
Computers & Operations Research 167 (2024) 106669

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

The static ridesharing routing problem with flexible locations: A Norwegian
case study
Jacob Nitter, Shusheng Yang, Kjetil Fagerholt ∗, Andreas Breivik Ormevik
Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NO 7491, Trondheim, Norway

A R T I C L E I N F O

Keywords:
Transportation
Routing
Ridesharing
ALNS heuristic

A B S T R A C T

The municipalities in the Bergen region in Norway have recently announced a pilot project for ridesharing in
the region as a means to reduce traffic congestion. As part of this project, we study the Static Ridesharing
Routing Problem with Flexible Locations (SRRPFL), which aims at determining efficient routes and schedules
for a set of drivers to pick up and deliver passengers at different, flexible pickup and delivery locations. We
present a bi-objective mixed integer programming (MIP) model for the SRRPFL where we (lexicographically)
first maximize the number of passengers serviced and then minimize the total travel times. To solve real-
life instances of the SRRPFL, we propose a new Adaptive Large Neighborhood Search (ALNS) heuristic.
To further improve its performance, we extend the ALNS heuristic with a local search, as well as with a
set partitioning problem (denoted the Route Combination Problem) that optimally recombines the routes
previously encountered in the search. The ALNS heuristic is tested on a number of test instances based on
real trip data and the results demonstrate its effectiveness. The results also provide a number of insights
regarding the potential benefits of ridesharing in our case study.
1. Introduction

The advantages of ridesharing, where individual travelers share
vehicles, include the sharing of travel expenses such as fuel, tolls, and
parking fees among participants, and the fostering of a sense of commu-
nity among travelers. Moreover, ridesharing can contribute to a more
sustainable transportation system by reducing the number of single-
occupancy vehicles on the road, thereby decreasing traffic congestion
and carbon emissions. However, despite these benefits, ridesharing has
not yet become a mainstream transportation alternative, perhaps due
to the lack of efficient methods for coordinating schedules, as well as
concerns regarding trust and convenience.

In the case of Norway, the need for efficient and sustainable trans-
portation solutions is further emphasized by the country’s unique ge-
ographical and demographic characteristics. As in many parts of the
world, many people live in suburban areas and on the outskirts of
cities and towns, often requiring long-distance commutes to urban
centers for work or other activities. The Norwegian landscape, with
its numerous fjords and islands, adds complexity to transportation
networks and can lead to a reliance on ferries or bottleneck bridges
for commuting between regions. Furthermore, many places in Norway
have low population density, which makes it hard to offer good public
transportation services. This results in a higher dependency on private

∗ Corresponding author.
E-mail address: kjetil.fagerholt@ntnu.no (K. Fagerholt).

vehicles, possibly leading to increased traffic congestion (e.g., over
bridges) and associated negative environmental impacts.

One particular region that highlights these challenges is the island
of Sotra and the Bergen municipality on the west coast of Norway.
Sotra, situated just outside of Bergen (second largest city in Norway),
exemplifies a region that faces transportation difficulties due to its bot-
tleneck bridge called Sotrabroen connecting the island to the mainland.
With nearly 30,000 car movements crossing the bridge daily, traffic
congestion is a common occurrence, causing delays and frustration for
commuters. See Fig. 1 for a visualization of the geography in the area
and how traffic develops at the Sotra bridge throughout a representa-
tive weekday. A majority of residents on Sotra who work in Bergen rely
on this bridge to access their workplaces. Hence, a successful imple-
mentation of a ridesharing system in Sotra could alleviate some of the
pressure on the bridge, reduce the number of vehicles on the road, and
ultimately decrease traffic congestion and emissions. By optimizing the
use of available resources and promoting a culture of shared mobility,
ridesharing has the potential to create a more efficient and sustainable
transportation network for the residents of Sotra and the greater Bergen
area. A well-designed ridesharing system could serve as a model for
other similar regions facing similar transportation challenges, both in
Norway and beyond. Moreover, ridesharing can help bridge the gap
vailable online 16 April 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2024.106669
Received 10 August 2023; Received in revised form 12 April 2024; Accepted 13 Ap
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ril 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:kjetil.fagerholt@ntnu.no
https://doi.org/10.1016/j.cor.2024.106669
https://doi.org/10.1016/j.cor.2024.106669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2024.106669&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Fig. 1. Road networks on the island of Sotra. The bold line represents the heavily trafficked main road connecting the island to Bergen city center, and the hourly numbers of
crossings are visualized (passenger vehicles only).
in public transportation services, providing a more convenient, cost-
effective, and sustainable alternative for commuters living in suburban
or rural areas.

Despite the potential benefits of ridesharing, implementing a suc-
cessful system presents several challenges that must be addressed. One
key challenge is the coordination of passengers and drivers, which
requires an effective platform that can match individuals with similar
travel needs while considering factors such as timing, pickup and
delivery locations. Recognizing the need for innovative transportation
solutions, the municipalities in the Bergen region have recently en-
gaged in discussions to explore potential strategies for addressing these
challenges. Consequently, a pilot project for ridesharing in the region
has been announced. As part of this initiative, with the aim to inves-
tigate how ridesharing can contribute to reducing traffic congestion in
Sotra and the greater Bergen area, we consider in this paper the Static
Ridesharing Routing Problem with Flexible Locations (SRRPFL). The
SRRPFL aims at determining efficient routes and schedules for a set of
drivers to pickup and deliver passengers at different, flexible pickup
and delivery locations. The flexible locations means that passengers not
necessarily will be picked up directly at their homes, instead they can
travel a short distance to another candidate pickup location. Similarly,
passengers do not have to be delivered right at their destination, but
can be delivered at a nearby location from which they can travel to
their final destination. This flexibility can be important in improving
the overall efficiency of the system, enabling a better matching between
drivers and passengers. The SRRPFL aims to optimize the ridesharing
experience by maximizing the number of passengers that are serviced
and minimizing the total travel time for all drivers. We therefore
propose a bi-objective modeling approach where these two objectives
are optimized in lexicographic ordering, i.e., we first maximize the
number of passengers serviced while satisfying their and the drivers’
timing requirements, and then minimize the total travel times for the
drivers.

The main contributions of this paper can be summarized as follows:
(1) We present a mixed integer programming (MIP) model for the bi-
objective SRRPFL. (2) We propose a new and efficient Adaptive Large
Neighborhood Search (ALNS) heuristic for solving the SRRPFL. The
ALNS heuristic includes both destroy and repair operators well known
from the literature, alongside new operators specifically devised for the
SRRPFL. To further improve the performance of the ALNS heuristic, we
2

incorporate a local search and a set-partitioning problem (denoted the
Route Combination Problem), which optimally recombines the routes
previously encountered in the search. (3) We apply the ALNS heuristic
on a number of test instances for a real-world case study and show
its excellent performance. (4) Through the case study, we provide a
number of important managerial insights, e.g., by exploring the effects
of having flexible locations and how ridesharing can contribute to
reducing congestion and environmental emissions.

Section 2 reviews the related literature on ridesharing, while a
definition of the SRRPFL is provided in Section 3. Section 4 presents
the mathematical formulation of the problem, while Section 5 describes
the ALNS heuristic. The computational study, including a description of
the case study, is presented in Section 6, while concluding remarks are
provided in Section 7.

2. Literature review

We start by categorizing ridesharing problems into centralized and
decentralized, based on the degree of structure and formal organiza-
tion present in the ridesharing arrangements. Centralized ridesharing
represents scenarios where an entity (e.g., a company) coordinates
and manages the ridesharing service for its customers. Examples of
centralized ridesharing includes Uber, taxis and arrangements made
by companies for its employees. On the other hand, decentralized
ridesharing represents a more flexible approach where individuals inde-
pendently rideshare based on their personal schedules and preferences.
In this case, any individual driver may decide to pick up any other
passengers traveling in the same direction (e.g., on its way to work).
Understanding these differences is important as we delve further into
the literature, as each type of ridesharing has its unique characteristic,
challenge, and objective. It should also be noted that the ridesharing
problem studied in this paper is decentralized, while most previous
studies consider centralized versions of the problem.

Agatz et al. (2012) provide a comprehensive review of various types
of ridesharing optimization problems. One key aspect of ridesharing
systems is the underlying network structure, which determines the re-
lationships between pickup and delivery locations, as well as the routes
that drivers can take. The degree of dynamism is another important
aspect, which can range from fully static (all information is known
beforehand) to highly dynamic (information about riders and drivers

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

e
d
p
a
i
t
r
i
s
d
d
t
a
r
i
r
u
t
a
s

f
o
p
S
d
s
c
r
l
S
t
a
b
p

T
t
t
A
B
t
a

c
p
T
a
t
B
s
t
(
g
p
r
m
t
(

becomes available over time). The SRRPFL studied in this paper is a
static ridesharing problem, as we assume that all participants (drivers
and passengers) make available their requirements in due time before
the transportation will take place.

Carpooling, as a specific form of ridesharing, was studied by Bal-
dacci et al. (2004), who focus on matching passengers with drivers
organized by companies that encourage their employees to pick up
colleagues while driving to and from work. The objective is to minimize
the sum of the costs to reach the workplace and the cost deriving
from the penalties of the unserviced clients, while taking into account
constraints such as vehicle capacities, time windows, and maximum
travel times. The vanpool assignment problem, another specific form of
centralized ridesharing, was studied by Kaan and Olinick (2013). They
focus on assigning passengers to larger vehicles (vanpools). Similarly
to the SRRPFL, they include alternative meeting points for passen-
gers, which can accommodate a wider range of passenger preferences,
potentially increasing the adoption of vanpooling as a sustainable
transportation alternative.

He et al. (2023) address a first-mile transportation problem to
intercity transportation hubs such as railway stations and airports.
They dynamically group requests based on their arrival times and
constraints such as maximum travel time requirements. They minimize
the total transportation cost for the (centralized) ridesharing service
provider. Auad-Perez and Hentenryck (2022) explore the concept of
on-demand multimodal transit systems, which integrate bus or rail
routes between transit hubs with on-demand shuttles. The authors
incorporate ridesharing into shuttle rides and introduce new fleet-sizing
algorithms to determine the necessary number of shuttles to transport
a set of passengers. Zheng and Pantuso (2023) focus on a centralized
ridesharing problem, which involves determining optimal routes for
a fleet of vehicles to transport customers to a common destination
via shared trips. The objectives are to minimize transportation costs
and maximize service rates. They present an evolutionary algorithm
based on Pareto dominance to solve their problem and perform tests
on real-life data.

On-demand (dynamic) ridesharing services have gained popular-
ity in recent years, presenting new challenges and opportunities for
optimization. Fielbaum et al. (2021) study an on-demand (central-
ized) ridesharing systems with flexible locations. Their objective is
to minimize routing and passenger walking cost, and to maximize
passenger participation. Ghandeharioun and Kouvelas (2023) explore
on-demand ridesharing by creating a real-time simulation framework
and an optimization algorithm aimed at enhancing ridesharing opera-
tions. They develop a modular real-time simulation framework, and by
using a New York City taxi dataset, the authors demonstrate that their
algorithm outperforms the current taxi fleet in terms of service rate.
Pelzer et al. (2015) present a partition-based matchmaking algorithm
for dynamic ridesharing, i.e., to match passengers and drivers in real-
time. The objective is to maximize mileage savings by sharing rides.
Their results demonstrate that their algorithm is capable of providing
high-quality solutions in a relatively short amount of time, highlighting
its effectiveness and potential for application in dynamic ridesharing
systems.

Lin et al. (2019) explore a probabilistic demand-aware approach.
To handle uncertain future demand, the authors consider the probabil-
ities of future requests. They conduct numerical experiments based on
real-world travel requests in Manhattan.

Most studies on ridesharing focus on non-monetary performance
indices, such as travel distance and successful matches, which may not
provide strong enough incentives for widespread adoption of rideshar-
ing. To resolve this, Hsieh (2020) suggests a monetary incentive.
Li et al. (2023) developed a generalized stochastic user equilibrium
model, which formulates travelers’ mode and route choice behavior.
Recognizing the impact of ridesharing compensation on individual
3

travel choices, the authors emphasize the importance of compensation a
pricing in ridesharing services as a strategic approach to alleviat-
ing traffic congestion. In particular, they tackle the decision-making
problem of ridesharing compensation from the perspective of traffic
managers and policy-makers who aim to minimize total travel cost and
CO2 emissions.

