern over one or more days.
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4.2.2 Trend Model

Two trend models are applied to cover many Facebook applications: line growth
model, and linear growth model. For the first model, the growth term will look
like a line equation, y = mx+ b, except the slope (m) and offset (b) are variables.
The basic form of logistic model is defined as

g(t) =
C(t)

1+ e−k(t−m)
. (4.8)

with C the carrying capacity, k the growth rate, and m an offset parameter.

4.2.3 Seasonality

For modeling seasonality, Fourier series is utilized because it gives us a flexible
model for modeling periodic effects. The standard Fourier series is shown as fol-
lows

s(t) =
N
∑

n=1

�

an · cos
�

2πnt
p

�

+ bn · sin
�

2πnt
p

��

(4.9)

To apply seasonality, a matrix of seasonality vectors must be created. For ex-
ample with yearly seasonality and N = 10,

X (t) =
�

cos
�

2π(1)t
365.25

�

, . . . , sin
�

2π(10)t
365.25

��

. (4.10)

The seasonal component is then

s(t) = X (t)β . (4.11)

where β = [a1, b1, ..., aN , bN ] and taken as β ≈ Normal(0,σ) [50].

4.2.4 Holidays and Events

Occasionally, some predictable shocks might be happened in the time series. This
effect can be modeled by holidays and events function. This function allows Face-
book Prophet model to adjust forecasting on those special days. We can identify
the set of past and future dates, Di , for the holidays.

4.2.5 LSTM

LSTM is a type of Recurrent Neural Network (RNN) architecture specifically de-
signed to address the vanishing gradient problem that occurs in traditional RNNs.
It is well-suited for modeling and forecasting time series data due to its ability to
capture long-term dependencies and retain memory over extended sequences.
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4.2.6 Architecture of an LSTM Unit

At the core of an Long Short-Term Memory (LSTM) network lies the LSTM unit,
which consists of several components, 4.3:

• Memory Cell (Ct): The key component of LSTM is the memory cell, denoted
by Ct , which stores information at time step t. The cell has three main
components: the input gate, forget gate, and output gate.
• Input Gate (it): The input gate determines the extent to which new inform-

ation should be stored in the memory cell. It is calculated as follows.

it = σ(Wi · [h( t − 1), x t] + bi) (4.12)

where Wi and bi are the weight matrix and bias vector for the input gate,
ht−1 is the previous hidden state, x t is the input at time t, and σ is the
si gmoid activation function.
• Input Gate (it): The input gate determines the extent to which new inform-

ation should be stored in the memory cell. It is calculated as follows.

it = σ (Wi · [ht−1, x t] + bi) (4.13)

where Wi and bi are the weight matrix and bias vector for the input gate,
ht−1 is the previous hidden state, x t is the input at time t, and σ is the
si gmoid activation function.
• Forget Gate ( ft): The forget gate controls the extent to which the previous

memory cell content should be retained. It is calculated as:

ft = σ(Wf · [ht−1, x t] + b f ) (4.14)

where Wf and b f are the weight matrix and bias vector for the forget gate.
• Output Gate (ot): Determines which information from the memory cell

should be output to the next time step. It is calculated as:

ot = σ(Wo · [ht−1, x t] + bo) (4.15)

where Wo and bo are the weight matrix and bias vector for the output gate.
• Hidden State (ht): The hidden state is computed based on the memory cell

and the output gate:
ht = ot · tanh (ct) (4.16)

where tanh is the hyperbolic tangent activation function.
• Candidate Activation (C̃A): Calculated based on the input and previous

hidden state, this represents the new information that could be stored in
the memory cell.

c̃t = tanh (Wc · [ht−1, x t] + bc) (4.17)
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Figure 4.3: LSTM model architecture.

The memory cell is updated using the input gate, forget gate, and new can-
didate values. The update equation is:

ct = ft · ct−1 + it · c̃t (4.18)

In time series forecasting, LSTM models are trained on historical data to learn
patterns and relationships between past observations and future outcomes. The
trained model can then be used to make predictions for future time steps.

During training, the LSTM model is optimized to minimize the difference
between predicted and actual values using techniques such as gradient descent
and Backpropagation through time (BPTT).
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Results and discussions

Three other machine learning methods were conducted to evaluate the effective-
ness of PINN designs and to gauge their efficacy as models for control purposes.

5.1 Real-world building dataset

Our data includes information gathered from the cold storage of a private building
located in the south of Norway. The building used in this study is a private house
in which heating is provided by an electric heater system. This dataset consists of
observations concerning room temperature, actual energy consumption, and am-
bient air temperature for about 1 year between 1 January 2016 and 30 December
2016. Measurements were taken every 15 minutes, resulting in enough data to
simulate around 364 days for training and validation and 1 day for testing. The
physical parameter of the house is listed in Table 5.1.

