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A B S T R A C T

Benders decomposition with adaptive oracles was proposed to solve large-scale optimisation problems with
a column-bounded block-diagonal structure, where subproblems differ only in the right-hand side and cost
coefficients. Adaptive Benders reduces computational effort significantly by iteratively building inexact cutting
planes and valid upper and lower bounds. However, Adaptive Benders and standard Benders may suffer severe
oscillation when solving degenerate models. Therefore, we propose stabilising Adaptive Benders with the level
method and adaptively selecting which subproblems to solve each iteration for more accurate information.
In addition, we propose a dynamic level method to improve the robustness of stabilised Adaptive Benders by
adjusting the level set each iteration. We compare stabilised Adaptive Benders with the unstabilised versions
of Adaptive Benders with one subproblem solved per iteration and standard Benders on a multi-region long-
term power system investment planning problem with short-term and long-term uncertainty. The problem
is formulated as multi-horizon stochastic programming. Four algorithms were implemented to solve linear
programming with up to 1 billion variables and 4.5 billion constraints. The computational results show that:
(a) for a 1.00% convergence tolerance, the proposed stabilised method is up to 113.7 times faster than standard
Benders and 2.1 times faster than unstabilised Adaptive Benders; (b) for a 0.10% convergence tolerance, the
proposed stabilised method is up to 45.5 times faster than standard Benders and unstabilised Adaptive Benders
cannot solve the largest instance to convergence tolerance due to severe oscillation and (c) dynamic level
method makes stabilisation more robust.
1. Introduction

In this paper, we propose an algorithm to efficiently solve a class of
large-scale linear programming problems and address the degeneracy
issue. We consider problems that exhibit a column-bounded block-
diagonal structure, and in which Subproblems (SPs) differ only in the
right-hand side and cost coefficients. Such problems can be formulated
as a full Master Problem (MP),

𝐌𝐏 ∶ min
𝐱∈

𝑓 (𝐱) +
∑

𝑖∈
𝜋𝑖𝑔(𝐱𝑖, 𝐜𝑖), (1)

where 𝑓 (𝐱) =
∑

𝑖∈ 𝜋𝑖𝐜⊤𝑖 𝐱𝑖 and the function 𝑔(𝐱𝑖, 𝐜𝑖) is the optimal
solution of the linear programming subproblem,

𝐒𝐏𝑖 ∶ 𝑔(𝐱𝑖, 𝐜𝑖) ∶= min
𝐲𝑖∈

{
(

𝐜⊤𝑖 𝐶 + 𝐜⊤
)

𝐲𝑖|𝐴𝐲𝑖 ≤ 𝐛 + 𝐵𝐱𝑖}. (2)

Here, the set of decision nodes is given by , the 𝐱𝑖 are subvectors
of 𝐱, the 𝐲𝑖 are the decision variables of SP𝑖, which must lie in the
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polyhedral set  , the 𝜋𝑖 are non-negative constants, the coefficient
matrices 𝐴, 𝐵, and 𝐶 are the same in all SPs. The parameters 𝐜⊤𝑖 𝐶 + 𝐜⊤

and 𝐛+𝐵𝐱𝑖 are the cost coefficients and right hand side that are constant
in the subproblem. The decisions, 𝐱, made in the master problem are
passed to SPs as right-hand side parameters. This formulation includes
some forms of multi-stage stochastic programming problems, but the
algorithm developed in this paper can be applied to any optimisation
problems with the same structure.

Solving this problem directly can be computationally expensive.
However, when 𝑔(𝐱𝑖, 𝐜𝑖) is decreasing w.r.t. 𝐱𝑖, and increasing w.r.t. 𝐜𝑖,
one can exploit these properties to efficiently solve the problem (Mazzi
et al., 2020). The monotonicity property can be natural of the problem,
for example, when 𝐵 and 𝐶 are nonnegative matrices. If the original
problem does not have the monotonicity property, it can be reformu-
lated to have this property as shown by Mazzi et al. (2020). Mazzi
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Fig. 1. Comparison between multi-stage stochastic programming and multi-horizon stochastic programming.
v

et al. (2020) proposed two inexact oracles that approximate 𝑔(𝐱𝑖, 𝐜𝑖)
from below and above adaptively, and by using these, one can avoid
solving all SPs every iteration, which reduces the computational cost
compared with standard Benders decomposition. The method is called
Adaptive Benders (AB). Like other Benders-type decomposition, AB can
suffer from oscillation when solving degenerate models, which results
in slower performance. Degeneracy can lead to oscillation and a severe
slowdown in performance. Therefore, we address the degeneracy issue
in this paper by developing a stabilised Benders decomposition with
adaptive oracles. We call the improved method Stabilised Adaptive
Benders (SAB) in the rest of the paper. The SAB consists of a level
method stabilisation and a mechanism that dynamically selects the
SPs to solve at every iteration. A good example of degeneracy is a
multi-region power system planning problem. The main challenge of
a multi-region problem compared with a single-region problem is that
more regions lead to higher degeneracy, and Benders decomposition
suffers from oscillation.

An important class of problems formulated in Eqs. (1)–(2) is multi-
stage stochastic programming with short-term and long-term uncer-
tainty. Including uncertainty from both time horizons using multi-stage
stochastic programming may lead to a large scenario tree and an
intractable model. Long-term infrastructure investment planning often
faces uncertainty on two time horizons (Kaut et al., 2014; Lara et al.,
2020): (a) the uncertainty from the operational time horizon and (b)
the uncertainty from the strategic time horizon. Stochastic program-
ming is often used to model uncertainty. Most studies on investment
planning in a multi-horizon framework, such as Backe et al. (2022),
only consider short-term uncertainty and treat investment stages as
deterministic, and this helps to keep the problems tractable. How-
ever, long-term uncertainty can play an important role in investment
planning. Although there are examples including short-term and long-
term uncertainty in a multi-horizon model (Hellemo et al., 2013), the
computational difficulty is not sufficiently addressed. Therefore, we
aim to address the computational difficulties of long-term planning
problems with short-term and long-term uncertainty. One possible
way to reduce the problem size is to partly decouple the long- and
short-term uncertainties by following the multi-horizon approach to
stochastic programming (Kaut et al., 2014). A comparison example be-
tween multi-stage stochastic programming and multi-horizon stochastic
programming is presented in Fig. 1. Although multi-horizon stochastic
programming can reduce the size of the scenario tree significantly, it is
essentially still a multi-stage stochastic programming when both short-
term and long-term uncertainty are added and this can be intractable
when the problem gets large. Another way is to develop an algorithm
that can efficiently solve a class of large-scale optimisation problems,
such as the progressive hedging type method (Munoz and Watson,
2015). Although some decomposition algorithms have been proposed
2

to tackle the computational difficulty and claimed to be capable of
solving problems with short-term and long-term uncertainty (Down-
ward et al., 2020), the algorithms were only demonstrated to solve
a problem with only short-term (Munoz et al., 2016) or long-term
uncertainty (Singh et al., 2009). Therefore, this paper applies SAB to
solve a long-term investment planning problem with short-term and
long-term uncertainty.

We use the algorithm to solve an investment planning problem with
short-term and long-term uncertainty along with exogenous quantities
specific to the subproblem formulated as multi-horizon stochastic pro-
gramming. In such a problem, 𝐱, in Eqs. (1)–(2), represents investment
decisions with corresponding expected investment cost 𝑓 (𝐱). The in-
estments affect a set  of operational nodes, and 𝐱𝑖 formed from the

subvector of 𝐱 that represents the investments that affect node 𝑖, 𝐜𝑖
specifies the operational costs, 𝐲𝑖 defines the operational decisions at
period 𝑖, and 𝑔(𝐱𝑖, 𝐜𝑖) gives the expected operational cost. The 𝜋𝑖 is the
probability associated with decision node 𝑖.

An illustration of a multi-horizon stochastic programming prob-
lem is presented in Fig. 1(b). The blue nodes represent the long-
term uncertainty, and red squares represent the short-term uncertainty.
The structure of multi-horizon stochastic programming allows us to
apply Benders decomposition to solve multi-stage stochastic program-
ming, which traditionally was handled by nested Benders decomposi-
tion (Birge, 1985). In traditional multi-stage stochastic programming,
as shown in Fig. 1(a), the scenario tree is branched based on both
long-term and short-term uncertainty, which leads to a large scenario
tree. Also, the short-term node links the long-term node and vice
versa, which requires nested Benders to decompose the problem. On
the contrary, in multi-horizon stochastic programming, the short-term
nodes are embedded in their corresponding long-term node, making the
problem block separable and it is possible to directly apply Benders
decomposition. In this case, in the Benders decomposition, all the
long-term nodes (blue circles) are in the master problem, and all the
short-term nodes are in the subproblems. Each block of short-term
nodes embedded in their corresponding long-term node is a subprob-
lem. Including long-term uncertainty makes the problem essentially a
multi-stage stochastic programming problem. This difficulty is handled
by applying Benders decomposition directly because of the structure
of multi-horizon stochastic programming. The inclusion of short-term
uncertainty leads to large subproblems. However, the subproblem,
formulated as Eq. (2), inherently has the properties needed to utilise the
adaptive oracles. Therefore, the difficulty of solving large subproblems
is handled by utilising adaptive oracles in the solution process. Note
that the short-term uncertainty embedded in the long-term node can
also be revealed multiple times, which leads the subproblem to a multi-
stage stochastic programming problem itself, but in this paper, we
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consider the case where short-term uncertainty is revealed only once
in the corresponding long-term node.