Minimizing CO2 emissions has become a vital concern, and Bruck
t al. (2017) explore this issue in the context of a practical daily
ecentralized carpooling problem, used by companies to organize car-
ooling for its employees on a daily basis. Their study aims at providing
n environmentally friendly approach to carpooling, emphasizing the
mportance of reducing the carbon footprint of transportation activi-
ies. The results indicate that the proposed approach can substantially
educe CO2 emissions compared to individual commuting, demonstrat-
ng the environmental benefits of carpooling. Similar to the SRRPFL
tudied in this paper, Stiglic et al. (2015) recognize that traditional
oor-to-door ridesharing systems can result in significant detours for
rivers and increased travel times for passengers. Hence, they inves-
igate the advantages of incorporating meeting points, which serve
s flexible pickup and delivery locations, facilitating more efficient
outes and minimizing detours for drivers. Their results show that
ncorporating meeting points in ridesharing systems leads to substantial
eductions in travel times and detours for drivers, as well as improved
ser satisfaction due to shorter and more direct routes. Furthermore,
he use of meeting points also contributes to lower fuel consumption
nd emissions, supporting the environmental objectives of ridesharing
ystems.

Hou et al. (2018) address a decentralized ridesharing problem
or optimizing ride-matching and routing in ridesharing systems. The
bjective is to minimize total traveling distance for both drivers and
assengers. The authors evaluate their proposed Large Neighborhood
earch heuristic through computational experiments on a set of ran-
omly generated instances, as well as real-world data sets, and demon-
trate that it can provide high-quality solutions within reasonable
omputational times. Smet (2021) explores a large-scale decentralized
idesharing problem involving flexible drivers and the use of flexible
ocations, proposing a metaheuristic approach to address this challenge.
un et al. (2020) study two versions of a non-profit peer-to-peer (decen-
ralized) ridesharing problem, i.e., a static and a dynamic version. The
uthors propose an exact solution algorithm and a column generation
ased heuristic for the static version, while the dynamic version of the
roblem is tackled with two dynamic dispatching policies.

The ridesharing literature reviewed above is summarized in Table 1.
he specific characteristics and contributions of the SRRPFL studied in
his paper is highlighted in the final row of the table. We can note from
he table that most studies are on centralized ridesharing problems.
mong the studies on decentralized versions, only Stiglic et al. (2015),
ruck et al. (2017) and Smet (2021) consider flexible locations. Hence,
hese are the ones that are most similar to the SRRPFL. However, there
re also some important differences.

In the ridesharing problem studied by Stiglic et al. (2015), a driver
an only be matched with multiple passengers as long as these are
icked up and delivered at the same locations (and at the same time).
his means that there is always at most one pickup and delivery point
long each driver route. Even though this results in rides that are easy
o execute, it also represents a simplification compared to the SRRPFL.
ruck et al. (2017) consider a carpooling case where all participants
hare the same destination. This is in contrast to the SRRPFL, where
he participants have individual destinations. Furthermore, Bruck et al.
2017) minimize the CO2 emissions, while the SRRPFL has two lexico-
raphically ordered objectives (i.e., maximizing the number of serviced
assengers and minimizing the total travel time for the drivers). The
idesharing problem studied by Smet (2021) is perhaps the one that is
ost similar to the SRRPFL. However, that problem does not include

ravel time constraints, and it has a single (weighted) objective. Smet
2021) does not present a detailed arc-flow formulation of the problem

s we do here, and in contrast to our ALNS heuristic, their proposed

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

A
p
p
u
p

e
t
T
(
a
t
a
p
p

Table 1
Literature table. RS = Ridesharing, CP = Car pooling, VP = Vanpooling, Decen. = Decentr. ridesharing, Centr. = Centr. ridesharing, Stat. = Static, dyn. = dynamic, Con. =
Constraints, FL = Flexible locations, Cap = Minimum capacity constraint, MD = Maximum detour constraint, MW = Maximum waiting time, TW = Time window constraint, TT =
Travel time constraint, MP = Maximum number of preferred passengers, CS = Minimize cost savings, CO2 = Minimize CO2 emissions, RC = Minimize routing cost, AR = Maximize
assigned riders, US = User satisfaction, WT = Minimize waiting time.

Article Problem Ccentr. vs. Stat. vs. Con. FL Objective Case Solution method
decentr. dyn. study

Agatz et al. (2012) Review: RS - Stat., dyn. Multiple ✓ Multiple Multiple
Baldacci et al. (2004) RS/CP Centr. Static TW, TT RC, AR Lagrangean column generation
Kaan and Olinick (2013) RS/VP Centr. Static TW ✓ RC ✓ Insertion heuristics
He et al. (2023) RS Centr. Static TW, TT, Cap RC ✓ ALNS
Auad-Perez and Hentenryck (2022) RS Centr. Static TW, TT RC ✓ Graph reformulation
Zheng and Pantuso (2023) RS Centr. Static TW RC, AR ✓ Evolutionary algorithm
Fielbaum et al. (2021) RS Centr. Static ✓ RC, WT, AR ✓ Graph heuristics
Ghandeharioun and Kouvelas (2023) RS Centr. Dynamic TW US ✓ Simulation
Pelzer et al. (2015) RS Centr. Dynamic RC ✓ Partition-based
Lin et al. (2019) RS Centr. Static TW, MT AR ✓ Probabilistic approach
Hsieh (2020) RS Centr. Static RC ✓ Swarm, evolutionary and firefly algorithms
Li et al. (2023) RS Centr. Static RC, CO2 Genetic algorithm
Bruck et al. (2017) RS/CP Decentr. Static MD ✓ CO2 ✓ Insertion heuristic and local search
Stiglic et al. (2015) RS Decentr. Static TW ✓ RC, AR ✓ Insertion heuristic
Hou et al. (2018) RS Decentr. Static TW RC LNS
Sun et al. (2020) RS Decentr. Stat., dyn. TW, MP RC, CS ✓ Column generation
Smet (2021) RS Decentr. Static TW ✓ RC, AR ✓ Late acceptance hill climbing

Our contribution RS Decentr. Static TW, TT ✓ RC, AR ✓ ALNS
t
m

a
i
a
d
b
(
a
m
w
i
t
c
t
a

g
a
d
(
a
i
a
a
m
e
s

w
a
p
p
a
p
p
c

i
p
B
P

metaheuristic produces solutions with rather large gaps (up to 20%)
from the optimal ones (where these could be obtained).

There are also several other routing applications with flexible loca-
tions. One example of this is Dragomir et al. (2022) who consider a
pickup and delivery problem with an application from online second-
hand marketplaces. In this study, both the seller and buyer can specify
a detailed plan of places scheduled for visit during the day. The
transport provider can then choose between the different locations and
corresponding time windows for pickup and delivery of the parcel to
minimize its transportation cost. The SRRPFL does also share similari-
ties with other routing problems from the sharing economy. Examples
of this are crowdsourced deliveries and the use of occasional drivers,
e.g., see the recent survey by Savelsbergh and Ulmer (2022) and
Archetti et al. (2016). However, a crowdsourced delivery environment
typically has a three-sided market (retailers, customers, couriers) as
opposed to the two-sided market (customers, drivers) seen in most
ridesharing applications. In the former, the price the customer pays is
for the goods (which is also the primary reason for the transaction)
and the delivery, while in the two-sided (ridesharing) market the price
is for the transportation only. Crowdsourced deliveries are usually also
centralized operations, in contrast to the SRRPFL.

3. Problem description

The Static Ridesharing Routing Problem with Flexible Locations
(SRRPFL) involves multiple individuals participating in a decentralized
ridesharing system, taking on one of two roles: a driver or a passenger.

driver is a participant who drives its own car and is willing to
ick up and deliver passengers. A passenger, on the other hand, is a
articipant who does not drive a car and therefore needs to be picked
p and delivered by a driver. If no drivers are available to pick up the
assenger, they must find alternative ways to reach their destination.

Prior to when the ridesharing is supposed to take place (e.g., the
vening before), we assume that all drivers and passengers submit
heir travel information, which is used as the input to the SRRPFL.
he travel information for each driver/passenger includes an origin
e.g., its residence) and a destination location (e.g., its workplace),

time window for the delivery at the destination, and a maximum
ravel (ride) time. Hence, we assume that all necessary information is
vailable as input before the SRRPFL is solved, which makes it a static
roblem. Furthermore, we assume that all drivers and passengers will
articipate in the ridesharing as long as the SRRPFL solution satisfies
4

he conditions given by the input parameters (i.e., time windows and
aximum travel time).

Each passenger has a given individual set of candidate pickup
nd delivery locations, typically a bus terminal or parking lots des-
gnated for commuters. Candidate pickup locations are locations that

passenger can travel to and be picked up by a driver. Candidate
elivery locations are locations where a driver can deliver a passenger
efore the passenger travels on its own to its destination. A driver’s
passenger’s) time window includes the earliest and the latest time

driver (passenger) can be at their destination location, while the
aximum travel time is the maximum time each driver (passenger) is
illing to spend from its origin to its destination location. If a passenger

s either picked up or delivered at a candidate location, the time it
akes to travel to or from these candidate locations is included in the
alculation of the total travel time. For drivers, the capacity represents
he number of free seats in their cars or the number of passengers they
re willing to pick up.

The SRRPFL involves the following decisions: (1) which passen-
ers to be assigned to which driver or, alternatively, establish that
passenger will remain unserviced; (2) the pickup location for each

esignated passenger; (3) the delivery location for each passenger; and
4) the sequence of pickup and delivery locations for each passenger
long each driver’s route. All these decisions are made while keeping
n mind its two objectives that are sorted lexicographically. The first
nd primary objective is to maximize the number of passengers that
re serviced by any driver. The second (and secondary) objective is to
inimize the total travel time for all drivers. This ensures that the most

ffective route is chosen, with the same number of passengers being
erviced.

Based on the geography and the travel pattern in our case study,
e assume that each driver’s route is split into two distinct phases:
pickup and a delivery phase. All pickups are first made during the

ickup phase before all deliveries then are made during the delivery
hase. Even though this assumption is made because we are focusing on
particular case study, it should be emphasized that the ALNS heuristic
roposed in Section 5 can also handle the more general case where the
ickups and deliveries are intertwined. The model in the next section
an also easily be extended for that case.

Fig. 2 illustrates a tiny example problem based on our case study,
ncluding only one driver and two passengers, with a corresponding
ossible solution. Driver 1 starts driving from its own origin in OD1 in
lomvåg. Driver 1 picks up passenger 1 before picking up passenger 2.
assenger 1 travels to its candidate pickup location CP2P1 in Ågotnes

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Fig. 2. Illustration of the SRRPFL with one driver and two passengers (location names from the case study).
Fig. 3. Visual illustration of 𝑃
𝑖 and 𝐷

𝑖 . Here, we have passenger 𝑖 = 1 and 𝑖 = 2.
from its origin in Sollsvika, while passenger 2 travels to its pickup
location CP3P2 in Tellnes from Skogsvåg. After the pickup phase,
passenger 2 is the first to be delivered. Passenger 2 is delivered at its
candidate delivery location CD1P2 in Fyllingsdalen, before it travels
to its destination, DP2 in Bønes. Furthermore, passenger 1 is delivered
at its destination, DP1 in Laksevåg. Lastly, the driver travels to its
destination, DD1 in Bergen sentrum.

4. Mathematical model

In this section, we formulate the SRRPFL as an arc flow MIP model.
Since the SRRPFL has similarities with the dial-a-ride problem (e.g., Ho
et al., 2018) and the pickup and delivery problem with time windows
(e.g., Parragh et al., 2008), we base our model partly on formulations
for those problems, though extended with the alternative candidate
locations for pickup and delivery. Section 4.1 introduces the notation,
while the model is presented in Section 4.2.

4.1. Notation

Sets
The set of drivers is defined as . This set also represents the drivers’

origin locations. The set of passengers is represented as the set of the
different passengers’ origin locations, 𝑃 . The passengers also have
designated destination locations, e.g., their workplace, and these are
represented by the set 𝐷. The size of the set 𝑃 is equal to the size of
𝐷, and represents the total number of passengers 𝑁 . Each passenger
5

has a set of candidate pickup locations, 𝑃
𝑖 , and a set of candidate

delivery locations, 𝐷
𝑖 , for passenger 𝑖 ∈ 𝑃 .

