
Citation: Yadav, P.S.; Rao, R.S.;

Mishra, A.; Gupta, M. Machine

Learning-Based Methods for Code

Smell Detection: A Survey. Appl. Sci.

2024, 14, 6149. https://doi.org/

10.3390/app14146149

Academic Editors: Andrea Prati,

Linda Vickovic and Maja Braović

Received: 20 April 2024

Revised: 20 June 2024

Accepted: 11 July 2024

Published: 15 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Systematic Review

Machine Learning-Based Methods for Code Smell
Detection: A Survey
Pravin Singh Yadav 1 , Rajwant Singh Rao 1 , Alok Mishra 2,3,* and Manjari Gupta 4

1 Department of Computer Science and Information Technology, Guru Ghasidas Vishwavidyalaya,
Bilaspur 495009, Chhattisgarh, India; pravinsingh1110@gmail.com (P.S.Y.); rajwantrao@gmail.com (R.S.R.)

2 Faculty of Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
3 Informatics and Digitalization Group, Molde University College, Specialized University in Logistics,

6402 Molde, Norway
4 Computer Science, DST—Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras

Hindu University, Varanasi 221005, Uttar Pradesh, India; manjari@bhu.ac.in
* Correspondence: alok.mishra@ntnu.no

Abstract: Code smells are early warning signs of potential issues in software quality. Various
techniques are used in code smell detection, including the Bayesian approach, rule-based automatic
antipattern detection, antipattern identification utilizing B-splines, Support Vector Machine direct,
SMURF (Support Vector Machines for design smell detection using relevant feedback), and immune-
based detection strategy. Machine learning (ML) has taken a great stride in this area. This study
includes relevant studies applying ML algorithms from 2005 to 2024 in a comprehensive manner for
the survey to provide insight regarding code smell, ML algorithms frequently applied, and software
metrics. Forty-two pertinent studies allow us to assess the efficacy of ML algorithms on selected
datasets. After evaluating various studies based on open-source and project datasets, this study
evaluated additional threats and obstacles to code smell detection, such as the lack of standardized
code smell definitions, the difficulty of feature selection, and the challenges of handling large-scale
datasets. The current studies only considered a few factors in identifying code smells, while in this
study, several potential contributing factors to code smells are included. Several ML algorithms are
examined, and various approaches, datasets, dataset languages, and software metrics are presented.
This study provides the potential of ML algorithms to produce better results and fills a gap in the
body of knowledge by providing class-wise distributions of the ML algorithms. Support Vector
Machine, J48, Naive Bayes, and Random Forest models are the most common for detecting code
smells. Researchers can find this study helpful in better anticipating and taking care of software
development design and implementation issues. The findings from this study, which highlight
the practical implications of ML algorithms in software quality improvement, will help software
engineers fix problems during software design and development to ensure software quality.

Keywords: antipattern; code smell; code smell detection; identification; machine learning algorithms

1. Introduction

Code smells can indicate deeper problems in the software, adversely affecting the
software quality [1–5]. The code smell detection model identifies software issues that
may cause severe problems in the future. Identifying code smells is always recommended,
which helps to reduce the software maintenance cost and increases the code reusability [3,6].
Software metrics, detection models, pattern-matching approaches, etc., are effective meth-
ods for detecting code smells. A variety of software metrics can help to detect code smells.
The proper detection of code smells also depends upon how well the model performs
and detects various code smells. The domain of code smell detection has witnessed the
development of various approaches, from rule-based, metric-based, to machine learning
(ML)-based. ML is expanding quickly and finding applications in many different areas.

Appl. Sci. 2024, 14, 6149. https://doi.org/10.3390/app14146149 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146149
https://doi.org/10.3390/app14146149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5489-6047
https://orcid.org/0000-0001-6993-8927
https://orcid.org/0000-0003-1275-2050
https://orcid.org/0000-0003-1939-5383
https://doi.org/10.3390/app14146149
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146149?type=check_update&version=1

Appl. Sci. 2024, 14, 6149 2 of 37

Solutions based on ML have proven very useful for complicated issues that challenge
conventional approaches; because of that, this study is mainly focused on ML-based ap-
proaches. In the literature, many ML algorithms are used, such as Decision Tree, Decision
Tree (J48), Decision Tree (c4.5), Naive Bayes, Support Vector Machines (SVMs), Random
Forest, etc.

Nucci et al. [7] applied thirty-two ML algorithms like AdaBoost, J48, Random Forest,
Naive Bayes, JRip, LIBSVM, Sequential Minimal Optimization, etc. They found 96%
accuracy and 90% F-measure, the best-known results compared to the other works in this
area. Guggulothu et al. [8] applied some ML algorithms with a 10-fold cross-validation
method, including the J48 (C4.5) algorithm, Random Forest, JRip, Naive Bayes, Sequential
Minimal Optimization, and K-nearest neighbors (where k = 2), and found that tree-based
classifiers provide better results among all applied algorithms. Iqbal et al. [9] anticipated
two skeletons, one with feature selection and the other without feature selection. They
compared their results with techniques such as Multilayer Perceptron, SVM, Rule-Based
Learning, Naive Bayes, K-nearest neighbors, Random Forest, etc. They observed that their
method performed better than these classification methods. Pecorelli et al. [10] compared
ML algorithms with DECOR (DEtection and CORrection), a heuristic-based approach on
thirteen open-source software systems, and noticed that DECOR generally provides a better
result than ML algorithms.

This study presents a systematic literature review (SLR) to find the applications of
ML-based methods in code smell detection. The investigation examined various factors that
influence the performance of code smell detection, including the ML algorithm employed,
feature selection, evaluation metrics for quality assessment, software metrics, and datasets.
This review process involved scrutinizing primary research references from diverse datasets.
The code smell detection model is constructed based on an analysis of existing datasets,
while the necessary information for the detection model is derived from software metrics.
Software practitioners need a quality product that is easily maintainable and error-free.
This study will help software professionals to find efficient methods and techniques to
eliminate code smells at the early stages of development and ultimately build high-quality
products in time. The following are some benefits of code smell detection:

• The better the code smell detection process, the better the software quality.
• Software metrics improve the detection process by focusing on different aspects of the

software.
• The possibility of refactoring can be easily identified using this process.

Motivation and Contribution

The existing SLR discussed various ML algorithms, but class-wise categorizations
need to be included [11–16]. This SLR illustrates multiple studies of several classes of ML
algorithms, the distribution of their subclasses, and the appropriate percentage for each
study. This SLR also examined various sources to evaluate the effectiveness of various ML
algorithms. Researchers presented and discussed many SLRs, datasets, and performance
analysis tools but could not discuss software metrics that are found to be more helpful and
the dataset language used in various studies [11,14,16].

The contributions of this SLR are listed below:

i. The survey presents a unique approach to code smell detection, examining the SLR
of forty-two papers (ARTN1 to ARTN42) from 2005 to 2024.

ii. This study not only identifies various factors that can impact software quality,
such as code smells, software metrics, and datasets, but also provides practical
guidelines for addressing these issues. These guidelines include best practices
for testing procedures, popular software metrics, and methods for detecting code
smells, offering valuable insights for software practitioners. We investigate various
factors that may distress any software. The survey also provides some guidelines
for handling such problems. These guidelines are theoretical concepts and practical
tools that empower professionals to address software quality issues effectively.

Appl. Sci. 2024, 14, 6149 3 of 37

iii. We analyzed different issues in the code smell detection space and examined the
current solution to those problems. Identifying and analyzing issues involves
systematically searching and gathering relevant research articles and popular tools
used in code smell detection. Examining the solution involves critically analyzing
the methodologies, algorithms, and frameworks developed to address these issues.
Based on our rigorous analysis, we identified best practices. This comprehensive
approach reassures the audience about the validity and reliability of our findings,
instilling confidence in the thoroughness of our research.

iv. Different ML algorithms were analyzed in this field, and it was found that the
ML algorithms performed better in most cases. In this SLR, different classes of
ML algorithms used for code smell detection (Decision Trees, Ensemble Learners,
Bayesian Learners, Rule-Based Learning, Support Vector Machines, neural networks,
and miscellaneous) are analyzed with their different algorithms.

The primary goal of conducting this study is to examine, assess, and review the code
smell detection methods from the following perspectives:

i. The ML algorithms are used in this field.
ii. Code smells that are being focused on in the literature.
iii. Identification of frequently used metrics.
iv. Identification of the metrics that appeared to be more effective.
v. Identification of various datasets.
vi. Identification of datasets of different languages frequently used in this area.
vii. Outlining the other performance measures used with various ML algorithms.

Figure 1 represents the different SLR states, such as the planning, conducting, and
reporting states. The planning stage contains two steps: Step 1: Originate the problem/need
to conduct the SLR, define the specific requirement for the survey, and identify the object
the SLR seeks to address. Step 2 is to expand the review protocol, which identifies research
questions that need to be addressed in the SLR. These research questions are extracted from
previously conducted SLRs and motivated by previous studies in this field. The related
work is included in Section 2. Section 3 regards conducting the SLR process. In this stage,
search questions are framed first (mentioned in Section 3.2); in the next step, these questions
are searched in the literature from a list of resources (mentioned in Section 3.2). In the next
step, the relevant articles from the previous step are selected. After this step, irrelevant
research articles are eliminated by considering a selected research article’s abstract, title,
and conclusion. The next step is quality evaluations, which check the quality of selected
research articles using assessment questions (mentioned in Section 3.3). The evaluation
score (mentioned in Table A7) is evaluated, and based on selection criteria (mentioned
in Section 4.1.2), the poor-quality papers are eliminated in the next step. After this step,
relevant research articles are analyzed, as mentioned in Section 3.4. The primary goal of
this analysis is to present facts and figures and answer each research question. Section 4
reports findings and discussions. Section 5 reported possible validity threats. Appendix A
illustrates the selected research articles and their scores on different assessment criteria.

Appl. Sci. 2024, 14, 6149 4 of 37

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 37

Appendix A illustrates the selected research articles and their scores on different assess-
ment criteria.

Figure 1. Systematic literature review steps.

2. Related Works
Table 1 shows a comparative analysis of our study with existing literature review

studies. Singh et al. [17] analyzed 238 research papers between 1990 and 2015 and dis-
cussed the detection of code smells for refactoring. Sobrinho et al. [18] discussed which
types of code smells are more extensively researched, reviewed 531 research articles be-
tween 1990 and 2017, and connected the researchers studying bad smells other than Du-
plicate Code using methodological aspects.

Figure 1. Systematic literature review steps.

2. Related Works

Table 1 shows a comparative analysis of our study with existing literature review
studies. Singh et al. [17] analyzed 238 research papers between 1990 and 2015 and discussed
the detection of code smells for refactoring. Sobrinho et al. [18] discussed which types of
code smells are more extensively researched, reviewed 531 research articles between 1990
and 2017, and connected the researchers studying bad smells other than Duplicate Code
using methodological aspects.

Table 1. Comparison with existing studies.

Sr.
No. Author Year

No. of
Research

Papers
Studied.

Period Type Considered Aspects

1 Zhang et al. [19] 2011 39 2000–2009 SLR
Code smell identification, tools, and

methods to detect smells. Taxonomy of
classifying code smell.

2 Rasool et al. [20] 2015 109 1999–2015 SLR
Code smell detection, classification,

comparison, and evaluation
detection tools.

Appl. Sci. 2024, 14, 6149 5 of 37

Table 1. Cont.

Sr.
No. Author Year

No. of
Research

Papers
Studied.

Period Type Considered Aspects

3 Fernandes
et al. [21] 2016 107 2005–2014 SLR

Detection tools for code smell, feature
evaluation of detection tools, detection
techniques, discuss quantitative and

qualitative data about the tools.

4 Gupta et al. [22] 2017 60 1996–2016 SLR
The impact of the presence of code

smell on the software, as well as the
detection method and their correlation.

5 Sharma et al. [23] 2017 445 1999–2016 SLR
Characteristics of code smell, detection

methods, tools, the impact of smells
on productivity.

6 Sobrinho
et al. [18] 2017 351 1990–2017 SLR

Connecting the researchers studying
bad smells other than Duplicate Code,
methodological aspects, the effect of

the combination of bad smells’
presence, and improvement in code

smell detection.

7 Haque et al. [24] 2018 NA NA Survey
Detection approach-based, described

its impacts on software, discussed
methods to identify the smell.

8 Singh et al. [17] 2018 238 1990–2015 SLR Detection of code smell for refactoring
with different detection approaches.

9 Caram et al. [11] 2019 26 1999–2016 Mapping
Study

Used search-based techniques and
applied ML algorithms for code

smell identification.

10 Kaur et al. [12] 2019 NA NA Review Comparative study on code smell
detection, search-based technique.

11 Azeem et al. [13] 2019 15 2000–2017 SLR

ML algorithms are applied for
detection and considered independent

variables, dependent variables,
evaluation metrics, and performance

meta-analysis (impact of the
independent variable, ML algorithm

performance, training strategies).

12 Kaur et al. [12] 2020 20 2005–2020 Review

Frequently used ML algorithms,
detected bad smells, and code smell

detection using ML and
hybrid approaches.

13 Reis et al. [15] 2021 83 2000–2019 SLR

ML algorithms, visualization-based
methods, 3D visualization methods,

interactive ambient visualization, city
metaphors, polymetric views, or

graph models.

14 Shaaby et al. [16] 2020 17 2005–2018 SLR
ML algorithm to detect code smells,
27 code smells used for study, 16 ML
algorithms, and ensemble techniques.

15 Zhang et al. [25] 2024 86 2010–2023 SLR Analyzed supervised learning-based
code smell detection.

16 Our Work 42 2005–2024 SLR

ML algorithms are used to detect code
smells, class-wise categorizations,

code smells considered for the study,
metrics, datasets, dataset language,
and performance measurements of

ML algorithms.

Note: NA means ‘Not Available’.

Sharma et al. [23] reviewed 445 papers that reported code smell identification tools,
techniques, characteristics, and the impact of smells on productivity between 1999 and

Appl. Sci. 2024, 14, 6149 6 of 37

2016. Azeem et al. [13] conducted an SLR with the help of ML algorithms and emphasized
commonly used methods of independent and dependent variables for code smells. Kaur
et al. [14] performed an SLR using ML algorithms and emphasized improvement in soft-
ware quality. Reis et al. [15] discussed ML algorithms, visualization-based approaches,
3D techniques, and interactive ambient visualization and reviewed 83 relevant papers
between 2000 and 2019. Shaaby et al. [16] reviewed 17 articles between 2005 and 2018,
studied 27 code smells, and discussed 16 ML and ensemble techniques. The earlier SLRs
covered different ML algorithms; however, no class-wise classifications exist. This SLR
provides a unique perspective by showing the distribution of subclasses of various ML
algorithms, the number of studies in each class, and the correct proportion for each research.
The researchers provided and discussed many SLRs, datasets, and performance analysis
tools. However, they did not address the language used by the datasets (mentioned in
Section 4.2.6).

3. Procedures of Code Smell Detection Approaches

Figure 1 presents a comprehensive methodology for planning, accessing, and analyz-
ing the process. In the planning stage, the problem is organized, and the review protocol, a
detailed plan for conducting the literature review, is expanded. This stage involves identi-
fying the problem and steps to find it in the literature, ensuring a thorough understanding
of the issue at hand. Furthermore, the conducting stage undertakes the following series of
tasks carefully designed to contribute to the overall research process.

Designing search questions, searching for digital libraries, and selecting the relevant
literature are based on rigorous and thorough search strategies (discussed below in Sec-
tion 3.2). The elimination process involves a careful review of the abstract and conclusion
of each study. This process ensures that only studies that meet the research objectives and
quality standards are included in the review. The process is further refined through the use
of assessment queries (discussed below in Section 3.3, Table 2), which are specific questions
designed to assess the relevance and quality of each study.

Table 2. Research questions.

RQ-No. Research Questions Motivation

RQ-1 Which ML algorithms are used to detect
code smell?

Study various sources to evaluate the performance of different ML
algorithms [11–16].