The contributions of this paper are: (1) we develop SAB, a level
method stabilisation of AB to address the oscillation issue and analyse
the tuning of parameters; and (2) we test the proposed method on
a multi-horizon stochastic programming model with short-term and
long-term uncertainty and with an annual operational model with half
hourly resolution. This results in problems with up to 1 billion variables
and 4.5 billion constraints. The results show that it is up to 113.7
times faster than standard Benders and 2.1 times faster than the AB
for a 1.00% convergence, and up to 45.5 times faster than standard
Benders for a 0.10% convergence and the unstabilised AB cannot solve
the largest instance to convergence tolerance; (3) we propose dynamic
level method stabilisation to increase the robustness of the proposed
method and can be up to 33.5 times faster for 1.00% convergence and
25.4 times faster for 0.10% convergence compared with standard level
method stabilisation with poor parameter choices.

The outline of the paper is as follows: Section 2 introduces the back-
ground knowledge regarding stochastic programming, multi-horizon
modelling approach, Benders decomposition and stabilisation. Sec-
tion 3 introduces the level method stabilisation. Section 4 gives the
problem description. Section 5 presents the model for the case study.
Section 6 states the computational results and numerical analysis.
Section 7 discusses the implications of the method and results and
summarises the limitations of the research. Section 8 concludes the
paper and suggests further research.

2. Literature review

This paper proposes a Benders-type algorithm to solve large-scale
optimisation problems. In the following, we present the background
knowledge of stochastic programming, multi-horizon modelling ap-
proach, standard Benders decomposition, AB, and level method stabil-
isation.

2.1. Stochastic programming

Stochastic programming is part of mathematical programming and
operations research that studies how to incorporate uncertainty into
decision problems (King and Wallace, 2012). It is one of the most
popular methods of dealing with uncertainties in energy system plan-
ning (Birge and Louveaux, 2011). The electricity system in regulated
markets is a well-developed area for using stochastic programming in
energy (Wallace and Fleten, 2003; Powell and Meisel, 2016). However,
stochastic programming is also exploited in natural gas systems (Fod-
stad et al., 2016), offshore oil and gas infrastructure planning (Gupta
and Grossmann, 2014), and hydrogen network (Galan et al., 2019).

Two-stage stochastic programming (Boffino et al., 2019), multi-
stage stochastic programming (Pereira and Pinto, 1991), stochastic
mixed-integer programming (Salo et al., 2022; Lara et al., 2020; Munoz
et al., 2016), and stochastic nonlinear programming (Li, 2021) are all
used in energy system research. In Lara et al. (2020), a multi-stage
stochastic mixed-integer programming formulation was developed to
optimise electricity infrastructure planning over multiple years. To
solve a large-scale model, they decomposed and solved the problem
using parallelised stochastic dual dynamic integer programming.

2.2. Multi-horizon stochastic programming

In traditional multi-stage stochastic programming, uncertainty in
both the operational and strategic time horizons can lead to a huge sce-
nario tree, thus, an intractable problem. The multi-horizon modelling
approach was proposed as an alternative formulation that reduces the
model size significantly (Kaut et al., 2014). One can achieve a much
smaller model by disconnecting operational problems from the follow-
ing strategic nodes. The resulting model is called multi-horizon stochas-
3

tic programming. An illustrative example of multi-horizon stochastic
programming is presented in Fig. 1(b). The multi-horizon formulation
is an approximation to multi-stage stochastic programming, but the ap-
proximation will be exact enough provided the state of the operational
system at the end of a stage has no significant influence on the optimal
strategic decisions in the later stages. In the examples in this paper, this
corresponds to being able to ignore the reservoir levels at the end of a
stage when deciding the future investment.

2.3. Benders decomposition

Benders decomposition was first developed in Benders (1962) and
has been successfully applied to a wide range of difficult optimisation
problems (Rahmaniani et al., 2017). Benders decomposition exploits
the block diagonal structure of Eqs. (1)–(2) and creates outer lineari-
sation. This method has been used in stochastic programming and is
known as the L-shaped method (Slyke and Wets, 1969). Directly solving
(1) –(2) can be prohibitive if there are a large number of decision nodes,
which occurs in stochastic programming when there are multiple stages
or many uncertain parameters.

In Benders decomposition, instead of solving Eqs. (1) –(2) directly,
a sequence of approximations is solved. Two types of constraints can be
added after each solve: feasibility cuts (enforcing the feasibility of (1))
and optimality cuts (linear approximations to (1)) (Birge and Louveaux,
2011). The standard Benders decomposition is presented in Algorithm
1. At iteration 𝑗, the Relaxed Master Problem (RMP) is

min
𝐱∈ ,𝛽

𝑓 (𝐱) +
∑

𝑖∈
𝜋𝑖𝛽𝑖 (3a)

s.t. 𝛽𝑖 ≥ 𝜃 + 𝝀⊤(𝐱𝑖 − 𝐱), (𝐱, 𝜃,𝝀) ∈ 𝑖(𝑗−1), 𝑖 ∈ , (3b)

here 𝑖(𝑗−1) is the set of cuts associated with SP 𝑖 generated prior
o iteration 𝑗. In iteration 𝑗 of Benders decomposition, we first solve
he RMP to obtain a solution 𝐱𝑗 . Then we extract the subvector 𝐱𝑖𝑗 of
𝑗 , corresponding to SP 𝑖 as its right hand side parameters. Solving
his gives the optimal value of the SP, 𝜃𝑖𝑗 , and a subgradient, 𝝀𝑖𝑗
t 𝐱𝑖𝑗 . Finally, new cutting planes are added to 𝑖(𝑗−1) which give
𝑖𝑗 ∶= 𝑖(𝑗−1) ∪ {𝐱𝑖𝑗 , 𝜃𝑖𝑗 ,𝝀𝑖𝑗}. This version is referred to as multi-cut
enders decomposition. The algorithm iterates until the upper bound
nd the lower bound converge. The lower bound is the optimal value
f the RMP. The upper bound is the best feasible solution. Benders
ecomposition will converge in a finite number of iterations when the
P is linear programming.

.4. Benders decomposition with adaptive oracles

Benders-type algorithms iteratively approximate the SP cost func-
ion through a set of cutting planes. However, Benders decomposition
ay get slow severely when there are many SPs. Therefore, research

n making Benders decomposition more efficient was conducted (Skar
t al., 2014; Zakeri et al., 2000; Baena et al., 2020). One approach is
o exploit the SP structure to avoid solving all SPs but still get a valid
utting plane at each iteration.

When 𝑔(𝐱𝑖, 𝐜𝑖) is convex and decreasing w.r.t. 𝐱𝑖, and concave and
ncreasing w.r.t. 𝐜𝑖, one can exploit these properties to solve the prob-
em more efficiently (Mazzi et al., 2020). Mazzi et al. (2020) proposed
wo inexact oracles that approximate 𝑔(𝐱𝑖, 𝐜𝑖) from below and above
daptively, and by using these, one can avoid solving all SPs every
teration, and so reduce the computational cost compared to standard
enders decomposition. The RMP in AB has the same form as in
tandard Benders, but with a different set of cuts 𝑗 given by the inexact
daptive oracles. The adaptive oracles provide inexact but valid upper
nd lower bounds on 𝜃, 𝜃 and 𝜃, and give a value 𝝀 of 𝝀 which yields

a valid cutting plane.
Like other Benders-type decomposition, AB suffers from oscillation

and may result in slower performance. The performance of the AB
method was tested on a UK power system planning problem (Mazzi
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Algorithm 1 Standard Benders

1: choose 𝜖 (convergence tolerance), 𝛽 (initial lower bound for 𝛽𝑖), 𝑈∗
0 ∶= 𝑀 (initial upper bound), set 𝑗 ∶= 0, 𝑖0 ∶= {(𝛽𝑖0, 0, 0)} for each 𝑖 ∈ ;

2: repeat
3: 𝑗 ∶= 𝑗 + 1;
4: solve RMP and obtain 𝛽𝑖𝑗 and 𝐱𝑅𝑀𝑃

𝑗 ; set 𝐿∗
𝑗 ∶= 𝑓 (𝐱𝑅𝑀𝑃

𝑗 ) +
∑

𝑖∈ 𝜋𝑖𝛽𝑖𝑗 ;
5: for 𝑖 ∈  do
6: solve SP 𝑖 at (𝐱𝑅𝑀𝑃

𝑖𝑗 , 𝐜𝑖) and obtain 𝜃𝑖𝑗 and 𝝀𝑖𝑗 ;
7: end for
8: for 𝑖 ∈  do
9: 𝑖𝑗 ∶= 𝑖(𝑗−1) ∪ {(𝐱𝑅𝑀𝑃

𝑖𝑗 , 𝜃𝑖𝑗 ,𝝀𝑖𝑗 )};
0: end for
1: 𝑈∗

𝑗 ∶= min(𝑈∗
𝑗−1, 𝑓 (𝐱

𝑅𝑀𝑃
𝑗 ) +

∑

𝑖∈ 𝜋𝑖𝜃𝑖𝑗 );
2: until 𝑈∗

𝑗 − 𝐿∗
𝑗 ≤ 𝜖.
3

w
t
f
s

et al., 2020). However, it is a single-region investment planning prob-
lem, and we found that the algorithm becomes slower after introducing
more regions into the problem. This issue must be addressed because
a power system investment planning problem normally involves mul-
tiple regions connected via transmission lines (Gacitua et al., 2018).
Therefore, this paper develops a stabilised Benders decomposition with
adaptive oracles. We call the improved method SAB in the rest of the
paper. The SAB consist of a level method stabilisation and a mechanism
that dynamically selects the SPs to solve at every iteration.

3. Level method stabilisation

In this paper, based on the observation that Benders-type algorithms
suffer from severe oscillation when solving multi-region planning prob-
lems, we stabilise the algorithm in Mazzi et al. (2020) using the level
method. The level method was introduced in Lemarechal et al. (1995).
It was then used to regularise standard Benders decomposition (Fabian,
2000).