Since each passenger may have several alternative candidate lo-
cations for pickup and/or delivery, we have chosen to let a node in
our network be represented as a combination of a passenger 𝑖 and a
candidate pickup/delivery location 𝑚 of that passenger. Hence, the set
of passenger pickup nodes is represented as (𝑖, 𝑚) ∈  𝑃 , where 𝑖 ∈ 𝑃

and 𝑚 ∈ 𝑃
𝑖 . The representation of the origin of a passenger 𝑖 ∈ 𝑃 as

a pickup node is (𝑖, 0). The set of passenger delivery nodes is similarly
represented as (𝑗, 𝑛) ∈ 𝐷, where 𝑗 ∈ 𝐷 and 𝑛 ∈ 𝐷

𝑖 , where 𝑖 is the
corresponding origin location to 𝑗. The representation of the destination
of a passenger 𝑗 ∈ 𝐷 as a delivery node is (𝑗, 0). Furthermore, the set
𝑅 represents all ridesharing nodes where passengers can either be
picked up or delivered. Note that the origin node 𝑜(𝑘) and destination
node 𝑑(𝑘) for driver 𝑘 ∈  is not a part of this set, thus, 𝑅 =  𝑃∪𝐷.

Table 2 summarizes all sets used in the SRRPFL, while Fig. 3,
following the example in Fig. 2, further illustrates the sets 𝑃

𝑖 and
𝐷

𝑖 . In this example, when the driver is en route to pick up passenger 1,
there are three distinct candidate pickup nodes (𝑃

1) to choose among:
one node representing the passenger’s origin and two other candidate
pickup nodes. For passenger 2, the driver has the option to pick up at
four different nodes (𝑃

2): the origin node or at any of the three other
candidate pickup nodes. When it comes to the first delivery, the driver
can choose between the destination node and two candidate delivery
nodes (𝐷

2). Lastly, for the final delivery, the driver can either deliver
at the destination location or at one candidate delivery node (𝐷).
1

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

t
i
a
n
p
b
F
e
n
𝑡

v
a

4

O

w
o
i
t
m
o

m

Table 2
All sets defined for the mathematical formulation of the SRRPFL.

Notation Explanation

 Set of drivers 𝑘 ∈ {0, 1,… , ||}
𝑃 Set of passenger origin locations 𝑖 ∈ {1, 2,… , 𝑁}
𝐷 Set of passenger destination locations 𝑗 ∈ {𝑁 + 1, 𝑁 + 2,… , 2𝑁}
𝑃

𝑖 Set of candidate pickup locations 𝑚 ∈ {0, 1,… , |𝑃
𝑖 |} for passengers 𝑖 ∈ 𝑃

𝐷
𝑖 Set of candidate delivery locations 𝑛 ∈ {0, 1,… , |𝐷

𝑖 |} for passengers 𝑖 ∈ 𝑃

 𝑃 Set of passenger pickup nodes  𝑃 ∈ {(𝑖, 𝑚)|𝑖 ∈ 𝑃 , 𝑚 ∈ 𝑃
𝑖 }

𝐷 Set of passenger delivery nodes 𝐷 ∈ {(𝑗, 𝑛)|𝑗 ∈ 𝐷 , 𝑛 ∈ 𝐷
𝑗 }

𝑅 Set of all ridesharing nodes 𝑅 =  𝑃 ∪𝐷

 Set of all nodes  = 𝑅 ∪ {𝑜(𝑘)} ∪ {𝑑(𝑘)}
𝑥

𝑧

C

g

Table 3
All parameters defined for the mathematical formulation of the model.

Notation Explanation

𝑜(𝑘) Origin node for driver 𝑘 ∈ 
𝑑(𝑘) Destination node for driver 𝑘 ∈ 
𝑇𝐷
𝑖𝑚𝑗𝑛 Direct travel time from node (𝑖, 𝑚) ∈ 𝑅 ∪ {𝑜(𝑘)} to node

(𝑗, 𝑛) ∈ 𝑅 ∪ {𝑑(𝑘)}

𝑇 𝐶
𝑖𝑚 Direct travel time between origin/destination location for

passenger 𝑖 ∈ 𝑃 and its candidate pick up/delivery location
(𝑖, 𝑚) ∈  𝑃 ∪𝐷

𝑇𝑀
𝑘 Maximum travel time for driver/passenger 𝑘 ∈  ∪ 𝑃

𝐴𝑘 Earliest arrival time at destination for driver/passenger
𝑘 ∈  ∪ 𝑃

𝐴𝑘 Latest arrival time at the destination for driver/passenger
𝑘 ∈  ∪ 𝑃

𝑄𝑘 Maximum capacity for driver 𝑘 ∈ 

Parameters
All parameters are summarized in Table 3.

Variables
The binary flow variable 𝑥𝑘𝑖𝑚𝑗𝑛 takes the value 1 if driver 𝑘 ∈ 

travels directly from node (𝑖, 𝑚) to node (𝑗, 𝑛), and 0 otherwise. Note
that this variable is defined only between ridesharing nodes, 𝑅. The
binary variable 𝑥𝑆𝑘𝑖𝑚 is equal to 1 if driver 𝑘 drives from its origin 𝑜(𝑘)
to a candidate pickup node (𝑖, 𝑚), and 0 otherwise. The binary variable
𝑥𝐸𝑘𝑗𝑛 is equal to 1 if driver 𝑘 travels from candidate delivery node (𝑗, 𝑛)
o its destination node 𝑑(𝑘), and 0 otherwise. The binary variable 𝑥𝑂𝐷

𝑘
s 1 if driver 𝑘 travels directly from its origin 𝑜(𝑘) to its destination 𝑑(𝑘),
nd 0 otherwise. In other words, if 𝑥𝑂𝐷

𝑘 = 1, it means that driver 𝑘 does
ot pick up any passengers. The binary variable 𝑦𝑖𝑚 is 1 if passenger 𝑖 is
icked up/delivered at candidate location (𝑖, 𝑚), and 0 otherwise. The
inary variable 𝑧𝑘𝑖 is 1 if driver 𝑘 services passenger 𝑖, and 0 otherwise.
inally, the continuous variable 𝑡𝑘𝑖𝑚 defines the time when driver 𝑘
nters node (𝑖, 𝑚). It should be noted that since the service time in the
odes are assumed to be zero and no waiting is allowed, the variable
𝑘𝑖𝑚 also defines the time when driver 𝑘 leaves node (𝑖, 𝑚).

Table 4 summarizes all variables, while Fig. 4 illustrates the flow
ariables 𝑥𝑆𝑘𝑖𝑚, 𝑥𝑘𝑖𝑚𝑗𝑛, 𝑥𝐸𝑘𝑗𝑛, and 𝑥𝑂𝐷

𝑘 . In this figure, the use of commas
nd parentheses to represent nodes is used for readability purposes.

.2. Mathematical formulation

bjective functions
The model is formulated as a bi-objective optimization problem

ith lexicographical ordering, where one objective is considered to be
f much higher importance than the second. Here, the first and most
mportant objective function (1) maximizes the number of passengers
hat are picked up (serviced), while the second objective function (2)
inimizes the total travel time for the drivers (while keeping the first

bjective at its optimal value).

ax 𝑧1 =
∑ ∑

𝑧𝑘𝑖 (1)
6

𝑘∈ 𝑖∈𝑃 d
Table 4
All decision variables defined for the mathematical formulation of the SRRPFL.

Notation Explanation

𝑥𝑆𝑘𝑖𝑚 1 if driver 𝑘 ∈  travels from its origin location 𝑜(𝑘) to a pick
up node (𝑖, 𝑚) ∈  𝑃 , 0 otherwise

𝑥𝑘𝑖𝑚𝑗𝑛 1 if driver 𝑘 ∈  travels directly between ridesharing nodes
(𝑖, 𝑚) ∈ 𝑅 and (𝑗, 𝑛) ∈ 𝑅, 0 otherwise

𝑥𝐸𝑘𝑗𝑛 1 if driver 𝑘 ∈  travels from a delivery node (𝑗, 𝑛) ∈ 𝐷 to
its destination location 𝑑(𝑘), 0 otherwise

𝑥𝑂𝐷
𝑘 1 if driver 𝑘 ∈  travels directly from its origin location 𝑜(𝑘)

to its destination location 𝑑(𝑘), 0 otherwise
𝑦𝑘𝑖𝑚 1 if driver 𝑘 ∈  picks up/delivers passenger 𝑖 ∈ 𝑃 at node

(𝑖, 𝑚) ∈  𝑃 ∪𝐷 , 0 otherwise
𝑧𝑘𝑖 1 if driver 𝑘 ∈  picks up passenger 𝑖 ∈ 𝑃 , 0 otherwise
𝑡𝑘𝑖𝑚 The time driver/passenger 𝑘 ∈  ∪ 𝑃 enters/leaves node

(𝑖, 𝑚) ∈ 

min 𝑧2 =
∑

𝑘∈
(𝑡𝑘,𝑑(𝑘) − 𝑡𝑘,𝑜(𝑘)) (2)

Routing constraints
Constraints (3) and (4) ensure that each driver must leave its origin

and arrive at its destination node exactly once, respectively.
∑

(𝑖,𝑚)∈ 𝑃

𝑥𝑆𝑘𝑖𝑚 + 𝑥𝑂𝐷
𝑘 = 1, 𝑘 ∈  (3)

∑

(𝑗,𝑛)∈𝐷

𝑥𝐸𝑘𝑗𝑛 + 𝑥𝑂𝐷
𝑘 = 1, 𝑘 ∈  (4)

Constraints (5) and (6) ensure flow conservation for pickup and
delivery nodes, respectively.

𝑥𝑆𝑘𝑖𝑚 +
∑

(𝑗,𝑛)∈ 𝑃

𝑥𝑘𝑗𝑛𝑖𝑚 =
∑

(𝑗,𝑛)∈𝑅

𝑥𝑘𝑖𝑚𝑗𝑛, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 (5)

𝑥𝐸𝑘𝑗𝑛 +
∑

(𝑖,𝑚)∈𝐷

𝑥𝑘𝑗𝑛𝑖𝑚 =
∑

(𝑖,𝑚)∈𝑅

𝑥𝑘𝑖𝑚𝑗𝑛, 𝑘 ∈ , (𝑗, 𝑛) ∈ 𝐷 (6)

Constraints (7) and (8) ensure that each passenger is picked up
and delivered by at most one driver, respectively, while constraints (9)
make sure that each passenger is picked up or delivered at no more
than one candidate location (i.e., serviced at most once). Constraints
(10) connect the 𝑧𝑘𝑖 and 𝑦𝑘𝑖𝑚 variables.

𝑥𝑆𝑘𝑗𝑛 +
∑

(𝑖,𝑚)∈ 𝑃

𝑥𝑘𝑖𝑚𝑗𝑛 − 𝑦𝑘𝑗𝑛 = 0, 𝑘 ∈ , (𝑗, 𝑛) ∈  𝑃 (7)

𝐸
𝑘𝑗𝑛 +

∑

(𝑖,𝑚)∈𝐷

𝑥𝑘𝑗𝑛𝑖𝑚 − 𝑦𝑘𝑗𝑛 = 0, 𝑘 ∈ , (𝑗, 𝑛) ∈ 𝐷 (8)

∑

𝑘∈

∑

𝑚∈𝑃
𝑖 ∪

𝐷
𝑖

𝑦𝑘𝑖𝑚 ≤ 1, 𝑖 ∈ 𝑃 (9)

𝑘𝑖 =
∑

𝑚∈𝑃
𝑖

𝑦𝑘𝑖𝑚, 𝑘 ∈ , 𝑖 ∈ 𝑃 (10)

oupling and precedence constraints
Constraints (11) ensure that any driver who picks up a passen-

er also delivers the passenger, while constraints (12) enforce that

eliveries must occur after the corresponding pickups.

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Fig. 4. Visual representation of the flow variables 𝑥𝑆𝑘𝑖𝑚, 𝑥𝑘𝑖𝑚𝑗𝑛, 𝑥𝐸𝑘𝑗𝑛, and 𝑥𝑂𝐷
𝑘 .
∑

𝑚∈𝑃
𝑖

𝑦𝑘𝑖𝑚 =
∑

𝑛∈𝐷
𝑖

𝑦𝑘,𝑁+𝑖,𝑛, 𝑘 ∈ , 𝑖 ∈ 𝑃 (11)

𝑡𝑘𝑖𝑚 + 𝑇𝐷
𝑖,𝑚,𝑁+𝑖,𝑛𝑧𝑘𝑖 − 𝑡𝑘,𝑁+𝑖,𝑛 ≤ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 , 𝑛 ∈ 𝐷

𝑖 (12)

Time constraints
Constraints (13)–(20) keep track of time along each driver’s route.