RQ-2 Which code smells are measured? Detection of popular code smells with ML algorithms [11–16].

RQ-3 What software metrics are used for code
smell detection? Identification of metrics frequently used to detect code smells [13,16].

RQ-3.1 Which metrics were found more useful? Identify the most critical metrics for detecting code smells [13,16].

RQ-4 What are the various datasets used for
code smell detection? Find out which datasets are used to detect code smells [12,14,16].

RQ-4.1 What are the various dataset languages
used for code smell detection? List the different dataset languages that are frequently used [12,14].

RQ-5 What are the performance measurements
of the different ML algorithms used?

Find different evaluation techniques to measure the results of various
ML algorithms [11,13,14,16].

3.1. Research Questions

After studying many research articles, the questions have been listed in a simplified
manner. Table 2 shows the list of research questions (RQ); some questions have sub-
questions. RQ-1, RQ-2, and RQ-5 incorporated complete research questions, and RQ-3 and
RQ-4 incorporated sub-questions. RQ-1 studies various sources to evaluate the performance
of different ML algorithms. This question explores different ML algorithms to detect smells
and determine which methods perform better. RQ-2 discovers popular code smells with
the ML algorithms. This question aims to collect information about code smells in studies

Appl. Sci. 2024, 14, 6149 7 of 37

nowadays. RQ-3 identifies critical metrics used for the detection of code smells. RQ-3.1
identifies frequently used software metrics. RQ-4 aims to know the different datasets used
for identifying code smells. RQ-4.1 collects information on datasets and the used dataset
languages. RQ-5 discusses different evaluation techniques to evaluate the results of various
ML algorithms.

In Appendix A, the most relevant 42 research articles are tabulated. These articles are
not just a collection of information, but they are the foundation of our study, providing
practical insights and guiding our research. Each article has been assigned a unique
attribute research article number (ARTN) for this SLR, ensuring their uniqueness, efficiency,
and accessibility. Tables A2–A5 include the ARTN, year, tool/technique, smells, algorithms,
dataset, performance metrics, and software metrics attributes, all crucial for our research.
Tables A2–A5 provide detailed insights into each aspect of the reviewed research articles,
facilitating easier navigation and interpretation of the data, thereby enhancing the overall
understanding of the research.

3.2. Search Strategy

A robust search strategy is essential for a comprehensive SLR. The search strategy
functions as a detailed map, facilitating the identification and selection of relevant study
articles. Our search is not only thorough but also comprehensive and accurate, using PICO
(Population, Intervention, Comparison, and Outcome). PICO serves as a comprehensive
framework for creating research queries. We also employed Boolean expressions ‘AND’
and ‘OR’ to expand the scope of our search. These expressions allow for the inclusion of
multiple search terms and variations, increasing the likelihood of finding relevant articles.
For example, a research query might include questions such as the following:

What are the prevalent code smells [Outcomes/Result] detectable [Population/Space]
utilizing ML algorithms? [Intervention]

The alternate string/words of the search question are as follows.

• The following possible words are included in search questions to find articles belonging
to ‘code smell’.

Code Smells—(‘code smell’ OR ‘code smells’ OR ‘code bad smells’ OR ‘bad smells’ OR
‘bad code smells’ OR ‘anomalies’ OR ‘antipatterns’ OR ‘antipattern’ OR ‘design defect’ OR
‘design fault’ OR ‘design-smells’ OR ‘design flaw’).

• The following possible words are included in search questions to find articles belonging
to ‘machine learning’.

Machine Learning—(‘machine learning’ OR ‘supervised learning’ OR ‘classification’
OR ‘Machine Learning-based’ OR ‘regression’ OR ‘unsupervised learning’).

• The following possible words are included in search questions to find articles belonging
to ‘prediction’.

Prediction—(‘prediction’ OR ‘detection’ OR ‘identification’ OR ‘prediction model’ OR
‘detection model’ OR ‘model’).

• All search strings are combined using Boolean operators to make the final search
string:

((‘code smell’ OR ‘code smells’ OR ‘code bad smells’ OR ‘bad smells’ OR ‘bad code
smells’ OR ‘anomalies’ OR ‘antipatterns’ OR ‘antipattern’ OR ‘design defect’ OR ‘design
fault’ OR ‘design-smells’ OR ‘design flaw’) AND/OR (‘machine learning’ OR ‘supervised
learning’ OR ‘classification’ OR ‘Machine Learning-based’ OR ‘regression’ OR ‘unsuper-
vised learning’) AND/OR (‘prediction’ OR ‘detection’ OR ‘identification’ OR ‘prediction
model’ OR ‘detection model’ OR ‘model’))

The final search string is searched in the following list of resources to select the research
article for the literature review:

i. Springer

Appl. Sci. 2024, 14, 6149 8 of 37

ii. ACM Digital Library
iii. IEEE Xplore
iv. Wiley Online Library
v. Google Scholar
vi. Scopus
vii. Science Direct
viii. Web of Science

The inclusion and exclusion of relevant articles are based on several selection and
elimination rules. These are the following:

Selection rules:

i. Experimental results are based on ML algorithms.
ii. Results of studies based on non-ML algorithms.
iii. Experimental results are based on comparing statistical techniques and are ML-

based.

Elimination rules:

i. Research articles on the ML algorithms without investigational study.
ii. Research articles on ML algorithms other than code smell detection.
iii. The research article results of the same author in a conference or journal are similar.

The research article is placed if any of the conditions in the research article selection
rule are met. If any conditions in the research article elimination rule are not met, the
research article is not included. The complete selection or elimination rules required are
shown in Table 3. This table has three possible values, ‘No’, ‘Partly’, and ‘Yes’, to examine
the research papers and assign the score. This is further discussed in Section 3.3.

Table 3. Assessment questions.

Que-No. Standard Assessment Questions

Que-1 Are the objectives of the research clearly stated?
Que-2 Is the size of the dataset sufficient?
Que-3 Are the results and different evaluation techniques clearly explained?
Que-4 ML algorithms used are sufficiently defined and justified.
Que-5 Different metrics for various code smells are selected.
Que-6 Are there threats to the validity of the research mentioned?
Que-7 Are all independent variables clearly defined?
Que-8 What is the contribution to future research?
Que-9 Is a comparative analysis of different techniques available?

Figure 2 shows the procedure for selecting the research articles from the listed re-
sources. Initially, 311 articles are selected (2005 to 2024) through listed resources with
the help of search strategies. In the next step, 265 articles are excluded by considering
the articles’ titles, abstracts, and conclusions. The remaining 46 articles (2005 to 2022) are
focused on for full-text evaluation. A total of 4 articles were eliminated in the quality
assessment process because their research score was below 2, and finally, 42 articles were
included in the review process. The selection of research articles in this review process
depends on the availability of articles in selected databases.

Figure 3 presents the number of research articles reviewed in this SLR and their year
of publication. This figure also highlights the impact of the research. In 2019, the graph
showed the highest peak, indicating a significant year in which numerous ML algorithms
were proposed in research studies. This underscores the importance and relevance of the
research findings in the field of machine learning and code smell detection.

Appl. Sci. 2024, 14, 6149 9 of 37

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 37

Table 3. Assessment questions.

Que-No. Standard Assessment Questions
Que-1 Are the objectives of the research clearly stated?
Que-2 Is the size of the dataset sufficient?
Que-3 Are the results and different evaluation techniques clearly explained?
Que-4 ML algorithms used are sufficiently defined and justified.
Que-5 Different metrics for various code smells are selected.
Que-6 Are there threats to the validity of the research mentioned?
Que-7 Are all independent variables clearly defined?
Que-8 What is the contribution to future research?
Que-9 Is a comparative analysis of different techniques available?

Figure 2 shows the procedure for selecting the research articles from the listed re-
sources. Initially, 311 articles are selected (2005 to 2024) through listed resources with the
help of search strategies. In the next step, 265 articles are excluded by considering the
articles’ titles, abstracts, and conclusions. The remaining 46 articles (2005 to 2022) are fo-
cused on for full-text evaluation. A total of 4 articles were eliminated in the quality assess-
ment process because their research score was below 2, and finally, 42 articles were in-
cluded in the review process. The selection of research articles in this review process de-
pends on the availability of articles in selected databases.

Figure 2. A systematic literature review flow diagram of article inclusion.

Figure 3 presents the number of research articles reviewed in this SLR and their year
of publication. This figure also highlights the impact of the research. In 2019, the graph
showed the highest peak, indicating a significant year in which numerous ML algorithms
were proposed in research studies. This underscores the importance and relevance of the
research findings in the field of machine learning and code smell detection.

Figure 2. A systematic literature review flow diagram of article inclusion.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 37

Figure 3. Distribution of studies during different years.

3.3. Evaluation of Research Article
Our evaluation process is meticulously designed, with standard assessment ques-

tions (Que) formulated (Table 3) to evaluate the correctness and weakness of research ar-
ticles. This provides a clear and objective basis for assessing the articles’ quality. The ques-
tions are assigned the research scores 0, 0.5, and 1, where 0, 0.5, and 1 represent the objec-
tive of the standard assessment question being not defined, partially defined, and well
defined, respectively. The evaluated research score is secured, ranging from 0 to 9. The
evaluation for each article is shown in Table A7. After a detailed analysis, selection, and
elimination of articles, as shown in Table A1, this study found that 36 belong to above-
average and 6 research articles belong to below-average categories.

3.4. Analysis of the Research Article
Each research paper undergoes a comprehensive analysis to determine whether the

research questions were answered by the initial studies (Table A6 shows the information
with assessment query score). The overview of the title, author’s name, publication details,
dataset information, machine learning algorithm, and metrics utilized are outlined. The
details of each research question analysis taken for the SLR have been recorded. The main
objective of the analysis is to show facts and figures and address each research question.
The performance is evaluated using measures like area under the ROC Curve (AUC ROC),
accuracy, etc. This evaluation helps to know the strengths and weaknesses of ML algo-
rithms, datasets, and feature selection techniques in code smell detection. Column charts
and bar charts are used to explain the research.

4. Findings and Discussion
The SLR division conducted a comprehensive discussion of various research articles,

recognizing their significant contributions to the field. It provided a summary of the arti-
cles, with each section providing a detailed analysis of the research articles. Finally, it con-
cluded with the valuable information and insights gleaned from this study, underscoring
the importance of these research articles.

4.1. Description of Articles
This section meticulously explains the most relevant research articles. Forty-two re-

search papers were carefully selected based on their quality. This study exclusively fo-
cused on research papers from various journals and conferences where ML algorithms
were applied. Each research article was scrutinized to extract critical information and find
answers to all research questions.

Figure 3. Distribution of studies during different years.

3.3. Evaluation of Research Article

Our evaluation process is meticulously designed, with standard assessment questions
(Que) formulated (Table 3) to evaluate the correctness and weakness of research articles.
This provides a clear and objective basis for assessing the articles’ quality. The questions
are assigned the research scores 0, 0.5, and 1, where 0, 0.5, and 1 represent the objective of
the standard assessment question being not defined, partially defined, and well defined,
respectively. The evaluated research score is secured, ranging from 0 to 9. The evaluation
for each article is shown in Table A7. After a detailed analysis, selection, and elimination
of articles, as shown in Table A1, this study found that 36 belong to above-average and 6
research articles belong to below-average categories.

3.4. Analysis of the Research Article

Each research paper undergoes a comprehensive analysis to determine whether the
research questions were answered by the initial studies (Table A6 shows the information
with assessment query score). The overview of the title, author’s name, publication details,
dataset information, machine learning algorithm, and metrics utilized are outlined. The
details of each research question analysis taken for the SLR have been recorded. The
main objective of the analysis is to show facts and figures and address each research
question. The performance is evaluated using measures like area under the ROC Curve
(AUC ROC), accuracy, etc. This evaluation helps to know the strengths and weaknesses of

Appl. Sci. 2024, 14, 6149 10 of 37

ML algorithms, datasets, and feature selection techniques in code smell detection. Column
charts and bar charts are used to explain the research.

4. Findings and Discussion

The SLR division conducted a comprehensive discussion of various research articles,
recognizing their significant contributions to the field. It provided a summary of the articles,
with each section providing a detailed analysis of the research articles. Finally, it concluded
with the valuable information and insights gleaned from this study, underscoring the
importance of these research articles.

4.1. Description of Articles

This section meticulously explains the most relevant research articles. Forty-two
research papers were carefully selected based on their quality. This study exclusively
focused on research papers from various journals and conferences where ML algorithms
were applied. Each research article was scrutinized to extract critical information and find
answers to all research questions.

4.1.1. Publication Sources

The list of publications included in Table 4 is of particular significance from the
perspective of code smell detection. The research articles are organized by publication name,
type, ISSN number, number of studies, and impact factor. For instance, there are seventeen
research articles from IEEE indicating its prominence in this field, and one research paper
is from Electronic Notes in Theoretical Computer Science, Software Quality Journal, and
Journal of Computer Science and Technology, showcasing their contributions. Four articles
from Empirical Software Engineering, etc., further highlight the sources’ diversity.

Table 4. Publication summary.

Name of Publication Type ISSN Number Impact Factor No of Studies

Electronic Notes in Theoretical Computer Science Journal 15710661 0.357 1

Software Quality Journal Journal 09639314, 15731367 2.1 1

Journal of Computer Science and Technology Journal 18604749, 10009000 1.9 1

International Journal of Rough Sets and
Data Analysis Journal 2334-4598 NA 1

International Journal of Electrical and Computer
Engineering (IJECE) Journal 2088-8708 0.376 1

International Journal of Computer Sciences and
Engineering Journal 2347-2693 3.802 1

Elsevier The Journal of Systems and Software Journal 1641212 2.829 1

IEEE Access Journal 2169-3536 3.476 2

Empirical Software Engineering Journal 1382-3256, 1573-7616 3.762 4

Tech Science Press Computers, Materials and
Continua Tech Science Press Conference NA NA 1

Scopus, IEEE, and Science Direct Conference NA NA 1

Scopus and IEEE Conference NA NA 2

International Joint Conference
on Computer Science and Software Engineering

(JCSSE)
Conference NA NA 1

International Conference on Quality Software Conference NA NA 1

International Conference on Machine Learning
and Data Science Conference NA NA 1

International Conference on Intelligent
Computing and Control Systems (ICICCS 2019)

IEEE Xplore
Conference NA NA 1

Appl. Sci. 2024, 14, 6149 11 of 37

Table 4. Cont.

Name of Publication Type ISSN Number Impact Factor No of Studies

International Conference on Enterprise
Information Systems (ICEIS 2017) Conference NA NA 1

International Conference on Computer Science
and Information Technology (CSIT) Conference NA NA 1

International Conference on Advanced
Information Networking and Applications Conference NA NA 1

IEEE Transactions on Software Engineering Conference NA NA 1

IEEE International Conference on Software
Maintenance Conference NA NA 1

IEEE Conference NA NA 6

Conference on Software Maintenance and
Reengineering Conference NA NA 1

Conference on Reverse Engineering Conference NA NA 1

ASE’16, 3–7 September 2016, Singapore,
Singapore Conference NA NA 2

ASE’12, 3–7 September 2012, Essen, Germany Conference NA NA 1

2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC) Conference NA NA 1

IEEE 24th International Conference on Program
Comprehension (ICPC) Conference NA NA 1

International Conference on the Quality of
Information and Communications Technology Conference NA NA 1

IEEE ASE 2013, Palo Alto, USA Conference NA NA 1

Conference on Reverse Engineering Conference NA NA 1

Grand Total 42

Note: NA means ‘Not Available’.

4.1.2. Quality Evaluation

The assessment queries are used to evaluate the values of the research article. Based
on the research score (RS), the article is divided into three categories:

(i) Above average: RS >5;
(ii) Below average: 2 ≤ RS ≤ 5;
(iii) Elimination: RS < 2.