We now present the stabilisation step and its coordination with AB.
At each iteration 𝑗, the Level Method Problem (LMP) for stabilisation
can be formulated as

𝐱𝐿𝑀𝑃
𝑗 = argmin

𝐱∈ ,𝛽

‖

‖

‖

𝐱 − 𝐱𝐿𝑀𝑃
𝑗−1

‖

‖

‖2
(4a)

.t. 𝛽𝑖 ≥ 𝜃 + 𝝀⊤(𝐱𝑖 − 𝐱), (𝐱, 𝜃,𝝀) ∈ 𝑖(𝑗−1), 𝑖 ∈ , (4b)

𝑓 (𝐱) +
∑

𝑖∈
𝜋𝑖𝛽𝑖 ≤ 𝑇𝑗 , (4c)

onstraint (4c) is the level set, and 𝑇𝑗 = 𝐿∗
𝑗 + 𝛾(𝑈∗

𝑗−1 −𝐿∗
𝑗 ) is the target

MP objective value, where 𝐿∗
𝑗 is the lower bound found in iteration 𝑗

nd 𝑈∗
𝑗−1 is the upper bound found in iteration 𝑗 − 1. The stabilisation

actor, 𝛾, can be interpreted as the ratio of the new targeted bound
ap to the existing bound gap. LMP minimises the distance from the
revious reference point subject to all the constraints from the RMP
nd an extra target constraint enforcing a maximum allowed level for
he RMP objective.

A graphical illustration of the level method SAB decomposition is
resented in Fig. 2. At the beginning of iteration 𝑗, we have the cuts that
ave been added in all previous iterations, the upper bound 𝑈∗

𝑗−1 and
he lower approximation of the function value (blue dot). The black dot
epresents the function value at that point which is unknown unless all
Ps are solved exactly. The RMP is resolved and a new lower bound 𝐿∗

𝑗
blue square) is obtained. If there is no stabilisation, then the solution
𝑅𝑀𝑃
𝑗 will be the next sampled point at which the SPs are evaluated.
hen there is stabilisation, the moving area is restricted, and we move

o the closest point to 𝑥𝐿𝑀𝑃
𝑗−1 that does not exceed the target 𝑇𝑗 . At point

𝐿𝑀𝑃
𝑗 , we evaluate one or more SPs and get a new upper bound 𝑈∗

𝑗 (red
4

ot) and add cuts.
.1. Stabilised benders decomposition with adaptive oracles algorithm

In this section, we present the stabilised Benders decomposition
ith the adaptive oracles algorithm, shown in Algorithm 2. We ini-

ialise Algorithm 2 by choosing convergence tolerance, stabilisation
actor 𝛾 ∈ (0, 1), and initial lower and upper bounds. If dynamic level
et is used, then we initialise 𝜔 ∈ (0, 1), a constant that increases or

decreases 𝛾 and thresholds, 𝑃 and 𝑃 (0 ≤ 𝑃 < 𝑃 ≤ 1), which determine
whether to increase or decrease 𝛾. Next, we solve a SP at the special
point (Line 3). This point is used by the inexact oracles, and we refer the
readers to Mazzi et al. (2020) for details. In the first iteration, a RMP
is solved, and we use the solution to the RMP as the reference point for
the stabilisation for the second iteration. At the newly proposed point,
we call oracles for each node (Line 13–15). Then we adaptively select
and solve SPs (Line 16–25). In Line 17, we choose the SP that has the
largest contribution to the gap and solve it exactly. The valid upper and
lower bounds for the SP at node 𝑖 are denoted by 𝜃𝑖𝑗 and 𝜃𝑖𝑗 . After a
SP is solved exactly, the information for the oracles is updated in Line
19, where 𝜙𝑖𝑗 is the sensitivity to the cost coefficients and is used in
evaluating adaptive oracles for other subproblems. In Line 20–22, the
adaptive oracles are called again because more information has been
added to the oracles. Line 25 states the stopping rule for evaluating SPs,
𝑈𝑈𝐵𝑂
𝑗 −𝐿𝐿𝐵𝑂

𝑗 ≤ 𝑈∗
𝑗−1 −𝐿∗

𝑗−𝑖 means locally improved, and 𝐿𝐿𝐵𝑂
𝑗 ≥ 𝑈∗

𝑗−1
means that the lower bound at the current point is higher than the
upper bound of the problem, which means that the current point cannot
improve the upper bound so we should not evaluate more SPs. Then in
Line 26–28, one cut is added for each subproblem 𝑖. Lines 30–39 are the
level set management steps, which are explained in the following. The
algorithm terminates in Line 40 if it reaches the convergence tolerance.

Although a common feature of the level method compared with
other bundle-type methods is that the parameters do not need to be ad-
justed (Zverovich et al., 2012), nevertheless, there are occasions when
it may be beneficial. Therefore, in addition to using fixed stabilisation
factor 𝛾, we also explore methods for adjusting the stabilisation factor
𝛾 with the aim of achieving a more robust algorithm. There are several
ways to adjust stabilisation dynamically, and we choose a method
analogous to what is used to adjust trust regions. The trust region
method uses a local approximation of the function to be minimised
and optimised within the trust region. The trust region size is updated
throughout the iterations. In the trust region method, one adjusts
the trust region according to the ratio of the actual decrease to the
predicted decrease (Fletcher, 2000). Inspired by Fletcher (2000), we
adjust the level set based on the ratio, r, of the actual improvement
to the expected improvement, where 𝐼𝐴𝑗 is the actual improvement
from iteration 𝑗 − 1 to 𝑗, and 𝐼𝑃𝑗 is the predicted improvement from
iteration 𝑗 − 1 to 𝑗. Then we update 𝛾. If both the actual improvement
and predicted improvement are positive (Line 32), we check the ra-
tio against two predefined parameters 𝑃 and 𝑃 . If the improvement
ratio 𝑟 is lower than 𝑃 , meaning that the actual improvement is less
than the least improvement we want to achieve in proportion to the
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Fig. 2. An illustrative example from iteration 𝑗 − 1 to iteration 𝑗.
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predicted improvement, we tighten the stabilisation in Line 34. This is
because we want to avoid moving to an area that provides insufficient
improvement. The parameter 𝜔 affects how significant the change in
stabilisation is. If the improvement ratio is higher than 𝑃 , the actual im-
provement aligns with the predicted improvement well. This suggests
we are moving in the right direction, and we loosen the stabilisation to
hopefully achieve more improvement in the next iteration.

Unlike standard Benders where the exact value of the SPs is known,
in SAB only lower and upper bounds on the objective values are known.
By comparing the lower and upper bounds with the exact values of
the SPs, we find that the lower bound oracle gives a much closer and
more stable approximation. Therefore, we use 𝐿𝐿𝐵𝑂 instead of 𝑈𝑈𝐵𝑂

when defining the ratio 𝑟. Furthermore, a bad approximation from the
lower bound oracle at the current point or a bad approximation from
the upper bound oracle from previous points can lead to a negative 𝐼𝑃𝑗 .

herefore, we choose to do nothing if 𝐼𝑃𝑗 is negative. For 𝐼𝐴𝑗 , there are
wo possibilities for it to be negative: (1) bad approximation from the
ower bound oracle or the upper bound oracle, and (2) going to a bad
ampled point. A bad sampled point, in this case, means the 𝐿𝐿𝐵𝑂 at
he current iteration is higher than the 𝐿𝐿𝐵𝑂 at the previous iteration.
f the information is exact and 𝐼𝐴𝑗 is negative, one may reject the point,

go back to the best point seen so far, and try again with a higher 𝛾.
However, in the case of inexact information, it may not be sensible to
reject a point based on a bad approximation. In the computational study
in this paper, both dynamic and fixed stabilisation are used.
5

4. Problem description, modelling strategies and modelling as-
sumptions

The examples used to test the algorithm are designed to choose
the cost optimal investment strategy and operational scheduling for a
power system to achieve emission targets. In this section, we present
the problem description, temporal, transmission and geographical rep-
resentations of the problem and the modelling assumptions.

The problem under consideration aims to make optimal multi-
period investment planning regarding capacity expansion for both gen-
eration and transmission and operational decisions for the UK power
system that satisfies the emission reduction goals under (a) short-term
uncertainty, including renewable energy availability and load profile;
and (b) long-term uncertainty, including CO2 budget, CO2 tax, and
ong-term power demand.

For the investment planning, we consider: (a) thermal generators
Coal-fired plant, OCGT, CCGT, Diesel, and nuclear plants); (b) gen-
rators with Carbon Capture and Storage (CCS) (Coal-fired plant with
CS); (c) renewable generators (offshore wind, onshore wind and solar
V); (d) electric storage (PHES and lithium); and (e) transmission lines.
ll the technologies have some historical capacities, and the model
ims to make multi-period investments planning in the optimal mix
f technologies to meet future power demand and emission targets.
he capital expenditures and fixed operational costs are assumed to be
nown.
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Algorithm 2 Level method stabilised Benders decomposition with adaptive oracles

1: choose 𝜖 (convergence tolerance), 𝛾 (stabilisation factor), 𝛽 (initial lower bound 𝛽𝑖), 𝑈∗
0 ∶= 𝑀 (initial upper bound), 𝜔 ∈ (0, 1), 𝑃 ∈ (0, 1), and

𝑃 ∈ (𝑃 , 1);
2: set 𝑗 ∶= 0, 𝑖0 ∶= {(𝛽𝑖0, 0, 0)} for each 𝑖 ∈ ;
3: solve SP at the special point (𝐱, 𝐜) and obtain 𝜃, 𝝀 and 𝝓;  ∶= {(𝐱, 𝐜, 𝜃,𝝀,𝝓)};
4: repeat
5: 𝑗 ∶= 𝑗 + 1;
6: solve RMP and obtain 𝛽𝑖𝑗 and 𝐱𝑅𝑀𝑃