Table 5.1: Physical Parameters

Physics Parameters Value unit
Thermal Capacitance of the Room (Cr) 1500 J/◦C
Thermal Capacitance of the Thermal Mass (Cm) 200 J/◦C
The specific heat capacity of air

�

Cρ
�

1005 J/Kg◦C
Thermal Resistance Between the Room and the Ambient (Rra) 0.15 m2 K/W

Thermal Resistance Between the Room and the Thermal Mass
(Rrm)

0.07 m2 K/W

Note: Internal Heat Gain (Ig) and Solar Irradiance (G) are ignored in this model [46].

5.2 Cleaning Data

After plotting the indoor temperature data, Figure 5.1, it became apparent that
there were some outliers present, potentially affecting the accuracy of our analysis.

25
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Figure 5.1: Indoor Temperatures with outliers.

While analyzing indoor temperature data over the duration of a year, it be-
came apparent that certain abnormal temperature readings were not caused by
internal building issues. Instead, they were linked to periods when the building
was unoccupied. Instead of just deleting these outlier readings, a different ap-
proach was taken to maintain the integrity of the data series. However, removing
them entirely could disrupt the flow of the data, leading to misleading conclu-
sions.

To address this issue, outliers associated with the unoccupied building were
replaced with the mean values from both the previous and next days at the same
time. By this, outliers could be fixed while keeping the data in chronological order.
Notably, the energy consumption and outdoor temperature data associated with
those outliers were also replaced with the mean values from the corresponding
previous and next days. The Box and Whisker plot of cleaned internal temperature
and energy consumption are illustrated in Figure 5.2. Moreover, the cleaned data
is shown in Figure 5.3 and Figure 5.4.

5.3 Physics-Informed Neural Network Result

This section explores how various settings within the models (architectures) will
impact their performance. As mentioned in the previous section, both models re-
ceive a sequence of past room temperatures and control actions as input.

• Depth: This sequence length, called "depth," determines how much past
information the model has access to, impacting its ability to estimate the
building’s hidden state (Tm). Longer sequences (higher depth) can partly
compensate for missing information like solar radiation or internal heat
gains [46].
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(a) Indoor temperature (b) Energy consumption

Figure 5.2: Box and Whisker plots for Indoor temperature and energy consump-
tion.

Figure 5.3: Cleaned Indoor Temperature Data.

• Network size and hyperparameters: The hyperparameters utilized for both
architectures, PhysNet and PhysReg, are displayed in Tables 5.2 and 5.3. It
is worth noting that the same hidden layer and neuron numbers have been
applied across both architectures, Improving the consistency in comparing
the two methods.

The impact of depth on two different physics-informed machine learning meth-
ods and Multilayer Perceptron (MLP) method is investigated in Figure 5.5. As the
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Figure 5.4: Cleaned Energy Consumption Data.

Table 5.2: Hyperparameters for PhysNet architecture

Parameters Value
Optimizer Adam
Learning Rate 0.001
Activation Function tanh
Batch Size 1024
Input Neorons 24
Encoder Module (θL)
Hidden Layers 2
Neurons per layer 64
Dynamics Module (θd)
Hidden Layers 2
Neurons per layer 64

Table 5.3: Hyperparameters for PhysReg architecture

Parameters Value
Optimizer Adam
Learning Rate 0.001
Activation Function tanh
Batch Size 1024
Input Neorons 24
Hidden Layers 4
Neurons per layer 64
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model depth increases, the energy consumption error decreases significantly, as
it is supposed, because deeper architectures are capturing more complex patterns
in the data. This plot indicates that for depths below 20, PhysReg yielded better
results compared to PhysNet. In simpler term, If these methods is utilized with
lower depth, it is preferable to choose PhysNet over PhysReg. This situation could
arise due to various factors; for instance, increasing the number of input neurons
expands the input space, which may heighten the likelihood of overfitting. In or-
der to facilitate a clearer comparison of various approaches, a network structure
depth is 24 that is based on 24 hours.

Figure 5.5: The effect of depth on accuracy.