Constraints (13)–(14) are valid for the case when traveling between
two ridesharing nodes; constraints (15)–(16) are for the case when a
driver enters a ridesharing node directly from its origin node; con-
straints (17)–(18) for the case when a driver travels from a ridesharing
node to its destination; while constraints (19)–(20) are for the case
when a driver travel directly from its origin to its destination without
picking up any passengers. It should be noted that the combination
of these pairwise set of constraints prohibits drivers from waiting
at any node, which would not be practical in such a decentralized
ridesharing application. The parameters 𝑀 (with any indices) in the
following constraints are big-M parameters, which are given suitable
and sufficiently large values.

𝑡𝑘𝑖𝑚+𝑇𝐷
𝑖𝑚𝑗𝑛−𝑡𝑘𝑗𝑛−𝑀𝑘𝑖𝑚𝑗𝑛(1−𝑥𝑘𝑖𝑚𝑗𝑛) ≤ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈ 𝑅, (𝑗, 𝑛) ∈ 𝑅

(13)

𝑡𝑘𝑖𝑚+𝑇𝐷
𝑖𝑚𝑗𝑛−𝑡𝑘𝑗𝑛+𝑀𝑘𝑖𝑚𝑗𝑛(1−𝑥𝑘𝑖𝑚𝑗𝑛) ≥ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈ 𝑅, (𝑗, 𝑛) ∈ 𝑅

(14)

𝑡𝑘,𝑜(𝑘) + 𝑇𝐷
𝑜(𝑘),𝑖,𝑚 − 𝑡𝑘𝑖𝑚 −𝑀𝑘,𝑜(𝑘),𝑖,𝑚(1 − 𝑥𝑆𝑘𝑖𝑚) ≤ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 (15)

𝑡𝑘,𝑜(𝑘) + 𝑇𝐷
𝑜(𝑘),𝑖,𝑚 − 𝑡𝑘𝑖𝑚 +𝑀𝑘,𝑜(𝑘),𝑖,𝑚(1 − 𝑥𝑆𝑘𝑖𝑚) ≥ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 (16)

𝑡𝑘𝑖𝑚+𝑇𝐷
𝑖,𝑚,𝑑(𝑘)− 𝑡𝑘,𝑑(𝑘)−𝑀𝑘,𝑖,𝑚,𝑑(𝑘)(1−𝑥𝐸𝑘𝑖𝑚) ≤ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈ 𝐷 (17)

𝑡𝑘𝑖𝑚+𝑇𝐷
𝑖,𝑚,𝑑(𝑘)− 𝑡𝑘,𝑑(𝑘)+𝑀𝑘,𝑖,𝑚,𝑑(𝑘)(1−𝑥𝐸𝑘𝑖𝑚) ≥ 0, 𝑘 ∈ , (𝑖, 𝑚) ∈ 𝐷 (18)

𝑡𝑘,𝑜(𝑘) + 𝑇𝐷
𝑜(𝑘),𝑑(𝑘) − 𝑡𝑘,𝑑(𝑘) −𝑀𝑘,𝑜(𝑘),𝑑(𝑘)(1 − 𝑥𝑂𝐷

𝑘) ≤ 0, 𝑘 ∈  (19)

𝑡𝑘,𝑜(𝑘) + 𝑇𝐷
𝑜(𝑘),𝑑(𝑘) − 𝑡𝑘,𝑑(𝑘) +𝑀𝑘,𝑜(𝑘),𝑑(𝑘)(1 − 𝑥𝑂𝐷

𝑘) ≥ 0, 𝑘 ∈  (20)

Constraints (21) ensure that each driver arrives at its destination
within its time windows, while constraints (22) do the same for all
passengers.
7

𝐴𝑘 ≤ 𝑡𝑘,𝑑(𝑘) ≤ 𝐴𝑘, 𝑘 ∈  (21)

𝐴𝑖𝑧𝑘𝑖 ≤ 𝑡𝑘,𝑁+𝑖,0 + 𝑇 𝐶
𝑁+𝑖,𝑛𝑦𝑘𝑖𝑚 ≤ 𝐴𝑖𝑧𝑘𝑖, 𝑘 ∈ , 𝑖 ∈ 𝑃 , 𝑛 ∈ 𝐷

𝑖 (22)

Constraints (23) ensure that the total travel time does not exceed the
maximum travel time for drivers, while constraints (24) do the same for
passengers.

𝑡𝑘,𝑑(𝑘) − 𝑡𝑘,𝑜(𝑘) ≤ 𝑇𝑀
𝑘 , 𝑘 ∈  (23)

𝑡𝑘,𝑁+𝑖,0 − 𝑡𝑘𝑖0 ≤ 𝑇𝑀
𝑖 +𝑀𝑘𝑖0(1 − 𝑧𝑘𝑖), 𝑘 ∈ , 𝑖 ∈ 𝑃 (24)

Constraints (25) ensure that if a passenger is picked up at node (𝑖, 𝑚),
the time of pickup at node (𝑖, 𝑚) is equal to or later than the departure
time for a passenger from its origin node (𝑖, 0) plus the travel time
between the nodes. Similarly, constraints (26) ensure that if a passenger
is delivered at node (𝑗, 𝑛), the arrival time at its destination node (𝑗, 0) is
equal to or later than the time the passenger is delivered at node (𝑗, 𝑛)
plus the time between the nodes.

𝑡𝑘𝑖0 ≤ 𝑡𝑘𝑖𝑚 − 𝑇 𝐶
𝑖𝑚𝑦𝑘𝑖𝑚, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 (25)

𝑡𝑘𝑗0 ≥ 𝑡𝑘𝑗𝑛 + 𝑇 𝐶
𝑗𝑛𝑦𝑘𝑗𝑛, 𝑘 ∈ , (𝑗, 𝑛) ∈ 𝐷 (26)

Capacity constraints
Constraints (27) ensure that each driver’s capacity is never ex-

ceeded.
∑

𝑖∈𝑃

𝑧𝑘𝑖 ≤ 𝑄𝑘, 𝑘 ∈  (27)

Variable definitions and domains

𝑥𝑆𝑘𝑖𝑚 ∈ {0, 1}, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 (28)

𝑥𝑘𝑖𝑚𝑗𝑛 ∈ {0, 1}, 𝑘 ∈ , (𝑖, 𝑚) ∈ 𝑅, (𝑗, 𝑛) ∈ 𝑅 (29)

𝑥𝐸𝑘𝑗𝑛 ∈ {0, 1}, 𝑘 ∈ , (𝑗, 𝑛) ∈ 𝐷 (30)

𝑥𝑂𝐷
𝑘 ∈ {0, 1}, 𝑘 ∈  (31)

𝑦𝑘𝑖𝑚 ∈ {0, 1}, 𝑘 ∈ , (𝑖, 𝑚) ∈  𝑃 ∪𝐷 (32)

𝑧𝑘𝑖 ∈ {0, 1}, 𝑘 ∈ , 𝑖 ∈ 𝑃 (33)

𝑡 ≥ 0, 𝑘 ∈  ∪ 𝑃 , (𝑖, 𝑚) ∈  (34)
𝑘𝑖𝑚

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Fig. 5. Flowchart representing the processes in the ALNS heuristic. LS = Local search. RCP = Route combination problem.
When defining the flow variables, we can efficiently use the time
and precedence constraints to reduce the size of the network, and
hence the number of variables. Note also that, following the problem
definition in Section 3, we assume in the model above that each
driver’s route is split into a distinct pickup and delivery phase. The
model can however easily be extended to the situation with intertwined
pickups and deliveries. In that case, we would need additional load
variables and constraints to keep track of each driver’s load at any node,
similarly to how this is modeled in the pickup and delivery problem
(e.g., Desrosiers et al., 1995.)

5. Adaptive large neighborhood search heuristic

This section describes the proposed Adaptive Large Neighborhood
Search (ALNS) heuristic. The choice of using an ALNS heuristic is
mainly motivated by its track record in successfully solving similar
routing problems. Additionally, the flexibility of ALNS heuristics allows
for the development of tailored destroy and repair operators specific to
our problem.

Section 5.1 provides an overview of the ALNS heuristic, while the
following subsections describe its different components in more detail.

5.1. Overview of the ALNS

The ALNS heuristic builds upon the research of Ropke and Pisinger
(2006), who developed an ALNS heuristic for the pickup and delivery
problem with time windows. The ALNS explores the solution space by
iteratively destroying and repairing solutions using a set of destroy and
repair operators. An acceptance criterion is used to determine whether
to accept a repaired solution or not. Additionally, once a solution is
accepted, a local search (LS) heuristic is here integrated within the
ALNS to help refine and improve the solutions generated by the ALNS.
The LS allows for intensifying the search and find local improvements
in the vicinity of a solution. Furthermore, we also extend the ALNS
heuristic by including what we denote as the route combination prob-
lem (RCP), where individual driver routes found during the search can
be recombined to find new and improved solutions. Fig. 5 shows a
flowchart illustrating the interaction between the different components
of the proposed ALNS heuristic.

The ALNS algorithm is further outlined in Algorithm 1. Initially,
the algorithm sets the current solution 𝑥 by first constructing a feasible
initial solution, as described in Section 5.2. This is followed by setting
8

the global best solution 𝑥∗ to the current solution 𝑥. In each iteration,
the algorithm selects a destroy and a repair operator among a set of
destroy and repair operators 𝛺−

𝑖 and 𝛺+
𝑖 , respectively. It then generates

a candidate solution 𝑥′ by applying the selected destroy and repair
operators to the current solution 𝑥. The acceptance probability 𝑃 𝑆𝐴

is computed using the simulated annealing criterion, similar to Ropke
and Pisinger (2006). If the candidate solution 𝑥′ is accepted as the
new global best solution, the LS is applied to search in the local neigh-
borhood for improved solutions as described in Section 5.5. This step
investigates the immediate neighborhood of the accepted solution to
identify potential improvements and further refine the solution quality.
Then, the current solution 𝑥 and global best solution 𝑥∗ are updated
accordingly, along with their objective values.

If the candidate solution 𝑥′ is better than the current solution 𝑥,
but worse than the global best solution 𝑥∗, the LS is applied if 𝑥′ is
considered a promising solution. A promising solution is one with an
objective value within a predefined threshold 𝛿% of the current best
global solution’s objective value. If the candidate solution 𝑥′ is accepted
as the new global best solution after the LS, both the current solution
𝑥 and the global best solution 𝑥∗ are updated accordingly, along with
the objective value. Otherwise, the current solution 𝑥 is updated to the
candidate solution 𝑥′. If the candidate solution 𝑥′ is worse than the
current solution 𝑥 but is still accepted by the acceptance criterion, the
current solution 𝑥 is updated to the candidate solution 𝑥′. Otherwise,
the candidate solution 𝑥′ is rejected.

Based on how the candidate solution 𝑥′ is accepted or rejected, the
accumulated scores of the employed destroy operator 𝑠−𝑖 and repair
operator 𝑠+𝑖 are updated in a similar way as in Ropke and Pisinger
(2006). After completing a given number of iterations, the algorithm
updates the destroy and repair operator weights for the next segment,
𝑝−𝑖,𝑚+1 and 𝑝+𝑖,𝑚+1, also following the procedure by Ropke and Pisinger
(2006). Then, the destroy and repair operators are chosen based on
a roulette wheel selection where their probabilities for being chosen
are based on the operators’ weights, which again are based on their
previous performances. If a specific operator repeatedly results in new
and better solutions, it gets a higher probability for being selected
later, and vice versa. After every 𝐼𝑅𝐶𝑃 iterations, the algorithm solves
the RCP on 𝑥′ to potentially find a new global best solution, further
described in Section 5.6. The ALNS algorithm terminates when all
iterations are completed, and the global best solution 𝑥∗ is returned
as the output.

In the following, we describe the different components of the ALNS
heuristic in more detail.