4.2. Rationalize the Research Questions
4.2.1. RQ1: Which ML Algorithms Are Used to Detect Code Smells?

The different ML algorithms used are shown below.

i. Decision Trees;
ii. Ensemble Learners;
iii. Bayesian Learners;
iv. Rule-Based Learning;
v. Support Vector Machines;
vi. Neural networks.

Figure 4 illustrates different ML algorithms used to detect code smells. The ML
algorithms are divided into subcategories.

Appl. Sci. 2024, 14, 6149 12 of 37

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 37

2019 IEEE/ACM 27th International Conference on Program Compre-
hension (ICPC)

Conference NA NA 1

IEEE 24th International Conference on Program Comprehension (ICPC) Conference NA NA 1
International Conference on the Quality of Information and Communi-

cations Technology
Conference NA NA 1

IEEE ASE 2013, Palo Alto, USA Conference NA NA 1
Conference on Reverse Engineering Conference NA NA 1

Grand Total 42
Note: NA means ‘Not Available’.

4.1.2. Quality Evaluation
The assessment queries are used to evaluate the values of the research article. Based

on the research score (RS), the article is divided into three categories:
(i) Above average: RS >5;
(ii) Below average: 2 ≤ RS ≤ 5;
(iii) Elimination: RS < 2.

4.2. Rationalize the Research Questions
4.2.1. RQ1: Which ML Algorithms Are Used to Detect Code Smells?

The different ML algorithms used are shown below.
i. Decision Trees;
ii. Ensemble Learners;
iii. Bayesian Learners;
iv. Rule-Based Learning;
v. Support Vector Machines;
vi. Neural networks.

Figure 4 illustrates different ML algorithms used to detect code smells. The ML algo-
rithms are divided into subcategories.

Figure 4. Different ML algorithms used for detecting code smells.

Table 5 shows the different categories of ML algorithms, the number of studies, and
their percentage out of 42 (total number of selected articles for this SLR). For example,
ensemble learning is used in 21 research articles out of the selected research articles, and
their percentage out of 42 is 50%. It also indicates that Decision Tree, SVM, and ensemble

Figure 4. Different ML algorithms used for detecting code smells.

Table 5 shows the different categories of ML algorithms, the number of studies, and
their percentage out of 42 (total number of selected articles for this SLR). For example,
ensemble learning is used in 21 research articles out of the selected research articles, and
their percentage out of 42 is 50%. It also indicates that Decision Tree, SVM, and ensemble
learning techniques are often used in code smell detection. Some methods are more often
used, so the total percentage is more than 100 in the table, and the number of studies in the
table is more than the total number of research articles considered for this study.

Table 5. Machine learning-based code smell detection techniques.

ML Algorithms Number of Research Studies
(Out of 42)

% of Research Studies
(Out of 42)

Bayesian learning 18 42.85714286
Decision Tree 27 64.28571429

Ensemble learning 21 50
Miscellaneous 12 28.57142857

Neural network 7 16.66666667
Rule-Based Learning 3 7.142857143

SVM 22 52.38095238

Nucci et al. [7] applied J48, Random Forest, Naive Bayes, LIBSVM, JRip, ADABOOST,
and Sequential Minimal Optimization over 74 software systems. Pecorelli et al. [10] used
Naive Bayes, J48, Random Forest, JRip, and SVM over JAVA projects and found optimal
results. Figures 5 and 6 illustrate the ML algorithms used in code smell detection. Figure 5
indicates the different methods applied in research studies: Decision Tree, Ensemble Learn-
ers, Bayesian Learners, Rule-Based Learning, Support Vector Machines, neural networks,
and miscellaneous.

The number of studies on Decision Trees, ensemble learning, Bayesian learning, Rule-
Based Learning, SVM, neural networks, and miscellaneous based on code smell detection
methods are shown in Figure 5a–g.

Figure 6 shows the ML algorithms used in code smell detection. The research studies
that make use of subclass techniques of the Decision Tree, ensemble learning, Bayesian
learning, SVM, and neural network approaches are J48 (29%), Random Forest (71%), Naive
Bayes (72%), SVM (54%), and Multilayer Perceptron (72%). These findings indicate the

Appl. Sci. 2024, 14, 6149 13 of 37

prevalence of these ML algorithms in code smell detection, providing valuable insights for
software engineers and researchers in the field.

The ML algorithms, deep learning, J48, Naive Bayes, SVM, and Random Forest algo-
rithms are employed. The number of research studies performed using these techniques is
15, 13, 12, 2, and 8, respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 38

(a) (b)

(c) (d)

 Figure 5. Cont.

Appl. Sci. 2024, 14, 6149 14 of 37Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 38

(e) (f)

(g)

Figure 5. Number of research studies using distinct classes of ML algorithms: (a) bar graph of Deci-
sion Trees; (b) bar graph of Ensemble Learners; (c) bar graph of neural networks; (d) bar graph of
Bayesian Learners; (e) bar graph of Rule-Based Learning; (f) bar graph of Support Vector Machines;
(g) bar graph of miscellaneous classes.

The number of studies on Decision Trees, ensemble learning, Bayesian learning,
Rule-Based Learning, SVM, neural networks, and miscellaneous based on code smell de-
tection methods are shown in Figure 5a–g.

Figure 6 shows the ML algorithms used in code smell detection. The research studies
that make use of subclass techniques of the Decision Tree, ensemble learning, Bayesian
learning, SVM, and neural network approaches are J48 (29%), Random Forest (71%), Na-
ive Bayes (72%), SVM (54%), and Multilayer Perceptron (72%). These findings indicate the
prevalence of these ML algorithms in code smell detection, providing valuable insights
for software engineers and researchers in the field.

Figure 5. Number of research studies using distinct classes of ML algorithms: (a) bar graph of
Decision Trees; (b) bar graph of Ensemble Learners; (c) bar graph of neural networks; (d) bar graph of
Bayesian Learners; (e) bar graph of Rule-Based Learning; (f) bar graph of Support Vector Machines;
(g) bar graph of miscellaneous classes.

Mhawish et al. [3] applied Random Forest, Gradient Boosting Tree, Decision Tree,
deep learning, SVM, Multilayer Perceptron, GA (Genetic Algorithm), Naive Bayes, and
GA CFS (Correlation-based Feature Selection) over Fontana et al. [26]. Furthermore, 74
open-source systems were used; the highest and precision values are 96.43% and 98.18%,
respectively, for the Random Forest algorithm. Guggulothu et al. [8] used the B-Random
Forest, Random Forest, B-J48 UnPruned, B-J48 Pruned, and J-48 Unpruned approaches
and found 95–98% accuracy. Fontana et al. [26] utilized J48, C4.5 Decision Tree, JRip,
Naive Bayes, Random Forest, Sequential Minimal Optimization, LibSVM over Antipattern
Scanner, iPlasma, Fluid Tool, Marinescu detection rule, PMD, and the Fluid Tool dataset
and found 96–99% accuracy. Kaur et al. [27] proposed an SVM approach over ArgoUML

Appl. Sci. 2024, 14, 6149 15 of 37

v0.19.8 and Xerces v 2.7.0 datasets and found better results. Nizam et al. [28] developed a
deep learning system for code smell detection. They also used K-nearest neighbors and
cosine similarity machine learning algorithms for detailed comparison. Shah et al. [29]
proposed a CloudScent model, an open-source methodology for detecting code smells. The
results demonstrate that the model can accurately detect eight code smells in the cloud.

4.2.2. RQ2: Which Code Smells Are Measured?

This section discusses code smells detected in various research articles. Figure 7
shows a variety of code smells observed in research articles considered in the study. It was
found that researchers focused on more than thirty code smells. Data Class, Long Method,
Feature Envy, and God Class are the most frequently analyzed code smells. Articles ARTN1,
ARTN7, ARTN9, ARTN17, ARTN27, ARTN31, and ARTN39 include a study about the
Lazy class. Articles ARTN10, ARTN16, ARTN18, ARTN21, and ARTN31 concentrated
on the analysis of Duplicate Code. Spaghetti Code smells are discussed in the research
articles ARTN5, ARTN8, ARTN11, ARTN12, ARTN30, and ARTN39. Research article
ARTN17 discusses 11 code smells. The code smells are Lazy Class, God Class, Swiss Army
Knife, Long Parameter List, etc. In this SLR, God Class code smell detection is found in a
maximum number of research articles. Research article ARTN39 discusses nine code smells:
Long Method, Spaghetti Code, Feature Envy, Parallel Inheritance, Large Class, Data Class,
Lazy Class, Functional Decomposition, and Long Parameter List.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 37

Figure 5. Number of research studies using distinct classes of ML algorithms: (a) bar graph of Deci-
sion Trees; (b) bar graph of Ensemble Learners; (c) bar graph of neural networks; (d) bar graph of
Bayesian Learners; (e) bar graph of Rule-Based Learning; (f) bar graph of Support Vector Machines;
(g) bar graph of miscellaneous classes.

The number of studies on Decision Trees, ensemble learning, Bayesian learning,
Rule-Based Learning, SVM, neural networks, and miscellaneous based on code smell de-
tection methods are shown in Figure 5a–g.

Figure 6 shows the ML algorithms used in code smell detection. The research studies
that make use of subclass techniques of the Decision Tree, ensemble learning, Bayesian
learning, SVM, and neural network approaches are J48 (29%), Random Forest (71%), Na-
ive Bayes (72%), SVM (54%), and Multilayer Perceptron (72%). These findings indicate the
prevalence of these ML algorithms in code smell detection, providing valuable insights
for software engineers and researchers in the field.

(a) (b)

(c) (d)

Figure 6. Cont.

Appl. Sci. 2024, 14, 6149 16 of 37Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 37

(e) (f)

(g)

Figure 6. Subclasses’ distribution of the Decision Tree, Bayesian learning, ensemble learning, SVM,
Rule-Based Learning, neural network, and miscellaneous classification algorithms with appropriate
study percentages: (a) Decision Tree-based code smell detection techniques; (b) Ensemble Learner-
based code smell detection; (c) neural network-based code smell detection techniques; (d) Rule-
Based Learning-based code smell detection techniques; (e) Bayesian Learner-based code smell de-
tection techniques; (f) Support Vector Machine-based code smell detection approaches; (g) miscel-
laneous-based code smell detection techniques.

The ML algorithms, deep learning, J48, Naive Bayes, SVM, and Random Forest algo-
rithms are employed. The number of research studies performed using these techniques
is 15, 13, 12, 2, and 8, respectively.

Mhawish et al. [3] applied Random Forest, Gradient Boosting Tree, Decision Tree,
deep learning, SVM, Multilayer Perceptron, GA (Genetic Algorithm), Naive Bayes, and
GA CFS (Correlation-based Feature Selection) over Fontana et al. [26]. Furthermore, 74
open-source systems were used; the highest and precision values are 96.43% and 98.18%,
respectively, for the Random Forest algorithm. Guggulothu et al. [8] used the B-Random
Forest, Random Forest, B-J48 UnPruned, B-J48 Pruned, and J-48 Unpruned approaches
and found 95–98% accuracy. Fontana et al. [26] utilized J48, C4.5 Decision Tree, JRip, Na-
ive Bayes, Random Forest, Sequential Minimal Optimization, LibSVM over Antipattern
Scanner, iPlasma, Fluid Tool, Marinescu detection rule, PMD, and the Fluid Tool dataset
and found 96–99% accuracy. Kaur et al. [27] proposed an SVM approach over ArgoUML
v0.19.8 and Xerces v 2.7.0 datasets and found better results. Nizam et al. [28] developed a
deep learning system for code smell detection. They also used K-nearest neighbors and
cosine similarity machine learning algorithms for detailed comparison. Shah et al. [29]
proposed a CloudScent model, an open-source methodology for detecting code smells.
The results demonstrate that the model can accurately detect eight code smells in the
cloud.

Figure 6. Subclasses’ distribution of the Decision Tree, Bayesian learning, ensemble learning, SVM,
Rule-Based Learning, neural network, and miscellaneous classification algorithms with appropriate
study percentages: (a) Decision Tree-based code smell detection techniques; (b) Ensemble Learner-
based code smell detection; (c) neural network-based code smell detection techniques; (d) Rule-Based
Learning-based code smell detection techniques; (e) Bayesian Learner-based code smell detection
techniques; (f) Support Vector Machine-based code smell detection approaches; (g) miscellaneous-
based code smell detection techniques.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 37

4.2.2. RQ2: Which Code Smells Are Measured?
This section discusses code smells detected in various research articles. Figure 7

shows a variety of code smells observed in research articles considered in the study. It was
found that researchers focused on more than thirty code smells. Data Class, Long Method,
Feature Envy, and God Class are the most frequently analyzed code smells. Articles
ARTN1, ARTN7, ARTN9, ARTN17, ARTN27, ARTN31, and ARTN39 include a study
about the Lazy class. Articles ARTN10, ARTN16, ARTN18, ARTN21, and ARTN31 con-
centrated on the analysis of Duplicate Code. Spaghetti Code smells are discussed in the
research articles ARTN5, ARTN8, ARTN11, ARTN12, ARTN30, and ARTN39. Research
article ARTN17 discusses 11 code smells. The code smells are Lazy Class, God Class, Swiss
Army Knife, Long Parameter List, etc. In this SLR, God Class code smell detection is found
in a maximum number of research articles. Research article ARTN39 discusses nine code
smells: Long Method, Spaghetti Code, Feature Envy, Parallel Inheritance, Large Class,
Data Class, Lazy Class, Functional Decomposition, and Long Parameter List.

Figure 7. Number of studies of different code smells.

4.2.3. RQ3: What Software Metrics Are Used for Code Smell Detection?
Research articles employ a variety of software metrics, and in this study, more than

290 metrics are used. Figure 8 shows these metrics, arranged from most to least frequently
used. This figure includes only the most and least used metrics for clarity. The following
section will delve into the significance and application of these software metrics, provid-
ing a comprehensive understanding of their use in code smell detection.

Object-oriented metrics study various features of object-oriented software like cou-
pling, cohesion, and reusability in articles ARTN1, ARTN4, ARTN6, ARTN7, ARTN9,
ARTN11, ARTN12, ARTN13, ARTN15, ARTN16, ARTN23, and ARTN38. The line of code
(LOC), a traditional and frequently used software metric, is also considered in this re-
search. Effective line of code (ELOC) is another metric that has been applied in several
articles (ARTN13, ARTN17, ARTN21, ARTN27, ARTN30, ARTN31, ARTN32, ARTN34,
ARTN38, and ARTN39). LCOM (Lack of COhesion in Methods), a metric that counts the
number of method pairs where their class properties are not shared, is used in articles
ARTN2, ARTN8, ARTN22, ARTN23, ARTN27, ARTN30, ARTN32, ARTN34, ARTN38,
and ARTN39. ARTN34, for instance, considered LOCL with a sampling technique over
629 source project datasets.

Other metrics are applied in article ARTN20, such as the Number of Methods Over-
ridden (NMO), Number Of Public Methods (NOPLM), Number Of Non-Accessor Meth-
ods (NONAM), Number Of Protected Attributes (NOPRA), NUMBER OF DEFAULT AT-
TRIBUTES (NODA), Number Of Static Methods (NOSM), Number Of Static Attributes
(NOSA), NUMBER OF NON—CONSTRUCTOR METHODS (NONCM), Number Of
Constructor Methods (NOCM), and the NUMBER OF FINAL AND STATIC METHODS
(NoFSM). Article ARTN8 proposed the BDTEX (Bayesian Detection EXpert) approach

Figure 7. Number of studies of different code smells.

4.2.3. RQ3: What Software Metrics Are Used for Code Smell Detection?

Research articles employ a variety of software metrics, and in this study, more than
290 metrics are used. Figure 8 shows these metrics, arranged from most to least frequently
used. This figure includes only the most and least used metrics for clarity. The following

Appl. Sci. 2024, 14, 6149 17 of 37

section will delve into the significance and application of these software metrics, providing
a comprehensive understanding of their use in code smell detection.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 37

with other metrics such as Coupling Between Objects (CBO), a Goal Question Metric
(GQM), and the Number of Attributes Declared (NAD) metrics. Draz et al. [30] proposed
a search-based system and employed metrics such as LOC, NAD, McCabe (used for soft-
ware quality and security such as cyclomatic complexity (CC), actual cyclomatic complex-
ity, etc.), Weighted Methods for Class (WMC), number of children (NOC), CBO, LCOM,
CC, Response For A-Class (RFC), Number of Parameters (NOPARAM), and the Depth of
Inheritance Tree (DIT). Their method had an average precision and recall of 94.24% and
93.4%, respectively, demonstrating the high effectiveness of these metrics in code smell
detection.