𝑗 ; set 𝐿∗
𝑗 ∶= 𝑓 (𝐱𝑅𝑀𝑃

𝑗 ) +
∑

𝑖∈ 𝜋𝑖𝛽𝑖𝑗 ;
7: if 𝑗 = 1 then
8: 𝐱𝐿𝑀𝑃

𝑗 ∶= 𝐱𝑅𝑀𝑃
𝑗 ;

9: else
0: 𝑇𝑗 ∶= 𝐿∗

𝑗 − 𝛾
(

𝑈∗
𝑗−1 − 𝐿∗

𝑗

)

;
1: solve LMP and obtain 𝐱𝐿𝑀𝑃

𝑗 ;
2: end if
3: for 𝑖 ∈  do
4: call adaptive oracles at (𝐱𝐿𝑀𝑃

𝑖𝑗 , 𝐜𝑖) and obtain 𝜃𝑖𝑗 , 𝜃𝑖𝑗 , and 𝝀𝑖𝑗 ;
5: end for
6: repeat
7: 𝑖 ∶= argmax𝑖∈ 𝜋𝑖(𝜃𝑖𝑗 − 𝜃𝑖𝑗 );
8: solve SP𝑖 at (𝐱𝐿𝑀𝑃

𝑖𝑗 , 𝐜𝑖) exactly and obtain 𝜃𝑖𝑗 , 𝝀𝑖𝑗 , 𝝓𝑖𝑗 ;
9:  ∶=  ∪ {(𝐱𝐿𝑀𝑃

𝑖𝑗 , 𝐜𝑖, 𝜃𝑖𝑗 ,𝝀𝑖𝑗 ,𝝓𝑖𝑗 )};
0: for 𝑖 ∈  do
1: call adaptive oracles at (𝐱𝐿𝑀𝑃

𝑖𝑗 , 𝐜𝑖) and obtain 𝜃𝑖𝑗 , 𝜃𝑖𝑗 , and 𝝀𝑖𝑗 ;
2: end for
3: 𝐿𝐿𝐵𝑂

𝑗 ∶= 𝑓 (𝐱𝐿𝑀𝑃
𝑗 ) +

∑

𝑖∈ 𝜋𝑖𝜃𝑖𝑗 ;
4: 𝑈𝑈𝐵𝑂

𝑗 ∶= 𝑓 (𝐱𝐿𝑀𝑃
𝑗 ) +

∑

𝑖∈ 𝜋𝑖𝜃𝑖𝑗 ;
5: until 𝑈𝑈𝐵𝑂

𝑗 − 𝐿𝐿𝐵𝑂
𝑗 ≤ 𝑈∗

𝑗−1 − 𝐿∗
𝑗−1 or 𝐿

𝐿𝐵𝑂
𝑗 ≥ 𝑈∗

𝑗−1;
6: for 𝑖 ∈  do
7: 𝑖𝑗 ∶= 𝑖(𝑗−1) ∪ {(𝐱𝐿𝑀𝑃

𝑖𝑗 , 𝜃𝑖𝑗 ,𝝀𝑖𝑗 )};
8: end for
9: 𝑈∗

𝑗 ∶= min(𝑈∗
𝑗−1, 𝑈

𝑈𝐵𝑂
𝑗 );

0: if dynamic level set then

1: 𝐼𝑃𝑗 ∶= 𝐿𝐿𝐵𝑂
𝑗−1 − 𝑇𝑗 , 𝐼𝐴𝑗 ∶= 𝐿𝐿𝐵𝑂

𝑗−1 − 𝐿𝐿𝐵𝑂
𝑗 , 𝑟 ∶=

𝐼𝐴𝑗
𝐼𝑃𝑗

;

2: if 𝐼𝐴𝑗 > 0 and 𝐼𝑃𝑗 > 0 then
3: if 𝑟 ≤ 𝑃 then
4: 𝛾 ∶= 1 − 𝜔(1 − 𝛾);
5: else if 𝑟 > 𝑃 then
6: 𝛾 ∶= 𝜔𝛾;
7: end if
8: end if
9: end if
0: until 𝑈∗

𝑗 − 𝐿∗
𝑗 ≤ 𝜖.
For the operational part, variable operational costs, fuel costs, ef-
iciency and ramping limits of the thermal generators are known. The
ariable costs and charging efficiency of the electric storage are known.

The problem is to determine: (a) the capacities and timing of in-
ested technologies and (b) operational strategies that include schedul-
ng of generators, storage and approximate power flow among regions
o meet the power demand every half hour with minimum overall
nvestment, operational and environmental costs across the planning
orizon.

.1. Modelling strategies and assumptions

In this section, we present the modelling strategies and assumptions
e use in the stochastic long-term multi-region multi-period investment
lanning problem.
6

4.2. Temporal representation

Long-term planning problems can involve decades of time horizon.
Solving the long-term planning problem with operational decisions in
every hour of the planning horizon was considered intractable (Li et al.,
2022). Several works propose to select representative days to repre-
sent the hourly fluctuations. In this problem, we consider operational
decisions every half hour in a year.

4.2.1. Scenario generation
For short-term uncertainty, we select time intervals from historical

data that represent the different demand and weather conditions over
the year to represent a whole year in an operational scenario. An
illustration of an operational scenario is presented in Fig. 3.

For long-term uncertainty, each independent uncertain parameter
has 𝑛 possible outcomes in the next stage, each of which is linked to
further 𝑛 possible outcomes in the following stage. The realisations in
one stage are assigned with an equal probability. We use a reasonably
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Fig. 3. An illustrative example of an operational scenario.

Fig. 4. An illustrative example of the planning problem.
Source: Adapted from Lara et al. (2020).

simple scenario generation routine because scenario generation is not
the focus of the paper, and we refer the readers to King and Wal-
lace (2012) and Fairbrother et al. (2022) for more advanced scenario
generation approaches.

4.3. Transmission representation

We consider existing transmission lines and expand capacity to
them. The length and capacity of each transmission line are known. For
the existing transmission lines, we assume that they will not reach their
life expectancy during the planning horizon, i.e., we do not consider the
retirement of transmission lines. For the candidate transmission lines,
the capital cost of each transmission line is known.

4.3.1. Geographical representation
The problem potentially consists of many regions and results in a

large model. Therefore, we aggregate regions into representative ones
to reduce the number of locations. The generators and storage units in
one region with the same characteristics are aggregated into clusters.
In such a way, the model does not invest in a specific unit but in that
type of device, and a linear investment model may be sufficient in this
case. An illustration of a simple example is presented in Fig. 4.

4.3.2. Modelling assumptions
We assume that: (a) a linear cost model for each technology because

we deal with an aggregated system and the fixed part of the investment
cost can be evened out and lead to a linear programming master
problem; (b) the Kirchhoff voltage law is omitted; (c) no loss in the
transmission lines, and (d) the initial energy storage level of storage
facilities are half of their capacities.
7

5. Mathematical model

This section presents the mathematical model for the power system
investment planning and operational optimisation problem. The prob-
lem is decomposed by having an investment planning master problem
and an operational SP. The complete nomenclature of the model can
be found in Section 5.1. We use the conventions that calligraphic
capitalised Roman letters denote sets, upper case Roman and lower
case Greek letters denote parameters, and lower case Roman letters
denote variables. The indices are subscripts, and name extensions are
superscripts. The same lead symbol represents the same type of thing.
The names of variables, parameters, sets and indices are single symbols.

5.1. Nomenclature

Investment planning model sets
 Set of technologies, 𝑝
 Set of operational nodes, 𝑖
0 Set of investment nodes, 𝑖0
𝑖 Set of investment nodes 𝑖0 (𝑖0 ∈ 0) ancestor to

operational node 𝑖 (𝑖 ∈ )
Operational model sets
 Set of time slices, 𝑛
 Set of hours in all time slices, 𝑡
𝑛 Set of hours in time slice 𝑛, 𝑡
 Set of transmission lines, 𝑙
 Set of regions
𝑂𝑢𝑡∕𝐼𝑛
𝑧 Set of transmission lines go out of/into region 𝑧, 𝑙

∕𝑧 Set of all thermal generators/in region 𝑧, 𝑔
∕𝑧 Set of all electricity storage/in region 𝑧, 𝑠
∕𝑧 Set of all renewable generations/in region 𝑧, 𝑟
Investment planning model parameters
𝐶𝐼𝑛𝑣
𝑝𝑖 Unitary investment cost of device 𝑝 in investment

node 𝑖 (𝑝 ∈  , 𝑖 ∈ 0) [£/MW]
𝐶𝐹 𝑖𝑥
𝑝𝑖 Unitary fix operational and maintenance cost of

device 𝑝 (𝑝 ∈  , 𝑖 ∈ ) [£/MW]
𝑋𝐼𝑛𝑖𝑡

𝑝𝑖 Initial capacity of device 𝑝 (𝑝 ∈  , 𝑖 ∈ ) [MW]
𝑋𝑀𝑎𝑥

𝑝 Maximum installed capacity of device 𝑝 (𝑝 ∈ )
[MW]

𝜅 Scaling effect depending on the number of
operation years between investment nodes

𝛿𝐼0𝑖 ∕𝛿𝐼𝑖 Discount factor of investment node 𝑖
(𝑖0 ∈ 0)/operational node 𝑖 (𝑖 ∈ )

𝜋𝐼0
𝑖 ∕𝜋𝐼

𝑖 Probability of investment node 𝑖
(𝑖0 ∈ 0)/operational node 𝑖 (𝑖 ∈ )

𝐻𝑃
𝑝 Life time of technology 𝑝 (𝑝 ∈ )

𝐱𝑖 Right hand side coefficients of the operational
subproblem

𝐜𝑖 Cost coefficients of the operational subproblem
𝜇𝐸
𝑖 CO2 budget at operational node 𝑖 (𝑖 ∈ )