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

d
f
P
S

R

s
o
d
n

W

p
e
o
o
T
t
f
i
r

R

p
i
b
e
p
s
s
r
p
p
m
t
d

c
d
c
s
a

Algorithm 1 ALNS

Input: Total number of ALNS iterations (𝐼𝐴𝐿𝑁𝑆) and number of
iterations between solving the RCP (𝐼𝑅𝐶𝑃)

1: Set current solution 𝑥 by constructing a feasible initial solution
(Section 5.2)

2: Set global best solution, 𝑥∗ ← 𝑥
3: Set global best objective, 𝑓 (𝑥∗)←𝑓 (𝑥)
4: Set current segment, 𝑚 ← 1
5: Initialize destroy operators 𝛺−

𝑖 , operator weights 𝑝−𝑖,𝑚 and operator
scores 𝑠−𝑖

6: Initialize repair operators 𝛺+
𝑖 , operator weights 𝑝+𝑖,𝑚 and operator

scores 𝑠+𝑖
7: for iteration = 1 to 𝐼𝐴𝐿𝑁𝑆 do
8: Select destroy and repair operators 𝑑 ∈ 𝛺−

𝑖 and 𝑟 ∈ 𝛺+
𝑖 using

the weights 𝑝−𝑖,𝑚 and 𝑝+𝑖,𝑚
9: Generate a candidate solution 𝑥′ from the current solution 𝑥

using 𝑑 and 𝑟
10: Generate acceptance probability 𝑃 𝑆𝐴 by simulated annealing

(SA)
11: if 𝑥′ is accepted as the new global best solution then
12: Apply local search for improving candidate solution 𝑥′

(Section 5.5)
13: 𝑥 ← 𝑥′

14: 𝑥∗ ← 𝑥′

15: 𝑓 (𝑥∗) ← 𝑓 (𝑥′)
16: Reward operators 𝑑 and 𝑟 and update 𝑠−𝑖 and 𝑠+𝑖
17: else if 𝑓 (𝑥) < 𝑓 (𝑥′) < 𝑓 (𝑥∗) then
18: Apply local search for improving candidate solution 𝑥′ if

promising (Section 5.5)
19: if local search finds a new global best solution then
20: 𝑥 ← 𝑥′

21: 𝑥∗ ← 𝑥′

22: 𝑓 (𝑥∗) ← 𝑓 (𝑥′)
23: else
24: 𝑥 ← 𝑥′

25: end if
26: Reward operators 𝑑 and 𝑟 and update 𝑠−𝑖 and 𝑠+𝑖
27: else if 𝑓 (𝑥′) < 𝑓 (𝑥) and accepted by SA through 𝑃 𝑆𝐴 then
28: 𝑥 ← 𝑥′

29: Reward operators 𝑑 and 𝑟 and update 𝑠−𝑖 and 𝑠+𝑖
30: else if 𝑓 (𝑥′) < 𝑓 (𝑥) and rejected by SA through 𝑃 𝑆𝐴 then
31: Penalize operators 𝑑 and 𝑟 and update 𝑠−𝑖 and 𝑠+𝑖
32: end if
33: if 𝐼𝑆 iterations have passed since last weight update then
34: Update weights 𝑝−𝑖,𝑚+1 and 𝑝+𝑖,𝑚+1 to be used in segment 𝑚+1
35: Update current segment, 𝑚 ← 𝑚 + 1
36: end if
37: if 𝐼𝑅𝐶𝑃 iterations have passed then
38: Solve RCP on 𝑥′ to find a new global best solution (Section

5.6)
39: end if
40: end for

Output 𝑥∗

5.2. Construction of an initial solution

The algorithm for constructing an initial feasible solution takes
the set of all drivers and the set of all passengers as input and aims
to construct routes for the drivers by iteratively assigning passengers
to them. Thus, the algorithm starts with an initial solution, which
consists of empty driver routes where no passengers are picked up
and modifies it to create the initial solution. The algorithm processes
each passenger one by one and tries to find the best driver route in
which the passenger can be inserted at the lowest additional travel
9

time. It does this by examining all possible positions for the pickup and
delivery nodes of the passenger into each driver’s route, while ensuring
feasibility with respect to capacity, maximum travel times, and time
windows. Then, the algorithm calculates the cost increase between the
new route with the inserted pickup and delivery nodes, and the current
route of the driver. This cost increase is used to compare different
passenger assignments and to determine the most cost-effective way of
accommodating the passenger in the driver’s route while maintaining
feasibility.

If a feasible insertion is found for a passenger, the relevant driver’s
route is updated with the new pickup and delivery nodes. If no feasible
insertion is found, the passenger is added to the set of unassigned
passengers. The algorithm repeats this process for all passengers, and
once completed, it outputs the final routes for each driver and the set
of unassigned passengers.

5.3. ALNS destroy operators

In the following, we describe our destroy operators in the set 𝛺−
𝑖

esigned to destroy portions of the current solution. Some of the
ollowing destroy operators are standard ones defined by Ropke and
isinger (2006), while others are new ones designed specifically for the
RRPFL.

andom removal
The random removal operator removes a specified number of pas-

engers from the driver routes. This iterates through the desired number
f removals, randomly selecting a driver and a passenger within that
river’s route. The chosen passenger, along with its pickup and delivery
odes, is removed from the driver’s route.

orst deviation removal
The worst deviation removal operator aims to identify and remove

assengers that cause the highest additional cost in the solution by
valuating the impact they have on their respective driver’s route. The
perator calculates the deviation for each passenger by comparing the
bjective values of the driver’s route with and without the passenger.
he passengers causing the greatest deviation are considered to have
he most negative impact on the solution quality. The deviation values
or each passenger are sorted, and the passengers with the highest
mpact on the solution quality are identified. These passengers are then
emoved from their respective driver’s route.

elatedness removal
The relatedness removal operator aims to identify and remove

assengers that have a high degree of relatedness in terms of their
mpact on a driver’s route. The general idea behind this operator is that
y removing passengers with a higher degree of relatedness, it becomes
asier to rearrange them when reintegrating them into the solution,
otentially leading to an improved solution. The process begins by
electing a random driver from the list of available drivers. For the
elected driver, a random seed passenger is chosen in the driver’s
oute, and the relatedness between this seed passenger and all other
assengers in the route is calculated. The relatedness between a seed
assenger, 𝑖, and another passenger, 𝑗, is defined using a relatedness
easure, defined as 𝑅(𝑖, 𝑗) = 𝑇𝐷

𝑖𝑚𝑗𝑛+𝑇
𝐷
𝑖+𝑁,𝑚,𝑗+𝑁,𝑛, where 𝑇𝐷

𝑖𝑚𝑗𝑛 is the direct
ravel time between pick up nodes (𝑖, 𝑚) and (𝑗, 𝑛) and 𝑇𝐷

𝑖+𝑁,𝑚,𝑗+𝑁,𝑛 is the
irect travel time between delivery nodes (𝑖 +𝑁,𝑚) and (𝑗 +𝑁, 𝑛).

The relatedness removal consists of finding passengers that have
lose pickup and delivery nodes to the seed passenger’s pickup and
elivery nodes. Once the relatedness values for all passengers have been
alculated, the passengers are sorted based on their relatedness to the
eed passenger, from least to most related. The operator then removes
specified number of passengers with the lowest relatedness values.

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Spread removal
The spread removal operator identifies and removes passengers

whose candidate pickup locations have the greatest minimum distance
to other passengers within a driver’s route. To achieve this, the operator
starts by selecting a random driver and then calculates the minimum
distance between the pickup location of each passenger in the selected
driver’s route and the pickup locations of all other passengers in the
same route. The passenger with the greatest minimum distance is
removed from the driver’s route.

The motivation behind the spread removal operator lies in its ability
to diversify the search process by targeting passengers with spatially
distant pickup locations. By removing passengers with the greatest
minimum distance to other passengers within a driver’s route, the
operator encourages the exploration of alternative route configurations
that may lead to more efficient solutions. Furthermore, by focusing on
spatially distant passengers, the spread removal operator may indirectly
contribute to the reduction of total travel time.

Cluster removal
The cluster removal operator finds and removes clusters of passen-

gers in a driver’s route who are in close geographical proximity. This is
similar to relatedness removal which also focuses on close geographical
proximity. The cluster removal operator employs the k-means cluster-
ing algorithm, with k set to 2, to divide the passengers on a driver’s
route into two distinct groups based on their geographical locations.
This process is executed for each driver individually. At the outset,
the algorithm initializes the positions of two centroids (the centers of
each cluster). Each passenger is then assigned to the nearest centroid.
After the initial assignment, an iterative process begins. During each
iteration, every passenger is reassigned to the closest centroid, and then
the positions of the centroids are updated based on the newly assigned
passengers. This cycle repeats until the assignments of passengers to
centroids remain constant between iterations, indicating that the opti-
mal clustering (with the least total distance from passengers to their
respective centroids) has been achieved.

Upon establishing the passenger clusters, the operator randomly
selects one cluster and removes all passengers within that cluster
from the driver’s route, including their associated delivery nodes. This
operation is performed for each driver, ensuring that the total number
of passengers removed does not exceed the predefined number of
removals. By removing entire clusters, the cluster removal operator
reduces the probability of passengers being reinserted into their initial
positions during the repair phase.

5.4. ALNS repair operators

In the following, we describe our repair operators in the set 𝛺+
𝑖

which serve as an essential component in the process of reconstructing
and enhancing the partial solutions generated by the destroy operators.
The two first ones are similar to the ones defined by Ropke and Pisinger
(2006), while the third and last one is specially designed for the
SRRPFL.

Insertion repair
The insertion repair operator is an adaptation of the construc-

tion heuristic, incorporating a degree of randomization to facilitate a
more diverse exploration of the solution space. Like the construction
heuristic, this repair operator is responsible for reintroducing removed
passengers into the driver’s routes by iteratively assigning passengers to
them. The removed passengers are first shuffled randomly to introduce
variation in the order of insertion. For each passenger, the operator
then iterates over all drivers and possible pickup locations, but with a
randomized order of evaluation. For each feasible pickup insertion, a
temporary route is created, and the operator proceeds to examine all
10

possible corresponding delivery locations.
For each feasible delivery insertion, the operator calculates the
cost increase associated with the insertion of the passenger at the
given pickup and delivery positions. It then selects the insertion with
the lowest cost increase, updating the driver’s route accordingly. If
no feasible insertion is found for a passenger, they are added to the
list of unassigned passengers. By incorporating randomization into the
passenger order, pickup positions, and delivery positions, the inser-
tion repair operator might create a search process that explores a
wider range of potential solutions, increasing the likelihood of finding
better-quality routes.

Regret-k repair
The regret-k repair operator is a repair method that takes into ac-

count the regret value associated with different insertion options when
reintroducing removed passengers into the driver’s routes. The regret
value represents the ‘‘lost opportunity’’ or ‘‘regret’’ of not choosing
those alternative positions.

In the regret-k repair process, for each unassigned passenger, the
algorithm first identifies the top 𝑘 insertion positions that result in the
lowest cost increase for the route. It then calculates the regret value
for these positions by summing the cost differences between the best
insertion position and the subsequent 𝑘 − 1 alternatives. The goal is to
find the passenger with the maximum regret value and reinsert them
into the route. The higher the regret value, the more important it is
to choose the best insertion position for that passenger, as it implies
that alternative positions would result in higher costs. This process
continues until all unassigned passengers are considered for reinsertion.
By calculating the regret value, this method prioritizes the reinsertion
of passengers that have the greatest impact on overall solution quality.

In mathematical terms, the regret value of the insertion is calcu-
lated as 𝑚𝑎𝑥{

∑𝑘−1
𝑗=1 (𝑐𝑖 − 𝑐𝑖+𝑗)} Here, 𝑘 denotes the number of insertion

positions considered, 𝑐𝑖 signifies the cost increase for the best insertion
position (ith position) for the passenger, and 𝑐𝑖+𝑗 refers to the cost
increase for the subsequent 𝑗th alternative insertion position.

Maximum capacity insertion repair
The maximum capacity insertion repair operator aims to insert

passengers into vehicles with the highest remaining capacity. In this
process, drivers are organized in descending order based on their
remaining capacity. Starting with any driver with the largest remaining
capacity, the operator attempts to insert passengers previously removed
by destroy operators into that current vehicle. If none of the removed
passengers can be accommodated, the procedure moves on to the driver
with the next largest remaining capacity and repeats the process. Once
a passenger is successfully inserted into a route, the route is updated,
and the process starts again with the updated capacities. This approach
continues until either all removed passengers have been inserted or no
driver can accommodate the remaining passengers.