The frequently used metrics in articles ARTN3, ARTN8, ARTN13, ARTN16, ARTN17,
ARTN20, ARTN21, ARTN22, ARTN23, ARTN27, ARTN30, ARTN31, ARTN32, ARTN34,
ARTN36, ARTN38, ARTN39, etc., are LOC, NoC, LCOM, WMC, and DIT. These metrics
are widely used because they provide valuable insights into the structure and complexity
of the code, which are key factors in code smell detection. The article used coupling and
cohesion metrics CBO, SQL software metrics for code smell detection in articles ARTN1,
ARTN4, ARTN7, ARTN9, ARTN13, ARTN15, ARTN16, ARTN20, ARTN23, ARTN27,
ARTN32, ARTN34, ARTN38, and ARTN39, and also applied data sampling techniques to
handle imbalanced data in prediction. LOC, WMC, DIT, LCOM, NoC, CC, NOM (Number
of Methods), etc., are the most commonly employed metrics. So, these metrics belong to
the category of thorough utility. It also illustrates that AMC, code complexity, complexity
metrics, etc., are rarely applied in identifying code smells and fall under the category of
partial utility as a result.

Figure 8. List of frequently used metrics for code smell detection. ‘-’ represents some software met-
rics between the most and least frequently used metrics for clear visibility.

4.2.4. RQ3.1: Which Metrics Are Found More Useful in Code Smell Detection?
Our research delved into the use of various software metrics in code smell detection,

a crucial aspect of software quality analysis. These metrics, including object-oriented, cou-
pling, complexity, size, cohesion, quality, GQM, LCOM5, NMD, and NAD metrics, have
been extensively used in research articles. Among them, LOC, NOM, LCOM, WMC, CC,
DIT, etc., have emerged as the most frequently applied metrics, proving their effectiveness
in code smell detection. This comprehensive understanding of software metrics in code
smell detection significantly contributes to the field.

4.2.5. RQ4: What Are the Various Datasets Used for Code Smell Detection?
Our study has comprehensively analyzed code smell detection by encompassing

many datasets. These datasets, such as Xerces, ArgoUML, Gantt Project, Azureus, Eclipse,
and object-oriented metrics datasets, are among the most commonly used ones. These are
followed by Apache Ant, Fluid Tool, iPlasma, PMD, etc. This diverse range of datasets,

Figure 8. List of frequently used metrics for code smell detection. ‘-’ represents some software metrics
between the most and least frequently used metrics for clear visibility.

Object-oriented metrics study various features of object-oriented software like cou-
pling, cohesion, and reusability in articles ARTN1, ARTN4, ARTN6, ARTN7, ARTN9,
ARTN11, ARTN12, ARTN13, ARTN15, ARTN16, ARTN23, and ARTN38. The line of
code (LOC), a traditional and frequently used software metric, is also considered in this
research. Effective line of code (ELOC) is another metric that has been applied in several
articles (ARTN13, ARTN17, ARTN21, ARTN27, ARTN30, ARTN31, ARTN32, ARTN34,
ARTN38, and ARTN39). LCOM (Lack of COhesion in Methods), a metric that counts the
number of method pairs where their class properties are not shared, is used in articles
ARTN2, ARTN8, ARTN22, ARTN23, ARTN27, ARTN30, ARTN32, ARTN34, ARTN38,
and ARTN39. ARTN34, for instance, considered LOCL with a sampling technique over
629 source project datasets.

Other metrics are applied in article ARTN20, such as the Number of Methods Over-
ridden (NMO), Number Of Public Methods (NOPLM), Number Of Non-Accessor Meth-
ods (NONAM), Number Of Protected Attributes (NOPRA), NUMBER OF DEFAULT
ATTRIBUTES (NODA), Number Of Static Methods (NOSM), Number Of Static Attributes
(NOSA), NUMBER OF NON—CONSTRUCTOR METHODS (NONCM), Number Of Con-
structor Methods (NOCM), and the NUMBER OF FINAL AND STATIC METHODS
(NoFSM). Article ARTN8 proposed the BDTEX (Bayesian Detection EXpert) approach
with other metrics such as Coupling Between Objects (CBO), a Goal Question Metric
(GQM), and the Number of Attributes Declared (NAD) metrics. Draz et al. [30] proposed a
search-based system and employed metrics such as LOC, NAD, McCabe (used for software
quality and security such as cyclomatic complexity (CC), actual cyclomatic complexity,
etc.), Weighted Methods for Class (WMC), number of children (NOC), CBO, LCOM, CC,
Response For A-Class (RFC), Number of Parameters (NOPARAM), and the Depth of Inher-
itance Tree (DIT). Their method had an average precision and recall of 94.24% and 93.4%,
respectively, demonstrating the high effectiveness of these metrics in code smell detection.

The frequently used metrics in articles ARTN3, ARTN8, ARTN13, ARTN16, ARTN17,
ARTN20, ARTN21, ARTN22, ARTN23, ARTN27, ARTN30, ARTN31, ARTN32, ARTN34,
ARTN36, ARTN38, ARTN39, etc., are LOC, NoC, LCOM, WMC, and DIT. These metrics are
widely used because they provide valuable insights into the structure and complexity of the
code, which are key factors in code smell detection. The article used coupling and cohesion
metrics CBO, SQL software metrics for code smell detection in articles ARTN1, ARTN4,
ARTN7, ARTN9, ARTN13, ARTN15, ARTN16, ARTN20, ARTN23, ARTN27, ARTN32,
ARTN34, ARTN38, and ARTN39, and also applied data sampling techniques to handle
imbalanced data in prediction. LOC, WMC, DIT, LCOM, NoC, CC, NOM (Number of

Appl. Sci. 2024, 14, 6149 18 of 37

Methods), etc., are the most commonly employed metrics. So, these metrics belong to
the category of thorough utility. It also illustrates that AMC, code complexity, complexity
metrics, etc., are rarely applied in identifying code smells and fall under the category of
partial utility as a result.

4.2.4. RQ3.1: Which Metrics Are Found More Useful in Code Smell Detection?

Our research delved into the use of various software metrics in code smell detection,
a crucial aspect of software quality analysis. These metrics, including object-oriented,
coupling, complexity, size, cohesion, quality, GQM, LCOM5, NMD, and NAD metrics, have
been extensively used in research articles. Among them, LOC, NOM, LCOM, WMC, CC,
DIT, etc., have emerged as the most frequently applied metrics, proving their effectiveness
in code smell detection. This comprehensive understanding of software metrics in code
smell detection significantly contributes to the field.

4.2.5. RQ4: What Are the Various Datasets Used for Code Smell Detection?

Our study has comprehensively analyzed code smell detection by encompassing many
datasets. These datasets, such as Xerces, ArgoUML, Gantt Project, Azureus, Eclipse, and
object-oriented metrics datasets, are among the most commonly used ones. These are
followed by Apache Ant, Fluid Tool, iPlasma, PMD, etc. This diverse range of datasets,
each with unique characteristics and challenges, allowed us to gain a more thorough
understanding of code smell detection, making our research findings more robust and
insightful. Figure 9 shows a few commonly used datasets.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 37

each with unique characteristics and challenges, allowed us to gain a more thorough un-
derstanding of code smell detection, making our research findings more robust and in-
sightful. Figure 9 shows a few commonly used datasets.

Figure 9. Research conducted on the various datasets used in code smell detection.

4.2.6. RQ4.1: What Are the Various Dataset Languages Used for Code Smell Detection?
A wide variety of dataset languages have been applied in code smell detection. No-

tably, JAVA emerges as the primary dataset language for code smell detection. The dataset
is further categorized into open-source, projects written in JAVA, and any language and
varies in size: large, small, and medium. ARTN10 employed C# as the dataset language.
ARTN3 used XML with the JAVA dataset language. This diversity in dataset languages
underscores the multifaceted nature of code smell detection, as different programming
languages may have different code smells and quality issues. Understanding the usage
and characteristics of these dataset languages can provide valuable insights for develop-
ing language-specific code smell detection techniques. Figure 10 shows the applied da-
taset languages.

Figure 10. List of dataset languages used for code smell detection.

The following are some brief descriptions of a variety of datasets:
• Open-source dataset: It includes freely available software projects such as WEKA,

Xerces v2.7.0, IYC, Gantt Project v1.10.2, Eclipse, Guava, Closure Compiler, and jUnit
datasets.

• Student dataset: It includes datasets developed by students, such as Fontana et al.,
who designed datasets using four open-source JAVA projects with the help of three
master’s degree students [26].

Figure 9. Research conducted on the various datasets used in code smell detection.

4.2.6. RQ4.1: What Are the Various Dataset Languages Used for Code Smell Detection?

A wide variety of dataset languages have been applied in code smell detection. No-
tably, JAVA emerges as the primary dataset language for code smell detection. The dataset is
further categorized into open-source, projects written in JAVA, and any language and varies
in size: large, small, and medium. ARTN10 employed C# as the dataset language. ARTN3
used XML with the JAVA dataset language. This diversity in dataset languages underscores
the multifaceted nature of code smell detection, as different programming languages may
have different code smells and quality issues. Understanding the usage and characteristics
of these dataset languages can provide valuable insights for developing language-specific
code smell detection techniques. Figure 10 shows the applied dataset languages.

The following are some brief descriptions of a variety of datasets:

• Open-source dataset: It includes freely available software projects such as WEKA,
Xerces v2.7.0, IYC, Gantt Project v1.10.2, Eclipse, Guava, Closure Compiler, and jUnit
datasets.

Appl. Sci. 2024, 14, 6149 19 of 37

• Student dataset: It includes datasets developed by students, such as Fontana et al.,
who designed datasets using four open-source JAVA projects with the help of three
master’s degree students [26].

• The language dataset includes a dataset selected from different language projects, such
as JAVA, XML, C#, etc. JAVA is the most frequently used language in research articles.

• Others: This study has observed that the main datasets used are open-source datasets
belonging to the JAVA language. Researchers in ARTN1, ARTN7, ARTN9, and
ARTN10 have also used some private industrial datasets.

This study has observed that the main datasets used are open-source datasets belong-
ing to the JAVA language.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 37

each with unique characteristics and challenges, allowed us to gain a more thorough un-
derstanding of code smell detection, making our research findings more robust and in-
sightful. Figure 9 shows a few commonly used datasets.

Figure 9. Research conducted on the various datasets used in code smell detection.

4.2.6. RQ4.1: What Are the Various Dataset Languages Used for Code Smell Detection?
A wide variety of dataset languages have been applied in code smell detection. No-

tably, JAVA emerges as the primary dataset language for code smell detection. The dataset
is further categorized into open-source, projects written in JAVA, and any language and
varies in size: large, small, and medium. ARTN10 employed C# as the dataset language.
ARTN3 used XML with the JAVA dataset language. This diversity in dataset languages
underscores the multifaceted nature of code smell detection, as different programming
languages may have different code smells and quality issues. Understanding the usage
and characteristics of these dataset languages can provide valuable insights for develop-
ing language-specific code smell detection techniques. Figure 10 shows the applied da-
taset languages.

Figure 10. List of dataset languages used for code smell detection.

The following are some brief descriptions of a variety of datasets:
• Open-source dataset: It includes freely available software projects such as WEKA,

Xerces v2.7.0, IYC, Gantt Project v1.10.2, Eclipse, Guava, Closure Compiler, and jUnit
datasets.

• Student dataset: It includes datasets developed by students, such as Fontana et al.,
who designed datasets using four open-source JAVA projects with the help of three
master’s degree students [26].

Figure 10. List of dataset languages used for code smell detection.

4.2.7. RQ5: What Are the Performance Measurements of the Different ML
Algorithms Used?

Various performance measures are applied in code smell detection, as shown in Figure 11.
Some performance measures are effectively used, such as precision (21 times), recall (21 times),
accuracy (22 times), and F-measure (18 times). Some rarely used techniques are kept in miscel-
laneous. Table 6 shows that the performance measures precision, recall, accuracy, F-measure,
root mean square error (RMSE), Matthew correlation coefficient (MCC), hamming score, mean
absolute error (MAE), etc., are rarely used. ARTN15, ARTN29, ARTN32, ARTN35, ARTN37,
and ARTN42 used AUC ROC for performance measurement. ARTN15 and ARTN37 used
GMean for performance analysis. These performance measures are crucial in evaluating the
effectiveness and efficiency of different ML algorithms in code smell detection.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 37

• The language dataset includes a dataset selected from different language projects,
such as JAVA, XML, C#, etc. JAVA is the most frequently used language in research
articles.

• Others: This study has observed that the main datasets used are open-source datasets
belonging to the JAVA language. Researchers in ARTN1, ARTN7, ARTN9, and
ARTN10 have also used some private industrial datasets.
This study has observed that the main datasets used are open-source datasets belong-

ing to the JAVA language.

4.2.7. RQ5: What Are the Performance Measurements of the Different ML Algorithms
Used?

Various performance measures are applied in code smell detection, as shown in Fig-
ure 11. Some performance measures are effectively used, such as precision (21 times), re-
call (21 times), accuracy (22 times), and F-measure (18 times). Some rarely used techniques
are kept in miscellaneous. Table 6 shows that the performance measures precision, recall,
accuracy, F-measure, root mean square error (RMSE), Matthew correlation coefficient
(MCC), hamming score, mean absolute error (MAE), etc., are rarely used. ARTN15,
ARTN29, ARTN32, ARTN35, ARTN37, and ARTN42 used AUC ROC for performance
measurement. ARTN15 and ARTN37 used GMean for performance analysis. These per-
formance measures are crucial in evaluating the effectiveness and efficiency of different
ML algorithms in code smell detection.

Figure 11. Performance measures used in various types of research.

Table 6. Analyzing performance indicators across studies.

Performance
Measures Description Research Articles

Accuracy
Out of all projections, how many have

been accurate overall?

ARTN1, ARTN2, ARTN6, ARTN7, ARTN9, ARTN15,
ARTN18, ARTN20, ARTN22, ARTN24, ARTN27, ARTN29,
ARTN32, ARTN33, ARTN34, ARTN35, ARTN36, ARTN37,

ARTN38, ARTN40, ARTN41, ARTN42

Precision
It provides data on how well the classi-

fier performs in terms of false posi-
tives.

ARTN2, ARTN3, ARTN4, ARTN5, ARTN8, ARTN10,
ARTN11, ARTN12, ARTN13, ARTN14, ARTN16, ARTN17,
ARTN18, ARTN19, ARTN21, ARTN25, ARTN28, ARTN30,

ARTN39, ARTN41, ARTN42

Figure 11. Performance measures used in various types of research.

Appl. Sci. 2024, 14, 6149 20 of 37

Table 6. Analyzing performance indicators across studies.

Performance Measures Description Research Articles

Accuracy Out of all projections, how many have
been accurate overall?

ARTN1, ARTN2, ARTN6, ARTN7, ARTN9, ARTN15,
ARTN18, ARTN20, ARTN22, ARTN24, ARTN27, ARTN29,
ARTN32, ARTN33, ARTN34, ARTN35, ARTN36, ARTN37,

ARTN38, ARTN40, ARTN41, ARTN42

Precision It provides data on how well the classifier
performs in terms of false positives.

ARTN2, ARTN3, ARTN4, ARTN5, ARTN8, ARTN10,
ARTN11, ARTN12, ARTN13, ARTN14, ARTN16, ARTN17,
ARTN18, ARTN19, ARTN21, ARTN25, ARTN28, ARTN30,

ARTN39, ARTN41, ARTN42

Recall It provides data on how well the classifier
performs in avoiding false negatives.