𝜇𝐷𝑃
𝑖 Scaling factor on power demand at operational

node 𝑖 (𝑖 ∈ )
𝐼𝐿𝑖 Strategic stage of node 𝑖 (𝑖 ∈  ∪ 0)
𝐶CO2
𝑖 CO2 emission price at operational node 𝑖 (𝑖 ∈ )
Operational model parameters
𝑊𝑡 Weight of operational period 𝑡 (𝑡 ∈  )
𝐻𝑡 Number of hour(s) in one operational period 𝑡

(𝑡 ∈  )
𝛼𝐺𝑔 Maximum ramp rate of gas turbines (𝑔 ∈ )

[MW/MW]
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𝑅𝑅
𝑟𝑡 Capacity factor of renewable unit 𝑟 in period 𝑡

(𝑟 ∈ , 𝑡 ∈  )
𝜂𝑆𝐸𝑠 Efficiency of electricity store 𝑠 (𝑠 ∈ )
𝛾𝑆𝐸𝑠 Power ratio of electricity store 𝑠 (𝑠 ∈ )

[MWh/MW]
𝐸𝐺
𝑔 Emission factor of gas turbine 𝑔 (𝑔 ∈ )

[tonne/MWh]
𝐶𝐺
𝑔 ∕𝐶

𝑆𝐸
𝑠 Operational unit cost of a generator 𝑔/a storage

facility 𝑠 (𝑔 ∈ /𝑠 ∈ ) [£/MW]
𝐶𝑆ℎ𝑒𝑑𝑃 Load shed penalty cost [£/MWh]
𝑃𝐷𝑃
𝑧𝑡 Power demand at region 𝑧 period 𝑡 (𝑧 ∈ , 𝑡 ∈  )

[MW]
Investment planning model variables
𝑥𝐴𝑐𝑐𝑝𝑖 Accumulated capacity of device 𝑝 in operational

node 𝑖 (𝑝 ∈  , 𝑖 ∈ ) [MW]
𝑥𝐼𝑛𝑠𝑡𝑝𝑖 Newly invested capacity of device 𝑝 in investment

node 𝑖0 (𝑝 ∈  , 𝑖 ∈ 0) [MW]
𝑐𝐼𝑁𝑉 Total expected investment cost [£]
Operational model variables
𝑝𝐴𝑐𝑐𝐺𝑔 Accumulated capacity of generator 𝑔 (𝑔 ∈ )

[MW]
𝑝𝐴𝑐𝑐𝐿𝑙 Accumulated capacity of line 𝑙 (𝑙 ∈ ) [MW]
𝑝𝐴𝑐𝑐𝑅𝑔 Accumulated capacity of renewable unit 𝑟 (𝑟 ∈ )

[MW]
𝑝𝐴𝑐𝑐𝑆𝐸𝑠 Accumulated charging/discharging capacity of

electricity store 𝑠 (𝑠 ∈ ) [MW]
𝑝𝐺𝑔𝑡 Power generation of generator 𝑔 in period 𝑡

(𝑔 ∈ , 𝑡 ∈  ) [MW]
𝑝𝑆𝐸+
𝑠𝑡 ∕𝑝𝑆𝐸−

𝑠𝑡 Charge/discharge power of electricity store 𝑠 in
period 𝑡 (𝑠 ∈  , 𝑡 ∈  ) [MW]

𝑝𝐿𝑙𝑡 Power flow in line 𝑙 in period 𝑡 (𝑙 ∈ , 𝑡 ∈  )
[MW]

𝑝𝐺𝑆ℎ𝑒𝑑𝑃
𝑧𝑡 Generation shed at 𝑧 in period 𝑡 (𝑧 ∈ , 𝑡 ∈  )

[MW]
𝑞𝑆𝐸𝑠𝑡 Energy level of electricity store 𝑠 at the start of

period 𝑡 (𝑠 ∈  , 𝑡 ∈  ) [MWh]
𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 Load shed at 𝑧 in period 𝑡 (𝑧 ∈ , 𝑡 ∈  ) [MW]
Function
𝑐𝑂𝑃𝐸 (⋅, ⋅) Operational cost at operational node 𝑖 (𝑖 ∈ ) [£]

5.2. Investment planning model

min 𝑐𝐼𝑁𝑉 + 𝜅
∑

𝑖∈
𝜋𝐼
𝑖 𝑐

𝑂𝑃𝐸 (𝐱𝑖, 𝐜𝑖) (5a)

s.t. 𝑐𝐼𝑁𝑉 =
∑

𝑖∈0

𝛿𝐼0𝑖 𝜋𝐼0
𝑖

∑

𝑝∈
𝐶𝐼𝑛𝑣
𝑝𝑖 𝑥𝐼𝑛𝑠𝑡𝑝𝑖 + 𝜅

∑

𝑖∈
𝛿𝐼𝑖 𝜋

𝐼
𝑖

∑

𝑝∈
𝐶𝐹 𝑖𝑥
𝑝𝑖 𝑥𝐴𝑐𝑐𝑝𝑖 , (5b)

𝑥𝐴𝑐𝑐𝑝𝑖 = 𝑋𝐼𝑛𝑖𝑡
𝑝𝑖 +

∑

𝑖0∈𝑖 |𝜅(𝐼𝐿𝑖 −𝐼
𝐿
𝑖0
)≤𝐻𝑃

𝑝

𝑥𝐼𝑛𝑠𝑡𝑝𝑖 , 𝑝 ∈  , 𝑖 ∈ , (5c)

𝑥𝐴𝑐𝑐𝑝𝑖 ≤ 𝑋𝑀𝑎𝑥
𝑝 , 𝑝 ∈  , 𝑖 ∈ , (5d)

𝑥𝐼𝑛𝑠𝑡𝑝𝑖 , 𝑥𝐴𝑐𝑐𝑝𝑖 ∈ R+
0 . (5e)

The total cost for investment planning, Eq. (5a), consists of ac-
tual discounted investment costs and discounted fixed operating and
maintenance costs 𝑐𝐼𝑁𝑉 , as well as the expected operational cost of
the system over the time horizon 𝜅

∑

𝑖∈ 𝜋
𝐼
𝑖 𝑐

𝑂𝑃𝐸 (𝐱𝑖, 𝐜𝑖). Here, 𝜅 is a
scaling factor that depends on the time step between two successive
investment nodes. Constraint (5c) states that the accumulated capacity
of a technology 𝑥𝐴𝑐𝑐𝑝𝑖 in an operational node equals the sum of the
initial capacity 𝑋𝐼𝑛𝑖𝑡

𝑝 and newly invested capacities 𝑥𝐼𝑛𝑠𝑡𝑝𝑖 in its ancestor
investment nodes 𝑖 that are in their lifetimes. The parameter 𝑋𝑀𝑎𝑥

𝑝
denotes the maximum accumulated capacity of technologies. We define
𝐱𝑖 =

(

{𝑥𝐴𝑐𝑐𝑝𝑖 , 𝑝 ∈ }, 𝜇𝐷𝑃
𝑖 , 𝜇𝐸

𝑖

)

, 𝑖 ∈  that collects all right hand side

coefficients that will be fixed in the SP, Eqs. (6), into vector 𝐱𝑖. The
𝐜 =

(

𝐶CO2
)

, 𝑖 ∈  collects all the cost coefficients into vector 𝐜 .
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𝑖 𝑖 𝑖
.3. Operational model

We now compute the operational cost 𝑐𝑂𝑃𝐸 (𝐱𝑖, 𝐜𝑖) at one operational
node 𝑖 by solving SP, Eqs. (6) given the decisions 𝐱𝑖 and 𝐜𝑖 made in
the master problem, Eqs. (5). The function 𝑐𝑂𝑃𝐸 (𝐱𝑖, 𝐜𝑖) corresponds to
𝑔(𝐱𝑖, 𝐜𝑖) in Eq. (2) Note that we omit index 𝑖 in the operational model
for ease of notation.

𝐶𝑂𝑃𝐸
(

{𝑝𝐴𝑐𝑐𝐺𝑔 𝑔 ∈ }, {𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , 𝑠 ∈ }, {𝑝𝐴𝑐𝑐𝐿𝑙 , 𝑙 ∈ }, 𝜇𝐷𝑃 , 𝜇𝐸 , 𝐶𝐶𝑂2

)

∶=

min
∑

𝑡∈
𝑊𝑡𝐻𝑡

(

∑

𝑔∈
𝐶𝐺
𝑔 𝑝

𝐺
𝑔𝑡 +

∑

𝑠∈
𝐶𝑆𝐸
𝑠 𝑝𝑆𝐸+

𝑠𝑡 +
∑

𝑧∈
𝐶𝑆ℎ𝑒𝑑𝑃 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡

)

(6a)

s.t. 𝑝𝐺𝑔𝑡 ≤ 𝑝𝐴𝑐𝑐𝐺𝑔 , 𝑔 ∈ , 𝑡 ∈  , (6b)

− 𝑝𝐴𝑐𝑐𝐿𝑙 ≤ 𝑝𝐿𝑙𝑡 ≤ 𝑝𝐴𝑐𝑐𝐿𝑙 , 𝑙 ∈ , 𝑡 ∈  , (6c)

𝑝𝑆𝐸+
𝑠𝑡 ≤ 𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , 𝑠 ∈  , 𝑡 ∈  , (6d)

𝑝𝑆𝐸−
𝑠𝑡 ≤ 𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , 𝑠 ∈  , 𝑡 ∈  , (6e)

𝑞𝑆𝐸𝑠𝑡 ≤ 𝛾𝑆𝐸𝑠 𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , 𝑠 ∈  , 𝑡 ∈  , (6f)
−𝛼𝐺