5.5. Local search

We integrate LS within the ALNS heuristic to enhance the discovery
of promising solutions. As described in Section 5.1, the LS is initiated
if the candidate solution 𝑥′ becomes the new global best solution, in
order to potentially explore even better solutions in its vicinity. If the
candidate solution 𝑥′ is not as good as the current global best solution
𝑥∗, but is better than the current solution 𝑥, the LS is initiated under
specific conditions. The candidate solution 𝑥′ must pick up the same
number of passengers as the current global best solution (objective 1),
and its total travel time should be within a predefined threshold 𝛿%
of the current best global solution’s total travel time (objective 2). If
one of these conditions (i.e., the solution is considered promising), the
LS is conducted, which either results in an improved solution to 𝑥′ or
no change at all. When the LS is initiated, the LS Operators (LSOs) are
applied one after another in a predefined order, with the output of one
LSO serving as the input to the next. Each LSO explores different route
configurations according to the rules of first-improvement.

In the following, we describe the LSOs that are used within our

ALNS heuristic.

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

p
a
o
i
p
i
T
c
s
d

I

e
b
t
i
n
s
i
o
a
c

C

a
i
l
b
n

5

h
d
a
t
H

t
s
i
i
t
p
d
p
t
t

f
b
f
m
f

m

m

t

p
t
(

Intra-passenger swap
The intra-passenger swap operator modifies the order of passenger

ickups and deliveries within each driver route. It consists of two sep-
rate sequential procedures. Passenger pickup swap modifies the order
f passenger pickups within a driver’s route. For each driver route,
t iterates through all possible pairs of pickup nodes and swaps their
ositions. The new route is then evaluated in terms of objectives, and
f the new route shows improvement, it is accepted as the best route.
o further explore the solution space, the operator also considers all
andidate pickup locations for the swapped nodes. After the pickup
wap is done, passenger delivery swap modifies the order of passenger
eliveries within a driver’s route, similarly as the pickup swap.

nter-passenger relocate
This operator swaps pickup and delivery nodes between two differ-

nt drivers’ routes. It starts by filtering out the available drivers’ routes
ased on their available capacities. Then, for each driver, it iterates
hrough its pickup nodes and its corresponding delivery nodes. Next,
t selects another driver and does the same. The pickup and delivery
odes from the first driver’s route are swapped with those from the
econd driver’s route. During this process, for each candidate location
t checks for feasibility and calculates the new objective values for both
bjectives. If the new solution is improved, the new routes are accepted,
nd the process continues iterating. The inter-passenger swap operator
ontinues until no further improvements can be found.

andidate location-shift
This operator shifts the candidate location for a passenger’s pickup

nd delivery location within a driver’s route. For each driver route,
t iterates through all pickup nodes and checks the other candidate
ocations for the same passenger. Once all passenger pickup nodes have
een considered in a route, the operator does the same with the delivery
odes.

.6. Route combination problem

Each driver has a route in any solution generated by the ALNS
euristic. However, while some routes may perform well for certain
rivers, the overall solution may be suboptimal. To address this issue
nd further enhance the performance of the ALNS heuristic, we in-
roduce the Route Combination Problem (RCP), following the ideas of
omsi et al. (2020) and Ulsrud et al. (2022).

We solve the RCP every 𝐼𝑅𝐶𝑃 iterations of the ALNS, and accept
he solution based on the same criteria as finding a new global best
olution. To formulate the RCP, we use some of the notation presented
n Section 4.1 along with the following additional notation. The set 𝑘
ncludes all routes previously identified as available for driver 𝑘 during
he ALNS search. The parameter 𝑁𝑘𝑟 defines the number of passengers
icked up by driver 𝑘 on its route 𝑟, while 𝑇𝑘𝑟 is the travel time for
river 𝑘 on route 𝑟. The binary parameter 𝐴𝑖𝑘𝑟 is 1 if passenger 𝑖 is
icked up by driver 𝑘 on its route 𝑟, and 0 otherwise. Finally, we define
he binary decision variable 𝑥𝑘𝑟, which takes the value 1 if driver 𝑘
ravels its route 𝑟, and 0 otherwise.

Now, we can define the RCP as follows. Similar to the objective
unctions described in Section 4.2, the RCP is also formulated as a
i-objective optimization problem with the following two objective
unctions, lexicographically ordered, where objective function (35)
aximizes the number of passengers that is serviced, while objective

unction (36) minimizes the total travel time for drivers.

ax 𝑧1 =
∑

𝑘∈

∑

𝑟∈𝑘

𝑁𝑘𝑟𝑥𝑘𝑟 (35)

in 𝑧2 =
∑

𝑘∈

∑

𝑟∈𝑘

𝑇𝑘𝑟𝑥𝑘𝑟 (36)

The two objective functions are maximized/minimized subject to
he following constraints, where constraints (37) make sure that each
11
assenger is a part of at most one route, while constraints (38) ensure
hat exactly one route is selected for every driver. Lastly, constraints
39) put a binary requirement on the route variables.
∑

𝑘∈

∑

𝑟∈𝑘

𝐴𝑖𝑘𝑟𝑥𝑘𝑟 ≤ 1, 𝑖 ∈ 𝑃 (37)

∑

𝑟∈𝑘

𝑥𝑘𝑟 = 1, 𝑘 ∈  (38)

𝑥𝑘𝑟 ∈ {0, 1}, 𝑘 ∈ , 𝑟 ∈ 𝑘 (39)

6. Computational study

In this section, we present the computational study. The tests were
run on a computing node in the Solstorm computing cluster at the
Norwegian University of Science and Technology. The computing node
is a HP bl685c G7 computer, running on Linux CentOS version 7
with four 2.2 GHz AMD Opteron 6274 processors with 16 cores each
and 128 GB of RAM. The ALNS heuristic and instance generator were
programmed in Python v3.9.6. The arc-flow MIP model (Section 4) and
the model for the route combination problem (RCP) (Section 5.6) were
run using Gurobi v9.5. The ALNS heuristic has two stopping criteria:
(1) a predetermined number of 𝐼𝐴𝐿𝑁𝑆 iterations have been performed,
or (2) the runtime reaches 3600 s. 3600 s (one hour) is assumed to
be a practical maximum run time in our case study since the SRRPFL
is supposed to be solved on a daily basis (e.g., the evening before
the commutes take place). Similarly, the maximum runtime for the
commercial solver is set to 3600 s. Due to the randomness of the ALNS
heuristic, each test instance is run five times to obtain a reliable es-
timate of the algorithm’s average performance. Thus, when presenting
the results from running the ALNS heuristic on a test instance, we report
the average results over five independent runs.

The case study and the test instances generated based on this are
described in Section 6.1. In Section 6.2, we test different configurations
of the ALNS heuristic and select the best performing one for further ex-
periments. Section 6.3 compares the performance of the ALNS heuristic
to a commercial MIP solver. Finally, in Section 6.4 we conduct some
additional analyses to provide managerial insights.

6.1. Case study and test instances

As pointed out in Section 1, we consider the case study of rideshar-
ing in the region of Bergen, Norway’s second largest city. More specif-
ically, we consider the ridesharing for the morning traffic from Sotra
to the greater Bergen area. To generate realistic test instances, we use
relevant trip data provided by Telia, a Nordic telecom company, which
includes hourly trip counts for each calendar day. This data enables
us to pinpoint the origin and destination locations for each trip from
Sotra to the greater Bergen area in the morning hours. Fig. 6 shows the
most important origin and destination locations which we use when
generating the test instances. The 43 origin locations on Sotra are
divided into three distinct zones, whereas the 20 destination locations
are contained within a single zone.

Based on this trip data, we randomly generate a number of test
instances of different sizes. The main set of instances contain 45 in-
stances with up to 35 drivers and 100 passengers. Additionally, we
also generate a smaller set of instances used for tuning and setting up
the ALNS heuristic. We use the filtered travel data for Sotra’s residents
from 06:00 to 10:00 between October 3rd, 2022, and October 30th,
2022, to generate trips, both for the drivers and passengers. Each driver
and passenger in each instance has a maximum travel time and a time
window for when to arrive at its delivery location. The time window is
randomly chosen within 06:00 and 10:00 with a width of 30 min. We
set the capacity of each driver’s vehicle to four.

For each passenger trip with a given origin location, we define the
set of candidate pickup and candidate delivery locations, defined by the
sets 𝑃 and 𝐷, respectively. The set 𝑃 includes the origin location
𝑖 𝑖 𝑖

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Fig. 6. Map of the Sotra region, showing the origin (red markers) and destination
(blue markers) locations in their respective zones.

Table 5
Summary of instance groups and corresponding Instance IDs.

Instance group Drivers Passengers Instance ID

S1 1 4 S1-1D-4P-X
S2 2 6 S2-2D-6P-X
S3 4 10 S3-4D-10P-X
M1 8 20 M1-8D-20P-X
M2 12 30 M2-12D-30P-X
M3 16 42 M3-16D-42P-X
L1 20 60 L1-20D-60P-X
L2 25 75 L2-25D-75P-X
L3 35 100 L3-35D-100P-X

of passenger 𝑖 as well as up to the 𝜃 closest origin locations for other
passengers and drivers that are within 𝜌 minutes of travel time (by car)
from the origin location of passenger 𝑖. Unless not stated otherwise,
𝜃 = 3, while 𝜌 is set to 10 min. For the set of candidate delivery loca-
tions 𝐷

𝑖 , we choose not to include additional candidate destination
locations, i.e., the set consists only of the passenger’s delivery location.
This is based on the assumption that even though passengers can be
willing to make a short travel to be picked up, they generally prefer to
arrive at their exact destination locations.

The instances are, as summarized in Table 5, grouped into three
categories based on their sizes, i.e., S (Small) – with one to four drivers
and four to 10 passengers, M (Medium) – with eight to 16 drivers and
20 to 42 passengers, and L (Large) – with 20 to 35 drivers and 60
to 100 passengers. The Instance ID column displays how the different
instances in each instance group are identified, where X indicates a
unique instance. Five instances are generated in each group.

6.2. Configuration and assessment of the ALNS heuristic

There is a number of parameters in the ALNS heuristic in addition
to setting up the extensions regarding the local search (LS) and the
Route Combination Problem (RCP). Since we experienced that the
ALNS parameters did not affect the solutions much compared to the LS
and RCP, we focus on these two extensions in the following. The values
for the other ALNS parameters were, after thorough testing, mainly
chosen as in Ropke and Pisinger (2006), except for the following ones.
12
We chose 5000 iterations for the ALNS (𝐼𝐴𝐿𝑁𝑆) to balance the trade-off
between solution quality and computational time. The weights of the
destroy and repair operators were updated after each 100 iterations.
The frequency of solving the RCP in the ALNS heuristic is a trade-off
between the solution time of the RCP and taking advantage of the new
information from its solution. Based on preliminary testing, we set the
RCP to be solved every 300 iterations (𝐼𝑅𝐶𝑃). For the regret-k destroy
operator (Section 5.3), we set the parameter 𝑘 = 3. The percentage
factor 𝛿 was set to 90%, which means that a candidate solution is
considered promising if its value for objective 2 is within 90% of the
global best’s value for that objective.

In the following we test the effect of the LS and RCP extensions.
Table 6 provides a detailed comparison of the performance of the

ALNS heuristic without and with its LS extension, i.e., ALNS and ALNS
+ LS, respectively, across the instance groups (S1 to L3). Table 7
shows the same for the extensions with RCP both without and with LS,
i.e., ALNS + RCP and ALNS + LS + RCP, respectively. Each extension’s
effectiveness is evaluated based on these parameters: the average coef-
ficients of variation across all instances within each instance group for
Objectives 1 and 2, respectively (𝐶𝑉 𝑂𝑏𝑗1 and 𝐶𝑉 𝑂𝑏𝑗2), the average gap
for Objectives 1 and 2 (𝐺𝑎𝑝𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝑂𝑏𝑗2) to the best known solution
(obtained across all runs by the best version of the ALNS heuristic), and
the average computational time.