ARTN2, ARTN3, ARTN4, ARTN5, ARTN8, ARTN10,
ARTN11, ARTN12, ARTN13, ARTN14, ARTN16, ARTN17,
ARTN18, ARTN19, ARTN21, ARTN25, ARTN28, ARTN30,

ARTN39, ARTN41, ARTN42

F-measure A single score that combines recall
and precision.

ARTN13, ARTN14, ARTN15, ARTN16, ARTN17, ARTN19,
ARTN29, ARTN30, ARTN32, ARTN33, ARTN34, ARTN35,
ARTN36, ARTN37, ARTN38, ARTN40, ARTN41, ARTN42

AUC ROC The curve between specificity and recall.
It calculates the effectiveness. ARTN15, ARTN29, ARTN32, ARTN35, ARTN37, ARTN42

G-mean
(G-mean 1, G-mean 2)

It combines a true positive rate and a true
negative rate. ARTN38

MSE
An average of the square of the

differences between the predicted and
actual value.

ARTN26

RMSE It is the MSE value’s square root. ARTN23

Miscellaneous
It includes Hamming Score, Exact Match

Ratio, time complexity, standard
deviations, effectiveness, and utility.

ARTN7, ARTN8, ARTN10, ARTN23, ARTN24, ARTN26,
ARTN30, ARTN31, ARTN35, ARTN37

Our research demonstrated the effectiveness of various ML algorithms in code smell
detection. The SVM, Random Forest, J48, and Naive Bayes models have emerged as the
most popular and accurate methods, as confirmed by their frequent use in research articles
(Table 6). The accuracy, AUC RoC, precision, and recall are manually analyzed from
different research articles. The accuracy score, in particular, is often used to measure the
model’s performance, providing a reliable benchmark for future ML algorithms in code
smell detection.

4.3. Opportunities Trends

Software projects are growing more popular due to the digital era’s expansion, which
has increased the number of modules and the size of these projects. The increased modules
can increase the chances of errors in the future and the possibility of severe problems in the
software. Code smell detection removes the cause that may create poor performance and
future issues in software. It is challenging to find detection rules for code smells; however,
some metric-based methods have also been developed. Most of the datasets are from the
project/industrial datasets. If various datasets are easily accessible, their detection will be
more accurate.

4.4. Insightful Discussion

This section discusses various SLR study findings, which will help software devel-
opers to find key points to improve software quality. New researchers can enhance their
knowledge for their upcoming research studies. The insights gained from this research
include the most effective metrics and dataset languages, the most commonly used datasets,

Appl. Sci. 2024, 14, 6149 21 of 37

and the performance measurements of different ML algorithms, all of which can guide
future research and software development practices.

RQ-1 categorizes ML algorithms into Decision Tree, ensemble learning, Bayesian
learning, Rule-Based Learning, SVM, neural network, and miscellaneous. Decision Trees,
SVM, ensemble learning, and their subclasses Random Forest, J48, SVM, Naive Bayes, and
Multilayer Perceptron are frequently used to identify code smells.

This study found that 27 of 42 research articles used Decision Tree algorithms to
identify code smells, as shown in Table 5. Most research studies employ this method
because of its excellent performance and widespread availability of relevant software. This
study reveals a need for Rule-Based Learning applications to deal with software smells, as
only 3 of 42 research articles used this algorithm. More research studies are needed in this
area, and future studies may need to use and explore the capability of this algorithm to
detect code smells.

RQ-2 discovered that the various researchers employed over 30 code smells more than
140 times in their investigation. Data Class, Feature Envy, God Class, and Long Method are
the most frequently used code smells and are given more consideration in recent research,
as shown in Figure 7. These code smells may be chosen for the following reasons:

• Many different design concerns are covered.
• They severely compromise the integrity of the program.
• Code smells of these types are the most common type; these code smells are easily

recognizable and explained.

Most existing research in ML algorithms has concentrated on a small subset of possible
code smells. These studies did not examine all the recommended code smells. Thus, other
code smells that significantly impact software quality may need to be noticed. Therefore,
there is an opportunity for further research to investigate these unexplored code smells
and their effects on software quality [3]. This research gap presents a potential avenue for
future improvements in code smell detection and software quality assurance.

RQ-3 discusses various software metrics used in research articles. AMC, code com-
plexity, complexity metrics, etc., are rarely used. In contrast, LOC, WMC, DIT, LCOM, CC,
and NoC are frequently used metrics because they provide valuable insights into software
code’s structural complexity and design issues. These metrics correlate with code smells,
which indicate poor code quality and potential maintenance problems.

RQ-4 shows the utilization of datasets in our research. Due to their size and diversity,
code smells are often detected using the Xerces, ArgoUML, Gantt Project, Azureus, Eclipse,
and object-oriented metrics datasets, which enable the detection of a wide variety of code
smells. These datasets are widely used in the software development community and are
well documented and simple to utilize.

Based on our findings, earlier studies tended to place more emphasis on the Java lan-
guage. The majority of these studies used Java-based platforms to test their methodologies.
Therefore, further study is required to uncover the efficacy of ML algorithms in detecting
code smells in languages other than Java.

RQ-5 discusses the various performance measures. In this study, the most frequently
used performance measures are precision (21 times), recall (21 times), accuracy (22 times),
and F-measure (18 times).

These performance measures can measure the efficiency of deployed ML algorithms
for code smell detection. However, evaluating the model’s efficacy by considering recall
and precision together is essential.

Furthermore, when dealing with unbalanced datasets in which negative and positive
classes are unequal, it is not desirable to rely only on accuracy.

Few research studies have used correlation analysis to calculate the associations
between smells. Therefore, more studies are needed to address this issue and create more
effective models for detecting code smells.

Appl. Sci. 2024, 14, 6149 22 of 37

5. Threats to Validity

This study has not considered all aspects of code smell detection and follows a search
strategy to retrieve research articles. The search strategy involved a comprehensive search
string encompassing eight digital libraries, including original words, different synonyms,
and spellings of the search word. The inclusion/exclusion of relevant articles was carefully
considered, depending on their availability and relevance. The selection and elimination
rules are discussed in Section 3.2. After analyzing several pertinent articles, it was observed
that the recent work is more appropriate. However, it is important to note that the search
strategy, while thorough, may have some limitations, such as the potential for missing
articles due to inconsistent keywords in different articles or the exclusion of some conference
and journal research papers. These limitations should be considered when interpreting this
study’s results.

This study includes the maximum number of relevant articles on detecting code smell
using ML algorithms; so it may be less likely to miss any related articles. This SLR excluded
some conference and journal research papers using selection and elimination criteria, as
discussed in Section 3.2. The criteria for inclusion were based on the paper’s relevance to
the research questions and the quality of the research methodology. If a research paper met
these criteria, it was included in the study. A few good-quality papers may not meet our
selection/inclusion criteria.

In this SLR, during the searching process, it has been observed that various digital
libraries are not efficient because of inconsistent keywords in different articles. So, few pa-
pers or studies may have been missed. Various researchers followed Kitchenham et al.’s [31]
research evaluation and validation method. According to Kitchenham et al., one researcher
assesses the quality, and the second performs the validation. In our study, one researcher
extracted and evaluated data from randomly chosen articles. The value of research articles
is verified from various articles. The parameters set for quality evaluation are not inferior
to quality assessment. It may increase the skewness toward quality evaluation because it
might require more work to answer the research questions. Despite these challenges, the
study’s methodology was thorough and rigorous, ensuring the reliability of the results.

6. Conclusions

This study conducted an SLR to analyze and show different aspects of code smell
detection with ML algorithms. The SLR covers the class-wise distribution of ML algorithms,
a unique aspect not yet present in the literature, providing up-to-date knowledge to
researchers for future studies. The class-wise distribution of ML algorithms is significant as
it provides insights into the popularity and effectiveness of different ML algorithms in code
smell detection. This study offers detailed insights into code smells, primarily focusing
on ML algorithms and software metrics applied in studies, which have been found to be
beneficial. The review procedure is framed with five research questions. Table A7 shows
the evaluation of research articles and their score. Section 3.3 reports various categories of
research articles; 36 are above average, and 6 are below average. Tables A2–A5 presents the
attributes used to identify the articles. This study aims to facilitate a better understanding
of code smell detection with ML algorithms and help researchers identify the popular
methods and the methods that perform better.

This SLR summarizes different ML algorithms, performance measures, datasets, and
software metrics for detecting code smells. Some main conclusions are as follows:

• Decision Trees, Ensemble Learners, Bayesian Learners, Rule-Based Learning, Support
Vector Machines, neural networks, and other miscellaneous ML algorithms are used
to detect code smells. The most frequently used ML algorithms from other classes are
Naive Bayes, JRip, J48, Random Forest, and SVM.

• This study examined many datasets, some of which are open-source and a few of
which are industrial datasets. The datasets are written in different languages, such as
C#, JAVA, and XML; of these, JAVA language datasets are more popular.

Appl. Sci. 2024, 14, 6149 23 of 37

• A massive range of datasets has been utilized. Xerces, ArgoUML, Gantt Project,
Azureus, Eclipse, and object-oriented metrics datasets are frequently used. Apache
Ant, Fluid Tool, iPlasma, PMD, etc., are also used in this area.

• Popularly used performance measures are precision, recall, accuracy, and F-measure.
MCC, MAE, Hamming score, etc., are also used for performance assessment but are
used less frequently than the rest.

This study is a valuable resource for software developers, providing a comprehensive
discussion of code smell detection. It enhances developers’ understanding of code smells,
equipping them with the knowledge to identify and eliminate them. This understanding
can be applied to improve software quality and resolve issues. The practical implica-
tions of this study’s findings are significant, as they can directly impact the quality and
maintainability of software, a key concern for developers.

Better code can be written with an understanding of code smells. Over 30 code smells
are discussed in this study. The findings of this research study provide insight into how
to enhance its quality and maintainability. Software engineers can better apply the most
efficient methods of code smell detection by keeping up with the latest developments in this
area. This study covers a survey utilizing ML algorithms from 2005 to 2024. Well-known
ML algorithms and practical software metrics are included in this research. LOC, WMC,
DIT, LCOM, CC, and NoC are the most used metrics for spotting code smells, and 27
articles applied Decision Tree techniques. In this study, the definition, causes, and effects
of code smells are provided for the reader. Methods for the detection of code smells are
also covered. This knowledge will empower software developers to create more stable and
maintainable programs and allow them to identify and fix code smells before releasing
them to the public.

The following are future recommendations for software professionals and researchers
working in code smell detection. These recommendations are not just suggestions but are
crucial for the advancement of code smell detection. These can inspire further research and
innovation in this field, providing a roadmap for researchers to contribute to the evolution
of code smell detection. By following these recommendations, researchers can feel inspired
and motivated to contribute significantly to this field.

(i) Few research studies have investigated how effectively neural networks, Rule-Based
Learning, etc., predict outcomes. Some ML algorithms for detecting code smells have
never been applied.

(ii) Few datasets are publicly available. Researchers should have unrestricted access to
these datasets to conduct more research studies.

(iii) Only a few researchers have conducted generalized analyses; thus, the results of
various ML-based algorithms should be more widely applicable. If one adopts this
perspective, it will be simple to compare efficiency and performance.

(iv) Overfitting and class imbalance are two major problems in this field. Addressing
these is necessary because most of the datasets have a skewed distribution.

(v) The efficacy of ML algorithms should be evaluated with other statistical approaches.

Author Contributions: P.S.Y.: Conceptualization, critical analysis, validation, figure and table prepa-
ration, writing review and editing. R.S.R.: Conceptualization, critical analysis, validation, supervision,
writing review and editing. A.M.: Supervision, critical analysis, writing review and editing. M.G.:
Supervision, writing review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2024, 14, 6149 24 of 37

Appendix A

• Table A1 lists the various types of research articles.
• Table A2 includes details such as the unique identifier for each article (Article No.),

the serial number as listed in the reference section (Ref. no), the year of publica-
tion, the name of the journal or conference in which the research article is published
(Publication), and whether the research article is a journal or conference paper (Jour-
nal/Conference).

• Table A3 focuses on the dataset used in the reviewed research articles. It contains
the unique identifier for each article (Article no.), the name of the dataset (Dataset),
the language of the dataset (Dataset Language), and the type of dataset, such as
open-source software (OSS) or industrial (Dataset Type).

• Table A4 addresses the methodologies and tools used in the research articles. It
includes the unique identifier for each article (Article no.), the tools or technologies
used (Tools/Tech.), the specific code smells covered (Smells), the algorithms used
to classify the code smells (Algorithm), and the performance metrics employed to
evaluate the methodologies (Performance Metrics).

• Table A5 details the software metrics utilized in the research articles. It lists the unique
identifier for each article (Article no.) and the specific software metrics used in the
research (Software Metrics Name).

• Table A6 checks for the answers to research questions.
• Table A7, a comprehensive evaluation, thoroughly examines the research article’s

performance. This meticulous evaluation instils confidence in the reliability and
validity of the research article’s findings.

Table A1. Classification and ranking of studies on ML algorithms for code smell detection.

Categories Research Papers Score

Above average

ARTN1, ARTN2, ARTN3, ARTN4, ARTN5,
ARTN7, ARTN8, ARTN10, ARTN11,

ARTN12, ARTN13, ARTN14, ARTN15,
ARTN16, ARTN17, ARTN18, ARTN19,
ARTN20, ARTN21, ARTN22, ARTN23,
ARTN24, ARTN26, ARTN27, ARTN28,
ARTN29, ARTN30, ARTN32, ARTN33,
ARTN36, ARTN37, ARTN38, ARTN39,

ARTN40, ARTN41, ARTN42

>5

Below average ARTN6, ARTN9, ARTN25, ARTN31,
ARTN34, ARTN35 ≥2

Table A2. The study’s analysis—general information.

Article No. Ref. no Year Publication Journal/Conference

ARTN1 [32] 2005 Elsevier Electronic notes in Theoretical Computer Science,
Science Direct Journal

ARTN2 [33] 2009 2009 Ninth International Conference on Quality Software Conference

ARTN3 [34] 2009 2009 16th Working Conference on Reverse Engineering Conference

ARTN4 [35] 2010 14th European Conference on Software Maintenance and
Reengineering Conference

ARTN5 [36] 2010 2010 Seventh International Conference on the Quality of
Information and Communications Technology Conference

ARTN6 [37] 2010 Scopus and IEEE Conference

Appl. Sci. 2024, 14, 6149 25 of 37

Table A2. Cont.

Article No. Ref. no Year Publication Journal/Conference

ARTN7 [38] 2011 2011 Eighth International Joint Conference
on Computer Science and Software Engineering (JCSSE) Conference

ARTN8 [39] 2011 Elsevier The Journal of Systems and Software Journal

ARTN9 [40] 2012 IEEE Conference

ARTN10 [41] 2012 ASE’12, 3–7 September 2012, Essen, Germany Conference

ARTN11 [42] 2012 ASE’12, 3–7 September 2012, Essen, Germany Conference

ARTN12 [43] 2012 19th Working Conference on Reverse Engineering Conference

ARTN13 [44] 2013 IEEE ASE 2013, Palo Alto, USA Conference

ARTN14 [45] 2013 IEEE Transactions on Software Engineering Conference

ARTN15 [46] 2013 IEEE International Conference on Software Maintenance Conference

ARTN16 [47] 2015 IEEE Conference

ARTN17 [48] 2015 IEEE Conference

ARTN18 [49] 2015 Empirical Software Eng Journal

ARTN19 [50] 2016 IEEE 24th International Conference on Program
Comprehension (ICPC) Conference

ARTN20 [26] 2016 Empirical Software Eng, springer Journal

ARTN21 [51] 2016 ASE’16, 3–7 September 2016, Singapore, Singapore Conference

ARTN22 [52] 2016 7th International Conference on Computer Science and
Information Technology Conference

ARTN23 [53] 2016 Scopus, IEEE, and Science Direct Conference

ARTN24 [54] 2017 19th International Conference on Enterprise Information
Systems (ICEIS 2017) Conference

ARTN25 [27] 2017 International Conference on Machine learning and Data
Science Conference

ARTN26 [55] 2017 Knowledge-Based Systems Journal

ARTN27 [56] 2017 Scopus International Journal of Electrical and Computer
Engineering (IJECE) Journal

ARTN28 [57] 2017 Scopus and IEEE Conference

ARTN29 [7] 2018 IEEE Conference

ARTN30 [10] 2019 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC) Conference

ARTN31 [58] 2019 International Conference on Intelligent Computing and
Control Systems (ICICCS 2019) IEEE Xplore Conference

ARTN32 [8] 2019 International Journal of Rough Sets and Data Analysis
April–June 2019 Journal

ARTN33 [59] 2019 International Journal of Computer Sciences and
Engineering Journal

ARTN34 [60] 2019 IEEE Conference

ARTN35 [61] 2019 IEEE Conference

ARTN36 [3] 2020 Journal of computer science and technology Journal

ARTN37 [62] 2020 Springer Software Quality Journal Journal

ARTN38 [63] 2021 IEEE Access Conference

Appl. Sci. 2024, 14, 6149 26 of 37

Table A2. Cont.