𝑔 𝐻𝑡𝑝
𝐴𝑐𝑐𝐺
𝑔 ≤ 𝑝𝐺𝑔𝑡 − 𝑝𝐺𝑔(𝑡−1) ≤ 𝛼𝐺

𝑔 𝐻𝑡𝑝
𝐴𝑐𝑐𝐺
𝑔 ,

𝑔 ∈ , 𝑛 ∈  , 𝑡 ∈ 𝑛, (6g)
∑

𝑔∈𝑧

𝑝𝐺𝑔𝑡 +
∑

𝑙∈𝐼𝑛
𝑧

𝑝𝐿𝑙𝑡 +
∑

𝑠∈𝑧

𝑝𝑆𝐸−
𝑠𝑡 +

∑

𝑟∈𝑧

𝑅𝑅
𝑟𝑡𝑝

𝐴𝑐𝑐𝑅
𝑟 + 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 =

𝜇𝐷𝑃𝑃𝐷𝑃
𝑧𝑡 +

∑

𝑙∈𝑂𝑢𝑡
𝑧

𝑝𝐿𝑙𝑡 +
∑

𝑠∈𝑧

𝑝𝑆𝐸+
𝑠𝑡 + 𝑝𝐺𝑆ℎ𝑒𝑑𝑃

𝑧𝑡 ,

𝑧 ∈ , 𝑡 ∈  , (6h)

𝑞𝑆𝐸𝑠(𝑡+1) = 𝑞𝑆𝐸𝑠𝑡 +𝐻𝑡(𝜂𝑆𝐸𝑠 𝑝𝑆𝐸+
𝑠𝑡 − 𝑝𝑆𝐸−

𝑠𝑡 ), 𝑠 ∈  , 𝑛 ∈  , 𝑡 ∈ 𝑛, (6i)
∑

𝑡∈

∑

𝑔∈
𝑊𝑡𝐻𝑡𝐸

𝐺
𝑔 𝑝

𝐺
𝑔𝑡 ≤ 𝜇𝐸 , (6j)

𝑝𝐿𝑙𝑡 ∈ R0, (6k)

𝑝𝐺𝑔𝑡, 𝑝
𝐴𝑐𝑐𝐺
𝑔 , 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 , 𝑝𝑆𝐸+

𝑠𝑡 , 𝑝𝑆𝐸−
𝑠𝑡 , 𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , 𝑞𝑆𝐸𝑠𝑡 , 𝑝𝐴𝑐𝑐𝑅𝑟 , 𝑝𝐺𝑆ℎ𝑒𝑑𝑃

𝑧𝑡 ∈ R+
0 . (6l)

The operational cost function 𝑐𝑂𝑃𝐸 (𝐱, 𝐜) includes the total operating
costs of all generators, 𝐶𝐺

𝑔 𝑝
𝐺
𝑔𝑡, and storage facilities 𝐶𝑆𝐸

𝑠 𝑝𝑆𝐸+
𝑠𝑡 and load

shedding costs 𝐶𝑆ℎ𝑒𝑑𝑃 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 . The parameters 𝐶𝐺
𝑔 and 𝐶𝑆𝐸

𝑠 include
the variable operational cost of generators and storage. For thermal
generators, 𝐶𝐺

𝑔 also includes the fuel cost and the CO2 tax charged on
the emissions of generators. Constraint (6b) ensures that generators are
within their capacity limits. Constraint (6c) ensures that the power flow
𝑝𝐿𝑙𝑡 is within the line transmission capacity 𝑝𝐴𝑐𝑐𝐿𝑙 . Constraints (6d) and
(6e) dictate that the charging power 𝑝𝑆𝐸+

𝑠𝑡 and the discharging power
𝑝𝑆𝐸−
𝑠𝑡 of a storage facility should be within the capacity, respectively.

Constraint (6f) limits the energy storage level 𝑞𝑆𝐸𝑠𝑡 to be within the
capacity 𝑞𝐴𝑐𝑐𝑆𝐸𝑠 . Constraint (6g) captures how fast thermal generators
can ramp up or ramp down their power output. The parameters 𝛼𝐺𝑔
is the maximum ramp rate of thermal generators. The power nodal
balance, Constraint (6h), ensures that in one operational period 𝑡,
the sum of total power generation of thermal generators 𝑝𝐺𝑔𝑡, power
discharged from all the electricity storage 𝑝𝑆𝐸−

𝑠𝑡 , renewable generation
𝑅𝑅
𝑧𝑡𝑝

𝐴𝑐𝑐𝑅
𝑟𝑡 , power transmitted to this region, and load shed 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 equals

the sum of power demand 𝜇𝐷𝑃𝑃𝐷𝑃
𝑧𝑡 power transmitted to other regions,

and power generation shed 𝑝𝐺𝑆ℎ𝑒𝑑𝑃
𝑧𝑡 . The parameter 𝑅𝑅

𝑟𝑡 is the capacity
factor of a renewable unit that is a fraction of the nameplate capacity
𝑝𝐴𝑐𝑐𝑅. Constraint (6i) states that the state of charge 𝑞𝑆𝐸𝑠𝑡 in period 𝑡+ 1
depends on the previous state of charge 𝑞𝑆𝐸𝑠𝑡 , the charged power 𝑝𝑆𝐸+

𝑠𝑡
and discharged power 𝑝𝑆𝐸−

𝑠𝑡 . The parameter 𝜂𝑆𝐸𝑠 represent the charging
efficiency. Constraint (6j) restricts the total emission: the parameter 𝐻𝑡
is the length of the period 𝑡, and 𝐸𝐺

𝑔 is the emission per unit of power
generated. The capacities 𝑝𝐴𝑐𝑐𝐺𝑔 , 𝑝𝐴𝑐𝑐𝐿𝑙 , 𝑝𝐴𝑐𝑐𝑆𝐸𝑠 , scaling factor of demand
𝜇𝐷𝑃 and CO2 budget 𝜇𝐸 are passed from the master problem, Eqs. (5),
via vector 𝐱𝑖 and CO2 tax that is included in cost coefficient 𝐶𝐺

𝑔 is passed

from master problem, Eqs. (5), via vector 𝐜𝑖.
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Fig. 5. Comparative results of Case A.
Fig. 6. Comparative results of Case B.
Table 1
Summary of the illustrative cases.

Description

Case A Single region, two technologies to invest (OCGT and Diesel)
Case B Two unconnected regions with sizes 60% and 40% of case A
Case C Case B with a transmission line with 0 initial capacity

6. Results

This section first uses small illustrative cases to show how stabilisa-
tion helps solve multi-region investment planning problems. Then we
demonstrate the proposed algorithm on larger instances and present the
computational results.

6.1. Illustrative cases

We use three cases to show the value of stabilisation in a multi-
region investment planning problem. A summary of the four cases is
presented in Table 1. To simplify the visualisation of the results, we
consider only two types of generation, OCGT and Diesel, and a one-
time investment planning problem is solved. This means that there is
no long-term uncertainty, and there is only one short-term operational
problem. In this case, there is no difference between AB and standard
Benders because there is only one SP.

Figs. 5–7 show how solutions are explored until convergence. In
each figure, the darkest blue point represents the initial solution, the
9

lightest blue point is the optimal solution, and the arrows indicate the
order of points explored. For the stabilised versions, the stabilisation
factor, 𝛾, is fixed to 0.2. In all cases, there is degeneracy in the dimen-
sion of the total amounts of the two generation types. From Case B and
Case C, we find that there is degeneracy in the dimension of regions.
In the two region cases, there is a CO2 constraint that restricts the total
emissions from both regions. In Case B, where to put the capacities
becomes relevant. From Fig. 6, we see that without stabilisation, the
algorithm struggles to balance the capacities of the two technologies
and starts jumping to points with different proportions of the two tech-
nologies many times until it finds the optimal solution. In Fig. 6, we see
that the stabilised approach is clearer about which direction to explore
and make small movements towards the optimal instead of sampling
points wildly. The number of iterations is doubled without stabilisation.
For a more realistic problem with more technologies and regions and
more complicated network topology, the value of stabilisation reveals
further, as is shown in Section 6.3.

In Case C, two regions are initially disconnected, but a line can be
invested to connect them. However, there should be no line invested
because the two regions are proportional to each other and making
investments in the local generation is optimal. By observing the solu-
tion proposed by RMP in the unstabilised version, we notice that RMP
does not realise that and invests in the line in some iterations before
finding the optimum, and this leads to more iterations compared with
the stabilised version.



Computers and Operations Research 167 (2024) 106665H. Zhang et al.
Fig. 7. Comparative results of Case C.
e

a

Fig. 8. Illustration of the UK power system. (UK1: Scotland, UK2: North England, UK3:
Midland and Wales, UK4: East England and UK5: South England.)

6.2. Case study

We test the SAB algorithm with adaptive oracles on the stochastic
investment planning of the UK power system. We use the model pre-
sented in Section 5 to investigate the computational issues. The network
topology is shown in Fig. 8. We implemented the algorithm and model
in Julia 1.7.3 using JuMP (Dunning et al., 2017) and solved with Gurobi
9.5.1 (Gurobi Optimization, LLC, 2022). We ran the code on nodes of a
computer cluster with a 2x 3.6 GHz 8 core Intel Xeon Gold 6244 CPU
and 384 GB of RAM, running on CentOS Linux 7.9.2009. Some data
was taken from Mazzi et al. (2020).

6.3. Computational results

This section presents the computational results of the proposed
SAB. We first compare the performance of SAB against the unstabilised
versions of AB with one SP solved per iteration (Mazzi et al., 2020) and
10
the standard Benders. We use the model presented in Section 5 to solve
a 5-region UK power system planning to make the benchmark. The
long-term uncertainties are CO2 price, CO2 budget and power demand.
The short-term uncertainties are the wind and solar capacity factors and
load profiles. The summary of cases and their problem sizes are shown
in Table 2. In all case examples Case 0–3, there are four short-term
operational scenarios, each consisting of 4380 operational periods. Case
0 has no long-term uncertainty. Case 1 has one long-term uncertainty,
CO2 budget. Case 2 has CO2 budget and long-term demand uncertainty.
Case 3 has CO2 budget, long-term demand, and CO2 tax as long-term
uncertainty.