Figures 5.6 and 5.7 represent a comparison between actual and predicted
indoor temperature on test data. The fluctuations in actual temperature corres-
pond to the natural variations in indoor temperature due to external factors (e.g.,
weather, heating, cooling). As can be seen, PhysNet and PhysReg models are
trained to learn the underlying patterns and dynamics of indoor temperature
based on historical data. They use a combination of neural network architecture
and domain-specific physics knowledge to make accurate predictions. The neural
network estimates the thermal mass temperature based on the observed indoor
temperature and other relevant features. The green line represents the thermal
mass temperature, the hidden state, Tm, calculated by the same neural network.
Thermal mass refers to the ability of a material (such as walls, floors, or furniture)
to store and release heat. As mentioned in Section 2, it is difficult to calculate this
value and this makes our problem partially observable. Thus, it is not possible to
calculate the accuracy of this value. However, in some papers, like [46], the build-
ing mathematical modeling was solved with finite difference methods to calculate
the hidden state for comparison with the output of neural network.
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Figure 5.6: Trained physics-informed neural network architectures (PhysNet)
when applied to real-world data scenarios.

Figure 5.7: Trained physics-informed neural network architectures (PhysReg)
when applied to real-world data scenarios.

5.4 SARIMA

5.4.1 Data for prediction

Initially, it’s important to determine if SARIMA is applicable to this dataset. As depic-
ted in Figure 5.8, the energy consumption patterns remain consistent on a daily
basis, highlighting multiple high points in energy consumption around midday
and correspondingly lower levels typically seen at the beginning and end of each
day. Hence, utilizing SARIMA to model the data’s behavior seems justified.
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Figure 5.8: The fluctuation of energy consumption in the building in December
2016 ACF and PACF plots.

Figure 5.9 (top) exhibits ACF plot for our dataset. It’s evident that the coeffi-
cient at lag one stands out significantly compared to others, leading us to select
Q = 1 for our model. It is worth noting that although coefficients for lags bey-
ond 24 also demonstrate significance, we choose not to incorporate larger lags
because they are linked to the dataset’s seasonality, which is already addressed by
parameter m.

Figure 5.9 (bottom) depicts the PACF plot of our dataset for a lag of 24. Not-
ably, there are robust correlations observed between time periods t and t − 2
compared to others. Hence, we opt for P = 2 in the SARIMA model. To ensure
stationarity in our data, we apply first-order differencing, indicating D = 1.

The final SARIMA model employed for prediction is SARIMA(0, 0, 0)(2, 1,
1)24, where only the seasonal parameters P, Q, D, and m are utilized, and the
non-seasonal component, which corresponds to the ARIMA model, is set to zero.
The outcome of our prediction is depicted in Figure 5.10, where it is evident that
the forecast closely aligns with the actual values.

The residual of SARIMA model is depicted in Figure 5.11. As depicted in the
figure, the greatest error tends to occur around the midpoint of the period. This
is primarily due to SARIMA relying solely on historical data to identify patterns
for future predictions. Consequently, as evident from Figure 5.10, the energy con-
sumption of the building exhibits a somewhat erratic pattern in the preceding
days.
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Figure 5.9: ACF (top) and PACF (bottom) plots

Figure 5.10: SARIMA Prediction

5.5 Prophet Forecasting Model

Figure 5.12 illustrates some important components, including trend, weekly sea-
sonality, and daily seasonality, of the Prophet forecasting model applied to the
energy consumption of the house. The model’s output is visualized in three dis-
tinct plots, each providing valuable insights into the energy usage patterns.

The top plot represents the trend of energy consumption over a year, from
January 2016 to January 2017. It shows fluctuations in energy use, indicating
periods of increased and decreased consumption. This could be due to seasonal
changes, variations in daily routines, or other factors affecting energy use.
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Figure 5.11: Error of SARIMA method (test data)

The middle plot depicts weekly seasonality in energy consumption. It high-
lights that energy use tends to be lower during weekdays and peaks on Sundays.
This pattern might be attributed to the occupants’ weekly routines, with more
time spent at home during the weekends leading to higher energy use.

The bottom plot shows daily seasonality in energy consumption. It reveals
that energy use is highest during the early morning and evening hours. This could
be due to increased activity in the house during these times, such as cooking,
cleaning, or using electronic devices.

Overall, these plots provide a comprehensive view of the household’s energy
consumption patterns. Such insights can be instrumental in developing strategies
for optimizing energy use and improving efficiency.

The time series plot generated by the Prophet forecasting method is plotted in
Figure 5.13. It represents the energy consumption (in KWh) over a certain period.
The black dots in the plot represent the observed data points, i.e., the actual energy
consumption, training data, recorded at different times.

The blue line in the plot represents the forecasted energy consumption. This is
the prediction made by the Prophet model based on the patterns of training data.

The shaded area around the blue line represents the uncertainty interval of
the forecast. This means that the actual value is expected to fall within this range
with a certain level of confidence. The width of the shaded area at any point in
time indicates the level of uncertainty in the forecast at that point. A wider shaded
area means higher uncertainty.