Article No. Ref. no Year Publication Journal/Conference

ARTN39 [30] 2021 Tech Science Press Computers, Materials and Continua
Tech Science Press Conference

ARTN40 [64] 2021 International Conference on Advanced Information
Networking and Applications, Springer, Cham. Conference

ARTN41 [65] 2021 IEEE Journal

ARTN42 [66] 2022 Empirical Software Engineering Journal

Table A3. The study’s analysis—dataset information.

Article No. Dataset Dataset
Language

Dataset
Type

ARTN1 WEKA and IYC JAVA OSS, Industrial

ARTN2 Gantt Project v1.10.2 and Xerces v2.7.0 JAVA OSS

ARTN3 Eclipse JDT and Xerces v2.7.0 XML, JAVA OSS

ARTN4 NA JAVA OSS

ARTN5 Gantt Project v1.10.2 and Xerces v2.7.0 JAVA OSS

ARTN6 Expert’s knowledge and object-oriented metrics JAVA OSS

ARTN7 Seven datasets from the previous literature NA Industrial

ARTN8 Gantt Project v1.10.2 and Xerces v2.7.0 JAVA OSS

ARTN9 Electricity calculating program and movie rental program JAVA Industrial

ARTN10 Xproj and Yproj C# Microsoft Project
(Industrial)

ARTN11 Xerces v2.7.1 and Azureus v2.3.0.6, ArgoUML v0.19.8 JAVA OSS

ARTN12 Xerces v2.7.0 and Azureus v2.3.0.6, ArgoUML v0.19.8 JAVA OSS

ARTN13 jEdit, Apache Ant, five projects of Android APIs and Apache
Tomcat JAVA OSS

ARTN14 Twenty open-source software programs JAVA OSS

ARTN15
Seventy-six open-source software programs of Qualitas Corpus
(two datasets, one for method-level smells, and another one for

class-level smells)
JAVA OSS

ARTN16 Closure Compiler, maven, Guava, Eclipse, and jUnit JAVA OSS

ARTN17 CheckStyle 5.7, JDeodorant 5.0, PMD 5.1.1, and inFusion 1.8.5,
iPlasma, and inCode JAVA OSS

ARTN18 Dataset of Bellon et al., TF-IDF vector of our datasets JAVA OSS

ARTN19 Ten open-source projects JAVA OSS

ARTN20 Four datasets were acquired (one for each code smell) JAVA OSS

ARTN21 ANTLR to tokenize the source code, the RNNLM Toolkit, Apache
Ant, Hibernate, JDK, ArgoUML, CAROL, and JHotDraw JAVA OSS

ARTN22 BCEL, Maven Core, and Commons 10. Another three projects
belong to the biggest airline companies JAVA OSS

ARTN23 Object-oriented metrics JAVA OSS

ARTN24 Gantt Project JAVA OSS

Appl. Sci. 2024, 14, 6149 27 of 37

Table A3. Cont.

Article No. Dataset Dataset
Language

Dataset
Type

ARTN25 Argo UML v0.19.8 and Xerces v 2.7.0 JAVA OSS

ARTN26
iPlasma, Antipattern Scanner, Fluid Tool, PMD, and Marinescu

detection
rule

JAVA OSS

ARTN27 Object-oriented metrics JAVA OSS

ARTN28 Object-oriented metrics JAVA OSS

ARTN29 74 software systems JAVA OSS

ARTN30
Ant, Cassandra, Derby, ArgoUML, Eclipse, Hadoop, Elastic

Search,
HSQLDB, Incubating, Qpid, Wicket, Xerces, and Nutch

JAVA OSS

ARTN31 Implemented in JAVA using Net Beans IDE JAVA NA

ARTN32 The dataset objects consist of methods from 74 different JAVA
systems JAVA NA

ARTN33 Fontana et al. [26] NA OSS

ARTN34 Data from 629 open-source projects are accessible on GitHub. JAVA OSS

ARTN35 Long Method, Data Class, God Class, and Feature Envy from
Fontana et al. [26] JAVA OSS

ARTN36 ORI D, REFD D, and MULTI L D NA OSS

ARTN37 Four open-source JAVA projects and two method-level datasets
from Fontana et al. [26] JAVA OSS

ARTN38 Dr JAVA, EMMA, and Find Bugs JAVA OSS

ARTN39 Argo UML, Azure, Gantt Project, Log4j, and Xerces-J JAVA OSS

ARTN40 Original, SMOTE, and ADASYN datasets NA Open-source projects

ARTN41 Qualitas Corpus JAVA OSS

ARTN42 18 datasets of different years JAVA OSS

Note: NA means ‘Not Available’.

Table A4. The study’s analysis—smells, tools, algorithm, and evaluation metrics information.

Article No. Tools/
Tech. Smells Algorithm Performance Metrics

ARTN1 IYC
Delegator, Lazy Class,
Long Method, Feature

Envy, God Class
C4.5, Decision Tree Accuracy

ARTN2 Bayesian approach Blob Bayesian Belief
Networks

Precision, Recall,
Accuracy

ARTN3 NA God Class Naive Bayes Precision, Recall

ARTN4
ABS (antipattern

identification using
B-Splines)

Blob Bspl Precision, Recall

ARTN5
IDS (Immune-based

Detection Strategy), based on
Artificial Immune Systems

Functional Decomposition,
Blob, and Spaghetti Code

Immune-inspired
Approach Precision, Recall

Appl. Sci. 2024, 14, 6149 28 of 37

Table A4. Cont.

Article No. Tools/
Tech. Smells Algorithm Performance Metrics

ARTN6 Metrics collection tool Long Method
Eclipse Plugin Binary
Logistic Regression

(BLR)
Accuracy

ARTN7
A methodology for

predicting bad smells from
the software design model

Feature Envy, Message
Chain, Long Method,

Switch Statement, Middle
Man, Long Parameter List,

and Lazy Class

Random Forest, J48,
Naive Bayes, Logistic,

IBI, Voting Feature
Intervals, and IBk

Hypothesis test, the
predictive value of

tests, prediction
accuracy,

and sensitivity and
specificity

ARTN8 A GQM-based approach,
BDTEX

Blob, Functional
Decomposition, and

Spaghetti Code

Bayesian Belief
Networks

Precision, Recall,
and utility

ARTN9 BSDT (BAD SMELL
DETECTING TOOL)

Long Method, Switch
Statement, Long Parameter

List, Parallel Inheritance
Hierarchy, Lazy Class,

Large Class, and
Data Class

A Switch Statement
Rules, Naive Bayes Accuracy

ARTN10 Code clone detection tools Duplicate Code Bayesian Network Precision, Recall,
Effectiveness

ARTN11 Support Vector
Machine direct

Functional Decomposition,
Spaghetti Code, and SAK SVM Precision, Recall

ARTN12 SMURF
Blob, Spaghetti Code,

Functional Decomposition,
and Swiss Army Knife

SVM Precision, Recall

ARTN13 HIST

Feature Envy, Shotgun
Surgery, Blob, Parallel
Inheritance Hierarchy,

Divergent Change

Association Rule
Mining

Precision, Recall,
F-measure

ARTN14 HIST

Blob, Divergent Change,
Parallel Inheritance
Hierarchy, Shotgun

Surgery, and Feature Envy

Association Rule
Mining

Precision, Recall,
F-measure

ARTN15 Code smell detection tool,
Weka tool

Data Class, Feature Envy,
God Class, and Long

Method

LibSVM, J48,
Sequential minimal
optimization, JRip,

Random Forest,
Naive Bayes

Accuracy, F-measure,
ROC

ARTN16 NA
Duplicate Code, Switch

Statement, and Divergent
Change

Association Rule
Mining

Precision, Recall,
and F-measure

ARTN17 Decision Tree (C5.0)

Refused Parent Bequest,
Speculative Generality,

Complex Class,
Antisingleton, Message
Chain, Long Parameter

List, Class Data should be
Private, Lazy Class, Swiss

Army Knife, God Class

SVM, Bayesian Belief
Networks

Precision, Recall,
F-measure

ARTN18 Clone detection tools (CDTs) Duplicated Code Bayesian Network Precision, Recall,
Accuracy

Appl. Sci. 2024, 14, 6149 29 of 37

Table A4. Cont.

Article No. Tools/
Tech. Smells Algorithm Performance Metrics

ARTN19 TACO (Textual Analysis for
Code Smell Detection)

Feature Envy, Blob, Long
Method, Misplaced Class,

Promiscuous Package

Structural techniques,
TACO

Precision, Recall,
F-measure

ARTN20
iPlasma, PMD, Fluid Tool,

Antipattern Scanner,
Marinescu

Long Method, God Class,
Data Class, Feature Envy

J48, Naïve Bayes,
Sequential minimal
optimization, JRip,

Random Forest, SVM

The accuracy obtained
by the

ML-algorithms

ARTN21 RNNLM Toolkit Duplicated Code Deep Learning Precision, Recall

ARTN22
Metric and a rule-based

automated
antipattern detection

Swiss Army Knife, Blob,
and

Lava Flow

Three Mechanism
Filtering Mechanism,
Static Code Analyzer,
and Metric Analyzer

Accuracy

ARTN23 DTReg tool

God Class, Feature Envy,
Long Method, Empty catch

block, Careless cleanup,
Type Checking, Nested try

statement, Exception
thrown in finally block,

Unprotected main, Dummy
handler, Over logging

SVM, Multilayer
Perceptron, Radial

Basis Function Neural
Networks Linear
Regression (LR),

Decision Tree Forest
(DFT), k-fold cross

validation

Root mean square error
and mean absolute

error

ARTN24 The Weka tool to implement
the algorithms analyzed

Data Class, Long Method,
Feature Envy, and God

Class

J48, JRip, Naive Bayes,
Sequential Minimal
Optimization, SVM,

Random Forest

Accuracy, Efficiency

ARTN25 SVMCSD
Large Class, Feature Envy,

Data Class, and Long
Method

SVM Precision, Recall

ARTN26 An approach based on
machine learning

Long Method, Data Class,
Feature Envy

C4.5, J48, Naive Bayes,
JRip, Random Forest,

Decision Tree,
Sequential Minimal

Optimization, LibSVM

Standard deviations,
descending

values of Spearman’s,
performance indicators
(except Tb), mad, mse,

acc

ARTN27 Tensor flow

God Class, Lazy Class,
Data Class, Feature Envy,

Large Class, Parallel
Inheritance Hierarchies

SciTools Understand,
JUnit-4.10 Multilayer

Perceptron
Accuracy

ARTN28 Weka God Class, Feature Envy,
Long Method, Data Class

Eclipse Plugin, Analyst
4J, Xercesv, ArgoUML
SVM, random under

sampling

Recall, Precision

ARTN29 NA
God Class, Feature Envy,

Data Class, and Long
Method

Random Forest, JRip,
J48, LIBSVM,

ADABOOST, Naive
Bayes, Sequential

Minimal Optimization

Mean Accuracy,
F-Measure, and AUC

ROC

ARTN30 ML algorithm
with a heuristic

Spaghetti Code, Long
Method, Class Data should
be private, Complex Class,

and God Class

J48, Random Forest,
Naive Bayes, SVM,

JRip.

Precision, Recall,
F-measure, Mcc

(Matthews Correlation
Coefficient)

Appl. Sci. 2024, 14, 6149 30 of 37

Table A4. Cont.

Article No. Tools/
Tech. Smells Algorithm Performance Metrics

ARTN31 Code detection techniques

Lazy Class Detector,
Primitive

Obsession Detector, Too
Many Literal Detectors,

Bloated
Code Detector, Feature

Envy Detector, and
Duplicated Code Detector

SVM, Random Forest Time complexity

ARTN32
Datasets have been prepared
based on the tools, manual

labeling process.

Shotgun Surgery, Message
Chaining

J48, C4.5, Random
Forest, JRip, Naive
Bayes, Sequential

Minimal Optimization,
K-nearest neighbors

Area under the ROC,
Accuracy, and

F-measure

ARTN33
Using a Decision Tree

technique and software
metrics, detect code smells

Long Method, Data Class,
Feature Envy, and God

Class
Decision Tree Accuracy, F-measure

ARTN34

Empirical framework
empirically investigates and

evaluates different
classification techniques,

feature selection techniques,
and data sampling

techniques

Blob Class, Resolver,
Member Ignoring Method,

Complex Class, Internal
Getter/Setter, Long

Method, No Low Memory,
and Leaking Inner Class

Classification
techniques, feature

selection techniques,
and data sampling

techniques to handle
imbalanced data in

prediction

Accuracy, F-measure,
ACC

ARTN35
Especially multi-label

classification methods, ML
algorithms

Long Method, God Class,
Feature Envy, Data Class

Decision Tree,
Naive Bayes, Random

Forest,
Neural Network, SVM

Exact Match Ratio,
Hamming Score, AUC

ROC, Accuracy,
F-measure

ARTN36
A strategy using machine

learning and software
metrics

Data Class, Feature Envy,
Long Method, and God

Class

Random Forest,
Gradient Boosting Tree,

Decision Tree, Deep
Learning, SVM,

Multilayer Perceptron

Accuracy, F-measure

ARTN37 Design Features and Metrics
for JAVA

Long Method, Feature
Envy

B-Random Forest,
Random Forest, BJ48U,

B-J48 Pruned, J48U

Accuracy, F-measure,
ROC area

ARTN38 CKJM, JCODODOR, and
WEKA

God Class, Brain Method,
Shotgun Surgery, Message

Chains, Data Class,
Dispersed Coupling

Ensemble Learning,
Bagging, Random

Forest

Accuracy (P1),
G-meam2 (P3), G-mean
1(P2), and F-measure

(P4)

ARTN39 Search-based approach

Large Class, Long Method,
Feature Envy, Spaghetti
Code, Data Class, Lazy

Class, Functional
Decomposition, Parallel
Inheritance, and Long

Parameter List

Search-based approach Precision, Recall

ARTN40 Code smell prediction
models, feature extraction

Blob Class, Complex Class,
Internal Getter/Setter,

Leaking Inner Class, Long
Method, No Low Memory
Resolver, Member Ignoring
Method, and Swiss Army

Knife

SMOTE, ADASYN
sampling methods

Accuracy AUC
F-measure

Appl. Sci. 2024, 14, 6149 31 of 37

Table A4. Cont.

Article No. Tools/
Tech. Smells Algorithm Performance Metrics

ARTN41 A Novel Approach for the
Detection of Code Smells

God Class, Long Method,
Data Class, Feature Envy

Naive Bayes,
Multilayer Perceptron,

KNN, Logistic
Regression, Decision

Tree, and Random
Forest, validation
technique: 10-fold
cross-validation

Accuracy, Recall,
F-measure, and

Precision

ARTN42 Crowdsmelling approach God Class, Feature Envy,
Long Method

J48, Random Forest,
ADABOOST,

Sequential Minimal
Optimization,

Multilayer Perceptron,
Naive Bayes

Accuracy, Precision,
Recall, ROC, and

F-Measure

Note: NA means ‘Not Available’.