From Table 3, we can see that (a) SAB is up to 113.7 times faster
than standard Benders for a 1.00% convergence tolerance and 45.5
times faster than standard Benders for a 0.10% convergence tolerance,
(b) AB gets slower when converging to a tighter tolerance and (c) com-
pared with AB, SAB is up to 2.1 times faster for a 1.00% convergence
tolerance, and AB cannot solve the largest instance to 0.10% due to
severe oscillation. Therefore, for Case 3, we report the performance of
unstabilised AB when it reaches a tolerance of 0.103%, which is the
tightest convergence tolerance it achieves just before it starts oscillating
severely. Gurobi can only solve Case 0, taking 440 s, but cannot solve
the other cases. The advantage of SAB over AB is due to two factors:
the level method stabilisation and the adaptive selection of the number
of subproblems to solve each iteration. Table 3 also shows that the
results for AB with multiple subproblem solves. From this, we see that
both the multiple subproblem solves and the stabilisation contribute
significantly to the improved performance of SAB compared to AB.

For Cases 0–3, we measure the total distance the RMP point moved
in AB, and the total distance the LMP point moved in SAB. The total
distance is a metric to evaluate the oscillation. By comparing the
distances from AB and SAB, we notice that the total distance LMP
moved is much less than the total distance RMP point moved in AB,
especially when the algorithms converge from 1% to 0.1% convergence
tolerance. This means that SAB reduces the oscillation, which aligns
with the illustrative examples in Section 6.1.

6.3.1. Improving the robustness
The stabilisation factor 𝛾 significantly impacts the performance. A

very small 𝛾 leads to loose stabilisation and makes stabilisation less
ffective, whereas a very large 𝛾 leads to tight stabilisation and may

hinder the exploitation of the solution space. We test the performance
using different 𝛾 from 0.025 to 0.9 and present the results in Table 4,
nd we find that 𝛾 = 0.025 gives the best performance on average. How-

ever, we find that a stabilisation factor of less than 0.2 is significantly
better and generally performs well. For different cases, the 𝛾 that yields
better performance varies. A common rule of thumb for setting a fixed

stabilisation factor may be to set it to 0.5 (Zverovich et al., 2012).
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Table 2
Overview of the cases used in the computational study.

Operational periods Short-term Long-term Number of decision nodes Problem size (undecomposed)

per short-term scenario scenarios scenarios Present In 5 years In 10 years Total Variables Constraints Nonzeros

Case 0 4380 4 1 1 1 1 3 2.7 × 106 7.7 × 106 1.9 × 107

Case 1 4380 4 9 1 3 9 13 1.6 × 107 4.6 × 107 1.1 × 108

Case 2 4380 4 81 1 9 81 91 1.2 × 108 3.5 × 108 8.4 × 108

Case 3 4380 4 729 1 27 729 757 1.0 × 109 4.5 × 109 1.1 × 1010 a

a The model cannot be loaded into the solver due to its size.
Table 3
Comparative results for standard Benders, AB and SAB, 𝛾 is fixed to 0.025 for SAB. (speed up: the time spent using standard Benders divided by the time spent using AB or
SAB).

𝜖 (%) Standard benders AB AB with adaptive subproblem selection SAB

Iters/Evals Time (s) Iters/Evals Time (s) Speed up Iters/Evals Time (s) Speed up Iters/Evals Time (s) Speed up

Case 0 1.00 18/36 1 051 30/31 874 1.20 26/35 970 1.08 16/26 751 1.40
0.10 33/66 1 925 66/67 1 925 1.00 51/61 1 754 1.10 35/47 1 344 1.43

Case 1 1.00 16/192 5 698 32/33 953 5.98 21/45 1 308 4.36 20/27 791 7.20
0.10 28/336 9 922 61/62 1 823 5.44 37/46 1 343 7.39 28/40 1 156 8.58

Case 2 1.00 11/990 30 532 54/55 1 559 19.58 26/52 1 396 21.87 23/60 1 662 18.37
0.10 18/1620 48 666 173/174 4 982 9.77 45/128 3 725 13.06 41/106 3 100 15.70

Case 3 1.00 16/12 096 382 828 202/203 7 203 53.10 25/188 5 341 71.68 25/188 3 367 113.70
0.10 3736/18 144 563 205 3736/3737a 422 591a <1.33a 56/626 21 070 >26.73 72/360 12 375 >45.51

a The algorithm cannot solve the problem to a 0.1% tolerance but reach a 0.103% tolerance.
Table 4
Results of SAB decomposition with different level sets.
𝛾 𝜖 (%) Case 0 Case 1 Case 2 Case 3 Average

Iters/Evals Time (s) Iters/Evals Time (s) Iters/Evals Time (s) Iters/Evals Time (s) Iters/Evals Time (s)

0.000 1.00 35/39 1106 21/45 1298 23/70 1 925 24/169 7 270 26/81 11 599
0.025 1.00 16/26 752 20/27 791 23/60 1 662 30/105 3 385 22/55 6 590
0.050 1.00 13/20 552 20/28 813 34/74 2 039 21/163 4 511 22/71 7 915
0.075 1.00 16/23 665 15/21 581 21/64 1 859 30/232 10 381 21/85 13 486
0.100 1.00 12/20 615 34/62 1820 17/60 1 694 31/164 5 419 24/77 9 548
0.200 1.00 18/24 657 35/64 1885 31/90 2 588 46/180 12 339 33/90 17 469
0.300 1.00 23/30 848 30/50 1478 33/88 2 503 68/153 5 055 39/80 9 884
0.400 1.00 22/29 842 37/58 1796 39/96 2 755 140/633 22 585 60/204 27 978
0.500 1.00 24/32 939 31/38 1276 58/143 4 180 358/833 91 031 118/262 97 426
0.600 1.00 24/31 980 44/57 1721 67/110 3 457 566/1123 45 590 175/330 51 748
0.700 1.00 32/37 1146 75/90 2970 126/212 6 665 551/977 40 753 196/329 51 534
0.800 1.00 39/45 1424 84/94 3438 197/275 9 004 713/966 43 529 258/345 57 395
0.900 1.00 73/81 2739 222/244 8165 487/649 21 665 2149/2859 192 864 733/958 225 433

0.000 0.10 55/59 1696 37/86 2508 41/116 3 354 59/473 34 296 48/184 41 854
0.025 0.10 35/47 1344 28/40 1156 41/106 3 100 72/360 12 472 44/138 18 072
0.050 0.10 21/33 941 29/43 1252 52/124 3 693 62/502 16 862 41/176 22 748
0.075 0.10 24/35 1022 27/37 1051 35/109 3 181 81/690 49 078 42/218 54 332
0.100 0.10 21/33 996 44/81 2384 33/105 3 037 60/400 16 605 40/155 23 022
0.200 0.10 26/36 1004 54/97 2880 54/153 4 556 92/510 40 627 57/199 49 067
0.300 0.10 31/43 1227 44/78 2322 61/88 7 101 140/559 19 737 69/192 30 387
0.400 0.10 27/37 1074 49/78 2395 53/174 5 279 306/1499 59 641 109/447 68 389
0.500 0.10 31/42 1234 39/50 1644 77/239 7 181 471/1217 108 217 155/387 118 276
0.600 0.10 31/41 1286 60/84 2513 112/211 6 674 838/2054 93 282 260/598 103 755
0.700 0.10 45/51 1555 89/115 3717 178/212 9 965 954/2256 109 567 317/659 124 804
0.800 0.10 50/62 1923 104/130 4523 326/599 18 881 1085/1848 94 686 391/660 120 013
0.900 0.10 85/94 3160 233/262 8709 657/1015 33 098 2982/4706 376 947 989/1519 421 914
We see that different fixed 𝛾 can lead to a noticeable difference in
erformance, which aligns with Remark 5 in Zverovich et al. (2012).
his gives the motivation to test the approach presented in Section 3.1
f adjusting 𝛾 with the aim of making the level method stabilisation
ore robust and independent of the choice of the stabilisation factor.

We test extensively the dynamic stabilisation scheme on Case 0–3.
he results for different cases are shown in Table 5. We can see that
ynamic stabilisation can sometimes outperform the best performance
ith fixed stabilisation. By comparing results from Table 5 and results
sing fixed stabilisation factors in Table 4, we can see that the dynamic
tabilisation makes the level method stabilisation much more robust in
erms of the choice of 𝛾. It is particularly valuable because one may

need extensive tests to find the 𝛾 that yields the best performance for
the problems to be solved. However, as we see in Table 4, different
11
problems may have different best 𝛾. Therefore, a dynamic stabilisation
that makes the performance less dependent on the choice of 𝛾 may
make it easier to get a satisfying performance if one chooses a bad
initial 𝛾 because the dynamic adjustment will help correct 𝛾 to a
sensible value while solving the problem.

6.4. Power system analysis

In this section, we present the results of the 5-region UK power sys-
tem planning problem. We analyse the investment decisions, expected
costs, and the Value of the Stochastic Solution (VSS).

The investment decisions in the first stage are presented in Table 6.
There are no investments in technologies except the onshore wind
in the first investment stage. We notice that the transmission lines
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Table 5
Results for stabilised Benders decomposition with adjusted level sets (speed up: the time spent using fixed 𝛾 = 0.025 divided by time spent using dynamic stabilisation).