Figure 5.14 shows a comparison between the actual test data and forecasted
energy consumption data. This is often done to evaluate the performance of a
forecasting model.

By comparing the actual data points with the forecasted values, we can see
how well the Prophet model has performed in predicting energy consumption
behavior. If the actual data points fall within the uncertainty interval and fol-
low the same general trend as the forecasted values, it indicates that the model
has done a good job in capturing the underlying patterns in the data. However,
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Figure 5.12: Components of Prophet mode.

as demonstrated, Prophet might struggle with time series data that have high-
frequency fluctuations, such as hourly energy consumption data. This is because
these fluctuations can be influenced by many unpredictable factors that are not
easily captured by the model. For example, hourly energy consumption can be
affected by sudden changes in weather, unexpected appliance usage, or other ir-
regular events, which can be captured by PINN methods because these models
do not count only on the historical data, and physics parameters are involved as
a part of problem solving. On the other hand, when you aggregate the data into
larger time windows, like daily or weekly, many of these short-term fluctuations
average out, and the underlying patterns become more apparent and predictable.
This is why Prophet often performs better on daily or weekly data.

The graph of absolute errors is plotted in Figure 5.15 which represents the
absolute errors of the Prophet forecasting method over test data. As mentioned,
the highest errors occur in the middle of the period due to a sudden change in the
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Figure 5.13: Comparison between training data and prophet forecasting method.

trend that the model did not anticipate.

5.6 LSTM

The model, like other time-series models, uses the previous energy data as the
input parameter to forecast the next day. Table 5.4 is a summary of hyperpara-
meters used in an LSTM model for energy consumption prediction. The selection
of these hyperparameters involved a grid search approach, with Mean Squared
Error (MSE) used as the metric for evaluating predictions on a validation set.
In the LSTMconfiguration specified, the model comprises two hidden layers, each
containing 32 neurons. Within each LSTM layer, there are 64 LSTM units, which
are responsible for capturing temporal dependencies in the input sequences.

Figure 5.16 shows a line graph representing the training and validation loss
values over epochs in an LSTM model. The training loss (blue line) and the valid-
ation loss (orange line) are both plotted against the number of epochs.

The training loss decreases as the model learns from the training data, which
is expected behavior. However, the validation loss decreases during the first 10
epochs and then starts to increase again, which shows overfitting. In this case,
the model seems to perform well up to a certain number of epochs, after which
it starts to overfit. One way to prevent overfitting is to stop training when the
validation loss starts to increase, a technique known as early stopping.

Figure 5.17 displays a line graph comparing the actual and predicted energy
consumption values over specific dates. The actual values are typically represented
by the blue line, while the predicted values are represented by the red line. This
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Figure 5.14: Comparison between test data and prophet forecasting method.

Figure 5.15: Error of Prophet method (test data).

figure provides a visual representation of how well the LSTM model’s predictions
match the actual energy consumption. The model works by maintaining a form of
memory about previous inputs while processing new ones. This allows it to make
predictions based on the historical context it has learned. For instance, if energy
consumption typically increases at certain times of the day or certain days of the
week, as shown in Figure 5.17, the LSTM model can learn this pattern and use it to
make accurate predictions. However, The model might not be responsive enough
to capture sudden changes in energy consumption.

The fluctuations in the error over time, Figure 5.18, can provide insights into
the performance and stability of the method. For instance, large fluctuations can
be seen in the middle, which shows the sudden change in energy consumption.
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Table 5.4: Hyperparameters for LSTM architecture

Parameters Value
Optimizer Adam

Learning Rate 0.001
Activation Function tanh

Loss function MSE
Batch Size 1024

Epochs 10
Hidden Layers 2

Neurons per layer 32
Number of LSTM Units 64

Figure 5.16: Loss function for training and validation data.
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Figure 5.17: LSTM prediction.

Figure 5.18: Error of LSTM method (test data).
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5.7 Comparison Between Different Methods

The comparison of various approaches is depicted in Figure 5.19. It is evident from
the illustration that PINN methods exhibit better accuracy in tracking the energy
consumption pattern compared to other methods. This accuracy stems from the
utilization of both physical parameters and historical energy consumption data in
PINN methods, whereas the remaining approaches rely solely on historical data to
identify energy consumption patterns in the household.