Table A5. The study’s analysis—S/W metrics.

Article No. S/W Metrics

ARTN1 Object-oriented metrics IYC, coupling and cohesion, complexity metrics, the size measure, the complexity
measure

ARTN2 Goal Question Metric (GQM), LCOM5 metric, and NMD and NAD metrics

ARTN3 NOC, DTT, NMD, and NAD

ARTN4 Quality metrics cohesion, coupling, and complexity

ARTN5 Goal Question Metric (GQM), metric-based heuristics

ARTN6 NBD (Nested Block Depth), VG (cyclomatic complexity), and code complexity metrics- MLOC (Method Lines
Of Code) and PAR (Number of Parameters)

ARTN7

Design model metrics: number of members, number of attributes, number of operations, Number of
Parameters, response for a class, number of classes, weighted attributes per class, weighted methods per class,

appearance in diagrams, Depth of Inheritance Tree, number of children, number of inherited attributes,
number of inherited operations, attribute hiding factor, attribute inheritance factor, coupling factor, method

hiding factor, method inheritance factor, polymorphism factor, number of actors, number of components,
number of name spaces, Coupling Between Objects, number of abstractions, number of times class is used as

employment parameter type, and number of dependencies

ARTN8 A Goal Question Metric (GQM) NMD and NAD, LCOM5, and NoDC

ARTN9
Lines of code, Number of Methods, Tree, Depth of Inheritance, Number of Parameters, number of attributes,

Method Lines of Code, weighted methods per class, McCabe cyclomatic complexity, Lack of Cohesion of
Methods, and number of children

ARTN10
Number of Invocations, Number of Library Invocations, Number of Lines, Number of Local Invocations,
Number of Other Invocations, Number of Parameter Accesses, whether it is Test Code4, Number of Field

Accesses

ARTN11 Object-oriented metrics, more than 60 metrics

ARTN12 Object-oriented metrics

ARTN13 LOC, weight methods per class (WMC), Coupling Between Objects (CBO), and Number of Methods (NOM)

ARTN14 NA

ARTN15 Complexity, cohesion, size, coupling, and a large set of object-oriented metrics

ARTN16 NOM (Number of Methods), WMC (weight methods per class), and CBO (Coupling Between Objects)

Appl. Sci. 2024, 14, 6149 32 of 37

Table A5. Cont.

Article No. S/W Metrics

ARTN17 Number of Parameters (NOParam), the number of lines of code (LOC), Depth of Inheritance Tree (DIT)

ARTN18 Metric-based approach

ARTN19 Structural metrics, like size and complexity metrics.

ARTN20

LOC, NOM, NOPK, LOCNAMM, NOCS, NOA, and WMC, NOMNAMM CYCLO, WMCNAMM,
MAXNESTING, AMW, WOC, NOP, NOAV, CLNAMM, ATLD, NOLV, AMWNAMM LCOM5, TCC FANOUT,
FDP, RFC, CBO, ATFD, CINT, CDISP, CFNAMM, CC, CM LAA, NOAM, NOPA DIT, NOI, NOC, NMO, NIM,

LAA, MaMCL, MeMCL, NODA, NOPVA, NOII, NOPRA, NOFA, NOFSA, NOSA, NONFSA, NOABM,
NoNFNSA, NOCM, NOFM, NOFNSM, NoFSM, NONCM, NONFNABM, NONFNSM, NODM, NOPM,

NOPRM, NOPLM, NONAM, and NOSM

ARTN21 LOC, AST-based

ARTN22 LCOM RFC NAM NADCs, OPT, and TSCs

ARTN23 LOC, CBO, DIT, RFC, WMC, NOC, LCOM, CC, Dependencies (Dcy and Dcy), Javadoc function (jf), MHF,
cyclomatic complexity (Ocavg), Javadoc Javadoc methods (jm), line of code (jLOC), AHF

ARTN24 NA

ARTN25 No. of object-oriented metrics

ARTN26 Measured through Spearman’s

ARTN27 LOC, CC, NOC, RFC, DIT, WMC, CBO, and LCOM

ARTN28 Static code metrics-based approach

ARTN29 61 source code metrics were computed at class level and 82—at method level

ARTN30 LCOM, NOPA, NMNOPARAM, ELOC, LOC_METHOD, NOA, NOM, NP, and WMC

ARTN31 NA

ARTN32
LOC, NOM, NOCS, NOPK, LOCNAMM, NOA, NOMNAMM CYCLO, WMCNAMM, WMC, MAXNESTING,
WOC, CLNAMM, NOP, NOAV, ATLD, NOLV, AMWNAMM, LCOM5, TCC, FANOUT, AMW, ATFD, RFC,
CBO, CFNAMM, FDP, CINT, CDISP, CM, CC, NOAM, NOPA DIT, LAA, NOI, NMO, NIM, NOC, and NOII

ARTN33 82 software metrics and 61 software metrics in the class-level code smells

ARTN34 NOC, NOCH, WMC, IPM, CC, NBI, NOM, NOCH, DIT, LCOM, PPIV, LOCL, APD, XML, BSMC, NTO, WKL,
GPS, BMAP, SQL, NET, and I/O

ARTN35 82 features (software metrics), MLC evaluation metrics

ARTN36 In the method-level code smells, 82 software metrics are computed; in the class-level code smells, 61 software
metrics are computed

ARTN37 There are 82 measures in the created MLD training dataset, 25 are class metrics, 5 are package metrics, and 6
are project-level metrics

ARTN38

Weighted methods per class, Number of Methods, Depth of the Inheritance Tree, and response for a class.
Coupling between object classes, lack of cohesion in methods, the normalized version of LCOM inheritance

coupling, coupling between methods, average method complexity, number of public methods for a class, also
known as CIS (class interface size), data access metric, measure of aggregation, measure of functional

abstraction, cohesion among methods of a class, cyclomatic complexity, lines of code, afferent coupling,
efferent coupling, maximum cyclomatic complexity, average cyclomatic complexity

ARTN39 LOC, NAD, McCabe, NOC, CBO, LCOM, CC, LCOM, WMC, NOPARAM, NOM, RFC, DIT, and NMO

ARTN40 Android-oriented metrics, complexity metrics, object-oriented metrics, and dimensional metrics

ARTN41 61 software metrics for the class-level and 82 software metrics for the method-level code smells

ARTN42 For God Class, a set of 61 metrics was used, and for the other two code smells

Note: NA means ‘Not Available’.

Appl. Sci. 2024, 14, 6149 33 of 37

Table A6. Mapping of research question with the score.

Article No. RQ1 RQ2 RQ3 RQ4 RQ5 Score

ARTN30
√ √ √ √ √

8
ARTN29

√ √ √ √ √
8

ARTN12
√ √ √ √ √

8
ARTN42

√ √ √ √ √
8

ARTN37
√ √ √ √ √

7.5
ARTN32

√ √ √ √ √
7.5

ARTN10
√ √ √ √ √

7.5
ARTN11

√ √ √ √ √
7.5

ARTN41
√ √ √ √ √

7.5
ARTN38

√ √ √ √ √
7

ARTN39
√ √ √ √ √

7
ARTN36

√ √ √ √ √
7

ARTN26
√ √ √ √ √

7
ARTN23

√ √ √ √ √
7

ARTN16
√ √ √ √ √

7
ARTN14

√ √
×

√ √
7

ARTN8
√ √ √ √ √

7
ARTN3

√ √ √ √ √
7

ARTN28
√ √ √ √ √

6.5
ARTN20

√ √ √ √
× 6.5

ARTN21
√ √ √ √ √

6.5
ARTN17

√ √ √ √ √
6.5

ARTN18
√ √ √ √ √

6.5
ARTN13

√ √ √ √ √
6.5

ARTN15
√ √ √ √ √

6.5
ARTN7

√ √ √ √ √
6.5

ARTN5
√ √ √ √ √

6.5
ARTN33

√ √ √ √ √
6

ARTN19
√ √ √ √ √

6
ARTN22

√ √ √ √ √
6

ARTN2
√ √ √ √ √

6
ARTN1

√ √ √ √ √
6

ARTN40
√ √ √ √ √

5.5
ARTN24

√ √
×

√ √
5.5

ARTN27
√ √ √ √ √

5.5
ARTN4

√ √ √
×

√
5.5

ARTN34
√ √ √ √ √

5
ARTN35

√ √ √ √ √
5

ARTN25
√ √ √ √ √

5
ARTN9

√ √ √ √ √
5

ARTN6
√ √ √ √ √

5
ARTN31

√ √
×

√ √
4

Table A7. Assessment query score and total score.

Article No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Total Score

ARTN30 0.5 1 1 1 1 1 1 0.5 1 0.5 8

ARTN29 1 1 1 0.5 0.5 1 1 1 1 1 8

ARTN12 1 1 1 1 0.5 1 1 0.5 1 1 8

ARTN42 1 1 1 1 0 1 1 1 1 1 8

ARTN37 1 0.5 1 1 0.5 1 0.5 1 1 1 7.5

ARTN32 1 0.5 1 1 1 0.5 1 1 0.5 1 7.5

ARTN10 1 0.5 1 1 1 0.5 1 0.5 1 1 7.5

ARTN11 1 1 0.5 1 0.5 1 0.5 1 1 1 7.5

Appl. Sci. 2024, 14, 6149 34 of 37

Table A7. Cont.

Article No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Total Score

ARTN41 1 1 1 1 0 1 0.5 1 1 1 7.5

ARTN38 1 0.5 0.5 1 1 0 1 1 1 1 7

ARTN39 1 0.5 1 1 1 0.5 0 1 1 1 7

ARTN36 1 0.5 1 1 0.5 1 1 0 1 1 7

ARTN26 1 1 1 1 0 1 1 0 1 1 7

ARTN23 1 0.5 1 1 1 0 1 0.5 1 1 7

ARTN16 1 1 0.5 1 1 0 0.5 1 1 1 7

ARTN14 1 1 1 1 0 1 0.5 1 0.5 1 7

ARTN8 1 1 1 1 1 0.5 0.5 0.5 0.5 1 7

ARTN3 1 0.5 1 1 1 0 1 0.5 1 1 7

ARTN28 1 0.5 1 1 0.5 0.5 0.5 0.5 1 1 6.5

ARTN20 1 1 1 0.5 1 0 1 0.5 0.5 1 6.5

ARTN21 1 1 0 1 0.5 1 0.5 1 0.5 1 6.5

ARTN17 1 0.5 1 1 1 0 1 0.5 0.5 1 6.5

ARTN18 1 0.5 1 1 0.5 0.5 0.5 0.5 1 1 6.5

ARTN13 1 0 1 0.5 1 1 0.5 1 0.5 1 6.5

ARTN15 1 0.5 1 1 0.5 0 1 0.5 1 1 6.5

ARTN7 1 1 1 1 1 0 0.5 0 1 1 6.5

ARTN5 1 0.5 0.5 1 1 0.5 0.5 0.5 1 1 6.5

ARTN33 1 0 1 1 0.5 0.5 1 0 1 1 6

ARTN19 1 0.5 0.5 1 0 0.5 0.5 1 1 1 6

ARTN22 1 0.5 1 0.5 1 0 0 1 1 1 6

ARTN2 1 0.5 1 0.5 1 0 0.5 0.5 1 1 6

ARTN1 1 0.5 1 0.5 1 0 0.5 0.5 1 1 6

ARTN40 1 0.5 1 1 0.5 0.5 0 0 1 1 5.5

ARTN24 1 0.5 1 1 0 1 0 0 1 1 5.5

ARTN27 1 0.5 1 1 1 0 0 1 0 1 5.5

ARTN4 1 0.5 0.5 1 1 0 0.5 0.5 0.5 1 5.5

ARTN34 1 0.5 1 1 1 0 0 0 0.5 1 5

ARTN35 1 0.5 0 1 1 0.5 0 1 0 1 5

ARTN25 1 0.5 0.5 1 0 0 0.5 0.5 1 1 5

ARTN9 1 0.5 0.5 1 1 0 0.5 0 0.5 1 5

ARTN6 1 0 1 0.5 1 0.5 0 0.5 0.5 1 5

ARTN31 1 0.5 0 1 0 0 0.5 0 1 1 4

References
1. Dewangan, S.; Rao, R.S.; Yadav, P.S. Dimensionally Reduction based Machine Learning Approaches for Code smells Detection.

In Proceedings of the 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP),
Hyderabad, India, 21–23 July 2022; pp. 1–4. [CrossRef]

2. Yadav, P.S.; Dewangan, S.; Rao, R.S. Extraction of Prediction Rules of Code Smell using Decision Tree Algorithm. In Proceedings
of the International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON),
Jaipur, India, 1–2 December 2021; pp. 1–5. [CrossRef]

https://doi.org/10.1109/ICICCSP53532.2022.9862030
https://doi.org/10.1109/IEMECON53809.2021.9689174

Appl. Sci. 2024, 14, 6149 35 of 37

3. Mhawish, M.Y.; Gupta, M. Predicting Code Smells and Analysis of Predictions: Using Machine Learning Techniques and Software
Metrics. J. Comput. Sci. Technol. 2020, 35, 1428–1445. [CrossRef]

4. Dewangan, S.; Rao, R.S. Method-Level Code Smells Detection Using Machine Learning Models. Lect. Notes Netw. Syst. 2023, 725,
77–86. [CrossRef]

5. Yadav, P.S.; Rao, R.S. Feature reduction techniques based code smell prediction. I-Manag. J. Softw. Eng. 2022, 17, 6–11. [CrossRef]
6. Dewangan, S.; Rao, R.S. Code Smell Detection Using Classification Approaches. Lect. Notes Netw. Syst. 2022, 431, 257–266.