Initial 𝛾 𝜔 𝑃 𝑃 Iters/Evals Time (s)

𝜖 = 1.00% 𝜖 = 0.10% 𝜖 = 1.00% Speed up 𝜖 = 0.10% Speed up

Case 0 0.025 0.5 0.1 0.9 20/30 35/48 843 0.89 1 368 0.98
0.9 0.1 0.9 17/27 28/44 702 1.07 1 233 1.09

0.1 0.5 0.1 0.9 14/19 31/38 526 1.43 1 081 1.24
0.9 0.1 0.9 13/18 23/31 484 1.55 862 1.56

0.5 0.5 0.1 0.9 17/24 27/37 753 1.00 1 212 1.11
0.9 0.1 0.9 20/27 28/38 761 0.99 1 112 1.21

0.9 0.5 0.1 0.9 31/39 53/43 1123 0.67 1 554 0.86
0.9 0.1 0.9 33/41 43/55 1248 0.60 1 655 0.81

Case 1 0.025 0.5 0.1 0.9 22/31 35/49 882 0.90 1 425 0.81
0.9 0.1 0.9 17/27 28/43 732 1.08 1 238 0.93

0.1 0.5 0.1 0.9 14/27 31/57 753 1.05 1 651 0.70
0.9 0.1 0.9 18/28 26/40 734 1.08 1 157 1.00

0.5 0.5 0.1 0.9 22/42 31/54 1182 0.67 1 599 0.72
0.9 0.1 0.9 22/45 34/45 1254 0.63 2 054 0.56

0.9 0.5 0.1 0.9 15/20 30/44 627 1.26 1 342 0.86
0.9 0.1 0.9 26/41 35/61 1277 0.62 1 901 0.61

Case 2 0.025 0.5 0.1 0.9 38/68 51/110 1979 0.84 3 224 0.96
0.9 0.1 0.9 18/61 41/152 1601 1.04 4 461 0.69

0.1 0.5 0.1 0.9 28/67 36/94 1775 0.94 2 720 1.14
0.9 0.1 0.9 29/67 39/99 1931 0.86 2 858 1.08

0.5 0.5 0.1 0.9 39/90 46/108 2533 0.66 3 191 0.97
0.9 0.1 0.9 39/102 49/141 3124 0.53 4 261 0.73

0.9 0.5 0.1 0.9 48/95 76/194 2703 0.61 5 839 0.53
0.9 0.1 0.9 50/107 65/164 3377 0.49 5 086 0.61

Case 3 0.025 0.5 0.1 0.9 49/217 84/418 6573 0.51 14 067 0.88
0.9 0.1 0.9 28/173 66/399 5486 0.61 15 195 0.81

0.1 0.5 0.1 0.9 24/111 87/433 3306 1.02 14 860 0.83
0.9 0.1 0.9 44/143 126/606 4538 0.74 21 276 0.58

0.5 0.5 0.1 0.9 52/182 140/566 5837 0.58 24 892 0.50
0.9 0.1 0.9 61/210 123/494 6901 0.49 17 332 0.71

0.9 0.5 0.1 0.9 58/194 98/425 5758 0.58 14 838 0.83
0.9 0.1 0.9 76/178 133/444 6042 0.56 15 820 0.78

Average 0.83 0.87
Table 6
Investment in onshore wind in the first investment stage.

Investment in onshore wind (GW)

Scotland North England Midlands & Wales East England South England UK total

Case 0 0.00 25.70 0.00 0.00 65.15 90.85
Case 1 14.76 28.25 0.00 0.00 51.68 94.69
Case 2 3.56 23.22 0.00 0.00 59.19 85.97
Case 3 1.42 23.60 0.00 0.00 69.16 94.18
are expanded in the later investment nodes. Therefore, for the first
investment stage, only investment in onshore wind is presented. The
onshore wind is mainly invested in Scotland, North England and South
England in the first investment stage. When considering only short-
term uncertainty, we can see that in Case 0, a total of 90.85 GW of
onshore wind is invested, 28% of which is in North England. Compared
with Case 1, around 3.8 GW less capacity is installed in Case 0. When
considering uncertainty in both long-term demand and CO2 budget, we
can see a 3.56 GW investment in onshore wind in Scotland, compared
with 14.76 GW in Case 1 and 1.42 GW in Case 3.

Table 7 shows the optimal costs and the VSS for considering long-
term uncertainties. We can see that there is up to £7702 million VSS
when considering uncertainty, including CO2 budget and long-term
demand. The VSS is £2904 million when considering only CO2 budget
as an uncertainty parameter. When considering long-term uncertainty,
including CO2 budget, CO2 tax and long-term demand, the VSS is
4.4% of the optimal cost. This shows the value of including long-term
uncertainty in a long-term planning problem and solving a large model.

7. Discussion

In this paper, we propose a Benders-type decomposition method to
address the computational difficulty of multi-horizon stochastic pro-
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gramming with short-term and long-term uncertainty by exploiting its
Table 7
Optimal costs and VSS.

Case 0 Case 1 Case 2 Case 3

Optimal cost (mn £) 174 099 174 276 174 871 174 785
VSS (long-term uncertainty, mn £) – 2 904 7 325 7 702

unique structure. Compared with other solution methods (Zakeri et al.,
2000; Downward et al., 2020), we exploit the properties of the SP and
stabilise the algorithm with the level method and adaptively select SPs
to solve exactly per iteration for a better approximation, which shows
significant performance improvement. The method can be generally
applied to solve any problem that is formulated as Eqs. (1)–(2).

We demonstrate our proposed method on a multi-region UK power
system planning problem. To the authors’ knowledge, this is the first
study that presents a multi-horizon formulation of a multi-region power
system planning problem with short-term and long-term uncertainty
and proposes a method to solve such a problem efficiently. Compared
with a similar problem for long-term investment planning such as Backe
et al. (2022) that only considers short-term uncertainty, this paper
firstly introduces both long-term and short-term uncertainty in a power
system planning problem using a multi-horizon framework.
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We notice and analyse the oscillation of the Benders-type decompo-
sition method for multi-region investment planning problems. The level
method stabilisation approach was used to stabilise Benders. Compared
with the existing literature that studied the level method, we integrate
it with the inexact oracles and show that it significantly improves
computational performance. In addition, similar studies usually set the
level set in an ad hoc way (Zverovich et al., 2012; Ruszczyński and
Świȩtanowski, 1997). Moreover, we test to adjust the target based on
a proposed measurement. For the test instance, adjusting the level
set can usually yield better or equivalent performance. However, the
parameters that yield the best performance may be case-dependent.

Although the stabilisation is helpful, the stabilisation problem can
potentially be a large QP and be slow to solve. One possible approach
to stabilise the problem efficiently is to utilise the built-in method,
analytic centre (Gondzio et al., 1996) in a commercial solver like
Gurobi to solve a feasibility problem to avoid solving a QP. We test
utilising the analytic centre of Gurobi to avoid solving a QP LMP.
However, the results show that proper stabilisation may still be the
better option, even for large problems. Another approach is to use the
L1 or L-infinity norm and linearise the problem. The alternative norms
and linearisation have been tested, but the performance is not as good
as using the L2 norm. We observed that the slower performance using
other norms is because it leads to significantly more iterations com-
pared with using the L2 norm, although the LMP is linear programming
and cheaper to solve. It may be worth investigating which norm is
suitable for different problems and the reasoning behind it in the future.

We demonstrated the method for solving large-scale linear program-
ming. However, the method can be applied to solve mixed-integer
linear programming problems without modification as long as the inte-
ger variables are in the RMP. In such a case, the stabilisation problem
becomes a mixed-integer QP problem which may be slow to solve. Some
other stabilisation techniques, such as local branching (Baena et al.,
2020) may be an alternative.

Although this paper presents a general method to solve a class
of large-scale optimisation problems very efficiently, a limitation is
that we need the same coefficient matrices in all nodes to utilise
the adaptive oracles. This may be limited when different operational
scenarios are preferred. However, the adaptive oracles can be used
within each group of nodes with the same matrices and with different
oracles for each different group.

8. Conclusions and future work

In this paper, we proposed stabilised Benders decomposition with
adaptive oracles to efficiently solve a class of large-scale linear pro-
gramming problems and address the degeneracy issue. We apply the
algorithm to solve a multi-stage stochastic programming problem with
short-term and long-term uncertainty. The stochastic programming
problem is a multi-region UK power system investment planning prob-
lem towards 2035. The multi-region part of the problem leads to high
degeneracy and oscillation. The test instances have up to 1 billion
variables and 4.5 billion constraints. The computational results show
that: (a) for a 1.00% convergence tolerance, the proposed stabilised
method is up to 113.7 times faster than standard Benders decomposi-
tion and 2.1 times faster than AB decomposition without stabilisation;
(b) for a 0.10% convergence tolerance, the proposed stabilised method
is up to 45.5 times faster than standard Benders decomposition and
the unstabilised AB decomposition cannot solve the largest instance
to the convergence tolerance due to severe oscillation; (c) dynamic
level method increases the robustness of the stabilisation. We note
that both the adaptive selection of subproblems and the level method
stabilisation contribute significantly to the improvement.

Although the proposed method reduced the computational effort
significantly and was used to solve multi-horizon stochastic program-
ming with short-term and long-term uncertainty, we notice that for
13
a very large problem with many decision nodes, the reduced mas-
ter problem and the stabilisation problem may take longer to solve.
Therefore, in future, techniques including node aggregation and cuts
selection and deletion and stronger cuts generation (Oliveira et al.,
2014) may be needed to improve the performance. It is also possible to
combine Lagrangean decomposition (Escudero et al., 2016) with Ben-
ders decomposition when solving huge problems. In addition, although
multi-horizon formulation reduces the problem size significantly, the
model size may be reduced further by adjusting the scenario tree,
e.g., removing the scenarios that do not make a difference while solving
the problem.
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