The results in Table 6 show that the ALNS + LS (ALNS heuristic
with local search) outperforms the basic ALNS in terms of average gap
for both objectives. However, the results in Table 7 show that adding
the RCP improves the results further. Comparing the performance of
ALNS + RCP against ALNS + LS, as shown in Table 6, we observe
that ALNS + RCP demonstrates superior performance, both in the two
objective values, as well as in the coefficients of variation. Furthermore,
the results in Table 7 also demonstrate that when we add the LS to
the ALNS + RCP, the results become even better. This configuration
(ALNS + LS + RCP) yields the lowest average gaps at only 0.03% for
objective 1 and 0.33% for objective 2 on average across all five runs on
the 45 test instances. The very low coefficients of variation (0.04% for
objective 1 and 0.27% for objective 2) also demonstrate the stability of
this configuration’s performance.

Based on the findings presented in this subsection, we observe that
the ALNS configuration that includes both LS and RCP (i.e., ALNS +
LS + RCP) has the best average performance. Hence, we conclude that
this is the best configuration that we use in the remaining analyses, and
for simplicity, we refer to it in the following just as the ALNS heuristic
(even though it includes the LS and RCP extensions).

6.3. Comparing the ALNS heuristic with a commercial solver

This section provides a comparison of the solutions produced by the
ALNS heuristic and the commercial solver, Gurobi. As outlined previ-
ously, the maximum run times of both approaches are set to 3600 s.
Since the SRRPFL is a bi-objective optimization problem, the current
version of Gurobi cannot produce gaps, upper, and lower bounds for
both objectives. The gaps, referred to as 𝐺𝑎𝑝𝐺𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝐺𝑂𝑏𝑗2, there-
fore represent the relative difference between the average objective
value found by the ALNS heuristic and that found by Gurobi (negative
values mean that the ALNS heuristic obtains a better solution than
Gurobi).

Table 8 presents the results from this comparison.
As can be observed from the results in Table 8, the commercial

solver obtains optimal solutions for the small instances in the groups S1,
S2, and S3. Comparatively, the ALNS heuristic finds the same objective
values for instance groups S1 and S2, but not for S3. For S3, the ALNS
heuristic finds a slightly lower (worse) objective 1 than Gurobi in two
out of the five runs of one of the five instance. In other words, the
ALNS heuristic does obtain the optimal value to objective 1 in three
out of five runs for that instance and in all five runs for the other four
instances in that group. Furthermore, we see that the ALNS heuristic

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Table 6
Comparison of results for the ALNS heuristic with and without the LS extension. 𝐶𝑉 𝑂𝑏𝑗1 and 𝐶𝑉 𝑂𝑏𝑗2 represent the average coefficient of variation for Objectives
1 and 2 for each instance group, respectively. 𝐺𝑎𝑝𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝑂𝑏𝑗2 represent the average gap for Objectives 1 and 2 for each instance group. 𝐓𝐢𝐦𝐞[𝐬] represents
the average time for the runs in each instance group, measured in seconds.

Instance ALNS ALNS + LS

group 𝐶𝑉 𝑂𝑏𝑗1 𝐶𝑉 𝑂𝑏𝑗2 𝐺𝑎𝑝𝑂𝑏𝑗1 𝐺𝑎𝑝𝑂𝑏𝑗2 𝐓𝐢𝐦𝐞[𝐬] 𝐶𝑉 𝑂𝑏𝑗1 𝐶𝑉 𝑂𝑏𝑗2 𝐺𝑎𝑝𝑂𝑏𝑗1 𝐺𝑎𝑝𝑂𝑏𝑗2 𝐓𝐢𝐦𝐞[𝐬]

S1 0.00% 0.00% 0.00% 0.00% 51.5 0.00% 0.00% 0.00% 0.00% 47.7
S2 0.00% 5.32% 0.00% 3.19% 75.3 0.00% 2.86% 0.00% 2.09% 98.8
S3 4.10% 3.20% 3.95% 3.23% 193.6 3.59% 3.04% 3.10% 2.53% 256.4
M1 1.21% 1.21% 0.68% 1.25% 1176.0 0.59% 1.00% 0.43% 1.26% 1272.4
M2 0.00% 0.68% 0.00% 0.32% 2457.4 0.00% 0.41% 0.00% 0.36% 2949.8
M3 0.32% 1.86% 0.15% 2.45% 3344.9 0.21% 1.34% 0.10% 2.01% 3451.8
L1 0.30% 1.67% 0.20% 1.82% 3600.0 0.18% 1.54% 0.13% 1.76% 3600.0
L2 1.21% 3.21% 0.89% 3.67% 3600.0 0.84% 2.49% 0.70% 3.13% 3600.0
L3 0.65% 2.99% 0.46% 2.95% 3600.0 0.36% 2.75% 0.37% 2.84% 3600.0

Average 0.87% 2.23% 0.70% 2.10% 2011.0 0.64% 1.71% 0.54% 1.78% 2097.4
Table 7
Comparison of results for the ALNS heuristic with the RCP extension. 𝐶𝑉 𝑂𝑏𝑗1 and 𝐶𝑉 𝑂𝑏𝑗2 represent the average coefficient of variation for Objectives 1 and 2 for
each instance group, respectively. 𝐺𝑎𝑝𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝑂𝑏𝑗2 represent the average gap for Objectives 1 and 2 for each instance group. 𝐓𝐢𝐦𝐞[𝐬] represents the average
time for the runs in each instance group, measured in seconds.

Instance ALNS + RCP ALNS + LS + RCP

group 𝐶𝑉 𝑂𝑏𝑗1 𝐶𝑉 𝑂𝑏𝑗2 𝐺𝑎𝑝𝑂𝑏𝑗1 𝐺𝑎𝑝𝑂𝑏𝑗2 𝐓𝐢𝐦𝐞[𝐬] 𝐶𝑉 𝑂𝑏𝑗1 𝐶𝑉 𝑂𝑏𝑗2 𝐺𝑎𝑝𝑂𝑏𝑗1 𝐺𝑎𝑝𝑂𝑏𝑗2 𝐓𝐢𝐦𝐞[𝐬]

S1 0.00% 0.00% 0.00% 0.00% 58.0 0.00% 0.00% 0.00% 0.00% 53.5
S2 0.00% 2.79% 0.00% 2.04% 94.3 0.00% 0.00% 0.00% 0.00% 109.7
S3 1.02% 1.41% 0.45% 2.43% 197.1 0.00% 0.08% 0.00% 0.04% 274.6
M1 0.00% 0.08% 0.00% 0.06% 1158.4 0.00% 0.07% 0.00% 0.03% 1408.9
M2 0.00% 0.06% 0.00% 0.06% 2451.8 0.00% 0.05% 0.00% 0.10% 2990.2
M3 0.21% 1.00% 0.10% 1.35% 3289.0 0.21% 0.78% 0.10% 1.23% 3400.2
L1 0.00% 0.40% 0.00% 0.38% 3600.0 0.00% 0.18% 0.00% 0.19% 3600.0
L2 0.16% 0.68% 0.17% 0.57% 3600.0 0.00% 0.49% 0.00% 0.38% 3600.0
L3 0.18% 0.99% 0.21% 0.83% 3600.0 0.18% 0.75% 0.21% 0.99% 3600.0

Average 0.17% 0.82% 0.10% 0.86% 2005.4 0.04% 0.27% 0.03% 0.33% 2115.2
Table 8
Comparison of results for Gurobi and the ALNS heuristic (with LS and RCP). The column Instance Group shows the
instance groups with the number of passengers in each instance group. 𝐎𝐛𝐣. 𝟏 and 𝐎𝐛𝐣. 𝟐 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. 𝐓𝐢𝐦𝐞[𝐬] represents the average time for the runs in
each instance group, measured in seconds. 𝐺𝑎𝑝𝐺𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝐺𝑂𝑏𝑗2 represent the average gap for Objectives 1 and 2 for
each instance group across the commercial solver and the ALNS heuristic.

Instance Gurobi ALNS (with LS and RCP)

group 𝐎𝐛𝐣. 𝟏 𝐎𝐛𝐣. 𝟐 𝐓𝐢𝐦𝐞 [𝐬] 𝐎𝐛𝐣. 𝟏 𝐎𝐛𝐣. 𝟐 𝐺𝑎𝑝𝐺𝑂𝑏𝑗1 𝐺𝑎𝑝𝐺𝑂𝑏𝑗2 𝐓𝐢𝐦𝐞 [𝐬]

S1 (4) 3.6 42.50 3.8 3.6 42.50 0.00% 0.00% 53.5
S2 (6) 5.6 66.42 101.2 5.6 66.42 0.00% 0.00% 109.7
S3 (10) 9.5 133.26 638.1 9.4 132.42 1.05% −0.63% 274.6
M1 (20) 14.6 290.88 3600.0 18.8 265.96 −28.76% −8.57% 1408.9
M2 (30) – – – 27.0 374.20 – – 2990.2
M3 (42) – – – 41.4 507.91 – – 3400.2
L1 (60) – – – 59.0 616.53 – – 3600.0
L2 (75) – – – 71.8 721.01 – – 3600.0
L3 (100) – – – 99.0 1039.19 – – 3600.0

Average – – – 37.3 418.46 – – 2115.2
finds on average slightly better solutions regarding objective 2 for
instance group S3. It should be noted that, since the objectives are
lexicographically ordered, this might come as a result of that the ALNS
could not find the best solution for first objective 1 in the few cases
mentioned above.

For the instance group M1, the commercial solver reaches its time
limit of 3600 s without achieving optimality. In this instance group, the
ALNS heuristic outperforms the commercial solver, resulting in nega-
tive values for 𝐺𝑎𝑝𝐺𝑂𝑏𝑗1 and 𝐺𝑎𝑝𝐺𝑂𝑏𝑗2. For 𝐺𝑎𝑝𝐺𝑂𝑏𝑗1, we can observe
that it reaches a negative value of −28.76%. This demonstrates that the
ALNS heuristic produces solutions of substantially higher quality than
the commercial solver within the 3600 s time limit. If we consider the
prioritized objective 1, i.e., the number of passengers serviced, we see
from Table 8 that the average objective value across all M1 instances is
18.8. Since the M1 instances contain 20 passengers, we know that the
upper bound on objective 1 cannot be higher than 20. Hence, we can
conclude that we are on average at most 1.2 serviced passenger away
13
from the optimal solution (and probably less than that). Similarly, if we
look at the L3 instances, the upper bound for objective 1 is 100 (since
there are 100 passengers), and we see that the ALNS solution is at most
1% away from this upper bound. For the subsequent instance groups,
the commercial solver is unable to find feasible solutions within the
3600 s time limit as the problem size increases. For these instances, we
also let the commercial solver run for over 48 h without finding any
feasible solutions.

By comparing the ALNS heuristic with the commercial solver, it
is clear that the ALNS heuristic demonstrates promising capabilities,
potentially offering high-quality solutions even for complex and large-
scale instances. Since we do not know the optimal solutions for the
largest instances, we do not know exactly how well the ALNS heuristic
performs on these, but the high stability of the solutions (given by the
low coefficients of variations) indicate that also these are very good.
Furthermore and more importantly, as shown in Table 8, our solution
values for objective 1 are close to the number of passengers in the

Computers and Operations Research 167 (2024) 106669J. Nitter et al.

A
i
t
p

c
s
w
t
o
w

d

Table 9
Comparison of results for the ALNS heuristic with LS and RCP, with and without candidate locations. 𝐎𝐛𝐣. 𝟏 and 𝐎𝐛𝐣. 𝟐 represent the average
objective values for Objectives 1 and 2 for each instance group, respectively. 𝐓𝐢𝐦𝐞[𝐬] represents the average time for the runs in each instance
group, measured in seconds. 𝐂𝐏 denotes the average percentage of picked up passengers who use a candidate location other than its origin.
𝐓𝐓[𝐦𝐢𝐧] refers to the average travel time (in minutes) it takes for passengers who are picked up at a candidate location to travel to that specific
candidate location.