[CrossRef]
7. Di Nucci, D.; Palomba, F.; Tamburri, D.A.; Serebrenik, A.; De Lucia, A. Detecting code smells using machine learning techniques:

Are we there yet? In Proceedings of the International Conference on Software Analysis, Evolution and Reengineering (SANER),
Campobasso, Italy, 20–23 March 2018; pp. 612–621. [CrossRef]

8. Guggulothu, T.; Moiz, S.A. Detection of Shotgun Surgery and Message Chain Code Smells using Machine Learning Techniques.
Int. J. Rough Sets Data Anal. 2019, 6, 34–50. [CrossRef]

9. Iqbal, A.; Aftab, S.; Ullah, I.; Bashir, M.S.; Saeed, M.A. A Feature Selection based Ensemble Classification Framework for Software
Defect Prediction. Int. J. Mod. Educ. Comput. Sci. 2019, 11, 54–64. [CrossRef]

10. Pecorelli, F.; Palomba, F.; Di Nucci, D.; De Lucia, A. Comparing heuristic and machine learning approaches for metric-based code
smell detection. In Proceedings of the International Conference on Program Comprehension, Montreal, QC, Canada, 25–26 May
2019; pp. 93–104. [CrossRef]

11. Caram, F.L.; Rodrigues, B.R.D.O.; Campanelli, A.S.; Parreiras, F.S. Machine Learning Techniques for Code Smells Detection: A
Systematic Mapping Study. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 285–316. [CrossRef]

12. Kaur, A.; Dhiman, G. A review on search-based tools and techniques to identify bad code smells in object-oriented systems. Adv.
Intell. Syst. Comput. 2019, 741, 909–921. [CrossRef]

13. Azeem, M.I.; Palomba, F.; Shi, L.; Wang, Q. Machine learning techniques for code smell detection: A systematic literature review
and meta-analysis. Inf. Softw. Technol. 2019, 108, 115–138. [CrossRef]

14. Kaur, A.; Jain, S.; Goel, S.; Dhiman, G. A Review on Machine-learning Based Code Smell Detection Techniques in Object-oriented
Software System(s). Recent Adv. Electr. Electron. Eng. 2020, 14, 290–303. [CrossRef]

15. dos Reis, J.P.; Abreu, F.B.E.; Carneiro, G.D.F.; Anslow, C. Code Smells Detection and Visualization: A Systematic Literature
Review. Arch. Comput. Methods Eng. 2022, 29, 47–94. [CrossRef]

16. Al-Shaaby, A.; Aljamaan, H.; Alshayeb, M. Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature
Review. Arab. J. Sci. Eng. 2020, 45, 2341–2369. [CrossRef]

17. Singh, S.; Kaur, S. A systematic literature review: Refactoring for disclosing code smells in object oriented software. Ain Shams
Eng. J. 2018, 9, 2129–2151. [CrossRef]

18. Sobrinho, E.V.D.P.; De Lucia, A.; Maia, M.D.A. A Systematic Literature Review on Bad Smells-5 W’s: Which, When, What, Who,
Where. IEEE Trans. Softw. Eng. 2021, 47, 17–66. [CrossRef]

19. Zhang, M.; Hall, T.; Baddoo, N. Code Bad Smells: A review of current knowledge. J. Softw. Maint. Evol. Res. Pract. 2011, 23,
179–202. [CrossRef]

20. Rasool, G.; Arshad, Z. A review of code smell mining techniques. J. Softw. Evol. Process 2015, 27, 867–895. [CrossRef]
21. Fernandes, E.; Oliveira, J.; Vale, G.; Paiva, T.; Figueiredo, E. A Review-based Comparative Study of Bad Smell Detection Tools. In

Proceedings of the EASE ‘16: 20th International Conference on Evaluation and Assessment in Software Engineering, Limerick,
Ireland, 1–3 June 2016; pp. 1–12. [CrossRef]

22. Gupta, A.; Suri, B.; Misra, S. A systematic literature review: Code bad smells in java source code. Lect. Notes Comput. Sci. 2017,
10408, 665–682. [CrossRef]

23. Sharma, T.; Spinellis, D. A survey on software smells. J. Syst. Softw. 2018, 138, 158–173. [CrossRef]
24. Haque, M.S.; Carver, J.; Atkison, T. Causes, impacts, and detection approaches of code smell: A survey. In Proceedings of the

ACMSE 2018 Conference, Richmond, KY, USA, 29–31 March 2018; pp. 1–8. [CrossRef]
25. Zhang, Y.; Ge, C.; Liu, H.; Zheng, K. Code smell detection based on supervised learning models: A survey. Neurocomputing 2024,

565, 127014. [CrossRef]
26. Fontana, F.A.; Mantylä, M.; Zanoni, M.; Marino, A. Comparing and experimenting machine learning techniques for code smell

detection. Empir. Softw. Eng. 2016, 21, 1143–1191. [CrossRef]
27. Kaur, A.; Jain, S.; Goel, S. A Support Vector Machine Based Approach for Code Smell Detection. In Proceedings of the International

Conference on Machine Learning and Data Science, Noida, India, 14–15 December 2017; pp. 9–14. [CrossRef]
28. Nizam, A.; Avar, M.Y.; Adaş, Ö.K.; Yanık, A. Detecting Code Smell with a Deep Learning System. In Proceedings of the

Innovations in Intelligent Systems and Applications Conference, Sivas, Turkiye, 11–13 October 2023; pp. 1–5. [CrossRef]
29. Shah, R.N.; Mohamed, S.A.; Imran, A.; Kosar, T. CloudScent: A Model for Code Smell Analysis in Open-Source Cloud. In

Proceedings of the IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Naples, Italy, 4–6
December 2023; pp. 69–75. [CrossRef]

30. Draz, M.M.; Farhan, M.S.; Abdulkader, S.N.; Gafar, M.G. Code Smell Detection Using Whale Optimization Algorithm. Comput.
Mater. Contin. 2021, 68, 1919–1935. [CrossRef]

31. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Keele University: Keele,
UK, 2007; Volume 2.

https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1007/978-981-99-3734-9_7
https://doi.org/10.26634/jse.17.1.19106
https://doi.org/10.1007/978-981-19-0901-6_25
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.4018/IJRSDA.2019040103
https://doi.org/10.5815/ijmecs.2019.09.06
https://doi.org/10.1109/ICPC.2019.00023
https://doi.org/10.1142/S021819401950013X
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.2174/2352096513999200922125839
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/s13369-019-04311-w
https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/10.1109/TSE.2018.2880977
https://doi.org/10.1002/smr.521
https://doi.org/10.1002/smr.1737
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1007/978-3-319-62404-4_49
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1016/j.neucom.2023.127014
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1109/MLDS.2017.8
https://doi.org/10.1109/ASYU58738.2023.10296577
https://doi.org/10.1109/CloudCom59040.2023.00024
https://doi.org/10.32604/cmc.2021.015586

Appl. Sci. 2024, 14, 6149 36 of 37

32. Kreimer, J. Adaptive Detection of Design Flaws. Electron. Notes Theor. Comput. Sci. 2005, 141, 117–136. [CrossRef]
33. Khomh, F.; Vaucher, S.; Guéehéeneuc, Y.G.; Sahraoui, H. A bayesian approach for the detection of code and design smells. In

Proceedings of the International Conference on Quality Software, Jeju, Republic of Korea, 24–25 August 2009; pp. 305–314.
[CrossRef]

34. Vaucher, S.; Khomh, F.; Moha, N.; Guéhéneuc, Y.G. Tracking design smells: Lessons from a study of God classes. In Proceedings
of the Working Conference on Reverse Engineering, Lille, France, 13–16 October 2009; pp. 145–154. [CrossRef]

35. Oliveto, R.; Khomh, F.; Antoniol, G.; Guéhéneuc, Y.G. Numerical signatures of antipatterns: An approach based on B-Splines.
In Proceedings of the European Conference on Software Maintenance and Reengineering, Madrid, Spain, 15–18 March 2010;
pp. 248–251. [CrossRef]

36. Hassaine, S.; Khomh, F.; Guéhéneucy, Y.G.; Hamel, S. IDS: An immune-inspired approach for the detection of software design
smells. In Proceedings of the 2010 Seventh International Conference on the Quality of Information and Communications
Technology, Porto, Portugal, 29 September–2 October 2010; pp. 343–348. [CrossRef]

37. Bryton, S.; Abreu, F.B.E.; Monteiro, M. Reducing subjectivity in code smells detection: Experimenting with the Long Method. In
Proceedings of the 2010 Seventh International Conference on the Quality of Information and Communications Technology, Porto,
Portugal, 29 September–2 October 2010; pp. 337–342. [CrossRef]

38. Maneerat, N.; Muenchaisri, P. Bad-smell prediction from software design model using machine learning techniques. In Proceed-
ings of the International Joint Conference on Computer Science and Software Engineering, Nakhonpathom, Thailand, 11–13 May
2011; pp. 331–336. [CrossRef]

39. Khomh, F.; Vaucher, S.; Guéhéneuc, Y.G.; Sahraoui, H. BDTEX: A GQM-based Bayesian approach for the detection of antipatterns.
J. Syst. Softw. 2010, 84, 559–572. [CrossRef]

40. Danphitsanuphan, P.; Suwantada, T. Code smell detecting tool and code smell-structure bug relationship. In Proceedings of the
Spring World Congress on Engineering and Technology, Xi’an, China, 27–30 May 2012; pp. 1–5. [CrossRef]

41. Wang, X.; Dang, Y.; Zhang, L.; Zhang, D.; Lan, E.; Mei, H. Can I clone this piece of code here? In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Essen, Germany, 3–7 September 2012; pp. 170–179. [CrossRef]

42. Maiga, A.; Ali, N.; Bhattacharya, N.; Sabané, A.; Guéhéneuc, Y.G.; Antoniol, G.; Aimeur, E. Support vector machines for
anti-pattern detection. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, Essen,
Germany, 3–7 September 2012; pp. 278–281. [CrossRef]

43. Maiga, A.; Ali, N.; Bhattacharya, N.; Sabané, A.; Guéhéneuc, Y.G.; Aimeur, E. SMURF: A SVM-based incremental anti-pattern
detection approach. In Proceedings of the Working Conference on Reverse Engineering, Kingston, ON, Canada, 15–18 October
2012; pp. 466–475. [CrossRef]

44. Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.; De Lucia, A.; Poshyvanyk, D. Detecting bad smells in source code using change
history information. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, Silicon
Valley, CA, USA, 11–15 November 2013; pp. 268–278. [CrossRef]

45. Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.; Poshyvanyk, D.; De Lucia, A. Mining version histories for detecting code smells.
IEEE Trans. Softw. Eng. 2015, 41, 462–489. [CrossRef]

46. Fontana, F.A.; Zanoni, M.; Marino, A.; Mäntylä, M.V. Code smell detection: Towards a machine learning-based approach. In
Proceedings of the IEEE International Conference on Software Maintenance, Eindhoven, The Netherlands, 22–28 September 2013;
pp. 396–399. [CrossRef]

47. Fu, S.; Shen, B. Code Bad Smell Detection through Evolutionary Data Mining. In Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, Beijing, China, 22–23 October 2015; pp. 1–9. [CrossRef]

48. Amorim, L.; Costa, E.; Antunes, N.; Fonseca, B.; Ribeiro, M. Experience report: Evaluating the effectiveness of decision trees for
detecting code smells. In Proceedings of the International Symposium on Software Reliability Engineering, Gaithersbury, MD,
USA, 2–5 November 2015; pp. 261–269. [CrossRef]

49. Yang, J.; Hotta, K.; Higo, Y.; Igaki, H.; Kusumoto, S. Classification model for code clones based on machine learning. Empir. Softw.
Eng. 2015, 20, 1095–1125. [CrossRef]

50. Palomba, F.; Panichella, A.; De Lucia, A.; Oliveto, R.; Zaidman, A. A textual-based technique for Smell Detection. In Proceedings
of the IEEE International Conference on Program Comprehension, Austin, TX, USA, 16–17 May 2016; pp. 1–10. [CrossRef]

51. White, M.; Tufano, M.; Vendome, C.; Poshyvanyk, D. Deep learning code fragments for code clone detection. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (ASE), Singapore, 3–7 September 2016; pp. 87–98.

52. Aras, M.T.; Selcuk, Y.E. Metric and rule based automated detection of antipatterns in object-oriented software systems. In
Proceedings of the International Conference on Computer Science and Information Technology, Amman, Jordan, 13–14 July 2016;
pp. 1–6. [CrossRef]

53. Tarwani, S.; Chug, A. Predicting maintainability of open source software using Gene Expression Programming and bad smells.
In Proceedings of the International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Noida, India,
7–9 September 2016; pp. 452–459. [CrossRef]

54. Hozano, M.; Antunes, N.; Fonseca, B.; Costa, E. Evaluating the accuracy of machine learning algorithms on detecting code smells
for different developers. In Proceedings of the International Conference on Enterprise Information Systems, Porto, Portugal,
26–29 April 2017; Volume 2, pp. 474–482. [CrossRef]

https://doi.org/10.1016/j.entcs.2005.02.059
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.1109/WCRE.2009.23
https://doi.org/10.1109/CSMR.2010.47
https://doi.org/10.1109/QUATIC.2010.61
https://doi.org/10.1109/QUATIC.2010.60
https://doi.org/10.1109/JCSSE.2011.5930143
https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1109/SCET.2012.6342082
https://doi.org/10.1145/2351676.2351701
https://doi.org/10.1145/2351676.2351723
https://doi.org/10.1109/WCRE.2012.56
https://doi.org/10.1109/ASE.2013.6693086
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1109/ESEM.2015.7321194
https://doi.org/10.1109/ISSRE.2015.7381819
https://doi.org/10.1007/s10664-014-9316-x
https://doi.org/10.1109/ICPC.2016.7503704
https://doi.org/10.1109/CSIT.2016.7549470
https://doi.org/10.1109/ICRITO.2016.7784998
https://doi.org/10.5220/0006338804740482

Appl. Sci. 2024, 14, 6149 37 of 37

55. Fontana, F.A.; Zanoni, M. Code smell severity classification using machine learning techniques. Knowl. Based Syst. 2017, 128,
43–58. [CrossRef]

56. Kim, D.K. Finding Bad Code Smells with Neural Network Models. Int. J. Electr. Comput. Eng. (IJECE) 2017, 7, 3613–3621.
[CrossRef]

57. Kaur, K.; Jain, S. Evaluation of machine learning approaches for change-proneness prediction using code smells. Adv. Intell. Syst.
Comput. 2017, 515, 561–572. [CrossRef]

58. Jesudoss, A.; Maneesha, S.; Durga, T.L.N. Identification of code smell using machine learning. In Proceedings of the International
Conference on Intelligent Computing and Control Systems, Madurai, India, 15–17 May 2019; pp. 54–58. [CrossRef]

59. Mhawish, M.Y.; Gupta, M. Generating Code-Smell Prediction Rules Using Decision Tree Algorithm and Software Metrics. Int. J.
Comput. Sci. Eng. 2019, 7, 41–48. [CrossRef]

60. Gupta, H.; Kumar, L.; Neti, L.B.M. An empirical framework for code smell prediction using extreme learning machine. In
Proceedings of the Annual Information Technology, Electromechanical Engineering and Microelectronics Conference, Jaipur,
India, 13–15 March 2019; pp. 189–195. [CrossRef]

61. Kiyak, E.O.; Birant, D.; Birant, K.U. Comparison of Multi-Label Classification Algorithms for Code Smell Detection. In Proceedings
of the International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13
October 2019; pp. 1–6. [CrossRef]

62. Guggulothu, T.; Moiz, S.A. Code smell detection using multi-label classification approach. Softw. Qual. J. 2020, 28, 1063–1086.
[CrossRef]

63. Kaur, I.; Kaur, A. A Novel Four-Way Approach Designed with Ensemble Feature Selection for Code Smell Detection. IEEE Access
2021, 9, 8695–8707. [CrossRef]

64. Gupta, H.; Kulkarni, T.G.; Kumar, L.; Neti, L.B.M.; Krishna, A. An Empirical Study on Predictability of Software Code Smell
Using Deep Learning Models. Lect. Notes Netw. Syst. 2021, 226, 120–132. [CrossRef]

65. Dewangan, S.; Rao, R.S.; Mishra, A.; Gupta, M. A novel approach for code smell detection: An empirical study. IEEE Access 2021,
9, 162869–162883. [CrossRef]

66. dos Reis, J.P.; Abreu, F.B.E.; Carneiro, G.D.F. Crowdsmelling: A preliminary study on using collective knowledge in code smells
detection. Empir. Softw. Eng. 2022, 27, 69. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.11591/ijece.v7i6.pp3613-3621
https://doi.org/10.1007/978-981-10-3153-3_56
https://doi.org/10.1109/ICCS45141.2019.9065317
https://doi.org/10.26438/ijcse/v7i5.4148
https://doi.org/10.1109/IEMECONX.2019.8877082
https://doi.org/10.1109/ISMSIT.2019.8932855
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1109/ACCESS.2021.3049823
https://doi.org/10.1007/978-3-030-75075-6_10
https://doi.org/10.1109/ACCESS.2021.3133810
https://doi.org/10.1007/s10664-021-10110-5

	Introduction
	Related Works
	Procedures of Code Smell Detection Approaches
	Research Questions
	Search Strategy
	Evaluation of Research Article
	Analysis of the Research Article

	Findings and Discussion
	Description of Articles
	Publication Sources
	Quality Evaluation

	Rationalize the Research Questions
	RQ1: Which ML Algorithms Are Used to Detect Code Smells?
	RQ2: Which Code Smells Are Measured?
	RQ3: What Software Metrics Are Used for Code Smell Detection?
	RQ3.1: Which Metrics Are Found More Useful in Code Smell Detection?
	RQ4: What Are the Various Datasets Used for Code Smell Detection?
	RQ4.1: What Are the Various Dataset Languages Used for Code Smell Detection?
	RQ5: What Are the Performance Measurements of the Different ML Algorithms Used?

	Opportunities Trends
	Insightful Discussion

	Threats to Validity
	Conclusions
	Appendix A
	References