Comparing methods such as Physics-Informed Neural Networks (PINN), Long
Short-Term Memory (LSTM), Seasonal Autoregressive Integrated Moving Average
(SARIMA), and Prophet sheds light on their distinct characteristics. PINN com-
bines physics principles and neural networks, providing clear insights and precise
predictions, particularly in physical systems modeling. LSTM, a type of recurrent
neural network (RNN), excels in capturing long-term dependencies in sequential
data. SARIMA, a classical statistical method, skillfully models seasonal and trend
components in time series data, providing reliable forecasts in various industries.
While PINN, LSTM, and SARIMA focus on predicting patterns inherent in the data,
Prophet primarily emphasizes capturing the trend component. Prophet’s strength
lies in its simplicity and ability to handle missing data and outliers effectively. This
is why the SARIMA, LSTM, and PINNs are good at forecasting the pattern of data.
By highlighting these distinctions, it becomes evident that while all methods aim
to forecast future trends, their approaches and focuses vary, meeting diverse fore-
casting needs across different domains.

Table 5.5 provides Mean Absolute Error (MAE) values for various forecasting
methods, including Physics-Informed Neural Networks (PINN) with specialized ar-
chitectures (PhysReg and PhysNet), Long Short-Term Memory (LSTM) networks,
Seasonal Autoregressive Integrated Moving Average (SARIMA) models, and the
Prophet forecasting model. Lower MAE values indicate higher accuracy, with PINN
(PhysReg) yielding the lowest MAE of 0.112, followed by PINN (PhysNet) at 0.136,
LSTM at 0.188, SARIMA at 0.211, and Prophet at 0.302. These results suggest that
Physics-Informed Neural Networks, particularly with a regular architecture, ex-
hibit superior forecasting performance compared to other methods, highlighting
their potential for accurate time series prediction tasks.



40 SA.Mohimanianpour@NTNU: Advancing Building Energy Efficiency with PINN

Figure 5.19: Comparison between different methods.

Table 5.5: MAE for different Methods (test data)

Method MAE
PINN (PhysReg) 0.112
PINN (PhysNet) 0.136

LSTM 0.188
SARIMA 0.211

PROPHET 0.302
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Conclusion

In this study, we explored the predictive performance of five different time series
forecasting models: SARIMA, Prophet, LSTM, and Physics-Informed Neural Net-
works (PINN), including PhysNet and PhysReg. These models were applied to a
real-world dataset to forecast energy consumption in a building. Our analysis re-
vealed interesting insights into the strengths and weaknesses of each model.

SARIMA, a classical statistical method, demonstrated its effectiveness in cap-
turing the seasonal and trend components of the time series data. Its ability to
incorporate past observations and seasonal patterns made it particularly suitable
for forecasting tasks with clear cyclic patterns. However, SARIMA struggled to ad-
apt to sudden changes or irregularities in the data, which limited its performance
in scenarios with high volatility or non-linear trends.

Prophet provided a flexible and user-friendly framework for time series fore-
casting. It automatically handled issues such as seasonality, holidays, and out-
liers, making it easy to implement and interpret. Prophet excelled in capturing
daily, weekly, and yearly seasonality patterns, making it a suitable choice for data-
sets with multiple seasonal components. However, its performance might degrade
when dealing with irregular data patterns.

LSTM, a type of Recurrent Neural Network (RNN), demonstrated remarkable
capabilities in capturing complex temporal dependencies within the data. Its abil-
ity to retain information over long sequences made it particularly effective in mod-
eling non-linear and dynamic relationships in the time series data. LSTM models
performed better than traditional statistical methods like SARIMA in scenarios
characterized by high complexity and volatility. Nonetheless, LSTMmodels demand
meticulous adjustment of hyperparameters and might encounter overfitting, par-
ticularly when dealing with restricted training datasets.

Physics-Informed Neural Networks (PINN) offered a unique approach by incor-
porating physical laws or constraints into the neural network architecture. This
integration of domain knowledge improved the interpretability and generaliza-
tion capabilities of the model, especially in scenarios where underlying physical
principles govern the data generation process. However, the effectiveness of PINN
heavily depends on the accuracy of the underlying physics-based constraints and

41
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the availability of domain expertise for model development.
In scenarios with clear seasonal patterns and limited volatility, SARIMA and

Prophet models might often produce competitive results. However, for datasets
with complex temporal dependencies or irregularities, LSTM and PINN models
showed superior performance, with LSTM excelling in capturing long-term depend-
encies and PINN leveraging domain knowledge to improve forecast accuracy.

In conclusion, the choice of the most suitable forecasting model depends on
various factors including the characteristics of the dataset, the forecasting horizon,
and the availability of domain expertise. While SARIMA and Prophet offer robust
solutions for capturing seasonal patterns and short-term forecasts, LSTM and PINN
models provide more flexibility and accuracy in modeling complex temporal dy-
namics and long-term trends.
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