Instance Without candidate locations With candidate locations

group 𝐎𝐛𝐣. 𝟏 𝐎𝐛𝐣. 𝟐 𝐓𝐢𝐦𝐞[𝐬] 𝐎𝐛𝐣.𝟏 𝐎𝐛𝐣.𝟐 𝐂𝐏 𝐓𝐓[𝐦𝐢𝐧] 𝐓𝐢𝐦𝐞[𝐬]

S1 2.6 50.35 15.9 3.6 42.50 100.00% 4.01 53.5
S2 4.0 89.30 31.2 5.6 66.42 69.67% 4.22 109.7
S3 8.0 149.89 87.2 9.4 132.42 77.85% 4.10 274.6
M1 16.2 299.40 121.1 18.8 265.96 82.30% 4.87 1408.9
M2 25.0 436.89 262.4 27.0 374.20 86.57% 4.63 2990.2
M3 39.0 553.60 462.0 41.4 507.91 81.04% 3.96 3400.2
L1 57.7 717.68 2221.5 59.0 616.53 80.82% 3.90 3600.0
L2 67.3 806.10 3588.3 71.8 721.01 84.15% 4.03 3600.0
L3 97.9 1173.89 3600.0 99.0 1039.19 83.00% 3.66 3600.0

Average 35.1 477.25 1154.6 37.3 418.46 82.82% 4.15 2115.2
t

instances (shown in the parentheses of each Instance Group in the
table). The number of passengers in each instance is the theoretical
maximal upper bound for objective 1 since we maximize the number of
serviced passengers. For example, over the five instances in the largest
group L3, we service on average 99.0 out of the 100 passengers, which
means that our solutions are at most 1% away from the optimal ones
on average. This further demonstrates the effectiveness of the ALNS
heuristic.

6.4. Value of having candidate locations

The motivation to incorporate candidate locations into the rideshar-
ing system is to enhance the flexibility for both drivers and passengers.
Table 9 provides a comparison of the results obtained with the ALNS
heuristic, with (𝜌 = 10 min) and without (𝜌 = 0) candidate locations.

s recalled from Section 6.1, 𝜌 denotes the maximum time a passenger
s willing to travel from its origin to reach a candidate pickup loca-
ion. Here, 𝜌 = 0 min implies that the only pickup location for each
assengers is its origin location.

The results in Table 9 clearly illustrate the impact of introducing
andidate locations. There is an increase in the average number of pas-
engers serviced across all instance groups from 35.1 without to 37.3
ith candidate locations. Furthermore, candidate locations contribute

o shorter average travel times for drivers, where the average value
f across all instance groups decreases from 477.25 without to 418.46
ith candidate locations.

Candidate locations, when available, are frequently used, as in-
icated by the high average 𝐂𝐏 value of 82.82%. Furthermore, the

average travel time for a passenger to reach a candidate location is not
excessively long at 4.15 min, and in any case no longer than 10 min
for any passenger (since 𝜌 = 10). This indicates that candidate locations
do not necessarily impose undue travel burdens on the passengers. On
the other hand, the introduction of candidate locations does impact
the average computational time of the ALNS heuristic. The average
computational time, 𝐓𝐢𝐦𝐞 [𝐬], nearly doubles from 1154.6 s without
to 2115.2 s with candidate locations. Despite the increased computa-
tional time, this analysis highlights the usefulness of having candidate
locations in ridesharing. Their use presents an effective strategy for
balancing the dual objectives of maximizing passenger pickups and
minimizing the driver travel times.

7. Summary and concluding remarks

Recognizing the need for innovative transportation solutions to
reduce road congestion, the municipalities in the Bergen region in
Norway have recently announced a pilot project for ridesharing in
the region, including Sotra and the greater Bergen area. As part of
14

this project, we have studied the Static Ridesharing Routing Problem
with Flexible Locations (SRRPFL). The SRRPFL aims at determining
efficient routes and schedules for a set of drivers to pick up and deliver
passengers at different, flexible pickup and delivery locations.

We presented an arc-flow bi-objective mixed integer programming
(MIP) model for the SRRPFL where we (lexicographically) first maxi-
mize the number of passengers serviced and then minimize the total
travel times. Due to the size and complexity of the problem, com-
mercial MIP solvers are only able to solve tiny instances. Therefore,
we also proposed a new Adaptive Large Neighborhood Search (ALNS)
heuristic for solving the SRRPFL. The ALNS heuristic includes well
known destroy and repair operators from the literature, alongside new
operators specifically devised for the SRRPFL. To further improve the
performance of the ALNS heuristic, we also added local search (LS) and
a set partitioning problem, denoted the Route Combination Problem
(RCP), which optimally recombines the routes previously encountered
in the search.

The ALNS heuristic was tested on a number of test instances based
on real trip data. The results on 45 test instances of different sizes
showed that incorporating the LS and RCP extensions to the ALNS
heuristic significantly improves the quality of the solutions. When com-
paring with optimal solutions from the commercial MIP solver on small
test instances and a maximal upper bound (for the primary objective)
on the larger ones, we can conclude that the obtained solutions are of
very high quality.

The results also provide valuable insights regarding the potential
benefits of ridesharing for our case study. Through ridesharing, the
number of cars on the road can be significantly reduced by 64 to 74%
compared to the situation without ridesharing, thus leading to reduced
congestion. Furthermore, the total distance driven is reduced by more
than 60% in the largest test instances, thus reducing the overall carbon
footprint. Finally, the results demonstrate the benefits of having flexible
and multiple candidate pickup locations for the passengers, where
having flexible pickup locations increased the number of passengers
serviced by around 6% and reduced the total travel time by more than
12% on average over all 45 test instances.

Based on the above, we think that the ALNS heuristic proposed in
this paper can be a valuable tool in ridesharing systems, both in our
case study and beyond. Moreover, our analyses may provide important
insights about the potential benefits of ridesharing, which can be of
high value, e.g., in policy-making in the Bergen region.

CRediT authorship contribution statement

Jacob Nitter: Writing – review & editing, Visualization, Valida-
ion, Software, Methodology, Formal analysis, Data curation. Shusheng
Yang: Writing – review & editing, Validation, Software, Methodol-
ogy, Investigation, Formal analysis, Data curation. Kjetil Fagerholt:
Writing – original draft, Supervision, Methodology, Conceptualization.
Andreas Breivik Ormevik: Writing – review & editing, Supervision,

Data curation, Conceptualization.

Computers and Operations Research 167 (2024) 106669J. Nitter et al.
Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank Telia and their Crowd Insights
service for providing us with valuable trip data so that we could
generate realistic test instances for our case study. The suggestions from
the two anonymous reviewers also helped us improve the manuscript
and are highly appreciated.

References

Agatz, N., Erera, A., Savelsbergh, M., Wang, X., 2012. Optimization for dynamic
ride-sharing: A review. European J. Oper. Res. 223 (2), 295–303.

Archetti, C., Savelsbergh, M., Speranza, M.G., 2016. The vehicle routing problem with
occasional drivers. European J. Oper. Res. 254 (2), 472–480.

Auad-Perez, R., Hentenryck, P.V., 2022. Ridesharing and fleet sizing for on-demand
multimodal transit systems. Transp. Res. C 138, 103594.

Baldacci, R., Maniezzo, V., Mingozzi, A., 2004. An exact method for the car pooling
problem based on Lagrangean column generation. Oper. Res. 52 (3), 422–439.

Bruck, B.P., Incerti, V., Iori, M., Vignoli, M., 2017. Minimizing CO2 emissions in a
practical daily carpooling problem. Comput. Oper. Res. 81, 40–50.

Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F., 1995. Time constrained routing
and scheduling. Handbooks Oper. Res. Management Sci. 8, 35–139.

Dragomir, A.G., Van Woensel, T., Doerner, K.F., 2022. The pickup and delivery problem
with alternative locations and overlapping time windows. Comput. Oper. Res. 143,
105758.

Fielbaum, A., Bai, X., Alonso-Mora, J., 2021. On-demand ridesharing with optimized
pick-up and drop-off walking locations. Transp. Res. C 126, 103061.

Ghandeharioun, Z., Kouvelas, A., 2023. Real-time ridesharing operations for on-demand
capacitated systems considering dynamic travel time information. Transp. Res. C
151, 104115.

He, P., Jin, J.G., Schulte, F., Trépanier, M., 2023. Optimizing first-mile ridesharing
services to intercity transit hubs. Transp. Res. C 150, 104082.
15
Ho, S.C., Szeto, W., Kuo, Y.-H., Leung, J.M., Petering, M., Tou, T.W., 2018. A survey
of dial-a-ride problems: Literature review and recent developments. Transp. Res. B
111, 395–421.

Homsi, G., Martinelli, R., Vidal, T., Fagerholt, K., 2020. Industrial and tramp ship
routing problems: Closing the gap for real-scale instances. European J. Oper. Res.
283 (3), 972–990.

Hou, L., Li, D., Zhang, D., 2018. Ride-matching and routing optimisation: Models and
a large neighbourhood search heuristic. Transp. Res. Part E: Logist. Transp. Rev.
118, 143–162.

Hsieh, F.-S., 2020. A comparative study of several metaheuristic algorithms to optimize
monetary incentive in ridesharing systems. ISPRS Int. J. Geo-Inf. 9 (10).

Kaan, L., Olinick, E.V., 2013. The vanpool assignment problem: Optimization models
and solution algorithms. Comput. Ind. Eng. 66 (1), 24–40.

Li, T., Xu, M., Sun, H., Xiong, J., Dou, X., 2023. Stochastic ridesharing equilibrium
problem with compensation optimization. Transp. Res. Part E: Logist. Transp. Rev.
170, 102999.

Lin, Q., Xu, W., Chen, M., Lin, X., 2019. A probabilistic approach for demand-aware
ride-sharing optimization. In: Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing. Association for Comput-
ing Machinery, New York, NY, USA, pp. 141–150, URL https://doi.org/10.1145/
3323679.3326512.

Parragh, S.N., Doerner, K.F., Hartl, R.F., 2008. A survey on pickup and delivery
problems. J. für Betriebswirtschaft 58 (2), 81–117.

Pelzer, D., Xiao, J., Zehe, D., Lees, M.H., Knoll, A.C., Aydt, H., 2015. A partition-based
match making algorithm for dynamic ridesharing. IEEE Trans. Intell. Transp. Syst.
16 (5), 2587–2598. http://dx.doi.org/10.1109/TITS.2015.2413453.

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40 (4), 455–472.

Savelsbergh, M.W., Ulmer, M.W., 2022. Challenges and opportunities in crowdsourced
delivery planning and operations. 4OR 20 (1), 1–21.

Smet, P., 2021. Ride sharing with flexible participants: A metaheuristic approach for
large-scale problems. Int. Trans. Oper. Res. 28, 91–118.

Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M., 2015. The benefits of meeting
points in ride-sharing systems. Transp. Res. B 82, 36–53.

Sun, Y., Chen, Z.-L., Zhang, L., 2020. Nonprofit peer-to-peer ridesharing optimization.
Transp. Res. Part E: Logist. Transp. Rev. 142, 102053.

Ulsrud, K.P., Vandvik, A.H., Ormevik, A.B., Fagerholt, K., Meisel, F., 2022. A time-
dependent vessel routing problem with speed optimization. European J. Oper. Res.
303 (2), 891–907.

Zheng, M., Pantuso, G., 2023. Trading off costs and service rates in a first-mile
ride-sharing service. Transp. Res. C 150, 104099.

http://refhub.elsevier.com/S0305-0548(24)00141-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb1
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb2
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb3
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb4
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb5
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb6
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb7
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb8
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb9
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb10
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb10
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb10
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb11
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb12
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb13
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb13
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb13
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb13
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb13
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb14
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb15
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb15
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb15
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb16
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb16
https://doi.org/10.1145/3323679.3326512
https://doi.org/10.1145/3323679.3326512
https://doi.org/10.1145/3323679.3326512
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb18
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb18
http://dx.doi.org/10.1109/TITS.2015.2413453
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb20
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb21
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb22
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb23
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb23
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb23
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb24
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb25
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb26
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb26
http://refhub.elsevier.com/S0305-0548(24)00141-2/sb26

	The static ridesharing routing problem with flexible locations: A Norwegian case study
	Introduction
	Literature Review
	Problem Description
	Mathematical Model
	Notation
	Sets
	Parameters
	Variables

	Mathematical formulation
	Objective functions
	Routing constraints
	Coupling and precedence constraints
	Time constraints
	Capacity constraints
	Variable definitions and domains

	Adaptive Large Neighborhood Search Heuristic
	Overview of the ALNS
	Construction of an initial solution
	ALNS destroy operators
	Random removal
	Worst deviation removal
	Relatedness removal
	Spread removal
	Cluster removal

	ALNS repair operators
	Insertion repair
	Regret-k repair
	Maximum capacity insertion repair

	Local search
	Intra-passenger swap
	Inter-passenger relocate
	Candidate location-shift

	Route combination problem

	Computational Study
	Case study and test instances
	Configuration and assessment of the ALNS heuristic
	Comparing the ALNS heuristic with a commercial solver
	Value of having candidate locations

	Summary and Concluding Remarks
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References

